WO2021070476A1 - カテーテル、及び、光照射デバイス - Google Patents

カテーテル、及び、光照射デバイス Download PDF

Info

Publication number
WO2021070476A1
WO2021070476A1 PCT/JP2020/030985 JP2020030985W WO2021070476A1 WO 2021070476 A1 WO2021070476 A1 WO 2021070476A1 JP 2020030985 W JP2020030985 W JP 2020030985W WO 2021070476 A1 WO2021070476 A1 WO 2021070476A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
light irradiation
catheter
thermocouple
shaft
Prior art date
Application number
PCT/JP2020/030985
Other languages
English (en)
French (fr)
Inventor
俊彦 塚本
裕子 桂田
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Publication of WO2021070476A1 publication Critical patent/WO2021070476A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a catheter and a light irradiation device.
  • PDT Photodynamic Therapy
  • a light-sensitive substance is intravenously administered and then irradiated with light to generate active oxygen in cancer cells and kill the cancer cells (see, for example, Non-Patent Document 1).
  • PDT has low selectivity for accumulation of light-sensitive substances in cancer cells, and the magnitude of side effects due to its uptake into normal cells becomes an issue, and PDT is not widely used as a therapeutic technique.
  • NIR-PIT Near-infrared photoimmunotherapy
  • a complex in which two compounds of an antibody against a specific antigen of cancer cells and a photosensitive substance (for example, IRDye700DX) are bound is used.
  • this complex selectively accumulates in cancer cells in the body.
  • an excitation wavelength for example, 690 nm
  • the complex is activated and exhibits an anticancer effect (see, for example, Patent Document 1).
  • NIR-PIT performs light irradiation (NIR irradiation) in a near-infrared region of, for example, 690 nm, the effect of NIR irradiation on the immune system can be expected (see, for example, Non-Patent Document 2).
  • the predetermined wavelength region including 690 nm exemplified above is also called a spectroscopic window of a living body, and although it is a wavelength region in which light is absorbed less by biological components than other wavelength regions, light irradiation from the body surface is performed.
  • NIR-PIT that irradiates light at a position closer to cancer cells instead of irradiating light from the body surface.
  • Patent Documents 2 to 7 disclose devices that can be used in such PDTs and NIR-PITs. All of the devices described in Patent Documents 2 to 7 are used by being inserted into a biological lumen such as a blood vessel, and can irradiate light in a deep part of the body.
  • the cancer cells in which the complex is accumulated are irradiated with light of the excitation wavelength of the photosensitive substance in the complex to cause the cancer cells. Kill it.
  • excessive light irradiation of living tissue containing body fluid leads to an excessive rise in the temperature of living tissue, which in turn leads to coagulation of body fluid (for example, blood) and damage to normal cells, and is therefore preferably avoided.
  • the devices described in Patent Documents 2 to 6 do not take any consideration for measuring the temperature of living tissue.
  • the device described in Patent Document 7 includes a thermocouple for measuring the temperature of a living tissue, since the thermocouple is arranged inside the balloon, the device is enlarged and inserted into a blood vessel. There was a problem that it was not preferable.
  • such a problem is not limited to PDT and NIR-PIT, but is common to all devices used in examinations or treatments including the process of irradiating light in the body. Moreover, such a problem is not limited to the device inserted into the blood vessel, but also in the biological lumen such as the vascular system, the lymph gland system, the biliary system, the urinary tract system, the airway system, the digestive system, the secretory gland and the reproductive organ. Common to all devices inserted in.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
  • a catheter is provided.
  • This catheter includes a hollow shaft, a light transmitting portion provided on the tip end side of the hollow shaft and transmitting internal light to the outside, and first and second wires extending along the longitudinal direction of the hollow shaft.
  • a thermocouple including a joint portion to which the first wire and the second wire are joined is provided.
  • the catheter since the catheter is provided with a thermocouple, the temperature of the biological tissue containing the body fluid can be measured in the catheter capable of irradiating the light in the lumen of the living body by transmitting the light inside to the outside. Can be measured. Further, since the thermocouple includes the first wire and the second wire and the joint portion where the first wire and the second wire are joined, for example, the thermocouple is compared with the configuration in which the thermocouple is arranged inside the balloon. Therefore, the diameter of the catheter can be reduced.
  • thermocouple In the catheter of the above form, at least a part of the joint portion of the thermocouple may be exposed from the outer peripheral surface of the hollow shaft. According to this configuration, at least a part of the joint portion is exposed from the outer peripheral surface of the hollow shaft, so that the accuracy of temperature measurement of the living tissue can be improved.
  • the entire joint portion of the thermocouple may be embedded in the thick portion of the hollow shaft. According to this configuration, since the entire joint is embedded in the thick portion of the hollow shaft, the surface of the hollow shaft can be made smooth, and safety can be improved.
  • the junction of the thermocouple may be located between the tip and the proximal end of the light transmitting portion in the longitudinal direction. According to this configuration, the thermocouple junction is located between the tip and the proximal end of the light transmitting portion, so that the light irradiation site (that is, the internal light is transmitted to the outside to the living tissue). On the other hand, the temperature of the living tissue in the light transmitting portion) that irradiates light can be measured.
  • the joint portion of the thermocouple may be located on the distal end side or the proximal end side of the light transmitting portion in the longitudinal direction. According to this configuration, since the thermocouple junction is located on the distal end side or the proximal end side of the light transmitting portion, the temperature of the biological tissue in the vicinity of the light irradiation site can be measured and the device design can be freely performed. The degree can be improved.
  • At least one of the first wire and the second wire may have a spiral shape at least on the distal end side.
  • at least one of the first wire and the second wire of the thermocouple has a spiral shape at least on the tip side, so that the pressure resistance of the hollow shaft can be improved and the hollow due to the internal pressure can be improved. It is possible to suppress damage and deformation of the shaft.
  • a part of the first wire and the second wire may be embedded in the hollow shaft, and the remaining part may be exposed from the hollow shaft.
  • the first wire and the second wire of the thermocouple since the first wire and the second wire of the thermocouple have an exposed portion exposed from the hollow shaft, the heat absorbed from the biological tissue including the body fluid is externally absorbed through the exposed portion. Can be released to. As a result, it is possible to suppress an excessive temperature rise of the living tissue.
  • thermocouples are provided, and one thermocouple has a first wire and a base end portion of the second wire connected to a cooling device, and the other thermocouple has a plurality of thermocouples.
  • the first wire and the base end portion of the second wire may be connected to the temperature measuring device.
  • one thermocouple and another thermocouple can be used for different purposes. Specifically, since one thermocouple is connected to the cooling device, it is possible to cool the living tissue including the body fluid, and it is possible to suppress an excessive temperature rise of the living tissue. Further, since the other thermocouple is connected to the temperature measuring device, the temperature of the living tissue can be measured. That is, according to this configuration, it is possible to cool the living tissue as needed while measuring (monitoring) the temperature of the living tissue, so that the efficiency and effect of the temperature measurement can be improved.
  • the light irradiation device since the light irradiation device includes a second thermocouple, the temperature of the living tissue including the body fluid can be measured in the light irradiation device capable of irradiating the light in the living lumen. .. Further, since the second thermocouple includes the third wire and the fourth wire and the second joint portion to which the third wire and the fourth wire are joined, for example, the thermocouple is arranged inside the balloon. The diameter of the light irradiation device can be reduced as compared with the above configuration.
  • At least a part of the second junction of the second thermocouple may be exposed from the outer peripheral surface of the shaft. According to this configuration, at least a part of the second joint is exposed from the outer peripheral surface of the shaft, so that the accuracy of temperature measurement of the living tissue can be improved.
  • the second junction portion of the second thermocouple may be located between the tip end and the base end of the light irradiation portion in the longitudinal direction. According to this configuration, since the second junction of the second thermocouple is located between the tip and the proximal end of the light irradiation portion, the temperature of the living tissue at the light irradiation site can be measured.
  • the second junction portion of the second thermocouple may be located on the distal end side or the proximal end side of the light irradiation portion in the longitudinal direction. According to this configuration, since the second junction of the second thermocouple is located on the distal end side or the proximal end side of the light irradiation portion, the temperature of the living tissue in the vicinity of the light irradiation portion can be measured, and the temperature of the living tissue can be measured. The degree of freedom in device design can be improved.
  • At least one of the third wire and the fourth wire may have a spiral shape at least on the tip side.
  • at least one of the third wire and the fourth wire of the second thermocouple has a spiral shape at least on the tip side, so that the pressure resistance of the shaft can be improved and the internal pressure is used. It is possible to suppress damage and deformation of the shaft.
  • thermocouples In the light irradiation device of the above embodiment, a plurality of the second thermocouples are provided, and one of the second thermocouples has a third wire and a base end portion of the fourth wire connected to a cooling device. In the other second thermocouple, the base end portions of the third wire and the fourth wire may be connected to the temperature measuring device. According to this configuration, since the light irradiation device includes a plurality of second thermocouples, one second thermocouple and the other second thermocouple can be used for different purposes. Specifically, since the first second thermocouple is connected to the cooling device, it is possible to cool the living tissue including the body fluid, and it is possible to suppress an excessive temperature rise of the living tissue.
  • the other second thermocouple is connected to the temperature measuring device, the temperature of the living tissue can be measured. That is, according to this configuration, it is possible to cool the living tissue as needed while measuring (monitoring) the temperature of the living tissue, so that the efficiency and effect of the temperature measurement can be improved.
  • the present invention can be realized in various aspects, for example, a catheter, a light irradiation device, a light irradiation system in which these are separate or integrated, a catheter, a light irradiation device, and a light irradiation system. It can be realized in the form of a manufacturing method or the like.
  • FIG. 1 is an explanatory diagram illustrating the configuration of the light irradiation system of the first embodiment.
  • the light irradiation system is used by inserting it into the living lumen such as the vascular system, lymph gland system, biliary system, urethral system, airway system, digestive organ system, secretory gland and reproductive organ, and the living body is used from inside the living lumen. It is a system that irradiates tissue with light.
  • the light irradiation system can be used in, for example, PDT (Photodynamic Therapy) and NIR-PIT (Near-infrared photoimmunotherapy).
  • laser light is illustrated as an example of light, but the light irradiation system may be configured using, for example, LED light or white light, not limited to laser light.
  • the light irradiation system includes a catheter 1 and a light irradiation device 2 that is inserted into and used in the catheter 1. In FIG. 1, the catheter 1 and the light irradiation device 2 are shown separately.
  • FIG. 1 the axis passing through the center of the catheter 1 and the axis passing through the center of the light irradiation device 2 are represented by axis lines O (dashed-dotted line), respectively.
  • axis lines O dashed-dotted line
  • FIG. 1 shows XYZ axes that are orthogonal to each other.
  • the X-axis corresponds to the longitudinal direction (axis O direction) of the catheter 1 and the light irradiation device 2
  • the Y-axis corresponds to the height direction of the catheter 1 and the light irradiation device 2
  • the Z-axis corresponds to the catheter 1 and the light irradiation device 2.
  • the left side (-X-axis direction) of FIG. 1 is called the catheter 1, the light irradiation device 2, and the "tip side" of each component
  • the right side (+ X-axis direction) of FIG. 1 is the catheter 1, the light irradiation device 2, and the light irradiation device 2. It is called the "base end side" of each component.
  • a step is formed due to the inner surface 120i of the tip tip 120 protruding.
  • the opening 120o of the tip tip 120 communicates with the through hole 120h and is used when inserting a guide wire (not shown) into the catheter 1.
  • the outer diameter and length of the tip tip 120 can be arbitrarily determined.
  • the connector 140 is a member that is arranged on the proximal end side of the catheter 1 and is gripped by the operator.
  • the connector 140 includes a substantially cylindrical connecting portion 141 and a pair of blades 142.
  • the base end portion 110p of the shaft 110 is joined to the tip end portion of the connecting portion 141, and the blade 142 is joined to the base end portion.
  • the blade 142 may have a structure integrated with the connector 140.
  • the opening 140o of the connector 140 leads to the lumen 110L via the inside of the connector 140, and is used when inserting the light irradiation device 2 into the catheter 1.
  • the outer diameter, inner diameter and length of the connecting portion 141 and the shape of the blade 142 can be arbitrarily determined.
  • FIG. 2 is an explanatory view illustrating the cross-sectional configuration along the line AA of FIG.
  • the shaft 110 of the catheter 1 is further provided with a light transmitting portion 139 and first marker portions 131 and 132.
  • the light transmitting portion 139 transmits the light inside the shaft 110 to the outside.
  • the light transmitting portion 139 is a hollow member having a substantially cylindrical shape, has an outer diameter substantially the same as the outer diameter of the shaft 110, and has an inner diameter ⁇ 2 of the lumen 110L of the shaft 110. It has substantially the same inner diameter.
  • the light transmitting portion 139 is provided in the entire circumferential direction, and transmits the light inside the shaft 110 to the outside in the entire circumferential direction.
  • the light transmitting portion 139 is joined to the shaft 110 at the proximal end side and the distal end side, respectively.
  • the light transmitting portion 139 can be formed of a transparent resin material having light transmitting property, for example, acrylic resin, polyethylene terephthalate, polyvinyl chloride, or the like.
  • the light transmitting portion 139 and the shaft 110 are also collectively referred to as a “hollow shaft”.
  • the light transmitting portion 139 is provided on the tip end side of the hollow shaft.
  • the first marker portions 131 and 132 function as markers indicating the positions of the light transmitting portions 139.
  • the first marker portion 131 is provided close to the tip portion of the light transmitting portion 139, and functions as a mark indicating the position of the tip portion of the light transmitting portion 139.
  • the first marker portion 132 is provided close to the base end portion of the light transmitting portion 139, and functions as a mark indicating the position of the base end portion of the light transmitting portion 139.
  • the first marker portions 131 and 132 are hollow members having a substantially cylindrical shape, respectively. In the example of FIG. 1, the first marker portions 131 and 132 are respectively arranged in recesses formed on the outer surface of the shaft 110 and are joined to the outer surface of the shaft 110.
  • the first marker portions 131 and 132 are embedded in the outer surface of the shaft 110 so as to surround the circumferential direction of the shaft 110, respectively.
  • the first marker portions 131 and 132 may be provided so as to project from the outer surface of the shaft 110 by being joined to the outer surface of the shaft 110 having no recess. At least one of the first marker portions 131 and 132 may be omitted.
  • FIG. 3 is an explanatory view illustrating the cross-sectional configuration taken along the line BB of FIG.
  • the thermocouple 180 includes a first wire 181 and a second wire 182 and a joint 183.
  • the first wire 181 and the second wire 182 are metal conductors extending along the longitudinal direction (axis O direction) of the hollow shaft (shaft 110 and light transmitting portion 139), respectively.
  • the tips of the first wire 181 and the second wire 182 are joined at the position of the light transmitting portion 139 to form the joining portion 183, respectively.
  • the joint portion 183 is arranged at a substantially central portion of the light transmitting portion 139 in the longitudinal direction of the hollow shaft.
  • the joint portion 183 may be arranged at an arbitrary position between the tip end and the base end of the light transmitting portion 139 in the longitudinal direction of the hollow shaft.
  • the position where the joint portion 183 is arranged is preferably a position on the downstream side with respect to the flow of body fluid (for example, blood) in the living lumen.
  • the joint portion 183 is preferably provided in a range from substantially the center to the tip of the light transmitting portion 139.
  • the junction 183 is preferably provided in a range from substantially the center to the proximal end of the light transmitting portion 139.
  • the joint portion 183 is arranged in a state where the entire joint portion 183 is exposed from the outer peripheral surface (outer surface) of the light transmitting portion 139.
  • the joint portion 183 at least a part of the joint portion 183 may be exposed from the outer peripheral surface of the light transmitting portion 139, and the remaining portion may be embedded in the thick portion of the light transmitting portion 139.
  • the first wire 181 and the second wire 182 are embedded in the thick portion of the hollow shaft (shaft 110 and the light transmitting portion 139) in a state of being separated from each other on the proximal end side of the joint portion 183 (the shaft 110 and the light transmitting portion 139).
  • each of the first wire 181 and the second wire 182 extends the thick portion of the hollow shaft toward the proximal end side, passes from the proximal end portion 110p of the shaft 110, passes through the inside of the connector 140, and has a temperature. It is connected to the measuring device 5 (FIG. 1).
  • thermocouple 180 the temperature of a living tissue containing a body fluid (for example, blood) in the vicinity of the junction 183 can be measured.
  • the light irradiation device 2 has a long shape and includes a shaft 210, a tip tip 220, and a connector 240.
  • the shaft 210 is an elongated member extending along the axis O.
  • the shaft 210 has a bottomed cylinder shape in which the tip end is closed and the base end is open.
  • the shaft 210 has a lumen 210L inside.
  • An optical fiber 250 is inserted into and fixed to the lumen 210L.
  • the base end of the optical fiber 250 is directly connected to a laser light generator 3 that generates laser light of an arbitrary wavelength via a connector (not shown), or indirectly connected via another optical fiber. Has been done.
  • the clad and coating are removed from the optical fiber to expose the core.
  • the tip tip 220 is a member that is joined to the tip of the shaft 210 and advances the lumen 110L of the catheter 1 ahead of other members. As shown in FIG. 1, the tip tip 220 is a substantially cylindrical member extending in the longitudinal direction of the light irradiation device 2.
  • the outer diameter ⁇ 3 (FIG. 1) of the tip tip 220 is larger than the opening diameter ⁇ 1 of the through hole 120h of the catheter 1 and smaller than the inner diameter ⁇ 2 of the shaft 110 of the catheter 1 and the light transmitting portion 139. It is preferable ( ⁇ 1 ⁇ 3 ⁇ 2).
  • the connector 240 is a member that is arranged on the base end side of the light irradiation device 2 and is gripped by the operator.
  • the connector 240 includes a substantially cylindrical connecting portion 241 and a pair of blades 242.
  • the base end portion of the shaft 210 is joined to the tip end portion of the connecting portion 241 and the blade 242 is joined to the base end portion.
  • the blade 242 may have a structure integrated with the connector 240.
  • FIG. 4 is an explanatory view illustrating the cross-sectional configuration on the line CC of FIG.
  • the shaft 210 of the light irradiation device 2 is further provided with a light irradiation unit 239 and second marker units 231,232.
  • the light irradiation unit 239 irradiates the light emitted from the core exposed at the tip of the optical fiber 250 to the outside in one direction (FIG. 4: white arrow) on the side surface of the light irradiation device 2.
  • the light irradiation unit 239 is a resin body that covers the tip of the core of the optical fiber 250 and is exposed on a part of the side surface of the shaft 210.
  • the light irradiation unit 239 can be formed, for example, by applying it to an acrylic ultraviolet curable resin in which fine quartz powder is dispersed and curing it with ultraviolet light.
  • the light irradiation unit 239 may be realized by another embodiment, and may be realized by, for example, a light reflection mirror instead of the resin body.
  • the core exposed at the tip of the optical fiber 250 is subjected to a well-known process (for example, a process of cutting the tip surface diagonally, a process of forming a notch, a sandblast process, a chemical process), thereby performing the optical fiber.
  • a light irradiation unit 239 may be formed on a part of 250.
  • the laser beam LT generated by the laser light generator 3 is transmitted from the base end side to the tip end side of the optical fiber 250 via the core of the optical fiber, and from the core exposed at the tip end portion via the light irradiation unit 239. , The light is irradiated to the outside from one direction (FIG. 4: white arrow) on the side surface of the light irradiation device 2.
  • the second marker units 231 and 232 function as markers indicating the position of the light irradiation unit 239.
  • the second marker portion 231 is provided close to the tip portion of the light irradiation unit 239, and functions as a mark indicating the position of the tip portion of the light irradiation unit 239.
  • the second marker unit 232 is provided close to the base end portion of the light irradiation unit 239, and functions as a mark indicating the position of the base end portion of the light irradiation unit 239.
  • the second marker portions 231 and 232 are hollow members having a substantially cylindrical shape, respectively. In the example of FIG.
  • the second marker portions 231 and 232 are respectively arranged in the recesses formed on the outer surface of the shaft 210 and are joined to the outer surface of the shaft 210.
  • the second marker portions 231 and 232 are embedded in the outer surface of the shaft 210 so as to surround the circumferential direction of the shaft 210, respectively.
  • the second marker portions 231 and 232 may be provided so as to project from the outer surface of the shaft 210 by being joined to the outer surface of the shaft 210 having no recess. At least one of the second marker portions 231,232 may be omitted.
  • the first marker portions 131 and 132 of the catheter 1 and the second marker portions 231 and 232 of the light irradiation device 2 can be formed of a resin material or a metal material having radiation opacity.
  • a resin material when a resin material is used, it can be formed by mixing a radiation-impermeable material such as bismuth trioxide, tungsten, or barium sulfate with a polyamide resin, a polyolefin resin, a polyester resin, a polyurethane resin, a silicon resin, a fluororesin, or the like.
  • a metal material when a metal material is used, it can be formed of a radiation-impermeable material such as gold, platinum, tungsten, or an alloy containing these elements (for example, platinum-nickel alloy).
  • the shaft 110 of the catheter 1 and the shaft 210 of the light irradiation device 2 preferably have antithrombotic properties, flexibility, and biocompatibility, and can be formed of a resin material or a metal material.
  • resin material for example, polyamide resin, polyolefin resin, polyester resin, polyurethane resin, silicon resin, fluororesin and the like can be adopted.
  • metal material for example, stainless steel such as SUS304, nickel titanium alloy, cobalt chromium alloy, tungsten steel and the like can be adopted.
  • the shaft 110 and the shaft 210 may be formed into a bonded structure in which a plurality of the above-mentioned materials are combined.
  • the tip 120 of the catheter 1 and the tip 220 of the light irradiation device 2 are preferably flexible, and can be formed of, for example, a resin material such as polyurethane or polyurethane elastomer.
  • the connector 140 of the catheter 1 and the connector 240 of the light irradiation device 2 can be formed of a resin material such as polyamide, polypropylene, polycarbonate, polyacetal, and polyether sulfone.
  • the first wire 181 and the second wire 182 of the catheter 1 are different metal conductors, and various metal conductors can be used according to the required performance (for example, temperature band, resolution, thermal conductivity, price, durability, etc.). Can be adopted.
  • the first wire 181 and the second wire 182 are, for example, platinum rhodium alloy, platinum, an alloy mainly composed of nickel, chromium and silicon, an alloy mainly composed of nickel and chromium, and mainly composed of copper, copper and nickel. It can be formed of alloy, aluminum, etc.
  • FIG. 5 is an explanatory diagram illustrating a usage state of the light irradiation system.
  • the upper part of FIG. 5 shows a state in which the light irradiation device 2 is inserted into the catheter 1.
  • the lower part of FIG. 5 shows an enlarged state of a part on the tip side.
  • a method of using the light irradiation system will be described with reference to FIGS. 1 and 5.
  • the operator inserts a guide wire into the lumen of the living body.
  • the operator inserts the proximal end side of the guide wire from the opening 120o of the tip tip 120 of the catheter 1 shown in FIG. 1 into the lumen 110L and projects it from the opening 140o of the connector 140.
  • the operator pushes the catheter 1 into the lumen of the living body along the guide wire, and the light transmitting portion 139 of the catheter 1 is directed to the target site of light irradiation (for example, in the case of NIR-PIT, the cancer cell. Deliver to (near).
  • the target site of light irradiation for example, in the case of NIR-PIT, the cancer cell.
  • Deliver to the target site of light irradiation
  • the operator By inserting the guide wire through the through hole 120h formed in the tip 120 of the tip of the catheter 1 in this way, the operator can easily deliver the catheter 1 to the target site in the living lumen.
  • the operator positions the catheter 1 in the biological lumen while confirming the positions of the first marker portions 131 and 132 arranged in the vicinity of the light transmitting portion 139 in the X-ray image. be able to.
  • the surgeon then removes the guide wire from the catheter 1.
  • the operator inserts the light irradiation device 2 through the opening 140o of the connector 140 of the catheter 1.
  • the operator pushes the light irradiation device 2 toward the tip end side of the catheter 1 along the lumen 110L of the catheter 1.
  • the catheter 1 can be formed.
  • the tip surface 220e of the light irradiation device 2 abuts on the inner surface 120i of the tip chip 120, so that the light irradiation device 2 can be prevented from coming off to the tip side (lower part of FIG. 5: Broken circle frame).
  • the operator confirms the positional relationship between the first marker units 131 and 132 and the second marker units 231,232 in the X-ray image, and thereby, the axis line between the light transmitting unit 139 and the light irradiation unit 239. Align the position in the O direction (X-axis direction).
  • the laser light LT transmitted through the optical fiber 250 and emitted from the light irradiation unit 239 can be transmitted to the light transmission unit 139 of the catheter 1 and emitted to the external living tissue.
  • the light transmitting portion 139 is provided in the entire circumferential direction (FIG. 2).
  • the operator only needs to align the light transmitting portion 139 and the light irradiation portion 239 in the axis O direction (X-axis direction), and the light transmitting portion in the circumferential direction. It is not necessary to align the 139 with the light irradiation unit 239.
  • the operator monitors the temperature measuring device 5 connected to the thermocouple 180 to monitor the temperatures of the body fluid (for example, blood) and the living tissue in the vicinity of the light transmitting portion 139, while monitoring the temperature of the light irradiating portion 239.
  • Light irradiation is carried out.
  • the base end portion of the thermocouple 180 may be connected to the laser light generator 3 instead of the temperature measuring device 5.
  • the laser light generator 3 reduces the output of the laser light LT or irradiates the laser light LT when the temperatures of the body fluid and the biological tissue measured by the thermocouple 180 exceed a predetermined threshold value. Stop it.
  • the laser light generator 3 may issue a warning to the operator instead of controlling the output of the laser light LT.
  • An arbitrary value is set in advance for the predetermined threshold value, and the predetermined threshold value is stored inside the laser light generator 3. In this way, it is possible to suppress the coagulation of body fluids and damage to normal cells while reducing the labor of the operator.
  • the catheter 1 since the catheter 1 includes a thermocouple 180, the light inside the hollow shaft is transmitted to the outside to allow the catheter 1 to be transmitted to a specific position (in the living lumen). For example, in the case of NIR-PIT, the temperature of living tissue containing body fluid (for example, blood) can be measured with a catheter 1 capable of irradiating light (near cancer cells in a blood vessel). it can. Further, the thermocouple 180 includes a first wire 181 and a second wire 182, and a joint portion 183 to which the first wire 181 and the second wire 182 are joined.
  • the diameter of the catheter 1 can be reduced as compared with the configuration in which the thermocouple 180 is arranged inside the balloon. Further, since at least a part of the joint portion 183 is exposed from the outer peripheral surface of the hollow shaft (light transmitting portion 139), the accuracy of temperature measurement of the living tissue can be improved.
  • the joint portion 183 of the thermocouple 180 is located between the tip end and the base end of the light transmitting portion 139 in the longitudinal direction (axis O direction). Therefore, it is possible to measure the temperature of the living tissue at the light irradiation site where the temperature tends to rise (that is, the light transmitting portion 139 that irradiates the living tissue with light by transmitting the internal light to the outside).
  • FIG. 6 is an explanatory diagram illustrating the configuration of the light irradiation system of the second embodiment.
  • the light irradiation system of the second embodiment includes a catheter 1A having a configuration different from that of the first embodiment, and a light irradiation device 2A.
  • the catheter 1A includes a light transmitting portion 139A instead of the light transmitting portion 139.
  • the light transmitting portion 139A is an arc-shaped plate-shaped member, which is fitted into a part of the shaft 110 and joined to the shaft 110. Therefore, the light transmitting portion 139A of the second embodiment is provided in a part in the circumferential direction, and the light inside the shaft 110 is transmitted to the outside in the part in the circumferential direction.
  • the light transmitting portion 139A can be formed of the same material as the light transmitting portion 139.
  • the junction portion 183 of the thermocouple 180 is provided at a position between the tip end and the proximal end of the light transmission portion 139A in a state of being exposed from the outer peripheral surface (outer surface) of the light transmission portion 139A. ..
  • the light irradiation device 2A includes a light irradiation unit 239A instead of the light irradiation unit 239.
  • the light irradiation unit 239A is a solid substantially columnar member having a diameter substantially the same as the outer diameter of the shaft 210.
  • the light irradiation unit 239A is joined to the shaft 210 on the proximal end side and the distal end side, respectively. Further, the surface on the base end side of the light irradiation unit 239A covers the tip of the exposed core of the optical fiber 250.
  • the method of using the light irradiation system of the second embodiment is the same as that of the first embodiment.
  • the light transmitting portion 139A of the catheter 1A is provided in a part in the circumferential direction, while the light irradiation portion 239A of the light irradiation device 2A is provided in the circumferential direction. It is provided throughout.
  • the operator monitors the temperature measuring device 5 connected to the thermocouple 180 to monitor the body fluid in the vicinity of the light transmitting portion 139A.
  • Light irradiation is performed by the light irradiation unit 239A while monitoring the temperature of (for example, blood) and the living tissue.
  • the temperature of for example, blood
  • the living tissue can be suppressed, so that coagulation of the body fluid and damage to normal cells due to an excessive increase in the temperature of the living tissue can be suppressed.
  • FIG. 7 is an explanatory view illustrating the combination of the light transmitting unit 139 and the light irradiation unit 239.
  • the light transmitting unit 139 described in the first embodiment and the light transmitting unit 139A described in the second embodiment, and the light irradiating unit 239 and the second embodiment described in the first embodiment will be described.
  • the combination with the light irradiation unit 239A can be arbitrarily changed. That is, as shown in No. 1, a combination of a light transmitting portion 139 (FIG. 1) that transmits light to the entire circumference and a light irradiating portion 239 (FIG. 1) that irradiates a part of the circumferential direction with light.
  • a light irradiation system may be configured.
  • a light irradiation system may be configured.
  • light irradiation is a combination of a light transmitting unit 139 (FIG. 1) that transmits light to the entire circumference and a light irradiation unit 239A (FIG. 6) that irradiates light to the entire circumference.
  • the system may be configured.
  • a light irradiation system may be configured in combination with.
  • the light irradiation system of the second embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • FIG. 8 is an explanatory view illustrating the configuration of the catheter 1B of the third embodiment.
  • the light irradiation system of the third embodiment includes the catheter 1B shown in FIG. 8 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1B includes a thermocouple 180B instead of the thermocouple 180.
  • the thermocouple 180B includes a first wire 181B instead of the first wire 181 and a second wire 182B instead of the second wire 182.
  • each of the first wire 181B and the second wire 182B extends the outer peripheral surface of the hollow shaft toward the proximal end side, passes from the proximal end portion 110p of the shaft 110, passes through the outer peripheral surface of the connector 140, and has a temperature. It is connected to the measuring device 5 (FIG. 8).
  • thermocouple 180B of the catheter 1B can be changed in various ways, and one or both of the first wire 181B and the second wire 182B of the hollow shaft (shaft 110 and light transmitting portion 139). It does not have to be buried in the thick part.
  • the light irradiation system of the third embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • FIG. 9 is an explanatory view illustrating the configuration of the catheter 1C of the fourth embodiment.
  • the light irradiation system of the fourth embodiment includes the catheter 1C shown in FIG. 9 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1C includes a thermocouple 180C instead of the thermocouple 180.
  • the thermocouple 180C includes a first wire 181C instead of the first wire 181 and a second wire 182C instead of the second wire 182.
  • Both the first wire 181C and the second wire 182C have a spiral shape (coil shape) at a part on the tip side.
  • the first wire 181C and the second wire 182C have different spiral winding directions, one of which is S-wound and the other of which is Z-wound.
  • the first wire 181C and the second wire 182C are respectively embedded in the thick portion of the hollow shaft (shaft 110 and the light transmitting portion 139) in a state of being separated from each other.
  • the tips of the first wire 181C and the second wire 182C are joined to each other to form a joint portion 183, and the base end is connected to the temperature measuring device 5.
  • the details are the same as those in the first embodiment.
  • the configuration of the thermocouple 180C of the catheter 1C can be changed in various ways, and at least a part of one or both of the first wire 181C and the second wire 182C may have a spiral shape.
  • the spiral-shaped portion may be a part on the tip end side of the first wire 181C and the second wire 182C, and is in the longitudinal direction (axis O direction) of the first wire 181C and the second wire 182C. It may be the whole.
  • one may have a spiral shape and the other may have a linear shape (FIG. 1).
  • the light irradiation system of the fourth embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • at least one of the first wire 181C and the second wire 182C of the thermocouple 180C has a spiral shape at least on the distal end side. Therefore, the pressure resistance of the hollow shaft (shaft 110 and the light transmitting portion 139) can be improved, and damage or deformation of the hollow shaft due to internal pressure can be suppressed. Further, since the first wire 181C and the second wire 182C have different spiral winding directions, they can cancel each other's magnetism when energized, and the pressure resistance of the hollow shaft can be further improved.
  • FIG. 10 is an explanatory view illustrating the configuration of the catheter 1D of the fifth embodiment.
  • the light irradiation system of the fifth embodiment includes the catheter 1D shown in FIG. 10 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1D includes a thermocouple 180D instead of the thermocouple 180C described in the fourth embodiment.
  • the thermocouple 180D includes a first wire 181D in place of the first wire 181C and a second wire 182D in place of the second wire 182C.
  • the first wire 181D and the second wire 182D have a spiral shape on a part on the tip side as in the fourth embodiment.
  • the first wire 181D and the second wire 182D are fixed to the outer peripheral surfaces of the hollow shaft (shaft 110 and the light transmitting portion 139) in a state of being separated from each other (FIG. 10). Fixation can be performed by any method.
  • the tips of the first wire 181D and the second wire 182D are joined to each other to form a joint portion 183, and the base end is connected to the temperature measuring device 5. The details are the same as those in the first embodiment.
  • thermocouple 180D of the catheter 1D can be changed in various ways, and one or both of the first wire 181D and the second wire 182D are not embedded in the thick portion of the hollow shaft. May be good.
  • the light irradiation system of the fifth embodiment as described above can also achieve the same effects as those of the first and fourth embodiments described above.
  • FIG. 11 is an explanatory view illustrating the configuration of the catheter 1E of the sixth embodiment.
  • the light irradiation system of the sixth embodiment includes the catheter 1E shown in FIG. 11 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1E includes a thermocouple 180E instead of the thermocouple 180.
  • the thermocouple 180E includes a first wire 181E instead of the first wire 181 and a second wire 182E instead of the second wire 182, and a joint portion 183E instead of the joint portion 183.
  • the tips of the first wire 181E and the second wire 182E are joined at positions closer to the proximal end side than the light transmitting portion 139 in the longitudinal direction (axis O direction) of the hollow shaft (shaft 110 and the light transmitting portion 139), respectively.
  • the joint portion 183E is formed. That is, the joint portion 183E is located closer to the proximal end side than the light transmitting portion 139. Further, the joint portion 183E is arranged so as to be exposed from the outer peripheral surface of the shaft 110.
  • the portion on the proximal end side of the joint portion 183E is embedded in the thick portion of the hollow shaft in a state of being separated from each other, and the proximal end is connected to the temperature measuring device 5. ..
  • the details are the same as those in the first embodiment.
  • thermocouple 180E of the catheter 1E can be changed in various ways, and the position of the joint portion 183E in the longitudinal direction may be closer to the proximal end side than the light transmitting portion 139.
  • the light irradiation system of the sixth embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • the junction portion 183E of the thermocouple 180E since the junction portion 183E of the thermocouple 180E is located closer to the proximal end side than the light transmitting portion 139, the temperature of the living tissue in the vicinity of the light irradiation site can be measured. , The degree of freedom in device design can be improved.
  • FIG. 12 is an explanatory view illustrating the configuration of the catheter 1F of the seventh embodiment.
  • the light irradiation system of the seventh embodiment includes the catheter 1F shown in FIG. 12 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1F includes a thermocouple 180F instead of the thermocouple 180.
  • the thermocouple 180F includes a first wire 181F instead of the first wire 181 and a second wire 182F instead of the second wire 182, and a joint portion 183F instead of the joint portion 183.
  • the tips of the first wire 181F and the second wire 182F are joined at positions closer to the tip side than the light transmitting portion 139 in the longitudinal direction (axis O direction) of the hollow shaft (shaft 110 and the light transmitting portion 139), respectively.
  • the joint portion 183F is formed. That is, the joint portion 183F is located on the tip side of the light transmitting portion 139. Further, the joint portion 183F is arranged so as to be exposed from the outer peripheral surface of the shaft 110.
  • the portion on the base end side of the joint portion 183F is embedded in the thick portion of the hollow shaft in a state of being separated from each other, and the base end is connected to the temperature measuring device 5. ..
  • thermocouple 180F of the catheter 1F can be changed in various ways, and the position of the joint portion 183F in the longitudinal direction may be closer to the distal end side than the light transmitting portion 139.
  • the light irradiation system of the seventh embodiment as described above can also achieve the same effects as those of the first and sixth embodiments described above.
  • FIG. 13 is an explanatory view illustrating the configuration of the catheter 1G of the eighth embodiment.
  • the light irradiation system of the eighth embodiment includes the catheter 1G shown in FIG. 13 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1G further includes a thermocouple 190 in addition to the thermocouple 180 described in the first embodiment.
  • the thermocouple 190 includes a first wire 191 and a second wire 192, and a joint portion 193.
  • the first wire 191 and the second wire 192 are metal conductors extending along the longitudinal direction (axis O direction) of the hollow shaft (shaft 110 and light transmitting portion 139), respectively.
  • the first wire 191 and the second wire 192 can be formed of the same material as the first and second wires 181, 182.
  • the first wire 191 and the second wire 192 and the first and second wires 181, 182 may be formed of the same material or may be formed of different materials.
  • the tips of the first wire 191 and the second wire 192 are joined at the position of the light transmitting portion 139, respectively, to form the joining portion 193.
  • the joint portion 193 is arranged at a substantially central portion of the light transmitting portion 139 in the longitudinal direction of the hollow shaft.
  • the joint portion 193 may be arranged at an arbitrary position between the tip end and the base end of the light transmitting portion 139. Further, at least a part of the joint portion 193 is arranged in a state of being exposed from the outer peripheral surface (outer surface) of the light transmitting portion 139.
  • the first wire 191 and the second wire 192 are embedded in the thick portion of the hollow shaft in a state of being separated from each other on the proximal end side of the joint portion 193 (lower part of FIG. 13). Further, each of the first wire 191 and the second wire 192 extends the thick portion of the hollow shaft toward the proximal end side, passes through the inside of the connector 140 from the proximal end portion 110p of the shaft 110, and is cooled. It is connected to the device 6 (upper part of FIG. 13).
  • the cooling device 6 may be a cooling device by water cooling or a cooling device by air cooling.
  • Such a thermocouple 190 can cool body fluids (eg, blood) and living tissue in the vicinity of the first wire 191 and the second wire 192, and the junction 193.
  • the configuration of the catheter 1G can be changed in various ways, and may be configured to include a plurality of thermocouples (thermocouples 180, 190).
  • the light irradiation system of the eighth embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • the catheter 1G since the catheter 1G includes a plurality of thermocouples 180 and 190, one thermocouple 190 and another thermocouple 180 can be used for different purposes. .. Specifically, since one thermocouple 190 is connected to the cooling device 6, it is possible to cool the living tissue including the body fluid, and it is possible to suppress an excessive temperature rise of the living tissue.
  • thermocouple 180 since the other thermocouple 180 is connected to the temperature measuring device 5, the temperature of the living tissue can be measured. That is, according to the catheter 1G of the eighth embodiment, the temperature of the living tissue can be measured (monitored) and the living tissue can be cooled as needed, so that the efficiency and effect of the temperature measurement can be improved. ..
  • FIG. 14 is an explanatory view illustrating the configuration of the catheter 1H of the ninth embodiment.
  • the light irradiation system of the ninth embodiment includes the catheter 1H shown in FIG. 14 and the light irradiation device 2 described in the first embodiment.
  • the catheter 1H includes a thermocouple 180H instead of the thermocouple 180.
  • the thermocouple 180H includes a first wire 181H in place of the first wire 181 and a second wire 182H in place of the second wire 182.
  • the first wire 181H and the second wire 182H have a thick portion of a hollow shaft (shaft 110 and light transmitting portion 139) in a part on the tip end side, similarly to the first and second wires 181, 182 of the first embodiment. It is buried in. Further, the first wire 181H and the second wire 182H are fixed to the outer peripheral surface of the hollow shaft in a part on the proximal end side, similarly to the first and second wires 181B and 182B of the third embodiment. That is, a part of the first wire 181H and the second wire 182H is embedded in the hollow shaft, and the remaining part is exposed from the hollow shaft.
  • thermocouple 180H of the catheter 1H can be changed in various ways, and one or both of the first wire 181H and the second wire 182H are partially embedded in the hollow shaft and the remaining portion is embedded. It may be exposed from the hollow shaft.
  • FIG. 14 a case where a part on the distal end side is buried and a part on the proximal end side is exposed is illustrated, but these may be reversed. That is, a part on the tip end side may be exposed and a part on the base end side may be buried.
  • the light irradiation system of the ninth embodiment as described above can also achieve the same effect as that of the first embodiment described above.
  • the catheter 1H of the ninth embodiment since the first wire 181H and the second wire 182H of the thermocouple 180H have an exposed portion exposed from the hollow shaft, the body fluid is passed through the exposed portion.
  • the heat absorbed from the living tissue including (for example, blood) can be released to the outside. As a result, it is possible to suppress an excessive temperature rise of the living tissue.
  • FIG. 15 is an explanatory diagram illustrating the configuration of the light irradiation system of the tenth embodiment.
  • the light irradiation system of the tenth embodiment includes a catheter 1I and a light irradiation device 2I.
  • Catheter 1I does not include the thermocouple 180 described in the first embodiment.
  • the light irradiation device 2I further includes a second thermocouple 280 in addition to the respective configurations described in the first embodiment.
  • the light irradiation unit 239 and the shaft 210 are collectively referred to as a “shaft”.
  • the light irradiation unit 239 is provided on the tip end side of the shaft.
  • FIG. 16 is an explanatory view illustrating the cross-sectional configuration on the DD line of FIG.
  • the second thermocouple 280 includes a third wire 281, a fourth wire 282, and a second junction 283.
  • the third wire 281 and the fourth wire 282 are metal conductors extending along the longitudinal direction (axis O direction) of the shafts (shaft 210 and light irradiation unit 239), respectively.
  • the tips of the third wire 281 and the fourth wire 282 are joined at the position of the light irradiation portion 239 to form the second joint portion 283, respectively.
  • the second joint portion 283 is arranged at a substantially central portion of the light irradiation portion 239.
  • the second joint portion 283 may be arranged at an arbitrary position between the tip end and the base end of the light irradiation portion 239 in the longitudinal direction of the shaft.
  • the position where the second joint portion 283 is arranged is preferably a position on the downstream side with respect to the flow of body fluid in the living lumen.
  • the second joint portion 283 is arranged in a state where the entire second joint portion 283 is exposed from the outer peripheral surface (outer surface) of the light irradiation portion 239.
  • the second joint portion 283 at least a part of the second joint portion 283 may be exposed from the outer peripheral surface of the light irradiation portion 239, and the remaining portion may be embedded in the thick portion of the light irradiation portion 239.
  • the third wire 281 and the fourth wire 282 are each embedded in the thick portion of the shaft (shaft 210 and light irradiation portion 239) in a state of being separated from each other. (Fig. 16). Further, the third wire 281 and the fourth wire 282 each extend the thick portion of the shaft toward the proximal end side, pass through the inside of the connector 240 from the proximal end portion of the shaft 210, and pass through the inside of the connector 240 to measure the temperature. It is connected to 5 (Fig. 15).
  • the second thermocouple 280 can measure the temperature of a living tissue containing a body fluid (for example, blood) in the vicinity of the second junction 283.
  • the method of using the light irradiation system of the tenth embodiment is the same as that of the first embodiment described with reference to FIG.
  • the configuration of the light irradiation system can be changed in various ways, and a second thermocouple 280 may be provided for the light irradiation device 2I instead of the catheter 1I.
  • the light irradiation system may be configured by combining the catheter 1 provided with the thermocouple 180 described in the first embodiment and the light irradiation device 2I provided with the second thermocouple 280 described in the tenth embodiment.
  • the light irradiation device 2I since the light irradiation device 2I includes the second thermocouple 280, the light irradiation device 2I capable of irradiating light in the biological lumen is used. , The temperature of living tissue including body fluids (eg, blood) can be measured. Further, the second thermocouple 280 includes a third wire 281 and a fourth wire 282, and a second joining portion 283 to which the third wire 281 and the fourth wire 282 are joined. Therefore, for example, the diameter of the light irradiation device 2I can be reduced as compared with the configuration in which the second thermocouple 280 is arranged inside the balloon.
  • the accuracy of temperature measurement of the living tissue can be improved.
  • the second junction 283 of the second thermocouple 280 is located between the tip and the proximal end of the light irradiation section 239, the temperature of the living tissue at the light irradiation site can be measured.
  • the third wire 281J and the fourth wire 282J are fixed to the outer peripheral surfaces of the shafts (shaft 210 and light irradiation portion 239) at the proximal end side of the second joint portion 283 in a state of being separated from each other.
  • the configuration of the second thermocouple 280J of the light irradiation device 2J can be changed in various ways, and one or both of the third wire 281J and the fourth wire 282J are embedded in the thick portion of the shaft. It does not have to be.
  • the light irradiation system of the eleventh embodiment as described above can also achieve the same effect as that of the tenth embodiment described above.
  • FIG. 18 is an explanatory diagram illustrating the configuration of the light irradiation device 2K of the twelfth embodiment.
  • the light irradiation system of the twelfth embodiment includes the catheter 1I described in the tenth embodiment and the light irradiation device 2K shown in FIG.
  • the light irradiation device 2K includes a second thermocouple 280K instead of the second thermocouple 280.
  • the second thermocouple 280K includes a third wire 281K in place of the third wire 281 and a fourth wire 282K in place of the fourth wire 282.
  • the third wire 281K and the fourth wire 282K have a spiral shape (coil shape) at least on the tip side.
  • the third wire 281K and the fourth wire 282K have different spiral winding directions as in the fourth embodiment, and one is S-wound and the other is Z-wound.
  • the configuration of the second thermocouple 280K of the light irradiation device 2K can be changed in various ways, and at least a part of one or both of the third wire 281K and the fourth wire 282K has a spiral shape. May be good.
  • the third wire 281K and the fourth wire 282K are embedded in the thick portion of the shaft.
  • the third wire 281K and the fourth wire 282K may be fixed to the outer peripheral surface of the shaft.
  • the light irradiation system of the twelfth embodiment as described above can also achieve the same effect as that of the tenth embodiment described above.
  • FIG. 19 is an explanatory diagram illustrating the configuration of the light irradiation device 2L of the thirteenth embodiment.
  • the light irradiation system of the thirteenth embodiment includes the catheter 1I described in the tenth embodiment and the light irradiation device 2L shown in FIG.
  • the light irradiation device 2L includes a second thermocouple 280L instead of the second thermocouple 280.
  • the second thermocouple 280L includes a third wire 281L in place of the third wire 281, a fourth wire 282L in place of the fourth wire 282, and a second joint 283L in place of the second joint 283. ing.
  • the tips of the third wire 281L and the fourth wire 282L are joined at a position closer to the proximal end side than the light irradiation unit 239 in the longitudinal direction (axis O direction) of the shaft (shaft 210 and the light irradiation unit 239).
  • Two joints 283L are formed. That is, the second joint portion 283L is located closer to the proximal end side than the light irradiation portion 239.
  • the configuration of the second thermocouple 280L of the light irradiation device 2L can be changed in various ways, and the second junction portion 283L may be provided on the proximal end side of the light irradiation portion 239.
  • the second joint portion 283L may be provided on the tip side of the light irradiation portion 239.
  • the light irradiation system of the thirteenth embodiment as described above can also achieve the same effect as that of the tenth embodiment described above.
  • FIG. 20 is an explanatory diagram illustrating the configuration of the light irradiation device 2M of the 14th embodiment.
  • the light irradiation system of the 14th embodiment includes the catheter 1I described in the 10th embodiment and the light irradiation device 2M shown in FIG.
  • the light irradiation device 2M further includes a second thermocouple 290 in addition to the second thermocouple 280 described in the tenth embodiment.
  • the second thermocouple 290 includes a third wire 291 and a fourth wire 292 and a second junction 293.
  • the third wire 291 and the fourth wire 292 have the same configuration as the third wire 281 and the fourth wire 282, except that the base end is connected to the cooling device 6.
  • the second joint portion 293 has the same configuration as the second joint portion 283.
  • the third wire 281N and the fourth wire 282N are embedded in the thick portion of the shaft (shaft 210 and the light irradiation portion 239) in a part on the tip side, and are fixed to the outer peripheral surface of the shaft in a part on the base end side. There is.
  • the configuration of the second thermocouple 280N of the light irradiation device 2N can be changed in various ways, and one or both of the third wire 281N and the fourth wire 282N are partially embedded in the shaft and the remainder. Part may be exposed from the shaft.
  • FIG. 21 a case where a part on the distal end side is buried and a part on the proximal end side is exposed is illustrated, but these may be reversed.
  • the light irradiation system of the fifteenth embodiment as described above can also achieve the same effect as that of the tenth embodiment described above.
  • the exposed portion is passed through the exposed portion. Therefore, the heat absorbed from the living tissue including the body fluid (for example, blood) can be released to the outside. As a result, it is possible to suppress an excessive temperature rise of the living tissue.
  • the body fluid for example, blood
  • FIG. 22 is an explanatory view illustrating the configuration of the catheter 1O of the 16th embodiment.
  • the light irradiation system of the 16th embodiment includes the catheter 1O shown in FIG. 22 and the 2 described in the first embodiment.
  • the catheter 1O includes a thermocouple 180O instead of the thermocouple 180.
  • the thermocouple 180O includes a joint portion 183O instead of the joint portion 183.
  • the entire joint portion 183O is embedded in the thick portion of the light transmitting portion 139 as a hollow shaft. As described with reference to FIG.
  • thermocouple 180O can be changed in various ways, and for example, the joint portion 183O having a configuration in which the entire thermocouple 180O is embedded in the thick portion of the hollow shaft may be provided.
  • the light irradiation system of the 16th embodiment as described above can also achieve the same effect as that of the 1st embodiment described above.
  • the entire joint portion 183O is embedded in the thick portion of the hollow shaft (shaft 110 and the light transmitting portion 139), so that the surface of the hollow shaft is made smooth. Can be done and safety can be improved.
  • the second joint portion The entire second thermocouple 280P including 283P is embedded in the thick portion of the shaft. From the viewpoint of improving the accuracy of temperature measurement, it is preferable that the second joint portion 283P is embedded at a position as close as possible to the outer peripheral surface of the shaft.
  • the light irradiation system of the 17th embodiment as described above can also achieve the same effect as that of the 1st and 16th embodiments described above.
  • a reinforcing layer made of a braided body or a coil body may be embedded in the shaft 110 of the catheter 1 and the shaft 210 of the light irradiation device 2 in addition to the thermocouple.
  • the torque transmission property and the shape retention property of the catheter 1 and the light irradiation device 2 can be improved.
  • the outer surface of the catheter 1 and the outer surface of the light irradiation device 2 may be coated with a hydrophilic or hydrophobic resin. In this way, the slipperiness of the catheter 1 in the living lumen can be improved. In addition, the slipperiness of the light irradiation device 2 in the lumen 110L of the catheter 1 can be improved.
  • an antithrombotic material such as heparin may be coated on the outer surface of the catheter 1 or the outer surface of the light irradiation device 2. In this way, it is possible to suppress a decrease in laser output due to thrombus adhesion to the inner and outer surfaces of the catheter 1 and the outer surface of the light irradiation device 2 due to irradiation with emitted light (laser light) LT.
  • the catheter 1 may be provided with an expansion portion that can be expanded in the radial direction (YZ direction).
  • the expansion portion for example, a balloon made of a flexible thin film or a mesh body having a mesh of strands can be used.
  • the extension portion may be provided on at least one of the tip end side of the light transmitting portion 139 and the proximal end side of the light transmitting portion 139 in the shaft 110.
  • the thermocouple 180 is preferably provided between the tip end and the proximal end of the light transmitting portion 139 from the viewpoint of reducing the diameter of the catheter 1. In this way, the catheter 1 can be fixed in the living lumen by expanding the dilated portion after positioning the catheter 1 in the living lumen. Further, if a balloon is used as the expansion portion, the blood flow at the light irradiation site can be blocked, so that the blockage of light due to the blood flow can be suppressed.
  • the catheter 1 may be configured as a multi-lumen catheter having a plurality of lumens different from the lumen 110L.
  • the light irradiation device 2 may be configured as a multi-lumen catheter having a separate lumen different from the lumen 210 L through which the optical fiber 250 is inserted.
  • the shaft 210 may be made of a hollow, substantially cylindrical member, and the tip tip 220 may be provided with a through hole extending along the axis O direction.
  • the first wire 181 and the second wire 182 of the thermocouple 180 may be inserted into one lumen.
  • the second thermocouple 280 when the light irradiation device 2 is a multi-lumen catheter.
  • the inner surface of the tip tip 120 of the catheter 1 and the outer surface of the tip tip 220 of the light irradiation device 2 may be formed of a magnetic material so as to attract each other.
  • the light irradiation device 2 can be inserted into the catheter 1 and the state in which the tip tip 220 is pressed against the tip tip 120 can be easily maintained.
  • the tip 120 of the tip of the catheter 1 may be omitted, and a configuration in which the tip of the shaft 110 is open may be adopted.
  • thermocouples 180, 180B to 180F, 180H, 180O of the catheter 1 and the second thermocouples 280, 280J to 280L, 280N, 280P of the light irradiation device 2 is shown. ..
  • the configurations of the thermocouple 180 of the catheter 1 and the second thermocouple 280 of the light irradiation device 2 can be changed in various ways.
  • a part of at least one of the first wire 181 and the second wire 182 of the thermocouple 180 may be a braided body.
  • the proximal ends of the first wire 181 and the second wire 182 may be connected to the cooling device 6 instead of the temperature measuring device 5.
  • the proximal ends of the first wire 181 and the second wire 182 may be connected to the cooling device 6 and further to the temperature measuring device 5. .. These points are the same for the second thermocouple 280 of the light irradiation device 2.
  • the proximal ends of the first wire 191 and the second wire 192 may not be connected to the cooling device 6 and may be exposed to the outside. Even in this way, by forming the first wire 191 and the second wire 192 with a material having a high thermal conductivity such as copper or aluminum, the biological tissue containing the body fluid can be cooled.
  • the catheter 1 may include a plurality of thermocouples 180 connected to the temperature measuring device 5, or may include a plurality of thermocouples 190 connected to the cooling device 6. These points are the same for the second thermocouple 280 of the light irradiation device 2.
  • junction 183 of the thermocouple 180 of the catheter 1 may be embedded inside the light transmitting portion 139 or inside the shaft 110. This point also applies to the thermocouple 190 of the catheter 1, the second thermocouple 280 and the second thermocouple 290 of the light irradiation device 2.
  • the configurations of the light transmitting unit 139 and the light irradiating unit 239 can be changed in various ways.
  • the light transmitting portion 139 and the first marker portions 131 and 132 may be integrally formed by forming the light transmitting portion 139 with a material having radiation opacity.
  • the light irradiation unit 239 and the second marker units 231,232 may be integrally formed by forming the light irradiation unit 239 with a material having radiation opacity.
  • the light transmitting portion 139 may be formed by thinning a part of the shaft 110.
  • at least one of the light transmitting portion 139 and the light irradiating portion 239 may be formed as a notch (a through hole communicating inside and outside the shaft) formed in the shaft 110 or the shaft 210. In this way, the light transmitting portion 139 and the light irradiating portion 239 can be easily formed.
  • the catheter 1 may further be provided with a separate marker portion arranged at an arbitrary position, such as the distal end side of the light transmitting portion 139 or the proximal end side of the light transmitting portion 139.
  • the light irradiation device 2 may further include a separate marker unit arranged at an arbitrary position such as the tip end side of the light irradiation unit 239 or the base end side of the light irradiation unit 239.
  • the shape of the marker portion of the catheter 1 and the light irradiation device 2 can be arbitrarily determined, and may be a shape extending in the entire or a part of the circumferential direction (YZ direction) or a shape extending in the axis O direction (X-axis direction). , It may be a shape that surrounds the circumference of the shaft.
  • the tip 120 of the catheter 1 and the tip 220 of the light irradiation device 2 may be configured as a marker portion.
  • Modification example 4 The configurations of the catheters 1, 1A to 1I, 1O of the first to 17th embodiments, the light irradiation devices 2, 2A, 2I to 2N, 2P, and the catheters 1, 1A to 1I, 1O of the above modified examples 1 to 3,
  • the configurations of the light irradiation devices 2, 2A, 2I to 2N, and 2P may be appropriately combined.
  • 2A, 2I to 2N, 2P may be combined to form a light irradiation system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)

Abstract

カテーテルは、中空シャフトと、中空シャフトの先端側に設けられて内部の光を外部に透過させる光透過部と、中空シャフトの長手方向に沿って延びる第1ワイヤ及び第2ワイヤと、第1ワイヤと第2ワイヤとが接合された接合部と、を含む熱電対と、を備える。

Description

カテーテル、及び、光照射デバイス
 本発明は、カテーテル、及び、光照射デバイスに関する。
 がん治療においては、外科的、放射線的、薬物的(化学的)手法が単独で、あるいは併用されて用いられ、それぞれの技術が近年発展を遂げている。しかしながら、未だ満足のいく治療技術が見出されていないがんも多く存在し、さらなる治療技術の発展が期待されている。がん治療技術の1つとして、PDT(Photodynamic Therapy:光線力学的療法)と呼ばれる手法が知られている。PDTでは、光感受性物質を静脈投与後、光照射をすることで、がん細胞で活性酸素を発生させ、がん細胞を死滅させる(例えば、非特許文献1参照)。しかしながら、PDTは、光感受性物質のがん細胞への集積選択性が低く、正常細胞に取り込まれることによる副作用の大きさが課題となり、治療技術として広く普及していない。
 そこで近年注目されている治療技術として、NIR-PIT(Near-infrared photoimmunotherapy:近赤外光線免疫療法)がある。NIR-PITでは、がん細胞の特異的な抗原に対する抗体と、光感受性物質(例えば、IRDye700DX)との2化合物を結合させた複合体を用いる。この複合体は、静脈投与されると、体内のがん細胞に選択的に集積する。その後、複合体中の光感受性物質の励起波長(例えば、690nm)の光を照射することで、複合体が活性化し、抗がん作用を示す(例えば、特許文献1参照)。NIR-PITでは、抗体によるがんへの集積選択性と、局部光照射によって、PDTと比較して副作用を減らすことができる。また、NIR-PITでは、例えば690nmという近赤外線領域での光照射(NIR照射)を行うため、NIR照射による免疫系への作用も期待できる(例えば、非特許文献2参照)。
 上記において例示した690nmを含む所定の波長領域は、生体の分光学的窓とも呼ばれ、他の波長領域と比べて生体成分による光の吸収が少ない波長領域であるものの、体表からの光照射では光の浸透性が不足するため、体内深部のがんに適用できないという課題があった。そこで近年、体表からの光照射ではなく、よりがん細胞に近い位置で光照射を行うNIR-PITの研究がされている(例えば、非特許文献3参照)。例えば、特許文献2~特許文献7には、このようなPDTやNIR-PITにおいて使用可能なデバイスが開示されている。特許文献2~特許文献7に記載のデバイスは、いずれも、血管等の生体管腔内に挿入して使用され、体内深部において光を照射することができる。
特表2014-523907号公報 特開2018-867号公報 特表2007-528752号公報 特開2008-526319号公報 特開2001-046529号公報 特開平10-244007号公報 特開平07-095987号公報
Makoto Mitsunaga, Mikako Ogawa, Nobuyuki Kosaka Lauren T. Rosenblum, Peter L. Choyke, and Hisataka Kobayashi、Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules、Nature Medicine 2012 17(12): 、p.1685-1691 Kazuhide Sato, Noriko Sato, Biying Xu, Yuko Nakamura, Tadanobu Nagaya, Peter L. Choyke, Yoshinori Hasegawa, and Hisataka Kobayashi、Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy、Science Translational Medicine 2016 Vol.8 Issue352、ra110 Shuhei Okuyama, Tadanobu Nagaya, Kazuhide Sato, Fusa Ogata, Yasuhiro Maruoka, Peter L. Choyke, and Hisataka Kobayashi、Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers、Oncotarget 2018 Feb 16; 9(13): 、p.11159-11169
 ここで、PDTやNIR-PITにおいては、上述の通り、複合体を集積させたがん細胞に対して、複合体中の光感受性物質の励起波長の光を照射させることで、がん細胞を死滅させる。一方で、体液を含む生体組織への過度な光照射は、生体組織温度の過剰な上昇に繋がり、ひいては体液(例えば、血液)の凝固や正常な細胞の損傷に繋がるため、避けることが好ましい。この点、特許文献2~特許文献6に記載のデバイスは、生体組織の温度を測定することについて何ら考慮されていない。また、特許文献7に記載のデバイスは、生体組織の温度を測定する熱電対を備えるものの、熱電対がバルーンの内側に配置されているため、デバイスの大型化を招き、血管内に挿入するデバイスとしては好ましくないという課題があった。
 なお、このような課題は、PDTやNIR-PITに限らず、体内において光を照射するプロセスを含む検査又は治療において使用されるデバイス全般に共通する。また、このような課題は、血管に挿入されるデバイスに限らず、血管系、リンパ腺系、胆道系、尿路系、気道系、消化器官系、分泌腺及び生殖器官といった、生体管腔内に挿入されるデバイス全般に共通する。
 本発明は、上述した課題の少なくとも一部を解決するためになされたものであり、生体管腔内で光を照射するデバイスにおいて、デバイスの細径化を図ると共に、体液を含む生体組織の温度測定を可能とすることを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、カテーテルが提供される。このカテーテルは、中空シャフトと、前記中空シャフトの先端側に設けられ、内部の光を外部に透過させる光透過部と、前記中空シャフトの長手方向に沿って延びる第1ワイヤ及び第2ワイヤと、前記第1ワイヤと前記第2ワイヤとが接合された接合部と、を含む熱電対と、を備える。
 この構成によれば、カテーテルは、熱電対を備えるため、内部の光を外部に透過させることで、生体管腔内で光を照射することが可能なカテーテルにおいて、体液を含む生体組織の温度を測定することができる。また、熱電対は、第1ワイヤ及び第2ワイヤと、第1ワイヤと第2ワイヤとが接合された接合部と、を含むため、例えば熱電対がバルーンの内側に配置されている構成と比較して、カテーテルを細径化できる。
(2)上記形態のカテーテルにおいて、前記熱電対の前記接合部のうちの少なくとも一部分は、前記中空シャフトの外周面から露出していてもよい。
 この構成によれば、接合部のうちの少なくとも一部分は、中空シャフトの外周面から露出しているため、生体組織の温度測定の精度を向上できる。
(3)上記形態のカテーテルにおいて、前記熱電対の前記接合部の全体は、前記中空シャフトの肉厚部に埋設されていてもよい。
 この構成によれば、接合部の全体は、中空シャフトの肉厚部に埋設されているため、中空シャフトの表面を平滑に構成することができ、安全性を向上できる。
(4)上記形態のカテーテルにおいて、前記熱電対の前記接合部は、前記長手方向において前記光透過部の先端と基端との間に位置していてもよい。
 この構成によれば、熱電対の接合部は、光透過部の先端と基端との間に位置しているため、光照射部位(すなわち、内部の光を外部に透過させることで生体組織に対して光を照射する光透過部)における生体組織の温度を測定できる。
(5)上記形態のカテーテルにおいて、前記熱電対の前記接合部は、前記長手方向において前記光透過部よりも先端側又は基端側に位置していてもよい。
 この構成によれば、熱電対の接合部は、光透過部よりも先端側又は基端側に位置しているため、光照射部位の近傍における生体組織の温度を測定できると共に、デバイス設計の自由度を向上できる。
(6)上記形態のカテーテルにおいて、前記第1ワイヤと前記第2ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有していてもよい。
 この構成によれば、熱電対の第1ワイヤと第2ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有しているため、中空シャフトの耐圧性を向上させることができると共に、内圧による中空シャフトの破損や変形を抑制できる。
(7)上記形態のカテーテルにおいて、前記第1ワイヤ及び前記第2ワイヤは、一部分がそれぞれ前記中空シャフトに埋設されており、残余の部分が前記中空シャフトから露出していてもよい。
 この構成によれば、熱電対の第1ワイヤ及び第2ワイヤは、中空シャフトから露出した露出部分を有しているため、この露出部分を介して、体液を含む生体組織から吸収した熱を外部へ放出することができる。この結果、生体組織の過度な温度上昇を抑制できる。
(8)上記形態のカテーテルにおいて、複数の前記熱電対を備え、一の前記熱電対は、前記第1ワイヤと前記第2ワイヤの基端部が冷却装置に接続され、他の前記熱電対は、前記第1ワイヤと前記第2ワイヤの基端部が温度測定装置に接続されていてもよい。
 この構成によれば、カテーテルは複数の熱電対を備えているため、一の熱電対と他の熱電対とを異なる用途に用いることができる。具体的には、一の熱電対は、冷却装置に接続されているため、体液を含む生体組織を冷却することができ、生体組織の過度な温度上昇を抑制できる。また、他の熱電対は、温度測定装置に接続されているため、生体組織の温度を測定することができる。すなわち、本構成によれば、生体組織の温度を測定(監視)しつつ、必要に応じて生体組織の冷却をすることができるため、温度測定の効率と効果とを向上できる。
(9)本発明の一形態によれば、光照射デバイスが提供される。この光照射デバイスは、シャフトと、前記シャフトの先端側に設けられ、光を外部に照射する光照射部と、前記シャフトの長手方向に沿って延びる第3ワイヤ及び第4ワイヤと、前記第3ワイヤと前記第4ワイヤとが接合された第2接合部と、を含む第2熱電対と、を備え、前記第2熱電対の前記第2接合部は、前記シャフトの外周面から露出している。
 この構成によれば、光照射デバイスは、第2熱電対を備えるため、生体管腔内で光を照射することが可能な光照射デバイスにおいて、体液を含む生体組織の温度を測定することができる。また、第2熱電対は、第3ワイヤ及び第4ワイヤと、第3ワイヤと第4ワイヤとが接合された第2接合部と、を含むため、例えば熱電対がバルーンの内側に配置されている構成と比較して、光照射デバイスを細径化できる。
(10)上記形態の光照射デバイスにおいて、前記第2熱電対の前記第2接合部のうちの少なくとも一部分は、前記シャフトの外周面から露出していてもよい。
 この構成によれば、第2接合部のうちの少なくとも一部分は、シャフトの外周面から露出しているため、生体組織の温度測定の精度を向上できる。
(11)上記形態の光照射デバイスにおいて、前記第2熱電対の前記第2接合部の全体は、前記シャフトの肉厚部に埋設されていてもよい。
 この構成によれば、第2接合部の全体は、シャフトの肉厚部に埋設されているため、シャフトの表面を平滑に構成することができ、安全性を向上できる。
(12)上記形態の光照射デバイスにおいて、前記第2熱電対の前記第2接合部は、前記長手方向において前記光照射部の先端と基端との間に位置していてもよい。
 この構成によれば、第2熱電対の第2接合部は、光照射部の先端と基端との間に位置しているため、光照射部位における生体組織の温度を測定できる。
(13)上記形態の光照射デバイスにおいて、前記第2熱電対の前記第2接合部は、前記長手方向において前記光照射部よりも先端側又は基端側に位置していてもよい。
 この構成によれば、第2熱電対の第2接合部は、光照射部よりも先端側又は基端側に位置しているため、光照射部位の近傍における生体組織の温度を測定できると共に、デバイス設計の自由度を向上できる。
(14)上記形態の光照射デバイスにおいて、前記第3ワイヤと前記第4ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有していてもよい。
 この構成によれば、第2熱電対の第3ワイヤと第4ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有しているため、シャフトの耐圧性を向上させることができると共に、内圧によるシャフトの破損や変形を抑制できる。
(15)上記形態の光照射デバイスにおいて、前記第3ワイヤ及び前記第4ワイヤは、一部分がそれぞれ前記シャフトに埋設されており、残余の部分が前記シャフトから露出していてもよい。
 この構成によれば、第2熱電対の第3ワイヤ及び第4ワイヤは、シャフトから露出した露出部分を有しているため、この露出部分を介して、体液を含む生体組織から吸収した熱を外部へ放出することができる。この結果、生体組織の過度な温度上昇を抑制できる。
(16)上記形態の光照射デバイスにおいて、複数の前記第2熱電対を備え、一の前記第2熱電対は、前記第3ワイヤと前記第4ワイヤの基端部が冷却装置に接続され、他の前記第2熱電対は、前記第3ワイヤと前記第4ワイヤの基端部が温度測定装置に接続されていてもよい。
 この構成によれば、光照射デバイスは複数の第2熱電対を備えているため、一の第2熱電対と他の第2熱電対とを異なる用途に用いることができる。具体的には、一の第2熱電対は、冷却装置に接続されているため、体液を含む生体組織を冷却することができ、生体組織の過度な温度上昇を抑制できる。また、他の第2熱電対は、温度測定装置に接続されているため、生体組織の温度を測定することができる。すなわち、本構成によれば、生体組織の温度を測定(監視)しつつ、必要に応じて生体組織の冷却をすることができるため、温度測定の効率と効果とを向上できる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、カテーテル、光照射デバイス、これらが別体又は一体とされた光照射システム、カテーテル、光照射デバイス、及び光照射システムの製造方法などの形態で実現することができる。
第1実施形態の光照射システムの構成を例示した説明図である。 図1のA-A線における断面構成を例示した説明図である。 図1のB-B線における断面構成を例示した説明図である。 図1のC-C線における断面構成を例示した説明図である。 光照射システムの使用状態を例示した説明図である。 第2実施形態の光照射システムの構成を例示した説明図である。 光透過部と光照射部との組み合わせを例示した説明図である。 第3実施形態のカテーテルの構成を例示した説明図である。 第4実施形態のカテーテルの構成を例示した説明図である。 第5実施形態のカテーテルの構成を例示した説明図である。 第6実施形態のカテーテルの構成を例示した説明図である。 第7実施形態のカテーテルの構成を例示した説明図である。 第8実施形態のカテーテルの構成を例示した説明図である。 第9実施形態のカテーテルの構成を例示した説明図である。 第10実施形態の光照射システムの構成を例示した説明図である。 図15のD-D線における断面構成を例示した説明図である。 第11実施形態の光照射デバイスの構成を例示した説明図である。 第12実施形態の光照射デバイスの構成を例示した説明図である。 第13実施形態の光照射デバイスの構成を例示した説明図である。 第14実施形態の光照射デバイスの構成を例示した説明図である。 第15実施形態の光照射デバイスの構成を例示した説明図である。 第16実施形態のカテーテルの構成を例示した説明図である。 第17実施形態の光照射デバイスの構成を例示した説明図である。
<第1実施形態>
 図1は、第1実施形態の光照射システムの構成を例示した説明図である。光照射システムは、血管系、リンパ腺系、胆道系、尿路系、気道系、消化器官系、分泌腺及び生殖器官といった、生体管腔内に挿入して使用され、生体管腔内から生体組織に向けて光を照射するシステムである。光照射システムは、例えば、PDT(Photodynamic Therapy:光線力学的療法)や、NIR-PIT(Near-infrared photoimmunotherapy:近赤外光線免疫療法)において使用可能である。以下の実施形態では、光の例としてレーザ光を例示するが、レーザ光に限らず、例えばLED光、白色光を用いて光照射システムを構成してもよい。光照射システムは、カテーテル1と、カテーテル1に挿入して使用される光照射デバイス2とを備えている。図1では、カテーテル1と、光照射デバイス2とを個別に図示している。
 図1では、カテーテル1の中心を通る軸と、光照射デバイス2の中心を通る軸とを、それぞれ軸線O(一点鎖線)で表す。以降、光照射デバイス2をカテーテル1に挿入した状態において、互いの中心を通る軸は軸線Oに一致するものとして説明するが、挿入状態における両者の中心を通る軸は、それぞれ相違していてもよい。また、図1には、相互に直交するXYZ軸が図示されている。X軸はカテーテル1及び光照射デバイス2の長手方向(軸線O方向)に対応し、Y軸はカテーテル1及び光照射デバイス2の高さ方向に対応し、Z軸はカテーテル1及び光照射デバイス2の幅方向に対応する。図1の左側(-X軸方向)をカテーテル1、光照射デバイス2、及び各構成部材の「先端側」と呼び、図1の右側(+X軸方向)をカテーテル1、光照射デバイス2、及び各構成部材の「基端側」と呼ぶ。また、カテーテル1、光照射デバイス2、及び各構成部材について、先端側に位置する端部を「先端」と呼び、先端及びその近傍を「先端部」と呼ぶ。また、基端側に位置する端部を「基端」と呼び、基端及びその近傍を「基端部」と呼ぶ。先端側は、生体内部へ挿入される「遠位側」に相当し、基端側は、医師等の術者により操作される「近位側」に相当する。これらの点は、図1以降の全体構成を示す図においても共通する。
 カテーテル1は、長尺管形状であり、シャフト110と、先端チップ120と、コネクタ140と、熱電対180とを備えている。シャフト110は、軸線Oに沿って延びる長尺状の部材である。シャフト110は、先端部110dと基端部110pとの両端部が開口した中空の略円筒形状(管形状)である。シャフト110は、内部にルーメン110Lを有する。ルーメン110Lは、カテーテル1のデリバリ時には、カテーテル1に対してガイドワイヤを挿通させるためのガイドワイヤルーメンとして機能する。ルーメン110Lは、カテーテル1のデリバリ後においては、カテーテル1に対して光照射デバイス2を挿通させるためのデバイス用ルーメンとして機能する。このように、ガイドワイヤルーメンとデバイス用ルーメンとを単一のルーメンで兼用することにより、カテーテル1を細径化できる。シャフト110の外径、内径及び長さは任意に決定できる。
 先端チップ120は、シャフト110の先端部に接合されて、他の部材よりも先行して生体管腔内を進行する部材である。図1に示すように、先端チップ120は、カテーテル1の生体管腔内での進行をスムーズにするために、基端側から先端側にかけて縮径した外側形状を有している。先端チップ120の略中央部分には、軸線O方向に先端チップ120を貫通する貫通孔120hが形成されている。ここで、貫通孔120hの開口径Φ1は、シャフト110のルーメン110Lの内径Φ2よりも小さい。このため、図1に示すように、シャフト110と先端チップ120との境界では、先端チップ120の内表面120iが突出することによる段差が形成されている。先端チップ120の開口120oは、貫通孔120hに通じており、カテーテル1に対してガイドワイヤ(図示省略)を挿通する際に使用される。先端チップ120の外径及び長さは任意に決定できる。
 コネクタ140は、カテーテル1の基端側に配置され、術者によって把持される部材である。コネクタ140は、略円筒形状の接続部141と、一対の羽根142とを備えている。接続部141の先端部には、シャフト110の基端部110pが接合され、基端部には、羽根142が接合されている。羽根142は、コネクタ140と一体的な構造であってもよい。コネクタ140の開口140oは、コネクタ140の内部を介してルーメン110Lに通じており、カテーテル1に対して光照射デバイス2を挿通する際に使用される。接続部141の外径、内径及び長さと、羽根142の形状とは、任意に決定できる。
 図2は、図1のA-A線における断面構成を例示した説明図である。カテーテル1のシャフト110には、さらに、光透過部139と、第1マーカー部131,132が設けられている。光透過部139は、シャフト110の内部の光を、外部に透過させる。図1及び図2に示すように、光透過部139は、中空の略円筒形状の部材であり、シャフト110の外径と略同一の外径を有し、シャフト110のルーメン110Lの内径Φ2と略同一の内径を有している。換言すれば、光透過部139は、周方向の全体に設けられ、周方向の全体においてシャフト110の内部の光を外部に透過させる。光透過部139は、基端側と先端側とにおいて、それぞれシャフト110に接合されている。光透過部139は、光透過性を有する透明な樹脂材料、例えば、アクリル樹脂、ポリエチレンテレフタレート、ポリ塩化ビニル等により形成できる。なお、光透過部139とシャフト110とを総称して「中空シャフト」とも呼ぶ。光透過部139は、中空シャフトの先端側に設けられている。
 第1マーカー部131,132は、光透過部139の位置を表す目印として機能する。第1マーカー部131は、光透過部139の先端部に近接して設けられており、光透過部139の先端部の位置を表す目印として機能する。第1マーカー部132は、光透過部139の基端部に近接して設けられており、光透過部139の基端部の位置を表す目印として機能する。第1マーカー部131,132は、それぞれ、中空の略円筒形状の部材である。図1の例では、第1マーカー部131,132は、それぞれ、シャフト110の外表面に形成された凹部に配置され、シャフト110の外表面に接合されている。換言すれば、第1マーカー部131,132は、それぞれ、シャフト110の周方向を取り囲むようにして、シャフト110の外表面に埋設されている。なお、第1マーカー部131,132は、凹部のないシャフト110の外表面に接合されることにより、シャフト110の外表面から突出して設けられてもよい。第1マーカー部131,132の少なくとも一方は、省略されてもよい。
 図3は、図1のB-B線における断面構成を例示した説明図である。熱電対180は、第1ワイヤ181と、第2ワイヤ182と、接合部183とを備えている。第1ワイヤ181及び第2ワイヤ182は、それぞれ、中空シャフト(シャフト110及び光透過部139)の長手方向(軸線O方向)に沿って延びる金属導体である。第1ワイヤ181及び第2ワイヤ182の先端は、それぞれ、光透過部139の位置において接合されて接合部183を形成している。具体的には、接合部183は、中空シャフトの長手方向において、光透過部139の略中央部分に配置されている。しかし、接合部183は、中空シャフトの長手方向において、光透過部139の先端と基端との間の任意の位置に配置されてよい。この場合、接合部183が配置される位置は、生体管腔内における体液(例えば、血液)の流れに対して下流側になる位置であることが好ましい。例えば、カテーテル1が体液の流れに沿って移動する場合、接合部183は、光透過部139の略中央から先端までの範囲に設けられることが好ましい。例えば、カテーテル1が体液の流れに逆らって移動する場合、接合部183は、光透過部139の略中央から基端までの範囲に設けられることが好ましい。
 また、図1に示すように、接合部183は、接合部183の全体が、光透過部139の外周面(外表面)から露出した状態で配置されている。なお、接合部183は、接合部183の少なくとも一部分が光透過部139の外周面から露出し、残余の部分が光透過部139の肉厚部に埋設されていてもよい。
 接合部183よりも基端側において、第1ワイヤ181及び第2ワイヤ182は、それぞれ、中空シャフト(シャフト110及び光透過部139)の肉厚部に、互いに離間した状態で埋設されている(図3)。また、第1ワイヤ181及び第2ワイヤ182は、それぞれ、中空シャフトの肉厚部を基端側に向かって延伸し、シャフト110の基端部110pから、コネクタ140の内部を通過して、温度測定装置5に接続されている(図1)。例えば、第1ワイヤ181は温度測定装置5の陽極(+極)に接続され、第2ワイヤ182は温度測定装置5の陰極(-極)に接続されているとするが、陽極/陰極の接続関係は逆でもよい。このような熱電対180によって、接合部183近傍における体液(例えば、血液)を含む生体組織の温度を測定することができる。
 光照射デバイス2は、長尺状であり、シャフト210と、先端チップ220と、コネクタ240とを備えている。シャフト210は、軸線Oに沿って延びる長尺状の部材である。シャフト210は、先端部が閉塞し、基端部が開口した有底筒形状である。シャフト210は、内部にルーメン210Lを有する。ルーメン210Lには、光ファイバー250が挿入され、固定されている。光ファイバー250の基端部には、コネクタ(図示省略)を介して、任意の波長のレーザ光を発生するレーザ光発生装置3に、直接的に接続、あるいは他の光ファイバーを介して間接的に接続されている。光ファイバー250の先端部では、光ファイバーからクラッド及び被覆が除去されて、コアが露出した状態とされている。
 先端チップ220は、シャフト210の先端部に接合されて、他の部材よりも先行してカテーテル1のルーメン110Lを進行する部材である。図1に示すように、先端チップ220は、光照射デバイス2の長手方向に延びる略円柱形状の部材である。ここで、先端チップ220の外径Φ3(図1)は、カテーテル1の貫通孔120hの開口径Φ1よりも大きく、かつ、カテーテル1のシャフト110及び光透過部139の内径Φ2よりも小さいことが好ましい(Φ1<Φ3<Φ2)。
 コネクタ240は、光照射デバイス2の基端側に配置され、術者によって把持される部材である。コネクタ240は、略円筒形状の接続部241と、一対の羽根242とを備えている。接続部241の先端部には、シャフト210の基端部が接合され、基端部には、羽根242が接合されている。羽根242は、コネクタ240と一体的な構造であってもよい。
 図4は、図1のC-C線における断面構成を例示した説明図である。光照射デバイス2のシャフト210には、さらに、光照射部239と、第2マーカー部231,232が設けられている。光照射部239は、光ファイバー250の先端部において露出したコアからの出射光LTを、光照射デバイス2の側面の一方向(図4:白抜き矢印)に、外部へと照射する。図4に示すように、光照射部239は、光ファイバー250のコアの先端を覆い、かつ、シャフト210の側面の一部分に露出して設けられた樹脂体である。光照射部239は、例えば、石英微粉末を分散させたアクリル系紫外線硬化樹脂に塗布し、紫外光で硬化させることにより形成できる。なお、光照射部239は、他の態様により実現されてもよく、例えば、樹脂体に代えて、光反射ミラーにより実現されてもよい。また、光ファイバー250の先端部において露出させたコアに対して、周知の加工(例えば、先端面を斜めにカットする加工、刻み目を形成する加工、サンドブラスト加工、化学的処理)を施すことによって、光ファイバー250の一部分に光照射部239が形成されてもよい。
 レーザ光発生装置3によって発生されたレーザ光LTは、光ファイバーのコアを介して光ファイバー250の基端側から先端側へと伝達され、先端部において露出されたコアから、光照射部239を介して、光照射デバイス2の側面の一方向(図4:白抜き矢印)から外部へと照射される。
 第2マーカー部231,232は、光照射部239の位置を表す目印として機能する。第2マーカー部231は、光照射部239の先端部に近接して設けられており、光照射部239の先端部の位置を表す目印として機能する。第2マーカー部232は、光照射部239の基端部に近接して設けられており、光照射部239の基端部の位置を表す目印として機能する。第2マーカー部231,232は、それぞれ、中空の略円筒形状の部材である。図1の例では、第2マーカー部231,232は、それぞれ、シャフト210の外表面に形成された凹部に配置され、シャフト210の外表面に接合されている。換言すれば、第2マーカー部231,232は、それぞれ、シャフト210の周方向を取り囲むようにして、シャフト210の外表面に埋設されている。なお、第2マーカー部231,232は、凹部のないシャフト210の外表面に接合されることにより、シャフト210の外表面から突出して設けられてもよい。第2マーカー部231,232の少なくとも一方は、省略されてもよい。
 カテーテル1の第1マーカー部131,132と、光照射デバイス2の第2マーカー部231,232とは、放射線不透過性を有する樹脂材料や金属材料により形成できる。例えば、樹脂材料を用いる場合、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂、フッ素樹脂等に対して、三酸化ビスマス、タングステン、硫酸バリウム等の放射線不透過材料を混ぜて形成できる。例えば、金属材料を用いる場合、放射線不透過材料である金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金)等で形成できる。
 カテーテル1のシャフト110と、光照射デバイス2のシャフト210とは、抗血栓性、可撓性、生体適合性を有することが好ましく、樹脂材料や金属材料で形成することができる。樹脂材料としては、例えば、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂、フッ素樹脂等を採用できる。金属材料としては、例えば、SUS304等のステンレス鋼、ニッケルチタン合金、コバルトクロム合金、タングステン鋼等を採用できる。また、シャフト110と、シャフト210とは、上述した材料を複数組み合わせた接合構造体とすることもできる。カテーテル1の先端チップ120と、光照射デバイス2の先端チップ220とは、柔軟性を有することが好ましく、例えば、ポリウレタン、ポリウレタンエラストマー等の樹脂材料により形成できる。カテーテル1のコネクタ140と、光照射デバイス2のコネクタ240とは、ポリアミド、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエーテルサルフォン等の樹脂材料で形成することができる。
 カテーテル1の第1ワイヤ181と、第2ワイヤ182とは、異なる金属導体であり、求める性能(例えば、温度帯域、分解能、熱伝導率、価格、耐久性等)に応じて種々の金属導体を採用することができる。第1ワイヤ181と、第2ワイヤ182とは、例えば、白金ロジウム合金、白金、ニッケルとクロムとシリコンを主とした合金、ニッケルとクロムを主とした合金、銅、銅及びニッケルを主とした合金、アルミニウム等により形成できる。
 図5は、光照射システムの使用状態を例示した説明図である。図5の上段には、カテーテル1に光照射デバイス2を挿入した様子を図示する。図5の下段には、先端側の一部分を拡大した様子を図示する。図1及び図5を参照しつつ、光照射システムの使用方法について説明する。まず、術者は、生体管腔内にガイドワイヤを挿入する。次に、術者は、ガイドワイヤの基端側を、図1に示すカテーテル1の先端チップ120の開口120oから、ルーメン110Lへと挿通し、コネクタ140の開口140oから突出させる。次に、術者は、ガイドワイヤに沿わせてカテーテル1を生体管腔内に押し進め、カテーテル1の光透過部139を、光照射の目的部位(例えば、NIR-PITの場合はがん細胞の付近)までデリバリする。このように、カテーテル1の先端チップ120に形成された貫通孔120hからガイドワイヤを挿通することによって、術者は、カテーテル1を生体管腔内の目的部位まで容易にデリバリできる。なお、デリバリの際、術者は、X線画像において、光透過部139の近傍に配置された第1マーカー部131,132の位置を確認しつつ、生体管腔内におけるカテーテル1の位置決めをすることができる。その後、術者は、カテーテル1からガイドワイヤを抜去する。
 次に、術者は、図5に示すように、カテーテル1のコネクタ140の開口140oから、光照射デバイス2を挿入する。術者は、カテーテル1のルーメン110Lに沿わせて、光照射デバイス2をカテーテル1の先端側へと押し進める。ここで、上述の通り、光照射デバイス2の外径Φ3を、カテーテル1のルーメン110Lの径Φ2よりも小さく、先端チップ120の貫通孔120hの径Φ1よりも大きくしておけば、カテーテル1に光照射デバイス2を挿入した際に、光照射デバイス2の先端面220eが、先端チップ120の内表面120iに突き当たることによって、光照射デバイス2の先端側への抜けを抑制できる(図5下段:破線丸枠)。
 その後、術者は、X線画像において、第1マーカー部131,132と、第2マーカー部231,232との位置関係を確認することで、光透過部139と、光照射部239との軸線O方向(X軸方向)における位置を合わせる。これにより、光ファイバー250を介して伝達され、光照射部239から射出されたレーザ光LTを、カテーテル1の光透過部139を透過させて、外部の生体組織へと射出することができる。なお、本実施形態のカテーテル1では、光透過部139が、周方向の全体に設けられている(図2)。このため、本実施形態の光照射システムでは、術者は、軸線O方向(X軸方向)における光透過部139と光照射部239との位置合わせをするのみでよく、周方向における光透過部139と光照射部239との位置合わせは不要である。
 ここで、術者は、熱電対180に接続された温度測定装置5を監視することで、光透過部139近傍の体液(例えば、血液)及び生体組織の温度を監視しつつ、光照射部239による光照射を実施する。これにより、体液及び生体組織への過度な光照射を抑制することができるため、生体組織温度の過剰な上昇に起因した、体液の凝固や正常な細胞の損傷を抑制することができる。なお、熱電対180の基端部は、温度測定装置5に代えて、レーザ光発生装置3に接続されていてもよい。この場合、レーザ光発生装置3は、熱電対180により測定された体液及び生体組織の温度が、所定の閾値を超過した場合に、レーザ光LTの出力を低下させ、又はレーザ光LTの照射を停止させる。レーザ光発生装置3は、レーザ光LTの出力の制御に代えて、術者に対する警告を発してもよい。なお、所定の閾値は予め任意の値が定められて、レーザ光発生装置3の内部に記憶されている。このようにすれば、術者の手間を削減しつつ、体液の凝固や正常な細胞の損傷を抑制することができる。
 以上説明した通り、第1実施形態の光照射システムによれば、カテーテル1は、熱電対180を備えるため、中空シャフト内部の光を外部に透過させることで、生体管腔内の特定の位置(例えば、NIR-PITの場合は、血管内のがん細胞の付近)に対して光を照射することが可能なカテーテル1において、体液(例えば、血液)を含む生体組織の温度を測定することができる。また、熱電対180は、第1ワイヤ181及び第2ワイヤ182と、第1ワイヤ181と第2ワイヤ182とが接合された接合部183と、を含む。このため、例えば熱電対180がバルーンの内側に配置されている構成と比較して、カテーテル1を細径化できる。さらに、接合部183のうちの少なくとも一部分は、中空シャフト(光透過部139)の外周面から露出しているため、生体組織の温度測定の精度を向上できる。
 また、第1実施形態のカテーテル1によれば、熱電対180の接合部183は、長手方向(軸線O方向)において、光透過部139の先端と基端との間に位置している。このため、温度上昇しやすい光照射部位(すなわち、内部の光を外部に透過させることで、生体組織に対して光を照射する光透過部139)における生体組織の温度を測定できる。
<第2実施形態>
 図6は、第2実施形態の光照射システムの構成を例示した説明図である。第2実施形態の光照射システムは、第1実施形態とは異なる構成のカテーテル1Aと、光照射デバイス2Aとを備えている。
 カテーテル1Aは、光透過部139に代えて光透過部139Aを備えている。光透過部139Aは、円弧形状の板状部材であり、シャフト110の一部分に嵌め込まれて、シャフト110に接合されている。このため、第2実施形態の光透過部139Aは、周方向の一部分に設けられ、周方向の一部分においてシャフト110の内部の光を外部に透過させる。なお、光透過部139Aは、光透過部139と同様の材料により形成できる。カテーテル1Aにおいても、熱電対180の接合部183は、光透過部139Aの先端と基端との間の位置において、光透過部139Aの外周面(外表面)から露出した状態で設けられている。
 光照射デバイス2Aは、光照射部239に代えて光照射部239Aを備えている。光照射部239Aは、シャフト210の外径と略同一の径を有する中実の略円柱状の部材である。光照射部239Aは、基端側と先端側とにおいて、それぞれシャフト210に接合されている。また、光照射部239Aの基端側の面は、光ファイバー250の露出したコアの先端を覆っている。このため、光照射デバイス2Aでは、レーザ光発生装置3によって発生されたレーザ光LTは、光照射部239Aを介して、光照射デバイス2Aの周方向の全体から外部へと照射される。
 第2実施形態の光照射システムの使用方法は、第1実施形態と同様である。第2実施形態の光照射システムでは、図6に示すように、カテーテル1Aの光透過部139Aが、周方向の一部分に設けられている一方、光照射デバイス2Aの光照射部239Aが周方向の全体に設けられている。このような第2実施形態の光照射システムにおいても、第1実施形態と同様に、術者は、熱電対180に接続された温度測定装置5を監視することで、光透過部139A近傍の体液(例えば、血液)及び生体組織の温度を監視しつつ、光照射部239Aによる光照射を実施する。これにより、体液及び生体組織への過度な光照射を抑制することができるため、生体組織温度の過剰な上昇に起因した、体液の凝固や正常な細胞の損傷を抑制することができる。
 図7は、光透過部139と光照射部239との組み合わせを例示した説明図である。図7に示すように、第1実施形態で説明した光透過部139及び第2実施形態で説明した光透過部139Aと、第1実施形態で説明した光照射部239及び第2実施形態で説明した光照射部239Aとの組み合わせは任意に変更できる。すなわち、項番1に示すように、全周へと光を透過する光透過部139(図1)と、周方向の一部へと光を照射する光照射部239(図1)とを組み合わせた光照射システムを構成してもよい。また、項番2に示すように、周方向の一部へと光を透過する光透過部139A(図6)と、全周へと光を照射する光照射部239A(図6)とを組み合わせた光照射システムを構成してもよい。さらに、項番3に示すように、全周へと光を透過する光透過部139(図1)と、全周へと光を照射する光照射部239A(図6)とを組み合わせた光照射システムを構成してもよい。さらに、項番4に示すように、周方向の一部へと光を透過する光透過部139A(図6)と、周方向の一部へと光を照射する光照射部239(図1)とを組み合わせた光照射システムを構成してもよい。以上のような第2実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。
<第3実施形態>
 図8は、第3実施形態のカテーテル1Bの構成を例示した説明図である。第3実施形態の光照射システムは、図8に示すカテーテル1Bと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Bは、熱電対180に代えて熱電対180Bを備えている。熱電対180Bは、第1ワイヤ181に代えて第1ワイヤ181Bを備え、第2ワイヤ182に代えて第2ワイヤ182Bを備えている。
 第1ワイヤ181B及び第2ワイヤ182Bの先端は、それぞれ、光透過部139の位置において接合されて、接合部183を形成している。接合部183の構成は、第1実施形態と同様である。接合部183よりも基端側において、第1ワイヤ181B及び第2ワイヤ182Bは、それぞれ、中空シャフト(シャフト110及び光透過部139)の外周面に、互いに離間した状態で固定されている(図8)。固定は任意の方法で実施でき、エポキシ系接着剤などの任意の接合剤を用いて接合されていてもよく、樹脂等により形成された固定部材を用いて保持されていてもよい。また、第1ワイヤ181B及び第2ワイヤ182Bは、それぞれ、中空シャフトの外周面を基端側に向かって延伸し、シャフト110の基端部110pから、コネクタ140の外周面を通過して、温度測定装置5に接続されている(図8)。
 このように、カテーテル1Bの熱電対180Bの構成は種々の変更が可能であり、第1ワイヤ181Bと、第2ワイヤ182Bとの一方又は両方が、中空シャフト(シャフト110及び光透過部139)の肉厚部に埋設されていなくてもよい。以上のような第3実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。
<第4実施形態>
 図9は、第4実施形態のカテーテル1Cの構成を例示した説明図である。第4実施形態の光照射システムは、図9に示すカテーテル1Cと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Cは、熱電対180に代えて熱電対180Cを備えている。熱電対180Cは、第1ワイヤ181に代えて第1ワイヤ181Cを備え、第2ワイヤ182に代えて第2ワイヤ182Cを備えている。
 第1ワイヤ181Cと、第2ワイヤ182Cとは、いずれも先端側の一部分が螺旋形状(コイル形状)とされている。ここで、図9下段に示すように、第1ワイヤ181Cと第2ワイヤ182Cとは、螺旋の巻き方向が異なっており、一方がS巻き、他方がZ巻きとされている。また、図9上段に示すように、第1ワイヤ181C及び第2ワイヤ182Cは、それぞれ、中空シャフト(シャフト110及び光透過部139)の肉厚部に、互いに離間した状態で埋設されている。第1ワイヤ181C及び第2ワイヤ182Cの先端は、互いに接合されて接合部183を形成し、基端は温度測定装置5に接続されている。詳細は第1実施形態と同様である。
 このように、カテーテル1Cの熱電対180Cの構成は種々の変更が可能であり、第1ワイヤ181Cと、第2ワイヤ182Cとの一方又は両方について、少なくとも一部分が螺旋形状であってもよい。螺旋形状の部分は、図9のように、第1ワイヤ181C及び第2ワイヤ182Cの先端側の一部分であってもよく、第1ワイヤ181C及び第2ワイヤ182Cの長手方向(軸線O方向)の全体であってもよい。また、第1ワイヤ181Cと第2ワイヤ182Cとについて、一方が螺旋形状であり、他方が直線形状(図1)であってもよい。
 以上のような第4実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。また、第4実施形態のカテーテル1Cでは、熱電対180Cの第1ワイヤ181Cと第2ワイヤ182Cの少なくとも一方は、少なくとも先端側において螺旋形状を有している。このため、中空シャフト(シャフト110及び光透過部139)の耐圧性を向上させることができると共に、内圧による中空シャフトの破損や変形を抑制できる。さらに、第1ワイヤ181Cと第2ワイヤ182Cとは、螺旋の巻き方向が異なっているため、通電時に互いの磁気を打ち消すことができると共に、中空シャフトの耐圧性をより向上できる。
<第5実施形態>
 図10は、第5実施形態のカテーテル1Dの構成を例示した説明図である。第5実施形態の光照射システムは、図10に示すカテーテル1Dと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Dは、第4実施形態で説明した熱電対180Cに代えて熱電対180Dを備えている。熱電対180Dは、第1ワイヤ181Cに代えて第1ワイヤ181Dを備え、第2ワイヤ182Cに代えて第2ワイヤ182Dを備えている。
 第1ワイヤ181D及び第2ワイヤ182Dは、第4実施形態と同様に、先端側の一部分が螺旋形状とされている。一方、第1ワイヤ181D及び第2ワイヤ182Dは、それぞれ、中空シャフト(シャフト110及び光透過部139)の外周面に、互いに離間した状態で固定されている(図10)。固定は任意の方法で実施できる。第1ワイヤ181D及び第2ワイヤ182Dの先端は、互いに接合されて接合部183を形成し、基端は温度測定装置5に接続されている。詳細は第1実施形態と同様である。このように、カテーテル1Dの熱電対180Dの構成は種々の変更が可能であり、第1ワイヤ181Dと、第2ワイヤ182Dとの一方又は両方が、中空シャフトの肉厚部に埋設されていなくてもよい。以上のような第5実施形態の光照射システムによっても、上述した第1、第4実施形態と同様の効果を奏することができる。
<第6実施形態>
 図11は、第6実施形態のカテーテル1Eの構成を例示した説明図である。第6実施形態の光照射システムは、図11に示すカテーテル1Eと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Eは、熱電対180に代えて熱電対180Eを備えている。熱電対180Eは、第1ワイヤ181に代えて第1ワイヤ181Eを、第2ワイヤ182に代えて第2ワイヤ182Eを、接合部183に代えて接合部183Eを、それぞれ備えている。
 第1ワイヤ181E及び第2ワイヤ182Eの先端は、それぞれ中空シャフト(シャフト110及び光透過部139)の長手方向(軸線O方向)において、光透過部139よりも基端側の位置で接合されて、接合部183Eを形成している。すなわち接合部183Eは、光透過部139よりも基端側に位置している。また、接合部183Eは、シャフト110の外周面から露出した状態で配置されている。第1ワイヤ181E及び第2ワイヤ182Eについて、接合部183Eよりも基端側の部分は、中空シャフトの肉厚部に互いに離間した状態で埋設され、基端は温度測定装置5に接続されている。詳細は第1実施形態と同様である。
 このように、カテーテル1Eの熱電対180Eの構成は種々の変更が可能であり、接合部183Eの長手方向における位置は、光透過部139よりも基端側であってもよい。以上のような第6実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。また、第6実施形態のカテーテル1Eでは、熱電対180Eの接合部183Eは、光透過部139よりも基端側に位置しているため、光照射部位の近傍における生体組織の温度を測定できると共に、デバイス設計の自由度を向上できる。
<第7実施形態>
 図12は、第7実施形態のカテーテル1Fの構成を例示した説明図である。第7実施形態の光照射システムは、図12に示すカテーテル1Fと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Fは、熱電対180に代えて熱電対180Fを備えている。熱電対180Fは、第1ワイヤ181に代えて第1ワイヤ181Fを、第2ワイヤ182に代えて第2ワイヤ182Fを、接合部183に代えて接合部183Fを、それぞれ備えている。
 第1ワイヤ181F及び第2ワイヤ182Fの先端は、それぞれ中空シャフト(シャフト110及び光透過部139)の長手方向(軸線O方向)において、光透過部139よりも先端側の位置で接合されて、接合部183Fを形成している。すなわち接合部183Fは、光透過部139よりも先端側に位置している。また、接合部183Fは、シャフト110の外周面から露出した状態で配置されている。第1ワイヤ181F及び第2ワイヤ182Fについて、接合部183Fよりも基端側の部分は、中空シャフトの肉厚部に互いに離間した状態で埋設され、基端は温度測定装置5に接続されている。詳細は第1実施形態と同様である。このように、カテーテル1Fの熱電対180Fの構成は種々の変更が可能であり、接合部183Fの長手方向における位置は、光透過部139よりも先端側であってもよい。以上のような第7実施形態の光照射システムによっても、上述した第1、第6実施形態と同様の効果を奏することができる。
<第8実施形態>
 図13は、第8実施形態のカテーテル1Gの構成を例示した説明図である。第8実施形態の光照射システムは、図13に示すカテーテル1Gと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Gは、第1実施形態で説明した熱電対180に加えてさらに、熱電対190を備えている。熱電対190は、第1ワイヤ191と、第2ワイヤ192と、接合部193とを備えている。
 第1ワイヤ191及び第2ワイヤ192は、それぞれ、中空シャフト(シャフト110及び光透過部139)の長手方向(軸線O方向)に沿って延びる金属導体である。第1ワイヤ191及び第2ワイヤ192は、第1及び第2ワイヤ181,182と同様の材料により形成できる。第1ワイヤ191及び第2ワイヤ192と、第1及び第2ワイヤ181,182とは、同一の材料により形成されてもよく、異なる材料により形成されてもよい。第1ワイヤ191及び第2ワイヤ192の先端は、それぞれ、光透過部139の位置において接合されて接合部193を形成している。接合部193は、中空シャフトの長手方向において、光透過部139の略中央部分に配置されている。しかし、接合部193は、光透過部139の先端と基端との間の任意の位置に配置されてよい。また、接合部193の少なくとも一部分は、光透過部139の外周面(外表面)から露出した状態で配置されている。
 接合部193よりも基端側において、第1ワイヤ191及び第2ワイヤ192は、それぞれ、中空シャフトの肉厚部に、互いに離間した状態で埋設されている(図13下段)。また、第1ワイヤ191及び第2ワイヤ192は、それぞれ、中空シャフトの肉厚部を基端側に向かって延伸し、シャフト110の基端部110pから、コネクタ140の内部を通過して、冷却装置6に接続されている(図13上段)。冷却装置6は、水冷による冷却装置であってもよく、空冷による冷却装置であってもよい。このような熱電対190によって、第1ワイヤ191、第2ワイヤ192、及び接合部193の近傍における体液(例えば、血液)及び生体組織を冷却することができる。
 このように、カテーテル1Gの構成は種々の変更が可能であり、複数の熱電対(熱電対180,190)を備える構成としてもよい。以上のような第8実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。また、第8実施形態の光照射システムによれば、カテーテル1Gは複数の熱電対180,190を備えているため、一の熱電対190と他の熱電対180とを異なる用途に用いることができる。具体的には、一の熱電対190は、冷却装置6に接続されているため、体液を含む生体組織を冷却することができ、生体組織の過度な温度上昇を抑制できる。また、他の熱電対180は、温度測定装置5に接続されているため、生体組織の温度を測定することができる。すなわち、第8実施形態のカテーテル1Gによれば、生体組織の温度を測定(監視)しつつ、必要に応じて生体組織の冷却をすることができるため、温度測定の効率と効果とを向上できる。
<第9実施形態>
 図14は、第9実施形態のカテーテル1Hの構成を例示した説明図である。第9実施形態の光照射システムは、図14に示すカテーテル1Hと、第1実施形態で説明した光照射デバイス2とを備える。カテーテル1Hは、熱電対180に代えて熱電対180Hを備えている。熱電対180Hは、第1ワイヤ181に代えて第1ワイヤ181Hを備え、第2ワイヤ182に代えて第2ワイヤ182Hを備えている。
 第1ワイヤ181H及び第2ワイヤ182Hは、先端側の一部分において、第1実施形態の第1及び第2ワイヤ181,182と同様に、中空シャフト(シャフト110及び光透過部139)の肉厚部に埋設されている。また、第1ワイヤ181H及び第2ワイヤ182Hは、基端側の一部分において、第3実施形態の第1及び第2ワイヤ181B,182Bと同様に、中空シャフトの外周面に固定されている。すなわち、第1ワイヤ181H及び第2ワイヤ182Hは、一部分が中空シャフトに埋設され、残余の部分が中空シャフトから露出している。
 このように、カテーテル1Hの熱電対180Hの構成は種々の変更が可能であり、第1ワイヤ181Hと、第2ワイヤ182Hとの一方又は両方について、一部分が中空シャフトに埋設され、残余の部分が中空シャフトから露出していてもよい。図14では先端側の一部分が埋設され、基端側の一部分が露出している場合を例示したが、これらは逆でもよい。すなわち、先端側の一部分が露出しており、基端側の一部分が埋設されていてもよい。以上のような第9実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。また、第9実施形態のカテーテル1Hによれば、熱電対180Hの第1ワイヤ181H及び第2ワイヤ182Hは、中空シャフトから露出した露出部分を有しているため、この露出部分を介して、体液(例えば、血液)を含む生体組織から吸収した熱を外部へ放出することができる。この結果、生体組織の過度な温度上昇を抑制できる。
<第10実施形態>
 図15は、第10実施形態の光照射システムの構成を例示した説明図である。第10実施形態の光照射システムは、カテーテル1Iと、光照射デバイス2Iとを備える。カテーテル1Iは、第1実施形態で説明した熱電対180を備えていない。光照射デバイス2Iは、第1実施形態で説明した各構成に加えてさらに、第2熱電対280を備えている。なお、光照射デバイス2Iでは、光照射部239とシャフト210とを総称して「シャフト」とも呼ぶ。光照射部239は、シャフトの先端側に設けられている。
 図16は、図15のD-D線における断面構成を例示した説明図である。第2熱電対280は、第3ワイヤ281と、第4ワイヤ282と、第2接合部283とを備えている。第3ワイヤ281及び第4ワイヤ282は、それぞれ、シャフト(シャフト210及び光照射部239)の長手方向(軸線O方向)に沿って延びる金属導体である。第3ワイヤ281及び第4ワイヤ282の先端は、それぞれ、光照射部239の位置において接合されて第2接合部283を形成している。第2接合部283は、光照射部239の略中央部分に配置されている。しかし、第2接合部283は、シャフトの長手方向において、光照射部239の先端と基端との間の任意の位置に配置されてよい。この場合、第1実施形態の接合部183と同様に、第2接合部283が配置される位置は、生体管腔内における体液の流れに対して下流側になる位置であることが好ましい。
 また、第2接合部283は、第2接合部283の全体が、光照射部239の外周面(外表面)から露出した状態で配置されている。なお、第2接合部283は、第2接合部283の少なくとも一部分が光照射部239の外周面から露出し、残余の部分が光照射部239の肉厚部に埋設されていてもよい。
 第2接合部283よりも基端側において、第3ワイヤ281及び第4ワイヤ282は、それぞれ、シャフト(シャフト210及び光照射部239)の肉厚部に、互いに離間した状態で埋設されている(図16)。また、第3ワイヤ281及び第4ワイヤ282は、それぞれ、シャフトの肉厚部を基端側に向かって延伸し、シャフト210の基端部から、コネクタ240の内部を通過して、温度測定装置5に接続されている(図15)。第2熱電対280によって、第2接合部283近傍における体液(例えば、血液)を含む生体組織の温度を測定することができる。第10実施形態の光照射システムの使用方法は、図5で説明した第1実施形態と同様である。このように、光照射システムの構成は種々の変更が可能であり、カテーテル1Iに代えて、光照射デバイス2Iに対して第2熱電対280を設けてもよい。また、第1実施形態で説明した熱電対180を備えるカテーテル1と、第10実施形態で説明した第2熱電対280を備える光照射デバイス2Iとを組み合わせて光照射システムを構成してもよい。
 以上説明した通り、第10実施形態の光照射システムによれば、光照射デバイス2Iは、第2熱電対280を備えるため、生体管腔内で光を照射することが可能な光照射デバイス2Iにおいて、体液(例えば、血液)を含む生体組織の温度を測定することができる。また、第2熱電対280は、第3ワイヤ281及び第4ワイヤ282と、第3ワイヤ281と第4ワイヤ282とが接合された第2接合部283と、を含む。このため、例えば第2熱電対280がバルーンの内側に配置されている構成と比較して、光照射デバイス2Iを細径化できる。さらに、第2接合部283のうちの少なくとも一部分は、シャフト(光照射部239)の外周面から露出しているため、生体組織の温度測定の精度を向上できる。さらに、第2熱電対280の第2接合部283は、光照射部239の先端と基端との間に位置しているため、光照射部位における生体組織の温度を測定できる。
<第11実施形態>
 図17は、第11実施形態の光照射デバイス2Jの構成を例示した説明図である。第11実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図17に示す光照射デバイス2Jとを備える。光照射デバイス2Jは、第2熱電対280に代えて第2熱電対280Jを備える。第2熱電対280Jは、第3ワイヤ281に代えて第3ワイヤ281Jを備え、第4ワイヤ282に代えて第4ワイヤ282Jを備えている。第3ワイヤ281J及び第4ワイヤ282Jは、第2接合部283よりも基端側において、シャフト(シャフト210及び光照射部239)の外周面に、互いに離間した状態で固定されている。このように、光照射デバイス2Jの第2熱電対280Jの構成は種々の変更が可能であり、第3ワイヤ281Jと、第4ワイヤ282Jとの一方又は両方が、シャフトの肉厚部に埋設されていなくてもよい。以上のような第11実施形態の光照射システムによっても、上述した第10実施形態と同様の効果を奏することができる。
<第12実施形態>
 図18は、第12実施形態の光照射デバイス2Kの構成を例示した説明図である。第12実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図18に示す光照射デバイス2Kとを備える。光照射デバイス2Kは、第2熱電対280に代えて第2熱電対280Kを備える。第2熱電対280Kは、第3ワイヤ281に代えて第3ワイヤ281Kを備え、第4ワイヤ282に代えて第4ワイヤ282Kを備えている。第3ワイヤ281K及び第4ワイヤ282Kは、少なくとも先端側において螺旋形状(コイル形状)とされている。第3ワイヤ281Kと第4ワイヤ282Kとは、第4実施形態と同様に螺旋の巻き方向が異なっており、一方がS巻き、他方がZ巻きとされている。
 このように、光照射デバイス2Kの第2熱電対280Kの構成は種々の変更が可能であり、第3ワイヤ281Kと、第4ワイヤ282Kとの一方又は両方について、少なくとも一部分が螺旋形状であってもよい。なお、図示の例では、第3ワイヤ281K及び第4ワイヤ282Kは、シャフトの肉厚部に埋設されている。しかし、第3ワイヤ281K及び第4ワイヤ282Kは、シャフトの外周面に固定されていてもよい。以上のような第12実施形態の光照射システムによっても、上述した第10実施形態と同様の効果を奏することができる。また、第12実施形態の光照射デバイス2Kによれば、シャフト(シャフト210及び光照射部239)の耐圧性を向上させることができると共に、内圧によるシャフトの破損や変形を抑制できる。さらに、第3ワイヤ281Kと第4ワイヤ282Kとは、螺旋の巻き方向が異なっているため、通電時に互いの磁気を打ち消すことができると共に、シャフトの耐圧性をより向上できる。
<第13実施形態>
 図19は、第13実施形態の光照射デバイス2Lの構成を例示した説明図である。第13実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図19に示す光照射デバイス2Lとを備える。光照射デバイス2Lは、第2熱電対280に代えて第2熱電対280Lを備える。第2熱電対280Lは、第3ワイヤ281に代えて第3ワイヤ281Lを、第4ワイヤ282に代えて第4ワイヤ282Lを、第2接合部283に代えて第2接合部283Lを、それぞれ備えている。第3ワイヤ281L及び第4ワイヤ282Lの先端は、シャフト(シャフト210及び光照射部239)の長手方向(軸線O方向)において、光照射部239よりも基端側の位置で接合されて、第2接合部283Lを形成している。すなわち第2接合部283Lは、光照射部239よりも基端側に位置している。
 このように、光照射デバイス2Lの第2熱電対280Lの構成は種々の変更が可能であり、第2接合部283Lは、光照射部239よりも基端側に設けられていてもよい。なお、第2接合部283Lは、光照射部239よりも先端側に設けられていてもよい。以上のような第13実施形態の光照射システムによっても、上述した第10実施形態と同様の効果を奏することができる。また、第13実施形態の光照射デバイス2Lによれば、第2熱電対280Lの第2接合部283Lは、光照射部239よりも先端側又は基端側に位置しているため、光照射部位の近傍における生体組織の温度を測定できると共に、デバイス設計の自由度を向上できる。
<第14実施形態>
 図20は、第14実施形態の光照射デバイス2Mの構成を例示した説明図である。第14実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図20に示す光照射デバイス2Mとを備える。光照射デバイス2Mは、第10実施形態で説明した第2熱電対280に加えてさらに、第2熱電対290を備えている。第2熱電対290は、第3ワイヤ291と、第4ワイヤ292と、第2接合部293とを備えている。第3ワイヤ291及び第4ワイヤ292は、基端が冷却装置6に接続されている点を除いて、第3ワイヤ281及び第4ワイヤ282と同様の構成を有している。第2接合部293は、第2接合部283と同様の構成を有している。
 このように、光照射デバイス2Mの構成は種々の変更が可能であり、複数の第2熱電対(第2熱電対280,290)を備える構成としてもよい。以上のような第14実施形態の光照射システムによっても、上述した第10実施形態と同様の効果を奏することができる。また、第14実施形態の光照射システムによれば、一の第2熱電対290と他の第2熱電対280とを異なる用途に用いることができる。具体的には、一の第2熱電対290は、冷却装置6に接続されているため、体液を含む生体組織を冷却することができ、生体組織の過度な温度上昇を抑制できる。また、他の第2熱電対280は、温度測定装置5に接続されているため、生体組織の温度を測定することができる。すなわち、第14実施形態の光照射デバイス2Mによれば、生体組織の温度を測定(監視)しつつ、必要に応じて生体組織の冷却をすることができるため、温度測定の効率と効果とを向上できる。
<第15実施形態>
 図21は、第15実施形態の光照射デバイス2Nの構成を例示した説明図である。第15実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図21に示す光照射デバイス2Nとを備える。光照射デバイス2Nは、第2熱電対280に代えて第2熱電対280Nを備えている。第2熱電対280Nは、第3ワイヤ281に代えて第3ワイヤ281Nを備え、第4ワイヤ282に代えて第4ワイヤ282Nを備えている。第3ワイヤ281N及び第4ワイヤ282Nは、先端側の一部分においてシャフト(シャフト210及び光照射部239)の肉厚部に埋設されており、基端側の一部分においてシャフトの外周面に固定されている。
 このように、光照射デバイス2Nの第2熱電対280Nの構成は種々の変更が可能であり、第3ワイヤ281Nと、第4ワイヤ282Nとの一方又は両方について、一部分がシャフトに埋設され、残余の部分がシャフトから露出していてもよい。図21では先端側の一部分が埋設され、基端側の一部分が露出している場合を例示したが、これらは逆でもよい。以上のような第15実施形態の光照射システムによっても、上述した第10実施形態と同様の効果を奏することができる。また、第15実施形態の光照射デバイス2Nによれば、第2熱電対280Nの第3ワイヤ281N及び第4ワイヤ282Nは、シャフトから露出した露出部分を有しているため、この露出部分を介して、体液(例えば、血液)を含む生体組織から吸収した熱を外部へ放出することができる。この結果、生体組織の過度な温度上昇を抑制できる。
<第16実施形態>
 図22は、第16実施形態のカテーテル1Oの構成を例示した説明図である。第16実施形態の光照射システムは、図22に示すカテーテル1Oと、第1実施形態で説明した2とを備える。カテーテル1Oは、熱電対180に代えて熱電対180Oを備えている。熱電対180Oは、接合部183に代えて接合部183Oを備えている。接合部183Oは、接合部183Oの全体が、中空シャフトとしての光透過部139の肉厚部に埋設されている。図3で説明したように、第1ワイヤ181及び第2ワイヤ182は、中空シャフト(シャフト110及び光透過部139)の肉厚部に埋設されているため、カテーテル1Oでは、接合部183Oを含む熱電対180Oの全体が、中空シャフトの肉厚部に埋設されている。なお、温度測定の精度向上の観点から、接合部183Oは、中空シャフトの外周面に可能な限り近い位置に埋設されていることが好ましい。
 このように、熱電対180Oの構成は種々の変更が可能であり、例えば、全体が中空シャフトの肉厚部に埋設された構成の接合部183Oを備えていてもよい。以上のような第16実施形態の光照射システムによっても、上述した第1実施形態と同様の効果を奏することができる。また、第16実施形態のカテーテル1Oでは、接合部183Oの全体は、中空シャフト(シャフト110及び光透過部139)の肉厚部に埋設されているため、中空シャフトの表面を平滑に構成することができ、安全性を向上できる。
<第17実施形態>
 図23は、第17実施形態の光照射デバイス2Pの構成を例示した説明図である。第17実施形態の光照射システムは、第10実施形態で説明したカテーテル1Iと、図23に示す光照射デバイス2Pとを備える。光照射デバイス2Pは、第2熱電対280に代えて第2熱電対280Pを備えている。第2熱電対280Pは、第2接合部283に代えて第2接合部283Pを備えている。第2接合部283Pは、第2接合部283Pの全体が、シャフトとしての光照射部239の肉厚部に埋設されている。図16で説明したように、第3ワイヤ281及び第4ワイヤ282は、シャフト(シャフト210及び光照射部239)の肉厚部に埋設されているため、光照射デバイス2Pでは、第2接合部283Pを含む第2熱電対280Pの全体が、シャフトの肉厚部に埋設されている。なお、温度測定の精度向上の観点から、第2接合部283Pは、シャフトの外周面に可能な限り近い位置に埋設されていることが好ましい。以上のような第17実施形態の光照射システムによっても、上述した第1及び第16実施形態と同様の効果を奏することができる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 上記第1~17実施形態では、カテーテル1,1A~1I,O、及び、光照射デバイス2,2A,2I~2N,Pの構成の一例を示した。しかし、カテーテル1及び光照射デバイス2の構成は種々の変更が可能である。
 例えば、カテーテル1のシャフト110、及び、光照射デバイス2のシャフト210には、熱電対とは別に、編組体や、コイル体からなる補強層が埋設されていてもよい。このようにすれば、カテーテル1や光照射デバイス2のトルク伝達性や、形状保持性を向上できる。例えば、カテーテル1の外表面や、光照射デバイス2の外表面には、親水性又は疎水性の樹脂からなるコーティングが施されていてもよい。このようにすれば、生体管腔内におけるカテーテル1の滑り性を向上できる。また、カテーテル1のルーメン110L内における光照射デバイス2の滑り性を向上できる。また、ヘパリンなどの抗血栓性材料をカテーテル1の外表面や、光照射デバイス2の外表面にコーティングしてもよい。このようにすれば、出射光(レーザ光)LTの照射によるカテーテル1の内外面や、光照射デバイス2の外面への血栓付着によるレーザ出力の低下を抑制できる。
 例えば、カテーテル1には、径方向(YZ方向)に拡張可能な拡張部を備えていてもよい。拡張部としては、例えば、柔軟性を有する薄膜からなるバルーンや、素線を網目状にしたメッシュ体を用いることができる。拡張部は、シャフト110において、光透過部139の先端側と、光透過部139の基端側と、の少なくとも一方に設けられ得る。拡張部を設ける場合、カテーテル1の細径化の観点から、熱電対180は、光透過部139の先端と基端との間に設けられることが好ましい。このようにすれば、生体管腔内におけるカテーテル1の位置決めの後、拡張部を拡張することによって、生体管腔内においてカテーテル1を固定することができる。また、拡張部としてバルーンを用いれば、光照射箇所における血流を遮断することができるため、血流による光の遮断を抑制できる。
 例えば、カテーテル1は、ルーメン110Lとは異なる複数のルーメンを有する、マルチルーメンカテーテルとして構成されていてもよい。同様に、光照射デバイス2は、光ファイバー250が挿通されたルーメン210Lとは異なる別途のルーメンを有する、マルチルーメンカテーテルとして構成されていてもよい。この場合、シャフト210を中空の略円筒形状の部材で構成し、かつ、先端チップ220に軸線O方向に沿って延びる貫通孔を設けることができる。カテーテル1をマルチルーメンカテーテルとした場合、熱電対180の第1ワイヤ181及び第2ワイヤ182を、一のルーメンに挿通させてもよい。光照射デバイス2をマルチルーメンカテーテルとした場合の、第2熱電対280についても同様である。
 例えば、カテーテル1の先端チップ120の内表面と、光照射デバイス2の先端チップ220の外表面とを磁性体によって構成し、互いに引き寄せあう構成としてもよい。このようにすれば、図5に示すように、カテーテル1に光照射デバイス2を挿入し、先端チップ220を先端チップ120に押し当てた状態を容易に維持できる。例えば、カテーテル1の先端チップ120を省略し、シャフト110の先端側が開放した構成を採用してもよい。
 [変形例2]
 上記第1~17実施形態では、カテーテル1の熱電対180,180B~180F,180H,180O、及び光照射デバイス2の第2熱電対280,280J~280L,280N,280Pの構成の一例を示した。しかし、カテーテル1の熱電対180、及び光照射デバイス2の第2熱電対280の構成は種々の変更が可能である。例えば、熱電対180の第1ワイヤ181と第2ワイヤ182との少なくとも一方について、一部分を編組体としてもよい。
 例えば、カテーテル1が単一の熱電対180を備える構成において、第1ワイヤ181及び第2ワイヤ182の基端は、温度測定装置5に代えて冷却装置6に接続されていてもよい。例えば、カテーテル1が単一の熱電対180を備える構成において、第1ワイヤ181及び第2ワイヤ182の基端は、冷却装置6に接続され、さらに、温度測定装置5に接続されていてもよい。なお、これらの点は、光照射デバイス2の第2熱電対280についても同様である。
 例えば、カテーテル1の熱電対190において、第1ワイヤ191及び第2ワイヤ192の基端は、冷却装置6に接続されておらず、外部に露出していてもよい。このようにしても、第1ワイヤ191及び第2ワイヤ192を、例えば、銅やアルミニウムといった熱伝導率の高い材料により形成することで、体液を含む生体組織を冷却できる。例えば、カテーテル1において、温度測定装置5に接続された複数の熱電対180を備えていてもよく、冷却装置6に接続された複数の熱電対190を備えていてもよい。なお、これらの点は、光照射デバイス2の第2熱電対280についても同様である。
 例えば、カテーテル1の熱電対180の接合部183は、光透過部139の内部、又はシャフト110の内部に埋設されていてもよい。この点は、カテーテル1の熱電対190、光照射デバイス2の第2熱電対280及び第2熱電対290についても同様である。
 [変形例3]
 上記第1~17実施形態では、光透過部139,139A、及び、光照射部239,239Aの構成の一例を示した。しかし、光透過部139及び光照射部239の構成は種々の変更が可能である。例えば、光透過部139を、放射線不透過性を有する材料により構成することで、光透過部139と、第1マーカー部131,132とを一体に構成してもよい。同様に、光照射部239を、放射線不透過性を有する材料により構成することで、光照射部239と、第2マーカー部231,232とを一体に構成してもよい。
 例えば、光透過部139は、シャフト110の一部分を薄肉化することにより形成されていてもよい。例えば、光透過部139と、光照射部239との少なくとも一方を、シャフト110又はシャフト210に形成された切欠き(シャフトの内外を連通する貫通孔)として形成してもよい。このようにすれば、光透過部139と光照射部239とを簡単に形成できる。
 例えば、光透過部139が設けられる軸線O方向(X軸方向)の範囲や周方向(YZ軸方向)の範囲、光照射部239が設けられる軸線O方向の範囲や周方向の範囲、については任意に変更できる。具体的には、例えば、光透過部139を軸線O方向の広範囲に設けてもよい。
 例えば、カテーテル1には、さらに、光透過部139の先端側や、光透過部139の基端側等、任意の位置に配置された別途のマーカー部を備えていてもよい。例えば、光照射デバイス2には、さらに、光照射部239の先端側や、光照射部239の基端側等、任意の位置に配置された別途のマーカー部を備えていてもよい。カテーテル1や、光照射デバイス2のマーカー部の形状は任意に定めることができ、周方向(YZ方向)の全体又は一部分に延びる形状でもよく、軸線O方向(X軸方向)に延びる形状でもよく、シャフトの周囲を取り囲む形状でもよい。また、カテーテル1の先端チップ120や、光照射デバイス2の先端チップ220がマーカー部として構成されていてもよい。
 例えば、光ファイバー250の先端面を斜めにカットして、この先端面を光照射部239として構成してもよい。例えば、光ファイバー250の切断面(軸線O方向に垂直に設けられた切断面)に対して、傾斜して設置された光反射ミラーを設け、これを光照射部239としてもよい。例えば、光ファイバー250は、シャフト210に内挿されておらず、シャフト210の外表面に接合されていてもよい。例えば、シャフト210は、ルーメン210Lを有しておらず、光ファイバー250の外表面に接触し、かつ、光ファイバー250の外表面を覆う態様でシャフト210が設けられていてもよい。
 [変形例4]
 第1~17実施形態のカテーテル1,1A~1I,1O、及び、光照射デバイス2,2A,2I~2N,2Pの構成、及び上記変形例1~3のカテーテル1,1A~1I,1O、及び、光照射デバイス2,2A,2I~2N,2Pの構成は、適宜組み合わせてもよい。例えば、第1~第9,及び第16実施形態のいずれかで説明したカテーテル1,1A~1I,1Oと、第10~第15,及び第17実施形態のいずれかで説明した光照射デバイス2,2A,2I~2N,2Pとを組み合わせて光照射システムを構成してもよい。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1,1A~1I,1O…カテーテル
  2,2A,2I~2N,2P…光照射デバイス
  3…レーザ光発生装置
  5…温度測定装置
  6…冷却装置
  110…シャフト
  120…先端チップ
  131,132…第1マーカー部
  139,139A…光透過部
  140…コネクタ
  141…接続部
  142…羽根
  180,180B~180F,180H,180O…熱電対
  181,181B~181F,181H…第1ワイヤ
  182,182B~182F,182H…第2ワイヤ
  183,183E,183F,183O…接合部
  190…熱電対
  191…第1ワイヤ
  192…第2ワイヤ
  193…接合部
  210…シャフト
  220…先端チップ
  231,232…第2マーカー部
  239,239A…光照射部
  240…コネクタ
  241…接続部
  242…羽根
  250…光ファイバー
  280,280J~280L,280N,280P…第2熱電対
  281,281J~281L,281N…第3ワイヤ
  282,282J~282L,282N…第4ワイヤ
  283,283L,283P…第2接合部
  290…第2熱電対
  291…第3ワイヤ
  292…第4ワイヤ
  293…第2接合部

Claims (16)

  1.  カテーテルであって、
     中空シャフトと、
     前記中空シャフトの先端側に設けられ、内部の光を外部に透過させる光透過部と、
     前記中空シャフトの長手方向に沿って延びる第1ワイヤ及び第2ワイヤと、前記第1ワイヤと前記第2ワイヤとが接合された接合部と、を含む熱電対と、
    を備える、カテーテル。
  2.  請求項1に記載のカテーテルであって、
     前記熱電対の前記接合部のうちの少なくとも一部分は、前記中空シャフトの外周面から露出している、カテーテル。
  3.  請求項1に記載のカテーテルであって、
     前記熱電対の前記接合部の全体は、前記中空シャフトの肉厚部に埋設されている、カテーテル。
  4.  請求項1から請求項3のいずれか一項に記載のカテーテルであって、
     前記熱電対の前記接合部は、前記長手方向において前記光透過部の先端と基端との間に位置している、カテーテル。
  5.  請求項1から請求項3のいずれか一項に記載のカテーテルであって、
     前記熱電対の前記接合部は、前記長手方向において前記光透過部よりも先端側又は基端側に位置している、カテーテル。
  6.  請求項1から請求項5のいずれか一項に記載のカテーテルであって、
     前記第1ワイヤと前記第2ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有している、カテーテル。
  7.  請求項1から請求項6のいずれか一項に記載のカテーテルであって、
     前記第1ワイヤ及び前記第2ワイヤは、一部分がそれぞれ前記中空シャフトに埋設されており、残余の部分が前記中空シャフトから露出している、カテーテル。
  8.  請求項1から請求項7のいずれか一項に記載のカテーテルであって、
     複数の前記熱電対を備え、
     一の前記熱電対は、前記第1ワイヤと前記第2ワイヤの基端部が冷却装置に接続され、
     他の前記熱電対は、前記第1ワイヤと前記第2ワイヤの基端部が温度測定装置に接続される、カテーテル。
  9.  光照射デバイスであって、
     シャフトと、
     前記シャフトの先端側に設けられ、光を外部に照射する光照射部と、
     前記シャフトの長手方向に沿って延びる第3ワイヤ及び第4ワイヤと、前記第3ワイヤと前記第4ワイヤとが接合された第2接合部と、を含む第2熱電対と、
    を備え、
     前記第2熱電対の前記第2接合部は、前記シャフトの外周面から露出している、光照射デバイス。
  10.  請求項9に記載の光照射デバイスであって、
     前記第2熱電対の前記第2接合部のうちの少なくとも一部分は、前記シャフトの外周面から露出している、光照射デバイス。
  11.  請求項9に記載の光照射デバイスであって、
     前記第2熱電対の前記第2接合部の全体は、前記シャフトの肉厚部に埋設されている、光照射デバイス。
  12.  請求項9から請求項11のいずれか一項に記載の光照射デバイスであって、
     前記第2熱電対の前記第2接合部は、前記長手方向において前記光照射部の先端と基端との間に位置している、光照射デバイス。
  13.  請求項9から請求項11のいずれか一項に記載の光照射デバイスであって、
     前記第2熱電対の前記第2接合部は、前記長手方向において前記光照射部よりも先端側又は基端側に位置している、光照射デバイス。
  14.  請求項9から請求項13のいずれか一項に記載の光照射デバイスであって、
     前記第3ワイヤと前記第4ワイヤの少なくとも一方は、少なくとも先端側において螺旋形状を有している、光照射デバイス。
  15.  請求項9から請求項14のいずれか一項に記載の光照射デバイスであって、
     前記第3ワイヤ及び前記第4ワイヤは、一部分がそれぞれ前記シャフトに埋設されており、残余の部分が前記シャフトから露出している、光照射デバイス。
  16.  請求項9から請求項15のいずれか一項に記載の光照射デバイスであって、
     複数の前記第2熱電対を備え、
     一の前記第2熱電対は、前記第3ワイヤと前記第4ワイヤの基端部が冷却装置に接続され、
     他の前記第2熱電対は、前記第3ワイヤと前記第4ワイヤの基端部が温度測定装置に接続される、光照射デバイス。
PCT/JP2020/030985 2019-10-07 2020-08-17 カテーテル、及び、光照射デバイス WO2021070476A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184428A JP7433013B2 (ja) 2019-10-07 2019-10-07 カテーテル、及び、光照射デバイス
JP2019-184428 2019-10-07

Publications (1)

Publication Number Publication Date
WO2021070476A1 true WO2021070476A1 (ja) 2021-04-15

Family

ID=75380703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030985 WO2021070476A1 (ja) 2019-10-07 2020-08-17 カテーテル、及び、光照射デバイス

Country Status (2)

Country Link
JP (2) JP7433013B2 (ja)
WO (1) WO2021070476A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002561A1 (fr) * 1989-08-24 1991-03-07 S.L.T. Japan Co., Ltd. Dispositif pour faisceaux laser d'irradiation
JPH0519079Y2 (ja) * 1988-10-14 1993-05-20
JP2000503246A (ja) * 1996-11-08 2000-03-21 ノヴォスト コーポレイション 心臓の電気生理的処置のための装置および方法
JP2005511239A (ja) * 2001-12-14 2005-04-28 モンテリス メディカル インコーポレイティド 温熱治療及びそのためのプローブ
JP2014087682A (ja) * 2006-01-18 2014-05-15 Light Sciences Oncology Inc 光活性化薬物療法のための方法および装置
JP2015009031A (ja) * 2013-07-01 2015-01-19 飛鳥メディカル株式会社 レーザー治療器
JP2017513600A (ja) * 2014-04-24 2017-06-01 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ 編組シャフトを有する神経調節カテーテル及び関連システム及び方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966640B2 (ja) 2006-12-18 2012-07-04 学校法人慶應義塾 光線力学的治療装置およびその使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519079Y2 (ja) * 1988-10-14 1993-05-20
WO1991002561A1 (fr) * 1989-08-24 1991-03-07 S.L.T. Japan Co., Ltd. Dispositif pour faisceaux laser d'irradiation
JP2000503246A (ja) * 1996-11-08 2000-03-21 ノヴォスト コーポレイション 心臓の電気生理的処置のための装置および方法
JP2005511239A (ja) * 2001-12-14 2005-04-28 モンテリス メディカル インコーポレイティド 温熱治療及びそのためのプローブ
JP2014087682A (ja) * 2006-01-18 2014-05-15 Light Sciences Oncology Inc 光活性化薬物療法のための方法および装置
JP2015009031A (ja) * 2013-07-01 2015-01-19 飛鳥メディカル株式会社 レーザー治療器
JP2017513600A (ja) * 2014-04-24 2017-06-01 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ 編組シャフトを有する神経調節カテーテル及び関連システム及び方法

Also Published As

Publication number Publication date
JP2024036531A (ja) 2024-03-15
JP2021058399A (ja) 2021-04-15
JP7433013B2 (ja) 2024-02-19

Similar Documents

Publication Publication Date Title
US20220047885A1 (en) Light irradiation system, catheter, and light irradiation device
US20220047884A1 (en) Light irradiation device and light irradiation system
US20220161046A1 (en) Catheter and light irradiation system
US11874455B2 (en) Light irradiation device and light irradiation system
JP2021090503A (ja) 光照射デバイス
WO2021070476A1 (ja) カテーテル、及び、光照射デバイス
WO2021075141A1 (ja) 光照射デバイス、及び、光照射システム
JP7382771B2 (ja) 光照射デバイス、及び、光照射システム
WO2021019981A1 (ja) カテーテル、及び、光照射システム
WO2020230519A1 (ja) 光照射システム、カテーテル、及び、光照射デバイス
JP7312605B2 (ja) 光照射システム、カテーテル、及び、光照射デバイス
WO2021059797A1 (ja) 光照射デバイス、及び、光照射システム
JP2022075134A (ja) 光照射デバイス、及び、光照射システム
JP2021090504A (ja) 光照射デバイス
JP2021083661A (ja) 光照射デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873791

Country of ref document: EP

Kind code of ref document: A1