WO2021068179A1 - Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides - Google Patents

Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides Download PDF

Info

Publication number
WO2021068179A1
WO2021068179A1 PCT/CN2019/110528 CN2019110528W WO2021068179A1 WO 2021068179 A1 WO2021068179 A1 WO 2021068179A1 CN 2019110528 W CN2019110528 W CN 2019110528W WO 2021068179 A1 WO2021068179 A1 WO 2021068179A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
cycloalkyl
spp
conh
group
Prior art date
Application number
PCT/CN2019/110528
Other languages
English (en)
Inventor
Andreas Turberg
Iring Heisler
Joachim Telser
Alexander ARLT
Peter Jeschke
Hans-Georg Schwarz
Martin Fuesslein
Yolanda Cancho-Grande
Peter Loesel
Ulrich Ebbinghaus-Kintscher
Jiakang MA
Original Assignee
Bayer Animal Health Gmbh
Bayer Aktiengesellschaft
Bayer (China) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Animal Health Gmbh, Bayer Aktiengesellschaft, Bayer (China) Limited filed Critical Bayer Animal Health Gmbh
Priority to PCT/CN2019/110528 priority Critical patent/WO2021068179A1/fr
Priority to TW109134775A priority patent/TW202128650A/zh
Priority to BR112022006753A priority patent/BR112022006753A2/pt
Priority to CN202080085776.1A priority patent/CN114761393A/zh
Priority to EP20789572.3A priority patent/EP4041720A1/fr
Priority to PCT/EP2020/078261 priority patent/WO2021069575A1/fr
Priority to CA3156083A priority patent/CA3156083A1/fr
Priority to JP2022521165A priority patent/JP2022550996A/ja
Priority to MX2022004192A priority patent/MX2022004192A/es
Priority to AU2020362341A priority patent/AU2020362341A1/en
Priority to US17/766,151 priority patent/US20230023326A1/en
Priority to KR1020227015626A priority patent/KR20220080159A/ko
Priority to ARP200102794A priority patent/AR120183A1/es
Publication of WO2021068179A1 publication Critical patent/WO2021068179A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/14Ectoparasiticides, e.g. scabicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/16Halogen atoms; Nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to novel heteroaryl-substituted pyrazine derivatives, to formulations and compositions comprising such compounds and to their use in the control of animal pests including arthropods and insects in plant protection and to their use for control of ectoparasites on animals.
  • Certain heteroaryl-triazole and heteroaryl-tetrazole compounds are disclosed for the use in controlling of ectoparasites on animals in WO 2017/192385 and for the use in controlling of animal pests in the field of plant protection in WO 2019/170626.
  • R 1 is hydrogen; in each case optionally substituted C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkylC 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 3 alkoxyC 1 -C 3 alkyl, C 1 - C 3 alkylthioC 1 -C 3 alkyl, C 1 -C 3 alkylsulfinylC 1 -C 3 alkyl, C 1 -C 3 alkylsulfonylC 1 -C 3 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl;
  • phenyl-C 1 -C 6 alkyl in which phenyl is optionally substituted with 1 to 5 substituents, each independently selected from the group consisting of halogen, hydroxy, -CN, -COOH, -CONH 2 , -CSNH 2 , -NO 2 , -Si (CH 3 ) 3 , -SF 5 , -NH 2 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, C 1 -C 3 alkylthio, C 1 -C 3 alkylsulfinyl, C 1 -C 3 alkylsulfonyl
  • R 2 is phenyl or a 5-or 6-membered heteroaryl, each of which is optionally substituted by 1, 2 or 3 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 4 alkoxy, C 3 -C 6 cycloalkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, hydroxy-C 1 -C 4 alkyl, C 1 -C 3 alkylthio, C 1 -C 3 alkyls
  • phenyl groups of the substituents and the 3-to 6-membered heterocyclyl substituent may optionally carry 1, 2, 3 or 4 substituents independently selected from the group consisting of halogen, hydroxy, -CN, -COOH, -CONH 2 , -CSNH 2 , -NO 2 , -Si (CH 3 ) 3 , -SF 5 ,
  • R 3 is hydrogen or optionally substituted C 1 -C 6 alkyl
  • R 4 is a monocyclic heterocycle selected from the group consisting of a 5-membered heteroaryl, a 6-membered heteroaryl and a 3-6 membered heterocyclyl, each of which containing 1 or2 heteroatoms selected from the group consisting of N, O, and S, and each of which is optionally substituted by 1, 2, 3 or 4 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl, C 1 -C 4 alkyl-C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 halocycloalkyl, C 3 -C
  • R 5 is hydrogen, halogen, CN, or in each case optionally substituted C 1 -C 3 -alkyl, C 1 -C 3 -haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 4 -cycloalkyl, C 3 -C 4 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, -C (O) -C 1 -C 3 alkoxy, -CH- (C 1 -C 3 alkoxy) 2 , -CO 2 C 1 -C 4 alkyl, -CONH (C 1 -C 4 alkyl) , -CON (C 1 -C 4 alkyl) 2 , -NHCO-C 1 -C 4 alkyl, -N (C 1 -C 4 alkyl) CO-
  • the compounds of the formula (I) described anywhere herein likewise encompass any diastereomers or enantiomers and E/Z isomers which exist, and also salts and N-oxides of compounds of the formula (I) .
  • the compounds of the formula (I) described anywhere herein may possibly also, depending on the nature of the substituents, be in the form of stereoisomers, i.e. in the form of geometric and/or optical isomers or isomer mixtures of varying composition.
  • This invention provides both the pure stereoisomers and any desired mixtures of these isomers, even though it is generally only compounds of the formula (I) that are discussed here.
  • the invention therefore relates both to the pure enantiomers and diastereomers and to mixtures thereof.
  • the compounds of the formula (I) may be present in various polymorphic forms or as a mixture of various polymorphic forms. Both the pure polymorphs and the polymorph mixtures are provided by the invention and can be used in accordance with the invention.
  • the invention further relates to preferred embodiments as defined in the following aspects of the invention:
  • R 1 is hydrogen; or in each case optionally substituted C 1 -C 6 alkyl, C 3 -C 6 cycloalkylC 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 3 alkoxyC 1 -C 3 alkyl, C 1 -C 3 alkylthioC 1 -C 3 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl;
  • phenyl-C 1 -C 6 alkyl in which phenyl is optionally substituted with 1 to 5 substituents, each independently selected from the group consisting of halogen, hydroxy, -CN, -COOH, -CONH 2 , -CSNH 2 , -NO 2 , -Si (CH 3 ) 3 , -SF 5 , -NH 2 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, C 1 -C 3 alkylthio, C 1 -C 3 alkylsulfinyl, C 1 -C 3 alkylsulfonyl
  • R 2 is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyrazole, pyrrole, thiazole, oxazole, isothiazole, isoxazole, thiophene and imidazole, each of which is optionally substituted by 1, 2 or 3 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, hydroxy-C 1 -C 4
  • phenyl groups of the substituents and the 3-to 6-membered heterocyclyl substituent may optionally carry 1, 2, 3 or 4 substituents independently selected from the group consisting of halogen, hydroxy, -CN, -COOH, -CONH 2 , -CSNH 2 , -NO 2 , -Si (CH 3 ) 3 , -SF 5 ,
  • R 3 is hydrogen or optionally substituted C 1 -C 6 alkyl
  • R 4 is selected from the group consisting of pyridine, pyrimidine, pyrazine, pyridazine and thiazole, each of which is optionally substituted by 1, 2, 3 or 4 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 4 alkyl-C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, hydroxy-C 1 -C 4 alkyl, C
  • R 5 is hydrogen, halogen, CN, or in each case optionally substituted C 1 -C 3 -alkyl, C 1 -C 3 -haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 4 -cycloalkyl, C 3 -C 4 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, -C (O) -C 1 -C 3 alkoxy, -CH- (C 1 -C 3 alkoxy) 2 , -CO 2 C 1 -C 4 alkyl, -CONH (C 1 -C 4 alkyl) , -CON (C 1 -C 4 alkyl) 2 , -NHCO-C 1 -C 4 alkyl, -N (C 1 -C 4 alkyl) CO-
  • R 6 is hydrogen, halogen, CN, or in each case optionally substituted C 1 -C 3 -alkyl, C 1 -C 3 -haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 4 cycloalkyl, C 3 -C 4 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, -C (O) -C 1 -C 3 alkoxy, -CH- (C 1 -C 3 alkoxy) 2 , -CO 2 C 1 -C 4 alkyl, -CONH (C 1 -C 4 alkyl) , -CON (C 1 -C 4 alkyl) 2 , -NHCO-C 1 -C 4 alkyl, -N (C 1 -C 4 alkyl) CO-C
  • the invention relates to compounds or the formula (I) as described supra, in which
  • R 1 is hydrogen; or in each case optionally substituted C 1 -C 6 alkyl, C 3 -C 6 cycloalkylC 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 3 alkoxyC 1 -C 3 alkyl, C 1 -C 3 alkylthioC 1 -C 3 alkyl, C 1 -C 6 cyanoalkyl;
  • R 2 is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazine, and pyridazine, each of which is optionally substituted by 1, 2 or 3 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, hydroxy-C 1 -C 4 alkyl, C 1 -C 3 alkylthio, C 1 -C 3 alkylsulfinyl, C 1 -C 3 alkylsul
  • phenyl groups of the substituents and the 3-to 6-membered heterocyclyl substituent may optionally carry 1, 2 or 3 substituents independently selected from the group consisting of halogen, C 1 -C 6 alkyl and C 1 -C 3 cyanoalkyl, ;
  • R 3 is hydrogen or optionally substituted C 1 -C 6 alkyl
  • R 4 is selected from the group consisting of pyridine, pyrimidine, pyrazine, pyridazine and thiazole, each of which is optionally substituted by 1, 2, 3 or 4 substituents independently selected from the group consisting of halogen, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 4 alkyl-C 3 -C 6 cycloalkyl, C 1 -C 3 haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 6 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 4 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, hydroxy-C 1 -C 4 alkyl, C
  • R 5 is hydrogen, halogen, CN, or in each case optionally substituted C 1 -C 3 -alkyl, C 1 -C 3 -haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 4 -cycloalkyl, C 3 -C 4 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, -C (O) -C 1 -C 3 alkoxy, -CH- (C 1 -C 3 alkoxy) 2 , -CO 2 C 1 -C 4 alkyl, -CONH (C 1 -C 4 alkyl) , -CON (C 1 -C 4 alkyl) 2 , -NHCO-C 1 -C 4 alkyl, -N (C 1 -C 4 alkyl) CO-
  • R 6 is hydrogen, halogen, CN, or in each case optionally substituted C 1 -C 3 -alkyl, C 1 -C 3 -haloalkyl, C 1 -C 3 cyanoalkyl, C 3 -C 4 cycloalkyl, C 3 -C 4 halocycloalkyl, C 3 -C 6 cyanocycloalkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkoxy, C 1 -C 3 cyanoalkoxy, -C (O) -C 1 -C 3 alkoxy, -CH- (C 1 -C 3 alkoxy) 2 , -CO 2 C 1 -C 4 alkyl, -CONH (C 1 -C 4 alkyl) , -CON (C 1 -C 4 alkyl) 2 , -NHCO-C 1 -C 4 alkyl, -N (C 1 -C 4 alkyl) CO-C
  • the invention relates to compounds of the formula (I) as described supra, in which
  • R 1 is hydrogen; methyl, ethyl, n-propyl, isopropyl, cyanomethyl, cyclopropylmethyl, methoxymethyl, ethoxymethyl, methylthiomethyl, ethylthiomethyl;
  • R 2 is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazine, and pyridazine, each of which is optionally substituted by 1, 2 or 3 substituents independently selected from the group consisting of fluorine, chlorine, bromine, iodine, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyanomethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyanomethoxy, isopropan-2-ol, methylthio, methylsulfiny
  • R 3 is hydrogen, methyl, ethyl, n-propyl, or isopropyl
  • R 4 is selected from the group consisting of pyridine, pyrimidine, pyrazine, pyridazine and thiazole, each of which is optionally substituted by 1, 2, or 3 substituents independently selected from the group consisting of fluorine, chlorine, bromine, iodine, hydroxy, CN, -COOH, -CONH 2 , -NO 2 , -NH 2 , SF 5 , methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyanomethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyanomethoxy, isopropan-2-ol, methylthio, methylsulfinyl
  • R 5 is hydrogen, fluorine, chlorine, bromine, iodine, CN, methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyanomethyl, cyclopropyl, cyclobutyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy or cyanomethoxy;
  • R 6 is hydrogen, fluorine, chlorine, bromine, iodine, CN, methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyanomethyl, cyclopropyl, cyclobutyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy or cyanomethoxy;
  • the invention relates to compounds of the formula (I) as described supra, in which
  • R 1 is hydrogen, methyl, cyclopropylmethyl, ethoxymethyl or ethylthiomethyl
  • R 2 is selected from the group consisting of phenyl and pyridine, each of which is optionally substituted by 1, 2 or 3 substituents independently selected from the group consisting of fluorine, chlorine, bromine, CN, SF 5 , methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, cyclopropyl, trifluoromethyl, cyanomethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyanomethoxy, isopropan-2-ol, (CH 3 ) 3 -silyl, methylsulfonyl, ethylsulfonyl, cyclopropylsulfonyl, trifluoromethylsulfonyl, -SO 2 NH 2 , phenylsulfonyl which may carry a fluorine substituent, and oxetane, tetrahydropyr
  • R 3 is methyl
  • R 4 is selected from the group consisting of pyridine, pyrimidine, pyrazine, pyridazine and thiazole, each of which is optionally substituted by 1 or 2 substituents independently selected from the group consisting of fluorine, chlorine, bromine, CN, methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, cyclopropyl, trifluoromethyl, cyanomethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyanomethoxy, isopropan-2-ol, -NHCO-CH 3 , NHCO-cyclopropyl, -CON (CH 3 ) (CH 3 -cyclopropyl) , and methylsulfonyl;
  • R 5 is hydrogen, fluorine, chlorine, bromine, iodine, CN, methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyclopropyl, cyclobutyl, methoxy, ethoxy, difluoromethoxy, or trifluoromethoxy;
  • R 6 is hydrogen, fluorine, chlorine, bromine, iodine, CN, methyl, ethyl, n-propyl, isopropyl, butyl, tert-butyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, cyclopropyl, cyclobutyl, methoxy, ethoxy, difluoromethoxy, or trifluoromethoxy;
  • the invention relates to compounds of the formula (I) as described supra, in which R 2 is phenyl which may be substituted as defined anywhere supra, and wherein the remaining substituents may have the meaning as defined anywhere supra, and salts and N-oxides thereof.
  • the invention relates to compounds of the formula (I) as described supra, in which R 2 is thiophene, pyrazole or imidazole, each of which may be substituted as defined anywhere supra, and wherein the remaining substituents may have the meaning as defined anywhere supra, and salts and N-oxides thereof.
  • R 2 is selected from an optionally substituted thiophene and a pyrazole group:
  • R 9 is selected from halogen, preferably fluorine, chlorine and bromine, C 1 -C 3 alkyl, preferably methyl, C 1 -C 3 haloalkyl, preferably trifluoromethyl, and pentafluorosulfanyl;
  • n is an integer of 0, 1 or 2, preferably 1 or 2;
  • Y represents hydrogen, C 1 -C 3 alkyl, preferably methyl and ethyl, cycloalkyl, preferably cyclopropyl, C 1 -C 3 haloalkyl, preferably trifluoromethyl.
  • the invention relates to compounds of the formula (I) as described supra, in which R 4 is selected from the group consisting of pyridine, pyrimidine and thiazole, each of which may be substituted as defined anywhere supra, and wherein the remaining substituents may have the meaning as defined anywhere supra, and salts and N-oxides thereof.
  • the compounds of the formula (I) are characterized by having a structure according to formula (I-1) , (I-2) or (I-3)
  • R 1 , R 2 , R 3 , R 5 and R 6 have the meaning as defined in any of the aspects described supra;
  • R 8 represents 0, 1, 2, 3 or 4 same or different substituents as defined in any of the aspects described anywhere supra for R 4 , preferably R 8 represents 0, 1 or 2 substituents, more preferably 0 or 1 substituents;
  • the compounds of the formula (I) are characterized by having a structure according to formula (I-1) supra, and R 1 , R 2 , R 3 , R 5 , R 6 have the meaning as defined in any of the aspects described supra and R 8 represents 0, 1 or 2, preferably 0 or 1, same or different substituents selected from fluorine, chlorine, bromine, cyano, methyl, trifluormethyl, CONHcyclopropyl, CO-N-morpholinyl, CON (CH 3 (cyclopropylmethyl) , CO-N-pyrrolidinyl, CON (CH 3 (CH 2 CN) ; and salts and N-oxides thereof.
  • the compounds of the formula (I) are characterized by having a structure according to formula (I-2) supra, and R 1 , R 2 , R 3 , R 5 , R 6 have the meaning as defined in any of the aspects described supra and R 8 represents 0, 1 or 2, preferably 0 or 1, same or different substituents selected from fluorine, chlorine, bromine, cyano, methyl, trifluormethyl, CONHcyclopropyl, CO-N-morpholinyl, CON (CH 3 (cyclopropylmethyl) , CO-N-pyrrolidinyl, CON (CH 3 (CH 2 CN) ; and salts and N-oxides thereof.
  • the compounds of the formula (I) are characterized by having a structure according to formula (I-3) supra, and R 1 , R 2 , R 3 , R 5 , R 6 have the meaning as defined in any of the aspects described supra and R 8 represents 0, 1 or 2, preferably 0 or 1, 0, 1 or 2, preferably 0 or 1, same or different substituents selected from fluorine, chlorine, bromine, cyano, methyl, trifluormethyl, CONHcyclopropyl, CO-N-morpholinyl, CON (CH 3 (cyclopropylmethyl) , CO-N-pyrrolidinyl, CON (CH 3 (CH 2 CN) ; and salts and N-oxides thereof.
  • the invention relates to compounds of the formula (I) as described in any of the aspects supra, which are characterized by having a structure according to formula (I-4) , (I-5) or (I-6)
  • R 1 , R 3 , R 5 and R 6 have the meaning as defined in any of the aspects described supra;
  • R 7 represents same or different substituents of R 2 as defined in any of the aspects described supra;
  • R 8 represents same or different substituents of R 4 as defined in any of the aspects described supra;
  • n an integer of 0, 1 or 2, preferably 0 or 1;
  • n represents an integer of 0, 1 or 2, preferably of 1 or 2;
  • a further aspect of the invention relates to the Intermediate Compounds according to formula IX-1, X and XIII wherein R 3 , R 4 , R 5 and R 6 have the meaning as defined in any of the aspects of the invention supra.
  • adjacent atoms must not be -O-O- or -O-S-.
  • C atoms Structures having a variable number of possible carbon atoms (C atoms) may be referred to in the present application as C lower limit of carbon atoms -C upper limit of carbon atoms structures (C LL -C UL structures) , in order thus to be stipulated more specifically.
  • an alkyl group may consist of 3 to 10 carbon atoms and in that case corresponds to C 3 -C 10 alkyl.
  • Ring structures composed of carbon atoms and heteroatoms may be referred to as "LL-to UL-membered" structures.
  • LL-to UL-membered One example of a 6-membered ring structure is toluene (a6-membered ring structure substituted by a methyl group) .
  • a collective term for a substituent for example C LL -C UL alkyl
  • the constituent at the start of the composite substituent for example the C LL -C UL cycloalkyl
  • the constituent at the start of the composite substituent for example the C LL -C UL cycloalkyl
  • All the collective terms used in this application for chemical groups, cyclic systems and cyclic groups can be stipulated more specifically through the addition "C LL -C UL " or "LL-to UL-membered" .
  • Halogen relates to elements of the 7th main group, preferably fluorine, chlorine, bromine and iodine, more preferably fluorine, chlorine and bromine, and even more preferably fluorine and chlorine.
  • heteroatom examples include N, O, S, P, B, Si.
  • heteroatom relates to N, S and O.
  • alkyl –on its own or as part of a chemical group–represents straight-chain or branched hydrocarbons preferably having 1 to 6 carbon atoms, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1, 2-dimethylpropyl, 1, 1-dimethylpropyl, 2, 2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 2-dimethylpropyl, 1, 3-dimethylbutyl, 1, 4-dimethylbutyl, 2, 3-dimethylbutyl, 1, 1-dimethylbutyl, 2, 2-dimethylbutyl, 3, 3-dimethylbutyl,
  • alkyls having 1 to 4 carbon atoms such as, inter alia, methyl, ethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl or t-butyl.
  • inventive alkyls may be substituted by one or more identical or different radicals.
  • alkenyl –on its own or as part of a chemical group–represents straight-chain or branched hydrocarbons preferably having 2 to 6 carbon atoms and at least one double bond, for example vinyl, 2-propenyl, 2-butenyl, 3-butenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1, 1-dimethyl-2-propenyl, 1, 2-dimethyl-2-propenyl, 1-ethyl-2-propenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-penten
  • alkenyls having 2 to 4 carbon atoms such as, inter alia, 2-propenyl, 2-butenyl or 1-methyl-2-propenyl.
  • inventive alkenyls may be substituted by one or more identical or different radicals.
  • alkynyl –on its own or as part of a chemical group–represents straight-chain or branched hydrocarbons preferably having 2 to 6 carbon atoms and at least one triple bond, for example 2-propynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1-methyl-2-butynyl, 1, 1-dimethyl-2-propynyl, 1-ethyl-2- propynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 2-methyl-4-p
  • alkynyls having 2 to 4 carbon atoms such as, inter alia, ethynyl, 2-propynyl or 2-butynyl-2-propenyl.
  • inventive alkynyls may be substitutedby one or more identical or different radicals.
  • cycloalkyl on its own or as part ofa chemical group–represents mono-, bi-or tricyclic hydrocarbons preferably having 3 to 10 carbons, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl or adamantyl.
  • the inventive cycloalkyls may be substituted by one or more identical or different radicals.
  • alkylcycloalkyl represents mono-, bi-or tricyclic alkylcycloalkyl preferably having 4 to 10 or 4 to 7 carbon atoms, for example methylcyclopropyl, ethylcyclopropyl, isopropylcyclobutyl, 3-methylcyclopentyl and 4-methylcyclohexyl. Preference is also given to alkylcycloalkyls having 4, 5 or 7 carbon atoms such as, inter alia, ethylcyclopropyl or 4-methylcyclohexyl.
  • the inventive alkylcycloalkyls may be substituted by one or more identical or different radicals.
  • cycloalkylalkyl represents mono-, bi-or tricyclic cycloalkylalkyl preferably having 4 to 10 or 4 to 7 carbon atoms, for example cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl and cyclopentylethyl. Preference is also given to cycloalkylalkyls having 4, 5 or 7 carbon atoms such as, inter alia, cyclopropylmethyl or cyclobutylmethyl.
  • the inventive cycloalkylalkyls may be substitutedby one or more identical or different radicals.
  • hydroxyalkyl represents a straight-chain or branched alcohol preferably having 1 to 6 carbon atoms, for example methanol, ethanol, n-propanol, isopropanol (isopropan-2-ol) , n-butanol, isobutanol, s-butanol and t-butanol. Preference is also given to hydroxyalkyl groups having 1 to 4 carbon atoms.
  • the inventive hydroxyalkyl groups may be substituted by one or more identical or different radicals.
  • alkoxy represents a straight-chain or branched O-alkyl preferably having 1 to 6 carbon atoms, for example methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy and t-butoxy. Preference is also given to alkoxy groups having 1 to 4 carbon atoms.
  • the inventive alkoxy groups may be substituted by one or more identical or different radicals.
  • cycloalkoxy represents a-O-cycloalkyl group, wherein cycloalkyl has the meaning as defined supra. Preference is given to cycloalkyls having 3, 4, 5, 6 or 7 carbon atoms, i.e. inter alia, -O-cyclopropyl, -O-cyclobutyl, -O-cyclopentyl, -O-cyclohexyl, -O-cycloheptyl.
  • the inventive cycloalkoxy groups may be substituted by one or more identical or different radicals, preferably optional substituents are selected from halogens.
  • alkylthio represents straight-chain or branched S-alkyl preferably having 1 to 6 carbon atoms, for example methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, s-butylthio and t-butylthio. Preference is also given to alkylthio groups having 1 to 4 carbon atoms.
  • the inventive alkylthio groups may be substituted by one or more identical or different radicals.
  • alkylsulfinyl represents straight-chain or branched alkylsulfinyl preferably having 1 to 6 carbon atoms, for example methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, s-butylsulfinyl and t-butylsulfinyl.
  • the inventive alkylsulfinyl groups may be substituted by one or more identical or different radicals.
  • alkylsulfonyl represents straight-chain or branched alkylsulfonyl preferably having 1 to 6 carbon atoms, for example methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, s-butylsulfonyl and t-butylsulfonyl.
  • the inventive alkylsulfonyl groups may be substitutedby one or more identical or different radicals.
  • cycloalkylsulfonyl represents mono-, bi-or tricyclic cycloalkylsulfonyl preferably having 4 to 10 or 4 to 7 carbon atoms, for example cyclopropylsulfonyl, cyclobutylsulfonyl, cyclopentylsulfonyl and cyclohexylsulfonyl. Preference is also given to cycloalkylsulfonyls having 4, 5 or 7 carbon atoms such as, inter alia, cyclopropylsulfonyl or cyclobutylsulfonal.
  • the inventive cycloalkylsulfonyls may be substituted by one or more identical or different radicals.
  • alkoxycarbonyl -alone or as a constituent of a chemical group-represents straight-chain or branched alkoxycarbonyl, preferably having 1 to 6 carbon atoms or having 1 to 4 carbon atoms in the alkoxy moiety, for example methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, s-butoxycarbonyl and t-butoxycarbonyl.
  • Alkoxycarbonyl groups may be substituted by one or more identical or different radicals.
  • alkylaminocarbonyl represents straight-chain or branched alkylaminocarbonyl having preferably 1 to 6 carbon atoms or 1 to 4 carbon atoms in the alkyl moiety, for example methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isopropylaminocarbonyl, s- butylaminocarbonyl and t-butylaminocarbonyl.
  • Alkylaminocarbonyl groups may be substituted by one or more identical or different radicals.
  • N, N-dialkylaminocarbonyl represents straight-chain or branched N, N-dialkylaminocarbonyl having preferably 1 to 6 carbon atoms or 1 to 4 carbon atoms in the alkyl moiety, for example N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl, N, N-di (n-propylamino) carbonyl, N, N-di (isopropylamino) carbonyl and N, N-di- (s-butylamino) carbonyl.
  • N, N-dialkylaminocarbonyl groups may be substituted by one or more identical or different radicals.
  • aryl represents a mono-, bi-or polycyclic aromatic system having preferably 6 to 14, especially 6 to 10, ring carbon atoms, for example phenyl, naphthyl, anthryl, phenanthrenyl, preferably phenyl.
  • Aryl may also represent polycyclic systems such as tetrahydronaphthyl, indenyl, indanyl, fluorenyl, biphenyl, where the bonding site is on the aromatic system. Preference is given to phenyl.
  • the inventive aryl groups, in particular phenyl groups may be substituted by one or more identical or different radicals.
  • heterocycle represents a carbocyclic ring system having at least one ring in which at least one carbon atom is replaced by a heteroatom, preferably by a heteroatom from the group consisting ofN, O, S, P, B, Si, Se, and which is saturated, unsaturated or heteroaromatic and may be unsubstituted or substituted, where the bonding site is on a ring atom.
  • the heterocyclic ring contains preferably 3 to 9 ring atoms, especially 3 to 6 ring atoms, and one or more, preferably 1 to 4, especially 1, 2 or 3, heteroatoms in the heterocyclic ring, preferably from the group consisting of N, O, and S, although no two oxygen atoms should be directly adjacent.
  • the heterocyclic rings usually contain not more than 4 nitrogen atoms and/or not more than 2 oxygen atoms and/or not more than 2 sulphur atoms.
  • the heterocyclyl radical or the heterocyclic ring is optionally substituted, it may be fused to other carbocyclic or heterocyclic rings.
  • the invention also embraces polycyclic systems, for example 8-azabicyclo [3.2.1] octanyl or 1-azabicyclo [2.2.1] heptyl.
  • the invention also embraces spirocyclic systems, for example 1-oxa-5-azaspiro [2.3] hexyl.
  • Preferred heterocyclyl groups of the invention are, for example, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dihydropyranyl, tetrahydropyranyl, dioxanyl, pyrrolinyl, pyrrolidinyl, imidazolinyl, imidazolidinyl, thiazolidinyl, oxazolidinyl, dioxolanyl, dioxolyl, pyrazolidinyl, tetrahydrofuranyl, dihydrofuranyl, oxetanyl, oxiranyl, azetidinyl, aziridinyl, oxazetidinyl, oxaziridinyl, oxazepanyl, oxazinanyl, azepanyl, oxopyrrolidinyl, dioxopyrrolidinyl, oxomorpholin
  • heteroaryls i.e. heteroaromatic systems.
  • heteroaryl represents heteroaromatic compounds, i.e. completely unsaturated aromatic heterocyclic compounds which fall under the above definition of heterocycles.
  • Inventive heteroaryls are, for example, furyl, thienyl, pyrazolyl, imidazolyl, 1, 2, 3-and 1, 2, 4-triazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1, 2, 3-, 1, 3, 4-, 1, 2, 4-and 1, 2, 5-oxadiazolyl, azepinyl, pyrrolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1, 3, 5-, 1, 2, 4-and 1, 2, 3-triazinyl, 1, 2, 4-, 1, 3, 2-, 1, 3, 6-and 1, 2, 6-oxazinyl, oxepinyl, thiepinyl, 1, 2, 4-triazolonyl and 1, 2, 4-diazepinyl.
  • pyridinyl Preference is given to pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrrolyl, thiazolyl, oxazolyl, isothiazolyl, and isoxazolyl. More preferred are pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrrolyl, and thiazolyl.
  • the inventive heteroaryl groups may also be substituted by one or more identical or different radicals.
  • each case optionally substituted means that a group/substituent, such as a alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cycloalkyl, aryl, phenyl, benzyl, heterocyclyl and heteroaryl radical etc., may be substituted, meaning, for example, a substituted radical derived from the unsubstituted base structure, where the substituents, for example, one (1) substituent or a plurality of substituents, preferably 1, 2, 3, 4, 5, 6 or 7, more preferably 1, 2, 3 or 4 substituents, more preferably 1, 2 or 3 substituents, even more preferred 1 or 2 substituents, are independently selected from a group consisting of amino, hydroxyl, halogen, nitro, cyano, isocyano, mercapto, isothiocyanato, C 1 -C 4 carboxyl, carbon
  • radicals may be carbocyclic, heterocyclic, saturated, partly saturated, unsaturated, for example including aromatic rings and with further substitution.
  • first substituent level may, if they contain hydrocarbonaceous components, optionally have further substitution therein ( “second substituent level” ) , for example by one or more of the substituents each independently selected from halogen, hydroxyl, C 1 -C 6 alkyl, amino, nitro, cyano, isocyano, azido, acylamino, an oxo group and an imino group.
  • second substituent level may, if they contain hydrocarbonaceous components, optionally have further substitution therein ( “second substituent level” ) , for example by one or more of the substituents each independently selected from halogen, hydroxyl, C 1 -C 6 alkyl, amino, nitro, cyano, isocyano, azido, acylamino, an oxo group and an imino group.
  • the term " (optionally) substituted” group preferably embraces just one or two substituent levels.
  • halogen-substituted chemical groups or halogenated groups are mono-or polysubstituted by halogen up to the maximum possible number of substituents.
  • Such groups are also referred to as halo groups (for example haloalkyl, halocycloalkyl, haloalkoxy, haloalkylthio, haloalkylsulfinyl, or haloalkylsulfonyl etc. ) .
  • the halogen atoms may be the same or different, and may all be bonded to one carbon atom or may be bonded to a plurality of carbon atoms.
  • Halogen is especially fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine and more preferably fluorine or chlorine, even more preferred is fluorine.
  • halogen-substituted groups are monohalocycloalkyl such as 1-fluorocyclopropyl, 2-fluorocyclopropyl or 1-fluorocyclobutyl, monohaloalkyl such as 2-chloroethyl, 2-fluoroethyl, 1-chloroethyl, 1-fluoroethyl, chloromethyl, or fluoromethyl; perhaloalkyl such as trichloromethyl or trifluoromethyl or CF 2 CF 3 , polyhaloalkyl such as difluoromethyl, 2-fluoro-2-chloroethyl, dichloromethyl, 1, 1, 2, 2-tetrafluoroethyl or 2, 2, 2-trifluoroethyl.
  • monohaloalkyl such as 2-chloroethyl, 2-fluoroethyl, 1-chloroethyl, 1-fluoroethyl, chloromethyl, or fluoromethyl
  • haloalkyls are trichloromethyl, chlorodifluoromethyl, dichlorofluoromethyl, chloromethyl, bromomethyl, 1-fluoroethyl, 2-fluoroethyl, 2, 2-difluoroethyl, 2, 2, 2-trifluoroethyl, 2, 2, 2-trichloroethyl, 2-chloro-2, 2-difluoroethyl, pentafluoroethyl, 3, 3, 3-trifluoropropyl and pentafluoro-t-butyl.
  • haloalkyls having 1 to 4 carbon atoms and 1 to 9, preferably 1 to 5, identical or different halogen atoms selected from fluorine, chlorine and bromine. Particular preference is given to haloalkyls having 1 or 2 carbon atoms and 1 to 5 identical or different halogen atoms selected from fluorine and chlorine, such as, inter alia, difluoromethyl, trifluoromethyl or 2, 2-difluoroethyl.
  • halogen-substituted compounds are haloalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCF 2 CF 3 , OCH 2 CF 3 , OCH 2 CHF 2 und OCH 2 CH 2 Cl; haloalkylsulfanyls such as difluoromethylthio, trifluoromethylthio, trichloromethylthio, chlorodifluoromethylthio, 1-fluoroethylthio, 2-fluoroethylthio, 2, 2-difluoroethylthio, 1, 1, 2, 2-tetrafluoroethylthio, 2, 2, 2-trifluoroethylthio or 2-chloro-1, 1, 2-trifluoroethylthio; haloalkylsulfinyls such as difluoromethylsulfinyl, trifluoromethylsulfinyl, trichloromethylsulfinyl
  • the inventive cyano-substituted chemical groups are preferably monosubstituted by cyano.
  • Such cyano-substituted groups are also referred to as cyano groups (for example cyanoalkyl, cyanocycloalkyl, cyanoalkoxy, cyanoalkylthio, cyanoalkylsulfinyl, cyanoalkylsufonyl etc. ) .
  • radicals having carbon atoms preference is given to those having 1 to 4 carbon atoms, especially 1 or 2 carbon atoms.
  • substituents methyl, methoxy, fluorine, chlorine, bromine and cyano Particular preference is given here to the substituents methyl, methoxy, fluorine, chlorine, bromine and cyano.
  • Substituted amino such as mono-or disubstituted amino means a radical from the group of the substituted amino radicals which are N-substituted, for example, by one or two identical or different radicals from the group of alkyl, hydroxy, amino, alkoxy, acyl and aryl; preferably N-mono-and N, N-dialkylamino, (for example methylamino, ethylamino, N, N-dimethylamino, N, N-diethylamino, N, N-di-n-propylamino, N, N-diisopropylamino or N, N-dibutylamino) , N-mono-or N, N-dialkoxyalkylamino groups (for example N-methoxymethylamino, N-methoxyethylamino, N, N-di (methoxymethyl) amino or N, N-di (methoxyethyl) amino)
  • Substituted amino also includes quaternary ammonium compounds (salts) having four organic substituents on the nitrogen atom.
  • Optionally substituted phenyl is preferably phenyl which is unsubstituted or mono-or polysubstituted, preferably up to trisubstituted, by identical or different radicals from the group of halogen, SF 5 , (C 1 -C 4 ) alkyl, C 3 -C 6 cycloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, hydroxy-C 1 -C 4 alkyl, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) haloalkylthio, (C 1 -C 4 ) alkylsulfinyl (C 1
  • Optionally substituted cycloalkyl is preferably cycloalkyl which is unsubstituted or mono-or polysubstituted, preferably up to trisubstituted, by identical or different radicals from the group of halogen, cyano, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl and (C 1 -C 4 ) haloalkoxy, especially by one or two (C 1 -C 4 ) alkyl radicals.
  • Inventive compounds may occur in preferred embodiments. Individual embodiments described herein may be combined with one another. Not included are combinations which contravene the laws of nature and which the person skilled in the art would therefore rule out on the basis of his/her expert knowledge. Ring structures having three or more adjacent oxygen atoms, for example, are excluded.
  • the compounds of the formula (I) may be in the form of geometric and/or optically active isomers or corresponding isomer mixtures in different compositions.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. Accordingly, the invention encompasses both pure stereoisomers and any mixture ofthese isomers.
  • the invention also relates to methods for controlling animal pests, in which compounds ofthe formula (I) are allowed to act on animal pests and/or their habitat.
  • the control of the animal pests is preferably conducted in agriculture and forestry, and in material protection.
  • Preferably excluded herefrom are methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods carried out on the human or animal body.
  • the invention furthermore relates to the use of the compounds of the formula (I) as pesticides, in particular crop protection agents.
  • the term “pesticide” in each case also always comprises the term “crop protection agent” .
  • the compounds of the formula (I) are suitable for protecting plants and plant organs against biotic and abiotic stressors, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, especially insects, arachnids, helminths, in particular nematodes, and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in aquatic cultures, in forests, in gardens and leisure facilities, in the protection of stored products and of materials, and in the hygiene sector.
  • the term “hygiene” is understood to mean any and all measures, procedures and practices which aim to prevent disease, in particular infectious disease, and which serve to protect the health ofhumans and animals and/or to protect the environment, and/or which maintain cleanliness.
  • this especially includes measures for cleaning, disinfection and sterilisation of, for example, textiles or hard surfaces, especially surfaces ofglass, wood, concrete, porcelain, ceramics, plastic or also of metal (s) , and for ensuring that these are kept free of hygiene pests and/or their excretions.
  • surgical or therapeutic treatment procedures applicable to the human body or to the bodies of animals and diagnostic procedures which are carried out on the human body or on the bodies ofanimals.
  • honeygiene sector thus covers all areas, technical fields and industrial applications in which these hygiene measures, procedures and practices are important, in relation for example to hygiene in kitchens, bakeries, airports, bathrooms, swimming pools, department stores, hotels, hospitals, stables, animal husbandries, etc.
  • Hygiene pest is therefore understood to mean one or more animal pests whose presence in the hygiene sector is problematic, in particular for health reasons. It is therefore a primary objective to avoid or minimize the presence of hygiene pests, and/or exposure to them, in the hygiene sector. This can be achieved in particular through the application of a pesticide that can be used both to prevent infestation and to tackle an infestation which is already present. Preparations which avoid or reduce exposure to pests can also be used.
  • Hygiene pests include, for example, the organisms mentioned below.
  • the compounds of the formula (I) can preferably be used as pesticides. They are active against normally sensitive and resistant species and against all or some stages of development.
  • the abovementioned pests include:
  • pests from the phylum of the Arthropoda in particular from the class of the Arachnida, for example Acarus spp., for example Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., for example Aculus fockeui, Aculus pointedendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., for example Brevipalpus phoenicis, Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., for example Eote
  • Chilopoda for example Geophilus spp., Scutigera spp.;
  • Collembola from the order or the class of the Collembola, for example Onychiurus armatus; Sminthurus viridis;
  • Diplopoda for example Blaniulus guttulatus
  • the Insecta from the class ofthe Insecta, for example from the order ofthe Blattodea, for example Blatta orientalis, Blattella asahinai, Blattella germanica, Leucophaea maderae, Loboptera decipiens, Neostylopyga rhombifolia, Panchlora spp., Parcoblatta spp., Periplaneta spp., for example Periplaneta americana, Periplaneta australasiae, Pycnoscelus surinamensis, Supella longipalpa;
  • Agrilus spp. for example Agrilus planipennis, Agrilus coxalis, Agrilus bilineatus, Agrilus anxius, Agriotes spp., for example Agriotes linneatus, Agriotes mancus, Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., for example Anoplophora glabripennis, Anthonomus spp., for example Anthonomus grandis, Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., for example Atomaria linearis, Attagenus spp., Baris caer
  • Dermaptera for example Anisolabis maritime, Forficula auricularia, Labidura riparia;
  • Aedes spp. for example Aedes aegypti, Aedes albopictus, Aedes sticticus, Aedes vexans, Agromyza spp., for example Agromyza frontella, Agromyza parvicornis, Anastrepha spp., Anopheles spp., for example Anopheles quadrimaculatus, Anopheles gambiae, Asphondylia spp., Bactrocera spp., for example Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera oleae, Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomya spp., Chrysops spp., Chrysozona pluvialis, Cochl
  • Nephotettix spp. Myzus nicotianae, Nasonovia ribisnigri, Neomaskellia spp., Nephotettix spp., for example Nephotettix cincticeps, , Nephotettix nigropictus, Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., for example Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., for example Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Perkinsiella spp., Phenacoccus spp., for example Phenacoccus madeirensis, Phloeo
  • Hymenoptera for example Acromyrmex spp., Athalia spp., for example Athalia rosae, Atta spp., Camponotus spp., Dolichovespula spp., Diprion spp., for example Diprion similis, Hoplocampa spp., for example Hoplocampa cookei, Hoplocampa testudinea, Lasius spp., Linepithema (Iridiomyrmex) humile, Monomorium pharaonis, Paratrechina spp., Paravespula spp., Plagiolepis spp., Sirex spp., for example Sirex noctilio, Solenopsis invicta, Tapinoma spp., Technomyrmex albipes, Urocerus spp., Vespa spp., for example Vespa crabro, Wasmannia auropunctata
  • Isopoda for example Armadillidium vulgare, Oniscus asellus, Porcellio scaber;
  • Coptotermes spp. for example Coptotermes formosanus, Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Kalotermes spp., Microtermes obesi, Nasutitermes spp., Odontotermes spp., Porotermes spp., Reticulitermes spp., for example Reticulitermes flavipes, Reticulitermes hesperus;
  • Achroia grisella for example Achroia grisella, Acronicta major
  • Adoxophyes spp. for example Adoxophyes orana
  • Aedia leucomelas Agrotis spp., for example Agrotis segetum, Agrotis ipsilon, Alabama spp., for example Alabama argillacea, Amyelois transitella, Anarsia spp., Anticarsia spp., for example Anticarsia gemmatalis, Argyroploce spp., Autographa spp., Barathra brassicae, Blastodacna atra, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina nipon
  • Orthoptera or Saltatoria for example Acheta domesticus, Dichroplus spp., Gryllotalpa spp., for example Gryllotalpa gryllotalpa, Hieroglyphus spp., Locusta spp., for example Locusta migratoria, Melanoplus spp., for example Melanoplus devastator, Paratlanticus ussuriensis, Schistocerca gregaria;
  • Phthiraptera from the order of the Phthiraptera, for example Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloxera vastatrix, Phthirus pubis, Trichodectes spp.;
  • Ctenocephalides spp. for example Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis;
  • Thysanoptera for example Anaphothrips obscurus, Baliothrips biformis, Chaetanaphothrips leeuweni, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella schultzei, Frankliniella tritici, Frankliniella vaccinii, Frankliniella williamsi, Haplothrips spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp., for example Thrips palmi, Thrips tabaci;
  • Symphyla for example Scutigerella spp., for example Scutigerella immaculata
  • Gastropoda for example Arion spp., for example Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., for example Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.;
  • Arion spp. for example Arion ater rufus, Biomphalaria spp., Bulinus spp.
  • Deroceras spp. for example Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.;
  • Aglenchus spp. for example Aglenchus agricola
  • Anguina spp. for example Anguina tritici
  • Aphelenchoides spp. for example Aphelenchoides arachidis, Aphelenchoides fragariae
  • Belonolaimus spp. for example Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni
  • Bursaphelenchus spp. for example Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus
  • Cacopaurus spp. for example Cacopaurus pestis, Criconemella spp., for example Criconemella curvata, Criconemella onoensis,
  • the compounds ofthe formula (I) can optionally, at certain concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids) or as agents against MLO (mycoplasma-like organisms) and RLO (rickettsia-like organisms) . If appropriate, they can also be used as intermediates or precursors for the synthesis of other active compounds.
  • the present invention further relates to formulations, compositions and use forms comprising at least one compound ofthe formula (I) as defined anywhere supra.
  • formulations and compositions are in particular prepared as pesticides, for example drench, drip and spray liquors, comprising at least one compound of the formula (I) .
  • Such formulations may further comprise at least one further compound selected from auxiliaries, excipients, solvents and/or additional pharmaceutically active agents.
  • the formulations or use forms comprise further pesticides and/or adjuvants which improve action, such as penetrants, e.g.
  • vegetable oils for example rapeseed oil, sunflower oil, mineral oils, for example paraffin oils, alkyl esters of vegetable fatty acids, for example rapeseed oil methyl ester or soya oil methyl ester, or alkanol alkoxylates and/or spreaders, for example alkylsiloxanes and/or salts, for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate and/or retention promoters, for example dioctyl sulphosuccinate or hydroxypropyl guar polymers and/or humectants, for example glycerol and/or fertilizers, for example ammonium-, potassium-or phosphorus-containing fertilizers.
  • alkylsiloxanes and/or salts for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate and/or retention promoter
  • Customary formulations are, for example, water-soluble liquids (SL) , emulsion concentrates (EC) , emulsions in water (EW) , suspension concentrates (SC, SE, FS, OD) , water-dispersible granules (WG) , granules (GR) and capsule concentrates (CS) ; these and further possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers–173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576.
  • the formulations, in addition to one or more compounds of the formula (I) optionally comprise further agrochemically active compounds.
  • auxiliaries for example extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or further auxiliaries, for example adjuvants.
  • An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having any biological effect.
  • Examples of adjuvants are agents which promote retention, spreading, attachment to the leaf surface or penetration.
  • formulations are prepared in a known way, for example by mixing the compounds of the formula (I) with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or other auxiliaries such as, for example, surfactants.
  • auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or other auxiliaries such as, for example, surfactants.
  • the formulations are prepared either in suitable facilities or else before or during application.
  • the auxiliaries used may be substances suitable for imparting special properties, such as certain physical, technical and/or biological properties, to the formulation of the compounds of the formula (I) , or to the use forms prepared from these formulations (for example ready-to-use pesticides such as spray liquors or seed dressing products) .
  • Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes) , the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified) , the ketones (such as acetone, cyclohexanone) , the esters (including fats and oils) and (poly) ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide) , the carbonates and the nitriles.
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylna
  • suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide or dimethyl sulphoxide, carbonates such as propylene carbonate, butylene carbonate, diethyl carbonate or dibutyl carbonate, or nitriles such as acetonitrile or propanen
  • suitable solvents are aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, aliphatic hydrocarbons, such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulphoxide, carbonates such as propylene carbonate, butylene carbonate, diethyl carbonate or dibutyl carbonate, nitriles such as acetonitrile or propanenitrile, and also water.
  • aromatic hydrocarbons such as xylene, tol
  • Useful carriers include especially: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic materials such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers can likewise be used.
  • Useful carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stalks.
  • Liquefied gaseous extenders or solvents can also be used.
  • Particularly suitable extenders or carriers are those which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellant gases, such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
  • emulsifiers and/or foam-formers examples include salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols) , salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates) , isethionate derivatives, phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, aryls
  • colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc as further auxiliaries in the formulations and the use forms derived therefrom.
  • inorganic pigments for example iron oxide, titanium oxide and Prussian Blue
  • organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes
  • nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc
  • Additional components may be stabilizers, such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability. Foam formers or antifoams may also be present.
  • Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids may also be present as additional auxiliaries in the formulations and the use forms derived therefrom. Further possible auxiliaries are mineral and vegetable oils.
  • auxiliaries may be present in the formulations and the use forms derived therefrom.
  • additives include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic agents, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreaders.
  • the compounds ofthe formula (I) can be combined with any solid or liquid additive commonly used for formulation purposes.
  • Useful retention promoters include all those substances which reduce the dynamic surface tension, for example dioctyl sulphosuccinate, or increase the viscoelasticity, for example hydroxypropylguar polymers.
  • Suitable penetrants in the present context are all those substances which are usually used for improving the penetration of agrochemical active compounds into plants.
  • Penetrants are defined in this context by their ability to penetrate from the (generally aqueous) application liquor and/or from the spray coating into the cuticle of the plant and thereby increase the mobility of active compounds in the cuticle.
  • the method described in the literature can be used to determine this property.
  • Examples include alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12) , fatty acid esters, for example rapeseed oil methyl ester or soya oil methyl ester, fatty amine alkoxylates, for example tallowamine ethoxylate (15) , or ammonium and/or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate.
  • alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12)
  • fatty acid esters for example rapeseed oil methyl ester or soya oil methyl ester
  • fatty amine alkoxylates for example tallowamine ethoxylate (15)
  • ammonium and/or phosphonium salts for example ammonium sulphate or diammonium hydrogenphosphate.
  • the formulations preferably comprise between 0.00000001 and 98%by weight ofthe compound ofthe formula (I) or, with particular preference, between 0.01%and 95%by weight of the compound of the formula (I) , more preferably between 0.5%and 90%by weight of the compound of the formula (I) , based on the weight ofthe formulation.
  • the content of the compound of the formula (I) in the use forms prepared from the formulations (in particular pesticides) may vary within wide ranges.
  • the concentration ofthe compound ofthe formula (I) in the use forms is usually between 0.00000001 and 95%by weight ofthe compound ofthe formula (I) , preferably between 0.00001 and 1%by weight, based on the weight ofthe use form.
  • the compounds are employed in a customary manner appropriate for the use forms.
  • the compounds of the formula (I) may also be employed as a mixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficial species, herbicides, fertilizers, bird repellents, phytotonics, sterilants, safeners, semiochemicals and/or plant growth regulators, in order thus, for example, to broaden the spectrum of action, to prolong the duration of action, to increase the rate of action, to prevent repulsion or prevent evolution of resistance.
  • active compound combinations may improve plant growth and/or tolerance to abiotic factors, for example high or low temperatures, to drought or to elevated water content or soil salinity.
  • the compounds ofthe formula (I) can be present in a mixture with other active compounds or semiochemicals such as attractants and/or bird repellants and/or plant activators and/or growth regulators and/or fertilizers.
  • the compounds of the formula (I) can be used to improve plant properties such as, for example, growth, yield and quality ofthe harvested material.
  • the compounds ofthe formula (I) are present in formulations or the use forms prepared from these formulations in a mixture with further compounds, preferably those as described below.
  • the active compounds identified here by their common names are known and are described, for example, in the pesticide handbook ( “The Pesticide Manual” 16th Ed., British Crop Protection Council 2012) or can be found on the Internet (e.g. http: //www. alanwood. net/pesticides) .
  • the classification is based on the current IRAC Mode ofAction Classification Scheme at the time offiling ofthis patent application.
  • Acetylcholinesterase (AChE) inhibitors preferably carbamates selected from alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb, or organophosphates selected from acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos-methyl, cous
  • GABA-gated chloride channel blockers preferably cyclodiene-organochlorines selected from chlordane and endosulfan, or phenylpyrazoles (fiproles) selected from ethiprole and fipronil.
  • Sodium channel modulators preferably pyrethroids selected from acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin s-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [ (1R) -trans-isomer] , deltamethrin, empenthrin [ (EZ) - (1R) -isomer] ,
  • Nicotinic acetylcholine receptor (nAChR) competitive modulators preferably neonicotinoids selected from acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam, or nicotine, or sulfoximines selected from sulfoxaflor, or butenolids selected from flupyradifurone, or mesoionics selected from triflumezopyrim.
  • Nicotinic acetylcholine receptor (nAChR) allosteric modulators preferably spinosyns selected from spinetoram and spinosad.
  • Glutamate-gated chloride channel (GluCl) allosteric modulators preferably avermectins/milbemycins selected from abamectin, emamectin benzoate, lepimectin and milbemectin.
  • Juvenile hormone mimics preferably juvenile hormone analogues selected from hydroprene, kinoprene and methoprene, or fenoxycarb or pyriproxyfen.
  • Miscellaneous non-specific (multi-site) inhibitors preferably alkyl halides selected from methyl bromide and other alkyl halides, or chloropicrine or sulphuryl fluoride or borax or tartar emetic or methyl isocyanate generators selected from diazomet and metam.
  • Mite growth inhibitors selected from clofentezine, hexythiazox, diflovidazin and etoxazole.
  • Microbial disruptors of the insect gut membrane selected from Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and B.t. plant proteins selected from Cry1Ab, Cry1Ac, Cry1Fa, Cry1A. 105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb and Cry34Ab1/35Ab1.
  • Inhibitors of mitochondrial ATP synthase preferably ATP disruptors selected from diafenthiuron, or organotin compounds selected from azocyclotin, cyhexatin and fenbutatin oxide, or propargite or tetradifon.
  • Nicotinic acetylcholine receptor channel blockers selected from bensultap, cartap hydrochloride, thiocylam and thiosultap-sodium.
  • Inhibitors of chitin biosynthesis type 0, selected from bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • Inhibitors of chitin biosynthesis type 1 selected from buprofezin.
  • Moulting disruptor in particular for Diptera, i.e. dipterans selected from cyromazine.
  • Ecdysone receptor agonists selected from chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • Octopamine receptor agonists selected from amitraz.
  • Mitochondrial complex III electron transport inhibitors selected from hydramethylnone, acequinocyl and fluacrypyrim.
  • Mitochondrial complex I electron transport inhibitors preferably METI acaricides selected from fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad, or rotenone (Derris) .
  • Inhibitors of acetyl CoA carboxylase preferably tetronic and tetramic acid derivatives selected from spirodiclofen, spiromesifen and spirotetramat.
  • Mitochondrial complex IV electron transport inhibitors preferably phosphines selected from aluminium phosphide, calcium phosphide, phosphine and zinc phosphide, or cyanides selected from calcium cyanide, potassium cyanide and sodium cyanide.
  • Mitochondrial complex II electron transport inhibitors preferably beta-ketonitrile derivatives selected from cyenopyrafen and cyflumetofen, and carboxanilides selected from pyflubumide.
  • All named fungicidal mixing partners of the classes (1) to (15) can, if their functional groups enable this, optionally form salts with suitable bases or acids. All named mixing partners of the classes (1) to (15) can include tautomeric forms, where applicable.
  • Inhibitors of the ergosterol biosynthesis for example (1.001) cyproconazole, (1.002) difenoconazole, (1.003) epoxiconazole, (1.004) fenhexamid, (1.005) fenpropidin, (1.006) fenpropimorph, (1.007) fenpyrazamine, (1.008) fluquinconazole, (1.009) flutriafol, (1.010) imazalil, (1.011) imazalil sulfate, (1.012) ipconazole, (1.013) metconazole, (1.014) myclobutanil, (1.015) paclobutrazol, (1.016) prochloraz, (1.017) propiconazole, (1.018) prothioconazole, (1.019) Pyrisoxazole, (1.020) spiroxamine, (1.021) tebuconazole, (1.022) tetraconazole, (1.023) t
  • Inhibitors of the respiratory chain at complex I or II for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) fluopyram, (2.006) flutolanil, (2.007) fluxapyroxad, (2.008) furametpyr, (2.009) Isofetamid, (2.010) isopyrazam (anti-epimeric enantiomer 1R, 4S, 9S) , (2.011) isopyrazam (anti-epimeric enantiomer 1S, 4R, 9R) , (2.012) isopyrazam (anti-epimeric racemate 1RS, 4SR, 9SR) , (2.013) isopyrazam (mixture of syn-epimeric racemate 1RS, 4SR, 9RS and anti-epimeric racemate 1RS, 4SR, 9SR) , (2.014) isopyrazam (syn-epimeric en
  • Inhibitors of the respiratory chain at complex III for example (3.001) ametoctradin, (3.002) amisulbrom, (3.003) azoxystrobin, (3.004) coumethoxystrobin, (3.005) coumoxystrobin, (3.006) cyazofamid, (3.007) dimoxystrobin, (3.008) enoxastrobin, (3.009) famoxadone, (3.010) fenamidone, (3.011) flufenoxystrobin, (3.012) fluoxastrobin, (3.013) kresoxim-methyl, (3.014) metominostrobin, (3.015) orysastrobin, (3.016) picoxystrobin, (3.017) pyraclostrobin, (3.018) pyrametostrobin, (3.019) pyraoxystrobin, (3.020) trifloxystrobin, (3.021) (2E) -2- ⁇ 2- [ ( ⁇ [ (1E) -1- (3- ⁇ -
  • Inhibitors of the mitosis and cell division for example (4.001) carbendazim, (4.002) diethofencarb, (4.003) ethaboxam, (4.004) fluopicolide, (4.005) pencycuron, (4.006) thiabendazole, (4.007) thiophanate-methyl, (4.008) zoxamide, (4.009) 3-chloro-4- (2, 6-difluorophenyl) -6-methyl-5-phenylpyridazine, (4.010) 3-chloro-5- (4-chlorophenyl) -4- (2, 6-difluorophenyl) -6-methylpyridazine, (4.011) 3-chloro-5- (6-chloropyridin-3-yl) -6-methyl-4- (2, 4, 6-trifluorophenyl) pyridazine, (4.012) 4- (2-bromo-4-fluorophenyl) -N- (2, 6-difluorophenyl
  • Inhibitors of the amino acid and/or protein biosynthesis for example (7.001) cyprodinil, (7.002) kasugamycin, (7.003) kasugamycin hydrochloride hydrate, (7.004) oxytetracycline, (7.005) pyrimethanil, (7.006) 3- (5-fluoro-3, 3, 4, 4-tetramethyl-3, 4-dihydroisoquinolin-1-yl) quinoline.
  • Inhibitors of the ATP production for example (8.001) silthiofam.
  • Inhibitors of the cell wall synthesis for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamid, (9.006) pyrimorph, (9.007) valifenalate, (9.008) (2E) -3- (4-tert-butylphenyl) -3- (2-chloropyridin-4-yl) -1- (morpholin-4-yl) prop-2-en-1-one, (9.009) (2Z) -3- (4-tert-butylphenyl) -3- (2-chloropyridin-4-yl) -1- (morpholin-4-yl) prop-2-en-1-one.
  • Inhibitors of the lipid and membrane synthesis for example (10.001) propamocarb, (10.002) propamocarb hydrochloride, (10.003) tolclofos-methyl.
  • Inhibitors of the melanin biosynthesis for example (11.001) tricyclazole, (11.002) 2, 2, 2-trifluoroethyl ⁇ 3-methyl-1- [ (4-methylbenzoyl) amino] butan-2-yl ⁇ carbamate.
  • Inhibitors of the nucleic acid synthesis for example (12.001) benalaxyl, (12.002) benalaxyl-M (kiralaxyl) , (12.003) metalaxyl, (12.004) metalaxyl-M (mefenoxam) .
  • Inhibitors of the signal transduction for example (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) proquinazid, (13.005) quinoxyfen, (13.006) vinclozolin.
  • the compounds of the formula (I) can be combined with biological pesticides.
  • Biological pesticides comprise in particular bacteria, fungi, yeasts, plant extracts and products formed by microorganisms, including proteins and secondary metabolites.
  • Biological pesticides comprise bacteria such as spore-forming bacteria, root-colonising bacteria and bacteria which act as biological insecticides, fungicides or nematicides.
  • Bacillus amyloliquefaciens strain FZB42 (DSM 231179) , or Bacillus cereus, in particular B. cereus strain CNCM I-1562 or Bacillus firmus, strain I-1582 (Accession number CNCM I-1582) or Bacillus pumilus, in particular strain GB34 (Accession No. ATCC 700814) and strain QST2808 (Accession No. NRRL B-30087) , or Bacillus subtilis, in particular strain GB03 (Accession No. ATCC SD-1397) , or Bacillus subtilis strain QST713 (Accession No. NRRL B-21661) or Bacillus subtilis strain OST 30002 (Accession No.
  • NRRL B-50421 Bacillus thuringiensis, in particular B. thuringiensis subspecies israelensis (serotype H-14) , strain AM65-52 (Accession No. ATCC 1276) , or B. thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372) , or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428) , Pasteuria penetrans, Pasteuria spp.
  • fungi and yeasts which are employed or can be used as biological pesticides are:
  • Beauveria bassiana in particular strain ATCC 74040, Coniothyrium minitans, in particular strain CON/M/91-8 (Accession No. DSM-9660) , Lecanicillium spp., in particular strain HRO LEC 12, Lecanicillium lecanii, (formerly known as Verticillium lecanii) , in particular strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884/ATCC 90448) , Metschnikowia fructicola, in particular strain NRRL Y-30752, Paecilomycesfumosoroseus (now: Isariafumosorosea) , in particular strain IFPC 200613, or strain Apopka 97 (Accesion No.
  • Paecilomyces lilacinus in particular P. lilacinus strain 251 (AGAL 89/030550)
  • Talaromyces flavus in particular strain V117b
  • Trichoderma atroviride in particular strain SC1 (Accession Number CBS 122089)
  • Trichoderma harzianum in particular T. harzianum rifai T39. (Accession Number CNCM I-952) .
  • viruses which are employed or can be used as biological pesticides are:
  • Adoxophyes orana (summer fruit tortrix) granulosis virus (GV) Cydia pomonella (codling moth) granulosis virus (GV) , Helicoverpa armigera (cotton bollworm) nuclear polyhedrosis virus (NPV) , Spodoptera exigua (beet armyworm) mNPV, Spodoptera frugiperda (fall armyworm) mNPV, Spodoptera littoralis (African cotton leafworm) NPV.
  • bacteria and fungi which are added as 'inoculant' to plants or plant parts or plant organs and which, by virtue of their particular properties, promote plant growth and plant health. Examples which may be mentioned are:
  • plant extracts and products formed by microorganisms including proteins and secondary metabolites which are employed or can be used as biological pesticides are:
  • the compounds of the formula (I) can be combined with safeners such as, for example, benoxacor, cloquintocet (-mexyl) , cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl) , fenclorim, flurazole, fluxofenim, furilazole, isoxadifen (-ethyl) , mefenpyr (-diethyl) , naphthalic anhydride, oxabetrinil, 2-methoxy-N- ( ⁇ 4- [ (methylcarbamoyl) amino] phenyl ⁇ sulphonyl) benzamide (CAS 129531- 12-0) , 4- (dichloroacetyl) -1-oxa-4-azaspiro [4.5] decane (CAS 71526-07-3) , 2, 2, 5-trimethyl-3- (dichloroacetyl) -1
  • plants can be treated in accordance with the invention.
  • plants are to be understood to mean all plants and plant parts such as wanted and unwanted wild plants or crop plants (including naturally occurring crop plants) , for example cereals (wheat, rice, triticale, barley, rye, oats) , maize, soya bean, potato, sugar beet, sugar cane, tomatoes, pepper, cucumber, melon, carrot, watermelon, onion, lettuce, spinach, leek, beans, Brassica oleracea (e.g. cabbage) and other vegetable species, cotton, tobacco, oilseed rape, and also fruit plants (with the fruits apples, pears, citrus fruits and grapevines) .
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or cannot be protected by varietal property rights.
  • Plants should be understood to mean all developmental stages, such as seeds, seedlings, young (immature) plants up to mature plants.
  • Plant parts should be understood to mean all parts and organs of the plants above and below ground, such as shoot, leaf, flower and root, examples given being leaves, needles, stalks, stems, flowers, fruit bodies, fruits and seeds, and also tubers, roots and rhizomes. Parts of plants also include harvested plants or harvested plant parts and vegetative and generative propagation material, for example seedlings, tubers, rhizomes, cuttings and seeds.
  • Treatment according to the invention of the plants and plant parts with the compounds of the formula (I) is carried out directly or by allowing the compounds to act on the surroundings, environment or storage space by the customary treatment methods, for example by immersion, spraying, evaporation, fogging, scattering, painting on, injection and, in the case of propagation material, in particular in the case of seeds, also by applying one or more coats.
  • plants and their parts are treated.
  • wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms) , and parts thereof are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above.
  • the invention is used with particular preference to treat plants of the respective commercially customary cultivars or those that are in use.
  • Plant cultivars are to be understood as meaning plants having new properties ( "traits” ) and which have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio-or genotypes.
  • transgenic plants or plant cultivars which are to be treated with preference in accordance with the invention include all plants which, through the genetic modification, received genetic material which imparts particular advantageous useful properties ( "traits” ) to these plants.
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products.
  • Such properties are increased resistance of the plants against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails owing, for example, to toxins formed in the plants, in particular those formed in the plants by the genetic material from Bacillus thuringiensis (for example by the genes CryIA (a) , CryIA (b) , CryIA (c) , CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CryIF and also combinations thereof) , furthermore increased resistance of the plants against phytopathogenic fungi, bacteria and/or viruses owing, for example, to systemic acquired resistance (SAR) , systemin, phytoalexins, elicitors and also resistance genes and correspondingly expressed proteins and toxins, and also increased tolerance of the plants to certain herbicidally active compounds, for example imidazolinones, s
  • SAR systemic
  • transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats) , maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes) , with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape. Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails.
  • the treatment of the plants and plant parts with the compounds of the formula (I) is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, injecting, watering (drenching) , drip irrigating and, in the case of propagation material, in particular in the case of seed, furthermore as a powder for dry seed treatment, asolution for liquid seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc. It is furthermore possible to apply the compounds of the formula (I) by the ultra-low volume method or to inject the application form or the compound of the formula (I) itself into the soil.
  • a preferred direct treatment of the plants is foliar application, i.e. the compounds of the formula (I) are applied to the foliage, where treatment frequency and the application rate should be adjusted according to the level of infestation with the pest in question.
  • the compounds of the formula (I) also access the plants via the root system.
  • the plants are then treated by the action of the compounds of the formula (I) on the habitat of the plant. This may be done, for example, by drenching, or by mixing into the soil or the nutrient solution, i.e. the locus of the plant (e.g. soil or hydroponic systems) is impregnated with a liquid form of the compounds of the formula (I) , or by soil application, i.e. the compounds of the formula (I) according to the invention are introduced in solid form (e.g.
  • drip application i.e. the liquid application of the compounds of the formula (I) according to the invention from surface or sub-surface driplines over a certain period of time together with varying amounts of water at defined locations in the vicinity of the plants.
  • this can also be done by metering the compound of the formula (I) in a solid application form (for example as granules) into a flooded paddy field.
  • methods for the treatment of seed should also take into consideration the intrinsic insecticidal or nematicidal properties of pest-resistant or-tolerant transgenic plants in order to achieve optimum protection of the seed and also the germinating plant with a minimum of pesticides being employed.
  • the present invention therefore in particular also relates to a method for the protection of seed and germinating plants, from attack by pests, by treating the seed with one of the compounds of the formula (I) .
  • the method according to the invention for protecting seed and germinating plants against attack by pests furthermore comprises a method where the seed is treated simultaneously in one operation or sequentially with a compound of the formula (I) and a mixing component. It also comprises a method where the seed is treated at different times with a compound of the formula (I) and a mixing component.
  • the invention likewise relates to the use of the compounds of the formula (I) for the treatment of seed for protecting the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated with a compound of the formula (I) according to the invention so as to afford protection from animal pests.
  • the invention also relates to seed which has been treated simultaneously with a compound of the formula (I) and a mixing component.
  • the invention furthermore relates to seed which has been treated at different times with a compound of the formula (I) and a mixing component.
  • the individual substances may be present on the seed in different layers.
  • the layers comprising a compound of the formula (I) and mixing components may optionally be separated by an intermediate layer.
  • the invention also relates to seed where a compound of the formula (I) and a mixing component have been applied as component of a coating or as a further layer or further layers in addition to a coating.
  • the invention relates to seed which, after the treatment with a compound of the formula (I) , is subjected to a film-coating process to prevent dust abrasion on the seed.
  • One of the advantages encountered with a systemically acting compound of the formula (I) is the fact that, by treating the seed, not only the seed itself but also the plants resulting therefrom are, after emergence, protected against animal pests. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.
  • compounds of the formula (I) can be employed in combination with compositions or compounds of signalling technology, leading to better colonization by symbionts such as, for example, rhizobia, mycorrhizae and/or endophytic bacteria or fungi, and/or to optimized nitrogen fixation.
  • symbionts such as, for example, rhizobia, mycorrhizae and/or endophytic bacteria or fungi, and/or to optimized nitrogen fixation.
  • the compounds of the formula (I) are suitable for protection of seed of any plant variety which is used in agriculture, in the greenhouse, in forests or in horticulture.
  • this takes the form of seed of cereals (for example wheat, barley, rye, millet and oats) , corn, cotton, soya beans, rice, potatoes, sunflowers, coffee, tobacco, canola, oilseed rape, beets (for example sugarbeets and fodder beets) , peanuts, vegetables (for example tomatoes, cucumbers, bean, cruciferous vegetables, onions and lettuce) , fruit plants, lawns and ornamental plants.
  • the treatment of the seed of cereals (such as wheat, barley, rye and oats) , maize, soya beans, cotton, canola, oilseed rape, vegetables and rice is of particular importance.
  • transgenic seed with a compound of the formula (I) is also of particular importance.
  • the heterologous genes in transgenic seed can originate from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly suitable for the treatment of transgenic seed which comprises at least one heterologous gene originating from Bacillus sp. It is particularly preferably a heterologous gene derived from Bacillus thuringiensis.
  • the compound of the formula (I) is applied to the seed.
  • the seed is treated in a state in which it is stable enough to avoid damage during treatment.
  • the seed may be treated at any point in time between harvest and sowing.
  • the seed usually used has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits.
  • seed which has been harvested, cleaned and dried down to a moisture content which allows storage Alternatively, it is also possible to use seed which, after drying, has been treated with, for example, water and then dried again, for example priming.
  • seed which has been soaked, for example in water to a certain stage of the rice embryo ( ‘pigeon breast stage’ ) stimulating the germination and a more uniform emergence.
  • the amount of the compound of the formula (I) applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be ensured particularly in the case of active compounds which can exhibit phytotoxic effects at certain application rates.
  • the compounds of the formula (I) are applied to the seed in a suitable formulation.
  • suitable formulations and processes for seed treatment are known to the person skilled in the art.
  • the compounds of the formula (I) can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
  • customary seed dressing formulations such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
  • formulations are prepared in a known manner, by mixing the compounds of the formula (I) with customary additives such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • customary additives such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • Colorants which may be present in the seed-dressing formulations which can be used in accordance with the invention are all colorants which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.
  • Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of agrochemically active compounds. Preference is given to using alkylnaphthalenesulphonates, such as diisopropyl-or diisobutylnaphthalenesulphonates.
  • Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants conventionally used for the formulation of active agrochemical ingredients. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Suitable nonionic dispersants include in particular ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers, and the phosphated or sulphated derivatives thereof.
  • Suitable anionic dispersants are in particular lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.
  • Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Preference is given to using silicone antifoams and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention are all substances which can be used for such purposes in agrochemical compositions. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica are preferred.
  • Adhesives which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing products.
  • Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.
  • the gibberellins are known (cf. R. Wegler "Chemie der convinced-and " , vol. 2, Springer Verlag, 1970, pp. 401-412) .
  • the seed dressing formulations usable in accordance with the invention can be used to treat a wide variety of different kinds of seed either directly or after prior dilution with water.
  • the concentrates or the preparations obtainable therefrom by dilution with water can be used to dress the seed of cereals, such as wheat, barley, rye, oats, and triticale, and also the seed of maize, rice, oilseed rape, peas, beans, cotton, sunflowers, soya beans and beets, or else a wide variety of different vegetable seed.
  • the seed dressing formulations usable in accordance with the invention, or the dilute use forms thereof, can also be used to dress seed of transgenic plants.
  • the procedure in the seed dressing is to place the seed into a mixer, operated batch-wise or continously, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying operation.
  • the application rate of the seed dressing formulations usable in accordance with the invention can be varied within a relatively wide range. It is guided by the particular content of the compounds of the formula (I) in the formulations and by the seed.
  • the application rates of the compound of the formula (I) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
  • the compounds of the formula (I) are active against animal parasites, in particular ectoparasites or endoparasites.
  • Ectoparasites are typically and preferably arthropods, in particular insects or acarids.
  • the compounds of the formula (I) are suitable, with favourable toxicity in warm blooded animals, for controlling parasites which occur in animal breeding and animal husbandry in livestock, breeding, zoo, laboratory, experimental and domestic animals (companion animals) . They are active against all or specific stages of development of the parasites.
  • Agricultural livestock include, for example, mammals, such as, sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeers, fallow deers, and in particular cattle and pigs; or poultry, such as turkeys, ducks, geese, and in particular chickens; or fish or crustaceans, e.g. in aquaculture; or, as the case may be, insects such as bees.
  • mammals such as, sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeers, fallow deers, and in particular cattle and pigs
  • poultry such as turkeys, ducks, geese, and in particular chickens
  • fish or crustaceans e.g. in aquaculture
  • insects such as bees.
  • Domestic animals or companion animals include, for example, mammals, such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets or in particular dogs, cats; cage birds; reptiles; amphibians or aquarium fish.
  • mammals such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets or in particular dogs, cats; cage birds; reptiles; amphibians or aquarium fish.
  • the compounds of the formula (I) are administered to mammals.
  • the compounds of the formula (I) are administered to birds, namely cage birds or in particular poultry.
  • the compounds of the formula (I) are administered to farm animals or companion animals, in particular to companion animals such as cats and dogs.
  • control means that the compounds of the formula (I) are effective in reducing the incidence of the respective parasite in an animal infected with such parasites to innocuous levels. More specifically, “controlling” , as used herein, means that the compounds ofthe formula (I) are effective in killing the respective parasite, inhibiting its growth, or inhibiting its proliferation.
  • Exemplary arthropods include, without any limitation
  • Anoplurida for example, Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.;
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Atylotus spp., Braula spp., Calliphora spp., Chrysomyia spp., Chrysops spp., Culex spp., Culicoides spp., Eusimulium spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematobia spp., Haematopota spp., Hippobosca spp., Hybomitra spp., Hydrotaea spp., Hypoderma spp., Lipoptena spp., Lucilia spp., Lutzomyia spp., Melophagus spp., Morellia spp., Musca spp.,
  • Siphonaptrida for example Ceratophyllus spp.; Ctenocephalides spp., Pulex spp., Tunga spp., Xenopsylla spp.;
  • acari may be mentioned by way of example, without any limitation:
  • Metastigmata from the subclass ofthe Acari (Acarina) and the order ofthe Metastigmata, for example, from the family of argasidae like Argas spp., Ornithodorus spp., Otobius spp., from the family of Ixodidae like Amblyomma spp., Dermacentor spp., Haemaphysalis spp., Hyalomma spp., Ixodes spp., Rhipicephalus (Boophilus) spp, Rhipicephalus spp.
  • the compounds of the formula (I) are effective in reducing the incidence of parasites selected from arthropods, more particularly from the subclass of the Acari and insects, in an animal infected with such parasites to innocuous levels.
  • the administration of the compounds of the formula (I) is carried out by methods generally known in the art, such as enterally, parenterally, dermally or nasally, in the form of suitable preparations. Administration can be carried out prophylactically, methaphylactically or therapeutically.
  • one embodiment of the present invention refers to the compounds of the formula (I) for use as a medicament.
  • Another aspect refers to the compounds of the formula (I) for use as an antiendoparasitical agent.
  • Another aspect refers to the compounds of the formula (I) for use as an antiectoparasitical agent, in particular an arthropodicidal agent, more particular an insecticidal agent or acaricidal agent.
  • veterinary formulations comprising an effective amount of at least one compound of the formula (I) and at least one of the following: pharmaceutically acceptable excipient (e.g. solid or liquid diluents) , pharmaceutically acceptable auxiliary (e.g. surfactants) , in particular a pharmaceutically acceptable excipient and/or pharmaceutically acceptable auxiliary which is normally used in veterinary formulations.
  • pharmaceutically acceptable excipient e.g. solid or liquid diluents
  • pharmaceutically acceptable auxiliary e.g. surfactants
  • a related aspect of the invention is a method for preparing a veterinary formulation as described herein, comprising the step of mixing at least one compound of the formula (I) with pharmaceutically acceptable excipients and/or auxiliaries, in particular with pharmaceutically acceptable excipients and/or auxiliaries which are normally used in veterinary formulations.
  • veterinary formulations selected from the group of ectoparasiticidal and endoparasiticidal formulations, more particular an arthropodicidal formulations, even more particular selected from the group of nematicidal, platyhelminthicidal, acanthocephalicidal, pentastomicidal, insecticidal, and acaricidal formulations, in accordance with the mentioned aspects, as well as their methods for preparation.
  • Another aspect refers to a method for treatment of a parasitic infection, in particular an infection by a parasite selected from the group of ectoparasites and endoparasites mentioned herein, by applying an effective amount of a compound of the formula (I) to an animal, in particular a non-human animal, in need thereof.
  • Another aspect refers to a method for treatment of a parasitic infection, in particular an infection by a parasite selected from the group of ectoparasites and endoparasites mentioned herein, by applying a veterinary formulation as defined herein to an animal, in particular a non-human animal, in need thereof.
  • Another aspect refers to the use of the compounds of the formula (I) in the treatment of a parasitic infection, in particular an infection by a parasite selected from the group of ectoparasites and endoparasites mentioned herein, in an animal, in particular a non-human animal.
  • treatment includes prophylactic, metaphylactic or therapeutical treatment.
  • mixtures of at least one compound of the formula (I) with other active ingredients, particularly with endo-and ectoparasiticides, for the veterinary field are provided herewith.
  • mixture not only means that two (or more) different active ingredients are formulated in ajoint formulation and are accordingly applied together but also refers to products which comprise separate formulations for each active compound. Accordingly, if more than two active compounds are to be applied, all active compounds may be formulated in a joint formulation or all active compounds may be formulated in separate formulations; also feasible are mixed forms where some ofthe active compounds are formulatedjointly and some ofthe active compounds are formulated separately. Separate formulations allow the separate or successive application of the active compounds in question.
  • the active compounds specified herein by their common names are known and described, for example, in the Pesticide Manual (see above) or can be searched in the internet (e.g. http: //www. alanwood. net/pesticides) .
  • Exemplary active ingredients from the group of ectoparasiticides, as mixing partners, include, without limitation insecticides and acaricides listed in detail above. Further active ingredients which may be used are listed below following the aforementioned classification which is based on the current IRAC Mode of Action Classification Scheme: (1) Acetylcholinesterase (AChE) inhibitors; (2) GABA-gated chloride channel blockers; (3) Sodium channel modulators; (4) Nicotinic acetylcholine receptor (nAChR) competitive modulators; (5) Nicotinic acetylcholine receptor (nAChR) allosteric modulators; (6) Glutamate-gated chloride channel (GluCl) allosteric modulators; (7) Juvenile hormone mimics; (8) Miscellaneous non-specific (multi-site) inhibitors; (9) Modulators of Chordotonal Organs; (10) Mite growth inhibitors; (12) Inhibitors of mitochondrial ATP synthase, such as, ATP disruptors;
  • Active compounds with unknown or non-specific mode of action e.g., fentrifanil, fenoxacrim, cycloprene, chlorobenzilate, chlordimeform, flubenzimine, dicyclanil, amidoflumet, quinomethionate, triarathene, clothiazoben, tetrasul, potassium oleate, petroleum, metoxadiazone, gossyplure, flutenzin, bromopropylate, cryolite;
  • organochlorines e.g. camphechlor, lindane, heptachlor; or phenylpyrazoles, e.g. acetoprole, pyrafluprole, pyriprole, vaniliprole, sisapronil; or isoxazolines, e.g. sarolaner, afoxolaner, lotilaner, fluralaner;
  • pyrethroids e.g. (cis-, trans-) , metofluthrin, profluthrin, flufenprox, flubrocythrinate, fubfenprox, fenfluthrin, protrifenbute, pyresmethrin, RU15525, terallethrin, cis-resmethrin, heptafluthrin, , bioethanomethrin, biopermethrin, fenpyrithrin, cis-cypermethrin, cis-permethrin, clocythrin, cyhalothrin (lambda-) , chlovaporthrin, or halogenated carbonhydrogen compounds (HCHs) ,
  • neonicotinoids e.g. nithiazine
  • macrocyclic lactones e.g. nemadectin, ivermectin, latidectin, moxidectin, selamectin, eprinomectin, doramectin, emamectin benzoate; milbemycin oxime
  • Bios, hormones or pheromones for example natural products, e.g. thuringiensin, codlemone or neem components
  • dinitrophenols e.g. dinocap, dinobuton, binapacryl
  • benzoylureas e.g. fluazuron, penfluron
  • amidine derivatives e.g. chlormebuform, cymiazole, demiditraz
  • Bee hive varroa acaricides for example organic acids, e.g. formic acid, oxalic acid.
  • Exemplary active ingredients from the group of endoparasiticides, as mixing partners, include, without limitation, anthelmintically active compounds and antiprotozoal active compounds.
  • Anthelmintically active compounds including, without limitation, the following nematicidally, trematicidally and/or cestocidally active compounds:
  • eprinomectin from the class of macrocyclic lactones, for example: eprinomectin, abamectin, nemadectin, moxidectin, doramectin, selamectin, lepimectin, latidectin, milbemectin, ivermectin, emamectin, milbemycin;
  • benzimidazoles and probenzimidazoles for example: oxibendazole, mebendazole, triclabendazole, thiophanate, parbendazole, oxfendazole, netobimin, fenbendazole, febantel, thiabendazole, cyclobendazole, cambendazole, albendazole-sulphoxide, albendazole, flubendazole;
  • depsipeptides preferably cyclic depsipetides, in particular 24-membered cyclic depsipeptides, for example: emodepside, PF1022A;
  • imidazothiazoles for example: butamisole, levamisole, tetramisole;
  • amidantel deacylated amidantel (dAMD)
  • dAMD deacylated amidantel
  • paraherquamide from the class of paraherquamides, for example: paraherquamide, derquantel;
  • salicylanilides for example: tribromsalan, bromoxanide, brotianide, clioxanide, closantel, niclosamide, oxyclozanide, rafoxanide;
  • substituted phenols for example: nitroxynil, bithionol, disophenol, hexachlorophene, niclofolan, meniclopholan;
  • organophosphates for example: trichlorfon, naphthalofos, dichlorvos/DDVP, crufomate, coumaphos, haloxon;
  • piperazines for example: piperazine, hydroxyzine;
  • tetracyclines from the class of tetracyclines, for example: tetracyclin, chlorotetracycline, doxycyclin, oxytetracyclin, rolitetracyclin;
  • bunamidine from diverse other classes, for example: bunamidine, niridazole, resorantel, omphalotin, oltipraz, nitroscanate, nitroxynile, oxamniquine, mirasan, miracil, lucanthone, hycanthone, hetolin, emetine, diethylcarbamazine, dichlorophen, diamfenetide, clonazepam, bephenium, amoscanate, clorsulon.
  • Antiprotozoal active compounds including, without limitation, the following active compounds:
  • triazines for example: diclazuril, ponazuril, letrazuril, toltrazuril;
  • polylether ionophore for example: monensin, salinomycin, maduramicin, narasin;
  • quinolones for example: enrofloxacin, pradofloxacin;
  • quinines for example: chloroquine
  • pyrimidines for example: pyrimethamine
  • sulfonamides for example: sulfaquinoxaline, trimethoprim, sulfaclozin;
  • thiamines for example: amprolium
  • lincosamides for example: clindamycin
  • carbanilides for example: imidocarb;
  • nitrofuranes for example: nifurtimox
  • quinazolinone alkaloids for example: halofuginon;
  • All named mixing partners can, if their functional groups enable this, optionally form salts with suitable bases or acids.
  • a vector is an arthropod, in particular an insect or arachnid, capable of transmitting pathogens such as, for example, viruses, worms, single-cell organisms and bacteria from a reservoir (plant, animal, human, etc. ) to a host.
  • pathogens can be transmitted either mechanically (for example trachoma by non-stinging flies) to a host, or by injection (for example malaria parasites by mosquitoes) into a host.
  • Anopheles malaria, filariasis
  • Flies sleeping sickness (trypanosomiasis) ; cholera, other bacterial diseases;
  • Mites acariosis, epidemic typhus, rickettsialpox, tularaemia, Saint Louis encephalitis, tick-borne encephalitis (TBE) , Crimean–Congo haemorrhagic fever, borreliosis;
  • Ticks borellioses such as Borrelia burgdorferi sensu lato., Borrelia duttoni, tick-borne encephalitis, Q fever (Coxiella burnetii) , babesioses (Babesia canis canis) , ehrlichiosis.
  • vectors in the sense of the present invention are insects, for example aphids, flies, leafhoppers or thrips, which are capable of transmitting plant viruses to plants.
  • Other vectors capable of transmitting plant viruses are spider mites, lice, beetles and nematodes.
  • vectors in the sense of the present invention are insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, for example A. gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodids such as Phlebotomus, Lutzomyia, lice, fleas, flies, mites and ticks capable of transmitting pathogens to animals and/or humans.
  • insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, for example A. gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodids such as Phlebotomus, Lutzomyia, lice, fleas, flies, mites and ticks capable of transmitting pathogens to animals and/or humans.
  • Compounds of the formula (I) are suitable for use in the prevention of diseases and/or pathogens transmitted by vectors.
  • afurther aspect of the present invention is the use of compounds of the formula (I) for vector control, for example in agriculture, in horticulture, in gardens and in leisure facilities, and also in the protection ofmaterials and stored products.
  • the compounds of the formula (I) are suitable for protecting industrial materials against attack or destruction by insects, for example from the orders Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
  • Industrial materials in the present context are understood to mean inanimate materials, such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions.
  • plastics such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions.
  • the use ofthe invention for protecting wood is particularly preferred.
  • the compounds of the formula (I) are used together with at least one further insecticide and/or at least one fungicide.
  • the compounds of the formula (I) are present as a ready-to-use pesticide, i.e. they can be applied to the material in question without further modifications. Suitable further insecticides or fungicides are in particular those mentioned above.
  • the compounds of the formula (I) can be employed for protecting objects which come into contact with saltwater or brackish water, in particular hulls, screens, nets, buildings, moorings and signalling systems, against fouling.
  • the compounds of the formula (I) alone or in combinations with other active compounds, can be used as antifouling agents.
  • the compounds of the formula (I) are suitable for controlling animal pests in the hygiene sector.
  • the invention can be applied in the domestic sector, in the hygiene sector and in the protection of stored products, especially for controlling insects, arachnids, ticks and mites encountered in enclosed spaces such as dwellings, factory halls, offices, vehicle cabins, animal husbandries.
  • the compounds of the formula (I) are used alone or in combination with other active compounds and/or auxiliaries. They are preferably used in domestic insecticide products.
  • the compounds of the formula (I) are effective against sensitive and resistant species, and against all developmental stages.
  • pests from the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
  • DIPEA diisopropylethylamine
  • XantPHOS 4 5-Bis (diphenylphosphino) -9, 9-dimethylxanthene (CAS RN 161265-03-8)
  • the synthesis starts with a pyrazine of formula (II) which carries residues R 5 and R 6 , as well as one group X 1 which can be chlorine, bromine or iodine.
  • groups R 5 and R 6 which can be chlorine, bromine or iodine.
  • X 1 which can be chlorine, bromine or iodine.
  • These compounds are commercially available or can be made according to methods described in the art.
  • the hydrogen atom next to X 1 is abstracted and replaced by a metal fragment consisting of a main group metal such as Li, Mg, Zn and appropriate ligands L.
  • a metal fragment consisting of a main group metal such as Li, Mg, Zn and appropriate ligands L.
  • An example for such a transformation is given by F. Buron, N. Pié, A. Turck, G, Quéguigner, J. Org. Chem.
  • the temperature in the metalation step is typically below 0°C, preferably at-78°C in a dry ice bath. After the addition of the aldehyde, the temperature may be raised to 0°C or even room temperature.
  • the organometal intermediate may also be prepared in advance and then be added to a solution of the aldehyde in a suitable nonprotic solvent such as, for instance, THF, ether or toluene.
  • the subsequent step consists in the replacement of the hydroxy group from intermediate (V) by a fully protected nitrogen resulting in intermediates of formula (VII) .
  • PG 1 and PG 2 may be either two independent protecting groups or may be joined to form one cyclic protecting group. Examples for protecting groups suitable for the protection of amino functionalities can be found in T.W. Greene, P.G.M. Wuts “Protective Groups in Organic Chemistra” 3 rd edition, Wiley Interscience, New York 1999. Preferentially, the phthalimide protecting group is used.
  • the replacement of the hydroxy group may be carried out either by converting the alcohol into a halogenide by a method known in the art, e.g.
  • R 4 occurs in the next step using a cross coupling reaction with reagent (VIII) which carries the leaving group X 2 .
  • X 2 may be a trialkyl stannyl residue, a boronic acid, a boronic ester or a metal fragment M (L n ) with a metal such as Ni, Zn, Mg and appropriate ligands L.
  • the cross coupling reaction is typically catalyzed by a transition metal catalyst such as a palladium or copper catalyst with appropriate ligands.
  • a broad survey on cross coupling reactions is available in F. Diederich, A. de Meijere, “Metal catalyzed Cross Coupling Reactions, Second Edition” , Wiley Online Library, online ISBN: 9783527619535.
  • a variation of the cross coupling reaction could be to replace the moiety X 1 from intermediate (VII) by a trialkyl trialkyl stannyl residue, a boronic acid, a boronic ester or a metal fragment M (L n ) with a metal such as Ni, Zn, Mg and appropriate ligands L.
  • intermediate (VIII) would have to carry a group X 2 chosen from, for instance, Cl, Br, I, triflate or similar.
  • Ligands can be chosen from phosphine ligands or N-heterocyclic carbene ligands, an overview of some ligands is given in R. Martin, S.L. Buchwald, Acc. Chem. Res. 2008, 61, 1461-1473.
  • the product (IX) of the cross coupling reaction has to be deprotected in the next step.
  • this can be achieved by reacting (IX) with hydrazine hydrate in an appropriate solvent such as ethanol at room temperature or above room temperature.
  • the resulting products (Ia) are compounds of the invention where R 1 is H.
  • an alkylation reaction with alkylating agent (XII) may be used.
  • leaving groups LG are Cl, Br, I, tosylate, mesylate or triflate groups.
  • the reaction may be carried out by mixing the reagents (Ia) and (XII) together with a base, such as K 2 CO 3 or DIPEA in a suitable solvent, such as acetonitrile or DMF and letting them react at a temperature in the range 20 to 100°C.
  • a base such as K 2 CO 3 or DIPEA
  • a suitable solvent such as acetonitrile or DMF
  • R 4 is a pyridine-group
  • X 1 is Cl
  • X 2 is Zn-Cl
  • the Pd-catalyst is a Pd 2 (dba) 3 catalyst
  • the ligand L is X-Phos.
  • R 4 is a pyrimidine-group
  • X 1 is Cl
  • X 2 is SnBu 3
  • the Pd-catalyst is a PdCl 2 *2APhos catalyst and ZnCl 2 is added as an additive.
  • R 4 is a thiazole-group
  • X 1 is Cl
  • X 2 is SnBu 3
  • the Pd-catalyst is a PdCl 2 *2PPh 3 catalyst
  • the ligand L is PPh 3 .
  • the Mitsunobu reaction and the cross coupling reaction may be applied in inverse order as displayed in Scheme 2.
  • the introduction of R 4 by one of the cross coupling methods described above results in intermediate XIII which is then further converted into intermediate IX by a Mitsunobu reaction as described above. In certain cases, this may give an advantage in terms of yield or practicability.
  • the meaning of the group PG 1 and PG 2 reference is made to the definition supra.
  • diluents for performance of the processes according to the invention are, as well as water, all inert solvents.
  • halohydrocarbons for example chlorohydrocarbons such as tetrachloroethylene, tetrachloroethane, dichloropropane, methylene chloride, dichlorobutane, chloroform, carbon tetrachloride, trichloroethane, trichloroethylene, pentachloroethane, difluorobenzene, 1, 2-dichloroethane, chlorobenzene, bromobenzene, dichlorobenzene, chlorotoluene, trichlorobenzene) , alcohols (for example methanol, ethanol, isopropanol, butanol) , ethers (for example ethyl prop
  • reaction temperatures can be varied within a relatively wide range.
  • the temperatures employed are between-30°C and+150°C, preferably between-10°C and+100°C.
  • the process according to the invention is generally performed under atmospheric pressure. However, it is also possible to perform the process according to the invention under elevated or reduced pressure—generally at absolute pressures between 0.1 bar and 15 bar.
  • the starting materials are generally used in approximately equimolar amounts. However, it is also possible to use one of the components in a relatively large excess.
  • the reaction is generally carried out in a suitable diluent in the presence of a reaction auxiliary, optionally also under a protective gas atmosphere (for example under nitrogen, argon or helium) and the reaction mixture is generally stirred at the temperature required for several hours.
  • a reaction auxiliary optionally also under a protective gas atmosphere (for example under nitrogen, argon or helium) and the reaction mixture is generally stirred at the temperature required for several hours.
  • the workup is performed by customary methods (cf. the preparation examples) .
  • the basic reaction auxiliaries used to perform the process according to the invention may be all suitable acid binders.
  • suitable acid binders include: alkaline earth metal or alkali metal compounds (e.g. hydroxides, hydrides, oxides and carbonates of lithium, sodium, potassium, magnesium, calcium and barium) , amidine bases or guanidine bases (e.g.
  • the acidic reaction auxiliaries used to perform the process according to the invention include all mineral acids (e.g. hydrohalic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or hydriodic acid, and also sulphuric acid, phosphoric acid, phosphorous acid, nitric acid) , Lewis acids (e.g. aluminium (III) chloride, boron trifluoride or its etherate, titanium (IV) chloride, tin (IV) chloride) and organic acids (e.g.
  • mineral acids e.g. hydrohalic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or hydriodic acid, and also sulphuric acid, phosphoric acid, phosphorous acid, nitric acid
  • Lewis acids e.g. aluminium (III) chloride, boron trifluoride or its etherate, titanium (IV) chloride, tin (IV) chloride
  • organic acids e.g.
  • Instrument SHIMADZU LCMS-UFLC 20-AD-LCMS 2020 MS detector; Column: Shim-pack XR-ODS, 2.2 ⁇ m, 3.0 ⁇ 50 mm; eluent A: water+0.05 vol%trifluoroacetic acid, eluent B: acetonitrile+0.05 vol%trifluoroacetic acid; gradient: assigned for each compound; flow 1.5 mL/min; temperature: 40°C; PDA scan: 190-400 nm.
  • reaction was carried out under dry argon, in flame-dried glassware.
  • Preparation of the organozinc reagent (solution A) was carried out as described in M.R. Luzung, J.S. Patel, J. Yin, J. Org. Chem. 2010, 75, 8330-8332.
  • Solution A A three-neck round-bottom flask with a stirbar was charged with isopropylmagnesium chloride (2.0 M in THF, 2.75 mL, 5.5 mmol) . To this mixture was added neat 2-bromopyridine (0.476 mL, 5.0 mmol, 1.0 equiv) or 2-bromothiophene (0.479 mL, 5.0 mmol, 1.0 equiv) dropwise with the temperature not exceeding 30°C. The mixture was stirred at room temperature for 3 h. Then, zinc chloride (1, 9M in THF, 3, 16 mL, 6.0 mmol, ) was added dropwise with the temperature not exceeding 30 C and stirring was continued at room temperature for another 60 min.. This solution was used as is for the subsequent cross coupling reaction.
  • Solution B Pd 2 (dba) 3 (18.3 mg, 20.0 ⁇ mol) and dicyclohexyl [2', 4', 6'-tri (propan-2-yl) biphenyl-2-yl] phosphane (XPhos, 38.1 mg, 80.0 ⁇ mol) were dissolved in THF (2.0 mL) . This mixture was heated to 65°C for 10 min, then (rac) -2- [1- (3-chloropyrazin-2-yl) ethyl] -1H-isoindole-1, 3 (2H) -dione (intermediate 2A, 288 mg, 1.00 mmol) was added and stirring at 65°C was continued for another 15 min.
  • 9 mg compound is solved in 1 ml acetone and diluted with acetone to the desired concentration.
  • 250 ⁇ l of the test solution is filled in25ml glass test tubes and homogeneously distributed on the inner walls by rotation and tilting on a shaking device (2 h at 30 rpm) .
  • a shaking device (2 h at 30 rpm) .
  • a dose of 5 ⁇ g/cm 2 is achieved.
  • each test tube is filled with 20-50 cattle tick larvae (Rhipicephalus microplus) , closed with a perforated lid and incubated in a horizontal position at 85%relative humidity and 27°C in an incubator. After 48 hours efficacy is determined. The larvae are patted on the ground of the tubes and negative geotactic behaviour is recorded. Larvae that climb back to the top of the vial in a manner comparable to untreated control larvae are marked as alive, larvae not climbing back up comparable to untreated control larvae but are moving uncoordinatedly or only twitching their legs are marked as moribund, tick larvae remaining on the bottom and not moving at all are counted as dead.
  • a compound shows a good efficacy against Rhipicephalus microplus, if at a compound concentration of 5 ⁇ g/cm 2 an efficacy of at least 80%is monitored.
  • 9 mg compound is solved in 1 ml acetone and diluted with acetone to the desired concentration.
  • 250 ⁇ l of the test solution is filled in 25ml glass test tubes and homogeneously distributed on the inner walls by rotation and tilting on a shaking device (2 h at 30 rpm) .
  • a compound concentration of 900 ppm an inner surface of 44.7 cm 2 and a homogeneous distribution, a dose of 5 ⁇ g/cm 2 is achieved.
  • each test tube is filled with 5-10 adult cat fleas (Ctenocephalides felis) , closed with a perforated lid and incubated in a lying position at room temperature and relative humidity. After 48 hours efficacy is determined. The fleas are patted on the ground of the tubes and are incubated on a heating plate at 45-50°C for at most 5 minutes. Immotile or uncoordinated moving fleas, which are not able to escape the heat by climbing upwards, are marked as dead or moribund.
  • a compound shows a good efficacy against Ctenocephalides felis, if at a compound concentration of 5 ⁇ g/cm 2 an efficacy of at least 80%is monitored.
  • 9 mg compound is solved in 1 ml acetone and diluted with acetone to the desired concentration.
  • 250 ⁇ l of the test solution is filled in 25ml glass test tubes and homogeneously distributed on the inner walls by rotation and tilting on a shaking device (2 h at 30 rpm) .
  • a compound concentration of 900 ppm an inner surface of 44.7 cm 2 and a homogeneous distribution, a dose of 5 ⁇ g/cm 2 is achieved.
  • each test tube is filled with 5-10 adult brown dog ticks (Rhipicephalus sanguineus) , closed with a perforated lid and incubated in a lying position at room temperature and relative humidity. After 48 hours efficacy is determined. The ticks are patted on the ground of the tubes and are incubated on a heating plate at 45-50°C for at most 5 minutes. Immotile or uncoordinated moving ticks, which are not able to escape the heat by climbing upwards, are marked as dead or moribund.
  • a compound shows a good efficacy against Rhipicephalus sanguineus, if at a compound concentration of 5 ⁇ g/cm 2 an efficacy of at least 80%is monitored.
  • Emulsifier alkylarylpolyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent, and the concentrate is diluted with water, containing an emulsifier concentration of 1000 ppm, to the desired concentration. Further test concentrations are prepared by dilution with emulsifier containing water.
  • Soaked wheat seeds (Triticum aestivum) are placed in a multiple well plate filled with agar and some water and are incubated for 1 day to germinate (5 seeds per well) .
  • the germinated wheat seeds are sprayed with a test solution containing the desired concentration of the active ingredient. Afterwards each unit is infected with 10-20 larvae of the banded cucumber beetle (Diabrotica balteata) .
  • Emulsifier alkylarylpolyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvents and is diluted with water, containing an emulsifier concentration of 1000 ppm, to the desired concentration. Further test concentrations are prepared by dilution with emulsifier containing water.
  • Emulsifier alkylarylpolyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent, and the concentrate is diluted with water, containing an emulsifier concentration of 1000 ppm, to the desired concentration. Further test concentrations are prepared by dilution with emulsifier containing water.
  • Barley plants (Hordeum vulgare) infested with larvae of the southern green stink bug (Nezara viridula) are sprayed with a test solution containing the desired concentration of the active ingredient.
  • Emulsifier alkylarylpolyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvents and is diluted with water, containing an emulsifier concentration of 1000 ppm, to the desired concentration. Further test concentrations are prepared by dilution with emulsifier containing water.
  • Rice plants (Oryza sativa) are sprayed with a preparation of the active ingredient of the desired concentration and the plants are infested with the brown planthopper (Nilaparvata lugens) .
  • Emulsifier alkylarylpolyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvents and is diluted with water, containing an emulsifier concentration of 1000 ppm, to the desired concentration. Further test concentrations are prepared by dilution with emulsifier containing water.
  • Maize (Zea mays) leaf sections are sprayed with a preparation of the active ingredient of the desired concentration. Once dry, the leaf sections are infested with fall armyworm larvae (Spodoptera frugiperda) .

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

La présente invention concerne de nouveaux dérivés de pyrazine substitués par hétéroaryle représentés par la formule générale (I), dans laquelle les éléments structuraux R 1, R 2, R 3, R 4, R 5 et R 6 ont la signification indiquée dans la description, des formulations et des compositions comprenant de tels composés et leur utilisation dans la lutte contre des animaux nuisibles, dont les arthropodes et les insectes, en protection phytosanitaire et leur utilisation pour lutter contre les ectoparasites sur les animaux.
PCT/CN2019/110528 2019-10-11 2019-10-11 Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides WO2021068179A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PCT/CN2019/110528 WO2021068179A1 (fr) 2019-10-11 2019-10-11 Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides
TW109134775A TW202128650A (zh) 2019-10-11 2020-10-07 作為殺蟲劑之新穎的雜芳基取代之吡𠯤衍生物
BR112022006753A BR112022006753A2 (pt) 2019-10-11 2020-10-08 Derivados de pirazina substituídos com heteroaril como pesticidas
CN202080085776.1A CN114761393A (zh) 2019-10-11 2020-10-08 作为杀虫剂的杂芳基取代的吡嗪衍生物
EP20789572.3A EP4041720A1 (fr) 2019-10-11 2020-10-08 Dérivés de pyrazine à substitution hétéroaryle utilisés en tant que pesticides
PCT/EP2020/078261 WO2021069575A1 (fr) 2019-10-11 2020-10-08 Dérivés de pyrazine à substitution hétéroaryle utilisés en tant que pesticides
CA3156083A CA3156083A1 (fr) 2019-10-11 2020-10-08 Derives de pyrazine a substitution heteroaryle utilises en tant que pesticides
JP2022521165A JP2022550996A (ja) 2019-10-11 2020-10-08 殺有害生物剤としてのヘテロアリール-置換ピラジン誘導体
MX2022004192A MX2022004192A (es) 2019-10-11 2020-10-08 Novedosos derivados de pirazina sustituidos con heteroarilo como plaguicidas.
AU2020362341A AU2020362341A1 (en) 2019-10-11 2020-10-08 Heteroaryl-substituted pyrazine derivatives as pesticides
US17/766,151 US20230023326A1 (en) 2019-10-11 2020-10-08 Heteroaryl-substituted pyrazine derivatives as pesticides
KR1020227015626A KR20220080159A (ko) 2019-10-11 2020-10-08 살충제로서의 헤테로아릴-치환된 피라진 유도체
ARP200102794A AR120183A1 (es) 2019-10-11 2020-10-09 Compuestos de heteroaril-pirazina como plaguicidas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110528 WO2021068179A1 (fr) 2019-10-11 2019-10-11 Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides

Publications (1)

Publication Number Publication Date
WO2021068179A1 true WO2021068179A1 (fr) 2021-04-15

Family

ID=75436936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110528 WO2021068179A1 (fr) 2019-10-11 2019-10-11 Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides

Country Status (2)

Country Link
AR (1) AR120183A1 (fr)
WO (1) WO2021068179A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022258481A1 (fr) 2021-06-09 2022-12-15 Syngenta Crop Protection Ag Composés diazine-amides à action pesticide
EP4140995A1 (fr) 2021-08-27 2023-03-01 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
EP4140986A1 (fr) 2021-08-23 2023-03-01 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
WO2023025602A1 (fr) 2021-08-23 2023-03-02 Basf Se Composés pyrazines pour la lutte contre les nuisibles invertébrés
WO2023025617A1 (fr) 2021-08-27 2023-03-02 Basf Se Composés pyrazines pour la lutte contre les nuisibles invertébrés
EP4151631A1 (fr) 2021-09-20 2023-03-22 Basf Se Composés hétérocycliques destinés à la lutte contre les organismes nuisibles invertébrés
WO2023041422A1 (fr) 2021-09-20 2023-03-23 Basf Se Composés hétérocycliques pour la lutte contre les nuisibles invertébrés
EP4194453A1 (fr) 2021-12-08 2023-06-14 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
WO2023104564A1 (fr) 2021-12-08 2023-06-15 Basf Se Composés de pyrazine pour la lutte contre les nuisibles invertébrés
WO2023200911A1 (fr) 2022-04-14 2023-10-19 Fmc Corporation Nouveaux composés de sulfonate benzamide pour lutter contre les invertébrés nuisibles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117356A1 (fr) * 2005-05-03 2006-11-09 Bayer Cropscience Sa Nouveaux derives d'heterocyclylethylbenzamide
JP2009023994A (ja) * 2007-06-21 2009-02-05 Nippon Nohyaku Co Ltd 農園芸用殺菌剤組成物及びその使用方法
JP2011178673A (ja) * 2010-02-26 2011-09-15 Nissan Chem Ind Ltd 非農園芸害虫の防除方法
WO2017192385A1 (fr) * 2016-05-05 2017-11-09 Elanco Tiergesundheit Ag Composés d'hétéroaryl-1,2,4-triazole et d'hétéroaryl-tétrazole pour lutter contre les ectoparasites
WO2019170626A1 (fr) * 2018-03-08 2019-09-12 Bayer Aktiengesellschaft Utilisation de composés hétéroaryle-triazole et hétéroaryle-tétrazole en tant que pesticides dans la protection des plantes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117356A1 (fr) * 2005-05-03 2006-11-09 Bayer Cropscience Sa Nouveaux derives d'heterocyclylethylbenzamide
JP2009023994A (ja) * 2007-06-21 2009-02-05 Nippon Nohyaku Co Ltd 農園芸用殺菌剤組成物及びその使用方法
JP2011178673A (ja) * 2010-02-26 2011-09-15 Nissan Chem Ind Ltd 非農園芸害虫の防除方法
WO2017192385A1 (fr) * 2016-05-05 2017-11-09 Elanco Tiergesundheit Ag Composés d'hétéroaryl-1,2,4-triazole et d'hétéroaryl-tétrazole pour lutter contre les ectoparasites
WO2019170626A1 (fr) * 2018-03-08 2019-09-12 Bayer Aktiengesellschaft Utilisation de composés hétéroaryle-triazole et hétéroaryle-tétrazole en tant que pesticides dans la protection des plantes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE STN REGISTRY; 4 February 2014 (2014-02-04), ANONYMOUS: "2-Pyrazinemethanamine, 3-(2-pyridinyl)- (CA INDEX NAME)", XP055800611, retrieved from REGISTRY Database accession no. 1537020-06-6 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022258481A1 (fr) 2021-06-09 2022-12-15 Syngenta Crop Protection Ag Composés diazine-amides à action pesticide
EP4140986A1 (fr) 2021-08-23 2023-03-01 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
WO2023025602A1 (fr) 2021-08-23 2023-03-02 Basf Se Composés pyrazines pour la lutte contre les nuisibles invertébrés
EP4140995A1 (fr) 2021-08-27 2023-03-01 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
WO2023025617A1 (fr) 2021-08-27 2023-03-02 Basf Se Composés pyrazines pour la lutte contre les nuisibles invertébrés
EP4151631A1 (fr) 2021-09-20 2023-03-22 Basf Se Composés hétérocycliques destinés à la lutte contre les organismes nuisibles invertébrés
WO2023041422A1 (fr) 2021-09-20 2023-03-23 Basf Se Composés hétérocycliques pour la lutte contre les nuisibles invertébrés
EP4194453A1 (fr) 2021-12-08 2023-06-14 Basf Se Composés de pyrazine destinés à la lutte contre les organismes nuisibles invertébrés
WO2023104564A1 (fr) 2021-12-08 2023-06-15 Basf Se Composés de pyrazine pour la lutte contre les nuisibles invertébrés
WO2023200911A1 (fr) 2022-04-14 2023-10-19 Fmc Corporation Nouveaux composés de sulfonate benzamide pour lutter contre les invertébrés nuisibles

Also Published As

Publication number Publication date
AR120183A1 (es) 2022-02-02

Similar Documents

Publication Publication Date Title
US11864557B2 (en) Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
EP4039682B1 (fr) Nouveaux composés d'hétéroaryl-triazole et d'hétéroaryl-tétrazole utilisés comme pesticides
EP3774778B1 (fr) Dérivés n-(cyclopropylméthyl)-5-(méthylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1h-1,2,4-triazol-5-yl]éthyl}benzamide et les dérivés pyridine-carboxamide correspondants en tant que pesticides
AU2014345595B2 (en) Novel compounds for combating arthropods
WO2021069575A1 (fr) Dérivés de pyrazine à substitution hétéroaryle utilisés en tant que pesticides
US20220002268A1 (en) Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2021068179A1 (fr) Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés comme pesticides
EP3544978B1 (fr) Dérivés de 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridine et composés similaires en tant que pesticides
AU2016347345A1 (en) Condensed bicyclic heterocycle derivatives as pest control agents
EP3956325A1 (fr) Nouveaux composés d'aminoalkylazole à substitution hétéroaryle utilisés en tant que pesticides
AU2017217183A1 (en) Substituted 2-(het)aryl-imidazolyl-carboxyamides as pest control agents
EP4172154A1 (fr) Nouveaux dérivés de pyrazine substitués par hétéroaryle utilisés en tant que pesticides
AU2017217580A1 (en) Substituted imidazolyl-carboxamides as pest control agents
US11827616B2 (en) Heterocyclic compounds as pesticides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948715

Country of ref document: EP

Kind code of ref document: A1