WO2021068121A1 - 电池检测方法、电池、电子设备和存储介质 - Google Patents

电池检测方法、电池、电子设备和存储介质 Download PDF

Info

Publication number
WO2021068121A1
WO2021068121A1 PCT/CN2019/110088 CN2019110088W WO2021068121A1 WO 2021068121 A1 WO2021068121 A1 WO 2021068121A1 CN 2019110088 W CN2019110088 W CN 2019110088W WO 2021068121 A1 WO2021068121 A1 WO 2021068121A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
threshold
difference
cell
Prior art date
Application number
PCT/CN2019/110088
Other languages
English (en)
French (fr)
Inventor
宋俊皓
张晓磊
刘辉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/110088 priority Critical patent/WO2021068121A1/zh
Priority to CN201980032112.6A priority patent/CN112119318A/zh
Publication of WO2021068121A1 publication Critical patent/WO2021068121A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to the field of batteries, in particular to a battery detection method, a battery, an electronic device and a storage medium.
  • the detection scheme for battery abnormality is not ideal. Therefore, optimizing the detection scheme of battery abnormality can help improve the safety of the battery.
  • the invention provides a battery detection method, a battery, an electronic device and a storage medium, which can accurately detect the abnormality of the battery cell and the abnormality of the related hardware.
  • the first aspect of the present invention provides a battery detection method, which is applied to a battery, the battery includes a plurality of battery cells, and the battery detection method includes:
  • the voltage difference includes the difference between the maximum cell voltage and the minimum cell voltage of the plurality of cells.
  • a second aspect of the present invention provides a battery including: a plurality of battery cells; and,
  • One or more processors working individually or together, to achieve:
  • the voltage difference includes the difference between the maximum cell voltage and the minimum cell voltage of the plurality of cells.
  • a third aspect of the present invention provides an electronic device including the battery according to the second aspect.
  • a fourth aspect of the present invention provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the battery detection method described in the first aspect.
  • a fifth aspect of the present invention provides a battery detection method, which is applied to a battery, the battery includes a charge control circuit and a discharge control circuit, and the battery detection method includes:
  • a sixth aspect of the present invention provides a battery including: a charge control circuit, a discharge control circuit; and,
  • One or more processors working individually or together, to achieve:
  • a seventh aspect of the present invention provides an electronic device including the battery according to the sixth aspect.
  • An eighth aspect of the present invention provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the battery detection method described in the fifth aspect.
  • a ninth aspect of the present invention provides a battery detection method applied to a battery, the battery includes a battery cell and a temperature sensor, the temperature sensor is arranged near the battery core, and the battery detection method includes:
  • a tenth aspect of the present invention provides a battery, including: a battery cell and a temperature sensor, the temperature sensor being arranged near the battery core; and,
  • One or more processors working individually or together, to achieve:
  • An eleventh aspect of the present invention provides an electronic device including the battery according to the tenth aspect.
  • a twelfth aspect of the present invention provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the battery detection method described in the ninth aspect.
  • the battery includes a battery cell and a battery protection board.
  • the battery protection board is equipped with related hardware such as temperature sensors and charge and discharge control circuits. In order to ensure the reliability of the battery, it is necessary to accurately detect the problems that may cause the battery abnormality. Based on the battery detection method provided by the present invention, it is possible to accurately detect abnormal battery cell voltage difference, abnormal charge and discharge control circuit, and temperature sensor damage.
  • the detection is suitable for the case where the battery contains multiple cells.
  • the current charging and discharging current of the battery reflects the current working state of the battery, so that the current voltage threshold for detecting whether the battery has abnormal cell voltage difference can be determined according to the charging and discharging current reflecting the working state of the battery, and the voltage threshold is based on the voltage threshold.
  • the detection of abnormal cell voltage difference can ensure the reliability of the detection results. Specifically, if the minimum cell voltage of the battery is greater than the voltage threshold, and the cell voltage difference of the battery is greater than the first pressure difference threshold, it is determined that the cell voltage difference of the battery is abnormal, where the cell voltage difference may be multiple cells. The difference between the maximum cell voltage and the minimum cell voltage of the core.
  • the charge control circuit and the discharge control circuit are tested for damage. At this time, Both the charge control circuit and the discharge control circuit of the battery are turned on. In order to ensure the accuracy of the detection results, when the battery discharge current is greater than the set current threshold, the output voltage of the battery and the total cell voltage of the battery are obtained. If the absolute value of the difference between the output voltage and the total cell voltage is If the value is greater than the set pressure difference threshold, it is determined that the battery's charge control circuit and discharge control circuit are damaged.
  • the MOS tube still has the ability to overcurrent when it is damaged.
  • the current flows through the body diode of the MOS tube, a voltage drop will be generated. Based on this, the above voltage threshold is set, thereby It can accurately detect whether the charge control circuit and the discharge control circuit are damaged.
  • the temperature sensor is used to detect the surface temperature of the battery cell, and the surface temperature of the battery cell is obtained through the temperature sensor every set time. If the degree of change in the surface temperature of the battery cell meets the preset conditions, It is determined that the temperature sensor is damaged. The degree of change in the surface temperature of the cell is used as the basis for judging whether the temperature sensor is damaged. In general, the preset condition is that if the surface temperature of the cell changes drastically in a short time, it means that the temperature sensor is damaged.
  • Figure 1a is a schematic diagram of an application scenario of a battery detection method provided by an embodiment of the present invention
  • FIG. 1b is a schematic flowchart of a battery detection method provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of obtaining the first relationship between the voltage of a cell and the depth of discharge of the cell according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a temperature curve of a temperature sensor provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a temperature detection window
  • FIG. 12 is a schematic structural diagram of a battery provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an unmanned aerial vehicle corresponding to the battery provided in the embodiment of FIG. 12;
  • FIG. 14 is a schematic structural diagram of a battery detection device provided by an embodiment of the present invention.
  • 15 is a schematic structural diagram of another battery provided by an embodiment of the present invention.
  • 16 is a schematic structural diagram of another battery detection device provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of yet another battery provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of still another battery detection device provided by an embodiment of the present invention.
  • the battery includes a battery cell and a battery protection board.
  • the battery protection board is equipped with related hardware such as temperature sensors and charge and discharge control circuits.
  • related hardware such as temperature sensors and charge and discharge control circuits.
  • it is necessary to accurately detect the problems that may cause the battery abnormality.
  • Based on the battery detection method provided by the present invention it is possible to accurately detect the abnormality of the abnormal cell voltage difference, the damage of the charging control circuit and the discharge control circuit, and the damage of the temperature sensor.
  • the battery often includes multiple cells. If there is a large difference in the remaining capacity of the multiple cells, the battery is not suitable for continued use at this time. The large difference in the remaining capacity of multiple cells will be reflected in the large voltage difference of multiple cells. Therefore, the cell voltage difference of multiple cells can be used to detect whether the battery has abnormal cell voltage difference. Basis. In order to improve the accuracy of the detection results, on the basis of this basis, factors such as the surface temperature of the cell and the working state of the battery can also be considered.
  • the detection of whether the charging control circuit and the discharging control circuit are damaged is performed during the battery discharge stage. Specifically, during the battery discharge phase, if the charge control circuit and the discharge control circuit are not damaged, there will be no voltage drop in the battery's output voltage (Park terminal voltage) and the total cell voltage (Bat terminal voltage). On the contrary, there will be a voltage drop. Based on this, it is possible to detect whether the charge control circuit and the discharge control circuit are damaged.
  • the temperature sensor is used to detect the surface temperature of the cell.
  • the surface temperature of the cell does not fluctuate much or changes with a known law. If the temperature change of the cell surface detected by the temperature sensor does not meet the The change law of the surface temperature of the core indicates that the temperature sensor is damaged.
  • the battery detection method provided by the embodiment of the present invention may be executed by a microcontroller (MCU) included in the battery, and the microcontroller may be provided on the battery protection board.
  • MCU microcontroller
  • the battery protection board can be provided with a microcontroller, a charge control circuit, a discharge control circuit, Hardware such as temperature sensors.
  • the microcontroller is used to manage the battery.
  • the charge control circuit and the discharge control circuit are used to charge and discharge the battery.
  • the temperature sensor is used to sense the surface temperature of the cell.
  • the battery protection board also contains a variety of acquisition circuits (not shown in Figure 1a), and the microcontroller can obtain the charge and discharge current, cell voltage and other data mentioned in this article through these acquisition circuits.
  • acquisition circuits not shown in Figure 1a
  • the microcontroller can obtain the charge and discharge current, cell voltage and other data mentioned in this article through these acquisition circuits. The following describes the execution process of the battery detection method in conjunction with the following multiple embodiments.
  • FIG. 1b is a schematic flowchart of a battery detection method provided by an embodiment of the present invention.
  • the battery detection method is applied to a battery, and the battery includes a plurality of battery cells. As shown in Figure 1b, the following steps can be included:
  • the cell pressure difference of the battery is abnormal, wherein the cell pressure difference includes multiple cells The difference between the maximum cell voltage and the minimum cell voltage.
  • abnormal cell voltage difference refers to a large voltage difference between multiple cells in the battery. If the battery has a large battery cell pressure difference, it will cause serious safety hazards. Therefore, it is of great significance to accurately detect the abnormal battery cell pressure difference.
  • the charge and discharge current of the battery the minimum value of the voltage of multiple cells (called the minimum cell voltage), The voltage difference of the plurality of cells (referred to as the cell voltage difference), the voltage threshold for comparison with the minimum cell voltage, and the first voltage difference threshold for comparison with the cell voltage.
  • the minimum cell voltage The voltage difference of the plurality of cells
  • the voltage threshold for comparison with the minimum cell voltage the voltage threshold for comparison with the cell voltage
  • the first voltage difference threshold for comparison with the cell voltage.
  • the voltage threshold corresponding to the charge and discharge current is the first voltage threshold. If the acquired charge and discharge current is greater than the first current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the second voltage threshold.
  • the aforementioned charge and discharge current can be understood as a charge current and/or a discharge current.
  • the battery may be in different working states in actual applications, in order to ensure that the battery can accurately detect whether the battery has a large battery cell pressure difference under different working states, it is provided for the battery under different working states.
  • the main difference between the detection schemes provided in the unused state and the used state is reflected in the above-mentioned voltage threshold and the first differential pressure threshold. Value difference.
  • the battery is in an unused state when there is no charging or discharging current; then, on the contrary, when there is a charging or discharging current, it is in a state of use.
  • the description of whether the battery has charge and discharge current is too absolute. It can be considered that when the charge current and discharge current of the battery are less than the first current threshold, the battery is in an unused state; then, on the contrary, when there is a charge current or a discharge current is greater than the first current threshold.
  • the first current threshold can be set according to the current measurement values of the battery in different working states.
  • the battery is detachable. It can be considered that after the battery is removed, the battery is left standing, neither charging the battery nor using the battery to charge any load device. At this time, the battery Will be in an unused state. Conversely, if the battery is installed in an electronic device, the battery needs to be discharged during the user's use of the electronic device, which will generate a larger amplified current; or, when the battery is charged with a charger, it will also generate a larger current. Large charging current, at this time, the battery will be in use. In addition, during the self-discharge of the battery, the discharge current generated will also be greater than the above-mentioned first current threshold. Therefore, the battery will also be in use during self-discharge.
  • step 102 if the acquired charge and discharge current (charge current and discharge current) is less than the first current threshold, it means that the battery is in an unused state. At this time, it is determined that the voltage threshold corresponding to the charge and discharge current is the first A voltage threshold. If the acquired charging and discharging current (charging current or discharging current) is greater than the first current threshold, it indicates that the battery is in use. At this time, it is determined that the voltage threshold corresponding to the charging and discharging current is the second voltage threshold.
  • the first voltage threshold and the second voltage threshold are determined according to the relationship between the cell voltage and the depth of discharge of the cell. Obtain the first relationship between the cell voltage and the depth of discharge of the cell, the first relationship being the relationship between the cell voltage and the depth of discharge of the cell when the battery is in an unused state, and obtain the cell voltage A second relationship with the depth of discharge of the cell, the second relationship being the relationship between the voltage of the cell and the depth of discharge of the cell when the battery is in use; the first relationship is determined according to the first relationship A voltage threshold, the second voltage threshold is determined according to the second relationship; wherein the rate of decrease of the cell voltage below the first voltage threshold meets the rapid decrease condition; the voltage below the second voltage threshold The drop rate of the core voltage satisfies the rapid drop condition.
  • the first voltage threshold and the second voltage threshold are determined according to a curve describing the relationship between the cell voltage and the depth of discharge of the cell.
  • a first curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the first voltage threshold is determined on the first curve.
  • a second curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the second voltage threshold is determined on the second curve.
  • the drop rate of the cell voltage lower than the first voltage threshold satisfies the rapid drop condition.
  • the drop rate of the cell voltage below the second voltage threshold satisfies the rapid drop condition.
  • the cell voltage at this turning point is about 3.67V
  • the first curve shows a rapid downward trend, so that the voltage corresponding to the turning point can be determined 3.67V is the first voltage threshold. That is to say, compared to the case where the cell voltage is greater than the first voltage threshold, when the cell voltage is lower than the first voltage threshold, as the depth of discharge of the battery increases, the rate of decrease of the cell voltage is significantly faster.
  • the first voltage threshold is greater than or equal to the cell voltage corresponding to the turning point, such as 3.67V. Avoid performing this test when the cell voltage changes too strongly, so that more accurate test results can be obtained. It should be noted that the 3.67V here is only used as an example, in fact, the first voltage threshold does not necessarily take this value.
  • the voltage threshold can be further used to detect whether the battery has an abnormal cell voltage difference. It is determined that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold. If the minimum cell voltage of the battery is greater than the first voltage threshold, and the cell voltage difference of the battery is greater than the first voltage threshold, then Make sure that the battery cell pressure difference is abnormal.
  • the minimum cell voltage of the battery is greater than the first voltage threshold value, which can be considered as a precondition for performing the judgment of whether the cell voltage difference of the battery is greater than the first voltage difference threshold value.
  • the detection of abnormal cell voltage difference is not suitable to be performed when the cell voltage changes drastically, and if the current minimum cell voltage of the battery is greater than the first voltage threshold, it indicates the cell voltage of the battery at this time Not yet in a situation of drastic change. Based on this, if the minimum cell voltage of the battery is less than the first voltage threshold, the detection of whether the battery has an abnormal cell voltage difference can be stopped.
  • the difference between the maximum cell voltage and the minimum cell voltage of the multiple cells may be used as the above-mentioned cell voltage difference.
  • the voltage difference between any two cells can also be used as the cell voltage difference.
  • the first voltage difference threshold may be preset.
  • the first voltage difference threshold may be determined according to the change range of the cell voltage caused when the discharge depth of the cell on the first curve changes by a certain difference. For example, when the depth of discharge of the cell changes by 15%, and the change range of the cell voltage is 150mV, the first voltage difference threshold may be 150mV.
  • the embodiment of the present invention also provides a detection scheme as shown in FIG. 3 and FIG. 4.
  • FIG. 3 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 3, it may include the following steps:
  • step 302 Obtain the cell surface temperature of the battery, and determine whether the cell surface temperature is greater than a preset temperature threshold, if yes, perform step 302, otherwise end.
  • the charging and discharging current of the battery is less than the first current threshold, the charging and discharging current of the battery is obtained every set time interval, and if the charging and discharging current obtained multiple times within the preset time length is less than the first current Threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold.
  • step 304 Determine whether the minimum cell voltage of the battery is greater than the first voltage threshold, if yes, perform step 305, otherwise end.
  • the value of the first count variable is set to zero.
  • the following factors are considered: the interference of the cell surface temperature, the accuracy of the judgment result of the battery working state, and the credibility of the single detection result.
  • a temperature threshold can be set. When the surface temperature of the cell is greater than the temperature threshold, the detection process of the abnormal cell pressure difference is executed.
  • the temperature threshold can generally be set to -5 to 5 degrees Celsius through measurement.
  • the voltage of the battery cell detected at this time is more credible, which helps to ensure the accuracy of the detection result.
  • a temperature sensor for detecting the surface temperature of the battery cell may be provided on the protective plate of the battery, and the surface temperature of the battery cell can be detected by the temperature sensor.
  • the accuracy of the judgment result of the battery working state mentioned here mainly refers to the accuracy of the judgment result of judging that the battery is in an unused state.
  • the charge and discharge current of the battery is less than the first current threshold before it is determined that the battery is in an unused state.
  • the charge and discharge current of the battery can be obtained at a certain moment and when it is determined that the charge and discharge current is less than the first current threshold, after that, the charge and discharge current of the battery is checked again every certain time interval (for example, 10 seconds) and whether it is less than the first Judgment of the current threshold, if several current values detected within 30 consecutive minutes meet the condition of being less than the first current threshold, the battery is determined to be in an unused state, and then the voltage threshold corresponding to the charge and discharge current is determined The first voltage threshold.
  • certain time interval for example, 10 seconds
  • the charging and discharging current of the battery does not meet the above-mentioned resting time condition, it is determined that the battery is in use, and then the voltage threshold corresponding to the charging and discharging current is determined to be the second voltage threshold.
  • the accurate determination of the battery working state can ensure the accuracy of the detection result of the abnormal voltage difference of the battery cell.
  • the first preset value may be a value preset by the user, such as 1, which is not limited here.
  • the first count variable used to count the number of times that the cell pressure difference of the continuously detected battery is greater than the first pressure difference threshold only the value of the first count variable has been accumulated
  • the preset first number for example, 5
  • the foregoing process in this embodiment can be repeatedly executed iteratively every certain time interval, such as 30 seconds.
  • the detection results of battery cell differential pressure abnormality detection are performed multiple times in succession to finally determine whether the battery has cell differential pressure abnormality, which can avoid misjudgment due to special reasons in a short time and obtain more accurate detection results.
  • Fig. 4 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention, as shown in Fig. 4, which may include the following steps:
  • step 402 Obtain the cell surface temperature of the battery, and determine whether the cell surface temperature is greater than a preset temperature threshold, if yes, perform step 402, otherwise end.
  • step 405 Determine whether the minimum cell voltage of the battery is greater than the second voltage threshold, if yes, execute step 405, otherwise end.
  • the same first differential pressure threshold may be used regardless of the working state of the battery.
  • a different first pressure difference threshold may also be used. Similar to the method for determining the first voltage threshold and the second voltage threshold, the first voltage difference threshold used when the battery is in different working states can also be determined according to the relationship between the cell voltage and the depth of discharge of the cell. Value. For details, please refer to the above-mentioned embodiment, which will not be repeated here.
  • the value of the first count variable is set to zero.
  • the battery When it is finally determined that the battery has an abnormal cell voltage difference, in order to ensure the safety of the battery, it can be controlled to prohibit the charging and/or discharging of the battery, that is, the charging and discharging circuits of the battery are closed.
  • the working state of the electronic device can also be controlled, and the electronic device can also send an alarm to the user.
  • the battery when the battery is used in an unmanned aerial vehicle, if an abnormal voltage difference of the battery cell is detected during the flight of the drone, the battery can be forbidden to charge, and the battery can continue to discharge.
  • the drone triggers a return mission, and after the drone returns, the battery will be prohibited from discharging.
  • a charging MOS tube and a discharging MOS tube are arranged on the battery protection board. The following describes how to detect whether the charge MOS tube and the discharge MOS tube are damaged in conjunction with the embodiments shown in FIG. 5 and FIG. 6.
  • FIG. 5 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 5, it may include the following steps:
  • the battery usually includes at least a pair of charging and discharging MOS tubes, which are used to control the charging and discharging of the battery.
  • the charging MOS tube and the discharging MOS tube are all turned on. Since the MOS tube has a body diode, it still has a certain overcurrent capability when the MOS tube is damaged, but when the current flows through the body diode, there will be a turn-on voltage drop. Based on this, the MOS tube damage detection provided by this embodiment is developed Program.
  • the detection of whether the charging MOS tube and the discharging MOS tube are damaged needs to be detected during the discharging process of the battery. Because if the battery is working in a charging state, the output voltage of the battery is the charger output voltage, not the actual output voltage of the battery.
  • the charge MOS tube and the discharge MOS tube function as switches, and there is basically no conduction voltage drop in the conduction state, that is, the total cell voltage There is basically no difference between the battery output voltage (that is, the battery's Bat terminal voltage) and the battery's output voltage (that is, the battery's Pack terminal voltage).
  • the charge MOS tube and the discharge MOS tube are damaged, the MOS tube is equivalent to a diode when it is turned on.
  • the pressure difference that matches the conduction pressure drop.
  • different types of charge MOS tubes and discharge MOS tubes may have different turn-on voltage drops. Therefore, the second voltage difference threshold can be determined according to the types of charge MOS tubes and discharge MOS tubes used in the battery.
  • the voltage difference threshold can be the turn-on voltage drop of the charge MOS tube and the discharge MOS tube of this model.
  • the second current threshold may be determined according to the current range of the battery in the use state, for example, set to be greater than or equal to the minimum current value of the battery in the use state.
  • the second current threshold may be determined according to the discharge current of the battery before the drone takes off, for example, equal to or slightly larger than the discharge current. Because compared to the UAV in flight, the discharge current before takeoff will be smaller. The second current threshold is determined based on the discharge current before takeoff. The charge MOS tube and the discharge MOS tube can be tested before the drone takes off. If the test result shows that the charge MOS tube and the discharge MOS tube are damaged, then You can prevent the drone from taking off.
  • FIG. 6 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 6, it may include the following steps:
  • the value of the second count variable is added to the second preset value, and the second count variable is used to count the continuously detected The number of times the absolute value is greater than the second differential pressure threshold. If the value of the second count variable has reached the second number, it is determined that the charge MOS tube and the discharge MOS tube of the battery are damaged.
  • the above-mentioned detection process is executed every certain short period of time. If the result of multiple detections is that the absolute value of the difference between the output voltage of the battery and the total voltage of the battery is greater than The second differential pressure threshold, then it is finally determined that the charge MOS tube and the discharge MOS tube of the battery are damaged.
  • the second preset value may be a value preset by the user, such as 1, which is not limited here.
  • a temperature sensor for detecting the surface temperature of the battery cell is provided on the battery protection board. The following describes how to detect whether the temperature sensor is damaged in conjunction with the embodiments shown in FIGS. 7 to 10.
  • FIG. 7 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 7, it may include the following steps:
  • the surface temperature of the battery cell is relatively stable. Therefore, if the temperature sensor is not damaged, the change degree of the surface temperature of the battery cell detected by it in a continuous period of time is relatively gentle and relatively stable. However, if the temperature sensor is damaged, the collected temperature value will show the characteristics of violent fluctuations, as shown in Figure 8.
  • Figure 8 illustrates the change curve of the surface temperature of the cell detected by the temperature sensor over a period of time when the temperature sensor is damaged. In Figure 8, the horizontal axis represents time in seconds, and the vertical axis represents temperature in degrees Celsius.
  • the surface temperature of the battery cell can be obtained through the temperature sensor every set time (for example, 1 second). If the degree of change in the surface temperature of the cell meets the preset conditions of drastic change, the temperature sensor is determined damage.
  • FIG. 9 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 9, it may include the following steps:
  • a temperature value can be collected every second. If the absolute value of the difference between the two adjacent temperature values is greater than the first temperature difference threshold, it is determined that the temperature sensor is damaged .
  • the first temperature difference threshold is set to, for example, 5 degrees Celsius. In the case that the temperature sensor is determined to be damaged, the battery can be protected by prohibiting the battery from charging.
  • the two adjacent temperature values collected instantaneously are used to determine whether the temperature sensor is damaged, which can make the detection efficiency of whether the temperature sensor is damaged is very high.
  • the first temperature difference The threshold can be set relatively high.
  • FIG. 10 is a schematic flowchart of another battery detection method provided by an embodiment of the present invention. As shown in FIG. 10, it may include the following steps:
  • the third preset value may be a value preset by the user, such as 1, which is not limited here. It can be seen from the description of step 1002 that, in summary, in this embodiment, the temperature abnormality detection is performed by continuously sliding the window. By observing the changes of multiple temperature values collected by the temperature sensor over a period of time, more accurate detection results can be obtained.
  • the time length of a detection window is defined as N times the sampling interval of the surface temperature of the cell. Taking the sampling interval (that is, the above-mentioned set time length) as 1 second, assuming the value of N is 10, The time length of a detection window is 10 seconds.
  • T1 to T10 are the first detection window, denoted as window 1.
  • the count value of the third count variable is added to the third preset value. For example, if the difference between the temperature value corresponding to time T1 minus the temperature value corresponding to time T2 is greater than 1 or less than -1, the count value of the third count variable is added to the third preset value.
  • the detection window needs to be updated to continue the judgment.
  • the detection window is, for example, sliding one or several sampling intervals, as shown in FIG. 11, sliding one sampling interval to obtain the next detection window composed of the sampling moments T2 to T12, which is represented as window 2.
  • an embodiment of the present invention also provides the following battery detection method, which is applied to a battery, the battery includes a charge control circuit and a discharge control circuit, and the battery detection method may include the following steps:
  • the differential pressure threshold B If the absolute value of the difference between the output voltage of the battery and the total voltage of the battery is greater than the differential pressure threshold B, it is determined that the charge control circuit and the discharge control circuit of the battery are damaged.
  • the current threshold A may be the second current threshold described above.
  • the charging control circuit and the discharging control circuit are circuits for respectively controlling the charging and discharging of the battery.
  • the above-mentioned pressure difference threshold B can be determined by measurement.
  • the charge control circuit includes the charge MOS tube described above
  • the discharge control circuit includes the discharge MOS tube described above.
  • the voltage difference threshold B may be the second voltage described above. Difference threshold.
  • an embodiment of the present invention also provides the following battery detection method, which is applied to a battery, the battery includes a battery cell and a temperature sensor, the temperature sensor is arranged near the battery core, the battery detection method may include the following steps:
  • the number of battery cells included in the battery is at least one, and the temperature sensor is used to detect the surface temperature of the at least one battery cell.
  • the temperature sensor is arranged near the battery core, and the temperature sensor may be attached to the surface of the battery core.
  • FIG. 12 is a schematic structural diagram of a battery provided by an embodiment of the present invention.
  • the battery includes: a plurality of battery cells 121; and, one or more processors 122, the one or more processors 122 work individually or together to achieve: obtain the charge and discharge current of the battery; determine the voltage threshold corresponding to the charge and discharge current according to the charge and discharge current; if the minimum cell voltage of the battery is greater than The voltage threshold, and the cell voltage difference of the battery is greater than the first pressure difference threshold, it is determined that the cell voltage difference of the battery is abnormal, wherein the cell voltage difference includes the plurality of cells 121 The difference between the maximum cell voltage and the minimum cell voltage.
  • the processor 122 is further configured to: if the charge and discharge current is less than a first current threshold, determine that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold; if the charge and discharge current is greater than the first voltage threshold; According to the first current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the second voltage threshold.
  • the processor 122 is further configured to obtain a first relationship between the cell voltage and the depth of discharge of the cell, where the first relationship is the cell voltage and the cell discharge when the battery is in an unused state.
  • the relationship between the depths, and the second relationship between the cell voltage and the depth of discharge of the cell, the second relationship is the relationship between the cell voltage and the depth of discharge of the cell when the battery is in use
  • the first voltage threshold is determined according to the first relationship
  • the second voltage threshold is determined according to the second relationship; wherein the drop rate of the cell voltage lower than the first voltage threshold meets the rapid drop condition ;
  • the drop rate of the cell voltage lower than the second voltage threshold meets the rapid drop condition.
  • the first voltage threshold and the second voltage threshold are determined according to a curve describing the relationship between the cell voltage and the depth of discharge of the cell.
  • a first curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the first voltage threshold is determined on the first curve.
  • a second curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the second voltage threshold is determined on the second curve.
  • the drop rate of the cell voltage lower than the first voltage threshold satisfies the rapid drop condition.
  • the drop rate of the cell voltage below the second voltage threshold satisfies the rapid drop condition.
  • the processor 122 is further configured to: if the charge and discharge current is less than the first current threshold, obtain the charge and discharge current of the battery every set time interval; if it is within a preset time period If the charge and discharge currents obtained multiple times are all less than the first current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold.
  • the processor 122 is further configured to: obtain the cell surface temperature of the battery; if the cell surface temperature is greater than a preset temperature threshold, execute the step of obtaining the charge and discharge current of the battery.
  • the processor 122 is further configured to: if the minimum cell voltage of the battery is greater than the voltage threshold, and the cell voltage difference of the battery is greater than a preset first voltage difference threshold, perform a first count The value of the variable plus a first preset value, and the first count variable is used to count the number of times that the battery cell pressure difference is continuously detected greater than the first pressure difference threshold; if the first count variable is If the value has reached the first number, it is determined that the cell voltage difference of the battery is abnormal.
  • the processor 122 is further configured to: after determining that the battery cell voltage difference is abnormal, prohibit the battery from charging and/or discharging.
  • the battery further includes: a charging MOS tube 123 and a discharging MOS tube 124, and the processor 122 is further configured to obtain the discharging current of the battery, and both the charging MOS tube and the discharging MOS tube of the battery are turned on; If the discharge current is greater than the second current threshold, the output voltage of the battery and the total cell voltage of the battery are obtained; if the absolute value of the difference between the output voltage and the total cell voltage is greater than the second The differential pressure threshold determines that the charging MOS tube and the discharging MOS tube of the battery are damaged.
  • the processor 122 is further configured to: if the absolute value of the difference between the output voltage and the total voltage of the battery cell is greater than a second voltage difference threshold, add two preset values to the value of the second count variable, so The second count variable is used to count the number of times that the absolute value is greater than the second differential pressure threshold that is continuously detected; if the value of the second count variable has reached the second number, it is determined that the battery's charging MOS tube and The discharge MOS tube is damaged.
  • the processor 122 is further configured to: after determining that the charging MOS tube and the discharging MOS tube of the battery are damaged, prohibit the battery from charging.
  • the battery further includes: a temperature sensor 125.
  • the processor 122 is further configured to: obtain the surface temperature of the cell of the battery through a temperature sensor every set time; if the degree of change of the surface temperature meets a preset condition, determine that the temperature sensor is damaged.
  • the processor 122 is further configured to: if the absolute value of the difference between the two surface temperatures obtained sequentially is greater than the first temperature difference threshold, determine that the temperature sensor 125 is damaged.
  • the processor 122 is further configured to: initialize the detection window with the N surface temperatures obtained in sequence, and iteratively perform the following process: if the difference between the i-th surface temperature and the i+1-th surface temperature in the detection window If the absolute value of the value is greater than the second temperature difference threshold, the value of the third count variable plus three preset values, where i ⁇ [1, N-1]; if the fourth quantity corresponding to the third count variable is greater than or equal to The third quantity, and the difference between the fourth quantity has at least one positive number and at least one negative number, it is determined that the temperature sensor 125 is damaged; if the fourth quantity is less than the third quantity; or, if the difference If the fourth quantity is greater than or equal to the third quantity, but the difference of the fourth quantity is both positive or negative, the detection window is updated, and the updated detection window includes the N surfaces For the last M surface temperatures obtained in the temperature, M is less than N.
  • the processor 122 is further configured to: after determining that the temperature sensor 125 is damaged, prohibit the battery from charging.
  • the battery provided in the embodiment shown in FIG. 12 can be used in an electronic device, such as a mobile phone, a notebook computer, a PC, a robot, a drone, a wearable device, and so on.
  • Figure 13 shows that the battery is installed in an unmanned aerial vehicle.
  • an embodiment of the present invention provides a computer-readable storage medium, which is characterized in that executable code is stored in the computer-readable storage medium, and the executable code is used to implement the steps described in FIGS. 1b to 11 above. Battery detection method.
  • the battery includes a plurality of battery cells, and the device includes:
  • the obtaining module 141 is used to obtain the charge and discharge current of the battery.
  • the threshold determination module 142 is configured to determine a voltage threshold corresponding to the charge and discharge current according to the charge and discharge current.
  • the pressure difference determining module 143 is configured to determine the cell pressure difference of the battery if the minimum cell voltage of the battery is greater than the voltage threshold, and the cell pressure difference of the battery is greater than the first pressure difference threshold. Abnormal, wherein the cell voltage difference includes the difference between the maximum cell voltage and the minimum cell voltage of the plurality of cells.
  • the device shown in FIG. 14 can also execute the method of the embodiment shown in FIG. 1b-11.
  • parts that are not described in detail in this embodiment please refer to the related description of the embodiment shown in FIG. 1b-11.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1b to FIG. 11, which will not be repeated here.
  • FIG. 15 is a schematic structural diagram of another battery provided by an embodiment of the present invention.
  • the battery includes: a charge control circuit 151, a discharge control circuit 152; and one or more processors 153.
  • the one or more processors 153 work individually or collectively to achieve: obtain the discharge current of the battery, the charge control circuit 151 and the discharge control circuit 152 of the battery are both turned on; if the discharge current Is greater than the first current threshold, the output voltage of the battery and the total cell voltage of the battery are obtained; if the absolute value of the difference between the output voltage and the total cell voltage is greater than the first voltage difference threshold, then It is determined that the charge control circuit 151 and the discharge control circuit 152 of the battery are damaged.
  • the processor 153 is further configured to: if the absolute value of the difference between the output voltage and the total voltage of the battery cell is greater than a first pressure difference threshold, add the value of the first count variable to a first preset value.
  • the first count variable is used to count the number of times that the absolute value is greater than the first differential pressure threshold that is continuously detected; if the value of the first count variable has reached the first number, it is determined that the battery is charged.
  • the control circuit 151 and the discharge control circuit 152 are damaged.
  • the processor 152 is further configured to: after determining that the charging control circuit 151 and the discharging control circuit 152 of the battery are damaged, prohibit the battery from charging.
  • the charge control circuit 151 includes a charge MOS tube
  • the discharge control circuit 152 includes a discharge MOS tube.
  • the battery includes a plurality of battery cells 154.
  • the processor 153 is further configured to: obtain the charge and discharge current of the battery; determine the voltage threshold corresponding to the charge and discharge current according to the charge and discharge current; if the minimum cell voltage of the battery is greater than the voltage threshold And, if the cell pressure difference of the battery is greater than the second pressure difference threshold, it is determined that the cell pressure difference of the battery is abnormal, wherein the cell pressure difference includes the largest cell of the plurality of cells 154 The difference between the voltage and the minimum cell voltage.
  • the processor 153 is further configured to: if the charge and discharge current is less than a second current threshold, determine that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold; if the charge and discharge current If it is greater than the second current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the second voltage threshold.
  • the processor 153 is further configured to: specifically, when the battery is in an unused state, the first curve can be drawn by measuring the cell voltage and the cell discharge depth of the battery at different times. The first voltage threshold is determined on the first curve.
  • a second curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the second voltage threshold is determined on the second curve.
  • the drop rate of the cell voltage lower than the first voltage threshold satisfies the rapid drop condition.
  • the drop rate of the cell voltage below the second voltage threshold satisfies the rapid drop condition.
  • the processor 153 is further configured to: if the charge and discharge current is less than the second current threshold, obtain the charge and discharge current of the battery every set time interval; If the charge and discharge currents acquired multiple times within the length are all less than the second current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold.
  • the processor 153 is further configured to: obtain the cell surface temperature of the battery; if the cell surface temperature is greater than a preset temperature threshold, execute the step of obtaining the charge and discharge current of the battery.
  • the processor 153 is further configured to: if the minimum cell voltage of the battery is greater than the voltage threshold, and the cell voltage difference of the battery is greater than a second pressure difference threshold, the second count variable Plus a second preset value, the second count variable is used to count the number of times that the battery cell pressure difference is continuously detected greater than the second pressure difference threshold; if the value of the second count variable When the second number has been reached, it is determined that the cell voltage difference of the battery is abnormal.
  • the processor 153 is further configured to: after determining that the cell voltage difference of the battery is abnormal, prohibit the battery from charging and/or discharging.
  • the battery includes a temperature sensor 155.
  • the processor 152 is further configured to: obtain the surface temperature of the cell of the battery through the temperature sensor 155 every set time; if the degree of change of the surface temperature meets a preset condition, determine the temperature sensor 155 damage.
  • the processor 152 is further configured to determine that the temperature sensor 155 is damaged if the absolute value of the difference between the two surface temperatures obtained sequentially is greater than a first temperature difference threshold.
  • the processor 152 is further configured to initialize the detection window with the N surface temperatures obtained in sequence, and iteratively execute the following process:
  • Initialize the detection window with N surface temperatures obtained in sequence and iteratively execute the following process: if the absolute value of the difference between the i-th surface temperature and the i+1-th surface temperature in the detection window is greater than the second temperature difference threshold, then The value of the third count variable plus the third preset value, where i ⁇ [1, N-1]; if the fourth quantity corresponding to the third count variable is greater than or equal to the third quantity, and the fourth quantity If there is at least one positive number and at least one negative number in the difference value, it is determined that the temperature sensor is damaged; if the fourth number is less than the third number; or, if the fourth number is greater than or equal to the third Number, but the difference of the fourth number is both positive or negative, then the detection window is updated, and the updated detection window includes the last M surface temperatures obtained among the N surface temperatures, M Less than N.
  • the processor 152 is further configured to: after determining that the temperature sensor 155 is damaged, prohibit the battery from charging.
  • the battery provided in the embodiment shown in FIG. 15 can be used in an electronic device, such as a mobile phone, a notebook computer, a PC, a robot, a drone, a wearable device, and so on.
  • an electronic device such as a mobile phone, a notebook computer, a PC, a robot, a drone, a wearable device, and so on.
  • FIG. 16 is a schematic structural diagram of another battery detection device provided by an embodiment of the present invention, which is applied to a battery.
  • the battery includes a charge control circuit and a discharge control circuit.
  • the device includes:
  • the current acquisition module 161 is configured to acquire the discharge current of the battery, and the charge control circuit and the discharge control circuit of the battery are both turned on.
  • the voltage obtaining module 162 is configured to obtain the output voltage of the battery and the total cell voltage of the battery if the discharge current is greater than the first current threshold.
  • the determining module 163 is configured to determine that the charging control circuit and the discharging control circuit of the battery are damaged if the absolute value of the difference between the output voltage and the total voltage of the battery is greater than a first voltage difference threshold.
  • the device shown in FIG. 16 can also execute the method of the embodiment shown in FIG. 1b-11.
  • parts that are not described in detail in this embodiment please refer to the related description of the embodiment shown in FIG. 1b-11.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1b to FIG. 11, which will not be repeated here.
  • FIG. 17 is a schematic structural diagram of another battery provided by an embodiment of the present invention.
  • the battery includes: a battery 171, a temperature sensor 172, and one or more processors 173.
  • the temperature sensor 172 is provided near the battery cell 171.
  • One or more processors 173 work individually or collectively to achieve: obtain the cell surface temperature of the battery through the temperature sensor 172 every set time; if the degree of change of the cell surface temperature meets the preset Condition, it is determined that the temperature sensor 172 is damaged.
  • the processor 173 is further configured to: if the absolute value of the difference between the two surface temperatures obtained sequentially is greater than the first temperature difference threshold, determine that the temperature sensor 172 is damaged.
  • the processor 173 is further configured to: initialize the detection window with the N surface temperatures obtained in sequence, and iteratively perform the following process: if the difference between the i-th surface temperature and the i+1-th surface temperature in the detection window If the absolute value of the value is greater than the second temperature difference threshold, the value of the first count variable is added to the first preset value, where i ⁇ [1, N-1]; if the cumulative number corresponding to the first count variable is greater than or equal to The first number, and the difference between the cumulative number has at least one positive number and at least one negative number, it is determined that the temperature sensor is damaged; if the cumulative number is less than the first number; or, if the cumulative number is greater than or Is equal to, but the difference of the cumulative number is both positive or negative, then the detection window is updated.
  • the updated detection window includes the last M surface temperatures obtained among the N surface temperatures, and M is less than N.
  • the processor 173 is further configured to: prohibit the battery from being charged after determining that the temperature sensor 172 is damaged.
  • the number of the battery core 171 is at least one.
  • the number of the battery cells 171 is multiple.
  • the processor 173 is further configured to: obtain the charge and discharge current of the battery; and determine the charge and discharge current corresponding to the charge and discharge current according to the charge and discharge current. If the minimum cell voltage of the battery is greater than the voltage threshold, and the cell voltage difference of the battery is greater than the first voltage difference threshold, it is determined that the cell voltage difference of the battery is abnormal, wherein, The cell voltage difference includes the difference between the maximum cell voltage and the minimum cell voltage of the plurality of cells 171.
  • the processor 173 is further configured to: if the charge and discharge current is less than a first current threshold, determine that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold; if the charge and discharge current is greater than the first voltage threshold; According to the first current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the second voltage threshold.
  • the processor 173 is further configured to: specifically, when the battery is in an unused state, draw a first curve by measuring the cell voltage and the cell discharge depth of the battery at different times.
  • the first voltage threshold is determined on a curve.
  • a second curve can be drawn by measuring the cell voltage and the depth of discharge of the battery at different times, and the second voltage threshold is determined on the second curve.
  • the drop rate of the cell voltage lower than the first voltage threshold satisfies the rapid drop condition.
  • the drop rate of the cell voltage below the second voltage threshold satisfies the rapid drop condition.
  • the processor 173 is further configured to: if the charge and discharge current is less than the first current threshold, obtain the charge and discharge current of the battery every set time interval; if it is within a preset time period If the charge and discharge currents obtained multiple times are all less than the first current threshold, it is determined that the voltage threshold corresponding to the charge and discharge current is the first voltage threshold.
  • the processor 173 is further configured to: obtain the cell surface temperature of the battery; if the cell surface temperature is greater than a preset temperature threshold, execute the step of obtaining the charge and discharge current of the battery.
  • the processor 173 is further configured to: if the minimum cell voltage of the battery is greater than the voltage threshold, and the cell voltage difference of the battery is greater than a preset first voltage difference threshold, perform a second count The value of the variable plus a second preset value, and the second count variable is used to count the number of times that the battery cell pressure difference is continuously detected greater than the first pressure difference threshold; if the second count variable is If the value has reached the second number, it is determined that the cell voltage difference of the battery is abnormal.
  • the processor 173 is further configured to: after determining that the cell voltage difference of the battery is abnormal, prohibit the battery from charging and/or discharging.
  • the battery further includes: a charging MOS tube 174 and a discharging MOS tube 175.
  • the processor 173 is further configured to: obtain the discharge current of the battery, and both the charge MOS tube 174 and the discharge MOS tube 175 of the battery are turned on; if the discharge current is greater than the second current threshold, obtain the output of the battery Voltage and the total cell voltage of the battery; if the absolute value of the difference between the output voltage and the total voltage of the cell is greater than the second voltage difference threshold, the charge MOS tube 174 and the discharge MOS tube of the battery are determined 175 damaged.
  • the processor 173 is further configured to: if the absolute value of the difference between the output voltage and the total voltage of the battery cell is greater than a second voltage difference threshold, add a third preset value to the value of the third count variable, The third count variable is used to count the number of times that the absolute value is greater than the second differential pressure threshold that is continuously detected; if the value of the third count variable has reached the third number, the charge MOS tube of the battery is determined 174 and the discharge MOS tube 175 are damaged.
  • the processor 173 is further configured to: determine the charging MOS tube 174 of the battery and prohibit the battery from charging.
  • the battery provided in the embodiment shown in FIG. 17 can be used in an electronic device, such as a mobile phone, a notebook computer, a PC, a robot, a drone, a wearable device, and so on.
  • an electronic device such as a mobile phone, a notebook computer, a PC, a robot, a drone, a wearable device, and so on.
  • FIG. 18 is a schematic structural diagram of another battery detection device provided by an embodiment of the present invention.
  • the device is applied to a battery.
  • the battery includes a battery cell and a temperature sensor, and the temperature sensor is located near the battery cell, as shown in FIG. 18 As shown, the device includes:
  • the obtaining module 181 is configured to obtain the surface temperature of the battery cell through the temperature sensor every set time period.
  • the determining module 182 is configured to determine that the temperature sensor is damaged if the degree of change in the surface temperature of the battery cell meets a preset condition.
  • the device shown in FIG. 18 can also execute the method of the embodiment shown in FIG. 1b-11.
  • the parts not described in detail in this embodiment please refer to the related description of the embodiment shown in FIG. 1b-11.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1b to FIG. 11, which will not be repeated here.

Abstract

一种电池检测方法、电池、电子设备和存储介质,该电池检测方法应用于电池,电池包括多个电芯,该电池检测方法包括:获取电池的充放电电流;根据充放电电流确定与充放电电流相对应的电压阈值;若电池的最小电芯电压大于电压阈值,并且,电池的电芯压差大于第一压差阈值,则确定电池的电芯压差异常,其中,电芯压差包括多个电芯的最大电芯电压与最小电芯电压的差值。电池当前的充放电电流反映了电池当前的工作状态,从而可以根据反映电池工作状态的该充放电电流确定当前检测该电池是否存在电芯压差异常的电压阈值,以该电压阈值为依据来进行电芯压差异常的检测,可以保证检测结果的可靠性。

Description

电池检测方法、电池、电子设备和存储介质 技术领域
本发明涉及电池领域,尤其涉及一种电池检测方法、电池、电子设备和存储介质。
背景技术
智能电池作为动力模块,其供电稳定性、安全性十分重要,将会直接影响安装电池的设备的工作状况。
为保证电池的安全工作,传统技术提供了一些电池保护方案,这些保护方案通常是针对电池充放电时的充放电电流异常、充放电电压异常以及温度异常进行保护。
然而,电池异常的检测方案不够理想。因此,优化电池异常的检测方案,,可以有助于提高电池的安全性。
发明内容
本发明提供了一种电池检测方法、电池、电子设备和存储介质,能够实现对电池的电芯异常以及相关硬件的异常情况进行准确检测。
本发明的第一方面提供了一种电池检测方法,应用于电池,所述电池包括多个电芯,该电池检测方法包括:
获取所述电池的充放电电流;
根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
本发明的第二方面提供了一种电池,包括:多个电芯;以及,
一个或多个处理器,单独地或共同地工作,用于实现:
获取所述电池的充放电电流;
根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
本发明的第三方面提供了一种电子设备,包括上述第二方面所述的电池。
本发明的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第一方面所述的电池检测方法。
本发明的第五方面提供了一种电池检测方法,应用于电池,所述电池包括充电控制电路和放电控制电路,该电池检测方法包括:
获取所述电池的放电电流,所述电池的所述充电控制电路和所述放电控制电路均导通;
若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏。
本发明的第六方面提供了一种电池,包括:充电控制电路、放电控制电路;以及,
一个或多个处理器,单独地或共同地工作,用于实现:
获取所述电池的放电电流,所述电池的所述充电控制电路和所述放电控制电路均导通;
若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏。
本发明的第七方面提供了一种电子设备,包括上述第六方面所述的电池。
本发明的第八方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第五方面所述的电池检测方法。
本发明的第九方面提供了一种电池检测方法,应用于电池,所述电池包括电芯以及温度传感器,所述温度传感器设于所述电芯附近,该电池检测方法包括:
每隔设定的时长通过所述温度传感器获取所述电芯的表面温度;
若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
本发明的第十方面提供了一种电池,包括:电芯、温度传感器,所述温度传感器设于所述电芯附近;以及,
一个或多个处理器,单独地或共同地工作,用于实现:
每隔设定的时长通过所述温度传感器获取所述电芯的表面温度;
若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
本发明的第十一方面提供了一种电子设备,包括上述第十方面所述的电池。
本发明的第十二方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第九方面所述的电池检测方法。
电池中包括电芯和电池保护板,电池保护板上设置有诸如温度传感器、充放电控制电路等相关硬件,为了确保电池可靠性,需要对可能引起电池异常的问题进行准确检测。基于本发明提供的电池检测方法,可以实现对电芯压差异常、充放电控制电路异常、温度传感器损坏的异常进行准确检测。
针对检测是否存在电芯压差异常来说,该检测适用于电池中包含多个电芯的情况下。电池当前的充放电电流反映了电池当前的工作状态,从而可以 根据反映电池工作状态的该充放电电流确定当前检测该电池是否存在电芯压差异常的电压阈值,以该电压阈值为依据来进行电芯压差异常的检测,可以保证检测结果的可靠性。具体地,若电池的最小电芯电压大于该电压阈值,并且电池的电芯压差大于第一压差阈值,则确定电池的电芯压差异常,其中,电芯压差可以是多个电芯的最大电芯电压与最小电芯电压的差值。
针对检测充电控制电路和放电控制电路是否损坏来说,由于充电情况下存在充电器电压,会引起误判,因此在电池放电状态下进行充电控制电路和放电控制电路是否损坏的检测,此时,电池的充电控制电路和放电控制电路均导通。为保证检测结果的准确性,在电池的放电电流大于设定的电流阈值的情况下,获取电池的输出电压和电池的电芯总电压,若该输出电压与电芯总电压的差值的绝对值大于设定的压差阈值,则确定电池的充电控制电路和放电控制电路损坏。因为充电控制电路和放电控制电路中会包含MOS管,MOS管损坏的情况下依旧具有过电流的能力,电流流经MOS管的体二极管时会产生压降,基于此设定上述电压阈值,从而能够准确地检测出充电控制电路和放电控制电路是否损坏。
针对温度传感器是否损坏来说,该温度传感器用于检测电芯的表面温度,每隔设定的时长通过该温度传感器获取电芯的表面温度,若电芯表面温度的变化程度符合预设条件,则确定温度传感器损坏。以电芯的表面温度的变化程度作为温度传感器是否损坏的判定依据,该预设条件概括来讲就是如果电芯表面温度在短时间内变化剧烈,说明是温度传感器损坏。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a为本发明实施例提供的一种电池检测方法的应用场景示意图;
图1b为本发明实施例提供的一种电池检测方法的流程示意图;
图2为本发明实施例提供的获取电芯电压与电芯放电深度之间的第一关系的示意图;
图3为本发明实施例提供的另一种电池检测方法的流程示意图;
图4为本发明实施例提供的另一种电池检测方法的流程示意图;
图5为本发明实施例提供的另一种电池检测方法的流程示意图;
图6为本发明实施例提供的另一种电池检测方法的流程示意图;
图7为本发明实施例提供的另一种电池检测方法的流程示意图;
图8为本发明实施例提供的温度传感器温度曲线示意图;
图9为本发明实施例提供的另一种电池检测方法的流程示意图;
图10为本发明实施例提供的另一种电池检测方法的流程示意图;
图11为温度检测窗口的示意图;
图12为本发明实施例提供的一种电池的结构示意图;
图13为与图12所述实施例提供的电池对应的无人机的结构示意图;
图14为本发明实施例提供的一种电池检测装置的结构示意图;
图15为本发明实施例提供的另一种电池的结构示意图;
图16为本发明实施例提供的另一种电池检测装置的结构示意图;
图17为本发明实施例提供的再一种电池的结构示意图;
图18为本发明实施例提供的再一种电池检测装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用 的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
电池中包括电芯和电池保护板,电池保护板上设置有诸如温度传感器、充放电控制电路等相关硬件,为了确保电池可靠性,需要对可能引起电池异常的问题进行准确检测。基于本发明提供的电池检测方法,可以实现对电芯压差异常、充电控制电路和放电控制电路损坏、温度传感器损坏的异常情况进行准确检测。首先概括介绍下这三种检测方案:
针对电芯压差异常来说,电池中往往会包括多个电芯,如果多个电芯的剩余容量存在较大的差异,此时电池是不适宜继续使用的。而多个电芯的剩余容量差异较大,将会反映为多个电芯存在较大的电压差异,因此,可以以多个电芯的电芯压差作为检测电池是否存在电芯压差异常的依据。而为了提高检测结果的准确性,在该依据的基础上,还可以考虑诸如电芯表面温度、电池工作状态等因素。
针对充电控制电路和放电控制电路损坏来说,在电池放电阶段进行充电控制电路和放电控制电路是否损坏的检测。具体地,在电池放电阶段,如果充电控制电路和放电控制电路未损坏,电池的输出电压(Park端电压)和电芯总电压(Bat端电压)不会存在压降,反之,将会存在压降,基于此可以实现充电控制电路和放电控制电路是否损坏的检测。
针对温度传感器损坏来说,该温度传感器用于检测电芯表面温度,电芯表面温度一般波动不大或者会呈现已知规律的变化,如果温度传感器所检测到的电芯表面温度变化不符合电芯表面温度的变化规律,则说明温度传感器损坏。
本发明实施例提供的电池检测方法可以由电池中包含的微控制器(MCU)来执行,该微控制器可以设置在电池保护板上。结合图1a简单示意下电池的组成,如图1a中所示,电池包括一个或多个电芯以及电池保护板,在电池保护板上可以设置有微控制器、充电控制电路、放电控制电路、温度传感器等硬件。微控制器用于对电池进行管理。充电控制电路和放电控制电路用于对电芯进行充放电。温度传感器用于感知电芯表面温度。当然,电池保护板上 还有包含多种采集电路(图1a中未示意),微控制器可以通过这些采集电路获取到本文中所提及的充放电电流、电芯电压等数据。下面结合以下多个实施例来介绍电池检测方法的执行过程。
图1b为本发明实施例提供的一种电池检测方法的流程示意图,该电池检测方法应用于电池,该电池中包括多个电芯。如图1b所示,可以包括如下步骤:
101、获取电池的充放电电流。
102、根据电池的充放电电流,确定与该充放电电流相对应的电压阈值。
103、若电池的最小电芯电压大于该电压阈值,并且,电池的电芯压差大于第一压差阈值,则确定电池的电芯压差异常,其中,电芯压差包括多个电芯的最大电芯电压与最小电芯电压的差值。
本实施例提供的电池检测方法的主要目的是检测电池是否存在电芯压差异常。简单来说,电芯压差异常是指电池中多个电芯之间存在较大的压差。电池如果存在电芯压差较大的问题,将会导致严重的安全隐患,因此,准确检测出电芯压差异常问题具有重要意义。
概括来说,在检测电池是否存在电芯压差异常的过程中,主要涉及到如下几个参数:电池的充放电电流、多个电芯的电压的最小值(称为最小电芯电压)、多个电芯的电压差值(称为电芯压差)、用于与最小电芯电压比较的电压阈值,以及用于与电芯压差比较的第一压差阈值。当然,在执行上述步骤102的过程中,为了确定出与当前获取到的充放电电流对应的电压阈值,需要使用到下文中的第一电流阈值。
具体地,若获取到的充放电电流小于第一电流阈值,则确定与该充放电电流相对应的电压阈值为第一电压阈值。若获取到的充放电电流大于第一电流阈值,则确定与该充放电电流相对应的电压阈值为第二电压阈值。
其中,上述充放电电流可以理解为是充电电流和/或放电电流。
因为电池在实际应用中可能会处于不同的工作状态,为了保证在电池处于不同工作状态的情况下都能够准确检测出电池是否存在电芯压差大的异常, 提供了在不同工作状态下对电池进行电芯压差异常检测的方案。
假设将电池可能处于的两种工作状态分别称为未使用状态和使用状态,那么在未使用状态和使用状态下所提供的检测方案的主要差异体现为上述电压阈值、第一压差阈值的取值差异。
首先说明电池的未使用状态和使用状态的含义。
从技术层面上讲,可以先认为电池无充电电流和放电电流的时候,处于未使用状态;那么相反地,当有充电电流或放电电流的时候,处于使用状态。而实际上,电池有无充放电电流的描述过于绝对,可以认为电池的充电电流和放电电流小于第一电流阈值时,电池处于未使用状态;那么相反地,当有充电电流或放电电流大于第一电流阈值时,电池处于使用状态。该第一电流阈值可以根据电池在不同工作状态下的电流测量值设定。
从实际场景层面上讲,实际应用中,电池是可拆卸的,可以认为将电池拆卸下来之后,将电池静置放置,既不给电池充电,也不使用电池给任何负载设备充电,此时电池将处于未使用状态。相反地,如果将电池安装于某电子设备中,用户使用该电子设备的过程中,电池需要放电,将会产生较大的放大电流;或者,在使用充电器为电池充电时,也会产生较大的充电电流,此时,电池将处于使用状态。另外,电池自放电的过程中,产生的放电电流也会大于上述第一电流阈值,因此,电池自放电时也将处于使用状态。
因此,执行本实施例提供的检测方案时,首先需要确定电池当前是处于哪种工作状态,而确定电池处于哪种工作状态的依据即为电池的充放电电流与第一电流阈值的比较结果。
从而,在步骤102中,若获取到的充放电电流(充电电流和放电电流)小于第一电流阈值,则说明电池处于未使用状态,此时确定与该充放电电流相对应的电压阈值为第一电压阈值。若获取到的充放电电流(充电电流或放电电流)大于第一电流阈值,则说明电池处于使用状态,此时确定与该充放电电流相对应的电压阈值为第二电压阈值。
其中,第一电压阈值和第二电压阈值根据描述电芯电压与电芯放电深度 之间关系而确定出。获取电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
例如,根据描述电芯电压与电芯放电深度之间关系的曲线而确定出第一电压阈值和第二电压阈值。具体地,在电池处于未被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第一曲线,在该第一曲线上确定出第一电压阈值。在电池处于被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第二曲线,在该第二曲线上确定出第二电压阈值。其中,在第一曲线上,低于第一电压阈值的电芯电压的下降速率满足快速下降条件。同理,在第二曲线上,低于第二电压阈值的电芯电压的下降速率满足快速下降条件。
为便于理解,下面结合图2所示意的第一曲线来示例性说明如何确定第一电压阈值。第二电压阈值的确定方式同理,不赘述。
如图2中所示,建立以电芯放电深度为横轴,电芯电压(单位为V)为纵轴的坐标系,根据不同时刻测得的一对电芯放电深度值和电芯电压值绘制出图中示意的第一曲线。
在第一曲线中可以看到存在一个转折点,该转折点处的电芯电压约为3.67V,当电芯电压小于3.67V以后,第一曲线呈现快速下降趋势,从而,可以确定该转折点对应的电压3.67V为第一电压阈值。也就是说,相比于电芯电压大于第一电压阈值的情况,当电芯电压低于该第一电压阈值之后,随着电池放电深度的增加,电芯电压下降速率要明显加快。为了确保对电芯压差异常检测结果的准确性,不宜在电芯电压变化过于强烈的时候进行该检测,因此,第一电压阈值大于或等于该转折点对应的电芯电压,如3.67V。避免在电 芯电压变化过于强烈的时候进行该检测,这样能够取得更加准确的检测结果。需要说明的是,这里的3.67V仅作为举例说明,实际上第一电压阈值并非一定取该数值。
在根据当前获得的电池的充放电电流确定出对应的电压阈值后,可以进而使用该电压阈值进行电池是否存在电芯压差异常的检测。以确定出与该充放电电流对应的电压阈值为第一电压阈值为例,若电池的最小电芯电压大于该第一电压阈值,并且,电池的电芯压差大于第一压差阈值,则确定电池的电芯压差异常。
其中,电池的最小电芯电压大于该第一电压阈值,可以认为是执行电池的电芯压差是否大于第一压差阈值的判断的前提条件。正如前文所述,对电芯压差异常的检测不适宜在电芯电压变化剧烈的情况下执行,而如果当前电池的最小电芯电压大于该第一电压阈值,说明此时电池的电芯电压还未处于变化剧烈的情况。基于此,如果电池的最小电芯电压小于该第一电压阈值,则可以停止执行对电池是否存在电芯压差异常的检测。
其中,在电池包括多个电芯的情况下,可选地,可以以多个电芯的最大电芯电压与最小电芯电压的差值作为上述电芯压差。当然,也可以以任意两个电芯的电压之差作为上述电芯压差。
其中,第一压差阈值可以预先设定,比如可以根据第一曲线上电芯放电深度变化一定差值时所导致的电芯电压变化幅度来确定该第一压差阈值。例如,电芯放电深度变化15%时,电芯电压的变化幅度为150mV,则第一压差阈值可以为150mV。
综上,基于上述实施例提供的方案,可以实现对电池是否存在电芯压差异常进行准确检测。
为了进一步提高电芯压差异常的检测准确性,本发明实施例还提供了如图3和图4所示的检测方案。
图3为本发明实施例提供的另一种电池检测方法的流程示意图,如图3所示,可以包括如下步骤:
301、获取电池的电芯表面温度,确定电芯表面温度是否大于预设的温度阈值,若是,则执行步骤302,否则结束。
302、获取电池的充放电电流。
303、若电池的充放电电流小于第一电流阈值,则每隔设定的时间间隔获取电池的充放电电流,若在预设的时间长度内多次获取到的充放电电流均小于第一电流阈值,则确定与该充放电电流相对应的电压阈值为第一电压阈值。
304、确定电池的最小电芯电压是否大于第一电压阈值,若是,则执行步骤305,否则结束。
305、确定电池的电芯压差是否大于第一压差阈值,若是,则依次执行步骤306和308,否则,执行步骤307和308。
306、第一计数变量的值加第一预设值。
307、第一计数变量的值置为零。
308、确定第一计数变量的值是否已经达到第一数量,若是,则执行步骤309,否则执行步骤310。
309、确定电池的电芯压差异常。
310、确定电池的电芯压差不异常。
本实施例中,为了提高电芯压差异常检测结果的准确性,考虑了如下几个因素:电芯表面温度的干扰、电池工作状态判定结果的准确性、单次检测结果的可信度。
针对电芯表面温度的干扰来说,如果电池处于温度过低的环境中,将会对电芯压差异常的检测结果产生不利干扰,因此,实际应用中,可以设定一个温度阈值,当检测到电芯表面温度大于该温度阈值时,才执行电芯压差异常的检测流程。该温度阈值通过测量一般可以设置为-5~5摄氏度。
由于在适宜的温度条件下电芯的工作状态比较稳定,此时检测到的电芯电压比较可信,有助于保证检测结果的准确性。
实际上,在电池的保护板上可以设置有用于检测电芯的表面温度的温度传感器,通过该温度传感器可以检测到电芯表面温度。
针对电池工作状态判定结果的准确性来说,这里所说的电池工作状态判定结果的准确性主要是指判定电池处于未使用状态的这种判定结果的准确性。简单来说,为防止误判,需要确保静置时间满足条件才能最终确定电池处于未使用状态,其中,静置时间满足条件即为在预设的时间长度(比如30分钟)内多次获取到的电池的充放电电流均小于第一电流阈值,才确定电池处于未使用状态。具体地,可以在某时刻获得电池的充放电电流并确定该充放电电流小于第一电流阈值时,之后每间隔一定时间(比如10秒钟)再次检测电池的充放电电流并进行是否小于第一电流阈值的判断,如果在连续的30分钟内检测到的若干个电流值都满足小于第一电流阈值的条件,则确定电池处于未使用状态,进而确定与该充放电电流相对应的电压阈值为第一电压阈值。相反地,如果电池的充放电电流不满足上述静置时间的条件,则确定电池处于使用状态,进而确定与该充放电电流相对应的电压阈值为第二电压阈值。
相比于根据瞬时的充放电电流确定电池工作状态,观察一段时间内电池的充放电电流的波动情况,可以更准确地确定电池工作状态,而电池工作状态的确定结果将决定检测过程中所使用的参数,比如上述电压阈值、压差阈值。因此,准确地确定出电池工作状态可以保证电芯压差异常检测结果的准确性。
第一预设值可以是用户预先设定的数值,例如1,在此不做限定。针对单次检测结果的可信度来说,通过设置用于计数连续检测到的电池的电芯压差大于第一压差阈值的次数的第一计数变量,只有第一计数变量的数值已经累计到预设的第一数量(比如为5)时,才最终确定电池的电芯压差异常。由此可知,实际应用中,可以每隔一定的时间间隔比如30秒钟即迭代重复执行一遍本实施例中的上述流程。
通过连续多次进行电芯压差异常检测的检测结果来最终确定电池是否存在电芯压差异常,可以避免短时间内由于特殊原因导致的误判,可以取得更准确的检测结果。
图4为本发明实施例提供的另一种电池检测方法的流程示意图,如图4所 示,可以包括如下步骤:
401、获取电池的电芯表面温度,确定电芯表面温度是否大于预设的温度阈值,若是,则执行步骤402,否则结束。
402、获取电池的充放电电流。
403、若电池的充放电电流大于第一电流阈值,则确定与该充放电电流相对应的电压阈值为第二电压阈值。
404、确定电池的最小电芯电压是否大于第二电压阈值,若是,则执行步骤405,否则结束。
405、确定电池的电芯压差是否大于第一压差阈值,若是,则依次执行步骤406和408,否则,执行步骤407和408。
值得说明的是,可选地,不管电池处于何种工作状态,可以使用相同的第一压差阈值。但是,可选地,电池处于不同的工作状态时,也可以使用不同的第一压差阈值。与第一电压阈值和第二电压阈值的确定方式相似地,也可以根据电芯电压与电芯放电深度之间的关系来分别确定出电池处于不同工作状态时所使用的第一压差阈值的取值。具体的,可以参见上述实施例,在此不做赘述。
406、第一计数变量的值加第一预设值。
407、第一计数变量的值置为零。
408、确定第一计数变量的值是否已经达到第一数量,若是,则执行步骤409,否则执行步骤410。
409、确定电池的电芯压差异常。
410、确定电池的电芯压差不异常。
本实施例中未详细展开的描述可以参见图3所示实施例中的说明,在此不赘述。
当最终确定电池存在电芯压差异常上,为保证电池的使用安全性,可以控制禁止对电池进行充电和/或放电,即将电池的充放电电路都关闭。当然,在电池被使用于某个电子设备的情形下,也可以对该电子设备的工作状态进 行控制,还可以通过该电子设备向用户发出告警提示。
比如,当电池被用在无人机中时,若在无人机飞行过程中检测到电芯压差异常,则可以禁止对电池充电,让电池继续进行放电工作,并且,此时对无人机触发返航任务,待无人机返航后,电池将被禁止放电。
综上,根据图1b至图4所示实施例提供的方案可以实现对电池是否存在电芯压差异常进行准确检测。
实际应用中,在电池保护板上会设置有充电MOS管和放电MOS管。下面结合图5和图6所示实施例介绍如何检测充电MOS管和放电MOS管是否损坏。
图5为本发明实施例提供的另一种电池检测方法的流程示意图,如图5所示,可以包括如下步骤:
501、获取电池的放电电流,电池的充电MOS管和放电MOS管均导通。
502、若放电电流大于第二电流阈值,则获取电池的输出电压和电池的电芯总电压。
503、若输出电压与电芯总电压的差值的绝对值大于第二压差阈值,则确定电池的充电MOS管和放电MOS管损坏。
电池通常至少包括一对充、放电MOS管,用于控制电池充放电。在充电阶段和放电阶段会将充电MOS管和放电MOS管全部打开。由于MOS管具有体二极管,在MOS管损坏的情况下依然具有一定过电流能力,但电流流经体二极管时,会存在导通压降,基于此,制定了本实施例提供的MOS管损坏检测方案。
需要说明的是,对充电MOS管和放电MOS管是否损坏的检测,需要在电池的放电过程中进行检测。因为若电池工作在充电状态下,电池的输出电压为充电器输出电压,而不是电池的实际输出电压。
若电池处于放电阶段,且充电MOS管和放电MOS管未损坏,此时充电MOS管和放电MOS管起到开关作用,在导通状态下基本不存在导通压降,也就是电芯总电压(即电池的Bat端电压)与电池输出电压(即电池的Pack端电压)之间基本不存在差值。相反地,如果充电MOS管和放电MOS管损坏,在导通的时候,MOS管相当于二极管,存在导通压降,比如0.7V,也就是电芯总电压与电池输 出电压之间会存在与导通压降相匹配的压差。实际上,不同型号的充电MOS管和放电MOS管可能具有不同的导通压降,因此,可以根据电池中采用的充电MOS管和放电MOS管的型号来确定第二压差阈值,该第二压差阈值可以为该型号的充电MOS管和放电MOS管所具有的导通压降。
另外,为了保证充电MOS管和放电MOS管是否损坏的检测结果的准确性,需要在电池的放电电流大于第二电流阈值的情况下执行上述检测方案。该第二电流阈值可以根据电池在使用状态下的电流范围而确定,比如设置为大于或等于电池在使用状态下的最小电流值。
以该电池被应用于无人机的场景为例,该第二电流阈值可以是根据无人机起飞前电池的放电电流大小确定,比如等于或略大于该放电电流大小。因为相比于无人机处于飞行状态,起飞前的放电电流会更小一些。以起飞前的放电电流大小情况来确定第二电流阈值,可以在无人机起飞前便完成充电MOS管和放电MOS管是否损坏的检测,如果检测结果表明充电MOS管和放电MOS管损坏,则可以不让无人机起飞。
由此可见,通过合理地设定第二电流阈值,可以提高充电MOS管和放电MOS管检测的及时性。
图6为本发明实施例提供的另一种电池检测方法的流程示意图,如图6所示,可以包括如下步骤:
601、获取电池的放电电流,电池的充电MOS管和放电MOS管均导通。
602、若放电电流大于第二电流阈值,则获取电池的输出电压和电池的电芯总电压。
603、若输出电压与电芯总电压的差值的绝对值大于第二压差阈值,则第二计数变量的值加第二预设值,第二计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数,若第二计数变量的值已经达到第二数量,则确定电池的充电MOS管和放电MOS管损坏。
604、禁止电池进行充电。
与前述第一计数变量的作用相似,本实施例中,每隔一定较短时间执行 一次上述检测流程,如果多次检测结果都为电池的输出电压与电芯总电压的差值的绝对值大于第二压差阈值,那么最终确定电池的充电MOS管和放电MOS管损坏。第二预设值可以是用户预先设定的数值,例如1,在此不做限定。
实际应用中,在电池保护板上会设置有用于检测电芯表面温度的温度传感器。下面结合图7至图10所示实施例介绍如何检测温度传感器是否损坏。
图7为本发明实施例提供的另一种电池检测方法的流程示意图,如图7所示,可以包括如下步骤:
701、每隔设定的时长通过温度传感器获取电池的电芯的表面温度。
702、若电芯的表面温度的变化程度符合预设条件,则确定温度传感器损坏。
一般而言,电芯的表面温度是相对稳定的,因此,如果温度传感器未损坏,其在连续一段时间内检测到的电芯的表面温度的变化程度比较平缓,相对稳定。但是,如果温度传感器损坏,那么采集到的温度值则会呈现波动剧烈的特点,如图8中所示。图8中示意了在温度传感器损坏的情况下,其在一段时间内检测到的电芯表面温度的变化曲线。在图8中,横轴表示时间,单位为秒,纵轴为温度,单位为摄氏度。
基于此,可以每隔设定的时长(比如1秒钟)通过温度传感器获取电池的电芯的表面温度,若电芯的表面温度的变化程度符合预设的剧烈变化的条件,则确定温度传感器损坏。
下面通过图9和图10所示实施例举例两种判断电芯的表面温度的变化程度是否符合预设的剧烈变化的条件的方法。
图9为本发明实施例提供的另一种电池检测方法的流程示意图,如图9所示,可以包括如下步骤:
901、每隔设定的时长通过温度传感器获取电池的电芯的表面温度。
902、若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定温度传感器损坏。
903、禁止电池进行充电。
假设设定的时长为1秒钟,则每隔一秒钟可以采集到一个温度值,如果相邻两次采集到的温度值的差值的绝对值大于第一温差阈值,则确定温度传感器损坏。该第一温差阈值比如设置为5摄氏度。在确定温度传感器损坏的情况下,可以通过禁止电池进行充电以保护电池。
在实际应用中,通过瞬时采集的相邻的两个温度值来确定温度传感器是否损坏,可以使得温度传感器是否损坏的检测效率很高,当然,此时为了保证检测结果的准确性,第一温差阈值可以设定的相对高一些。
图10为本发明实施例提供的另一种电池检测方法的流程示意图,如图10所示,可以包括如下步骤:
1001、每隔设定的时长通过温度传感器获取电池的电芯的表面温度。
1002、以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:若检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];若第三计数变量对应的第四数量大于或等于第三数量,且第四数量的差值中具有至少一个正数和至少一个负数,则确定温度传感器损坏;若第四数量小于第三数量;或者,若第四数量大于或等于第三数量,但第四数量的差值均为正数或均为负数,则更新检测窗口,更新后的检测窗口中包括N个表面温度中最后获得的M个表面温度,M小于N。
第三预设值可以是用户预先设定的数值,例如1,在此不做限定。通过步骤1002的描述可知,概括来说,本实施例中是通过持续滑窗来进行温度异常检测。通过观察一段时间内温度传感器采集的多个温度值的变化情况,可以获得更准确地检测结果。
本实施例中,定义一个检测窗口的时间长度为电芯表面温度采样间隔的N倍,以采样间隔(即上述设定的时长)为1秒钟来说,假设上述N的取值为10,则一个检测窗口的时间长度为10秒钟。
为便于描述,结合图11来示意检测窗口的含义。在图11中,Ti表示第i个采样时刻,相邻两个采样时刻的时间间隔比如为1秒钟。从而,当N=10时,T1~ T10为第一个检测窗口,表示为窗口1。
假设上述第二温差阈值为1摄氏度,第三数量为4,在获得T1~T10这10个采集时刻各自采集到的温度值(即电芯的表面温度)后,对这10个温度值进行如下处理:
比较前后相邻的两个温度值,如果两者的差值的绝对值大于第二温差阈值(比如为1摄氏度),则第三计数变量的计数值加第三预设值。比如,如果T1时刻对应的温度值减去T2时刻对应的温度值的差值大于1或者小于-1,则第三计数变量的计数值加第三预设值。
统计该10个温度值对应的总计数值,即为第四数量。如果该总计数值达到第三数量,假设一共有5个差值满足绝对值大于1的条件,进而再确定这5个差值的正负号是否一致,其实也就是确定温度的变化是否单调。如果这5个差值中有正有负,说明温度的变化不单调,此时,确定温度传感器损坏。对温度变化是否满足单调趋势的判断,是为了将电芯本身的原因导致的表面温度逐渐上升或下降的情况排除在外。
那么相反地,如果该总计数值未达到第三数量,则暂时确定温度传感器未损坏。或者,正如上述假设情况,总计数值为5,已经达到了第三数量的要求,但是,如果这5个差值都为正数或者都为负数,那么暂时确定温度传感器未损坏。此时,需要更新检测窗口继续进行判断。检测窗口比如为滑动一个或几个采样间隔,如图11中所示的滑动一个采样间隔,得到由T2~T12这些采样时刻组成的下一个检测窗口,表示为窗口2。
综上,通过上述一些实施例提供的方案,可以实现对电池的电芯压差异常、充放电MOS管损坏、温度传感器损坏的准确检测。
另外,本发明实施例还提供如下的一种电池检测方法,该电池检测方法应用于电池,该电池包括充电控制电路和放电控制电路,该电池检测方法可以包括如下步骤:
获取电池的放电电流,充电控制电路和放电控制电路均导通;
若放电电流大于电流阈值A,则获取电池的输出电压和电池的电芯总电压;
若电池的输出电压与电芯总电压的差值的绝对值大于压差阈值B,则确定电池的充电控制电路和放电控制电路损坏。
其中,电流阈值A可以为前文所述的第二电流阈值。
其中,充电控制电路和放电控制电路是分别用于对电池进行充电和放电控制的电路。上述压差阈值B可以通过测量确定。其中,可选地,充电控制电路中包括前文中所述的充电MOS管,放电控制电路中包括前文中所述的放电MOS管,此时,压差阈值B可以为前文所述的第二压差阈值。
本实施例中为详细展开的描述可以参见前述图5和图6所示实施例中的描述,在此不赘述。
另外,本发明实施例还提供如下的一种电池检测方法,该电池检测方法应用于电池,该电池包括电芯以及温度传感器,温度传感器设于电芯附近,该电池检测方法可以包括如下步骤:
每隔设定的时长通过温度传感器获取电芯的表面温度;
若电芯表面温度的变化程度符合预设条件,则确定温度传感器损坏。
其中,电池中包括的电芯数量为至少一个,温度传感器用于检测该至少一个电芯的表面温度。温度传感器设于电芯附近可以是温度传感器贴设在电芯表面。
本实施例中为详细展开的描述可以参见前述图7-图11所示实施例中的描述,在此不赘述。
图12为本发明实施例提供的一种电池的结构示意图发明,如图12所示,该电池包括:多个电芯121;以及,一个或多个处理器122,该一个或多个处理器122单独地或共同地工作,以用于实现:获取电池的充放电电流;根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯121的最大电芯电压与最小电芯电压的差值。
可选地,处理器122还用于:若所述充放电电流小于第一电流阈值,则确 定与所述充放电电流相对应的电压阈值为第一电压阈值;若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
可选地,处理器122还用于:获取电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
例如,根据描述电芯电压与电芯放电深度之间关系的曲线而确定出第一电压阈值和第二电压阈值。具体地,在电池处于未被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第一曲线,在该第一曲线上确定出第一电压阈值。在电池处于被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第二曲线,在该第二曲线上确定出第二电压阈值。其中,在第一曲线上,低于第一电压阈值的电芯电压的下降速率满足快速下降条件。同理,在第二曲线上,低于第二电压阈值的电芯电压的下降速率满足快速下降条件。
可选地,处理器122还用于:若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
可选地,处理器122还用于:获取所述电池的电芯表面温度;若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
可选地,处理器122还用于:若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于预设的第一压差阈值,则第一计数变量的值加第一预设值,所述第一计数变量用于计数连续检测到的所述电池的电 芯压差大于所述第一压差阈值的次数;若所述第一计数变量的值已经达到第一数量,则确定所述电池的电芯压差异常。
可选地,处理器122还用于:确定所述电池的电芯压差异常后,禁止所述电池进行充电和/或放电。
可选地,所述电池还包括:充电MOS管123和放电MOS管124,处理器122还用于:获取所述电池的放电电流,所述电池的充电MOS管和放电MOS管均导通;若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏。
可选地,处理器122还用于:若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第二计数变量的值加二预设值,所述第二计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;若所述第二计数变量的值已经达到第二数量,则确定所述电池的充电MOS管和放电MOS管损坏。
可选地,处理器122还用于:确定所述电池的充电MOS管和放电MOS管损坏后,禁止所述电池进行充电。
可选地,所述电池还包括:温度传感器125。处理器122还用于:每隔设定的时长通过温度传感器获取所述电池的电芯的表面温度;若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
可选地,处理器122还用于:若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器125损坏。
可选地,处理器122还用于:以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加三预设值,其中,i∈[1,N-1];若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器125损坏;若所述第四数量小于所述第三数量;或者,若所述第四数量 大于或等于所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
可选地,处理器122还用于:确定所述温度传感器125损坏后,禁止所述电池进行充电。
图12所示实施例中提供的电池可以被使用于电子设备中,该电子设备比如可以是手机、笔记本电脑、PC机、机器人、无人机、可穿戴设备等等。比如,图13中示意的是将该电池安装在无人机中。
另外本发明实施例提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述图1b-图11所述的电池检测方法。
图14为本发明实施例提供的一种电池检测装置的结构示意图,应用于电池,所述电池包括多个电芯,该装置包括:
获取模块141,用于获取电池的充放电电流。
阈值确定模块142,用于根据所述充放电电流,确定与所述充放电电流相对应的电压阈值。
压差确定模块143,用于若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
需要注意的是,图14所示装置还可以执行图1b-图11所示实施例的方法,本实施例未详细描述的部分,可参考对图1b-图11所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1b-图11所示实施例中的描述,在此不再赘述。
图15为本发明实施例提供的另一种电池的结构示意图,如图15所示,该电池包括:充电控制电路151、放电控制电路152;以及,一个或多个处理器153。该一个或多个处理器153单独地或共同地工作,以用于实现:获取所述 电池的放电电流,所述电池的充电控制电路151和放电控制电路152均导通;若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路151和放电控制电路152损坏。
可选地,所述处理器153还用于:若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则第一计数变量的值加第一预设值,所述第一计数变量用于计数连续检测到的所述绝对值大于第一压差阈值的次数;若所述第一计数变量的值已经达到第一数量,则确定所述电池的充电控制电路151和放电控制电路152损坏。
可选地,所述处理器152还用于:确定所述电池的充电控制电路151和放电控制电路152损坏后,禁止所述电池进行充电。
可选地,所述充电控制电路151包括充电MOS管,所述放电控制电路152包括放电MOS管。
可选地,所述电池中包括多个电芯154。所述处理器153还用于:获取电池的充放电电流;根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯154的最大电芯电压与最小电芯电压的差值。
可选地,所述处理器153还用于:若所述充放电电流小于第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;若所述充放电电流大于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
可选地,所述处理器153还用于:具体地,在电池处于未被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第一曲线,在该第一曲线上确定出第一电压阈值。在电池处于被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第二曲线,在该第二曲线上确定出第二电压阈值。其中,在第一曲线上,低于第一电压 阈值的电芯电压的下降速率满足快速下降条件。同理,在第二曲线上,低于第二电压阈值的电芯电压的下降速率满足快速下降条件。
可选地,所述处理器153还用于:若所述充放电电流小于所述第二电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;若在预设的时间长度内多次获取到的充放电电流均小于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
可选地,所述处理器153还用于:获取所述电池的电芯表面温度;若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
可选地,所述处理器153还用于:若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第二压差阈值的次数;若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压差异常。
可选地,所述处理器153还用于:确定所述电池的电芯压差异常后,禁止所述电池进行充电和/或放电。
可选地,所述电池包括温度传感器155。所述处理器152还用于:每隔设定的时长通过温度传感器155获取所述电池的电芯的表面温度;若所述表面温度的变化程度符合预设条件,则确定所述温度传感器155损坏。
可选地,所述处理器152还用于:若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器155损坏。
可选地,所述处理器152还用于:以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中 具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;若所述第四数量小于所述第三数量;或者,若所述第四数量大于或等于所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
可选地,所述处理器152还用于:确定所述温度传感器155损坏后,禁止所述电池进行充电。
图15所示实施例中提供的电池可以被使用于电子设备中,该电子设备比如可以是手机、笔记本电脑、PC机、机器人、无人机、可穿戴设备等等。
图16为本发明实施例提供的另一种电池检测装置的结构示意图,应用于电池,所述电池包括充电控制电路和放电控制电路,如图16所示,该装置中包括:
电流获取模块161,用于获取所述电池的放电电流,所述电池的充电控制电路和放电控制电路均导通。
电压获取模块162,用于若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压。
确定模块163,用于若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏。
需要注意的是,图16所示装置还可以执行图1b-图11所示实施例的方法,本实施例未详细描述的部分,可参考对图1b-图11所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1b-图11所示实施例中的描述,在此不再赘述。
图17为本发明实施例提供的再一种电池的结构示意图,如图17所示,该电池包括:电芯171、温度传感器172,以及,一个或多个处理器173。温度传感器172设于电芯171附近。一个或多个处理器173单独地或共同地工作,以用于实现:每隔设定的时长通过温度传感器172获取电池的电芯表面温度;若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器172损坏。
可选地,处理器173还用于:若依次获得的两个表面温度的差值的绝对值 大于第一温差阈值,则确定所述温度传感器172损坏。
可选地,处理器173还用于:以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第一计数变量的值加第一预设值,其中,i∈[1,N-1];若所述第一计数变量对应的累计数量大于或等于第一数量,且所述累计数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;若所述累计数量小于第一数量;或者,若所述累计数量大于或等于,但所述累计数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
可选地,处理器173还用于:确定所述温度传感器172损坏后禁止所述电池进行充电。
可选地,所述电芯171的数量为至少一个。
可选地,所述电芯171的数量为多个,此时,处理器173还用于:获取所述电池的充放电电流;根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯171的最大电芯电压与最小电芯电压的差值。
可选地,处理器173还用于:若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
可选地,处理器173还用于:具体地,在电池处于未被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第一曲线,在该第一曲线上确定出第一电压阈值。在电池处于被使用状态下,通过对不同时刻该电池的电芯电压与电芯放电深度进行测得以绘制出第二曲线,在该第二曲线上确定出第二电压阈值。其中,在第一曲线上,低于第一电压阈值 的电芯电压的下降速率满足快速下降条件。同理,在第二曲线上,低于第二电压阈值的电芯电压的下降速率满足快速下降条件。
可选地,处理器173还用于:若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
可选地,处理器173还用于:获取所述电池的电芯表面温度;若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
可选地,处理器173还用于:若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于预设的第一压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第一压差阈值的次数;若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压差异常。
可选地,处理器173还用于:确定所述电池的电芯压差异常后,禁止所述电池进行充电和/或放电。
可选地,所述电池还包括:充电MOS管174和放电MOS管175。处理器173还用于:获取所述电池的放电电流,所述电池的充电MOS管174和放电MOS管175均导通;若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管174和放电MOS管175损坏。
可选地,处理器173还用于:若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第三计数变量的值加第三预设值,所述第三计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;若所述第三计数变量的值已经达到第三数量,则确定所述电池的充电MOS管174和放电MOS管175损坏。
可选地,处理器173还用于:确定所述电池的充电MOS管174和禁止所述电池进行充电。
图17所示实施例中提供的电池可以被使用于电子设备中,该电子设备比如可以是手机、笔记本电脑、PC机、机器人、无人机、可穿戴设备等等。
图18为本发明实施例提供的再一种电池检测装置的结构示意图,该装置应用于电池,,电池包括电芯以及温度传感器,所述温度传感器设于所述电芯附近,如图18所示,该装置包括:
获取模块181,用于每隔设定的时长通过所述温度传感器获取所述电芯的表面温度。
确定模块182,用于若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
需要注意的是,图18所示装置还可以执行图1b-图11所示实施例的方法,本实施例未详细描述的部分,可参考对图1b-图11所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1b-图11所示实施例中的描述,在此不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本发明保护范围内的等同实施例。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (94)

  1. 一种电池检测方法,其特征在于,应用于电池,所述电池包括多个电芯,包括:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述充放电电流,确定与所述充放电电流相对应的电压阈值,包括:
    若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获取电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  4. 根据权利要求2所述的方法,其特征在于,所述若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值,包括:
    若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取 所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  6. 根据权利要求1所述的方法,其特征在于,所述若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,包括:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则第一计数变量的值加第一预设值,所述第一计数变量用于计数连续检测到的所述电池的电芯压差大于所述第一压差阈值的次数;
    若所述第一计数变量的值已经达到第一数量,则确定所述电池的电芯压差异常。
  7. 根据权利要求1所述的方法,其特征在于,所述确定所述电池存在电芯压差大的异常问题之后,还包括:
    禁止所述电池进行充电和/或放电。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述电池的放电电流,所述电池的充电MOS管和放电MOS管均导通;
    若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏。
  9. 根据权利要求8所述的方法,其特征在于,所述若所述输出电压与所 述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏,包括:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的充电MOS管和放电MOS管损坏。
  10. 根据权利要求8所述的方法,其特征在于,所述确定所述电池的充电MOS管和放电MOS管损坏之后,还包括:
    禁止所述电池进行充电。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    每隔设定的时长通过温度传感器获取所述电池的电芯的表面温度;
    若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
  12. 根据权利要求11所述的方法,其特征在于,所述若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  13. 根据权利要求11所述的方法,其特征在于,所述若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];
    若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述第四数量小于所述第三数量;或者,若所述第四数量大于或等于 所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  14. 根据权利要求11所述的方法,其特征在于,所述确定所述温度传感器损坏之后,还包括:
    禁止所述电池进行充电。
  15. 一种电池检测方法,其特征在于,应用于电池,所述电池包括充电控制电路和放电控制电路,包括:
    获取所述电池的放电电流,所述充电控制电路和所述放电控制电路均导通;
    若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏。
  16. 根据权利要求15所述的方法,其特征在于,所述若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏,包括:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则第一计数变量的值加第一预设值,所述第一计数变量用于计数连续检测到的所述绝对值大于第一压差阈值的次数;
    若所述第一计数变量的值已经达到第一数量,则确定所述电池的充电控制电路和放电控制电路损坏。
  17. 根据权利要求15所述的方法,其特征在于,所述确定所述电池的充电控制电路和放电控制电路损坏之后,还包括:
    禁止所述电池进行充电。
  18. 根据权利要求15所述的方法,其特征在于,所述充电控制电路包括充电MOS管,所述放电控制电路包括放电MOS管。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述电池中包括多个电芯;所述方法还包括:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述充放电电流,确定与所述充放电电流相对应的电压阈值,包括:
    若所述充放电电流小于第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    获取电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  22. 根据权利要求20所述的方法,其特征在于,所述若所述充放电电流小于第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值,包括:
    若所述充放电电流小于所述第二电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  23. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  24. 根据权利要求19所述的方法,其特征在于,所述若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则确定所述电池的电芯压差异常,包括:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第二压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压差异常。
  25. 根据权利要求19所述的方法,其特征在于,所述确定所述电池存在电芯压差大的异常问题之后,还包括:
    禁止所述电池进行充电和/或放电。
  26. 根据权利要求15至25中任一项所述的方法,其特征在于,所述方法还包括:
    每隔设定的时长通过温度传感器获取所述电池的电芯的表面温度;
    若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
  27. 根据权利要求26所述的方法,其特征在于,所述若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  28. 根据权利要求26所述的方法,其特征在于,所述若所述表面温度的 变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述第四数量小于所述第三数量;或者,若所述第四数量大于或等于所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  29. 根据权利要求26所述的方法,其特征在于,所述确定所述温度传感器损坏之后,还包括:
    禁止所述电池进行充电。
  30. 一种电池检测方法,其特征在于,应用于电池,所述电池包括电芯以及温度传感器,所述温度传感器设于所述电芯附近,包括:
    每隔设定的时长通过所述温度传感器获取所述电芯的表面温度;
    若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
  31. 根据权利要求30所述的方法,其特征在于,所述若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  32. 根据权利要求30所述的方法,其特征在于,所述若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏,包括:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第一计数变量的值加第一预设值,其中,i∈[1,N-1];
    若所述第一计数变量对应的累计数量大于或等于第一数量,且所述累计数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述累计数量小于第一数量;或者,若所述累计数量大于或等于,但所述累计数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  33. 根据权利要求30所述的方法,其特征在于,所述确定所述温度传感器损坏之后,还包括:
    禁止所述电池进行充电。
  34. 根据权利要求30所述的方法,其特征在于,所述电芯的数量为至少一个。
  35. 根据权利要求30至34中任一项所述的方法,其特征在于,所述电芯的数量为多个,所述方法还包括:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括多个电芯的最大电芯电压与最小电芯电压的差值。
  36. 根据权利要求35所述的方法,其特征在于,所述根据所述充放电电流,确定与所述充放电电流相对应的电压阈值,包括:
    若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    获取描述电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获 取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  38. 根据权利要求36所述的方法,其特征在于,所述若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值,包括:
    若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  39. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  40. 根据权利要求35所述的方法,其特征在于,所述若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,包括:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于预设的第一压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第一压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压差异常。
  41. 根据权利要求35所述的方法,其特征在于,所述确定所述电池存在 电芯压差大的异常问题之后,还包括:
    禁止所述电池进行充电和/或放电。
  42. 根据权利要求30至41中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述电池的放电电流,所述电池的充电MOS管和放电MOS管均导通;
    若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏。
  43. 根据权利要求42所述的方法,其特征在于,所述若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏,包括:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第三计数变量的值加第三预设值,所述第三计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;
    若所述第三计数变量的值已经达到第三数量,则确定所述电池的充电MOS管和放电MOS管损坏。
  44. 根据权利要求42所述的方法,其特征在于,所述确定所述电池的充电MOS管和放电MOS管损坏之后,还包括:
    禁止所述电池进行充电。
  45. 一种电池,其特征在于,包括:
    多个电芯;以及,
    一个或多个处理器,单独地或共同地工作,用于实现:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯 压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
  46. 根据权利要求45所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  47. 根据权利要求46所述的电池,其特征在于,所述处理器还用于:
    获取描述电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  48. 根据权利要求46所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  49. 根据权利要求45所述的电池,其特征在于,所述处理器还用于:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  50. 根据权利要求45所述的电池,其特征在于,所述处理器还用于:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于预设的第一压差阈值,则第一计数变量的值加第一预设值,所述第 一计数变量用于计数连续检测到的所述电池的电芯压差大于所述第一压差阈值的次数;
    若所述第一计数变量的值已经达到第一数量,则确定所述电池的电芯压差异常。
  51. 根据权利要求45所述的装置,其特征在于,所述处理器还用于:
    禁止所述电池进行充电和/或放电。
  52. 根据权利要求45至51中任一项所述的电池,其特征在于,所述电池还包括:充电MOS管和放电MOS管,所述处理器还用于:
    获取所述电池的放电电流,所述电池的所述充电MOS管和所述放电MOS管均导通;
    若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏。
  53. 根据权利要求52所述的电池,其特征在于,所述处理器还用于:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的充电MOS管和放电MOS管损坏。
  54. 根据权利要求52所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  55. 根据权利要求45至54中任一项所述的电池,其特征在于,所述电池还包括:温度传感器;所述处理器还用于:
    每隔设定的时长通过所述温度传感器获取所述电池的电芯的表面温度;
    若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
  56. 根据权利要求55所述的电池,其特征在于,所述处理器还用于:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  57. 根据权利要求55所述的电池,其特征在于,所述处理器还用于:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];
    若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述第四数量小于所述第三数量;或者,若所述第四数量大于或等于所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  58. 根据权利要求55所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  59. 一种电子设备,其特征在于,包括如权利要求45至58中任一项所述的电池。
  60. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现权利要求1至14中任一项所述的电池检测方法。
  61. 一种电池,其特征在于,包括:
    充电控制电路、放电控制电路;以及,
    一个或多个处理器,单独地或共同地工作,用于实现:
    获取所述电池的放电电流,所述充电控制电路和所述放电控制电路均导通;
    若所述放电电流大于第一电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则确定所述电池的充电控制电路和放电控制电路损坏。
  62. 根据权利要求61所述的电池,其特征在于,所述处理器还用于:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第一压差阈值,则第一计数变量的值加第一预设值,所述第一计数变量用于计数连续检测到的所述绝对值大于第一压差阈值的次数;
    若所述第一计数变量的值已经达到第一数量,则确定所述电池的充电控制电路和放电控制电路损坏。
  63. 根据权利要求61所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  64. 根据权利要求61所述的电池,其特征在于,所述充电控制电路包括充电MOS管,所述放电控制电路包括放电MOS管。
  65. 根据权利要求61至64中任一项所述的电池,其特征在于,所述电池中包括多个电芯;所述处理器还用于:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括所述多个电芯的最大电芯电压与最小电芯电压的差值。
  66. 根据权利要求65所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  67. 根据权利要求66所述的电池,其特征在于,所述处理器还用于:
    获取描述电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获 取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  68. 根据权利要求66所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于所述第二电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第二电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  69. 根据权利要求65所述的电池,其特征在于,所述处理器还用于:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  70. 根据权利要求65所述的电池,其特征在于,所述处理器还用于:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第二压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第二压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压差异常。
  71. 根据权利要求65所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电和/或放电。
  72. 根据权利要求61至71中任一项所述的电池,其特征在于,所述电池包括温度传感器;所述处理器还用于:
    每隔设定的时长通过所述温度传感器获取所述电池的电芯的表面温度;
    若所述表面温度的变化程度符合预设条件,则确定所述温度传感器损坏。
  73. 根据权利要求72所述的电池,其特征在于,所述处理器还用于:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  74. 根据权利要求72所述的电池,其特征在于,所述处理器还用于:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第三计数变量的值加第三预设值,其中,i∈[1,N-1];
    若所述第三计数变量对应的第四数量大于或等于第三数量,且所述第四数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述第四数量小于所述第三数量;或者,若所述第四数量大于或等于所述第三数量,但所述第四数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  75. 根据权利要求72所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  76. 一种电子设备,其特征在于,包括如权利要求61至75中任一项所述的电池。
  77. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现权利要求15至29中任一项所述的电池检测方法。
  78. 一种电池,其特征在于,包括:
    电芯、温度传感器,所述温度传感器设于所述电芯附近;以及,
    一个或多个处理器,单独地或共同地工作,用于实现:
    每隔设定的时长通过所述温度传感器获取所述电芯的表面温度;
    若所述电芯表面温度的变化程度符合预设条件,则确定所述温度传感器 损坏。
  79. 根据权利要求78所述的电池,其特征在于,所述处理器还用于:
    若依次获得的两个表面温度的差值的绝对值大于第一温差阈值,则确定所述温度传感器损坏。
  80. 根据权利要求78所述的电池,其特征在于,所述处理器还用于:
    以依次获得的N个表面温度初始化检测窗口,迭代执行如下过程:
    若所述检测窗口内的第i个表面温度与第i+1个表面温度的差值的绝对值大于第二温差阈值,则第一计数变量的值加第一预设值,其中,i∈[1,N-1];
    若所述第一计数变量对应的累计数量大于或等于第一数量,且所述累计数量的差值中具有至少一个正数和至少一个负数,则确定所述温度传感器损坏;
    若所述累计数量小于第一数量;或者,若所述累计数量大于或等于,但所述累计数量的差值均为正数或均为负数,则更新所述检测窗口,更新后的检测窗口中包括所述N个表面温度中最后获得的M个表面温度,M小于N。
  81. 根据权利要求78所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  82. 根据权利要求78所述的电池,其特征在于,所述电芯的数量为至少一个。
  83. 根据权利要求78至82中任一项所述的电池,其特征在于,所述电芯的数量为多个;所述处理器还用于:
    获取所述电池的充放电电流;
    根据所述充放电电流,确定与所述充放电电流相对应的电压阈值;
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于第一压差阈值,则确定所述电池的电芯压差异常,其中,所述电芯压差包括多个电芯的最大电芯电压与最小电芯电压的差值。
  84. 根据权利要求83所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于第一电流阈值,则确定与所述充放电电流相对应 的电压阈值为第一电压阈值;
    若所述充放电电流大于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第二电压阈值。
  85. 根据权利要求84所述的电池,其特征在于,所述处理器还用于:
    获取描述电芯电压与电芯放电深度之间的第一关系,所述第一关系为所述电池处于未被使用状态下时电芯电压与电芯放电深度之间的关系,以及获取电芯电压与电芯放电深度之间的第二关系,所述第二关系为所述电池处于被使用状态下时电芯电压与电芯放电深度之间的关系;
    根据所述第一关系确定所述第一电压阈值,根据所述第二关系确定所述第二电压阈值;
    其中,低于所述第一电压阈值的电芯电压的下降速率满足快速下降条件;低于所述第二电压阈值的电芯电压的下降速率满足快速下降条件。
  86. 根据权利要求84所述的电池,其特征在于,所述处理器还用于:
    若所述充放电电流小于所述第一电流阈值,则每隔设定的时间间隔获取所述电池的充放电电流;
    若在预设的时间长度内多次获取到的充放电电流均小于所述第一电流阈值,则确定与所述充放电电流相对应的电压阈值为第一电压阈值。
  87. 根据权利要求83所述的电池,其特征在于,所述处理器还用于:
    获取所述电池的电芯表面温度;
    若所述电芯表面温度大于预设的温度阈值,则执行所述获取电池的充放电电流的步骤。
  88. 根据权利要求83所述的电池,其特征在于,所述处理器还用于:
    若所述电池的最小电芯电压大于所述电压阈值,并且,所述电池的电芯压差大于预设的第一压差阈值,则第二计数变量的值加第二预设值,所述第二计数变量用于计数连续检测到的所述电池的电芯压差大于所述第一压差阈值的次数;
    若所述第二计数变量的值已经达到第二数量,则确定所述电池的电芯压 差异常。
  89. 根据权利要求83所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电和/或放电。
  90. 根据权利要求78至89中任一项所述的电池,其特征在于,所述电池还包括:充电MOS管和放电MOS管;所述处理器还用于:
    获取所述电池的放电电流,所述充电MOS管和所述放电MOS管均导通;
    若所述放电电流大于第二电流阈值,则获取所述电池的输出电压和所述电池的电芯总电压;
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则确定所述电池的充电MOS管和放电MOS管损坏。
  91. 根据权利要求90所述的电池,其特征在于,所述处理器还用于:
    若所述输出电压与所述电芯总电压的差值的绝对值大于第二压差阈值,则第三计数变量的值加第三预设值,所述第三计数变量用于计数连续检测到的所述绝对值大于第二压差阈值的次数;
    若所述第三计数变量的值已经达到第三数量,则确定所述电池的充电MOS管和放电MOS管损坏。
  92. 根据权利要求90所述的电池,其特征在于,所述处理器还用于:
    禁止所述电池进行充电。
  93. 一种电子设备,其特征在于,包括如权利要求78至92中任一项所述的电池。
  94. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现权利要求30至44中任一项所述的电池检测方法。
PCT/CN2019/110088 2019-10-09 2019-10-09 电池检测方法、电池、电子设备和存储介质 WO2021068121A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/110088 WO2021068121A1 (zh) 2019-10-09 2019-10-09 电池检测方法、电池、电子设备和存储介质
CN201980032112.6A CN112119318A (zh) 2019-10-09 2019-10-09 电池检测方法、电池、电子设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110088 WO2021068121A1 (zh) 2019-10-09 2019-10-09 电池检测方法、电池、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021068121A1 true WO2021068121A1 (zh) 2021-04-15

Family

ID=73799212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110088 WO2021068121A1 (zh) 2019-10-09 2019-10-09 电池检测方法、电池、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN112119318A (zh)
WO (1) WO2021068121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466721A (zh) * 2021-08-31 2021-10-01 蜂巢能源科技有限公司 锂离子电池的失效识别方法、装置、电子设备及介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782587B (zh) * 2020-12-24 2023-02-28 金龙联合汽车工业(苏州)有限公司 一种动力电池单体异常变化检测方法及系统
CN112816881B (zh) * 2021-03-12 2024-03-22 武汉蔚来能源有限公司 电池压差异常检测方法、装置及计算机存储介质
CN113156318B (zh) * 2021-04-25 2023-11-07 北京骑胜科技有限公司 故障电芯检测方法、装置、电子设备和存储介质
CN113640683A (zh) * 2021-08-06 2021-11-12 江苏金帆电源科技有限公司 识别异常电池的方法
CN113917343B (zh) * 2021-09-30 2023-08-08 蜂巢能源科技有限公司 一种电池模组状态检测方法、装置、电子设备及存储介质
CN113985287A (zh) * 2021-10-19 2022-01-28 安徽明德源能科技有限责任公司 一种电芯安全识别方法及装置
CN114200347B (zh) * 2021-11-30 2023-07-18 杭州煦达新能源科技有限公司 一种储能系统中电芯电压采样线连接异常的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160094065A1 (en) * 2014-09-26 2016-03-31 Mitsumi Electric Co., Ltd. Battery protection circuit and device, battery pack, and battery protection method
CN105698970A (zh) * 2016-01-29 2016-06-22 安徽江淮汽车股份有限公司 一种电池包温度检测电路故障诊断方法
CN107947268A (zh) * 2017-11-30 2018-04-20 宁德时代新能源科技股份有限公司 电池包均衡方法、装置和设备
CN109709488A (zh) * 2018-12-29 2019-05-03 蜂巢能源科技有限公司 电芯模组电连接检测方法和装置
CN109739253A (zh) * 2019-01-28 2019-05-10 深圳市道通智能航空技术有限公司 一种飞行器电池监控方法、装置、电池及飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160094065A1 (en) * 2014-09-26 2016-03-31 Mitsumi Electric Co., Ltd. Battery protection circuit and device, battery pack, and battery protection method
CN105698970A (zh) * 2016-01-29 2016-06-22 安徽江淮汽车股份有限公司 一种电池包温度检测电路故障诊断方法
CN107947268A (zh) * 2017-11-30 2018-04-20 宁德时代新能源科技股份有限公司 电池包均衡方法、装置和设备
CN109709488A (zh) * 2018-12-29 2019-05-03 蜂巢能源科技有限公司 电芯模组电连接检测方法和装置
CN109739253A (zh) * 2019-01-28 2019-05-10 深圳市道通智能航空技术有限公司 一种飞行器电池监控方法、装置、电池及飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466721A (zh) * 2021-08-31 2021-10-01 蜂巢能源科技有限公司 锂离子电池的失效识别方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN112119318A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2021068121A1 (zh) 电池检测方法、电池、电子设备和存储介质
EP3605716B1 (en) Battery management system and method for optimizing internal resistance of battery
US10908227B2 (en) Method and system for detecting resistance of internal short circuit of battery
US8049465B2 (en) Systems, methods and circuits for determining micro-short
WO2018059074A1 (zh) 一种电池微短路的检测方法及装置
CN103399277B (zh) 一种动力电池实际容量估算方法
US10974613B2 (en) Method and system for determining discharging process of battery
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
US20180048163A1 (en) Charging method and mobile terminal
US20110234167A1 (en) Method of Predicting Remaining Capacity and Run-time of a Battery Device
WO2019144646A1 (zh) 电池的电量状态估算方法、装置及电子设备
CN107024665B (zh) 电池的剩余容量校准方法
US8493034B2 (en) Charge control circuit and battery charger including a charge control circuit
US11768245B2 (en) Predicting a potential fault in a battery
US20200064411A1 (en) Mobile platform, computer readable storage medium, battery and control method and system thereof
WO2017166573A1 (zh) 一种检测电池温度和id的方法及装置
EP3185348B1 (en) A battery information detection and control method, smart battery,terminal and computer storage medium
CN103545564A (zh) 充电电池单元及其缺陷检测方法
CN109085508A (zh) 确定电池的充电状态的方法、装置、芯片、电池及飞行器
EP3961233A1 (en) Battery cell diagnosis device and method
WO2019052146A1 (zh) 一种电池电量预估方法和装置、无人机
JP6896965B2 (ja) バッテリーのための等価回路モデルのパラメータ推定方法及びバッテリー管理システム
WO2022057583A1 (zh) 一种电池充电控制方法和装置
CN101144837A (zh) 电压检测电路及其方法
WO2023070321A1 (zh) 一种电池过流检测方法、电池管理系统及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948438

Country of ref document: EP

Kind code of ref document: A1