WO2021068784A1 - 天线、天线供电方法、天线单馈组合方法及终端 - Google Patents

天线、天线供电方法、天线单馈组合方法及终端 Download PDF

Info

Publication number
WO2021068784A1
WO2021068784A1 PCT/CN2020/118375 CN2020118375W WO2021068784A1 WO 2021068784 A1 WO2021068784 A1 WO 2021068784A1 CN 2020118375 W CN2020118375 W CN 2020118375W WO 2021068784 A1 WO2021068784 A1 WO 2021068784A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
low
frequency
frequency antenna
present disclosure
Prior art date
Application number
PCT/CN2020/118375
Other languages
English (en)
French (fr)
Inventor
舒超凡
刘洋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3136596A priority Critical patent/CA3136596C/en
Priority to EP20874420.1A priority patent/EP3955387A4/en
Priority to JP2021566353A priority patent/JP2022531924A/ja
Priority to US17/609,393 priority patent/US11949167B2/en
Publication of WO2021068784A1 publication Critical patent/WO2021068784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present disclosure relates to (but not limited to) the 5G field, the communication field and the antenna field.
  • 5G has entered the end of the standard formulation stage, and major operators are also actively deploying 5G equipment. Undoubtedly, 5G will bring a brand-new experience to users. It has a transmission rate ten times faster than 4G and puts forward new requirements on the antenna system. In 5G communications, the key to achieving high rates is millimeter wave and beamforming technology, but traditional antennas obviously cannot meet this demand.
  • the 5G network layout determines that during the transition period, terminal products need to support both 4G and 5G communications, which means that low-frequency antennas should be taken into account in the same terminal product. For example, 2G/3G/4G antennas and sub 6G antennas (that is, working below 6GHz) ) And 5G millimeter wave array antenna.
  • an antenna including: a low-frequency antenna, including an antenna with a working frequency band less than 6 GHz; a high-frequency antenna, including an array antenna working in a millimeter wave frequency band, wherein the low-frequency antenna and the The high-frequency antenna is fed through the same feeding point; and a filter is arranged between the low-frequency antenna and the high-frequency antenna to isolate the low-frequency antenna from the high-frequency antenna.
  • an antenna power supply method which includes: when the low-frequency antenna is working, the filter filters the interference signal of the high-frequency antenna and simultaneously supplies power to the low-frequency antenna; and when the high-frequency antenna is working, the filter Prevent power supply to low-frequency antennas.
  • a method for realizing a single feed combination of a high and low frequency antenna which includes: using a single feed point and using a filter to realize a combination of a low frequency antenna and a high frequency antenna.
  • a terminal including the antenna according to the present disclosure.
  • Fig. 1 is a front view of an antenna structure according to an embodiment of the present disclosure
  • Fig. 2 is a back view of an antenna structure according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a low-frequency antenna according to an embodiment of the present disclosure.
  • Fig. 4 is a front view of a Franklin antenna according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the back of the Franklin antenna according to the low-frequency antenna of the embodiment of the present disclosure
  • Fig. 6 is a front schematic view of a microstrip antenna according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the back of a microstrip antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the reflection coefficient of a bent triangular antenna according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of a low-pass filter according to an embodiment of the present disclosure.
  • Fig. 10 is another schematic diagram of a low-pass filter according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic diagram of a low-pass filter according to an embodiment of the present disclosure.
  • FIG. 12 is another schematic diagram of a low-pass filter according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of the working characteristics of a compact microstrip low-pass filter according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a high-frequency antenna according to an embodiment of the present disclosure.
  • Fig. 15 is a schematic diagram of a simulation of a slot array antenna as a high-frequency antenna according to an embodiment of the present disclosure.
  • Fig. 16 is a schematic diagram of an antenna power supply method according to an embodiment of the present disclosure.
  • FIG. 1 is a front view of an antenna structure according to an embodiment of the present disclosure.
  • Fig. 2 is a back view of the antenna structure according to the embodiment of the present disclosure.
  • the antenna according to the embodiment of the present disclosure includes: a low-frequency antenna (part I), a high-frequency antenna (part III), and a low-frequency antenna. The filter between the antenna and the high-frequency antenna (Part II).
  • Low-frequency antennas include antennas whose operating frequency band is less than 6 GHz. As shown in Figure 1 and Figure 2, the low-frequency antenna of Part I is illustrated as a bent triangular patch antenna and its feeding system to provide low-frequency resonance.
  • the filter is set between the low-frequency antenna and the high-frequency antenna to isolate the low-frequency antenna from the high-frequency antenna.
  • Part II is a schematic diagram of an asymmetric low-pass filter composed of a compact microstrip resonator unit, located between the low-frequency antenna and the 5G array antenna.
  • High-frequency antennas include array antennas that work in the millimeter wave frequency band.
  • the low-frequency antenna and the high-frequency antenna are fed through the same feeding point 12.
  • the high-frequency antenna of Part III is illustrated as a 5G slot array antenna and its feed system in the figure.
  • the low-frequency antenna includes an antenna whose working frequency band is less than 6 GHz.
  • FIG. 3 is a schematic diagram of a low-frequency antenna according to an embodiment of the present disclosure. As shown in Figure 3, the low-frequency antenna illustrated in the figure is a compact antenna, consisting of four planar folded dipole antennas 2, 3, 4, and 5 as radiating elements of a square array and its microstrip feed structure 1. In order to achieve a wide frequency bandwidth, a folded dipole antenna can be selected.
  • low-frequency antennas can also be realized by other antenna forms, such as symmetrical dipole antennas, Franklin monopole antennas, and the like.
  • Figures 4 to 7 show examples of alternatives.
  • 4 is a front view of the low-frequency antenna according to an embodiment of the present disclosure is a Franklin antenna
  • FIG. 5 is a schematic view of the back of the low-frequency antenna according to an embodiment of the present disclosure is a Franklin antenna
  • FIG. 6 is a front view of the low-frequency antenna according to an embodiment of the present disclosure is a microstrip antenna
  • FIG. 7 is a schematic diagram of the back of a microstrip antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the reflection coefficient of the low-frequency antenna according to an embodiment of the present disclosure, which is a bent triangular antenna. As shown in FIG. 8, omnidirectional is realized in the entire working bandwidth, the gain change is less than 2dB, and the pattern out-of-roundness is less than 1dB.
  • the filter includes a low-pass filter for isolating the low-frequency antenna from the high-frequency antenna.
  • FIG. 9 is a schematic diagram of a low-pass filter according to an embodiment of the present disclosure. As shown in FIG. 9, the low-pass filter includes four open circuits 6, 7, 8, 9. According to other embodiments of the present disclosure, the low-pass filter may also have other forms. 10 to 12 are schematic diagrams of specific other forms of low-pass filters according to embodiments of the present disclosure.
  • the low-pass filter allows to supply power to the low-frequency antenna (for example, the triangular bend antenna) in the low frequency band, while the low-pass filter acts as an open circuit to prevent the low-frequency antenna from supplying power when the high-frequency antenna is working, thereby realizing the two antenna systems at a single feed point Can work independently under the circumstances.
  • the specific structure of the resonant unit of the low-pass filter is shown in Fig. 9. By adjusting the main parameters, the low-pass frequency range can be reduced, and the low-pass filter can work in the desired operating frequency band.
  • FIG. 13 is a schematic diagram of the operating characteristics of a compact microstrip low-pass filter according to an embodiment of the present disclosure.
  • the high-frequency antenna includes an array antenna that works in a millimeter wave frequency band, including an array composed of a millimeter wave array antenna, a slot array antenna, a patch antenna, or other types of antennas.
  • Fig. 14 is a schematic diagram of a high-frequency antenna according to an embodiment of the present disclosure. As shown in Fig. 14, a 2 ⁇ 4 slot antenna 10 is used as a 5G millimeter wave array antenna, and the slot length is half the wavelength of the working frequency band.
  • the four parallel microstrip lines 11 feed the slot antenna 10. The distance between the four parallel microstrip lines 11 and the width of the microstrip line 11 can be adjusted according to the operating frequency band to meet impedance matching.
  • FIG. 15 is a schematic diagram of a simulation of a slot array antenna as a high-frequency antenna according to an embodiment of the present disclosure.
  • the antenna system includes only one feeding point. As shown in Fig. 1, the antenna system includes a single feeding point 12, and adopts a filter, and utilizes the principle of electromagnetic wave antiphase phase cancellation to realize the coexistence of high-frequency antenna and low-frequency antenna in the same clear space area.
  • FIG. 16 is a schematic diagram of an antenna power supply method according to an embodiment of the present disclosure. As shown in FIG. 16, the antenna according to an embodiment of the present disclosure The power supply method includes the following steps S101 to S202.
  • step S101 the low-frequency antenna operates.
  • step S102 the filter filters the interference signal of the high-frequency antenna.
  • step S103 power is supplied to the low-frequency antenna.
  • step S201 the high-frequency antenna operates.
  • step S202 the filter prevents power supply to the low-frequency antenna.
  • a method for realizing a single feed combination of a high and low frequency antenna based on the above-mentioned antenna which includes: using a single feed point and using a filter to realize a combination of a low frequency antenna and a high frequency antenna.
  • a terminal including the above-mentioned antenna.
  • the filter is set between the low-frequency antenna and the high-frequency antenna to isolate the low-frequency antenna and the high-frequency antenna, so as to pass through the same clear space area.
  • a single feed point realizes the coexistence of a low-frequency antenna and a high-frequency antenna, and takes up as little space as possible to meet the requirements of small terminal size, and alleviate the shortcomings of the existing technology.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本公开提供了一种天线、天线供电方法、天线单馈组合方法及终端,所述天线包括:低频天线、高频天线和滤波器。滤波器设置在所述低频天线与所述高频天线之间,将所述低频天线和所述高频天线隔离。所述低频天线与所述高频天线通过同一馈电点进行馈电。

Description

天线、天线供电方法、天线单馈组合方法及终端 技术领域
本公开涉及(但不限于)5G领域、通信领域与天线领域。
背景技术
5G已经进入了标准制定阶段的尾声,各大运营商也正在积极地部署5G设备。毋庸置疑,5G将给用户带来全新的体验,它拥有比4G快十倍的传输速率,对天线系统提出了新的要求。在5G通信中,实现高速率的关键是毫米波以及波束成形技术,但传统的天线显然无法满足这一需求。5G网络布属决定了过渡时期内,终端产品需要同时支持4G和5G通信,意味着同一终端产品内同时兼顾低频天线,例如,2G/3G/4G天线以及sub 6G天线(即,工作在6GHz以下)以及5G毫米波阵列天线。
针对上述需要解决的低频天线与高频天线共存的问题,常用的方案主要有两种:一是5G阵列天线与低频天线在终端产品的不同净空布局,这就意味着更多的净空区,不利终端小型化的发展;二是在同一净空区,低频天线与5G阵列天线分别利用不同的馈电系统,这就意味着两套天线系统,限制了电路方案的选择。当前解决方案需要低频天线与高频天线占用更多净空区,或者采用不同的馈电系统,限制了终端硬件方案的多样化发展,不适合小终端。
发明内容
根据本公开的一个实施例,提供了一种天线,包括:低频天线,包括工作频段小于6GHz的天线;高频天线,包括工作在毫米波频段的阵列天线,其中,所述低频天线与所述高频天线通过同一馈电点进行馈电;以及滤波器,设置在所述低频天线与所述高频天线之间,将所述低频天线和所述高频天线隔离。
根据本公开的一个实施例,提供了一种天线供电方法,包括:在低频天线工作时,滤波器过滤高频天线的干扰信号,同时向低频天 线供电;以及在高频天线工作时,滤波器防止向低频天线供电。
根据本公开的一个实施例,提供了一种实现高低频天线单馈组合的方法,包括:通过单一馈点,利用滤波器,实现低频天线与高频天线的组合。
根据本公开的一个实施例,提供了一种终端,包括根据本公开的天线。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的天线结构正面图;
图2是根据本公开实施例的天线结构背面图;
图3是根据本公开实施例的低频天线示意图;
图4是根据本公开实施例的低频天线为富兰克林天线正面示意图;
图5是根据本公开实施例的低频天线为富兰克林天线背面示意图;
图6是根据本公开实施例的低频天线为微带天线正面示意图;
图7是根据本公开实施例的低频天线为微带天线背面示意图;
图8是根据本公开实施例的低频天线为折弯三角天线反射系数示意图;
图9是根据本公开实施例的低通滤波器示意图;
图10是根据本公开实施例的低通滤波器的另一示意图;
图11是根据本公开实施例的低通滤波器的另一示意图;
图12是根据本公开实施例的低通滤波器的另一示意图;
图13是根据本公开实施例的紧凑型微带低通滤波器工作特性示意图;
图14是根据本公开实施例的高频天线示意图;
图15是根据本公开实施例的高频天线为缝隙阵列天线仿真示意 图;以及
图16是根据本公开实施例的天线供电方法示意图。
具体实施方式
本公开实施例提供了一种天线、天线供电方法、天线单馈组合方法及终端,根据本公开的一个实施例,提供了一种天线,图1是根据本公开实施例的天线结构正面图,图2是根据本公开实施例的天线结构背面图,如图1、图2所示,根据本公开实施例的天线包括:低频天线(部分I)、高频天线(部分III)以及设置在低频天线与高频天线之间的滤波器(部分II)。
低频天线包括工作频段小于6GHz的天线。如图1和图2所示,第I部分的低频天线在图中示例为折弯三角贴片天线及其馈电系统,以提供低频谐振。
滤波器设置在低频天线与高频天线之间,将低频天线和高频天线隔离。如图1和图2所示,第II部分是由紧凑型微带谐振单元构成的非对称低通滤波器示意图,位于低频天线和5G阵列天线之间。
高频天线包括工作在毫米波频段的阵列天线。低频天线与高频天线通过同一馈电点12进行馈电。如图1和图2所示,第III部分的高频天线在图中示例为5G缝隙阵列天线以及其馈电系统。
根据本公开实施例,低频天线包括工作频段小于6GHz的天线,图3是根据本公开实施例的低频天线示意图。如图3所示,图中示例的低频天线为紧凑型天线,由四个平面折叠偶极子天线2、3、4、5作为方形阵列的辐射元件及其微带馈电结构1组成。为了实现宽频带宽,可以选择折叠偶极子天线。
除了图3所示折弯三角贴片天线以外,也可由其它天线形式实现低频天线,如对称振子天线、富兰克林单极天线等。图4至图7示出了替代方案的示例。图4是根据本公开实施例的低频天线为富兰克林天线正面示意图,图5是根据本公开实施例的低频天线为富兰克林天线背面示意图,图6是根据本公开实施例的低频天线为微带天线正面示意图,并且图7是根据本公开实施例的低频天线为微带天线背 面示意图。
根据工作频带调整折叠偶极子元件,可以实现宽频带,并且折叠的偶极子单元结构可以补偿相互耦合效应,提高天线的带宽和辐射性能。经仿真和测试所得的-5dB回波损耗带宽约大于40%(1.7-2.69GHz)。图8是根据本公开实施例的低频天线为折弯三角天线反射系数示意图,如图8所示,在整个工作带宽范围内实现全向,且增益变化小于2dB,方向图不圆度小于1dB。
根据本公开实施例,滤波器包括低通滤波器,用于将低频天线和高频天线隔离。图9是根据本公开实施例的低通滤波器示意图,如图9所示,低通滤波器包括四个开路6、7、8、9。根据本公开的其他实施例,低通滤波器也可以具有其他形式。图10至图12是根据本公开实施例的具体其他形式的低通滤波器的示意图。
低通滤波器允许在低频段向低频天线(例如,三角折弯天线)供电,而在高频天线工作时低通滤波器作为开路防止向低频天线供电,从而实现两个天线系统在单一馈点的情况下能独立工作。低通滤波器的谐振单元的具体结构如图9所示,通过调整主要参数,可以减小低通频率范围,使低通滤波器工作在期望的工作频段内。利用四个开路进行调谐可以起到带宽扩展作用,使滤波器在宽通带范围内有较低的插入损耗,并且在宽阻带范围内具有很好的衰减特性。图13是根据本公开实施例的紧凑型微带低通滤波器工作特性示意图。
根据本公开实施例,高频天线包括工作在毫米波频段的阵列天线,包括毫米波阵列天线、缝隙阵列天线、贴片天线或其它类型天线组成的阵列。图14是根据本公开实施例的高频天线示意图,如图14所示,采用2×4的缝隙天线10作为5G毫米波阵列天线,缝隙长度为工作频段的半波长,采用耦合馈电,由四个平行的微带线11对缝隙天线10进行馈电。可以根据工作频段调整四个平行微带线11的距离及微带线11的宽度以满足阻抗匹配。经仿真发现,馈点在距缝隙短边0.05波长的位置处能获取较好的阻抗特性。图15是根据本公开实施例的高频天线为缝隙阵列天线仿真示意图。
根据本公开实施例,天线系统仅包括一个馈电点。如图1所示, 天线系统包括单一馈电点12,并且采用滤波器,利用电磁波反相相位相互抵消原理,实现了高频天线与低频天线在同一净空区共存。
根据本公开的一个实施例,提供了一种基于以上所述的天线的天线供电方法,图16是根据本公开实施例的天线供电方法示意图,如图16所示,根据本公开实施例的天线供电方法包括如下步骤S101至S202。
在步骤S101,低频天线工作。
在步骤S102,滤波器过滤高频天线的干扰信号。
在步骤S103,向低频天线供电。
在步骤S201,高频天线工作。
在步骤S202,滤波器防止向低频天线供电。
根据本公开的一个实施例,提供了一种基于以上所述的天线实现高低频天线单馈组合的方法,包括:通过单一馈点,利用滤波器,实现低频天线与高频天线的组合。
根据本公开的一个实施例,提供了一种终端,包括以上所述的天线。
根据本公开实施例提供的天线、天线供电方法、天线单馈组合方法及终端,滤波器设置在低频天线与高频天线之间,将低频天线和高频天线隔离,从而在同一净空区、通过单一馈点实现低频天线与高频天线共存,尽量占用更小的空间以适应小终端尺寸的要求,缓解现有技术的不足。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (7)

  1. 一种天线,包括:
    低频天线,包括工作频段小于6GHz的天线;
    高频天线,包括工作在毫米波频段的阵列天线,其中,所述低频天线与所述高频天线通过同一馈电点进行馈电;以及
    滤波器,设置在所述低频天线与所述高频天线之间,用于将所述低频天线和所述高频天线隔离。
  2. 根据权利要求1所述的天线,其中,所述阵列天线包括下列至少之一:
    毫米波阵列天线;
    缝隙阵列天线;
    贴片天线或其它类型天线组成的阵列。
  3. 根据权利要求1所述的天线,其中,所述天线仅包括一个馈电点。
  4. 根据权利要求1所述的天线,其中,所述滤波器包括低通滤波器,用于将所述低频天线和所述高频天线隔离。
  5. 一种天线供电方法,所述天线包括权利要求1至4中任一项所述的天线,所述方法包括:
    在所述低频天线工作时,所述滤波器过滤所述高频天线的干扰信号,同时向低频天线供电;以及
    在所述高频天线工作时,所述滤波器防止向所述低频天线供电。
  6. 一种实现天线单馈组合的方法,所述天线包括权利要求1至4中任一项所述的天线,所述方法包括:
    通过单一馈点,利用所述滤波器,实现所述低频天线与所述高 频天线的组合。
  7. 一种终端,包括权利要求1至4中任一项所述的天线。
PCT/CN2020/118375 2019-10-08 2020-09-28 天线、天线供电方法、天线单馈组合方法及终端 WO2021068784A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3136596A CA3136596C (en) 2019-10-08 2020-09-28 Antenna, method for supplying power to antenna, single-feeding-based method for combining antennas, and terminal
EP20874420.1A EP3955387A4 (en) 2019-10-08 2020-09-28 ANTENNA, ANTENNA POWER SUPPLY METHOD, ANTENNA SINGLE POWER SUPPLY COMBINATION METHOD AND TERMINAL
JP2021566353A JP2022531924A (ja) 2019-10-08 2020-09-28 アンテナ、アンテナの給電方法、アンテナシングルフィードコンビネーション方法及び端末
US17/609,393 US11949167B2 (en) 2019-10-08 2020-09-28 Antenna terminal with power supply and single feed combination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910951453.5A CN112635991A (zh) 2019-10-08 2019-10-08 一种天线、天线供电方法、天线单馈组合方法及装置
CN201910951453.5 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021068784A1 true WO2021068784A1 (zh) 2021-04-15

Family

ID=75283252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118375 WO2021068784A1 (zh) 2019-10-08 2020-09-28 天线、天线供电方法、天线单馈组合方法及终端

Country Status (6)

Country Link
US (1) US11949167B2 (zh)
EP (1) EP3955387A4 (zh)
JP (1) JP2022531924A (zh)
CN (1) CN112635991A (zh)
CA (1) CA3136596C (zh)
WO (1) WO2021068784A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615725A (zh) * 2008-06-25 2009-12-30 索尼爱立信移动通信日本株式会社 多波段天线和无线电通信终端
US20130321214A1 (en) * 2012-05-29 2013-12-05 Samsung Electronics Co., Ltd Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays
CN204348895U (zh) * 2014-12-15 2015-05-20 信维创科通信技术(北京)有限公司 单端口双频双圆极化天线
CN110165399A (zh) * 2019-05-29 2019-08-23 中天宽带技术有限公司 单端口馈电的双频天线和电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313028B2 (en) * 2010-02-17 2012-11-20 On Track Innovations Ltd. Multiple antenna reading system suitable for use with contactless transaction devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615725A (zh) * 2008-06-25 2009-12-30 索尼爱立信移动通信日本株式会社 多波段天线和无线电通信终端
US20130321214A1 (en) * 2012-05-29 2013-12-05 Samsung Electronics Co., Ltd Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays
CN204348895U (zh) * 2014-12-15 2015-05-20 信维创科通信技术(北京)有限公司 单端口双频双圆极化天线
CN110165399A (zh) * 2019-05-29 2019-08-23 中天宽带技术有限公司 单端口馈电的双频天线和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955387A4 *

Also Published As

Publication number Publication date
EP3955387A4 (en) 2023-01-04
CA3136596C (en) 2024-02-20
CA3136596A1 (en) 2021-04-15
EP3955387A1 (en) 2022-02-16
US11949167B2 (en) 2024-04-02
JP2022531924A (ja) 2022-07-12
CN112635991A (zh) 2021-04-09
US20220190490A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US6943746B2 (en) Radio device and antenna structure
US7847737B2 (en) Antenna apparatus
CN111883916B (zh) 一种基于双缝馈电结构的宽带低剖面介质贴片滤波天线
EP3767742B1 (en) Antenna device and mobile terminal
CN112018494B (zh) 一种天线及移动终端
CN109888478B (zh) 一种基于双极化磁电偶极子的多功能射频器件
CN210430080U (zh) 宽带双极化滤波基站天线单元、基站天线阵列及通信设备
CN111509373B (zh) 一种缝隙耦合的宽带滤波天线
CN114566794A (zh) 一种5g毫米波双极化磁电偶极子滤波天线
CN109687129A (zh) 一种滤波天线阵列
CN109818134B (zh) 一种具有金属边框天线的终端
KR20000019672A (ko) 엘-모양과 유-모양 접지면을 갖는 광대역 패치 안테나
CN110444878B (zh) 一种具有ct耦合结构的滤波贴片天线
CN110829023B (zh) 天线模组及终端
WO2021068784A1 (zh) 天线、天线供电方法、天线单馈组合方法及终端
KR101218702B1 (ko) 멀티모드 고주파 모듈
CN114094335B (zh) 双端口自隔离天线系统
CN104953255A (zh) 一种可用于手持设备的智能天线
CN210430100U (zh) 一种具有ct耦合结构的滤波贴片天线
KR100861865B1 (ko) 무선 단말기
CN202275947U (zh) 一种集成阶状阻抗调谐棒的超宽带天线
CN205846222U (zh) 一种天线
KR100779407B1 (ko) 메타머터리얼을 이용한 초소형 이중 대역 안테나
CN112134005A (zh) 一种偶极子天线及无线设备
CN210806004U (zh) 一种双频天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3136596

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021566353

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020874420

Country of ref document: EP

Effective date: 20211109

NENP Non-entry into the national phase

Ref country code: DE