JP7346584B2 - electromagnetic wave generator - Google Patents

electromagnetic wave generator Download PDF

Info

Publication number
JP7346584B2
JP7346584B2 JP2021551700A JP2021551700A JP7346584B2 JP 7346584 B2 JP7346584 B2 JP 7346584B2 JP 2021551700 A JP2021551700 A JP 2021551700A JP 2021551700 A JP2021551700 A JP 2021551700A JP 7346584 B2 JP7346584 B2 JP 7346584B2
Authority
JP
Japan
Prior art keywords
voltage
electromagnetic wave
wave generating
voltage value
generating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551700A
Other languages
Japanese (ja)
Other versions
JPWO2021070903A1 (en
Inventor
博之 田中
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of JPWO2021070903A1 publication Critical patent/JPWO2021070903A1/ja
Application granted granted Critical
Publication of JP7346584B2 publication Critical patent/JP7346584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電磁波発生装置に関し、特に、複数個の電磁波発生素子を並列して駆動する電磁波発生装置に関する。 The present invention relates to an electromagnetic wave generating device, and particularly to an electromagnetic wave generating device that drives a plurality of electromagnetic wave generating elements in parallel.

例えば、0.1THz~10THzの周波数帯域にわたって分布するテラヘルツ帯の電磁波を用いた計測装置の電磁波発生素子として、共鳴トンネルダイオード(Resonant Tunneling Diode:以下、RTDと称する)が知られている。RTDは、電圧電流特性に微分負性抵抗(Negative Differential Registivity:以下、NDRと称する)領域を有する素子であり、微分負性抵抗領域のバイアス電圧の印加によってテラヘルツ帯の電磁波を発生する。 For example, a resonant tunneling diode (hereinafter referred to as RTD) is known as an electromagnetic wave generating element for a measuring device that uses terahertz band electromagnetic waves distributed over a frequency band of 0.1 THz to 10 THz. An RTD is an element having a negative differential resistance (NDR) region in its voltage-current characteristics, and generates terahertz band electromagnetic waves by applying a bias voltage in the differential negative resistance region.

例えば、特許文献1には、テラヘルツ波発振素子としてのRTD発振素子に直流のオフセット電圧とパルス状電圧とを重畳して印加して電磁波の発生状態と非発生状態を繰り返し生じさせることで、テラヘルツ帯の電磁波で振幅偏移変調方式(Amplitude Shift Keying:以下、ASKと称する)を実現することが開示されている。 For example, Patent Document 1 discloses that by applying a direct current offset voltage and a pulsed voltage in a superimposed manner to an RTD oscillation element as a terahertz wave oscillation element to repeatedly cause an electromagnetic wave generation state and non-generation state, terahertz It has been disclosed that Amplitude Shift Keying (hereinafter referred to as ASK) is realized using electromagnetic waves in the band.

特許6099114号公報Patent No. 6099114

RTD発振素子に上述のオフセットされたパルス状のバイアス電圧を印加する手法としては、デジタルアナログ変換回路(以下、DACと称する)による出力電圧の制御が挙げられる。 An example of a method for applying the above-mentioned offset pulse-like bias voltage to the RTD oscillation element is to control the output voltage using a digital-to-analog conversion circuit (hereinafter referred to as DAC).

また、複数のRTD発振素子を発生源として電磁波計測装置に用いる場合、RTD発振素子のそれぞれから発生されたテラヘルツ波同士に干渉が発生する。電磁波計測装置の検出部のテラヘルツ波検出素子の位置に干渉縞の暗部が発生してしまった場合、テラヘルツ波検出素子の検出値が小さくなるという問題が生じる。 Furthermore, when a plurality of RTD oscillation elements are used as a generation source in an electromagnetic wave measuring device, interference occurs between the terahertz waves generated from each of the RTD oscillation elements. If a dark area of interference fringes occurs at the position of the terahertz wave detection element of the detection section of the electromagnetic wave measuring device, a problem arises in that the detected value of the terahertz wave detection element becomes small.

テラヘルツ波の干渉が問題となる場合には、干渉縞を生じさせないように、互いに干渉を生じさせるRTD発振素子のそれぞれのテラヘルツ波の発生に時間差を設ける手法が有効となる。 When interference of terahertz waves becomes a problem, an effective method is to set a time difference between the generation of terahertz waves of RTD oscillation elements that cause interference with each other so as not to cause interference fringes.

上記のような、複数のRTD発振素子を用いて所望のRTD発振素子を選択的に駆動させるようなシステムでは、素子の数量に応じたバイアス電圧を生成するために、多チャンネルのDACを用いることが望ましい。 In a system such as the one described above in which a desired RTD oscillation element is selectively driven using a plurality of RTD oscillation elements, a multi-channel DAC is used to generate a bias voltage according to the number of elements. is desirable.

しかし、ASKのように高い変調周波数で出力電圧を交互に変化させるような場合には高速DACが必要となり、高速DACを複数のRTD発振素子の数量に応じてICチップ上に多素子化すると、ICチップ上の回路が大規模化し、高コスト化を招く。加えて、高速DACを制御する制御信号も多数必要となる。 However, when the output voltage is alternately changed at a high modulation frequency like ASK, a high-speed DAC is required, and if the high-speed DAC is multi-elemented on an IC chip according to the number of multiple RTD oscillation elements, The circuits on IC chips become larger in scale, leading to higher costs. In addition, a large number of control signals are required to control the high speed DAC.

本発明は、上記の点に鑑みてなされたものであり、DACを用いながらの回路の大規模化、高コスト化を招くことなく、高い変調周波数で駆動する複数のRTD発振素子の並列制御が可能な電磁波発生装置を提供することを目的の1つとしている。 The present invention has been made in view of the above points, and enables parallel control of multiple RTD oscillation elements driven at a high modulation frequency without increasing the scale or cost of the circuit while using a DAC. One of the purposes is to provide a possible electromagnetic wave generation device.

請求項1に記載の発明は、駆動電圧が供給され、これに応答して各々が電磁波を発生する複数の電磁波発生素子と、前記複数の電磁波発生素子の各々に対応する複数の直流電圧を電圧可変に生成する直流電圧源と、前記複数の電磁波発生素子に所定の2値の電圧値の間で電圧値が周期的に変化する変調電圧を生成する変調電圧源と、前記複数の直流電圧の各々と前記変調電圧とを加算して前記複数の電磁波発生素子に夫々供給する供給部と、前記直流電圧源を制御して前記複数の直流電圧の各々の電圧値を互いに独立して変化させる制御部と、を備えることを特徴とする。 The invention according to claim 1 provides a plurality of electromagnetic wave generating elements each of which generates an electromagnetic wave in response to the supply of a driving voltage, and a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements. a modulated voltage source that generates a variably DC voltage; a modulated voltage source that generates a modulated voltage whose voltage value changes periodically between predetermined binary voltage values in the plurality of electromagnetic wave generating elements; a supply unit that adds the modulated voltages and the modulated voltages and supplies the sum to the plurality of electromagnetic wave generating elements, respectively; and control that controls the DC voltage source to vary the voltage value of each of the plurality of DC voltages independently of each other. It is characterized by comprising: and.

本発明による電磁波発生装置1の構成を示す機能ブロック図である。1 is a functional block diagram showing the configuration of an electromagnetic wave generator 1 according to the present invention. RTD発振素子の電圧電流特性の1例を示すグラフである。It is a graph showing an example of voltage-current characteristics of an RTD oscillation element. 動作対象のRTD発振素子に印加される駆動電圧VDrの変化とそれに応じてRTD発振素子から発生するテラヘルツ波の変化を示すタイムチャートである。3 is a time chart showing changes in the drive voltage V Dr applied to the RTD oscillation element to be operated and changes in the terahertz wave generated from the RTD oscillation element accordingly. 動作対象外のRTD発振素子に印加される駆動電圧VDrの変化とそれに応じてRTD発振素子から発生するテラヘルツ波の変化を示すタイムチャートである。3 is a time chart showing changes in the drive voltage V Dr applied to an RTD oscillation element that is not subject to operation, and a corresponding change in a terahertz wave generated from the RTD oscillation element.

以下に本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

図1は、本発明による電磁波発生装置1の構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing the configuration of an electromagnetic wave generator 1 according to the present invention.

電磁波発生装置1は、テラヘルツ波の発生を指令するための制御信号を供給する制御部10を含んでいる。また、電磁波発生装置1は、複数の出力端からそれぞれ直流電圧を出力する直流電圧源である多チャンネルDAC20と、ASKの変調周波数を有し、2値の電圧値を周期的に変化させて出力する高速DAC30と、多チャンネルDAC20の出力と高速DAC30の出力を加算するm個の加算器40と及びテラヘルツ波発生源であるm個のRTD発振素子50とを有する。 The electromagnetic wave generator 1 includes a control section 10 that supplies a control signal for instructing generation of terahertz waves. Further, the electromagnetic wave generator 1 has a multi-channel DAC 20 which is a DC voltage source that outputs DC voltage from a plurality of output terminals, and has an ASK modulation frequency, and outputs a binary voltage value by periodically changing it. It has a high-speed DAC 30, m adders 40 that add the output of the multi-channel DAC 20 and the output of the high-speed DAC 30, and m RTD oscillation elements 50 that are terahertz wave generation sources.

制御部10は、多チャンネルDAC20に接続され、多チャンネルDAC20の出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を制御するオフセット電圧制御信号を供給する。また、制御部10は、高速DAC30に接続され、高速DAC30が出力する変調電圧VACの電圧振幅及び周波数を制御する変調電圧制御信号を供給する。The control unit 10 is connected to the multi-channel DAC 20 and supplies an offset voltage control signal that controls the voltage value of each of the DC offset voltages V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20. Further, the control unit 10 is connected to the high-speed DAC 30 and supplies a modulation voltage control signal that controls the voltage amplitude and frequency of the modulation voltage V AC output by the high-speed DAC 30.

多チャンネルDAC20は、m個の出力端を有する直流電圧源である。当該m個の出力端のそれぞれがm個の加算器40のそれぞれに接続されている。多チャンネルDAC20は、制御部10から供給されるオフセット電圧制御信号に基づいて、それぞれの出力端から出力する直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を可変に制御して、それぞれの出力端から出力するように動作する。The multi-channel DAC 20 is a DC voltage source having m output terminals. Each of the m output terminals is connected to each of the m adders 40. The multi-channel DAC 20 variably controls the voltage value of each of the DC offset voltages V Offset 1 to V Offset m output from each output terminal based on the offset voltage control signal supplied from the control unit 10. It operates to output from each output terminal.

高速DAC30は、例えば、矩形波のように電圧値が周期的に変化する変調電圧VACを出力する1つの出力端を有する電圧源である。当該出力端は、m個の加算器40のそれぞれに接続されている。高速DAC30は、制御部10から供給される変調電圧制御信号に基づいて、変調電圧VACを、最大電圧値並びに最小電圧値及び周波数を可変に出力するように動作する。具体的には、例えば、高速DAC30は、変調電圧制御信号に基づいて、出力する変調電圧VACの最大電圧値、最少電圧値及びパルスの発生周期を変化させる。The high-speed DAC 30 is, for example, a voltage source that has one output terminal that outputs a modulated voltage V AC whose voltage value changes periodically like a rectangular wave. The output end is connected to each of the m adders 40. The high-speed DAC 30 operates to variably output the maximum voltage value, minimum voltage value, and frequency of the modulated voltage V AC based on the modulated voltage control signal supplied from the control unit 10 . Specifically, for example, the high-speed DAC 30 changes the maximum voltage value, minimum voltage value, and pulse generation period of the modulated voltage V AC to be output based on the modulated voltage control signal.

m個の加算器40は、多チャンネルDAC20のm個のそれぞれの出力端及び高速DAC30の出力端に接続されている。m個の加算器40は、多チャンネルDAC20のm個のそれぞれの出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値と高速DAC30から出力される変調電圧VACとをそれぞれの加算器で加算してこれを出力する。すなわち、m個の加算器40は、変調電圧VACがオフセット電圧VOffset1~VOffsetmのそれぞれによってオフセットされた駆動電圧VDr1~VDrmを生成し、加算器40のそれぞれの加算器から出力するように動作する。The m adders 40 are connected to the m respective outputs of the multi-channel DAC 20 and the output of the high-speed DAC 30. The m adders 40 combine the respective voltage values of the DC offset voltages V Offset 1 to V Offset m output from the m output terminals of the multi-channel DAC 20 and the modulation voltage V AC output from the high-speed DAC 30. and are added by each adder and output. That is, the m adders 40 generate driving voltages V Dr 1 to V Dr m in which the modulation voltage V AC is offset by each of the offset voltages V Offset 1 to V Offset m, and It operates to output from the device.

m個のRTD発振素子50は、m個の加算器40の出力端のそれぞれに接続されており、m個の加算器40が生成した駆動電圧VDr1~VDrmがm個のRTD発振素子50のそれぞれに供給される。m個のRTD発振素子50は、供給される駆動電圧VDr1~VDrmに基づいてそれぞれのRTD発振素子からテラヘルツ波を発生する。The m RTD oscillation elements 50 are connected to each of the output terminals of the m adders 40, and the drive voltages V Dr 1 to V Dr m generated by the m adders 40 are connected to the m RTD oscillation elements. is supplied to each of the elements 50. The m RTD oscillation elements 50 generate terahertz waves from each RTD oscillation element based on the supplied drive voltages V Dr 1 to V Dr m.

図2は、RTD発振素子の電圧電流特性を示す概略図である。 FIG. 2 is a schematic diagram showing the voltage-current characteristics of the RTD oscillation element.

RTD発振素子は、図2に示すように、正バイアスの電圧を印加していくと、印加電圧の上昇に伴って線形的に電流が変化することが知られている(点a-b間)。しかし、所定の電圧領域では、強い非線形領域が現れることが知られている(点b-c間)。さらに印加電圧を高くすると、印加電圧に伴って電流が減少するNDR領域が現れることが知られている(点c-d間)。 As shown in Figure 2, it is known that when a positive bias voltage is applied to an RTD oscillation element, the current changes linearly as the applied voltage increases (between points a and b). . However, it is known that a strong nonlinear region appears in a predetermined voltage region (between points b and c). It is known that when the applied voltage is further increased, an NDR region appears (between points c and d) where the current decreases with the applied voltage.

RTD発振素子のNDR領域に相当するバイアス電圧を印加することで、RTD発振素子からテラヘルツ帯の電磁波が発生することが知られている。 It is known that terahertz band electromagnetic waves are generated from the RTD oscillation element by applying a bias voltage corresponding to the NDR region of the RTD oscillation element.

すなわち、バイアス電圧値VNDR1~VNDR2のテラヘルツ波発振領域の範囲のバイアス電圧を印加することで、RTD発振素子からテラヘルツ波を発生させることが可能である。換言すれば、このRTD発振素子の最大動作電圧はVNDR2であり、最小動作電圧はVNDR1である。That is, by applying a bias voltage in the range of the terahertz wave oscillation region of bias voltage values V NDR 1 to V NDR 2, it is possible to generate a terahertz wave from the RTD oscillation element. In other words, the maximum operating voltage of this RTD oscillation element is V NDR 2, and the minimum operating voltage is V NDR 1.

また、バイアス電圧VNDR1~VNDR2のテラヘルツ波発振領域の範囲のバイアス電圧にASKの変調周波数を有する電圧を印加することで、テラヘルツ波を変調周波数に応じて断続的に発生させることが可能となる。Furthermore, by applying a voltage having a modulation frequency of ASK to the bias voltage in the range of the terahertz wave oscillation region of bias voltage V NDR 1 to V NDR 2, it is possible to generate terahertz waves intermittently according to the modulation frequency. It becomes possible.

制御部10は、m個のRTD発振素子50に供給される駆動電圧VDr1~VDrmのうち、多チャンネルDAC20が出力する直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値を制御することで、m個のRTD発振素子50のうち所望のRTD発振素子のみにテラヘルツ波を発生させるように制御する。The control unit 10 controls the voltage value of each of the DC offset voltages V Offset 1 to V Offset m output by the multi-channel DAC 20 among the drive voltages V Dr 1 to V Dr m supplied to the m RTD oscillation elements 50. By controlling, only a desired RTD oscillation element among the m RTD oscillation elements 50 is controlled to generate a terahertz wave.

このとき、高速DAC30からは、テラヘルツ波を発生させるRTD発振素子及び発生させないRTD発振素子のどちらにも同じ周波数と電圧の変調電圧VACが印加されている。すなわち、制御部10は、多チャンネルDAC20のm個の出力端のうち、テラヘルツ波を発生させるRTD発振素子に対応する出力端からはRTD発振素子を発振させる高電位な駆動電圧VDrとなるように変調電圧VACをオフセットさせるオフセット電圧VOffsetを出力させる。具体的には、例えば、上述したバイアス電圧値VNDR1~VNDR2となるような駆動電圧VDrが、加算器40から出力されるようにオフセット電圧VOffsetを出力させる。その一方、テラヘルツ波を発生させないRTD発振素子に対応する出力端からはRTD発振素子が発振する電位に満たない駆動電圧VDrが出力されるように低いオフセット電圧VOffsetを供給するか又はオフセット電圧VOffsetの供給を停止させる。具体的には、例えば、上述したバイアス電圧値VNDR1~VNDR2未満となるような駆動電圧VDrが、加算器40から出力されるようにオフセット電圧VOffsetを出力させる。At this time, the high-speed DAC 30 applies a modulation voltage V AC of the same frequency and voltage to both the RTD oscillation element that generates terahertz waves and the RTD oscillation element that does not generate terahertz waves. That is, the control unit 10 controls the output terminal of the m output terminals of the multi-channel DAC 20 so that the output terminal corresponding to the RTD oscillation element that generates the terahertz wave receives a high-potential drive voltage V Dr that causes the RTD oscillation element to oscillate. outputs an offset voltage V Offset that offsets the modulation voltage V AC . Specifically, for example, the offset voltage V Offset is outputted so that the drive voltage V Dr having the bias voltage value V NDR 1 to V NDR 2 described above is outputted from the adder 40 . On the other hand, from the output end corresponding to the RTD oscillation element that does not generate terahertz waves, a low offset voltage V Offset is supplied or the offset voltage Stop supplying V Offset . Specifically, for example, the offset voltage V Offset is outputted so that the drive voltage V Dr that is less than the bias voltage value V NDR 1 to V NDR 2 described above is outputted from the adder 40 .

制御部10は、このように選択的に高いオフセット電圧VOffsetを各加算器40に供給することで所望のRTD発振素子のみにテラヘルツ波を発生させるように制御する。The control unit 10 selectively supplies the high offset voltage V Offset to each adder 40 in this way, thereby controlling only desired RTD oscillation elements to generate terahertz waves.

本発明の電磁波発生装置1は、上記構成により、1個の多チャンネルDAC20と、1個の高速DAC30でm個のRTD発振素子50を選択的に動作させるよう制御することが可能となり、DACを含むICチップの回路の大規模化、高コスト化を招くことなく、高い変調周波数に対応したRTD発振素子の多素子制御が可能となる。 With the above configuration, the electromagnetic wave generating device 1 of the present invention can control the m RTD oscillation elements 50 to selectively operate with one multi-channel DAC 20 and one high-speed DAC 30, and the DAC can be controlled to operate selectively. Multi-element control of RTD oscillation elements compatible with high modulation frequencies is possible without increasing the scale and cost of the circuit of the included IC chip.

図3は、テラヘルツ波を出射させるRTD発振素子に印加される駆動電圧VDr及びRTD発振素子のテラヘルツ波出力の概略タイムチャートである。また、図4は、テラヘルツ波を出射させないRTD発振素子に印加される駆動電圧VDr及びRTD発振素子のテラヘルツ波出力の概略タイムチャートである。FIG. 3 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillation element that emits the terahertz wave and the terahertz wave output of the RTD oscillation element. Further, FIG. 4 is a schematic time chart of the drive voltage V Dr applied to the RTD oscillation element that does not emit terahertz waves and the terahertz wave output of the RTD oscillation element.

図3及び図4を用いて本実施例の電磁波発生装置1の動作を説明する。 The operation of the electromagnetic wave generator 1 of this embodiment will be explained using FIGS. 3 and 4.

図3の上図は、m個のRTD発振素子50のうち、動作対象となるテラヘルツ波を周期的に発生させるRTD発振素子に供給される駆動電圧VDrのタイムチャートを示す。The upper diagram of FIG. 3 shows a time chart of the drive voltage V Dr supplied to the RTD oscillation element that periodically generates the terahertz wave to be operated, among the m RTD oscillation elements 50.

RTD発振素子に印加される駆動電圧VDrは、上述の通り多チャンネルDAC20から出力されるVOffsetと高速DAC30から出力される矩形波電圧VACが合算された電圧値を有する。The drive voltage V Dr applied to the RTD oscillation element has a voltage value that is the sum of the V Offset output from the multi-channel DAC 20 and the rectangular wave voltage V AC output from the high-speed DAC 30, as described above.

よって、駆動電圧VDrは、最小値がオフセット電圧VOffsetであり最大値がオフセット電圧VOffset+変調電圧VACの最大電圧となる2値の電圧値を変調電圧VACの周波数に応じて周期的に繰り返す電圧プロファイルを有する。Therefore, the driving voltage V Dr has a binary voltage value whose minimum value is the offset voltage V Offset and whose maximum value is the maximum voltage of the offset voltage V Offset + modulation voltage V AC , with a period according to the frequency of the modulation voltage V AC . It has a voltage profile that repeats over time.

制御部10は、多チャンネルDAC20に対して、駆動電圧VDrの最大電圧値がテラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2となり、且つ駆動電圧VDrの最小電圧値がテラヘルツ波発振領域外の電圧値となるバイアス電圧VNDR1以下となるように、動作対象のRTD発振素子50に対応する多チャンネルDAC20の出力端から出力させる直流電圧VOffsetの電圧値を制御する。The control unit 10 controls the multi-channel DAC 20 to set bias voltages V NDR 1 to V NDR 2 such that the maximum voltage value of the driving voltage V Dr is a voltage value within the terahertz wave oscillation region, and the minimum voltage of the driving voltage V Dr The voltage value of the DC voltage V Offset to be output from the output terminal of the multi-channel DAC 20 corresponding to the RTD oscillation element 50 to be operated is set so that the bias voltage V NDR 1 or less is a voltage value outside the terahertz wave oscillation region. Control.

図3の下図は、上記駆動電圧VDrがRTD発振素子に印加された際のRTD発振素子から発生するテラヘルツ波の挙動を示すタイムチャートである。The lower diagram of FIG. 3 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillation element when the drive voltage V Dr is applied to the RTD oscillation element.

図3の上図に示すとおり、駆動電圧VDrが最大値となるバイアス電圧VNDR1~VNDR2の範囲内の電圧値となった場合にのみ、RTD発振素子はテラヘルツ波を発生するように動作する。As shown in the upper diagram of FIG. 3, the RTD oscillation element generates terahertz waves only when the drive voltage V Dr reaches a voltage value within the range of bias voltage V NDR 1 to V NDR 2, which is the maximum value. works.

これにより、動作対象のRTD発振素子のテラヘルツ波は、変調電圧VACの周期で断続的にテラヘルツ波を発生させることが可能となる。Thereby, the terahertz wave of the RTD oscillation element to be operated can be generated intermittently at the period of the modulation voltage V AC .

次に、m個のRTD発振素子50のうち、動作対象外となるテラヘルツ波を発生させないRTD発振素子における駆動電圧VDr及びその際にRTD発振素子から出力されるテラヘルツ波の概略タイムチャートを図4に示す。Next, of the m RTD oscillation elements 50, a schematic time chart of the drive voltage V Dr of the RTD oscillation element that does not generate terahertz waves that are not subject to operation and the terahertz wave output from the RTD oscillation element at that time is shown. 4.

図4の上図は、m個のRTD発振素子50のうち、動作対象外となるテラヘルツ波に発生させないRTD発振素子に供給される駆動電圧VDrのタイムチャートを示す。The upper diagram of FIG. 4 shows a time chart of the drive voltage V Dr supplied to the RTD oscillation elements that do not generate terahertz waves, which are not the target of operation, among the m RTD oscillation elements 50.

制御部10は、駆動電圧VDrの最大値がテラヘルツ波発振領域の低圧側の電圧値となるバイアス電圧VNDR1以下となるように、多チャンネルDAC20に対して動作対象のRTD発振素子に対応する出力端のオフセット電圧VOffsetの電圧値を0Vとする等の制御をする。The control unit 10 controls the multi-channel DAC 20 to correspond to the RTD oscillation element to be operated so that the maximum value of the drive voltage V Dr is a bias voltage V NDR 1 or less, which is a voltage value on the low voltage side of the terahertz wave oscillation region. Control is performed such as setting the voltage value of the offset voltage V Offset at the output terminal to 0V.

すなわち、図4の上図に示すように、駆動電圧VDrの最大値は、テラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2の範囲には到達しない。That is, as shown in the upper diagram of FIG. 4, the maximum value of the drive voltage V Dr does not reach the range of bias voltages V NDR 1 to V NDR 2, which is a voltage value within the terahertz wave oscillation region.

図4の下図は、上記駆動電圧VDrがRTD発振素子に印加された際のRTD発振素子から発生するテラヘルツ波の挙動を示すタイムチャートである。The lower diagram of FIG. 4 is a time chart showing the behavior of the terahertz wave generated from the RTD oscillation element when the drive voltage V Dr is applied to the RTD oscillation element.

図4の上図に示すとおり、駆動電圧VDrが最大値となるバイアス電圧VNDR1~VNDR2の範囲に到達しない故、RTD発振素子はテラヘルツ波を発生しない。As shown in the upper diagram of FIG. 4, the RTD oscillation element does not generate a terahertz wave because the drive voltage V Dr does not reach the maximum value in the bias voltage range V NDR 1 to V NDR 2.

すなわち、本実施例の電磁波発生装置1によれば、RTD発振素子のそれぞれに印加される駆動電圧VDrのうち、直流電圧成分を供給する多チャンネルDAC20のみを制御することで、m個のRTD発振素子から選択的にテラヘルツ波を発生させることが可能となる。That is, according to the electromagnetic wave generating device 1 of this embodiment, by controlling only the multi-channel DAC 20 that supplies the DC voltage component of the drive voltage V Dr applied to each of the RTD oscillation elements, m RTDs can be generated. It becomes possible to selectively generate terahertz waves from the oscillation element.

本実施例によれば、1個の多チャンネルDAC20と、1個の高速DAC30でm個のRTD発振素子50を選択的に動作させるよう制御することが可能となり、DACを含むICチップの回路の大規模化、高コスト化を招くことなく、高い変調周波数に対応したRTD発振素子の多素子制御が可能となる。 According to this embodiment, it is possible to control the m RTD oscillation elements 50 to selectively operate with one multi-channel DAC 20 and one high-speed DAC 30, and the circuit of the IC chip including the DAC can be controlled to operate selectively. Multi-element control of RTD oscillation elements compatible with high modulation frequencies is possible without increasing the scale and cost.

また、本実施例によれば、多チャンネルDAC20の出力端から出力される直流のオフセット電圧VOffset1~VOffsetmのそれぞれの電圧値のみを制御することで、m個のRTD発振素子50のうち所望のRTD発振素子のみにテラヘルツ波を発生させることが可能となる。Further, according to the present embodiment, by controlling only the voltage values of the DC offset voltages V Offset 1 to V Offset m output from the output end of the multi-channel DAC 20, the m RTD oscillation elements 50 are controlled. It becomes possible to generate terahertz waves only in desired RTD oscillation elements.

なお、RTD発振素子は、組成種及び個体差により、テラヘルツ波発振領域の電圧値となるVNDR1及びVNDR2が変動する。それ故、高速DAC30から出力される変調電圧VACの2値の電圧値の高圧側の電圧値は、m個のRTD発振素子50のテラヘルツ波発生領域の低圧側電圧VNDR1のそれぞれの最も小さいVNDR1よりも小さい電圧値と設定することが望ましい。Note that in the RTD oscillation element, V NDR 1 and V NDR 2, which are voltage values in the terahertz wave oscillation region, vary depending on the composition type and individual differences. Therefore, the high-voltage side voltage value of the binary voltage values of the modulation voltage V AC output from the high-speed DAC 30 is the highest voltage value of each of the low-voltage side voltages V NDR 1 in the terahertz wave generation region of the m RTD oscillation elements 50. It is desirable to set a voltage value smaller than V NDR1 .

本実施例の説明及び図面において、多チャンネルDAC20が動作対象外のRTD発振素子に供給する直流電圧VOffsetを0Vとしたが、これに限らない。駆動電圧VDrの最大値がテラヘルツ波発振領域内の電圧値となるバイアス電圧VNDR1~VNDR2の低圧側のバイアス電圧VNDR1以下となるように、多チャンネルDAC20の動作対象外のRTD発振素子に対応する出力端から出力する直流のオフセット電圧VOffsetの電圧値を制御できればよい。In the description and drawings of this embodiment, the DC voltage V Offset that the multi-channel DAC 20 supplies to the non-operational RTD oscillation elements is set to 0V, but the present invention is not limited to this. In order for the maximum value of the drive voltage V Dr to be less than or equal to the bias voltage V NDR 1 on the low voltage side of the bias voltages V NDR 1 to V NDR 2, which is a voltage value within the terahertz wave oscillation region, the It is only necessary to be able to control the voltage value of the DC offset voltage V Offset output from the output end corresponding to the RTD oscillation element.

また、本実施例の説明及び図面において、高速DAC30が出力する変調電圧VACの2値の電圧値の低電圧側を0Vとしたが、これに限らない。Further, in the description and drawings of this embodiment, the lower voltage side of the binary voltage value of the modulation voltage V AC outputted by the high-speed DAC 30 is set to 0V, but the present invention is not limited to this.

また、本実施例の説明および図面において、RTD発振素子に供給する直流電圧VOffsetを電圧VNDR1未満とし、VOffset+VACがテラヘルツ波発振領域内の電圧値であるバイアス電圧VNDR1~VNDR2の範囲内となるようにしたが、RTD発振素子に供給する直流電圧VOffsetをバイアス電圧VNDR2以上のRTD発振素子の発振しない領域とし、VACの高圧側を0V、低圧側を-VACとしVOffset-VACがVNDR1~VNDR2の範囲内に制御することでもよい。In addition, in the description and drawings of this embodiment, the DC voltage V Offset supplied to the RTD oscillation element is set to be less than the voltage V NDR 1, and the bias voltage V NDR 1 is set such that V Offset +V AC is a voltage value within the terahertz wave oscillation region. ~ V NDR 2, but the DC voltage V Offset supplied to the RTD oscillation element is set to a region where the RTD oscillation element does not oscillate with bias voltage V NDR 2 or higher, and the high voltage side of V AC is set to 0 V and low voltage. It is also possible to set the side to -V AC and control V Offset -V AC within the range of V NDR 1 to V NDR 2.

また、本実施例の説明及び図面において、高速DAC30が出力する変調電圧VACを矩形波として説明したが、これに限らない。Further, in the description and drawings of this embodiment, the modulation voltage V AC outputted by the high-speed DAC 30 has been described as a rectangular wave, but the present invention is not limited to this.

上記の多チャンネルDAC20及び高速DAC30の電圧値設定は、それぞれのDACの有する電圧値変更の時間応答性にあわせて設定すればよい。 The voltage values of the multi-channel DAC 20 and the high-speed DAC 30 may be set in accordance with the time responsiveness of the voltage value change of each DAC.

また、本実施例においては、テラヘルツ波計測装置に用いられる電磁波発生装置を例として説明した。しかし、RTD発振素子によるテラヘルツ波の発生に限らず、電圧値が高速に変化する駆動電圧に応じて動作するような素子に対して用いることも可能である。 Further, in this embodiment, an electromagnetic wave generating device used in a terahertz wave measuring device has been described as an example. However, the present invention is not limited to the generation of terahertz waves by RTD oscillation elements, but can also be used for elements that operate in response to a drive voltage whose voltage value changes rapidly.

10 制御部
20 多チャンネルDAC
30 高速DAC
40 加算器
50 m個のRTD発振素子
10 Control unit 20 Multi-channel DAC
30 High speed DAC
40 Adder 50 m RTD oscillation elements

Claims (7)

駆動電圧が供給され、これに応答して各々が電磁波を発生する負性抵抗素子である複数の電磁波発生素子と、
前記複数の電磁波発生素子の各々に対応する複数の直流電圧を電圧可変に生成する直流電圧源と、
前記複数の電磁波発生素子に所定の2値の電圧値の間で電圧値が周期的に変化する変調電圧を生成する変調電圧源と、
前記複数の直流電圧の各々と前記変調電圧とを加算して前記複数の電磁波発生素子の各々に供給する供給部と、
前記直流電圧源を制御して前記複数の直流電圧の各々の電圧値を互いに独立して変化させることで、前記複数の電磁波発生素子のうち所望の電磁波発生素子のみに前記電磁波を発生させる制御部と、を備えることを特徴とする電磁波発生装置。
a plurality of electromagnetic wave generating elements each of which is a negative resistance element that is supplied with a driving voltage and generates electromagnetic waves in response to the driving voltage;
a DC voltage source that variably generates a plurality of DC voltages corresponding to each of the plurality of electromagnetic wave generating elements;
a modulated voltage source that generates a modulated voltage whose voltage value periodically changes between predetermined binary voltage values in the plurality of electromagnetic wave generating elements;
a supply unit that adds each of the plurality of DC voltages and the modulation voltage and supplies the sum to each of the plurality of electromagnetic wave generating elements;
A control unit that generates the electromagnetic wave only in a desired electromagnetic wave generating element among the plurality of electromagnetic wave generating elements by controlling the DC voltage source and changing the voltage value of each of the plurality of DC voltages independently of each other. An electromagnetic wave generator comprising:
前記制御部は、前記複数の電磁波発生素子に供給される前記直流電圧の各々の電圧値を制御することで、前記複数の電磁波発生素子のうち前記所望の電磁波発生素子のみを負性抵抗領域にバイアスすることを特徴とする請求項1に記載の電磁波発生装置。 The control unit controls the voltage value of each of the DC voltages supplied to the plurality of electromagnetic wave generating elements, thereby causing only the desired electromagnetic wave generating element among the plurality of electromagnetic wave generating elements to be in a negative resistance region. The electromagnetic wave generating device according to claim 1, wherein the electromagnetic wave generating device is biased . 前記変調電圧源が出力する前記変調電圧の最大電圧は、前記複数の電磁波発生素子のうち最低動作電圧が最も低い電磁波発生素子の最低動作電圧値よりも小さいことを特徴とする請求項1又は2に記載の電磁波発生装置。 3. A maximum voltage of the modulating voltage output by the modulating voltage source is smaller than a minimum operating voltage value of an electromagnetic wave generating element having the lowest minimum operating voltage among the plurality of electromagnetic wave generating elements. The electromagnetic wave generator described in . 前記制御部は、前記複数の電磁波発生素子のうち、前記電磁波を発生させる電磁波発生素子の各々に供給される駆動電圧を、最大電圧値が当該各々の電磁波発生素子の最大動作電圧と最低動作電圧の間の電圧値となり、かつ最低電圧が当該各々の電磁波発生素子の最低動作電圧よりも低い電圧値となるように前記直流電圧値を制御することを特徴とする請求項1~3のいずれか1に記載の電磁波発生装置。 The control unit controls a driving voltage supplied to each of the electromagnetic wave generating elements that generates the electromagnetic wave among the plurality of electromagnetic wave generating elements so that the maximum voltage value is the maximum operating voltage and the minimum operating voltage of each of the electromagnetic wave generating elements. 4. The DC voltage value is controlled so that the voltage value becomes a voltage value between the two, and the lowest voltage is lower than the lowest operating voltage of each electromagnetic wave generating element. 1. The electromagnetic wave generator according to 1. 前記制御部は、前記複数の電磁波発生素子のうち、前記電磁波を発生させない電磁波発生素子の各々に供給される駆動電圧を、最大電圧値が当該各々の電磁波発生素子の最低動作電圧よりも低い電圧値となるように前記直流電圧値を制御することを特徴とする請求項1~4のいずれか1に記載の電磁波発生装置。 The control unit controls the drive voltage supplied to each of the electromagnetic wave generating elements that do not generate electromagnetic waves among the plurality of electromagnetic wave generating elements to a voltage whose maximum voltage value is lower than the minimum operating voltage of each of the electromagnetic wave generating elements. The electromagnetic wave generating device according to any one of claims 1 to 4, characterized in that the DC voltage value is controlled so that the DC voltage value is the same as the DC voltage value. 前記電磁波は、テラヘルツ波であることを特徴とする請求項1に記載の電磁波発生装置。 The electromagnetic wave generating device according to claim 1, wherein the electromagnetic wave is a terahertz wave. 前記電磁波発生素子は、共鳴トンネルダイオードであることを特徴とする請求項1~6のいずれか1に記載の電磁波発生装置。 The electromagnetic wave generating device according to claim 1, wherein the electromagnetic wave generating element is a resonant tunnel diode.
JP2021551700A 2019-10-09 2020-10-08 electromagnetic wave generator Active JP7346584B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019185777 2019-10-09
JP2019185777 2019-10-09
PCT/JP2020/038119 WO2021070903A1 (en) 2019-10-09 2020-10-08 Electromagnetic wave generating device

Publications (2)

Publication Number Publication Date
JPWO2021070903A1 JPWO2021070903A1 (en) 2021-04-15
JP7346584B2 true JP7346584B2 (en) 2023-09-19

Family

ID=75437276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551700A Active JP7346584B2 (en) 2019-10-09 2020-10-08 electromagnetic wave generator

Country Status (2)

Country Link
JP (1) JP7346584B2 (en)
WO (1) WO2021070903A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103997A (en) 2005-09-30 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave emission device
JP2007295350A (en) 2006-04-26 2007-11-08 Fujitsu Ltd Submillimeter wave oscillator, array antenna and cavity resonator
JP2013005115A (en) 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus
JP2013190350A (en) 2012-03-14 2013-09-26 Canon Inc Apparatus using electromagnetic wave of terahertz wave band
JP2016080686A (en) 2014-10-15 2016-05-16 キヤノン株式会社 Inspection device and inspection method
JP2014200065A5 (en) 2014-01-31 2017-03-16
US20170256665A1 (en) 2016-03-03 2017-09-07 Electronics & Telecommunication Research Institute Appratus for generating terahertz wave and method for controlling terahertz wavefront using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373010B2 (en) 2013-03-12 2018-08-15 キヤノン株式会社 Oscillating element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103997A (en) 2005-09-30 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave emission device
JP2007295350A (en) 2006-04-26 2007-11-08 Fujitsu Ltd Submillimeter wave oscillator, array antenna and cavity resonator
JP2013005115A (en) 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus
JP2013190350A (en) 2012-03-14 2013-09-26 Canon Inc Apparatus using electromagnetic wave of terahertz wave band
JP2014200065A5 (en) 2014-01-31 2017-03-16
JP2016080686A (en) 2014-10-15 2016-05-16 キヤノン株式会社 Inspection device and inspection method
US20170256665A1 (en) 2016-03-03 2017-09-07 Electronics & Telecommunication Research Institute Appratus for generating terahertz wave and method for controlling terahertz wavefront using the same

Also Published As

Publication number Publication date
JPWO2021070903A1 (en) 2021-04-15
WO2021070903A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
CN110492349A (en) Driving circuit, driving method and Optical Maser System
US4988942A (en) Switched resistor regulator control when transfer function includes discontinuity
EP3105855B1 (en) Circuit and method for controlling pulse width modulation of a current supply for a load
KR930011391A (en) Power converter and control device of electric vehicle using the same
KR20160117509A (en) Circuits and methods for controlling current in a light emitting diode array
US11316513B2 (en) Gate driver
JP7346584B2 (en) electromagnetic wave generator
JP4575880B2 (en) Ultrasonic diagnostic equipment
KR960038725A (en) Liquid crystal driving device
KR101675853B1 (en) Backlight unit
US7116168B2 (en) Power multiplier system and method
JPH04260268A (en) Semiconductor laser driving device
JP2014093934A (en) PWM signal generation circuit and motor Drive circuit
US6049248A (en) Method and apparatus for generating a driver signal for use by a non-linear class S amplifier for producing linear amplification
US6043619A (en) Method and circuit arrangement for commutation of a multiple winding electric motor
US20030086488A1 (en) Method and apparatus for generating pulse width modulated waveforms
US5008562A (en) Apparatus for generating pulse-like constant current having variable pulse width
JPH0316190A (en) Semiconductor laser driver
WO2019180883A1 (en) Power supply device
KR101165428B1 (en) drive circuit and driving device including the same
KR100326604B1 (en) Apparatus for Driving Electro-Luminescence Device
JPH0681017B2 (en) Pulse level variable circuit
JPS61236375A (en) Inverter
JPH04267572A (en) Laser diode driving circuit
KR101174122B1 (en) Light source driving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230906

R150 Certificate of patent or registration of utility model

Ref document number: 7346584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150