WO2021070903A1 - Electromagnetic wave generating device - Google Patents

Electromagnetic wave generating device Download PDF

Info

Publication number
WO2021070903A1
WO2021070903A1 PCT/JP2020/038119 JP2020038119W WO2021070903A1 WO 2021070903 A1 WO2021070903 A1 WO 2021070903A1 JP 2020038119 W JP2020038119 W JP 2020038119W WO 2021070903 A1 WO2021070903 A1 WO 2021070903A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electromagnetic wave
wave generating
rtd
generating elements
Prior art date
Application number
PCT/JP2020/038119
Other languages
French (fr)
Japanese (ja)
Inventor
田中 博之
小林 秀樹
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2021551700A priority Critical patent/JP7346584B2/en
Publication of WO2021070903A1 publication Critical patent/WO2021070903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode

Definitions

  • the present invention relates to an electromagnetic wave generator, and more particularly to an electromagnetic wave generator that drives a plurality of electromagnetic wave generators in parallel.
  • a resonant tunneling diode (hereinafter referred to as RTD) is known as an electromagnetic wave generating element of a measuring device using electromagnetic waves in the terahertz band distributed over a frequency band of 0.1 THz to 10 THz.
  • the RTD is an element having a differential negative resistance (Negative Differential Resistance: hereinafter referred to as NDR) region in the voltage-current characteristic, and generates an electromagnetic wave in the terahertz band by applying a bias voltage in the differential negative resistance region.
  • NDR Negative Differential Resistance
  • terahertz is obtained by repeatedly applying a DC offset voltage and a pulsed voltage to an RTD oscillating element as a terahertz wave oscillating element to repeatedly generate an electromagnetic wave generation state and a non-generation state.
  • ASK amplitude shift keying method
  • DAC digital-to-analog conversion circuit
  • a multi-channel DAC is used in order to generate a bias voltage according to the number of elements. Is desirable.
  • the present invention has been made in view of the above points, and parallel control of a plurality of RTD oscillating elements driven at a high modulation frequency can be performed without increasing the scale and cost of the circuit while using the DAC.
  • One of the purposes is to provide a possible electromagnetic wave generator.
  • a driving voltage is supplied, and a plurality of electromagnetic wave generating elements, each of which generates an electromagnetic wave in response to the drive voltage, and a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements are voltageed.
  • a variably generated DC voltage source a modulated voltage source that generates a modulated voltage in which the voltage value periodically changes between a predetermined binary voltage value in the plurality of electromagnetic wave generating elements, and the plurality of DC voltages.
  • a supply unit that adds each of the modulation voltages and supplies them to the plurality of electromagnetic wave generating elements, and a control that controls the DC voltage source to change the voltage values of the plurality of DC voltages independently of each other. It is characterized by having a part and.
  • FIG. 1 is a functional block diagram showing the configuration of the electromagnetic wave generator 1 according to the present invention.
  • the electromagnetic wave generator 1 includes a control unit 10 that supplies a control signal for instructing the generation of a terahertz wave. Further, the electromagnetic wave generator 1 has a multi-channel DAC20 which is a DC voltage source that outputs a DC voltage from a plurality of output terminals and an ASK modulation frequency, and outputs a binary voltage value by periodically changing the voltage value. It has a high-speed DAC 30 to be used, m adder 40s for adding the output of the multi-channel DAC 20 and the output of the high-speed DAC 30, and m RTD oscillating elements 50 which are terahertz wave generation sources.
  • a control unit 10 that supplies a control signal for instructing the generation of a terahertz wave.
  • the electromagnetic wave generator 1 has a multi-channel DAC20 which is a DC voltage source that outputs a DC voltage from a plurality of output terminals and an ASK modulation frequency, and outputs a binary voltage value by periodically changing the voltage value. It has a high-
  • the control unit 10 is connected to the multi-channel DAC 20 and supplies an offset voltage control signal for controlling each voltage value of the DC offset voltage V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20. Further, the control unit 10 is connected to the high-speed DAC 30 and supplies a modulation voltage control signal for controlling the voltage amplitude and frequency of the modulation voltage V AC output by the high-speed DAC 30.
  • the multi-channel DAC 20 is a DC voltage source having m output ends. Each of the m output ends is connected to each of the m adders 40.
  • the multi-channel DAC 20 variably controls each voltage value of the DC offset voltage V Offset 1 to V Offset m output from each output end based on the offset voltage control signal supplied from the control unit 10. It operates to output from each output end.
  • the high-speed DAC 30 is a voltage source having one output end that outputs a modulated voltage V AC whose voltage value changes periodically like a square wave, for example.
  • the output end is connected to each of m adders 40.
  • the high-speed DAC 30 operates so as to variably output the maximum voltage value, the minimum voltage value, and the frequency of the modulation voltage V AC based on the modulation voltage control signal supplied from the control unit 10. Specifically, for example, the high-speed DAC 30 changes the maximum voltage value, the minimum voltage value, and the pulse generation cycle of the output modulation voltage V AC based on the modulation voltage control signal.
  • the m adders 40 are connected to the respective output ends of the m multi-channel DAC 20s and the output ends of the high-speed DAC 30.
  • the m adders 40 have a DC offset voltage V Offset 1 to V Offset m output from each of the m output ends of the multi-channel DAC 20 and a modulation voltage V AC output from the high-speed DAC 30. And are added by each adder and output. That is, the m adders 40 generate drive voltages V Dr 1 to V Dr m in which the modulation voltage V AC is offset by the offset voltages V Offset 1 to V Offset m, respectively, and adder of each of the adders 40. Operates to output from the device.
  • the m RTD oscillators 50 are connected to each of the output ends of the m adders 40, and the drive voltages V Dr 1 to V Dr m generated by the m adders 40 are m RTD oscillations. It is supplied to each of the elements 50.
  • the m RTD oscillators 50 generate terahertz waves from their respective RTD oscillators based on the supplied drive voltages V Dr 1 to V Dr m.
  • FIG. 2 is a schematic view showing the voltage-current characteristics of the RTD oscillator.
  • a terahertz wave can be generated intermittently according to the modulation frequency. It will be possible.
  • the control unit 10 has a DC offset voltage V Offset 1 to V Offset m output by the multi-channel DAC 20 among the drive voltages V Dr 1 to V Dr m supplied to the m RTD oscillators 50.
  • V Offset 1 to V Offset m output by the multi-channel DAC 20 among the drive voltages V Dr 1 to V Dr m supplied to the m RTD oscillators 50.
  • a modulation voltage V AC of the same frequency and voltage is applied to both the RTD oscillator element that generates the terahertz wave and the RTD oscillator element that does not generate the terahertz wave. That is, the control unit 10 has a high potential drive voltage V Dr that oscillates the RTD oscillating element from the output end corresponding to the RTD oscillating element that generates the terahertz wave among the m output ends of the multi-channel DAC 20. Is to output the offset voltage V Offset that offsets the modulation voltage V AC.
  • the offset voltage V Offset is output so that the drive voltage V Dr having the above-mentioned bias voltage values V NDR 1 to V NDR 2 is output from the adder 40.
  • a low offset voltage V Offset is supplied or an offset voltage is supplied so that a drive voltage V Dr that is less than the potential oscillated by the RTD oscillating element is output from the output end corresponding to the RTD oscillating element that does not generate a terahertz wave. Stop the supply of V Offset.
  • the offset voltage V Offset is output so that the drive voltage V Dr having a bias voltage value V NDR 1 to V NDR 2 or less described above is output from the adder 40.
  • the control unit 10 controls so as to generate a terahertz wave only in a desired RTD oscillating element by selectively supplying a high offset voltage V Offset to each adder 40 in this way.
  • the electromagnetic wave generator 1 of the present invention can control one multi-channel DAC 20 and one high-speed DAC 30 to selectively operate m RTD oscillators 50, and can control the DAC. It is possible to control multiple elements of the RTD oscillator element corresponding to a high modulation frequency without inviting an increase in scale and cost of the circuit of the IC chip including the IC chip.
  • FIG. 3 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillator that emits the terahertz wave and the terahertz wave output of the RTD oscillator.
  • FIG. 4 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillator that does not emit the terahertz wave and the terahertz wave output of the RTD oscillator.
  • the upper figure of FIG. 3 shows a time chart of the drive voltage V Dr supplied to the RTD oscillating element that periodically generates the terahertz wave to be operated among the m RTD oscillating elements 50.
  • the drive voltage V Dr applied to the RTD oscillator has a voltage value obtained by adding the V Offset output from the multi-channel DAC 20 and the rectangular wave voltage V AC output from the high-speed DAC 30 as described above.
  • the driving voltage V Dr according to the voltage value of the binary minimum value maximum value is an offset voltage V Offset is the maximum voltage of the offset voltage V Offset + modulation voltage V AC to the frequency of the modulation voltage V AC cycle Has a voltage profile that repeats.
  • the control unit 10 has a bias voltage V NDR 1 to V NDR 2 at which the maximum voltage value of the drive voltage V Dr is a voltage value within the terahertz wave oscillation region with respect to the multi-channel DAC 20, and the minimum voltage of the drive voltage V Dr.
  • the voltage value of the DC voltage V Offset to be output from the output end of the multi-channel DAC 20 corresponding to the RTD oscillating element 50 to be operated is set so that the value is the bias voltage V NDR 1 or less, which is the voltage value outside the terahertz wave oscillation region. Control.
  • the lower figure of FIG. 3 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillator when the drive voltage V Dr is applied to the RTD oscillator.
  • the RTD oscillator generates a terahertz wave only when the drive voltage V Dr becomes a voltage value within the range of the bias voltage V NDR 1 to V NDR 2 which is the maximum value.
  • the terahertz wave of the RTD oscillating element to be operated can intermittently generate the terahertz wave in the period of the modulation voltage V AC.
  • the upper figure of FIG. 4 shows a time chart of the drive voltage V Dr supplied to the RTD oscillator 50 that is not generated in the terahertz wave that is not the target of operation among the m RTD oscillators 50.
  • the control unit 10 corresponds to the RTD oscillating element to be operated with respect to the multi-channel DAC 20 so that the maximum value of the driving voltage V Dr becomes the bias voltage VNDR 1 or less which is the voltage value on the low voltage side of the terahertz wave oscillation region. Offset voltage at the output terminal V Offset voltage value is set to 0V.
  • the maximum value of the drive voltage V Dr does not reach the range of the bias voltage V NDR 1 to V NDR 2, which is the voltage value in the terahertz wave oscillation region.
  • the lower figure of FIG. 4 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillator when the drive voltage V Dr is applied to the RTD oscillator.
  • the RTD oscillator does not generate a terahertz wave.
  • m RTDs are controlled by controlling only the multi-channel DAC 20 that supplies the DC voltage component. It is possible to selectively generate a terahertz wave from an oscillating element.
  • the m RTD oscillators 50 by controlling only each voltage value of the DC offset voltage V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20, the m RTD oscillators 50 Among them, it is possible to generate a terahertz wave only in a desired RTD oscillating element.
  • V NDR 1 and V NDR 2 which are voltage values in the terahertz wave oscillation region, fluctuate depending on the composition type and individual differences. Therefore, the voltage value on the high-voltage side of the binary voltage value of the modulation voltage V AC output from the high-speed DAC 30 is the highest of each of the low-voltage side voltage V NDR 1 in the terahertz wave generation region of the m RTD oscillators 50. It is desirable to set the voltage value smaller than the small VNDR 1.
  • the DC voltage V Offset supplied by the multi-channel DAC 20 to the RTD oscillator that is not the target of operation is set to 0V, but the present invention is not limited to this.
  • the maximum value of the drive voltage V Dr is less bias voltage V NDR 1 on the low pressure side of the bias voltage V NDR 1 ⁇ V NDR 2 as the voltage value of the terahertz wave oscillation region, multi-channel DAC20 operation outside the scope of It suffices if the voltage value of the DC offset voltage V Offset output from the output end corresponding to the RTD oscillating element can be controlled.
  • the low voltage side of the binary voltage value of the modulation voltage V AC output by the high-speed DAC 30 is set to 0 V, but the present invention is not limited to this.
  • the DC voltage V Offset supplied to the RTD oscillating element is set to be less than the voltage V NDR 1, and the bias voltage V NDR 1 in which V Offset + V AC is the voltage value in the terahertz wave oscillation region.
  • the DC voltage V Offset supplied to the RTD oscillating element was set to the region where the RTD oscillating element with a bias voltage of V NDR 2 or more did not oscillate, and the high voltage side of V AC was 0 V, low voltage.
  • the side may be ⁇ V AC and V Offset ⁇ V AC may be controlled within the range of V NDR 1 to V NDR 2.
  • the modulation voltage V AC output by the high-speed DAC 30 has been described as a square wave, but the present invention is not limited to this.
  • the voltage value settings of the multi-channel DAC 20 and the high-speed DAC 30 may be set according to the time responsiveness of the voltage value change of each DAC.
  • the electromagnetic wave generator used in the terahertz wave measuring device has been described as an example. However, it is not limited to the generation of terahertz waves by the RTD oscillating element, and it can also be used for an element that operates according to a driving voltage whose voltage value changes at high speed.
  • Control unit 20 Multi-channel DAC 30 high-speed DAC 40 adder 50 m RTD oscillators

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention comprises: a plurality of electromagnetic wave generating elements to which drive voltage is supplied, each of which elements generates electromagnetic waves in response to the drive voltage; a DC voltage source that generates with variable voltage a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements; a modulated voltage source that generates a modulated voltage in which the voltage value changes periodically between prescribed binary voltage values in the plurality of electromagnetic wave generating elements; a supply unit that adds each of the plurality of DC voltages and the modulated voltage and supplies these to the plurality of electromagnetic wave generating elements; and a control unit that controls the DC voltage source to change the voltage value of each of the plurality of DC voltages independently of each other.

Description

電磁波発生装置Electromagnetic wave generator
 本発明は、電磁波発生装置に関し、特に、複数個の電磁波発生素子を並列して駆動する電磁波発生装置に関する。 The present invention relates to an electromagnetic wave generator, and more particularly to an electromagnetic wave generator that drives a plurality of electromagnetic wave generators in parallel.
 例えば、0.1THz~10THzの周波数帯域にわたって分布するテラヘルツ帯の電磁波を用いた計測装置の電磁波発生素子として、共鳴トンネルダイオード(Resonant Tunneling Diode:以下、RTDと称する)が知られている。RTDは、電圧電流特性に微分負性抵抗(Negative Differential Registivity:以下、NDRと称する)領域を有する素子であり、微分負性抵抗領域のバイアス電圧の印加によってテラヘルツ帯の電磁波を発生する。 For example, a resonant tunneling diode (hereinafter referred to as RTD) is known as an electromagnetic wave generating element of a measuring device using electromagnetic waves in the terahertz band distributed over a frequency band of 0.1 THz to 10 THz. The RTD is an element having a differential negative resistance (Negative Differential Resistance: hereinafter referred to as NDR) region in the voltage-current characteristic, and generates an electromagnetic wave in the terahertz band by applying a bias voltage in the differential negative resistance region.
 例えば、特許文献1には、テラヘルツ波発振素子としてのRTD発振素子に直流のオフセット電圧とパルス状電圧とを重畳して印加して電磁波の発生状態と非発生状態を繰り返し生じさせることで、テラヘルツ帯の電磁波で振幅偏移変調方式(Amplitude Shift Keying:以下、ASKと称する)を実現することが開示されている。 For example, in Patent Document 1, terahertz is obtained by repeatedly applying a DC offset voltage and a pulsed voltage to an RTD oscillating element as a terahertz wave oscillating element to repeatedly generate an electromagnetic wave generation state and a non-generation state. It is disclosed that an amplitude shift keying method (Amplitude Shift Keying: hereinafter referred to as ASK) is realized by an electromagnetic wave in a band.
特許6099114号公報Japanese Patent No. 60999914
 RTD発振素子に上述のオフセットされたパルス状のバイアス電圧を印加する手法としては、デジタルアナログ変換回路(以下、DACと称する)による出力電圧の制御が挙げられる。 As a method of applying the above-mentioned offset pulsed bias voltage to the RTD oscillating element, control of the output voltage by a digital-to-analog conversion circuit (hereinafter referred to as DAC) can be mentioned.
 また、複数のRTD発振素子を発生源として電磁波計測装置に用いる場合、RTD発振素子のそれぞれから発生されたテラヘルツ波同士に干渉が発生する。電磁波計測装置の検出部のテラヘルツ波検出素子の位置に干渉縞の暗部が発生してしまった場合、テラヘルツ波検出素子の検出値が小さくなるという問題が生じる。 Further, when a plurality of RTD oscillating elements are used as a generation source in an electromagnetic wave measuring device, interference occurs between terahertz waves generated from each of the RTD oscillating elements. When a dark portion of interference fringes is generated at the position of the terahertz wave detection element in the detection unit of the electromagnetic wave measuring device, there arises a problem that the detection value of the terahertz wave detection element becomes small.
 テラヘルツ波の干渉が問題となる場合には、干渉縞を生じさせないように、互いに干渉を生じさせるRTD発振素子のそれぞれのテラヘルツ波の発生に時間差を設ける手法が有効となる。 When the interference of terahertz waves becomes a problem, it is effective to set a time difference between the generation of terahertz waves of the RTD oscillating elements that cause interference with each other so as not to cause interference fringes.
 上記のような、複数のRTD発振素子を用いて所望のRTD発振素子を選択的に駆動させるようなシステムでは、素子の数量に応じたバイアス電圧を生成するために、多チャンネルのDACを用いることが望ましい。 In a system such as the one described above in which a desired RTD oscillating element is selectively driven by using a plurality of RTD oscillating elements, a multi-channel DAC is used in order to generate a bias voltage according to the number of elements. Is desirable.
 しかし、ASKのように高い変調周波数で出力電圧を交互に変化させるような場合には高速DACが必要となり、高速DACを複数のRTD発振素子の数量に応じてICチップ上に多素子化すると、ICチップ上の回路が大規模化し、高コスト化を招く。加えて、高速DACを制御する制御信号も多数必要となる。 However, in the case of alternately changing the output voltage at a high modulation frequency like ASK, a high-speed DAC is required, and if the high-speed DAC is multi-elemented on the IC chip according to the number of a plurality of RTD oscillating elements, The circuit on the IC chip becomes large in scale, leading to high cost. In addition, a large number of control signals for controlling the high-speed DAC are required.
 本発明は、上記の点に鑑みてなされたものであり、DACを用いながらの回路の大規模化、高コスト化を招くことなく、高い変調周波数で駆動する複数のRTD発振素子の並列制御が可能な電磁波発生装置を提供することを目的の1つとしている。 The present invention has been made in view of the above points, and parallel control of a plurality of RTD oscillating elements driven at a high modulation frequency can be performed without increasing the scale and cost of the circuit while using the DAC. One of the purposes is to provide a possible electromagnetic wave generator.
 請求項1に記載の発明は、駆動電圧が供給され、これに応答して各々が電磁波を発生する複数の電磁波発生素子と、前記複数の電磁波発生素子の各々に対応する複数の直流電圧を電圧可変に生成する直流電圧源と、前記複数の電磁波発生素子に所定の2値の電圧値の間で電圧値が周期的に変化する変調電圧を生成する変調電圧源と、前記複数の直流電圧の各々と前記変調電圧とを加算して前記複数の電磁波発生素子に夫々供給する供給部と、前記直流電圧源を制御して前記複数の直流電圧の各々の電圧値を互いに独立して変化させる制御部と、を備えることを特徴とする。 According to the first aspect of the present invention, a driving voltage is supplied, and a plurality of electromagnetic wave generating elements, each of which generates an electromagnetic wave in response to the drive voltage, and a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements are voltageed. A variably generated DC voltage source, a modulated voltage source that generates a modulated voltage in which the voltage value periodically changes between a predetermined binary voltage value in the plurality of electromagnetic wave generating elements, and the plurality of DC voltages. A supply unit that adds each of the modulation voltages and supplies them to the plurality of electromagnetic wave generating elements, and a control that controls the DC voltage source to change the voltage values of the plurality of DC voltages independently of each other. It is characterized by having a part and.
本発明による電磁波発生装置1の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the electromagnetic wave generator 1 by this invention. RTD発振素子の電圧電流特性の1例を示すグラフである。It is a graph which shows an example of the voltage-current characteristic of an RTD oscillator. 動作対象のRTD発振素子に印加される駆動電圧VDrの変化とそれに応じてRTD発振素子から発生するテラヘルツ波の変化を示すタイムチャートである。 It is a time chart which shows the change of the drive voltage V Dr applied to the RTD oscillating element to operate, and the change of the terahertz wave generated from the RTD oscillating element correspondingly. 動作対象外のRTD発振素子に印加される駆動電圧VDrの変化とそれに応じてRTD発振素子から発生するテラヘルツ波の変化を示すタイムチャートである。 It is a time chart which shows the change of the drive voltage V Dr applied to the RTD oscillator which is not the operation target, and the change of the terahertz wave generated from the RTD oscillator correspondingly.
 以下に本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.
 図1は、本発明による電磁波発生装置1の構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing the configuration of the electromagnetic wave generator 1 according to the present invention.
 電磁波発生装置1は、テラヘルツ波の発生を指令するための制御信号を供給する制御部10を含んでいる。また、電磁波発生装置1は、複数の出力端からそれぞれ直流電圧を出力する直流電圧源である多チャンネルDAC20と、ASKの変調周波数を有し、2値の電圧値を周期的に変化させて出力する高速DAC30と、多チャンネルDAC20の出力と高速DAC30の出力を加算するm個の加算器40と及びテラヘルツ波発生源であるm個のRTD発振素子50とを有する。 The electromagnetic wave generator 1 includes a control unit 10 that supplies a control signal for instructing the generation of a terahertz wave. Further, the electromagnetic wave generator 1 has a multi-channel DAC20 which is a DC voltage source that outputs a DC voltage from a plurality of output terminals and an ASK modulation frequency, and outputs a binary voltage value by periodically changing the voltage value. It has a high-speed DAC 30 to be used, m adder 40s for adding the output of the multi-channel DAC 20 and the output of the high-speed DAC 30, and m RTD oscillating elements 50 which are terahertz wave generation sources.
 制御部10は、多チャンネルDAC20に接続され、多チャンネルDAC20の出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を制御するオフセット電圧制御信号を供給する。また、制御部10は、高速DAC30に接続され、高速DAC30が出力する変調電圧VACの電圧振幅及び周波数を制御する変調電圧制御信号を供給する。 The control unit 10 is connected to the multi-channel DAC 20 and supplies an offset voltage control signal for controlling each voltage value of the DC offset voltage V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20. Further, the control unit 10 is connected to the high-speed DAC 30 and supplies a modulation voltage control signal for controlling the voltage amplitude and frequency of the modulation voltage V AC output by the high-speed DAC 30.
 多チャンネルDAC20は、m個の出力端を有する直流電圧源である。当該m個の出力端のそれぞれがm個の加算器40のそれぞれに接続されている。多チャンネルDAC20は、制御部10から供給されるオフセット電圧制御信号に基づいて、それぞれの出力端から出力する直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を可変に制御して、それぞれの出力端から出力するように動作する。 The multi-channel DAC 20 is a DC voltage source having m output ends. Each of the m output ends is connected to each of the m adders 40. The multi-channel DAC 20 variably controls each voltage value of the DC offset voltage V Offset 1 to V Offset m output from each output end based on the offset voltage control signal supplied from the control unit 10. It operates to output from each output end.
 高速DAC30は、例えば、矩形波のように電圧値が周期的に変化する変調電圧VACを出力する1つの出力端を有する電圧源である。当該出力端は、m個の加算器40のそれぞれに接続されている。高速DAC30は、制御部10から供給される変調電圧制御信号に基づいて、変調電圧VACを、最大電圧値並びに最小電圧値及び周波数を可変に出力するように動作する。具体的には、例えば、高速DAC30は、変調電圧制御信号に基づいて、出力する変調電圧VACの最大電圧値、最少電圧値及びパルスの発生周期を変化させる。 The high-speed DAC 30 is a voltage source having one output end that outputs a modulated voltage V AC whose voltage value changes periodically like a square wave, for example. The output end is connected to each of m adders 40. The high-speed DAC 30 operates so as to variably output the maximum voltage value, the minimum voltage value, and the frequency of the modulation voltage V AC based on the modulation voltage control signal supplied from the control unit 10. Specifically, for example, the high-speed DAC 30 changes the maximum voltage value, the minimum voltage value, and the pulse generation cycle of the output modulation voltage V AC based on the modulation voltage control signal.
 m個の加算器40は、多チャンネルDAC20のm個のそれぞれの出力端及び高速DAC30の出力端に接続されている。m個の加算器40は、多チャンネルDAC20のm個のそれぞれの出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値と高速DAC30から出力される変調電圧VACとをそれぞれの加算器で加算してこれを出力する。すなわち、m個の加算器40は、変調電圧VACがオフセット電圧VOffset1~VOffsetmのそれぞれによってオフセットされた駆動電圧VDr1~VDrmを生成し、加算器40のそれぞれの加算器から出力するように動作する。 The m adders 40 are connected to the respective output ends of the m multi-channel DAC 20s and the output ends of the high-speed DAC 30. The m adders 40 have a DC offset voltage V Offset 1 to V Offset m output from each of the m output ends of the multi-channel DAC 20 and a modulation voltage V AC output from the high-speed DAC 30. And are added by each adder and output. That is, the m adders 40 generate drive voltages V Dr 1 to V Dr m in which the modulation voltage V AC is offset by the offset voltages V Offset 1 to V Offset m, respectively, and adder of each of the adders 40. Operates to output from the device.
 m個のRTD発振素子50は、m個の加算器40の出力端のそれぞれに接続されており、m個の加算器40が生成した駆動電圧VDr1~VDrmがm個のRTD発振素子50のそれぞれに供給される。m個のRTD発振素子50は、供給される駆動電圧VDr1~VDrmに基づいてそれぞれのRTD発振素子からテラヘルツ波を発生する。 The m RTD oscillators 50 are connected to each of the output ends of the m adders 40, and the drive voltages V Dr 1 to V Dr m generated by the m adders 40 are m RTD oscillations. It is supplied to each of the elements 50. The m RTD oscillators 50 generate terahertz waves from their respective RTD oscillators based on the supplied drive voltages V Dr 1 to V Dr m.
 図2は、RTD発振素子の電圧電流特性を示す概略図である。 FIG. 2 is a schematic view showing the voltage-current characteristics of the RTD oscillator.
 RTD発振素子は、図2に示すように、正バイアスの電圧を印加していくと、印加電圧の上昇に伴って線形的に電流が変化することが知られている(点a-b間)。しかし、所定の電圧領域では、強い非線形領域が現れることが知られている(点b-c間)。さらに印加電圧を高くすると、印加電圧に伴って電流が減少するNDR領域が現れることが知られている(点c-d間)。 As shown in FIG. 2, it is known that when a positive bias voltage is applied to the RTD oscillating element, the current changes linearly as the applied voltage rises (between points a and b). .. However, it is known that a strong non-linear region appears in a predetermined voltage region (between points bc). It is known that when the applied voltage is further increased, an NDR region in which the current decreases with the applied voltage appears (between points cd).
 RTD発振素子のNDR領域に相当するバイアス電圧を印加することで、RTD発振素子からテラヘルツ帯の電磁波が発生することが知られている。 It is known that an electromagnetic wave in the terahertz band is generated from the RTD oscillating element by applying a bias voltage corresponding to the NDR region of the RTD oscillating element.
 すなわち、バイアス電圧値VNDR1~VNDR2のテラヘルツ波発振領域の範囲のバイアス電圧を印加することで、RTD発振素子からテラヘルツ波を発生させることが可能である。換言すれば、このRTD発振素子の最大動作電圧はVNDR2であり、最小動作電圧はVNDR1である。 That is, by applying a bias voltage in the range of the terahertz wave oscillation region of the bias voltage values V NDR 1 to V NDR 2, it is possible to generate a terahertz wave from the RTD oscillating element. In other words, the maximum operating voltage of this RTD oscillator is VNDR 2, and the minimum operating voltage is VNDR 1.
 また、バイアス電圧VNDR1~VNDR2のテラヘルツ波発振領域の範囲のバイアス電圧にASKの変調周波数を有する電圧を印加することで、テラヘルツ波を変調周波数に応じて断続的に発生させることが可能となる。 Further, by applying a voltage having an ASK modulation frequency to the bias voltage in the range of the terahertz wave oscillation region of the bias voltages V NDR 1 to V NDR 2, a terahertz wave can be generated intermittently according to the modulation frequency. It will be possible.
 制御部10は、m個のRTD発振素子50に供給される駆動電圧VDr1~VDrmのうち、多チャンネルDAC20が出力する直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を制御することで、m個のRTD発振素子50のうち所望のRTD発振素子のみにテラヘルツ波を発生させるように制御する。 The control unit 10 has a DC offset voltage V Offset 1 to V Offset m output by the multi-channel DAC 20 among the drive voltages V Dr 1 to V Dr m supplied to the m RTD oscillators 50. By controlling the above, the terahertz wave is controlled to be generated only in the desired RTD oscillating element out of the m RTD oscillating elements 50.
 このとき、高速DAC30からは、テラヘルツ波を発生させるRTD発振素子及び発生させないRTD発振素子のどちらにも同じ周波数と電圧の変調電圧VACが印加されている。すなわち、制御部10は、多チャンネルDAC20のm個の出力端のうち、テラヘルツ波を発生させるRTD発振素子に対応する出力端からはRTD発振素子を発振させる高電位な駆動電圧VDrとなるように変調電圧VACをオフセットさせるオフセット電圧VOffsetを出力させる。具体的には、例えば、上述したバイアス電圧値VNDR1~VNDR2となるような駆動電圧VDrが、加算器40から出力されるようにオフセット電圧VOffsetを出力させる。その一方、テラヘルツ波を発生させないRTD発振素子に対応する出力端からはRTD発振素子が発振する電位に満たない駆動電圧VDrが出力されるように低いオフセット電圧VOffsetを供給するか又はオフセット電圧VOffsetの供給を停止させる。具体的には、例えば、上述したバイアス電圧値VNDR1~VNDR2未満となるような駆動電圧VDrが、加算器40から出力されるようにオフセット電圧VOffsetを出力させる。 At this time, from the high-speed DAC 30, a modulation voltage V AC of the same frequency and voltage is applied to both the RTD oscillator element that generates the terahertz wave and the RTD oscillator element that does not generate the terahertz wave. That is, the control unit 10 has a high potential drive voltage V Dr that oscillates the RTD oscillating element from the output end corresponding to the RTD oscillating element that generates the terahertz wave among the m output ends of the multi-channel DAC 20. Is to output the offset voltage V Offset that offsets the modulation voltage V AC. Specifically, for example, the offset voltage V Offset is output so that the drive voltage V Dr having the above-mentioned bias voltage values V NDR 1 to V NDR 2 is output from the adder 40. On the other hand, a low offset voltage V Offset is supplied or an offset voltage is supplied so that a drive voltage V Dr that is less than the potential oscillated by the RTD oscillating element is output from the output end corresponding to the RTD oscillating element that does not generate a terahertz wave. Stop the supply of V Offset. Specifically, for example, the offset voltage V Offset is output so that the drive voltage V Dr having a bias voltage value V NDR 1 to V NDR 2 or less described above is output from the adder 40.
 制御部10は、このように選択的に高いオフセット電圧VOffsetを各加算器40に供給することで所望のRTD発振素子のみにテラヘルツ波を発生させるように制御する。 The control unit 10 controls so as to generate a terahertz wave only in a desired RTD oscillating element by selectively supplying a high offset voltage V Offset to each adder 40 in this way.
 本発明の電磁波発生装置1は、上記構成により、1個の多チャンネルDAC20と、1個の高速DAC30でm個のRTD発振素子50を選択的に動作させるよう制御することが可能となり、DACを含むICチップの回路の大規模化、高コスト化を招くことなく、高い変調周波数に対応したRTD発振素子の多素子制御が可能となる。 With the above configuration, the electromagnetic wave generator 1 of the present invention can control one multi-channel DAC 20 and one high-speed DAC 30 to selectively operate m RTD oscillators 50, and can control the DAC. It is possible to control multiple elements of the RTD oscillator element corresponding to a high modulation frequency without inviting an increase in scale and cost of the circuit of the IC chip including the IC chip.
 図3は、テラヘルツ波を出射させるRTD発振素子に印加される駆動電圧VDr及びRTD発振素子のテラヘルツ波出力の概略タイムチャートである。また、図4は、テラヘルツ波を出射させないRTD発振素子に印加される駆動電圧VDr及びRTD発振素子のテラヘルツ波出力の概略タイムチャートである。 FIG. 3 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillator that emits the terahertz wave and the terahertz wave output of the RTD oscillator. Further, FIG. 4 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillator that does not emit the terahertz wave and the terahertz wave output of the RTD oscillator.
 図3及び図4を用いて本実施例の電磁波発生装置1の動作を説明する。 The operation of the electromagnetic wave generator 1 of this embodiment will be described with reference to FIGS. 3 and 4.
 図3の上図は、m個のRTD発振素子50のうち、動作対象となるテラヘルツ波を周期的に発生させるRTD発振素子に供給される駆動電圧VDrのタイムチャートを示す。 The upper figure of FIG. 3 shows a time chart of the drive voltage V Dr supplied to the RTD oscillating element that periodically generates the terahertz wave to be operated among the m RTD oscillating elements 50.
 RTD発振素子に印加される駆動電圧VDrは、上述の通り多チャンネルDAC20から出力されるVOffsetと高速DAC30から出力される矩形波電圧VACが合算された電圧値を有する。 The drive voltage V Dr applied to the RTD oscillator has a voltage value obtained by adding the V Offset output from the multi-channel DAC 20 and the rectangular wave voltage V AC output from the high-speed DAC 30 as described above.
 よって、駆動電圧VDrは、最小値がオフセット電圧VOffsetであり最大値がオフセット電圧VOffset+変調電圧VACの最大電圧となる2値の電圧値を変調電圧VACの周波数に応じて周期的に繰り返す電圧プロファイルを有する。 Therefore, the driving voltage V Dr, according to the voltage value of the binary minimum value maximum value is an offset voltage V Offset is the maximum voltage of the offset voltage V Offset + modulation voltage V AC to the frequency of the modulation voltage V AC cycle Has a voltage profile that repeats.
 制御部10は、多チャンネルDAC20に対して、駆動電圧VDrの最大電圧値がテラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2となり、且つ駆動電圧VDrの最小電圧値がテラヘルツ波発振領域外の電圧値となるバイアス電圧VNDR1以下となるように、動作対象のRTD発振素子50に対応する多チャンネルDAC20の出力端から出力させる直流電圧VOffsetの電圧値を制御する。 The control unit 10 has a bias voltage V NDR 1 to V NDR 2 at which the maximum voltage value of the drive voltage V Dr is a voltage value within the terahertz wave oscillation region with respect to the multi-channel DAC 20, and the minimum voltage of the drive voltage V Dr. The voltage value of the DC voltage V Offset to be output from the output end of the multi-channel DAC 20 corresponding to the RTD oscillating element 50 to be operated is set so that the value is the bias voltage V NDR 1 or less, which is the voltage value outside the terahertz wave oscillation region. Control.
 図3の下図は、上記駆動電圧VDrがRTD発振素子に印加された際のRTD発振素子から発生するテラヘルツ波の挙動を示すタイムチャートである。 The lower figure of FIG. 3 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillator when the drive voltage V Dr is applied to the RTD oscillator.
 図3の上図に示すとおり、駆動電圧VDrが最大値となるバイアス電圧VNDR1~VNDR2の範囲内の電圧値となった場合にのみ、RTD発振素子はテラヘルツ波を発生するように動作する。 As shown in the upper part of FIG. 3, the RTD oscillator generates a terahertz wave only when the drive voltage V Dr becomes a voltage value within the range of the bias voltage V NDR 1 to V NDR 2 which is the maximum value. Works on.
 これにより、動作対象のRTD発振素子のテラヘルツ波は、変調電圧VACの周期で断続的にテラヘルツ波を発生させることが可能となる。 As a result, the terahertz wave of the RTD oscillating element to be operated can intermittently generate the terahertz wave in the period of the modulation voltage V AC.
 次に、m個のRTD発振素子50のうち、動作対象外となるテラヘルツ波を発生させないRTD発振素子における駆動電圧VDr及びその際にRTD発振素子から出力されるテラヘルツ波の概略タイムチャートを図4に示す。 Next, a schematic time chart of the drive voltage V Dr in the RTD oscillating element that does not generate the terahertz wave that is not the target of operation among the m RTD oscillating elements 50 and the terahertz wave output from the RTD oscillating element at that time is shown. Shown in 4.
 図4の上図は、m個のRTD発振素子50のうち、動作対象外となるテラヘルツ波に発生させないRTD発振素子に供給される駆動電圧VDrのタイムチャートを示す。 The upper figure of FIG. 4 shows a time chart of the drive voltage V Dr supplied to the RTD oscillator 50 that is not generated in the terahertz wave that is not the target of operation among the m RTD oscillators 50.
 制御部10は、駆動電圧VDrの最大値がテラヘルツ波発振領域の低圧側の電圧値となるバイアス電圧VNDR1以下となるように、多チャンネルDAC20に対して動作対象のRTD発振素子に対応する出力端のオフセット電圧VOffsetの電圧値を0Vとする等の制御をする。 The control unit 10 corresponds to the RTD oscillating element to be operated with respect to the multi-channel DAC 20 so that the maximum value of the driving voltage V Dr becomes the bias voltage VNDR 1 or less which is the voltage value on the low voltage side of the terahertz wave oscillation region. Offset voltage at the output terminal V Offset voltage value is set to 0V.
 すなわち、図4の上図に示すように、駆動電圧VDrの最大値は、テラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2の範囲には到達しない。 That is, as shown in the upper figure of FIG. 4, the maximum value of the drive voltage V Dr does not reach the range of the bias voltage V NDR 1 to V NDR 2, which is the voltage value in the terahertz wave oscillation region.
 図4の下図は、上記駆動電圧VDrがRTD発振素子に印加された際のRTD発振素子から発生するテラヘルツ波の挙動を示すタイムチャートである。 The lower figure of FIG. 4 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillator when the drive voltage V Dr is applied to the RTD oscillator.
 図4の上図に示すとおり、駆動電圧VDrが最大値となるバイアス電圧VNDR1~VNDR2の範囲に到達しない故、RTD発振素子はテラヘルツ波を発生しない。 As shown in the upper figure of FIG. 4, since the bias voltage V NDR 1 to V NDR 2 where the drive voltage V Dr is the maximum value is not reached, the RTD oscillator does not generate a terahertz wave.
 すなわち、本実施例の電磁波発生装置1によれば、RTD発振素子のそれぞれに印加される駆動電圧VDrのうち、直流電圧成分を供給する多チャンネルDAC20のみを制御することで、m個のRTD発振素子から選択的にテラヘルツ波を発生させることが可能となる。 That is, according to the electromagnetic wave generator 1 of the present embodiment , among the drive voltage V Dr applied to each of the RTD oscillators, m RTDs are controlled by controlling only the multi-channel DAC 20 that supplies the DC voltage component. It is possible to selectively generate a terahertz wave from an oscillating element.
 本実施例によれば、1個の多チャンネルDAC20と、1個の高速DAC30でm個のRTD発振素子50を選択的に動作させるよう制御することが可能となり、DACを含むICチップの回路の大規模化、高コスト化を招くことなく、高い変調周波数に対応したRTD発振素子の多素子制御が可能となる。 According to this embodiment, it is possible to control one multi-channel DAC 20 and one high-speed DAC 30 to selectively operate m RTD oscillators 50, and it is possible to control the circuit of the IC chip including the DAC. Multi-element control of RTD oscillators corresponding to high modulation frequencies is possible without incurring large scale and high cost.
 また、本実施例によれば、多チャンネルDAC20の出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値のみを制御することで、m個のRTD発振素子50のうち所望のRTD発振素子のみにテラヘルツ波を発生させることが可能となる。 Further, according to this embodiment, by controlling only each voltage value of the DC offset voltage V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20, the m RTD oscillators 50 Among them, it is possible to generate a terahertz wave only in a desired RTD oscillating element.
 なお、RTD発振素子は、組成種及び個体差により、テラヘルツ波発振領域の電圧値となるVNDR1及びVNDR2が変動する。それ故、高速DAC30から出力される変調電圧VACの2値の電圧値の高圧側の電圧値は、m個のRTD発振素子50のテラヘルツ波発生領域の低圧側電圧VNDR1のそれぞれの最も小さいVNDR1よりも小さい電圧値と設定することが望ましい。 In the RTD oscillating element, V NDR 1 and V NDR 2, which are voltage values in the terahertz wave oscillation region, fluctuate depending on the composition type and individual differences. Therefore, the voltage value on the high-voltage side of the binary voltage value of the modulation voltage V AC output from the high-speed DAC 30 is the highest of each of the low-voltage side voltage V NDR 1 in the terahertz wave generation region of the m RTD oscillators 50. It is desirable to set the voltage value smaller than the small VNDR 1.
 本実施例の説明及び図面において、多チャンネルDAC20が動作対象外のRTD発振素子に供給する直流電圧VOffsetを0Vとしたが、これに限らない。駆動電圧VDrの最大値がテラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2の低圧側のバイアス電圧VNDR1以下となるように、多チャンネルDAC20の動作対象外のRTD発振素子に対応する出力端から出力する直流のオフセット電圧VOffsetの電圧値を制御できればよい。 In the description and drawings of this embodiment, the DC voltage V Offset supplied by the multi-channel DAC 20 to the RTD oscillator that is not the target of operation is set to 0V, but the present invention is not limited to this. As the maximum value of the drive voltage V Dr is less bias voltage V NDR 1 on the low pressure side of the bias voltage V NDR 1 ~ V NDR 2 as the voltage value of the terahertz wave oscillation region, multi-channel DAC20 operation outside the scope of It suffices if the voltage value of the DC offset voltage V Offset output from the output end corresponding to the RTD oscillating element can be controlled.
 また、本実施例の説明及び図面において、高速DAC30が出力する変調電圧VACの2値の電圧値の低電圧側を0Vとしたが、これに限らない。 Further, in the description and drawings of this embodiment, the low voltage side of the binary voltage value of the modulation voltage V AC output by the high-speed DAC 30 is set to 0 V, but the present invention is not limited to this.
 また、本実施例の説明および図面において、RTD発振素子に供給する直流電圧VOffsetを電圧VNDR1未満とし、VOffset+VACがテラヘルツ波発振領域内の電圧値であるバイアス電圧VNDR1~VNDR2の範囲内となるようにしたが、RTD発振素子に供給する直流電圧VOffsetをバイアス電圧VNDR2以上のRTD発振素子の発振しない領域とし、VACの高圧側を0V、低圧側を-VACとしVOffset-VACがVNDR1~VNDR2の範囲内に制御することでもよい。 Further, in the description and drawings of this embodiment, the DC voltage V Offset supplied to the RTD oscillating element is set to be less than the voltage V NDR 1, and the bias voltage V NDR 1 in which V Offset + V AC is the voltage value in the terahertz wave oscillation region. Although it was set to be within the range of ~ VNDR 2, the DC voltage V Offset supplied to the RTD oscillating element was set to the region where the RTD oscillating element with a bias voltage of V NDR 2 or more did not oscillate, and the high voltage side of V AC was 0 V, low voltage. The side may be −V AC and V Offset −V AC may be controlled within the range of V NDR 1 to V NDR 2.
 また、本実施例の説明及び図面において、高速DAC30が出力する変調電圧VACを矩形波として説明したが、これに限らない。 Further, in the description and drawings of this embodiment, the modulation voltage V AC output by the high-speed DAC 30 has been described as a square wave, but the present invention is not limited to this.
 上記の多チャンネルDAC20及び高速DAC30の電圧値設定は、それぞれのDACの有する電圧値変更の時間応答性にあわせて設定すればよい。 The voltage value settings of the multi-channel DAC 20 and the high-speed DAC 30 may be set according to the time responsiveness of the voltage value change of each DAC.
 また、本実施例においては、テラヘルツ波計測装置に用いられる電磁波発生装置を例として説明した。しかし、RTD発振素子によるテラヘルツ波の発生に限らず、電圧値が高速に変化する駆動電圧に応じて動作するような素子に対して用いることも可能である。 Further, in this embodiment, the electromagnetic wave generator used in the terahertz wave measuring device has been described as an example. However, it is not limited to the generation of terahertz waves by the RTD oscillating element, and it can also be used for an element that operates according to a driving voltage whose voltage value changes at high speed.
10 制御部
20 多チャンネルDAC
30 高速DAC
40 加算器
50 m個のRTD発振素子
10 Control unit 20 Multi-channel DAC
30 high-speed DAC
40 adder 50 m RTD oscillators

Claims (7)

  1.  駆動電圧が供給され、これに応答して各々が電磁波を発生する複数の電磁波発生素子と、
     前記複数の電磁波発生素子の各々に対応する複数の直流電圧を電圧可変に生成する直流電圧源と、
     前記複数の電磁波発生素子に所定の2値の電圧値の間で電圧値が周期的に変化する変調電圧を生成する変調電圧源と、
     前記複数の直流電圧の各々と前記変調電圧とを加算して前記複数の電磁波発生素子の各々に供給する供給部と、
     前記直流電圧源を制御して前記複数の直流電圧の各々の電圧値を互いに独立して変化させる制御部と、
    を備えることを特徴とする電磁波発生装置。
    A plurality of electromagnetic wave generating elements, each of which generates an electromagnetic wave in response to the supply of a driving voltage,
    A DC voltage source that variably generates a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements,
    A modulation voltage source that generates a modulation voltage in which the voltage value changes periodically between a predetermined binary voltage value in the plurality of electromagnetic wave generating elements,
    A supply unit that adds each of the plurality of DC voltages and the modulation voltage and supplies them to each of the plurality of electromagnetic wave generating elements.
    A control unit that controls the DC voltage source to change the voltage values of the plurality of DC voltages independently of each other.
    An electromagnetic wave generator characterized by being equipped with.
  2.  前記制御部は、前記複数の電磁波発生素子に供給される前記直流電圧の各々の電圧値を制御することで、前記複数の電磁波発生素子のうち所望の電磁波発生素子のみに前記電磁波を発生させることを特徴とする請求項1に記載の電磁波発生装置。 The control unit controls each voltage value of the DC voltage supplied to the plurality of electromagnetic wave generating elements to generate the electromagnetic wave only in a desired electromagnetic wave generating element among the plurality of electromagnetic wave generating elements. The electromagnetic wave generator according to claim 1.
  3.  前記変調電圧源が出力する前記変調電圧の最大電圧は、前記複数の電磁波発生素子のうち最低動作電圧が最も低い電磁波発生素子の最低動作電圧値よりも小さいことを特徴とする請求項1又は2に記載の電磁波発生装置。 Claim 1 or 2 characterized in that the maximum voltage of the modulation voltage output by the modulation voltage source is smaller than the minimum operating voltage value of the electromagnetic wave generating element having the lowest operating voltage among the plurality of electromagnetic wave generating elements. The electromagnetic wave generator described in.
  4.  前記制御部は、前記複数の電磁波発生素子のうち、前記電磁波を発生させる電磁波発生素子の各々に供給される駆動電圧を、最大電圧値が当該各々の電磁波発生素子の最大動作電圧と最低動作電圧の間の電圧値となり、かつ最低電圧が当該各々の電磁波発生素子の最低動作電圧よりも低い電圧値となるように前記直流電圧値を制御することを特徴とする請求項1~3のいずれか1に記載の電磁波発生装置。 The control unit determines the drive voltage supplied to each of the electromagnetic wave generating elements among the plurality of electromagnetic wave generating elements, and the maximum voltage value is the maximum operating voltage and the minimum operating voltage of each electromagnetic wave generating element. Any of claims 1 to 3, wherein the DC voltage value is controlled so that the voltage value is between the two and the minimum voltage is lower than the minimum operating voltage of each electromagnetic wave generating element. The electromagnetic wave generator according to 1.
  5.  前記制御部は、前記複数の電磁波発生素子のうち、前記電磁波を発生させない電磁波発生素子の各々に供給される駆動電圧を、最大電圧値が当該各々の電磁波発生素子の最低動作電圧よりも低い電圧値となるように前記直流電圧値を制御することを特徴とする請求項1~4のいずれか1に記載の電磁波発生装置。 The control unit sets the drive voltage supplied to each of the electromagnetic wave generating elements that do not generate the electromagnetic waves among the plurality of electromagnetic wave generating elements to a voltage whose maximum voltage value is lower than the minimum operating voltage of each electromagnetic wave generating element. The electromagnetic wave generator according to any one of claims 1 to 4, wherein the DC voltage value is controlled so as to be a value.
  6.  前記電磁波は、テラヘルツ波であることを特徴とする請求項1に記載の電磁波発生装置。 The electromagnetic wave generator according to claim 1, wherein the electromagnetic wave is a terahertz wave.
  7.  前記電磁波発生素子は、共鳴トンネルダイオードであることを特徴とする請求項1~6のいずれか1に記載の電磁波発生装置。 The electromagnetic wave generator according to any one of claims 1 to 6, wherein the electromagnetic wave generating element is a resonance tunnel diode.
PCT/JP2020/038119 2019-10-09 2020-10-08 Electromagnetic wave generating device WO2021070903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551700A JP7346584B2 (en) 2019-10-09 2020-10-08 electromagnetic wave generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019185777 2019-10-09
JP2019-185777 2019-10-09

Publications (1)

Publication Number Publication Date
WO2021070903A1 true WO2021070903A1 (en) 2021-04-15

Family

ID=75437276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038119 WO2021070903A1 (en) 2019-10-09 2020-10-08 Electromagnetic wave generating device

Country Status (2)

Country Link
JP (1) JP7346584B2 (en)
WO (1) WO2021070903A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005115A (en) * 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus
JP2013190350A (en) * 2012-03-14 2013-09-26 Canon Inc Apparatus using electromagnetic wave of terahertz wave band
JP2014200065A (en) * 2013-03-12 2014-10-23 キヤノン株式会社 Oscillation element
US20170256665A1 (en) * 2016-03-03 2017-09-07 Electronics & Telecommunication Research Institute Appratus for generating terahertz wave and method for controlling terahertz wavefront using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103997A (en) * 2005-09-30 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave emission device
JP2007295350A (en) * 2006-04-26 2007-11-08 Fujitsu Ltd Submillimeter wave oscillator, array antenna and cavity resonator
JP2016080686A (en) * 2014-10-15 2016-05-16 キヤノン株式会社 Inspection device and inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005115A (en) * 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus
JP2013190350A (en) * 2012-03-14 2013-09-26 Canon Inc Apparatus using electromagnetic wave of terahertz wave band
JP2014200065A (en) * 2013-03-12 2014-10-23 キヤノン株式会社 Oscillation element
US20170256665A1 (en) * 2016-03-03 2017-09-07 Electronics & Telecommunication Research Institute Appratus for generating terahertz wave and method for controlling terahertz wavefront using the same

Also Published As

Publication number Publication date
JPWO2021070903A1 (en) 2021-04-15
JP7346584B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2021070903A1 (en) Electromagnetic wave generating device
JP4861714B2 (en) Spread spectrum clock generation circuit
JP4575880B2 (en) Ultrasonic diagnostic equipment
KR100349229B1 (en) Pulse-position-modulation driving for piezoelectric transformers
US7965150B2 (en) Differential oscillation apparatus and modulator
CN101409540B (en) Semiconductor integrated circuit
JPH04504496A (en) electrical load control device
JP2006243560A (en) Method and device for driving liquid crystal optical modulating element
KR101388827B1 (en) Circuit for generating pulse width modulation signal, and driving circuit for a motor
JPH04260268A (en) Semiconductor laser driving device
JP2910280B2 (en) Laser diode drive circuit
JP2005348548A (en) Inverter device
US7054360B2 (en) Method and apparatus for generating pulse width modulated waveforms
CN104285374A (en) Clock generator for crystal or ceramic oscillator and filter system for same
JPH07108221A (en) Ultrasonic generator
US9847756B1 (en) Wireless communication device and wireless communication method
US20230007764A1 (en) Method of operating a piezoelectric plasma generator
JPH10242555A (en) Frequency-variable laser beam source
JPWO2016043036A1 (en) Optical frequency control device
KR20210067313A (en) Crystal oscillator circuit
WO2019207627A1 (en) Power supply device
SU698118A1 (en) Random signal generator
SU758097A1 (en) Ac voltage stabilizer
KR20020014652A (en) PWM Circuit Irrespective of Voltage Variation of Power Supply
SU1555807A1 (en) Method of modulating capacitance of n-p junction in parametric devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874758

Country of ref document: EP

Kind code of ref document: A1