WO2021070615A1 - 固体撮像装置および固体撮像装置の製造方法 - Google Patents

固体撮像装置および固体撮像装置の製造方法 Download PDF

Info

Publication number
WO2021070615A1
WO2021070615A1 PCT/JP2020/035933 JP2020035933W WO2021070615A1 WO 2021070615 A1 WO2021070615 A1 WO 2021070615A1 JP 2020035933 W JP2020035933 W JP 2020035933W WO 2021070615 A1 WO2021070615 A1 WO 2021070615A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
solid
image sensor
state image
light receiving
Prior art date
Application number
PCT/JP2020/035933
Other languages
English (en)
French (fr)
Inventor
貴幸 榎本
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/764,317 priority Critical patent/US20220377266A1/en
Publication of WO2021070615A1 publication Critical patent/WO2021070615A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors

Definitions

  • the present disclosure relates to a solid-state image sensor and a method for manufacturing a solid-state image sensor.
  • the pitch of the unevenness provided on the light receiving surface is large, the incident light refracted on the light receiving surface may enter the adjacent imaging pixels and color mixing may occur, and if the pitch of the unevenness is small, Quantum efficiency does not improve.
  • a solid-state image sensor includes a first region and a second region on the light receiving surface of the image pickup pixel.
  • the first region is provided with irregularities.
  • the second region is provided with irregularities having a narrower pitch than the irregularities in the first region.
  • FIG. 1 is a cross-sectional explanatory view of an image pickup pixel 1 of the solid-state image pickup device according to the present disclosure.
  • FIG. 2 is a plan view of the image pickup pixel 1 of the solid-state image pickup device according to the present disclosure.
  • FIGS. 1 and 2 selectively show one pixel portion of a plurality of two-dimensionally arranged imaging pixels included in the solid-state imaging device. Further, in FIG. 1, the illustration of the color filter and the microlens provided on the light receiving surface of the image pickup pixel 1 is omitted.
  • the imaging pixel 1 includes, for example, a photoelectric conversion element PD provided in a semiconductor substrate 2 such as a Si (silicon) substrate.
  • the photoelectric conversion element PD converts the incident light into a signal charge according to the amount of received light.
  • the image pickup pixel 1 includes a DTI (Deep Trench Isolation) 3 having a light-shielding property between the image pickup pixel 1 and the adjacent image pickup pixel.
  • DTI3 has an aluminum oxide film formed on the inner surface of a trench formed between adjacent imaging pixels, an insulator embedded in the trench in which the aluminum oxide film is formed, and a light-shielding property embedded in the insulator. It is provided with a light-shielding film formed of the provided metal.
  • the image pickup pixel 1 can suppress the occurrence of color mixing due to the incident light entering the adjacent image pickup pixel.
  • a negative fixed charge film may be provided on the side wall of the DTI 3.
  • the pinning film is formed using, for example, hafnium oxide (Hf 2).
  • the pinning film may be formed using zirconium dioxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), or the like.
  • the image pickup pixel 1 includes a first region 4 in which irregularities are provided on the light receiving surface, and a second region 5 in which irregularities having a narrower pitch than the irregularities in the first region 4 are provided.
  • the unevenness in the first region 4 has a pitch of 100 nm, preferably 350 to 650 nm, which is relatively large. Further, the depth of the concave portion in the unevenness in the first region 4 is 250 to 260 nm.
  • the concave portion in the unevenness in the first region 4 is V-shaped in cross section, which becomes narrower as the position becomes deeper.
  • the light incident on the imaging pixel is largely refracted at the side surface of the recess in the first region 4, and is incident on the photoelectric conversion element PD from an oblique direction.
  • the imaging pixel 1 has a longer optical path length of the incident light in the photoelectric conversion element PD than, for example, when the light receiving surface has no unevenness, the optical path length of the incident light in the photoelectric conversion element PD is longer than that of the incident light indicated by the dotted arrow that is vertically incident on the light receiving surface. Therefore, the quantum efficiency of the photoelectric conversion element PD can be improved.
  • the region occupied by air in the shallow portion of the recess is larger than the region occupied by Si in the semiconductor substrate 2, and the deeper the depth position of the recess, the larger the region occupied by Si and refraction. Since the rate changes steplessly, it becomes a pseudo antireflection film. As a result, the image pickup pixel 1 can improve the light receiving sensitivity.
  • the first region 4 is provided at the center of the light receiving surface of the image pickup pixel 1, and is not provided at the peripheral edge of the light receiving surface.
  • the image pickup pixel 1 can suppress the occurrence of color mixing due to the light incident from the peripheral edge of the light receiving surface being largely refracted and entering the adjacent image pickup pixel.
  • the peripheral edge of the light receiving surface of the imaging pixel 1 is not provided with irregularities, the antireflection performance at the peripheral edge is lowered, so that the quantum efficiency is lowered.
  • the imaging pixel 1 includes a second region 5 in which irregularities having a narrower pitch than the irregularities in the first region 4 are provided so as to surround the first region 4 on the light receiving surface.
  • the unevenness in the second region 5 has a pitch and a depth of 10 to 30 nm.
  • the unevenness in the second region 5 has a very narrow (small) pitch as compared with the unevenness in the first region 4, so that the incident light is not greatly refracted.
  • the image pickup pixel 1 can suppress the occurrence of color mixing due to the light incident from the peripheral edge of the light receiving surface being largely refracted and entering the adjacent image pickup pixel.
  • the unevenness in the second region 5 becomes a pseudo antireflection film like the unevenness in the first region 4.
  • the unevenness in the second region 5 has a pseudo-refractive index of 2.5 when the pitch and depth are 10 to 30 nm as described above, and the refractive index of a laminated antireflection film such as SiO2 (silicon oxide) (1. It is possible to realize a refractive index higher than 4) and close to the refractive index of Si (3.9).
  • the unevenness in the second region 5 has higher antireflection performance in the visible light region than the laminated antireflection film such as SiO2.
  • the image pickup pixel 1 can improve the quantum efficiency of the light incident from the peripheral portion of the light receiving surface.
  • the imaging pixel 1 includes a first region 4 in which irregularities are provided on the light receiving surface, and a second region 5 in which irregularities having a narrower pitch than the irregularities in the first region 4 are provided.
  • the solid-state image sensor provided with the image pickup pixel 1 can improve the quantum efficiency while suppressing the occurrence of color mixing.
  • FIGS. 3A to 6B are explanatory views showing a manufacturing process of the solid-state image sensor according to the present disclosure.
  • the process of forming the image pickup pixel 1 will be described. Since the process of forming DTI3 is a known technique, description thereof will be omitted here.
  • a semiconductor substrate 2 doped with a P-type impurity such as B (boron) is prepared. Then, the photoelectric conversion element is annealed by ion-implanting an N-type impurity such as P (phosphorus) into a predetermined region inside the semiconductor substrate 2 from the surface (here, the upper surface) side of the semiconductor substrate 2.
  • a floating diffusion FD is formed with the PD.
  • a gate insulating film 6 is formed in the region between the photoelectric conversion element PD and the floating diffusion FD on the upper surface of the semiconductor substrate 2 by, for example, SiO2, and a transfer gate is formed on the gate insulating film 6 by, for example, polysilicon. Form TG.
  • a transfer transistor that transfers the signal charge photoelectrically converted by the photoelectric conversion element PD to the floating diffusion FD is formed.
  • the reset transistor, the amplifier transistor, and the vertical selection transistor of each imaging pixel 1 are formed by the same manufacturing method.
  • the interlayer insulating film 7 is formed on the semiconductor substrate 2 by, for example, TEOS (tetraethoxysilane), and a contact hole extending from the upper surface of the interlayer insulating film 7 to the floating diffusion FD is formed. Then, the contact hole is filled with metal to form the contact via 8.
  • TEOS tetraethoxysilane
  • a wiring layer 9 in which a predetermined circuit pattern is formed by, for example, Cu (copper), an interlayer insulating film 7, and a contact via 8 are formed on the interlayer insulating film 7. The process is repeated to form the multilayer wiring layer 10.
  • a support substrate 11 such as a Si substrate is attached onto the multilayer wiring layer 10.
  • the top and bottom of the structure shown in FIG. 3C are inverted, and the semiconductor substrate 2 is ground and polished from the back surface side by, for example, CMP (Chemical Mechanical Polishing), dry etching, and wet etching. Make it the desired thickness.
  • CMP Chemical Mechanical Polishing
  • dry etching dry etching
  • wet etching wet etching
  • a protective film 12 is formed on the back surface of the semiconductor substrate 2 with, for example, SiO2 or Si3N4 (silicon nitride). Then, a photoresist (not shown) is applied onto the protective film 12, patterning is performed by photolithography, and etching is performed using the photoresist as a mask to position the protective film 12 at a position on the center of the photoelectric conversion element PD. Form multiple openings.
  • the protective film 12 is peeled off, and then, as shown in FIG. 5B, the protective film 13 is formed on the back surface of the semiconductor substrate 2 by, for example, SiO2 or Si3N4. Then, a photoresist (not shown) is applied onto the protective film 13, and patterning is performed by photolithography.
  • the first region 4 is formed in the region surrounding the first region 4 on the back surface of the semiconductor substrate 2 by performing isotropic etching or anisotropic etching to obtain a predetermined inclined surface.
  • the second region 5 is formed by forming irregularities having a narrower pitch than the irregularities of.
  • the first region 4 on which the light receiving surface of the imaging pixel 1 is provided with irregularities and the irregularities having a narrower pitch than the irregularities of the first region 4 are formed.
  • a second region 5 to be provided is formed.
  • the imaging pixel 1 may be provided with a negative fixed charge film (pinning film) on the light receiving surface of the semiconductor substrate 2.
  • the pinning film is formed using, for example, hafnium oxide (Hf 2).
  • the pinning film may be formed using zirconium dioxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), or the like.
  • the image pickup pixel 1 suppresses the occurrence of white scratches on the captured image by combining the electrons existing in the photoelectric conversion element PD independently of the incident light with the holes contained in the negative fixed charge film. can do.
  • FIG. 7 is a cross-sectional explanatory view of an image pickup pixel of the solid-state image pickup device according to the first modification of the present disclosure.
  • FIG. 8 is a cross-sectional explanatory view of the imaging pixels of the solid-state imaging device according to the second modification of the present disclosure.
  • FIG. 9 is a cross-sectional explanatory view of the imaging pixels of the solid-state imaging device according to the third modification of the present disclosure.
  • the same components as those shown in FIG. 6B will be designated by the same reference numerals as those shown in FIG. 6B, and duplicate description will be omitted.
  • the depth of the concave-convex concave portion in the second region 5a is deeper than the depth of the concave-convex concave portion in the first region 4.
  • the thickness of the second region 5a of the image pickup pixel 1a which functions as a pseudo antireflection film whose refractive index changes steplessly as the depth of the semiconductor substrate 2 in the depth direction becomes deeper, becomes thicker. Therefore, the refractive index of the second region 5a approaches the refractive index of the semiconductor substrate 2. Therefore, the image pickup pixel 1a has improved antireflection performance in the second region 5a, so that the light receiving sensitivity can be further improved.
  • the unevenness in the first region 4a of the imaging pixel 1b according to the second modification has a narrower pitch from the center of the first region 4a toward the outer circumference.
  • the unevenness of the image pickup pixel 1b becomes smaller from the center of the first region 4a toward the outer circumference, so that the incident light refracted by the unevenness of the first region 4a enters the adjacent imaging pixel, resulting in color mixing. Can be suppressed more reliably.
  • the unevenness in the first region 4b of the imaging pixel 1c according to the third modification is further provided with unevenness having a narrower pitch than the unevenness pitch on the uneven slope.
  • the image pickup pixel 1c further improves the antireflection performance of the first region 4b by the same principle as the principle of improving the antireflection function of the second region 5, and thus further enhances the light receiving sensitivity of the incident light. Can be done.
  • FIG. 10 is a plan view showing a first arrangement example of the first region 4 and the second region 5 according to the present disclosure.
  • FIG. 11 is a plan view showing a second arrangement example of the first region 4 and the second region 5 according to the present disclosure.
  • FIG. 12 is a plan view showing a third arrangement example of the first region 4 and the second region 5 according to the present disclosure.
  • FIG. 13 is a plan view showing a fourth arrangement example of the first region 4 and the second region 5 according to the present disclosure. It should be noted that FIGS. 10 to 13 selectively show a portion of 4 pixels among a plurality of imaging pixels included in the solid-state image sensor.
  • the first region 4 and the second region 5 are provided in all the imaging pixels 1.
  • the first region 4 is provided in the center of each imaging pixel 1.
  • the second region 5 is provided so as to surround the first region 4.
  • the solid-state image sensor 100a detects an image pickup pixel R that detects red light, an image pickup pixel G that detects green light, an image pickup pixel B that detects blue light, and infrared light.
  • the image pickup pixel IR is provided.
  • Infrared light has lower brightness than red light, green light, and blue light. Therefore, the imaging pixel IR that detects infrared light needs to have higher quantum efficiency than other imaging pixels R, G, and B. Therefore, in the solid-state image sensor 100a, the image pickup pixel IR that detects infrared light is provided with the first region 4 and the second region 5, and the other image pickup pixels R, G, and B are provided with the first region 4 and the first region 4. 2 Area 5 is not provided.
  • the first region 4 and the second region 5 receive light received by at least one or more imaging pixels (for example, imaging pixel IR) among the plurality of imaging pixels IR, R, G, and B arranged in two dimensions. Provided on the surface.
  • imaging pixels for example, imaging pixel IR
  • the solid-state image sensor 100a improves the quantum efficiency of the image pickup pixel IR that detects infrared light by, for example, providing the first region 4 and the second region 5 in the image pickup pixel IR that detects infrared light. Can be made to.
  • the solid-state image sensor 100b includes an image pickup pixel R for detecting red light, an image pickup pixel G for detecting green light, and an image pickup pixel B for detecting blue light.
  • Red light has a lower brightness than green light and blue light.
  • the second region 5 is provided in all the image pickup pixels R, G, B, and in particular, the quantum.
  • the first region 4 is provided in the image pickup pixel R, which is required to improve efficiency.
  • the first region 4 and the second region 5 are provided on the light receiving surfaces of the imaging pixels R and IR that detect long wave light having a wavelength equal to or higher than that of red light.
  • the quantum efficiency of the imaging pixels R and IR for detecting long-wave light having a wavelength equal to or larger than the red light can be improved, and the quantum efficiency of the other imaging pixels R, G and B can be approached.
  • the first region 4 may be provided in a plan view annular shape along the peripheral edge portion of the light receiving surface of the image pickup pixel 1.
  • the second region 5 is provided in a region on the light receiving surface of the imaging pixel 1 where the first region 4 is not provided.
  • the quantum efficiency can be improved by lengthening the optical path length in the photoelectric conversion element PD by the first region 4, and compared with the case where the first region 4 is provided on the entire light receiving surface. Therefore, the occurrence of color mixing can be suppressed.
  • the solid-state image sensors 100, 100a, 100b, 100c shown in FIGS. 10 to 13 are provided with the first region 4a shown in FIG. 8 or the first region 4b shown in FIG. 9 in place of the first region 4. May be good. Further, the solid-state image pickup device 100, 100a, 100b, 100c may be provided with the second region 5a shown in FIG. 7 instead of the second region 5. Even with such a configuration, the solid-state image pickup devices 100, 100a, 100b, and 100c can improve the quantum efficiency while suppressing the occurrence of color mixing.
  • the first region 4 and the second region 5 are provided on the light receiving surface of the semiconductor substrate 2
  • the first region 4 and the second region 5 are the light receiving surfaces of the semiconductor substrate 2.
  • the insulating film is laminated on the insulating film, it may be provided on the light receiving surface of the insulating layer.
  • the image pickup pixel 1 has a first region 4 in which irregularities having a relatively large pitch are formed in the center of the light receiving surface of the insulating film laminated on the semiconductor substrate 2, and irregularities having a narrower pitch than the irregularities in the first region.
  • the formed second region 5 may be provided. Even with such a configuration, the image pickup pixel 1 can improve the quantum efficiency while suppressing the occurrence of color mixing.
  • the solid-state image sensor 100 includes a first region 4 and a second region 5 on the light receiving surface of the image pickup pixel 1.
  • the first region 4 is provided with irregularities.
  • the second region 5 is provided with irregularities having a narrower pitch than the irregularities in the first region 4.
  • the first region 4 and the second region 5 are provided on the light receiving surface of the insulating film laminated on the semiconductor substrate 2 including the photoelectric conversion element PD.
  • the solid-state image sensor 100 can improve the quantum efficiency while suppressing the occurrence of color mixing when the insulating film is laminated on the semiconductor substrate 2.
  • the first region 4 and the second region 5 are provided on the light receiving surface of the semiconductor substrate 2 including the photoelectric conversion element PD.
  • the solid-state image sensor 100 can improve the antireflection performance without providing an antireflection film on the light receiving surface of the image pickup pixel, and can improve the quantum efficiency while suppressing the occurrence of color mixing. it can.
  • the solid-state image sensor 100 includes a negative fixed charge film on the light receiving surface of the semiconductor substrate 2.
  • the solid-state image sensor 100 causes white scratches to occur in the captured image by combining the electrons existing in the photoelectric conversion element PD independently of the incident light with the holes contained in the negative fixed charge film. It can be suppressed.
  • the solid-state image sensor 100 includes a DTI having a light-shielding property between adjacent imaging pixels. As a result, the solid-state image sensor 100 can suppress the occurrence of color mixing due to the incident light entering the adjacent imaging pixels.
  • the first region 4 and the second region 5 are provided on the light receiving surface of at least one or more imaging pixels among the plurality of imaging pixels arranged in two dimensions.
  • the first region 4 and the second region 5 are provided in the image pickup pixels for detecting the light of a color having a relatively low brightness, so that the image pickup pixel for detecting the light of a low brightness color is provided.
  • the quantum efficiency of is close to the quantum efficiency of the image sensor that detects light of other colors.
  • the first region 4 and the second region 5 are provided on the light receiving surface of the image pickup pixel 1 that detects light having a wavelength longer than the wavelength of red light.
  • the solid-state image pickup devices 100a and 100b detect red light or infrared light by providing the first region 4 and the second region 5 in the image pickup pixel IR that detects red light or infrared light, for example.
  • the quantum efficiency of the image pickup pixels R and IR can be improved.
  • the solid-state image sensor 100 can efficiently refract the incident light to lengthen the optical path length in the photoelectric conversion element PD and improve the quantum efficiency.
  • the first region 4 is provided in the center of the light receiving surface of the imaging pixel 1.
  • the second region 5 is provided so as to surround the first region 4.
  • the pitch of the unevenness in the first region 4 becomes narrower from the center of the first region toward the outer circumference.
  • the solid-state image sensor 100 can more reliably suppress the occurrence of color mixing.
  • the unevenness in the first region 4 is provided with unevenness having a narrower pitch than the unevenness pitch on the uneven slope.
  • the image pickup pixel 1c can further improve the antireflection performance in the first region 4b.
  • the depth of the concave-convex recess in the second region 5 is shallower than the depth of the concave-convex recess in the first region 4. As a result, the uneven recesses in the second region 5 can be formed in a relatively short time.
  • the depth of the concave-convex concave portion in the second region 5a is deeper than the depth of the concave-convex concave portion in the first region 4.
  • the thickness of the second region 5a of the image pickup pixel 1a which functions as a pseudo antireflection film whose refractive index changes steplessly as the depth of the semiconductor substrate 2 in the depth direction becomes deeper, becomes thicker. Therefore, the refractive index of the second region 5a approaches the refractive index of the semiconductor substrate 2. Therefore, the image pickup pixel 1a has improved antireflection performance in the second region 5a, so that the light receiving sensitivity can be further improved.
  • the method for manufacturing a solid-state image sensor is to form irregularities in the first region of the light receiving surface of the image pickup pixel and to form irregularities in the second region of the light receiving surface at a narrower pitch than the irregularities in the first region. Including. This makes it possible to manufacture a solid-state image sensor capable of improving quantum efficiency while suppressing the occurrence of color mixing.
  • the present technology can also have the following configurations.
  • (2) The first region and the second region The solid-state imaging device according to (1) above, which is provided on the light receiving surface of an insulating film laminated on a semiconductor substrate including a photoelectric conversion element.
  • the first region and the second region The solid-state image pickup device according to (1) above, which is provided on a light receiving surface of a semiconductor substrate including a photoelectric conversion element.
  • DTI Deep Trench Isolation
  • the solid-state image sensor according to any one of (1) to (4) above.
  • the first region and the second region The solid-state image pickup apparatus according to any one of (1) to (5), which is provided on a light receiving surface of at least one or more of the image pickup pixels arranged in two dimensions.
  • the first region and the second region The solid-state image sensor according to any one of (1) to (6), which is provided on a light receiving surface of the image pickup pixel that detects light having a wavelength longer than the wavelength of red light.
  • the concave and convex recesses in the first region The solid-state image sensor according to any one of (1) to (7) above, wherein the deeper the position, the narrower the width.
  • the first region is It is provided in the center of the light receiving surface of the image pickup pixel and is provided.
  • the second region is The solid-state image sensor according to any one of (1) to (8), which is provided so as to surround the first region.
  • the unevenness in the first region is The solid-state image sensor according to (9), wherein the pitch becomes narrower from the center of the first region toward the outer circumference.
  • the unevenness in the first region is The solid-state imaging device according to (9) or (10), wherein the uneven slope is provided with irregularities having a pitch narrower than the pitch of the irregularities.

Abstract

混色の発生を抑制しつつ、量子効率を向上させることができる固体撮像装置および固体撮像装置の製造方法を提供する。本開示によれば、固体撮像装置(100,100a,100b,100c)が提供される。固体撮像装置(100,100a,100b,100c)は、撮像画素(1,1a,1b,1c)の受光面に、第1領域(4,4a,4b)と、第2領域(5,5a)とを備える。第1領域(4,4a,4b)は、凹凸が設けられる。第2領域(5,5a)は、第1領域(4,4a,4b)における凹凸よりも狭ピッチの凹凸が設けられる。

Description

固体撮像装置および固体撮像装置の製造方法
 本開示は、固体撮像装置および固体撮像装置の製造方法に関する。
 撮像画素の受光面に凹凸を設け、凹凸によって入射光の進行方向を屈折させることにより、光電変換素子内における入射光の光路長を長くして量子効率を向上させる固体撮像装置がある(例えば、特許文献1参照)。
特開2018-088532号公報
 しかしながら、固体撮像装置は、受光面に設けられる凹凸のピッチが大きいと、受光面で屈折した入射光が隣接する撮像画素へ進入して混色が発生することがあり、凹凸のピッチが小さいと、量子効率が向上しない。
 そこで、本開示では、混色の発生を抑制しつつ、量子効率を向上させることができる固体撮像装置および固体撮像装置の製造方法を提案する。
 本開示によれば、固体撮像装置が提供される。固体撮像装置は、撮像画素の受光面に、第1領域と、第2領域とを備える。第1領域は、凹凸が設けられる。第2領域は、前記第1領域における凹凸よりも狭ピッチの凹凸が設けられる。
本開示に係る固体撮像装置の撮像画素の断面説明図である。 本開示に係る固体撮像装置の撮像画素の平面図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示に係る固体撮像装置の製造工程を示す説明図である。 本開示の第1変形例に係る固体撮像装置の撮像画素の断面説明図である。 本開示の第2変形例に係る固体撮像装置の撮像画素の断面説明図である。 本開示の第3変形例に係る固体撮像装置の撮像画素の断面説明図である。 本開示に係る第1領域および第2領域の第1配置例を示す平面図である。 本開示に係る第1領域および第2領域の第2配置例を示す平面図である。 本開示に係る第1領域および第2領域の第3配置例を示す平面図である。 本開示に係る第1領域および第2領域の第4配置例を示す平面図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
[1.固体撮像装置の構造]
 まず、図1および図2を参照し、本開示に係る固体撮像装置の構造について説明する。図1は、本開示に係る固体撮像装置の撮像画素1の断面説明図である。図2は、本開示に係る固体撮像装置の撮像画素1の平面図である。
 なお、図1および図2には、固体撮像装置が備える2次元に配列された複数の撮像画素のうちの1画素部分を選択的に示している。また、図1では、撮像画素1の受光面上に設けられるカラーフィルタおよびマイクロレンズの図示を省略している。
 図1に示すように、本開示に係る撮像画素1は、例えば、Si(シリコン)基板等の半導体基板2内に設けられる光電変換素子PDを備える。光電変換素子PDは、入射光を受光量に応じた信号電荷に変換する。
 また、撮像画素1は、隣接する撮像画素との間に遮光性を有するDTI(Deep Trench Isolation)3を備える。DTI3は、隣接する撮像画素の間に形成されるトレンチの内面に成膜される酸化アルミニウム膜と、酸化アルミニウム膜が成膜されたトレンチに埋め込まれる絶縁物と、絶縁物に埋め込まれる遮光性を備えた金属により形成される遮光膜とを備える。これにより、撮像画素1は、入射光が隣接する撮像画素へ進入することによる混色の発生を抑制することができる。
 また、DTI3の側壁に、負の固定電荷膜(ピニング膜)が設けられてもよい。ピニング膜は、例えば、酸化ハフニウム(Hf)を用いて形成される。ピニング膜は、二酸化ジルコニウム(ZrO)、酸化タンタル(Ta)などを用いて形成されてもよい。
 そして、撮像画素1は、受光面に凹凸が設けられる第1領域4と、第1領域4の凹凸よりも狭ピッチの凹凸が設けられる第2領域5とを備える。第1領域4内の凹凸は、ピッチが100nm、好ましくは、350~650nmと比較的大きい。また、第1領域4内の凹凸における凹部の深さは、250~260nmである。
 そして、第1領域4内の凹凸における凹部は、深い位置ほど幅狭となる断面視V字状である。これにより、図1に太実線矢印で示すように、撮像画素に入射する光は、第1領域4の凹部側面において大きく屈折し、光電変換素子PDに斜め方向から入射する。
 これにより、撮像画素1は、例えば、受光面に凹凸がない場合に、受光面に対して垂直に入射する点線矢印で示す入射光に比べて、光電変換素子PDにおける入射光の光路長を長くすることができるため、光電変換素子PDの量子効率を向上させることができる。
 また、第1領域4の凹凸部分は、凹部の浅い部分では空気の占める領域が半導体基板2のSiの占める領域よりも大きく、凹部の深さ位置が深くなるほどSiの占める領域が大きくなり、屈折率が無段階に変化するので、疑似的な反射防止膜となる。これにより、撮像画素1は、受光感度を向上させることができる。
 ただし、第1領域4の凹凸は、撮像画素1の受光面全体に設けられる場合、受光領域の周縁部から入射して屈折した光が隣接する撮像画素へ進入して混色を発生させることがある。このため、図2に示すように、第1領域4は、撮像画素1における受光面の中央に設けられ、受光面の周縁部には設けられない。
 これにより、撮像画素1は、受光面の周縁部から入射する光が大きく屈折して隣接する撮像画素に進入することによる混色の発生を抑制することができる。しかし、撮像画素1は、受光面の周縁部に凹凸が設けられない場合、周縁部における反射防止性能が低下するので、量子効率が低下する。
 そこで、撮像画素1は、受光面における第1領域4の周りを囲むように、第1領域4における凹凸よりも狭ピッチの凹凸が設けられる第2領域5を備える。第2領域5内の凹凸は、ピッチおよび深さが10~30nmである。
 このように、第2領域5における凹凸は、第1領域4における凹凸に比べてピッチが非常に狭い(小さい)ので、入射光を大きく屈折させることがない。これにより、撮像画素1は、受光面の周縁部から入射する光が大きく屈折して隣接する撮像画素に進入することによる混色の発生を抑制することができる。
 また、第2領域5における凹凸は、第1領域4における凹凸と同様に、疑似的な反射防止膜となる。第2領域5における凹凸は、上記のようにピッチおよび深さが10~30nmである場合、疑似屈折率が2.5となり、SiO2(酸化シリコン)等の積層反射防止膜の屈折率(1.4)よりも高く、Siの屈折率(3.9)に近い屈折率を実現することができる。
 つまり、第2領域5における凹凸は、可視光領域においては、SiO2等の積層反射防止膜よりも反射防止性能が高い。これにより、撮像画素1は、受光面の周縁部から入射する光についても、量子効率を向上させることができる。
 このように、撮像画素1は、受光面に凹凸が設けられる第1領域4と、第1領域4の凹凸よりも狭ピッチの凹凸が設けられる第2領域5とを備える。これにより、撮像画素1を備える固体撮像装置は、混色の発生を抑制しつつ、量子効率を向上させることができる。
[2.固体撮像装置の製造方法]
 次に、図3A~図6Bを参照して、本開示に係る固体撮像装置の製造方法について説明する。図3A~図6Bは、本開示に係る固体撮像装置の製造工程を示す説明図である。ここでは、撮像画素1の形成工程について説明する。なお、DTI3の形成工程は、公知の技術であるため、ここでは説明を省略する。
 撮像画素1を形成する場合、まず、図3Aに示すように、例えば、B(ボロン)等のP型不純物がドープされた半導体基板2を用意する。そして、半導体基板2の表面(ここでは、上面)側から半導体基板2の内部における所定領域に、P(リン)等のN型の不純物をイオン注入してアニール処理を行うことによって、光電変換素子PDと、フローティングディフュージョンFDを形成する。
 続いて、半導体基板2の上面における光電変換素子PDとフローティングディフュージョンFDとの間の領域に、例えば、SiO2によってゲート絶縁膜6を形成し、ゲート絶縁膜6上に、例えば、ポリシリコンによって転送ゲートTGを形成する。
 これにより、光電変換素子PDによって光電変換された信号電荷をフローティングディフュージョンFDへ転送する転送トランジスタが形成される。このとき、同様の製造方法によって、各撮像画素1のリセットトランジスタ、アンプトランジスタ、および垂直選択トランジスタを形成する。
 その後、半導体基板2上に、例えば、TEOS(テトラエトキシシラン)によって層間絶縁膜7を形成し、層間絶縁膜7の上面からフローティングディフュージョンFDまで達するコンタクトホールを形成する。そして、コンタクトホールにメタルを充填してコンタクトビア8を形成する。
 次に、図3Bに示すように、層間絶縁膜7上に、例えば、Cu(銅)によって所定の回路パターンが形成された配線層9と、層間絶縁膜7と、コンタクトビア8とを形成する工程を繰り返して多層配線層10を形成する。
 次に、図3Cに示すように、多層配線層10上に、例えば、Si基板等の支持基板11を貼り合わせる。そして、図4Aに示すように、図3Cに示す構造体の天地を反転させ、例えば、CMP(Chemical Mechanical Polishing)、ドライエッチング、およびウェットエッチングによって、半導体基板2を裏面側から研削および研磨して所望の厚さにする。
 次に、図4Bに示すように、半導体基板2の裏面上に、例えば、SiO2またはSi3N4(窒化シリコン)等によって保護膜12を形成する。そして、保護膜12上にフォトレジスト(図示略)を塗布し、フォトリソグラフィーによってパターニングを施し、フォトレジストをマスクとしてエッチングを行うことにより、保護膜12における光電変換素子PDの中央上となる位置に複数の開口を形成する。
 次に、図4Cに示すように、等方性エッチングまたは所定の傾斜面が得られる異方性エッチングを行うことにより、半導体基板2の裏面における受光領域の中央に、凹凸を形成して第1領域4を形成する。
 次に、図5Aに示すように、保護膜12を剥離し、その後、図5Bに示すように、半導体基板2の裏面上に、例えば、SiO2またはSi3N4等によって保護膜13を形成する。そして、保護膜13上にフォトレジスト(図示略)を塗布し、フォトリソグラフィーによってパターニングを施す。
 次に、図5Cに示すように、フォトレジストをマスクとしてエッチングを行うことにより、保護膜13における第1領域4を囲む領域に複数の開口を形成する。次に、図6Aに示すように、等方性エッチングまたは所定の傾斜面が得られる異方性エッチングを行うことにより、半導体基板2の裏面における第1領域4を囲む領域に、第1領域4の凹凸よりも狭ピッチの凹凸を形成して第2領域5を形成する。
 次に、図6Bに示すように、保護膜13を除去することにより、撮像画素1の受光面に、凹凸が設けられる第1領域4と、第1領域4の凹凸よりも狭ピッチの凹凸が設けられる第2領域5とが形成される。その後、半導体基板2の受光面上に、導光層、カラーフィルタ、およびマイクロレンズを順次形成して撮像画素1が完成する。
 なお、ここでは、図示を省略したが、撮像画素1は、半導体基板2の受光面上に、負の固定電荷膜(ピニング膜)が設けられてもよい。ピニング膜は、例えば、酸化ハフニウム(Hf)を用いて形成される。ピニング膜は、二酸化ジルコニウム(ZrO)、酸化タンタル(Ta)などを用いて形成されてもよい。
 これにより、撮像画素1は、光電変換素子PDに入射光とは無関係に存在する電子を負の固定電荷膜に含まれる正孔と結合させることによって、撮像画像に白キズが発生することを抑制することができる。
[3.変形例]
 次に、図7~図9を参照して本開示に係る撮像画素の変形例について説明する。図7は、本開示の第1変形例に係る固体撮像装置の撮像画素の断面説明図である。図8は、本開示の第2変形例に係る固体撮像装置の撮像画素の断面説明図である。図9は、本開示の第3変形例に係る固体撮像装置の撮像画素の断面説明図である。
 以下では、図6Bに示す構成要素と同一の構成要素については、図6Bに示す符号と同一の符号を付することにより、重複する説明を省略する。図7に示すように、第1変形例に係る撮像画素1aは、第2領域5aにおける凹凸の凹部の深さが、第1領域4における凹凸の凹部の深さよりも深い。
 これにより、撮像画素1aは、半導体基板2の深さ方向の深さが深くなるほど屈折率が無段階に変化する疑似的な反射防止膜として機能する第2領域5aの厚さが、より厚くなるので、第2領域5aの屈折率が、半導体基板2の屈折率に近付く。したがって、撮像画素1aは、第2領域5aの反射防止性能が向上するので、受光感度をさらに向上させることができる。
 また、図8に示すように、第2変形例に係る撮像画素1bの第1領域4aにおける凹凸は、第1領域4aの中心から外周へ向かうにつれてピッチが狭くなる。これにより、撮像画素1bは、第1領域4aの中心から外周へ向かうにつれて凹凸が小さくなるので、入射光が第1領域4aの凹凸によって屈折する入射光が隣接する撮像画素に進入することによる混色の発生をより確実に抑制することができる。
 また、図9に示すように、第3変形例に係る撮像画素1cの第1領域4bにおける凹凸は、凹凸の斜面に、凹凸のピッチよりも狭ピッチの凹凸がさらに設けられる。これにより、撮像画素1cは、第2領域5の反射防止機能が向上する原理と同様の原理によって、第1領域4bの反射防止性能がさらに向上するので、入射光の受光感度をより一層高めることができる。
[4.第1領域および第2領域の配置例]
 次に、図10~図13を参照して、本開示に係る第1領域4および第2領域5の配置例について説明する。図10は、本開示に係る第1領域4および第2領域5の第1配置例を示す平面図である。図11は、本開示に係る第1領域4および第2領域5の第2配置例を示す平面図である。
 図12は、本開示に係る第1領域4および第2領域5の第3配置例を示す平面図である。図13は、本開示に係る第1領域4および第2領域5の第4配置例を示す平面図である。なお、図10~図13には、固体撮像装置が備える複数の撮像画素のうち、4画素の部分を選択的に示している。
 図10に示すように、固体撮像装置100は、全ての撮像画素1に第1領域4および第2領域5が設けられる。第1領域4は、各撮像画素1の中央に設けられる。第2領域5は、第1領域4の周りを囲んで設けられる。これにより、固体撮像装置100は、全ての撮像画素1について、混色の発生を抑制しつつ、量子効率を向上させることができる。
 また、図11に示すように、固体撮像装置100aは、赤色光を検出する撮像画素Rと、緑色光を検出する撮像画素Gと、青色光を検出する撮像画素Bと、赤外光を検知する撮像画素IRとを備える。
 赤外光は、赤色光、緑色光、および青色光に比べて輝度が低い。このため、赤外光を検出する撮像画素IRは、他の撮像画素R,G,Bよりも量子効率を向上させる必要がある。そこで、固体撮像装置100aは、赤外光を検出する撮像画素IRに、第1領域4および第2領域5が設けられ、他の撮像画素R,G,Bには、第1領域4および第2領域5が設けられない。
 このように、第1領域4および第2領域5は、2次元に配列される複数の撮像画素IR,R,G,Bのうち、少なくとも1以上の撮像画素(例えば、撮像画素IR)における受光面に設けられる。
 これにより、固体撮像装置100aは、例えば、赤外光を検出する撮像画素IRに第1領域4および第2領域5が設けられることで、赤外光を検出する撮像画素IRの量子効率を向上させることができる。
 また、図12に示すように、固体撮像装置100bは、赤色光を検出する撮像画素Rと、緑色光を検出する撮像画素Gと、青色光を検出する撮像画素Bとを備える。赤色光は、緑色光および青色光に比べて輝度が低い。
 そこで、固体撮像装置100bは、全ての撮像画素R,G,Bに要求される反射防止性能を向上させるために、全ての撮像画素R,G,Bに第2領域5が設けられ、特に量子効率の向上が要求される撮像画素Rに第1領域4が設けられる。
 このように、第1領域4および第2領域5は、赤色光の波長以上の長波の光を検出する撮像画素R,IRにおける受光面に設けられる。これにより、赤色光の波長以上の長波の光を検出する撮像画素R,IRの量子効率を向上させて、他の撮像画素R,G,Bの量子効率に近付けることができる。
 なお、図14に示す固体撮像装置100cのように、第1領域4は、撮像画素1の受光面における周縁部に沿って平面視環状に設けられてもよい。かかる構成の場合、第2領域5は、撮像画素1の受光面における第1領域4が設けられていない領域に設けられる。
 固体撮像装置100cによれば、第1領域4によって光電変換素子PD内における光路長を長くすることによって、量子効率を向上させることができ、受光面全体に第1領域4が設けられる場合に比べて、混色の発生を抑制することができる。
 なお、図10~図13に示す固体撮像装置100,100a,100b,100cは、第1領域4に代えて、図8に示す第1領域4aまたは図9に示す第1領域4bが設けられてもよい。また、固体撮像装置100,100a,100b,100cは、第2領域5に代えて、図7に示す第2領域5aが設けられてもよい。かかる構成によっても、固体撮像装置100,100a,100b,100cは、混色の発生を抑制しつつ、量子効率を向上させることができる。
 また、上述した実施形態では、第1領域4および第2領域5が半導体基板2の受光面に設けられる場合について説明したが、第1領域4および第2領域5は、半導体基板2の受光面上に絶縁膜が積層される場合、絶縁層の受光面に設けられてもよい。
 つまり、撮像画素1は、半導体基板2に積層される絶縁膜の受光面の中央に比較的大ピッチの凹凸が形成された第1領域4と、第1領域における凹凸よりも狭ピッチの凹凸が形成された第2領域5とを備えてもよい。かかる構成によっても、撮像画素1は、混色の発生を抑制しつつ、量子効率を向上させることができる。
[5.効果]
 固体撮像装置100は、撮像画素1における受光面に、第1領域4と、第2領域5とを備える。第1領域4は、凹凸が設けられる。第2領域5は、第1領域4における凹凸よりも狭ピッチの凹凸が設けられる。これにより、固体撮像装置100は、混色の発生を抑制しつつ、量子効率を向上させることができる。
 また、第1領域4および第2領域5は、光電変換素子PDを含む半導体基板2に積層される絶縁膜の受光面に設けられる。これにより、固体撮像装置100は、半導体基板2に絶縁膜が積層される場合に、混色の発生を抑制しつつ、量子効率を向上させることができる。
 また、第1領域4および第2領域5は、光電変換素子PDを含む半導体基板2における受光面に設けられる。これにより、固体撮像装置100は、撮像画素の受光面に反射防止膜を設けなくても、反射防止性能を向上させることができると共に、混色の発生を抑制しつつ、量子効率を向上させることができる。
 また、固体撮像装置100は、半導体基板2における受光面上に負の固定電荷膜を備える。これにより、固体撮像装置100は、光電変換素子PDに入射光とは無関係に存在する電子を負の固定電荷膜に含まれる正孔と結合させることによって、撮像画像に白キズが発生することを抑制することができる。
 また、固体撮像装置100は、隣接する撮像画素の間に、遮光性を有するDTIを備える。これにより、固体撮像装置100は、入射光が隣接する撮像画素へ進入することによる混色の発生を抑制することができる。
 また、第1領域4および第2領域5は、2次元に配列される複数の撮像画素のうち、少なくとも1以上の撮像画素における受光面に設けられる。これにより、固体撮像装置100aは、比較的に輝度が低い色の光を検出する撮像画素に第1領域4および第2領域5が設けられることで、低輝度の色の光を検出する撮像画素の量子効率を、他の色の光を検出する撮像画素の量子効率に近付けることができる。
 第1領域4および第2領域5は、赤色光の波長よりも長波長の光を検出する撮像画素1における受光面に設けられる。これにより、固体撮像装置100a,100bは、例えば、赤色光または赤外光を検出する撮像画素IRに第1領域4および第2領域5が設けられることで、赤色光または赤外光を検出する撮像画素R,IRの量子効率を向上させることができる。
 また、第1領域4における凹凸の凹部は、深い位置ほど幅狭となる。これにより、固体撮像装置100は、入射光を効率的に屈折させて光電変換素子PD内における光路長を長くし、量子効率を向上させることができる。
 また、第1領域4は、撮像画素1における受光面の中央に設けられる。第2領域5は、第1領域4の回りを囲んで設けられる。これにより、固体撮像装置100は、第1領域4における凹凸によって屈折および回折する入射光による混色の発生を抑制しつつ、撮像画素1の反射防止性能を向上させることができる。
 また、第1領域4における凹凸は、第1領域の中心から外周へ向かうにつれてピッチが狭くなる。これにより、固体撮像装置100は、より確実に混色の発生を抑制することができる。
 また、第1領域4における凹凸は、凹凸の斜面に、凹凸のピッチよりも狭ピッチの凹凸を備える。これにより、撮像画素1cは、第1領域4bにおける反射防止性能をさらに向上させることができる。
 また、第2領域5における凹凸の凹部は、深さが第1領域4における凹凸の凹部の深さより浅い。これにより、第2領域5における凹凸の凹部は、比較的短時間での形成が可能である。
 また、第2領域5aにおける凹凸の凹部は、深さが第1領域4における凹凸の凹部の深さより深い。これにより、撮像画素1aは、半導体基板2の深さ方向の深さが深くなるほど屈折率が無段階に変化する疑似的な反射防止膜として機能する第2領域5aの厚さが、より厚くなるので、第2領域5aの屈折率が、半導体基板2の屈折率に近付く。したがって、撮像画素1aは、第2領域5aの反射防止性能が向上するので、受光感度をさらに向上させることができる。
 固体撮像装置の製造方法は、撮像画素の受光面における第1領域に凹凸を形成することと、受光面における第2領域に、第1領域における凹凸よりも狭ピッチの凹凸を形成することとを含む。これにより、混色の発生を抑制しつつ、量子効率を向上させることができる固体撮像装置を製造することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 撮像画素における受光面に、
 凹凸が設けられる第1領域と、
 前記第1領域における凹凸よりも狭ピッチの凹凸が設けられる第2領域と
 を備える固体撮像装置。
(2)
 前記第1領域および前記第2領域は、
 光電変換素子を含む半導体基板に積層される絶縁膜の受光面に設けられる
 前記(1)に記載の固体撮像装置。
(3)
 前記第1領域および前記第2領域は、
 光電変換素子を含む半導体基板における受光面に設けられる
 前記(1)に記載の固体撮像装置。
(4)
 前記半導体基板における受光面上に負の固定電荷膜
 を備える前記(3)に記載の固体撮像装置。
(5)
 隣接する前記撮像画素の間に、遮光性を有するDTI(Deep Trench Isolation)
 を備える前記(1)から(4)のいずれか一つに記載の固体撮像装置。
(6)
 前記第1領域および前記第2領域は、
 2次元に配列される複数の前記撮像画素のうち、少なくとも1以上の前記撮像画素における受光面に設けられる
 前記(1)から(5)のいずれか一つに記載の固体撮像装置。
(7)
 前記第1領域および前記第2領域は、
 赤色光の波長よりも長波長の光を検出する前記撮像画素における受光面に設けられる
 前記(1)から(6)のいずれか一つに記載の固体撮像装置。
(8)
 前記第1領域における凹凸の凹部は、
 深い位置ほど幅狭となる
 前記(1)から(7)のいずれか一つに記載の固体撮像装置。
(9)
 前記第1領域は、
 前記撮像画素における受光面の中央に設けられ、
 前記第2領域は、
 前記第1領域の回りを囲んで設けられる
 前記(1)から(8)のいずれか一つに記載の固体撮像装置。
(10)
 前記第1領域における凹凸は、
 前記第1領域の中心から外周へ向かうにつれてピッチが狭くなる
 前記(9)に記載の固体撮像装置。
(11)
 前記第1領域における凹凸は、
 当該凹凸の斜面に、当該凹凸のピッチよりも狭ピッチの凹凸
 を備える前記(9)または(10)に記載の固体撮像装置。
(12)
 前記第2領域における凹凸の凹部は、
 深さが前記第1領域における凹凸の凹部の深さより浅い
 前記(1)から(11)のいずれか一つに記載の固体撮像装置。
(13)
 前記第2領域における凹凸の凹部は、
 深さが前記第1領域における凹凸の凹部の深さより深い
 前記(1)から(11)のいずれか一つに記載の固体撮像装置。
(14)
 撮像画素の受光面における第1領域に凹凸を形成することと、
 前記受光面における第2領域に、前記第1領域における凹凸よりも狭ピッチの凹凸を形成することと
 を含む固体撮像装置の製造方法。
 100,100a,100b,100c 固体撮像装置
 1,1a,1b,1c 撮像画素
 2 半導体基板
 3 DTI
 4,4a,4b 第1領域
 5,5a 第2領域
 6 ゲート絶縁膜
 7 層間絶縁膜
 8 コンタクトビア
 9 配線層
 10 多層配線層
 11 支持基板
 12,13 保護膜
 PD 光電変換素子
 FD フローティングディフュージョン
 TG 転送ゲート

Claims (14)

  1.  撮像画素における受光面に、
     凹凸が設けられる第1領域と、
     前記第1領域における凹凸よりも狭ピッチの凹凸が設けられる第2領域と
     を備える固体撮像装置。
  2.  前記第1領域および前記第2領域は、
     光電変換素子を含む半導体基板に積層される絶縁膜の受光面に設けられる
     請求項1に記載の固体撮像装置。
  3.  前記第1領域および前記第2領域は、
     光電変換素子を含む半導体基板における受光面に設けられる
     請求項1に記載の固体撮像装置。
  4.  前記半導体基板における受光面上に負の固定電荷膜
     を備える請求項3に記載の固体撮像装置。
  5.  隣接する前記撮像画素の間に、遮光性を有するDTI(Deep Trench Isolation)
     を備える請求項1に記載の固体撮像装置。
  6.  前記第1領域および前記第2領域は、
     2次元に配列される複数の前記撮像画素のうち、少なくとも1以上の前記撮像画素における受光面に設けられる
     請求項1に記載の固体撮像装置。
  7.  前記第1領域および前記第2領域は、
     赤色光の波長以上の長波の光を検出する前記撮像画素における受光面に設けられる
     請求項1に記載の固体撮像装置。
  8.  前記第1領域における凹凸の凹部は、
     深い位置ほど幅狭となる
     請求項1に記載の固体撮像装置。
  9.  前記第1領域は、
     前記撮像画素における受光面の中央に設けられ、
     前記第2領域は、
     前記第1領域の回りを囲んで設けられる
     請求項1に記載の固体撮像装置。
  10.  前記第1領域における凹凸は、
     前記第1領域の中心から外周へ向かうにつれてピッチが狭くなる
     請求項9に記載の固体撮像装置。
  11.  前記第1領域における凹凸は、
     当該凹凸の斜面に、当該凹凸のピッチよりも狭ピッチの凹凸
     を備える請求項9に記載の固体撮像装置。
  12.  前記第2領域における凹凸の凹部は、
     深さが前記第1領域における凹凸の凹部の深さより浅い
     請求項1に記載の固体撮像装置。
  13.  前記第2領域における凹凸の凹部は、
     深さが前記第1領域における凹凸の凹部の深さより深い
     請求項1に記載の固体撮像装置。
  14.  撮像画素の受光面における第1領域に凹凸を形成することと、
     前記受光面における第2領域に、前記第1領域における凹凸よりも狭ピッチの凹凸を形成することと
     を含む固体撮像装置の製造方法。
PCT/JP2020/035933 2019-10-07 2020-09-24 固体撮像装置および固体撮像装置の製造方法 WO2021070615A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,317 US20220377266A1 (en) 2019-10-07 2020-09-24 Solid-state imaging device and method of manufacturing solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184847A JP2021061330A (ja) 2019-10-07 2019-10-07 固体撮像装置および固体撮像装置の製造方法
JP2019-184847 2019-10-07

Publications (1)

Publication Number Publication Date
WO2021070615A1 true WO2021070615A1 (ja) 2021-04-15

Family

ID=75380472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035933 WO2021070615A1 (ja) 2019-10-07 2020-09-24 固体撮像装置および固体撮像装置の製造方法

Country Status (3)

Country Link
US (1) US20220377266A1 (ja)
JP (1) JP2021061330A (ja)
WO (1) WO2021070615A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033864A (ja) * 2011-08-02 2013-02-14 Sony Corp 固体撮像素子の製造方法、固体撮像素子、および電子機器
JP2015029054A (ja) * 2013-07-03 2015-02-12 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
US20180315866A1 (en) * 2017-04-26 2018-11-01 Lg Electronics Inc. Solar cell and method of manufacturing the same
JP2019113604A (ja) * 2017-12-21 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 電磁波処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033864A (ja) * 2011-08-02 2013-02-14 Sony Corp 固体撮像素子の製造方法、固体撮像素子、および電子機器
JP2015029054A (ja) * 2013-07-03 2015-02-12 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
US20180315866A1 (en) * 2017-04-26 2018-11-01 Lg Electronics Inc. Solar cell and method of manufacturing the same
JP2019113604A (ja) * 2017-12-21 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 電磁波処理装置

Also Published As

Publication number Publication date
US20220377266A1 (en) 2022-11-24
JP2021061330A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
US10157946B2 (en) Method for forming CMOS image sensor structure
TWI608600B (zh) 影像感測器及其製作方法
TWI805980B (zh) 改良影像感測器串擾之方法及結構
US8790954B2 (en) Method of making wafer structure for backside illuminated color image sensor
TWI407782B (zh) 具有聚焦互連之影像感測器,及有效率地捕捉入射光之方法與裝置
TWI525804B (zh) 影像感測器裝置及其製造方法
KR101352433B1 (ko) 이미지 센서 및 그 제조 방법
KR102489325B1 (ko) 고체 촬상 소자
JP2005322888A (ja) プリズムを備えたcmosイメージセンサおよびその製造方法
US20180358397A1 (en) Methods of fabricating solid-state imaging devices having flat microlenses
KR20110083936A (ko) 광자 굴절용 마이크로 렌즈를 구비하는 단위화소, 상기 단위화소를 구비하는 백사이드 일루미네이션 cmos 이미지센서 및 상기 단위화소의 형성방법
KR101023074B1 (ko) 이미지 센서 및 그 제조 방법
KR20110091372A (ko) 빛을 수신하는 면에 곡률이 있는 포토다이오드를 구비하는 백사이드 일루미네이션 cmos 이미지센서 및 상기 이미지센서의 형성방법
KR20090034429A (ko) 이미지 센서 및 그 제조방법
US20120261731A1 (en) Image sensor
WO2021070615A1 (ja) 固体撮像装置および固体撮像装置の製造方法
US8119436B2 (en) Image sensor having optical waveguide structure and method for manufacturing the same
KR20110031582A (ko) 이미지 센서 및 그 제조방법
TWI622165B (zh) 影像感測器及其製作方法
KR20150089650A (ko) 이미지 센서 및 그 제조 방법
KR20140083748A (ko) 이미지센서 및 그 제조 방법
KR20100045239A (ko) 굴절률이 다른 혼색 방지 절연막 구조를 갖는 이미지 센서및 그 제조 방법
US20230163148A1 (en) Image sensor and method of fabricating the same
JP4751717B2 (ja) 固体撮像素子の製造方法
KR101024765B1 (ko) 이미지센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874237

Country of ref document: EP

Kind code of ref document: A1