WO2021070256A1 - 混雑度判定装置および昇降機運転制御システム - Google Patents

混雑度判定装置および昇降機運転制御システム Download PDF

Info

Publication number
WO2021070256A1
WO2021070256A1 PCT/JP2019/039681 JP2019039681W WO2021070256A1 WO 2021070256 A1 WO2021070256 A1 WO 2021070256A1 JP 2019039681 W JP2019039681 W JP 2019039681W WO 2021070256 A1 WO2021070256 A1 WO 2021070256A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
people
boarding
area
passengers
Prior art date
Application number
PCT/JP2019/039681
Other languages
English (en)
French (fr)
Inventor
良太 西岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021550980A priority Critical patent/JP7147994B2/ja
Priority to PCT/JP2019/039681 priority patent/WO2021070256A1/ja
Publication of WO2021070256A1 publication Critical patent/WO2021070256A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present invention controls the operation of an elevator based on a congestion degree determination device that determines the degree of congestion in the boarding / alighting area of each elevator and an estimated value of the number of people in the boarding / alighting area of each elevator in a building in which a plurality of elevators are installed. Elevator operation control system.
  • Patent Document 1 the number of people getting on and off the passenger conveyor is measured, the number of people on each elevator floor is calculated based on the measured number of people, and each passenger conveyor is accelerated or decelerated according to the congestion situation determined by the calculation result.
  • Patent Document 2 the number of people getting on and off the elevator is measured, the number of people on each elevator floor is calculated based on the measured number of people, and each passenger conveyor is accelerated or decelerated according to the congestion situation determined by the calculation result.
  • Patent Document 3 in a building having a plurality of elevator banks, the congestion status is determined for each bank based on the internal load factor of the elevator car, and the elevator users are guided according to the congestion status of each bank. Proposed.
  • Japanese Unexamined Patent Publication No. 2012-197158 page 5, FIG. 4
  • Japanese Unexamined Patent Publication No. 2013-175049 pages 11-12, FIG. 13
  • International Publication No. 2012-147160 pages 4-5, Fig. 3
  • the actual congestion status of the elevator floor is not uniform over the entire elevator floor and differs from place to place depending on the positional relationship of the plurality of elevators. For example, if two elevators are installed close to each other and another elevator is installed at a distance, the area around the two elevators installed close to each other will be heavily congested, but they will be installed at a distance. The area around the elevator may not be very crowded.
  • the congestion status of the entire elevator floor is estimated uniformly and the operation of the elevator is controlled based on the estimation. Therefore, for example, the elevator is installed in a less crowded place. The operation of the elevator is restricted, or the elevator installed in a heavily congested place is operated as usual. That is, there is a problem that it is not possible to appropriately control the operation of the elevator according to the actual congestion situation.
  • an object of the present invention is a congestion degree determination device capable of determining the degree of congestion on the elevator floor of a building in which a plurality of elevators are installed in a form reflecting an actual congestion situation, and an elevator according to the actual congestion situation.
  • the purpose of the present invention is to provide an elevator operation control system capable of performing operation control.
  • the congestion degree determination device determines the degree of congestion on the elevator floor of a building in which a plurality of elevators are installed, and obtains the number of passengers of the plurality of elevators on the elevator floor. Based on the number acquisition means and the number of passengers acquired by the number acquisition means, the number estimation means for obtaining an estimated value of the number of people in the boarding / alighting area of each elevator set on the elevator floor, and the above-mentioned A congestion degree determining means for determining the degree of congestion in the boarding / alighting area of each elevator based on each estimated value obtained by the number of people estimating means is provided, and the number of people estimating means includes an elevator to be calculated and another elevator. The closer the distance is, the higher the number of passengers acquired for other elevators is reflected, and the estimated value of the number of people in the boarding / alighting area of the elevator to be calculated is obtained.
  • the first elevator operation control system includes an elevator number acquisition means for acquiring the number of passengers of the plurality of elevators on the elevator floor of a building in which a plurality of elevators are installed, and a means for acquiring the number of passengers. Based on the number of passengers obtained by the elevator, the number estimation means for obtaining the estimated value of the number of people in the boarding / alighting area of each elevator set on the elevator floor, and the estimated value obtained by the number estimation means. Based on this, a congestion degree determining means for determining the degree of congestion in the boarding / alighting area of each elevator and an operation control means for controlling the operation of each elevator according to each degree of congestion determined by the congestion degree determining means.
  • the number-of-person estimation means reflects the number of passengers acquired for the other elevators to a higher degree as the distance between the elevator to be calculated and the other elevators is shorter, and is used in the boarding / alighting area of the elevator to be calculated. The estimated value of the number of people is calculated.
  • the second elevator operation control system includes an elevator number acquisition means for acquiring the number of passengers of the plurality of elevators on the elevator floor of a building in which a plurality of elevators are installed, and a means for acquiring the number of passengers. Based on the number of passengers obtained by the elevator, the number estimation means for obtaining the estimated value of the number of people in the boarding / alighting area of each elevator set on the elevator floor, and the estimated value obtained by the number estimation means.
  • the elevator is provided with an operation control means for controlling the operation of each elevator according to the situation, and the number estimation means obtains the number of passengers obtained for the other elevators as the distance between the elevator to be calculated and the other elevators becomes shorter.
  • the estimated value of the number of people in the boarding / alighting area of the elevator to be calculated is obtained by reflecting it to a high degree.
  • the congestion degree of the elevator floor of a building in which a plurality of elevators are installed can be determined in a form that reflects the actual congestion situation.
  • FIG. 1 is a diagram showing a schematic configuration of an elevator system 1 according to an embodiment of the present invention.
  • the elevator system 1 is a plurality of elevators E1, E2, E3, E4 provided so as to have entrances and exits on each elevator floor in a building having elevator floors on a plurality of floors (hereinafter, may be simply referred to as elevator Ei).
  • the number of passengers measuring units M1, M2, M3, M4 (hereinafter, may be simply referred to as the number of passengers measuring unit Mi) for measuring the number of passengers of each elevator Ei, and the operation of each elevator Ei are controlled.
  • the elevator operation control system 100 is provided.
  • the elevator operation control system 100 includes a congestion degree determination device 101 and an operation control unit 50, and the congestion degree determination device 101 acquires the number of passengers getting on and off information measured by the number of passengers getting on and off measurement unit Mi.
  • the acquisition unit 10 the number estimation unit 20 for obtaining an estimated value of the number of people in the boarding / alighting area of each elevator Ei, the congestion degree determination unit 30 for determining the degree of congestion in the boarding / alighting area of each elevator Ei, and the congestion degree determination device 101.
  • a storage unit 40 for storing various information to be used is provided.
  • the "boarding / alighting area” means an area that constitutes a passage for a person walking to get on / off the elevator.
  • the area in front of the entrance / exit of the elevator and the area in a predetermined range following the area are the boarding / alighting areas.
  • FIG. 2 is a diagram showing the arrangement of elevators E1, E2, E3, and E4 on the elevator floor F. It is assumed that the elevators E1 and E2 are elevators, the elevator E3 is an escalator for descending operation, and the elevator E4 is an escalator for ascending operation.
  • the elevator Ei has entrances / exits G1, G2, G3, and G4 (hereinafter, may be simply referred to as entrance / exit Gi) for people to get on and off.
  • the arrows in FIG. 2 indicate the getting on and off of a person at each entrance / exit Gi.
  • the elevators E1 and E2 may have both people getting on and off, but the elevator E3, which is an escalator for descending operation, may only have people getting on and off, and the elevator, which is an escalator for ascending operation. At E4, there are only cases where people get off.
  • the passenger number measuring unit Mi measures the number of passengers getting on and off each elevator Ei from the elevator floor F, and obtains the passenger number information obtained by the measurement by wire or at any time. It is transmitted to the number of passengers acquisition unit 10 connected by radio.
  • the number of passengers M1 and M2 are configured to detect an increase or decrease in the number of people in the elevators E1 and E2 by, for example, an image analysis type sensor or a weight sensor installed in the elevators E1 and E2.
  • the number of people in the elevators E1 and E2 increases as a result of getting on and off at
  • the increased number of people is measured as the number of people riding on the elevators E1 and E2 from the elevator floor F.
  • the number of people decreases the reduced number of people is measured as the number of people getting off the elevators E1 and E2.
  • the boarding / alighting number measuring unit M3 is configured to detect a person passing through the boarding / alighting port G3 by, for example, a photoelectric sensor or an ultrasonic sensor installed near the boarding / alighting port G3. Measure as the number of people riding E3.
  • the boarding / alighting number measuring unit M4 is configured to detect a person passing through the boarding / alighting port G4 by, for example, a photoelectric sensor or an ultrasonic sensor installed near the boarding / alighting port G4. Measure as the number of people who got off from E4.
  • the boarding / alighting number acquisition unit 10 acquires the boarding / alighting number information sent regularly or at any time from the boarding / alighting number measuring unit Mi.
  • the number of people getting on and off the elevator Ei is totaled for each unit time, and the number of passengers information 41 stored in the storage unit 40 is updated.
  • the number of passengers information 41 is information indicating an increase or decrease in the number of people on the elevator floor F due to the getting on and off of people in each elevator Ei, and is used for processing of the number estimation unit 20 described later.
  • FIG. 3 shows an example of the number of passengers information 41.
  • T T1, T2, T3, ...
  • the number of people getting off the elevator Ei is represented by a positive value as an increase in the number of people on the elevator floor F
  • the number of people riding on the elevator Ei is represented by a negative value as a decrease in the number of people on the elevator floor F.
  • the number of people estimation unit 20 obtains an estimated value of the number of people in the boarding / alighting area of each elevator Ei. Specifically, while updating the number of people estimation map 42 stored in advance in the storage unit 40 every unit time, the estimated value of the number of people in the boarding / alighting area of each elevator Ei is read from the updated number of people estimation map 42. To obtain an estimated value of the number of people in each boarding / alighting area.
  • FIG. 4 shows an example of the number estimation map 42.
  • the number-of-person estimation map 42 maps the estimated number of people to each of a plurality of unit areas 1A, 2A, 3A ..., 8J, 9J, and 10J formed by dividing the elevator floor F into a grid pattern.
  • the unit areas 3C, 5C, 4G, 6G (unit areas indicated by diagonal lines in the figure) where the elevator Ei itself is located and the unit areas where the movement of people to the unit areas is restricted by walls, beams, etc. (Fig.) (Not shown) can be excluded from the matching target of the estimated value.
  • these areas are referred to as exclusion areas.
  • the size of the unit area can be set based on the movement range of a person walking during a unit time (for example, 3 seconds). For example, if the unit time is 3 seconds and the average moving speed of a person is 1.5 m / s, one unit area is 4.5 m x 4.5 m, and 45 m x 45 m target floors F are 10 x 10 pieces. Can be divided into unit areas of.
  • the number of people estimation unit 20 updates the number of people estimation map 42 every unit time. In each update, the estimated number of people in each unit area is modified based on the possibility that the person in the elevator floor F will move or stay in that position in all directions from the current position. The diffusion process and the addition / subtraction process of adding / subtracting the number of people according to the number of people newly getting on / off the elevator Ei during the unit time are performed.
  • FIG. 6 shows the calculation contents performed in a part of the number estimation map 42.
  • the arithmetic processing in which the unit area 3D is the unit area of interest and the arithmetic processing in which the unit area 5D is the unit area of interest are shown, and the other unit areas are the unit areas of interest. Is omitted. As shown in FIG.
  • a neighborhood area having a size of 3 ⁇ 3 is set around the unit area 3D, and eight units excluding the exclusion area 3C in the neighborhood area.
  • the regions 2C, 4C, 2D, 3D, 4D, 2E, 3E, and 4E are divided into 1.5 units, which is 1/8 of the value before the update of the unit region 3D.
  • one unit, which is 1/8 of the value before the update of the unit area 5D is divided into eight unit areas excluding the exclusion area 5C in the neighboring area. ..
  • the calculation is performed with each of all the unit areas as the unit area of interest.
  • the values of the unit regions 4C, 4D, and 4E shown in FIG. 6 are all 2.5, which is the sum of the values 1.5 and 1 given from the unit regions 3D and 5D.
  • each unit area is reflected in the adjacent unit area by about 1/9 each time the unit time elapses. Therefore, the value of a certain unit area is reflected in the adjacent unit area by one. It is the timing when the unit time has passed once, and the degree is about 1/9, while the unit time is reflected twice in the next unit area. It is the timing that has passed, and the degree is about 1/81. Similarly, the unit regions separated by three or more are reflected at a later timing and to a lower degree. That is, the shorter the distance, the higher the reflection, and the farther the distance, the later the timing.
  • the number of passengers getting on and off of each elevator Ei at the update timing is acquired with reference to the number of passengers information 41 stored in the storage unit 40, and the value is used as a unit corresponding to the position of the entrance / exit of the elevator Ei.
  • Add or subtract to the area (hereinafter referred to as the entrance area).
  • the unit area corresponding to the position of the entrance / exit of each elevator Ei is the unit area 3D, 5D, F4 adjacent to the unit area 3C, 5C, 4G, 6G in which the elevator Ei itself is located, from the entrance / exit Gi side.
  • F5 hereinafter referred to as entrance / exit areas 3D, 5D, F4, F5).
  • the number of people represented by a positive value in the number of passengers information 41 is reflected as a positive value as it is, and the number of people represented by a negative value in the number of passengers information 41 is also a negative value as it is. Reflect as. However, if the estimated value of the number of people in the unit area becomes negative as a result of the reflection, it is unlikely that the number of people will be in a negative state, so the value is corrected to zero.
  • the number of people estimation unit 20 obtains an estimated value of the number of people in each boarding / alighting area by reading the estimated value of the number of people in the boarding / alighting area of each elevator Ei from the updated number of people estimation map 42.
  • the boarding / alighting area of the elevator Ei means an area constituting a passage for a person walking to get on / off the elevator Ei, and the area before the boarding / alighting port of the elevator Ei and the area of a predetermined range following the area are the boarding / alighting areas.
  • the boarding / alighting area of the elevator Ei as shown in FIG.
  • the area R1 is composed of the boarding / alighting port area of the elevator Ei and the unit areas adjacent to the left and right sides of the boarding / alighting port area of the elevator Ei.
  • R2, R3, and R4 (hereinafter, may be simply referred to as boarding / alighting area Ri) are used.
  • the congestion degree determination unit 30 determines the degree of congestion in each boarding / alighting area Ri by using the estimated value of the number of people in the boarding / alighting area Ri obtained by the number estimation unit 20. Specifically, first, based on the information on the number of people that can be accommodated on the elevator floor F as a whole, the number of people that can be accommodated in each boarding / alighting area R1, R2, R3, R4 is obtained, and the ratio to the number of people that can be accommodated is obtained as the degree of congestion. For example, if the total capacity of the elevator floor F consisting of the 10 ⁇ 10 unit area is 1000, the capacity of the boarding / alighting area Ri consisting of the three unit areas is 30 people.
  • the estimated value of the number of people in the boarding / alighting area R1 obtained by the number of people estimation unit 20 is 24.5, so the ratio of the estimated value of 24.5 to the capacity of 30 is 82. % (Value rounded to the first decimal place. The same shall apply hereinafter) is obtained as the degree of congestion in the boarding / alighting area R1.
  • 22% is obtained as the degree of congestion in the boarding / alighting area R2
  • 51% is obtained as the degree of congestion in the boarding / alighting area R3
  • 55% is obtained as the degree of congestion in the boarding / alighting area R4.
  • the operation control unit 50 controls the operation of the elevator Ei according to the degree of congestion in the boarding / alighting area Ri determined by the congestion degree determination unit 30. Specifically, the elevator Ei determined to have a congestion level of 2 or less in the boarding / alighting area Ri is maintained in normal operation, and the elevator Ei determined to have a congestion level 3 in the boarding / alighting area Ri is in a congested state. In order to reduce the speed, control such as acceleration / deceleration of the driving speed and change of the driving pattern is performed.
  • control such as excluding the elevator floor F from the floor on which the elevator Ei is stopped, deceleration control of the operating speed, and the like can be performed.
  • the elevator Ei which is the target of the control for reducing the congestion state
  • acceleration control of the operating speed can be performed within a range in which safety can be ensured.
  • the operation control unit 50 maintains normal operation for the elevators E2, E3, and E4 determined to have a congestion level of 2 or less in the boarding / alighting area, and determines that the congestion level is 3 in the boarding / alighting area R1.
  • control such as excluding the elevator floor F from the floor to be stopped and deceleration control of the operating speed are performed.
  • the elevator operation control system 100 is composed of a computer having a processor 5, a memory 6, and a signal input / output unit 7.
  • the functions of the number of passengers acquisition unit 10, the number of people estimation unit 20, the congestion degree determination unit 30, the storage unit 40, and the operation control unit 50 are realized by this computer. That is, the memory 6 of the computer stores a program for realizing the functions of the number of passengers acquisition unit 10, the number of people estimation unit 20, the congestion degree determination unit 30, the storage unit 40, and the operation control unit 50. In addition, information such as the number of passengers getting on and off information 41 and the number of people estimation map 42 is also stored in the memory 6.
  • the processor 5 executes arithmetic processing related to the function of the elevator operation control system 100 based on the program stored in the memory 6.
  • FIG. 13 is a flowchart showing a flow of processing performed by the elevator operation control system 100.
  • the boarding / alighting number acquisition unit 10 updates the boarding / alighting number information 41 stored in the storage unit 40 based on the boarding / alighting number information acquired regularly or at any time from the boarding / alighting number measuring unit Mi (S1). ).
  • the number estimation unit 20 updates the number estimation map 42 stored in the storage unit 40, and reads the estimated value of the number of people in the boarding / alighting area Ri of each elevator Ei from the updated number estimation map 42.
  • the estimated value of the number of people in each boarding / alighting area Ri is obtained (S2).
  • the congestion degree determination unit 30 determines the degree of congestion in each boarding / alighting area Ri using the estimated value of the number of people in the boarding / alighting area Ri obtained by the number estimation unit 20 (S3).
  • the operation control unit 50 sets the variable n to 1 (S4), and the degree of congestion determined in step S3 for the boarding / alighting region Rn of the elevator En needs to be level 3 (control for reducing the congestion state). It is determined whether or not the level is (S5), and the operation of the elevator En is controlled according to the determination result.
  • step S5 when it is determined that the degree of congestion is level 1 or 2 and not level 3 (S5: NO), the elevator En is maintained in normal operation (S6) and is determined to be level 3. In this case (S5: YES), control (acceleration / deceleration of operating speed, change of operating pattern, etc.) for reducing the congestion state of the elevator En is performed (S7).
  • the operation control unit 50 determines whether or not the value of the variable n is 4 (the number of elevators provided so as to have an entrance / exit on the target floor F) (S8), and the variable n is not 4. If it is determined (S8: NO), the variable n is updated to the value of n + 1 (S9), and the process is returned to step S5. On the other hand, if it is determined in step S8 that the variable n is 4 (S8: YES), the process ends there.
  • the elevator operation control system 100 continuously monitors the congestion status of each elevator Ei in the boarding / alighting area Ri by repeating the above series of processes every unit time, and determines the elevator Ei according to the degree of congestion in the boarding / alighting area Ri. Operation control for improving the congestion situation can be executed in a timely manner.
  • the elevator operation control system 100 reflects the number of passengers acquired for another elevator Ei to a higher degree as the distance between one elevator Ei and another elevator Ei becomes shorter, and the elevator Ei The estimated value of the number of people in the boarding / alighting area Ri is obtained. That is, since the estimated value of the number of people in the unit area of the number estimation map 42 is divided into the surrounding unit areas so that the influence is gradually reduced, the shorter the distance between the elevators, the greater the influence.
  • the number of people can be estimated in the form.
  • the number of people is estimated in a form that reflects the actual congestion situation in which the areas around the two elevators Ei installed close to each other are heavily congested, but the areas around the elevators Ei installed at a slightly distant position are not so congested. be able to. Therefore, the degree of congestion of the elevator floor F can be determined in a form that reflects the actual congestion situation.
  • the elevator operation control system 100 includes an operation control unit 50 that controls the operation of the elevator according to the degree of congestion determined by the congestion degree determination unit 30, the elevator Ei is operated according to the actual congestion situation. Control can be performed.
  • the area consisting of the boarding / alighting area of the elevator Ei and the unit areas adjacent to the elevator Ei on both the left and right sides of the boarding / alighting area is defined as the boarding / alighting area Ri of the elevator Ei.
  • the boarding / alighting area may be appropriately set in a predetermined range that constitutes a passage for a person walking to get on / off the elevator, depending on the layout of the target floor to which the present invention is applied.
  • FIG. 14 is a diagram showing a schematic configuration of the elevator system 2 according to the second embodiment.
  • the same components as those of the elevator system 1 according to the first embodiment are designated by the same reference numerals, and duplicated description thereof will be omitted.
  • the difference from the first embodiment is the content of the processing by the storage unit 240, the number of people estimation unit 220, and the congestion degree determination unit 230.
  • the elevator operation control system 200 includes a congestion degree determination device 201 and an operation control unit 50, and the congestion degree determination device 201 includes a passenger number acquisition unit 10, a number estimation unit 220, and a congestion degree determination unit 230.
  • a storage unit 240 for storing various information used in the congestion degree determination device 201 is provided.
  • the storage unit 240 stores information on the number of passengers getting on and off, distance information 43 which is information on the distance between elevators Ei, and a probability model 45 showing the probability of movement of a person from the reference position with respect to the distance from the reference position. ing.
  • a function f (d) indicating the movement probability kij (coefficient) of a person from the reference position with respect to the distance d from the reference position is stored as shown in FIG. In this probability model 45, it is assumed that the movement probability of a person follows a normal distribution (Gaussian distribution).
  • the number estimation unit 220 obtains an estimated value of the number of people in the boarding / alighting area of each elevator Ei.
  • the distance information dig is applied to the function f (d) of the probability model 45 stored in the storage unit 240 to obtain the coefficient kij.
  • the coefficient kij may be obtained in advance and stored in the storage unit 240 for reference.
  • the remaining number of people remaining in the boarding / alighting area of the elevator Ei after moving from the boarding / alighting area to the boarding / alighting area of the elevator Ej is calculated.
  • the elevator moved from the boarding / alighting area of the elevator Ej to the boarding / alighting area of the elevator Ei. Ask for the number of people to move. Then, the obtained remaining number of people and the number of people to move are added together to obtain the number of people after moving in the boarding / alighting area of the elevator Ei.
  • the number of passengers getting on and off each elevator Ei at the update timing is acquired with reference to the number of passengers information 41 stored in the storage unit 40, and the value of the acquired number of passengers getting on and off is used as the first value. It is added to the number of people after movement in the boarding / alighting area of each elevator E1 obtained by the arithmetic processing. Specifically, the number of people who got on and off the new elevator Ei during the unit time is added to the number of people after moving (remaining number of people + number of people moving) in the boarding / alighting area of each elevator Ei obtained by the first arithmetic processing. This is the final estimate of the number of people.
  • the number of people represented by a positive value in the number of passengers information 41 is added as a positive value, and the number of people represented by a negative value in the number of passengers information 41 is a negative value. Add as it is. If the estimated number of people is negative as a result of the addition, it is unlikely that the number of people will be negative, so the value is corrected to zero.
  • the congestion degree determination unit 230 determines the degree of congestion in each boarding / alighting area using the estimated value of the number of people in the boarding / alighting area of the elevator Ei obtained by the number estimation unit 220. Specifically, the degree of congestion in each boarding / alighting area Ri is determined by comparing the estimated value of the number of people in the boarding / alighting area of the elevator Ei obtained by the number of person estimation unit 220 with a predetermined threshold value. For example, the degree of congestion obtained above is compared with a predetermined two-step threshold value of 18 people and 24 people, and if it is 18 people or less, it is determined that "congestion level 1: vacant" and 18 people are selected. If the number of people exceeds 24, it is determined that "congestion level 2: slightly crowded", and if the number of people exceeds 24, it is determined that "congestion level 3: very crowded”.
  • the elevator operation control system 200 uses a coefficient indicating the relationship in consideration of the fact that the closer the distance between the elevators is, the more likely it is that more people will move between the boarding / alighting areas of the elevators.
  • the number of people who have traveled between the boarding / alighting areas is estimated, and the estimated number of people in each boarding / alighting area is obtained by referring to the number of passengers of each elevator.
  • the number of people can be estimated in a form that reflects the actual congestion situation in which the areas around the two elevators installed close to each other are heavily congested, but the areas around the elevators installed at a slightly distant position are not so congested. Can be done. Therefore, the degree of congestion of the elevator floor F can be determined in a form that reflects the actual congestion situation.
  • the operation control unit 50 controls the operation of the elevator according to the degree of congestion determined by the degree of congestion determination unit 30, so that the operation of the elevator can be controlled according to the actual congestion situation. It is possible to control the operation of the elevator.
  • the congestion degree determination unit 30 determines the degree of congestion in each boarding / alighting area Ri
  • the operation control unit 50 determines the degree of congestion.
  • the degree determination unit 230 determines the degree of congestion of the entire elevator floor F in addition to the degree of congestion in each boarding / alighting area Ri
  • the operation control unit 50 determines the degree of congestion 30 (or the degree of congestion determination 230).
  • the operation of the elevator Ei may be controlled in consideration of both the degree of congestion of the boarding / alighting area Ri and the degree of congestion of the entire target floor F. For example, if the elevator floor F as a whole has a congestion level of 2 or less and the degree of congestion is level 3 (a level that requires control to reduce the congestion state) only in a part of the boarding / alighting area Ri, the boarding / alighting is performed. Control is performed only for the elevator Ei corresponding to the area Ri in order to reduce the congestion state, and when the elevator floor F as a whole is the congestion level 3, all the elevators Ei are all regardless of the degree of congestion in the boarding / alighting area Ri. It is possible to control the elevator Ei to reduce the congestion state.
  • level 3 a level that requires control to reduce the congestion state
  • the congestion degree determination unit 30 (or the congestion degree determination unit 330) is further provided with warning means capable of outputting a warning announcement in the building by voice, display, or the like.
  • warning means capable of outputting a warning announcement in the building by voice, display, or the like.
  • a warning announcement regarding the congestion status on the elevator floor F may be output to people on the entire building or on any floor.
  • the degree of congestion in the boarding / alighting area Ri determined by the degree of congestion determination unit 30 reaches level 2 or higher, a warning announcement can be output at the timing.
  • the content of the warning announcement may be set stepwise according to the degree of congestion.
  • FIG. 17 is a diagram showing a schematic configuration of an elevator system 3 according to a third embodiment.
  • the same components as those of the elevator system 1 according to the first embodiment are designated by the same reference numerals, and duplicated description thereof will be omitted.
  • the difference from the first embodiment is the content of the processing by the operation control unit 350 constituting the elevator operation control system 300.
  • the elevator operation control system 300 includes a passenger number acquisition unit 10, a number estimation unit 20, a storage unit 40, and an operation control unit 350.
  • the operation control unit 350 controls the operation of the elevator Ei according to the estimated value of the number of people in the boarding / alighting area of the elevator Ei obtained by the number estimation unit 20. Specifically, the estimated value of the number of people in the boarding / alighting area of the elevator Ei obtained by the number estimation unit 20 is compared with a predetermined threshold value (for example, 24 people), and if the estimated value exceeds the threshold value, the elevator Ei If the estimated value does not exceed the threshold value, the elevator Ei is controlled to reduce the congestion state such as acceleration / deceleration of the operating speed and change of the operating pattern.
  • a predetermined threshold value for example, 24 people
  • FIG. 18 is a flowchart showing a flow of processing performed by the elevator operation control system 300.
  • the boarding / alighting number acquisition unit 10 updates the boarding / alighting number information 41 stored in the storage unit 40 based on the boarding / alighting number information acquired regularly or at any time from the boarding / alighting number measuring unit Mi (S31).
  • the number estimation unit 20 updates the number estimation map 42 stored in the storage unit 40, and reads the estimated value of the number of people in the boarding / alighting area Ri of each elevator Ei from the updated number estimation map 42.
  • the estimated value of the number of people in each boarding / alighting area Ri is obtained (S32).
  • the operation control unit 350 sets the variable n to 1 (S33), and determines whether or not the estimated value of the number of people in the boarding / alighting area of the elevator En obtained by the number estimation unit 20 in step S32 exceeds 24 people.
  • the determination is made (S34), and the operation of the elevator En is controlled according to the determination result.
  • step S34 if it is determined that the number of people does not exceed 24 (S34: NO), the normal operation of the elevator En is maintained (S35), and if it is determined that the number of people exceeds 24 (S4: YES), the elevator En is maintained. Controls (acceleration / deceleration of operating speed, change of operating pattern, etc.) for reducing the congestion state are performed (S36).
  • the operation control unit 350 determines whether or not the value of the variable n is 4 (the number of elevators provided so as to have an entrance / exit on the elevator floor F) (S37), and the variable n is not 4. If it is determined (S37: NO), the variable n is updated to the value of n + 1 (S38), and the process is returned to step S5. On the other hand, if it is determined in step S8 that the variable n is 4 (S37: YES), the process ends there.
  • the elevator operation control system 300 reflects the number of passengers acquired for another elevator Ei to a higher degree as the distance between one elevator Ei and another elevator Ei becomes shorter, and the elevator Ei An estimated value of the number of people in the boarding / alighting area Ri is obtained, and the operation of the elevator Ei is controlled according to the magnitude of this estimated value. That is, since the operation of the elevator Ei is controlled according to the actual congestion situation without obtaining the congestion level from the estimated number of people, a simple calculation process is sufficient.
  • the elevator operation control system 300 includes the number estimation unit 220 described in the second embodiment in place of the number estimation unit 20, and the operation control unit 350 is the elevator obtained by the number estimation unit 220.
  • the operation of the elevator Ei may be controlled according to the estimated value of the number of people in the boarding / alighting area of Ei.
  • the number estimation unit 20 obtains an estimated value of the number of people in the boarding / alighting area of the elevator Ei, and the operation control unit 350 obtains the number of people getting on / off the elevator Ei.
  • the person controls the operation of the elevator Ei according to the estimated value of the number of people in the area has been described.
  • the number estimation unit 20 adds the estimated value of the number of people in the boarding / alighting area of the elevator Ei to the elevator floor.
  • the estimated value of the number of people in the entire elevator F is obtained, and the operation control unit 50 considers both the estimated value of the number of people in the boarding / alighting area of the elevator Ei and the estimated value of the number of people in the entire elevator floor F. You may try to control the operation of.
  • the estimated number of people in the elevator floor F as a whole is less than or equal to the first standard number of people (for example, 800 people, which is 80% of the capacity), and the second number is set in advance only for a part of the boarding / alighting area.
  • control is performed only for the elevator Ei corresponding to the boarding / alighting area in order to reduce the congestion state, and the estimated number of people in the elevator floor F as a whole exceeds the first standard number of people.
  • control for reducing the congestion state can be performed for all elevators Ei regardless of the estimated value of the number of people in the boarding / alighting area of each elevator Ei.
  • Elevator system 100 200,300 Elevator operation control system 101,201 Congestion degree determination device 10 Number of passengers acquisition unit 20,220 Number estimation unit 30,230 Congestion degree determination unit 40,240 Storage unit 41 Passengers Number information 42 Number of people estimation map 43 Distance information 45 Probability model 50,350 Operation control unit F Elevator floor E Elevator Gi Elevator Gi Elevator entrance Mi Elevator number measurement unit Ri Elevator area

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

複数の昇降機E1~4の乗降者数をそれぞれ取得する乗降者数取得部10と、前記乗降者数取得部10により取得された各乗降者数に基づいて、各昇降機E1~4の乗降領域にいる人数の推定値をそれぞれ求める人数推定部20と、前記人数推定部20により求められた各推定値に基づいて、各昇降機E1~4の乗降領域における混雑度合いをそれぞれ判定する混雑度判定部30と、前記混雑度判定部30により判定された各混雑度合いに応じて各昇降機E1~4の運転を制御する運転制御部50とを備え、前記人数推定部20は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである昇降機運転制御システム100を提供する。

Description

混雑度判定装置および昇降機運転制御システム
 この発明は、複数の昇降機が設置された建物において、各昇降機の乗降領域における混雑度合いを判定する混雑度判定装置および各昇降機の乗降領域にいる人数の推定値に基づいて昇降機の運転を制御する昇降機運転制御システムに関する。
 従来、エレベーター、エスカレーターなどの昇降機が設置された建物において、各昇降機フロアの混雑度合いに応じて、昇降機の運転を制御する技術が知られている。特許文献1には、乗客コンベアを乗り降りする人数を計測し、計測した人数に基づいて各昇降機フロアにいる人数を算出し、算出結果により判断される混雑状況に応じて各乗客コンベアを加減速することが提案されている。特許文献2には、エレベーターを乗り降りする人数を計測し、計測した人数に基づいて各昇降機フロアにいる人数を算出し、算出結果により判断される混雑状況に応じて各乗客コンベアを加減速することが提案されている。特許文献3には、複数のエレベーターバンクが存在する建物において、バンクごとにエレベーターかごの内部負荷率に基づいて混雑状況を判断し、各バンクの混雑状況に応じてエレベーター利用者を誘導することが提案されている。
特開2012-197158号公報(第5頁、図4) 特開2013-175049号公報(第11-12頁、図13) 国際公開第2012-147160号(第4-5頁、図3)
 ところで、複数の昇降機が設置された建物において、昇降機フロアの実際の混雑状況は、その昇降機フロア全体で均一ではなく複数の昇降機の位置関係に応じて場所ごとに異なる。例えば、2つの昇降機が互いに近くに設置され、もう一つの昇降機が少し離れた位置に設置されている場合、互いに近くに設置された2つの昇降機周辺は大きく混雑するが、少し離れた位置に設置された昇降機周辺はあまり混雑しないことがある。
 しかしながら、上記先行技術に開示された技術では、昇降機フロア全体の混雑状況を画一的に推定しそれに基づいて昇降機の運転を制御するようにしているから、例えば、あまり混雑していない場所に設置された昇降機の運転を制限したり、或いは、大きく混雑している場所に設置された昇降機の運転を通常通りに行ったりしてしまう。すなわち、実際の混雑状況に応じた適切な昇降機の運転制御を行うことができないとの課題があった。
 そこで、本発明の目的は、複数の昇降機が設置される建物の昇降機フロアの混雑度合いを実際の混雑状況を反映させた形で判定できる混雑度判定装置、及び実際の混雑状況に応じた昇降機の運転制御を行うことができる昇降機運転制御システムを提供することである。
 本発明に係る混雑度判定装置は、複数の昇降機が設置された建物の昇降機フロアにおける混雑度合いを判定するものであって、前記昇降機フロアにおける前記複数の昇降機の乗降者数をそれぞれ取得する乗降者数取得手段と、前記乗降者数取得手段により取得された各乗降者数に基づいて、前記昇降機フロアに設定された各昇降機の乗降領域にいる人数の推定値をそれぞれ求める人数推定手段と、前記人数推定手段により求められた各推定値に基づいて、各昇降機の乗降領域における混雑度合いをそれぞれ判定する混雑度判定手段とを備え、前記人数推定手段は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである。
 本発明に係る第1の昇降機運転制御システムは、複数の昇降機が設置された建物の昇降機フロアにおける前記複数の昇降機の乗降者数をそれぞれ取得する乗降者数取得手段と、前記乗降者数取得手段により取得された各乗降者数に基づいて、前記昇降機フロアに設定された各昇降機の乗降領域にいる人数の推定値をそれぞれ求める人数推定手段と、前記人数推定手段により求められた各推定値に基づいて、前記各昇降機の乗降領域における混雑度合いをそれぞれ判定する混雑度判定手段と、前記混雑度判定手段により判定された各混雑度合いに応じて各昇降機の運転をそれぞれ制御する運転制御手段とを備え、前記人数推定手段は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである。
 本発明に係る第2の昇降機運転制御システムは、複数の昇降機が設置された建物の昇降機フロアにおける前記複数の昇降機の乗降者数をそれぞれ取得する乗降者数取得手段と、前記乗降者数取得手段により取得された各乗降者数に基づいて、前記昇降機フロアに設定された各昇降機の乗降領域にいる人数の推定値をそれぞれ求める人数推定手段と、前記人数推定手段により求められた各推定値に応じて各昇降機の運転をそれぞれ制御する運転制御手段とを備え、前記人数推定手段は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである
 本発明に係る混雑度判定装置によれば、複数の昇降機が設置される建物の昇降機フロアの混雑度合いを実際の混雑状況を反映させた形で判定できる。
 本発明に係る第1及び第2の昇降機運転制御システムによれば、実際の混雑状況に応じた昇降機の運転制御を行うことができる。
実施形態1に係る昇降機システムの概略構成図 昇降機フロアにおける昇降機の配置を示す図 乗降者数の情報の例を示す図 人数推定マップの例を示す図(T=T0) 更新された人数推定マップを示す図(T=T1) 人数推定部による拡散処理を示す図(T=T1) 人数推定部による判定処理を示す図(T=T1) 更新された人数推定マップの例を示す図(T=T2) 更新された人数推定マップの例を示す図(T=T3) 乗降領域の例を示す図 乗降領域にいる人数の算出例を示す図 昇降機運転制御システムのハードウェア構成図 昇降機運転制御システムにより行われる処理の流れを示すフローチャート 実施形態2に係る昇降機システムの概略構成図 昇降機間の距離に関する情報を示す図 基準位置からの人の移動確率を示す確率モデルを示すグラフ 実施形態3に係る昇降機システムの概略構成図 昇降機運転制御システムにより行われる処理の流れを示すフローチャート
 [実施の形態1]
 図1は、本発明の実施の形態に係る昇降機システム1の概略構成を示す図である。昇降機システム1は、複数階の昇降機フロアを有する建物において、各昇降機フロアに乗降口を有するように設けられた複数の昇降機E1,E2,E3,E4(以下単に昇降機Eiと記載する場合がある)と、各昇降機Eiの乗降者数を計測する乗降者数計測部M1,M2,M3,M4(以下単に乗降者数計測部Miと記載する場合がある)と、各昇降機Eiの運転を制御する昇降機運転制御システム100を備えている。
 昇降機運転制御システム100は、混雑度判定装置101と、運転制御部50を備えており、混雑度判定装置101は、乗降者数計測部Miにより計測された乗降者数情報を取得する乗降者数取得部10と、各昇降機Eiの乗降領域にいる人数の推定値を求める人数推定部20と、各昇降機Eiの乗降領域における混雑度合いを判定する混雑度判定部30と、混雑度判定装置101で用いられる各種情報を記憶する記憶部40を備えている。
 ここで、「乗降領域」は、昇降機に乗り降りするために歩行する人の通路を構成する領域を意味する。たとえば、昇降機の乗降口前の領域とその領域に続く所定範囲の領域を乗降領域である。
 図2は、昇降機フロアFにおける昇降機E1,E2,E3,E4の配置を示す図である。昇降機E1,E2はエレベーターであり、昇降機E3は下降運転のエスカレーターであり、昇降機E4は上昇運転のエスカレーターであるとする。昇降機Eiは、人が乗り降りするための乗降口G1,G2,G3,G4(以下単に乗降口Giと記載する場合がある)を有する。図2中の矢印は、各乗降口Giにおける人の乗り降りを示す。この矢印で示すように、エレベーターである昇降機E1,E2では人の乗り降りの両方の場合があるが、下降運転のエスカレーターである昇降機E3では人が乗る場合のみがあり、上昇運転のエスカレーターである昇降機E4では人が降りる場合のみがある。
 図1に戻って、乗降者数計測部Miは、昇降機フロアFから各昇降機Eiに乗り降りする乗降者数を計測し、計測により得られた乗降者数情報を、定期的に又は随時、有線又は無線によって接続された乗降者数取得部10へ送信する。乗降者数計測部M1,M2は、例えば昇降機E1、E2のかごに設置された画像解析型センサ、重量センサ等により昇降機E1,E2内の人数の増減を検知するように構成され、昇降機フロアFでの乗り降りの結果として昇降機E1,E2内の人数が増えた場合は、その増えた人数を昇降機フロアFから昇降機E1,E2に乗った人数として計測する。一方、人数が減った場合はその減った人数を昇降機E1,E2から降りた人数として計測する。
 乗降者数計測部M3は、例えば乗降口G3付近に設置された光電センサ、超音波センサ等により乗降口G3を通過する人を検知するように構成され、乗降口G3を通過した人数を、昇降機E3に乗った人数として計測する。乗降者数計測部M4は、例えば乗降口G4付近に設置された光電センサ、超音波センサ等により乗降口G4を通過する人を検知するように構成され、乗降口G4を通過した人数を、昇降機E4から降りた人数として計測する。
 乗降者数取得部10は、乗降者数計測部Miから定期的に又は随時送られてくる乗降者数情報を取得する。また、単位時間ごとに昇降機Eiを乗り降りした人数を集計し、記憶部40に記憶されている乗降者数情報41を更新する。この乗降者数情報41は、各昇降機Eiにおける人の乗り降りによる昇降機フロアFにおける人の増減を示す情報であり、後述する人数推定部20の処理に利用される。図3に乗降者数情報41の例を示す。乗降者数情報41には、単位時間(たとえば3秒)毎に更新されるT=T1,T2,T3,…の各タイミングで、その単位時間中に昇降機Eiを乗り降りした人数を集計した値が含まれている。図中、昇降機Eiから降りた人数は昇降機フロアFにおける人数の増加としてプラス値で表され、昇降機Eiに乗った人数は昇降機フロアFにおける人数の減少としてマイナス値で表されている。
 人数推定部20は、各昇降機Eiの乗降領域にいる人数の推定値を求める。具体的には、記憶部40に予め記憶されている人数推定マップ42を単位時間ごとに更新しつつ、更新された人数推定マップ42から各昇降機Eiの乗降領域にいる人数の推定値を読み取ることによって、各乗降領域にいる人数の推定値を求める。
 図4に人数推定マップ42の例を示す。人数推定マップ42は、昇降機フロアFを格子状に分割してなる複数の単位領域1A、2A、3A…、8J、9J、10Jの各々に人数の推定値を対応付けたものである。このとき、昇降機Eiそのものが位置する単位領域3C,5C,4G,6G(図中斜線で示す単位領域)と、壁や梁などによりその単位領域への人の移動が制限される単位領域(図示せず)は、推定値の対応付け対象から除外することができる。以下、これらの領域を除外領域という。なお、単位領域の大きさは、単位時間(たとえば3秒)中の人の歩行による移動範囲に基づいて設定することができる。たとえば単位時間は3秒であり、人の平均移動速度は1.5m/sである場合、1つの単位領域を4.5m×4.5mとし、45m×45mの対象フロアFを10×10個の単位領域に分割することができる。
 人数推定部20は、単位時間ごとに人数推定マップ42を更新する。各更新においては、昇降機フロアF内にいる人は現在の位置から全方向に広がるように移動するか、その位置に留まる可能性があることに基づいて、各単位領域における人数の推定値を修正する拡散処理と、単位時間の間に新たに昇降機Eiを乗り降りした乗降者数に応じて人数を加除する加除処理とを行う。
 以下、拡散処理と加除処理の詳細を説明する。まず、拡散処理では、人数の推定値を対応付けられた全ての単位領域を順次注目単位領域として設定しながら、設定された注目単位領域の周囲に大きさ3×3の近傍領域を設定し、近傍領域内の上記説明した除外領域を除く各単位領域に、注目単位領域の更新前の人数を分け与える演算を行う。
 以下、具体例を用いて拡散処理を説明する。ここではT=T1おける更新が完了してから単位時間が経過し、これからT=T2における更新を行う場合を例に説明する。図5はT=T1において更新された人数推定マップ42であり、図6は、人数推定マップ42の一部領域において行われる演算内容を示したものである。ここでは、理解を容易にするため、単位領域3Dを注目単位領域とした演算処理と、単位領域5Dを注目単位領域とした演算処理とを示し、その他の単位領域を注目単位領域とした演算処理は省略している。図6に示すように、単位領域3Dを注目単位領域とした演算処理では、単位領域3Dの周囲に大きさ3×3の近傍領域を設定し、近傍領域内の除外領域3Cを除く8つの単位領域2C,4C,2D,3D,4D,2E,3E,4Eに、単位領域3Dの更新前の値である12の1/8である1.5ずつを分け与える。単位領域5Dを注目単位領域とした演算処理でも、その近傍領域内の除外領域5Cを除く8つの単位領域に、単位領域5Dの更新前の値である8の1/8である1ずつを分け与える。同様な要領で全ての単位領域のそれぞれを注目単位領域として演算を行う。これにより、たとえば図6に示す単位領域4C,4D,4Eの値はいずれも、単位領域3D,5Dから分け与えられた値1.5と1の合計である2.5となる。
 この拡散処理では、単位時間が経過する度に各単位領域の値が1つ隣の単位領域へ約1/9の度合いで反映されることから、ある単位領域の値が1つ隣の単位領域に反映されるのは、単位時間が1回経過したタイミングであり、かつ、その度合いは約1/9となるに対し、2つ隣の単位領域に反映されるのは、単位時間が2回経過したタイミングであり、かつ、その度合いは約1/81となる。同様に、3つ以上離れた単位領域には、さらに遅れたタイミングで、かつ、より低い度合いでの反映となる。すなわち、距離が近いほど高い度合いで反映され、距離が遠いほど遅れたタイミングで反映される。
 加除処理では、記憶部40に記憶された乗降者数情報41を参照して、その更新タイミングにおける各昇降機Eiの乗降者数を取得し、その値を昇降機Eiの乗降口の位置に対応する単位領域(以下、乗降口領域という)に加除する。ここで、各昇降機Eiの乗降口の位置に対応する単位領域は、昇降機Eiそのものが位置する単位領域3C,5C,4G,6Gに対し、乗降口Gi側から隣接する単位領域3D,5D,F4、F5(以下、乗降口領域3D,5D,F4、F5という)をいう。図7は、T=T2の更新において、昇降機E1,E2の乗降者数による人数の増減を乗降口領域3D,5Dに反映させる処理を示したものである。図3に示すように、T=T2における昇降機E1,E2の乗降者数は9,12であることから、乗降口領域3Dには+9、乗降口領域5Dには+12の演算を行う。ここでは図示していないが、乗降口領域F4、F5についても同様な加除処理が行われる。
 この加除処理では、上記説明のように、乗降者数情報41においてプラス値で表される人数はそのままプラス値として反映させ、乗降者数情報41においてマイナス値で表される人数もそのままマイナスの値として反映させる。ただし、反映させた結果として、単位領域における人数の推定値がマイナスとなる場合は、人数がマイナスの状態となることは考えられないことから、その値をゼロに修正する。
 図8は、T=T2において、以上で説明した拡散処理と加除処理により更新された人数推定マップ42を示す図である。T=T3以降の更新においても、T=T2における更新について上記説明した要領と同様に、人数の推定値を対応付けられた全ての単位領域を順次注目単位領域として設定しながら、注目単位領域の更新前の人数を近傍領域に分け与える拡散処理と、各昇降機Eiの乗降口領域に、単位時間の間に新たに昇降機Eiに乗り降りした乗降者数に応じて人数を加除する加除処理とを行う。
 図9は、T=T3において、同様な処理により更新された人数推定マップ42を示す図である。図9において、たとえば単位領域1Eの値は、T=T2のタイミングで0を超える値を有する近傍領域2D, 2Eから分け与えられた値を合計した(1.5/8)+(1.5/9)=0.4(小数点以下第2桁位を四捨五入した値)となる。また、昇降機E3の乗降口領域である単位領域4Fの値は、T=T2のタイミングで0を超える値を有する近傍領域3E,4E,5E,4F,5Fから分け与えられた値を合計した値に対してT=T3における昇降機E3の乗降者数を加除した値として求められる。具体的には、近傍領域3E,4E,4F,5E,5Fから分け与えられる値(1.5/9)+(3.5/9)+(2/9)+(1/7)+(9/7)=2.1(小数点以下第2位を四捨五入した値)に対して、T=T3における昇降機E3の乗降者数である-3(図3参照)を加えた値、すなわち(2.1)+(-3)=(-0.9)として求められる。ここで、この求められた値はマイナスであることから、最終的にゼロに修正した値となる。
 人数推定部20は、更新された人数推定マップ42から各昇降機Eiの乗降領域にいる人数の推定値を読み取ることによって、各乗降領域にいる人数の推定値を求める。ここで、昇降機Eiの乗降領域は、昇降機Eiに乗り降りするために歩行する人の通路を構成する領域を意味し、昇降機Eiの乗降口前の領域とその領域に続く所定範囲の領域が乗降領域を形成する。本実施形態では、昇降機Eiの乗降領域として、図10に示すように、昇降機Eiの乗降口領域と、その乗降口領域の昇降機Eiに向かって左右両側に隣接する単位領域とからなる領域R1,R2,R3,R4(以下単に乗降領域Riと記載する場合がある)を用いる。
 これにより、たとえばT=T3の場合、図11に示すように、昇降機E1の乗降領域R1に含まれる各単位領域2D,3D,4Dにいる人数の推定値の合計24.5人(=2+18.1+4.4)が、昇降機E1の乗降領域R1にいる人数の推定値として求められる。同様な処理により、昇降機E2の乗降領域R2にいる人数の推定値としては6.6人が求められ、昇降機E3の乗降領域R3にいる人数の推定値としては15.4人が求められ、昇降機E4の乗降領域R4にいる人数の推定値としては16.5人が求められる。
 混雑度判定部30は、人数推定部20により求められた乗降領域Riにいる人数の推定値を用いて、各乗降領域Riにおける混雑度合いを判定する。具体的には、まず、昇降機フロアF全体としての収容人数の情報を基に、各乗降領域R1,R2,R3,R4の収容人数を求め、その収容人数に対する比率を混雑度として求める。たとえば、10×10単位領域からなる昇降機フロアF全体としての収容人数が1000人であるとすると、3つの単位領域からなる乗降領域Riの収容人数は30人となる。これにより、たとえばT=T3では、人数推定部20により求められた乗降領域R1にいる人数の推定値は24.5人であることから、収容人数30人に対する推定値24.5人の比率82%(小数点以下第1位で四捨五入した値。以下同様)が乗降領域R1における混雑度として求められる。同様な処理により、乗降領域R2における混雑度としては22%が求められ、乗降領域R3における混雑度としては51%が求められ、乗降領域R4における混雑度としては55%が求められる。
 混雑度判定部30は、その求められた混雑度を、予め定められた閾値と比較することによって各乗降領域Riにおける混雑度合いを判定する。具体的には、上記求められた混雑度を、予め定められた2段階の閾値60%、80%と比較して、60%以下の場合は「混雑レベル1:空いている」と判定し、60%を超え80%以下の場合は「混雑レベル2:やや混雑している」と判定し、80%を超える場合は「混雑レベル3:非常に混雑している」と判定する。たとえばT=T3では、乗降領域R2,R3,R4は混雑度が22%,51%,55%であり、いずれも60%超えていないことから、混雑レベル1と判定され、乗降領域R1は混雑度が82%であり、80%を超えていることから、混雑レベル3と判定される。
 運転制御部50は、混雑度判定部30により判定された乗降領域Riの混雑度合いに応じて昇降機Eiの運転を制御する。具体的には、乗降領域Riの混雑レベルが2以下であると判定された昇降機Eiについては通常運転を維持し、乗降領域Riの混雑レベル3であると判定された昇降機Eiについては混雑状態を軽減させるために、運転速度の加減速、運転パターンの変更等の制御を行う。混雑状態を軽減する制御の対象となる昇降機Eiがエレベーターである場合は、昇降機Eiを停止させるフロアから当該昇降機フロアFを除外する制御、運転速度の減速制御等の制御を行うことができる。また、混雑状態を軽減する制御の対象となる昇降機Eiが上昇運転のエスカレーターである場合は、運転速度の減速制御、さらには一次的な運転停止等の制御を行うことができる。混雑状態を軽減する制御の対象となる昇降機Eiが下降運転のエスカレーターである場合は、安全を確保可能な範囲内で、運転速度の加速制御を行うことができる。
 運転制御部50は、たとえばT=T3では、乗降領域の混雑レベルが2以下であると判定された昇降機E2,E3,E4については通常運転を維持し、乗降領域R1の混雑レベル3であると判定された昇降機E1については混雑状態を軽減させるために、当該昇降機フロアFを停止対象フロアから除外する制御、運転速度の減速制御等の制御を行う。
 昇降機運転制御システム100は、図12に示すように、プロセッサ5、メモリ6及び信号入出力部7を持ったコンピュータにより構成されている。乗降者数取得部10、人数推定部20、混雑度判定部30、記憶部40及び運転制御部50の機能は、このコンピュータにより実現される。即ち、コンピュータのメモリ6には、乗降者数取得部10、人数推定部20、混雑度判定部30、記憶部40及び運転制御部50の機能を実現するためのプログラムが格納されている。また、乗降者数情報41及び人数推定マップ42等の情報も、メモリ6に格納される。プロセッサ5は、メモリ6に格納されたプログラムに基づいて、昇降機運転制御システム100の機能に関する演算処理を実行する。
 次に、処理動作について説明する。図13は、昇降機運転制御システム100により行われる処理の流れを示すフローチャートである。まず、乗降者数取得部10が、乗降者数計測部Miより定期的又は随時取得される乗降者数情報に基づいて、記憶部40に記憶されている乗降者数情報41を更新する(S1)。次いで、人数推定部20が、記憶部40に記憶されている人数推定マップ42を更新し、更新された人数推定マップ42から各昇降機Eiの乗降領域Riにいる人数の推定値を読み取ることによって、各乗降領域Riにいる人数の推定値を求める(S2)。次いで、混雑度判定部30が、人数推定部20により求められた乗降領域Riにいる人数の推定値を用いて、各乗降領域Riにおける混雑度合いを判定する(S3)。
 次いで、運転制御部50が、変数nに1を設定し(S4)、昇降機Enの乗降領域RnについてステップS3で判定された混雑度合いがレベル3(混雑状態を軽減させるための制御を必要とするレベル)であるか否かを判定し(S5)、その判定結果に応じて昇降機Enの運転を制御する。ステップS5において、混雑度合いがレベル1又は2であり、レベル3ではないと判定された場合は(S5:NO)、昇降機Enについて通常運転を維持させ(S6)、レベル3であると判定された場合は(S5:YES)、昇降機Enについて混雑状態を軽減させるための制御(運転速度の加減速、運転パターンの変更等)を行う(S7)。次いで、運転制御部50が、変数nの値が4(対象フロアFに乗降口を有するように設けられた昇降機の台数)であるか否かを判定し(S8)、変数nが4ではないと判定された場合は(S8:NO)、変数nをn+1の値に更新し(S9)、ステップS5に処理を戻す。一方、ステップS8において変数nが4であると判定された場合は(S8:YES)、そこで処理を終了する。
 昇降機運転制御システム100は、上記一連の処理を単位時間ごとに繰り返し行うことによって、各昇降機Eiの乗降領域Riにおける混雑状況を継続的に監視し、乗降領域Riにおける混雑度合いに応じて昇降機Eiに対する混雑状況を改善するための運転制御をタイムリーに実行することができる。
 以上に説明したように、昇降機運転制御システム100は、ある昇降機Eiと他の昇降機Eiとの距離が近いほど他の昇降機Eiに関して取得された乗降者数を高い度合いで反映させて当該昇降機Eiの乗降領域Riにいる人数の推定値を求めている。すなわち、人数推定マップ42の単位領域の人数の推定値をその影響が徐々に小さくなるようにその周囲の単位領域に分け与えていくので、昇降機間の距離が近ければ近いほどその影響を大きく受けた形で人数を推定できる。そのため、例えば、互いに近くに設置された2つの昇降機Ei周辺は大きく混雑するが少し離れた位置に設置された昇降機Ei周辺はあまり混雑しないという実際の混雑状況を反映した形で人数の推定を行うことができる。よって、昇降機フロアFの混雑度合いを実際の混雑状況を反映させた形で判定できる。
 また、昇降機運転制御システム100は、混雑度判定部30により判定された混雑度合いに応じて昇降機の運転を制御する運転制御部50を備えているので、実際の混雑状況に応じた昇降機Eiの運転制御を行うことができる。
 また、昇降機運転制御システム100では、人数推定部20による人数推定マップ42の更新において拡散処理を含むことによって、人数推定の演算対象となる昇降機と他の昇降機との距離が遠いほど他の昇降機に関して取得された乗降者数を遅れたタイミングで反映させているので、人の移動に掛かる時間の影響がさらに考慮された、実際の混雑状況をより反映させた形で混雑度合いを判定できる。
 なお、上記実施の形態では、人数推定マップ42において、昇降機Eiの乗降口領域と、その乗降口領域の昇降機Eiに向かって左右両側に隣接する単位領域とからなる領域を昇降機Eiの乗降領域Riとする場合について説明したが、これに限定されない。乗降領域は、本件発明を適用する対象フロアのレイアウトに応じて、昇降機に乗り降りするために歩行する人の通路を構成する所定範囲の領域を適宜設定すればよい。
 [実施の形態2]
 以下、第2の実施の形態に係る昇降機システム2について説明する。図14は、第2の実施の形態に係る昇降機システム2の概略構成を示す図である。なお、第1の実施の形態に係る昇降機システム1と同様の構成については、同一符号を付して重複した説明は省略する。第1の実施の形態と異なる点は、記憶部240、人数推定部220、混雑度判定部230による処理の内容である。
 昇降機システム2は、図14に示すように、複数の昇降機Ei(i=1,2,3,4)と、各昇降機Eiの運転を制御する昇降機運転制御システム200を備えている。昇降機運転制御システム200は、混雑度判定装置201と、運転制御部50を備えており、混雑度判定装置201は、乗降者数取得部10と、人数推定部220と、混雑度判定部230と、混雑度判定装置201で用いられる各種情報を記憶する記憶部240を備えている。
 記憶部240には、乗降者数情報41と、昇降機Ei同士の距離に関する情報である距離情報43と、基準位置からの距離に対する基準位置からの人の移動確率を示す確率モデル45とが記憶されている。距離情報43としては、昇降機Ei(i=1,2,3,4)と昇降機Ej(j=1,2,3,4)の全ての組み合わせについて距離dijが記憶されている。具体的には、図15に示すような、昇降機E1と他の各昇降機E2,E3,E4との間の距離d12(=d21),d13(=d31),d14(=d41)に加えて、昇降機E1と昇降機E1そのものとの距離(=d11=0)が記憶されている。また、図示はしていないが、昇降機E2と昇降機E3,E4との間の距離d23(=d32),d24(=d42),昇降機E3と昇降機E4との間の距離d34(=d43)に加えて、d22=d33=d44=0も記憶されている。また、確率モデル45としては、図16に示すような、基準位置からの距離dに対する基準位置からの人の移動確率kij(係数)を示す関数f(d)が記憶されている。なお、この確率モデル45では、人の移動確率が正規分布(ガウス分布)に従うことを仮定している。
 図14に戻って、人数推定部220は、各昇降機Eiの乗降領域にいる人数の推定値を求める。また、その推定値を単位時間ごとに更新する。たとえば図3に示すように、乗降者数情報41が単位時間ごとに更新されているとすると、T=T1においては、昇降機Eiの乗降者数をそのまま昇降機Eiの乗降領域にいる人数の推定値とする。T=T2以降のT=Tnにおいては、T=Tn-1のタイミングで各昇降機Eiの乗降領域にいると推定された人のT=Tn-1からT=Tnまでの間における移動を想定した第1の演算処理と、T=Tn-1からT=Tnまでの間に新たに昇降機Eiを乗り降りした乗降者数を加除する第2の演算処理とを行うことによって、T=Tnにおける各昇降機Eiの乗降領域にいる人数の推定値を求める。
 以下、第1の演算処理と第2の演算処理の詳細を説明する。まず、第1の演算処理では、記憶部240に記憶されている確率モデル45の関数f(d)に距離の情報dijを適用して係数kijを求める。なお、この係数kijを予め求めておき、記憶部240に参照可能に記憶させておいてもよい。次いで、昇降機Eiの乗降領域から昇降機Ejの乗降領域に移動した後に昇降機Eiの乗降領域に残っている人数を求める演算を、昇降機Ei(i=1,2,3,4)と昇降機Ej(j=1,2,3,4)の全ての組み合わせについて行う。
 具体的には、この第1の演算処理では、T=Tn-1のタイミングで各昇降機Eiの乗降領域にいると推定された人数に係数kij(i=j)を乗じることにより、昇降機Eiの乗降領域から昇降機Ejの乗降領域に移動した後に昇降機Eiの乗降領域に残っている残余人数を求める。また、T=Tn-1のタイミングで各昇降機Ejの乗降領域にいると推定された人数に係数kij(i≠j)を乗じることにより、昇降機Ejの乗降領域から昇降機Eiの乗降領域に移動した移動人数を求める。そして、その求められた残余人数と移動人数を足し合わせて昇降機Eiの乗降領域における移動後の人数とする。たとえば、T=T1において求められた昇降機Eiの乗降領域にいる人数の推定値をN1,N2,N3,N4とすると、T=T2における昇降機E1の乗降領域にいる移動後の人数は、残余人数(N1×k11)に、移動人数{(N2×k12)+(N3×k13)+(N4×k14)}を足し合わせることにより求め、昇降機E2の乗降領域にいる移動後の人数は、残余人数(N2×k21)に、移動人数{(N2×k22)+(N3×k23)+(N4×k24)}を足し合わせることにより求める。昇降機E3,E4の乗降領域にいる移動後の人数も同様な要領で求める。
 第2の演算処理では、記憶部40に記憶された乗降者数情報41を参照してその更新タイミングにおける各昇降機Eiの乗降者数を取得し、取得された乗降者数の値を第1の演算処理により得られた各昇降機E1の乗降領域にいる移動後の人数に足し合わせる。具体的には、上記第1の演算処理により求められた各昇降機Eiの乗降領域における移動後の人数(残余人数+移動人数)に、単位時間の間に新た昇降機Eiを乗り降りした人数を足し合わせて、最終的な人数の推定値とする。なお、この第2の演算処理においては、乗降者数情報41においてプラス値で表される人数はプラス値のまま足し合わせ、乗降者数情報41においてマイナス値で表される人数はマイナスの値のまま足し合わせる。足し合わせた結果として人数の推定値がマイナスとなる場合は、人数がマイナスの状態となることは考えられないことから、その値をゼロに修正する。
 混雑度判定部230は、人数推定部220により求められた昇降機Eiの乗降領域にいる人数の推定値を用いて、各乗降領域における混雑度合いを判定する。具体的には、人数推定部220により求められた昇降機Eiの乗降領域にいる人数の推定値を予め定められた閾値と比較することによって、各乗降領域Riにおける混雑度合いを判定する。たとえば、上記求められた混雑度を、予め定められた2段階の閾値18人、24人と比較して、18人以下の場合は「混雑レベル1:空いている」と判定し、18人を超え24人以下の場合は「混雑レベル2:やや混雑している」と判定し、24人を超える場合は「混雑レベル3:非常に混雑している」と判定する。
 以上に説明したように、昇降機運転制御システム200は、昇降機間の距離が近いほど多くの人がそれら昇降機の乗降領域間を移動する可能性が高いことを考慮し、その関係を示す係数を使って乗降領域間を行き来した人の数を推定し、更にそれに各昇降機の乗降者数を参照して各乗降領域の人数の推定値を求めている。これにより、例えば、互いに近くに設置された2つの昇降機周辺は大きく混雑するが少し離れた位置に設置された昇降機周辺はあまり混雑しないという実際の混雑状況を反映した形で人数の推定を行うことができる。よって、昇降機フロアFの混雑度合いを実際の混雑状況を反映させた形で判定できる。
 また、昇降機運転制御システム200においては、運転制御部50が、混雑度判定部30により判定された混雑度合いに応じて昇降機の運転を制御するようになっているので、実際の混雑状況に応じた昇降機の運転制御を行うことができる。
 なお、上記第1及び第2の実施の形態では、混雑度判定部30(又は混雑度判定部230)が、各乗降領域Riにおける混雑度合いを判定するものであり、運転制御部50が、混雑度判定部30(又は混雑度判定部230)により判定された乗降領域Riの混雑度合いに応じて昇降機Eiの運転を制御する者である場合について説明したが、たとえば混雑度判定部30(又は混雑度判定部230)が、各乗降領域Riにおける混雑度合いに加えて、昇降機フロアF全体の混雑度合いを判定するものであり、運転制御部50が、混雑度判定部30(又は混雑度判定部230)により判定された乗降領域Riの混雑度合いと対象フロアF全体の混雑度合いの両方を考慮して昇降機Eiの運転を制御するようにしてもよい。たとえば、昇降機フロアF全体としては混雑レベル2以下であり、一部の乗降領域Riについてのみ混雑度合いがレベル3(混雑状態を軽減させるための制御を必要とするレベル)である場合は、その乗降領域Riに対応する昇降機Eiについてのみ混雑状態を軽減させるために制御を行い、昇降機フロアF全体として混雑レベル3である場合は、個々の昇降機Eiの乗降領域Riにおける混雑度合いに関わらず、全ての昇降機Eiについて混雑状態を軽減させるための制御を行うことができる。
 また、上記第1及び第2の実施の形態において、音声や表示等により建物内において警告のアナウンスを出力することができる警告手段をさらに備え、混雑度判定部30(又は混雑度判定部330)により判定された乗降領域Riの混雑度合いに応じて、建物全体又は任意のフロアにいる人に対し、昇降機フロアFにおける混雑状況に関し警告のアナウンスを出力するようにしてもよい。たとえば、混雑度判定部30により判定された乗降領域Riの混雑度合いがレベル2以上になった場合に、タイミングで警告のアナウンスを出力するようにすることができる。また、警告のアナウンスの内容は、混雑度合いに応じて段階的に設定してもよい。
 [実施の形態3]
 以下、第3の実施の形態に係る昇降機システム3について説明する。図17は、第3の実施の形態に係る昇降機システム3の概略構成を示す図である。なお、第1の実施の形態に係る昇降機システム1と同様の構成については、同一符号を付して重複した説明は省略する。第1の実施の形態と異なる点は、昇降機運転制御システム300を構成する運転制御部350による処理の内容である。
 昇降機システム3は、図17に示すように、複数の昇降機Ei(i=1,2,3,4)と、各昇降機Eiの運転を制御する昇降機運転制御システム300を備えている。昇降機運転制御システム300は、乗降者数取得部10と、人数推定部20と、記憶部40と、運転制御部350を備えている。
 運転制御部350は、人数推定部20により求められた昇降機Eiの乗降領域にいる人数の推定値に応じて昇降機Eiの運転を制御する。具体的には、人数推定部20により求められた昇降機Eiの乗降領域にいる人数の推定値を、予め定められた閾値(たとえば24人) と比較し、推定値が閾値を超える場合は昇降機Eiについて通常運転を維持し、推定値が閾値を超えない場合は昇降機Eiについて、運転速度の加減速、運転パターンの変更等の混雑状態を軽減させるための制御を行う。
 次に、処理動作について説明する。図18は、昇降機運転制御システム300により行われる処理の流れを示すフローチャートである。まず、乗降者数取得部10が、乗降者数計測部Miより定期的又は随時取得される乗降者数情報に基づいて、記憶部40に記憶されている乗降者数情報41を更新する(S31)。次いで、人数推定部20が、記憶部40に記憶されている人数推定マップ42を更新し、更新された人数推定マップ42から各昇降機Eiの乗降領域Riにいる人数の推定値を読み取ることによって、各乗降領域Riにいる人数の推定値を求める(S32)。
 次いで、運転制御部350が、変数nに1を設定し(S33)、ステップS32において人数推定部20により求められた昇降機Enの乗降領域にいる人数の推定値が24人を超えるか否かを判定し(S34)、その判定結果に応じて昇降機Enの運転を制御する。ステップS34において、24人を超えない判定された場合は(S34:NO)、昇降機Enについて通常運転を維持させ(S35)、24人を超えると判定された場合は(S4:YES)、昇降機Enについて混雑状態を軽減させるための制御(運転速度の加減速、運転パターンの変更等)を行う(S36)。次いで、運転制御部350が、変数nの値が4(昇降機フロアFに乗降口を有するように設けられた昇降機の台数)であるか否かを判定し(S37)、変数nが4ではないと判定された場合は(S37:NO)、変数nをn+1の値に更新し(S38)、ステップS5に処理を戻す。一方、ステップS8において変数nが4であると判定された場合は(S37:YES)、そこで処理を終了する。
 以上に説明したように、昇降機運転制御システム300は、ある昇降機Eiと他の昇降機Eiとの距離が近いほど他の昇降機Eiに関して取得された乗降者数を高い度合いで反映させて当該昇降機Eiの乗降領域Riにいる人数の推定値を求め、この推定値の大小に応じて昇降機Eiの運転を制御している。すなわち、人数の推定値から混雑レベルを求めなくても実際の混雑状況に合わせた形で昇降機Eiの運転を制御するから、簡単な演算処理で済む。
 なお、昇降機運転制御システム300においては、人数推定部20に代えて、上記第2の実施の形態に記載の人数推定部220を備え、運転制御部350は、人数推定部220により求められた昇降機Eiの乗降領域にいる人数の推定値に応じて昇降機Eiの運転を制御するようにしてもよい。
 また、昇降機運転制御システム300では、人数推定部20が、昇降機Eiの乗降領域にいる人数の推定値を求めるものであり、運転制御部350が、人数推定部20により求められた昇降機Eiの乗降領域にいる人数の推定値に応じて昇降機Eiの運転を制御する者である場合について説明したが、たとえば人数推定部20が、昇降機Eiの乗降領域にいる人数の推定値に加えて、昇降機フロアF全体にいる人数の推定値を求めるものであり、運転制御部50が、昇降機Eiの乗降領域にいる人数の推定値と昇降機フロアF全体にいる人数の推定値の両方を考慮して昇降機Eiの運転を制御するようにしてもよい。たとえば、昇降機フロアF全体としては人数の推定値が予め定めた第1の基準人数(例えば収容人数の80%である800人)以下であり、一部の乗降領域についてのみ予め定めた第2の基準人数(例えば24人)を超える場合は、その乗降領域に対応する昇降機Eiについてのみ混雑状態を軽減させるために制御を行い、昇降機フロアF全体として人数の推定値が第1の基準人数を超える場合は、個々の昇降機Eiの乗降領域にいる人数の推定値に関わらず、全ての昇降機Eiについて混雑状態を軽減させるための制御を行うことができる。
1,2,3   昇降機システム
100,200,300 昇降機運転制御システム
101,201 混雑度判定装置
10 乗降者数取得部
20,220 人数推定部
30,230 混雑度判定部
40,240 記憶部
41 乗降者数情報
42 人数推定マップ
43 距離情報
45 確率モデル
50,350 運転制御部
F  昇降機フロア
Ei 昇降機
Gi 乗降口
Mi 乗降者数計測部
Ri 乗降領域

Claims (12)

  1.  複数の昇降機が設置された建物の昇降機フロアにおける混雑度合いを判定する混雑度判定装置において、
     前記昇降機フロアにおける前記複数の昇降機の乗降者数をそれぞれ取得する乗降者数取得手段と、
     前記乗降者数取得手段により取得された各乗降者数に基づいて、前記昇降機フロアに設定された前記各昇降機の乗降領域にいる人数の推定値をそれぞれ求める人数推定手段と、
     前記人数推定手段により求められた各推定値に基づいて、前記各昇降機の乗降領域における混雑度合いをそれぞれ判定する混雑度判定手段とを備え、
     前記人数推定手段は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである混雑度判定装置。
  2.  前記人数推定手段は、前記演算対象の昇降機と前記他の昇降機との間の距離が遠いほど前記他の昇降機に関して取得された乗降者数を遅れたタイミングで反映させて前記推定値を求めるものである請求項1記載の混雑度判定装置。
  3.  前記人数推定手段は、
     前記昇降機フロアを複数の単位領域に分割し、分割された前記単位領域ごとの人数の推定値を示す人数推定マップを作成し、
     前記各昇降機の乗降口の位置に対応する前記人数推定マップの単位領域に、前記取得された乗降者数に応じて人数を加除する処理と、単位時間ごとに、前記各単位領域の更新前の人数の推定値を、当該単位領域と周囲所定範囲内の各単位領域に分け与える処理とを行うことによって前記人数推定マップを更新し、
     前記更新された人数推定マップに基づいて前記各昇降機の乗降領域にいる人数の推定値を求めるものである請求項1又は2記載の混雑度判定装置。
  4.  前記人数推定手段は、単位時間ごとに各昇降機の乗降領域にいる人数の推定値を求めるものであり、
     前記演算対象の昇降機と前記他の昇降機との間の距離が近いほど高い値をとるように設定される係数を用いて、ある時点から次の時点までの単位時間の間に前記演算対象の昇降機の乗降領域から前記他の昇降機の乗降領域に人が移動した後の前記演算対象の昇降機の乗降領域に残っている残余人数と、前記ある時点から前記次の時点までの単位時間の間に前記他の昇降機の乗降領域から前記演算対象の昇降機の乗降領域に移動した移動人数とを求め、
     前記求められた残余人数及び移動人数、並びに前記乗降者数取得手段により取得された乗降者数に基づいて、前記次の時点で前記演算対象の昇降機の乗降領域にいる人数の推定値を求めるものである請求項1記載の混雑度判定装置。
  5.  前記係数は、基準位置からの距離に対する前記基準位置からの人の移動確率を示す確率モデルに前記演算対象の昇降機と前記他の昇降機との間の距離を適用して求められるものであり、
     前記人数推定手段は、前記係数を前記ある時点で前記他の昇降機の乗降領域にいる人数の推定値に乗じることによって、前記移動人数を求めるものである請求項4記載の混雑度判定装置。
  6.  請求項1~5のいずれか1項の混雑度判定装置と、
     前記混雑度判定手段により判定された各混雑度合いに応じて各昇降機の運転をそれぞれ制御する運転制御手段と
    を備えた昇降機運転制御システム。
  7.  前記混雑度判定手段は、前記乗降者数取得手段により取得された前記各昇降機への乗降者数に基づいて前記昇降機フロア全体の混雑度合いを判定する機能をさらに有するものであり、
     前記運転制御手段は、各昇降機の乗降領域における混雑度合いと前記昇降機フロア全体の混雑度合いの両方に基づいて、各昇降機の運転を制御するものである請求項6記載の昇降機運転制御システム。
  8.  複数の昇降機が設置された建物の昇降機フロアにおける混雑度合いを判定する混雑度判定装置において、
     前記昇降機フロアにおける前記複数の昇降機の乗降者数をそれぞれ取得する乗降者数取得手段と、
     前記乗降者数取得手段により取得された各乗降者数に基づいて、前記昇降機フロアに設定された前記各昇降機の乗降領域にいる人数の推定値をそれぞれ求める人数推定手段と、
     前記人数推定手段により求められた各推定値に応じて各昇降機の運転をそれぞれ制御する運転制御手段とを備え、
     前記人数推定手段は、演算対象の昇降機と他の昇降機との間の距離が近いほど他の昇降機に関して取得された乗降者数を高い度合いで反映させて当該演算対象の昇降機の乗降領域における人数の推定値を求めるものである昇降機運転制御システム。
  9.  前記人数推定手段は、前記演算対象の昇降機と前記他の昇降機との間の距離が遠いほど前記他の昇降機に関して取得された乗降者数を遅れたタイミングで反映させて前記推定値を求めるものである請求項8記載の昇降機運転制御システム。
  10.  前記人数推定手段は、
     前記昇降機フロアを複数の単位領域に分割し、分割された前記単位領域ごとの人数の推定値を示す人数推定マップを作成し、
     前記各昇降機の乗降口の位置に対応する前記人数推定マップの単位領域に、前記取得された乗降者数に応じて人数を加除する処理と、単位時間ごとに、前記各単位領域の更新前の人数の推定値を、当該単位領域と周囲所定範囲内の各単位領域に分け与える処理とを行うことによって前記人数推定マップを更新し、
     前記更新された人数推定マップに基づいて前記各昇降機の乗降領域にいる人数の推定値を求めるものである請求項8又は9記載の昇降機運転制御システム。
  11.  前記人数推定手段は、単位時間ごとに各昇降機の乗降領域にいる人数の推定値を求めるものであり、
     前記演算対象の昇降機と前記他の昇降機との間の距離が近いほど高い値をとるように設定される係数を用いて、ある時点から次の時点までの単位時間の間に前記演算対象の昇降機の乗降領域から前記他の昇降機の乗降領域に人が移動した後の前記演算対象の昇降機の乗降領域に残っている残余人数と、前記ある時点から前記次の時点までの単位時間の間に前記他の昇降機の乗降領域から前記演算対象の昇降機の乗降領域に移動した移動人数とを求め、
     前記求められた残余人数及び移動人数、並びに前記乗降者数取得手段により取得された乗降者数に基づいて、前記次の時点で前記演算対象の昇降機の乗降領域にいる人数の推定値を求めるものである請求項8記載の昇降機運転制御システム。
  12.  前記係数は、基準位置からの距離に対する前記基準位置からの人の移動確率を示す確率モデルに前記演算対象の昇降機と前記他の昇降機との間の距離を適用して求められるものであり、
     前記人数推定手段は、前記係数を前記ある時点で前記他の昇降機の乗降領域にいる人数の推定値に乗じることによって、前記移動人数を求めるものである請求項11記載の昇降機運転制御システム。
PCT/JP2019/039681 2019-10-08 2019-10-08 混雑度判定装置および昇降機運転制御システム WO2021070256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021550980A JP7147994B2 (ja) 2019-10-08 2019-10-08 混雑度判定装置および昇降機運転制御システム
PCT/JP2019/039681 WO2021070256A1 (ja) 2019-10-08 2019-10-08 混雑度判定装置および昇降機運転制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039681 WO2021070256A1 (ja) 2019-10-08 2019-10-08 混雑度判定装置および昇降機運転制御システム

Publications (1)

Publication Number Publication Date
WO2021070256A1 true WO2021070256A1 (ja) 2021-04-15

Family

ID=75437381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039681 WO2021070256A1 (ja) 2019-10-08 2019-10-08 混雑度判定装置および昇降機運転制御システム

Country Status (2)

Country Link
JP (1) JP7147994B2 (ja)
WO (1) WO2021070256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401745A (zh) * 2021-07-21 2021-09-17 裴航 一种基于电梯拥挤度的电梯控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006205A1 (ja) * 2004-07-08 2006-01-19 Mitsubishi Denki Kabushiki Kaisha エレベーターの制御装置
JP2010208773A (ja) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd 昇降機システム
EP3106416A1 (en) * 2015-06-16 2016-12-21 Otis Elevator Company Elevator system and control method thereof
WO2017122258A1 (ja) * 2016-01-12 2017-07-20 株式会社日立国際電気 混雑状況監視システム
JP2018177513A (ja) * 2017-04-21 2018-11-15 清水建設株式会社 エレベータ制御システム
JP2019108198A (ja) * 2017-12-18 2019-07-04 東芝エレベータ株式会社 利用者誘導システムおよび利用者誘導方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006205A1 (ja) * 2004-07-08 2006-01-19 Mitsubishi Denki Kabushiki Kaisha エレベーターの制御装置
JP2010208773A (ja) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd 昇降機システム
EP3106416A1 (en) * 2015-06-16 2016-12-21 Otis Elevator Company Elevator system and control method thereof
WO2017122258A1 (ja) * 2016-01-12 2017-07-20 株式会社日立国際電気 混雑状況監視システム
JP2018177513A (ja) * 2017-04-21 2018-11-15 清水建設株式会社 エレベータ制御システム
JP2019108198A (ja) * 2017-12-18 2019-07-04 東芝エレベータ株式会社 利用者誘導システムおよび利用者誘導方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401745A (zh) * 2021-07-21 2021-09-17 裴航 一种基于电梯拥挤度的电梯控制方法

Also Published As

Publication number Publication date
JP7147994B2 (ja) 2022-10-05
JPWO2021070256A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
CN101054141B (zh) 电梯群管理控制方法和电梯群管理控制系统
KR940009984B1 (ko) 엘리베이터 제어장치
WO2019087729A1 (ja) ビル内人流推定システムおよび推定方法
KR101651533B1 (ko) 그룹 스코어 정보를 통합한 엘리베이터 디스패칭 시스템에서의 최적 그룹 선택 방법
CN102730502B (zh) 群管理控制系统
JP2573715B2 (ja) エレベータ制御装置
US6889799B2 (en) Method for solving a multi-goal problem
JPH0428680A (ja) エレベータ制御装置
WO2021070256A1 (ja) 混雑度判定装置および昇降機運転制御システム
US20010010278A1 (en) Elevator group supervisory control system
US7032715B2 (en) Methods and apparatus for assigning elevator hall calls to minimize energy use
JP2004520251A (ja) エレベータ群管理方法
JP6435215B2 (ja) エレベータシステム
US20160210376A1 (en) Elevator facility planning support apparatus
KR100861249B1 (ko) 엘리베이터 그룹 제어 방법
JPS6353107B2 (ja)
JP6704519B2 (ja) エレベータ装置
JPH02268B2 (ja)
JPH0217471B2 (ja)
JPS6330271B2 (ja)
JP7437279B2 (ja) エレベーター及びエレベーター制御方法
JP6993307B2 (ja) エレベーター制御システム及びエレベーター制御方法
WO2018193819A1 (ja) エレベーター利用者移動予測方法およびエレベーター利用者移動予測装置
JP7327627B1 (ja) 呼び管理装置、エレベーターシステム、呼び管理方法、および呼び管理プログラム
JP2000302343A (ja) エレベータシステムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948700

Country of ref document: EP

Kind code of ref document: A1