WO2021066629A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2021066629A1
WO2021066629A1 PCT/KR2020/013515 KR2020013515W WO2021066629A1 WO 2021066629 A1 WO2021066629 A1 WO 2021066629A1 KR 2020013515 W KR2020013515 W KR 2020013515W WO 2021066629 A1 WO2021066629 A1 WO 2021066629A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
coreset
frequency
offset
pbch block
Prior art date
Application number
PCT/KR2020/013515
Other languages
English (en)
French (fr)
Inventor
김선욱
윤석현
고현수
양석철
정만영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227007103A priority Critical patent/KR102536875B1/ko
Priority to KR1020227040704A priority patent/KR20220162182A/ko
Priority to CN202080069507.6A priority patent/CN114503740A/zh
Priority to EP20871449.3A priority patent/EP4037231A4/en
Publication of WO2021066629A1 publication Critical patent/WO2021066629A1/ko
Priority to US17/711,537 priority patent/US11576195B2/en
Priority to US17/992,576 priority patent/US11716723B2/en
Priority to US18/334,066 priority patent/US12127195B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a wireless signal.
  • Wireless communication systems are widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently performing a wireless signal transmission/reception process.
  • n, a, b, c and d each represent an integer.
  • a terminal used in a wireless communication system comprising: at least one processor; And at least one computer memory operably connected to the at least one processor and allowing the at least one processor to perform an operation when executed, and the operation includes: unlicensed band To detect a synchronization signal block (SSB), wherein the SSB includes an index on a control resource set (CORESET) configuration, and is used to identify a frequency position of a CORESET linked to the SSB based on the index (resource block) determining an offset, and monitoring a CORESET within the unlicensed band based on the RB offset, and based on the subcarrier spacing (SCS) of the SSB, between the index and the RB offset
  • SSB synchronization signal block
  • CORESET control resource set
  • n, a, b, c and d each represent an integer.
  • an apparatus for a terminal comprising: at least one processor; And at least one computer memory operably connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation including: an unlicensed band To detect a synchronization signal block (SSB), wherein the SSB includes an index on a control resource set (CORESET) configuration, and is used to identify a frequency position of a CORESET linked to the SSB based on the index (resource block) determining an offset, and monitoring a CORESET within the unlicensed band based on the RB offset, and based on the subcarrier spacing (SCS) of the SSB, between the index and the RB offset
  • SSB synchronization signal block
  • CORESET control resource set
  • n, a, b, c and d each represent an integer.
  • a computer-readable storage medium comprising at least one computer program that, when executed, causes the at least one processor to perform an operation, the operation including: in an unlicensed band.
  • n, a, b, c and d each represent an integer.
  • a, b, c and d may be a, a+1, a+2, and a+3, respectively.
  • the center frequency of the SSB may correspond to the synchronization raster.
  • the monitoring may further include detecting a physical downlink control channel (PDCCH) from the CORESET.
  • PDCCH physical downlink control channel
  • it may include receiving system information through a physical downlink shared channel (PDSCH) corresponding to the PDCCH.
  • PDSCH physical downlink shared channel
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • FIG. 4 shows an example in which a physical channel is mapped in a slot.
  • 5 illustrates a wireless communication system supporting an unlicensed band.
  • FIG. 6 illustrates a method of occupying a resource in an unlicensed band.
  • SSB Synchronization Signal Block
  • FIG. 10 illustrates a process of obtaining system information.
  • FIG. 11 illustrates the location of SSB and CORESET (Control Resource Set).
  • 21 to 22 illustrate signal transmission and reception according to the proposal of the present invention.
  • 23 to 26 illustrate a communication system 1 and a wireless device applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by them.
  • FIG. 1 is a diagram illustrating physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • the terminal In a state in which the power is turned off, the terminal is turned on again or newly enters the cell and performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to be more specific.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 in order to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • Can receive S104
  • a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) ) Can be performed.
  • the UE receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • Control information transmitted from the UE to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, UCI may be aperiodically transmitted through the PUSCH at the request/instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HF). Each half-frame is divided into five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
  • SCS Subcarrier Spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplifies that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • N subframe,u slot the number of slots in the subframe
  • Table 2 exemplifies that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology eg, SCS
  • the (absolute time) section of the time resource eg, SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 3 below. Further, FR2 may mean a millimeter wave (mmW).
  • mmW millimeter wave
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • PRB Physical RBs
  • the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which all of a DL control channel, DL or UL data, and a UL control channel can be included in one slot.
  • a DL control channel eg, PDCCH
  • a DL control region e.g. PUCCH
  • Can e.g. UL control region
  • a resource region (hereinafter, a data region) between the DL control region and the UL control region may be used for transmission of DL data (eg, PDSCH) or may be used for transmission of UL data (eg, PUSCH).
  • the GP provides a time gap in the process of switching from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode between the base station and the terminal. Some symbols at a time point at which the DL to UL is switched within a subframe may be set as a GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for an upper layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, and activation/release of Configured Scheduling (CS).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • CS Configured Scheduling
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • CORESET is defined as a REG (Resource Element Group) set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • RRC Radio Resource Control
  • the number of RBs constituting CORESET and the number of symbols (maximum 3) may be set by higher layer signaling.
  • the UE acquires DCI transmitted through the PDCCH by performing decoding (aka, blind decoding) on the set of PDCCH candidates.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search space sets set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId Represents the set of control resources related to the search space set.
  • -monitoringSlotPeriodicityAndOffset indicates PDCCH monitoring period interval (slot unit) and PDCCH monitoring interval offset (slot unit)
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (e.g., indicates the first symbol(s) of the control resource set)
  • Table 4 exemplifies features of each search space type.
  • Table 5 exemplifies DCI formats transmitted through the PDCCH.
  • a cell operating in a licensed band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as (DL/UL) Licensed Component Carrier (LCC).
  • L-band a cell operating in an unlicensed band
  • U-band a cell operating in an unlicensed band
  • UCC Unlicensed Component Carrier
  • the cell carrier may mean the cell's operating frequency (eg, center frequency).
  • Cell/carrier eg, Component Carrier, CC
  • CC Component Carrier
  • one terminal can transmit and receive signals to and from the base station through a plurality of merged cells/carriers.
  • one CC may be set as a Primary CC (PCC), and the remaining CC may be set as a Secondary CC (SCC).
  • Specific control information/channel eg, CSS PDCCH, PUCCH
  • PCC/SCC 5(a) illustrates a case where a terminal and a base station transmit and receive signals through LCC and UCC (non-standalone (NSA) mode).
  • LCC may be set to PCC and UCC may be set to SCC.
  • one specific LCC may be set as PCC and the remaining LCCs may be set as SCC.
  • Figure 5 (a) corresponds to the LAA of the 3GPP LTE system.
  • 5(b) illustrates a case in which a terminal and a base station transmit and receive signals through one or more UCCs without an LCC (SA mode). in this case.
  • One of the UCCs may be set as PCC and the other UCC may be set as SCC.
  • both the NSA mode and the SA mode can be supported.
  • CS Carrier Sensing
  • the communication node may first perform CS (Carrier Sensing) before signal transmission to determine whether other communication node(s) transmit signals.
  • CS Carrier Sensing
  • a case where it is determined that other communication node(s) does not transmit a signal is defined as having a clear channel assessment (CCA). If there is a CCA threshold set by pre-defined or higher layer (e.g., RRC) signaling, the communication node determines the channel state as busy if energy higher than the CCA threshold is detected in the channel, otherwise the channel state Can be judged as children.
  • the CCA threshold is -62dBm for non-Wi-Fi signals and -82dBm for Wi-Fi signals.
  • the communication node can start signal transmission in the UCell.
  • LBT Listen-Before-Talk
  • CAP Channel Access Procedure
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FBE is a channel occupancy time (e.g. 1-10ms), which means the time that the communication node can continue to transmit when the channel connection is successful, and an idle period corresponding to at least 5% of the channel occupancy time. (idle period) constitutes one fixed frame
  • CCA is defined as an operation of observing a channel during a CCA slot (at least 20 ⁇ s) at the end of the idle period.
  • the communication node periodically performs CCA in a fixed frame unit, and if the channel is in an unoccupied state, it transmits data during the channel occupancy time, and if the channel is occupied, it suspends transmission and Wait for the CCA slot.
  • the communication node first q ⁇ 4, 5,... , After setting the value of 32 ⁇ , perform CCA for 1 CCA slot. If the channel is not occupied in the first CCA slot, data can be transmitted by securing a maximum (13/32)q ms length of time. If the channel is occupied in the first CCA slot, the communication node randomly N ⁇ 1, 2,... Select the value of, q ⁇ and store it as the initial value of the counter. Afterwards, the channel status is sensed in units of CCA slots, and if the channel is not occupied in units of CCA slots, the value stored in the counter is reduced by one. When the counter value becomes 0, the communication node can transmit data by securing a maximum (13/32)q ms length of time.
  • SSB Synchronization Signal Block
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block.
  • SSB consists of PSS, SSS and PBCH.
  • the SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol. There are 3 DMRS REs for each RB, and 3 data REs exist between the DMRS REs.
  • DMRS demodulation reference signal
  • the SSB is periodically transmitted according to the SSB period.
  • the SSB basic period assumed by the UE is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a network eg, a base station.
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SSB burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains a maximum of two SSBs.
  • the time position of the candidate SSB in the SSB burst set may be defined as follows according to the SCS.
  • the temporal position of the candidate SSB is indexed from 0 to L-1 in the temporal order within the SSB burst set (ie, half-frame) (SSB index). In the specification, they are used interchangeably with the candidate SSB and SSB candidate.
  • n 0, 1, 2, 3, 4 .
  • -Case B-30 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0.
  • n 0, 1.
  • n 0, 1 when the carrier frequency is 3 GHz or less.
  • n 0, 1, 2, 3.
  • n 0, 1 when the carrier frequency is less than 2.4 GHz.
  • n 0, 1, 2, 3.
  • n 0, 1, 2, 3, 4, 6, 7, 8, 9.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • -Case E-240 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the UE in the case of the shared spectrum channel access operation, assumes that the SSB transmission in the half-frame is within the discovery burst transmission window starting from the first symbol of the first slot in the half-frame.
  • the terminal may be provided with a discovery burst transmission window period for each serving cell. If the discovery burst transmission window period is not provided, the terminal regards the discovery burst transmission window period as a half-frame. For each serving cell, the UE assumes that the repetition period of the discovery burst transmission window is the same as the repetition period of the half-frame for SSB reception.
  • N PBCH DM-RS represents the DM-RS sequence index of the PBCH
  • N QCL SSB is (i) provided by ssbPositionQCL-Relationship, or (ii) if ssbPositionQCL-Relationship is not provided, based on Table 6, MIB of SSB Can be obtained from
  • ssbSubcarrierSpacingCommon represents the SCS of RMSI in the case of "operation without shared spectrum" only.
  • the UE assumes that the number of SSBs transmitted on the serving cell within the discovery burst transmission window is not greater than N QCL SSBs.
  • the UE may determine the SSB index according to (N PBCH DM-RS mod N QCL SSB ) or (i ⁇ mod N QCL SSB ).
  • i to represent candidate SSB indexes.
  • one or more candidate SSBs may correspond to one SSB index.
  • Candidate SSBs corresponding to the same SSB index are QCL.
  • 9 shows an example of an SS/PBCH block candidate location.
  • 9 illustrates a case where N QCL SSB is 4 and ssb-PositionsInBurst is set to '10100000'.
  • SSB SS/PBCH block
  • ssb-PositionsInBurst and N QCL SSB may be used to provide a rate matching pattern within a Discovery Reference Signal (DRS) transmission window (or a discovery burst transmission window).
  • DRS Discovery Reference Signal
  • the UE may perform rate matching on the actual transmitted SSB index provided by ssb-PositionsInBurst and all QCLed SSB candidate position indexes.
  • DRS Discovery Reference Signal
  • the UE may perform rate matching for time/frequency resources of SSB candidate location index 0/2/4/6/8/10/12/14/16/18. Therefore, when receiving the PDSCH scheduled by the PDCCH CRC scrambled by C-RNTI, MCS-C-RNTI, CS-RNTI, RA-RNTI, MsbB-RNTI, P-RNTI, TC-RNTI (or SPS If the PDSCH (or with CRC) is scrambled by SI-RNTI and the system information indicator in the PDCCH (i.e., DCI) is set to 1), the UE has the PDSCH resource allocation SSB transmission resource (e.g., SS/PBCH block candidate When overlapping with a PRB including a position index 0/2/4/6/8/10/12/14/16/18), SSB transmission may be assumed according to ssb-PositionsInBurst. That is, the UE may assume that the PRB including the SSB transmission resource in the OFDM symbol in which the
  • a terminal attempting initial access may obtain PDCCH configuration information for receiving system information (SI) (eg, SIB1) through a PBCH payload (or MIB) (S1102).
  • SI system information
  • the PDCCH configuration information includes (1) time/frequency resource information of CORESET (hereinafter, CORESET #0) to which the PDCCH scheduling a PDSCH carrying SI is to be transmitted, and (2) a CSS set interlocked with CORESET #0 (hereinafter, type0-PDCCH CSS set).
  • the UE may receive a PDCCH (scheduling a PDSCH carrying SI) based on the PDCCH configuration information, and obtain SI through a PDSCH scheduled by the corresponding PDCCH (S1104).
  • the terminal may request an on-demand SI from the base station (S1106) and receive the requested SI (S1108).
  • SI other than MIB may be referred to as RMSI (Remaining Minimum System Information).
  • the MIB includes information/parameters related to SIB1 (SystemInformationBlockType1) reception and is transmitted through the PBCH of the SSB.
  • MIB information may refer to 3GPP TS 38.331, and may include the following fields.
  • the channel raster is defined as a subset of RF reference frequencies used to identify the RF channel position.
  • the RF reference frequency is defined for all frequency bands, and the granularity of the RF reference frequency (i.e. frequency spacing) can be, for example, 5 kHz (frequency range 0-3000 MHz), 15 kHz (frequency range 3000-24250 MHz). have.
  • the synchronization raster is a subset of channel rasters and indicates the frequency position SS REF of the SSB used by the terminal to obtain system information.
  • SS REF may be matched with the center frequency of 20 PRBs occupied by SSB.
  • Table 8 shows the relationship between SS REF and GSCN (Global Synchronization Channel Number).
  • the UE After SSB detection, the UE based on the information in the MIB (e.g., pdcch-ConfigSIB1) (i) a plurality of consecutive RBs constituting CORESET (e.g., CORESET#0) and one or more consecutive symbols and (ii) PDCCH opportunity (In other words, a time domain location for PDCCH reception) (eg, search space #0) may be determined.
  • the MIB e.g., pdcch-ConfigSIB1
  • a plurality of consecutive RBs constituting CORESET e.g., CORESET#0
  • PDCCH opportunity In other words, a time domain location for PDCCH reception
  • search space #0 search space #0
  • pdcch-ConfigSIB1 is 8-bit information, (i) is determined based on MSB (Most Significant Bit) 4 bits (refer to 3GPP TS 38.213 Tables 13-1 to 13-10), and (ii) is LSB (Least Significant Bit) It is determined based on 4 bits (refer to 3GPP TS 38.213 Table 13-11 ⁇ 13-15).
  • Table 9 exemplifies information indicated by 4 bits of MSB of pdcch-ConfigSIB1.
  • k SSB represents a subcarrier offset from subcarrier #0 of CRB (Common Resource Block) N SSB CRB to subcarrier #0 of SSB.
  • the N SSB CRB is identified by the upper layer (eg, RRC) parameter offsetToPointA.
  • the RB offset represents the offset from the smallest RB index of CORESET#0 to the smallest RB index of the CRB overlapping the first RB of the corresponding SSB, and may be determined based on the offset (RB) of Table 9.
  • the NR system defines a channel raster with 15 kHz intervals (in a band of 3 GHz or higher) (see Table 8), and the corresponding value serves as a reference frequency for signal transmission and reception of a terminal in a carrier.
  • a center frequency of a physical resource block (PRB) resource region corresponding to a carrier/BWP may mean a channel raster.
  • PRB physical resource block
  • NR-U can be defined in a band such as 5 GHz and/or 6 GHz, and at least in an environment coexisting with Wi-Fi (and/or LTE LAA), the resource area of the carrier/BWP band is aligned with Wi-Fi ( can be defined to be aligned).
  • the channel raster value is 5150 to 5170 if the NR-U carrier band is 20 MHz. It can be defined to be maximally aligned with MHz, 5170-5190 MHz, and maximally aligned with 5150-5190 MHz if 40 MHz.
  • a specific channel raster value may be defined according to a carrier/BWP band and a corresponding frequency region so as to be aligned with a Wi-Fi channel among channel raster values defined in NR (hereinafter, down selection).
  • channel rasters of all 15 kHz SCS intervals are allowed without down selection, or depending on the carrier band and the corresponding frequency domain even if down selection is made. Multiple channel raster values can be defined.
  • a synchronization raster is defined with a sparse density than a channel raster in consideration of the terminal complexity for SS/PBCH block detection.
  • the synchronization raster may match the center frequency of 20 PRBs occupied by the SS/PBCH block.
  • NR-U which may be defined in a band such as 5 GHz and/or 6 GHz, some values of synchronization rasters with an interval of 1.44 MHz (defined in NR) may be defined as synchronization rasters.
  • one synchronization raster value may be defined for each 20 MHz, and the corresponding synchronization raster value may be defined to be close to the center frequency of 20 MHz or to place the SS/PBCH block at the end of 20 MHz as much as possible.
  • the present specification basically assumes an operation of matching the RB grid between the carrier/BWP (consisting of 51 PRBs) and 48 PRBs CORESET#0 as in the example of FIG. 12.
  • a method for setting CORESET#0 resources for obtaining SI information in an NR system operating in an unlicensed band, and a method for the terminal to interpret it is proposed.
  • a method of setting the resource region of CORESEST#0 through a PBCH payload (or MIB) is proposed.
  • this specification proposes a method of setting the resource region of CORESEST#0 through the PBCH payload (or MIB) in the SS/PBCH block when the SS/PBCH block is transmitted using a frequency other than the synchronization raster as the center frequency. do.
  • the proposed method of this specification can be applied only to an operation in an NR-U system/cell (eg, shared spectrum). For example, if it is not an NR-U system/cell (eg, shared spectrum), a method used in an existing NR system may be combined with a method proposed in the present specification.
  • an NR-U system/cell eg, shared spectrum
  • the offset value from the specific RE of the SS/PBCH block (eg, the first RE on the minimum RB index) to the specific RE of the CORESET#0 (eg, the first RE on the minimum RB index) is the corresponding SS/PBCH block. It can be set through the PBCH payload of.
  • the offset value may be defined as the value of the RB and/or RE level, and the range of the RB level offset value is determined by the synchronization raster and channel raster defined in the NR-U frequency band. ) Can be determined.
  • the RE is for indicating a unit on the frequency axis, and the RE order may correspond to the RE order within one OFDM symbol. Therefore, RE can be replaced with a subcarrier.
  • a terminal attempting initial access in a frequency band corresponding to the NR-U system can expect 30 kHz SCS SS/PBCH and CORESET#0.
  • the frequency domain/position and time axis section of CORESET#0 may be defined.
  • Table 10 shows the CORESET for the Type0-PDCCH search space set when the ⁇ SS/PBCH block, PDCCH ⁇ SCS is ⁇ 30, 30 ⁇ kHz in the frequency band where the minimum channel band is 5 MHz or 10 MHz in the existing NR system. Represents a set of RBs and slot symbols.
  • the number of RBs of 30 kHz CORESET#0 may be 48, and the time axis interval may be limited to one or two (OFDM) symbols.
  • the range of the RB level offset value may be determined by the synchronization raster and the channel raster defined in the NR-U frequency band. For example, for each band in which the NR-U system can operate and a carrier/BWP band combination, the maximum/minimum value of the RB level offset value between the minimum RB index of the SS/PBCH block and the minimum RB index of CORESET#0 is [ When in the range A, B], all or part of the values between A and B can be signaled in the column corresponding to the offset in Table 10.
  • the RB level offset value can be signaled.
  • the RE level offset value may be signaled through the k SSB value in the same manner as in the NR system.
  • the UE when the UE receives an SS/PBCH block having a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 to 5170 MHz band, SS/PBCH from the PBCH payload of the corresponding SS/PBCH block.
  • The'offset X'value which is the frequency offset between the block and CORESET#0, can be signaled.
  • the UE CORESET from 2 RBs and 6 REs away from the SS/PBCH block. It can be recognized that the #0 frequency domain has started.
  • the frequency axis position difference between RB#0 of the SS/PBCH block and RB#0 of 51 PRBs may be within 1 PRB, as shown in FIG. 14, and RB#0 and 51 PRBs of the SS/PBCH block as shown in FIG.
  • the frequency axis position difference between RB#0 of may be more than 4 PRBs.
  • -1 PRB may be required as the RB offset.
  • the last PRB of CORESET#0 is aligned with the second PRB from the last among 51 PRBs in consideration of interference with adjacent 20 MHz.
  • 2 PRBs may be required as the RB offset.
  • information on the RB offset value from the minimum -1 to the maximum 2 PRBs needs to be set, and the time/frequency axis resource location of CORESET#0 through the PBCH payload in the manner shown in Table 12 below. Can be set.
  • the "reserved" state may be used to prepare when an RB offset value that is not in the range of [-1,2] is required.
  • the number of RBs is set to 96 PRBs as shown in Table 13, and the RB offset corresponds to twice the 30 kHz SCS-based RB offset values (as shown in Table 12). It can be set to values.
  • the number of RBs is set to 96 PRBs, and the RB offset is in addition to values corresponding to twice the 30 kHz SCS-based RB offset values (as shown in Table 12), and 15 kHz SCS-based RB-granularity. Can be set as a tee.
  • the difference in absolute frequency domain resources corresponding to 20 PRBs of the SS/PBCH block is reflected. I can. That is, since the SS/PBCH block is 20 PRBs irrespective of the SCS, the frequency axis resources are reduced (by 20 PRBs based on 15 kHz SCS) in the case of 15 kHz SCS compared to the case of 30 kHz SCS.
  • the RB offset value may be filled as shown in Table 15 with RB granularity values interposed therebetween.
  • Table 12 exemplifies the configuration of CORESET #0 when the SS/PBCH block is based on 30 kHz SCS
  • Tables 13 to 15 exemplify the configuration of CORESET #0 when the SS/PBCH block is based on 15 kHz SCS.
  • a to d each represent an integer.
  • the RB offset is defined based on the SCS of CORESET (i.e., CORESET#0) for the Type0-PDCCH CSS set, and as shown in Figs. 12-15, the SCS of CORESET #0 is the SCS of the corresponding SS/PBCH block. Is the same as
  • the terminal may detect the SSB in the unlicensed band (S1602).
  • the SSB may include an index related to the CORESET configuration (see Index in Tables 12-15).
  • the terminal may determine an RB offset used to identify the frequency position of the CORESET linked to the SSB based on the index (S1604).
  • the terminal may monitor the CORESET within the unlicensed band based on the RB offset (S1606).
  • the relationship between the index and the RB offset may include the following relationship. The following relationship illustrates a combination of FIGS. 12 and 15, and a combination of FIGS. 12 and 13/14 is also possible.
  • n, a, b, c and d each represent an integer.
  • a, b, c, and d may be a, a+1, a+2, and a+3, respectively.
  • the center frequency of the SSB may correspond to the synchronization raster as shown in FIGS. 12 to 15.
  • the terminal may detect the PDCCH from CORESET based on monitoring (S1606) and receive system information through the PDSCH corresponding to the detected PDCCH (not shown).
  • the offset value from the channel raster corresponding to the frequency band in which the SS/PBCH block is transmitted to the specific frequency resource (eg, center frequency) of CORESET#0 is determined through the PBCH payload of the SS/PBCH block.
  • the offset value may be a value of the RB and/or RE level, and the range of the RB level offset value may be determined (different according to each frequency band) by a channel raster defined in the NR-U frequency band.
  • the channel raster value in this proposal may mean a channel raster in a situation that assumes coexistence with Wi-Fi.
  • the channel raster value in the present proposal may mean a channel raster value under the assumption of a specific carrier band value (eg, 20 MHz).
  • the RB level offset value from the channel raster to a specific frequency resource (eg, center frequency) of CORESET#0
  • a specific frequency resource eg, center frequency
  • all or part of the values between A and B can be signaled in the column corresponding to the offset in Table 10.
  • the RB level offset value can be signaled.
  • the RE level offset value may be signaled through the k SSB value in the same manner as in the NR system.
  • the terminal when the terminal receives an SS/PBCH block with a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 to 5170 MHz band, through the PBCH payload of the corresponding SS/PBCH block, the corresponding An offset value between a specific channel raster value (eg, 5160 MHz) defined in the band and the center frequency of CORESET #0 can be signaled.
  • a specific channel raster value eg, 5160 MHz
  • the terminal CORESET# consisting of 48 PRBs with the channel raster as the center frequency.
  • the frequency resource region of 0 can be recognized.
  • the offset value from the channel raster corresponding to the frequency band in which the SS/PBCH block is transmitted to the specific frequency resource (e.g., center frequency) of CORESET#0 is the corresponding SS
  • the specific channel raster and the center frequency of CORESET#0 are aligned, and the RB grid of CORESET#0 and the RB grid on the carrier/BWP operated by the base station in the corresponding frequency band can be aligned through the k SSB value.
  • Candidates for a plurality of CORESET#0 frequency resource regions corresponding to the band in which the SS/PBCH block is transmitted can be defined, and which candidate is the actual resource is the PBCH page of the corresponding SS/PBCH block. It can be set through loading.
  • the candidates for the plurality of CORESET#0 frequency resource regions are the carrier/BWP band, the number of PRBs used in the carrier/BWP band, and/or the location of the 20 MHz band in which the SS/PBCH block in the carrier/BWP band is transmitted.
  • an SS/PBCH block is located at 20 MHz or an SS/PBCH block at a lower 20 MHz within a 40 MHz carrier band
  • the offset value between the SS/PBCH block and CORESET #0 is defined as offset X.
  • the offset value between the SS/PBCH block and CORESET #0 is defined as offset Y.
  • an offset value between the SS/PBCH block and CORESET #0 may be defined as an offset Z.
  • the base station may signal which value of the offset X/Y/Z is through the PBCH payload.
  • the UE receives an SS/PBCH block with a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 ⁇ 5170 MHz band, it receives one of the offset X/Y/Z from the PBCH payload of the SS/PBCH block. can do.
  • the terminal may recognize the minimum RB position of CORESET #0 by applying the received offset.
  • This example is an example of signaling the offset value between the SS/PBCH block and CORESET#0, but as in [Method #2], the offset value to the channel raster and a specific frequency resource (eg, center frequency) of CORESET#0 is signaled. May be.
  • the corresponding offset value may be differently defined/interpreted according to the frequency band corresponding to the SS/PBCH block.
  • Method #4 For an SS/PBCH block that is not a synchronization raster, when the terminal needs to determine the location of the CORESET#0 frequency resource by decoding the corresponding PBCH payload, it is defined on the band corresponding to the corresponding SS/PBCH block. Information from the decoded PBCH payload can be reinterpreted assuming the SS/PBCH block transmitted in the synchronization raster.
  • the base station may need to provide CORESET#0 frequency resource information.
  • the (physical) cell ID used between cells in the same band may be the same.
  • the base station (even if the SS/PBCH block that is not transmitted in the synchronization raster) contains the operator ID, Public Land Mobile Network (PLMN) ID, or global cell ID information. , SIB1) for CORESET#0 and type0-PDCCH CSS set may need to be transmitted.
  • PLMN Public Land Mobile Network
  • gNB#Y may instruct UE#Y to measure frequency #X.
  • UE#Y which has performed the measurement for frequency #X, may report the cell ID of gNB#X that has been found and the measurement result for the cell to gNB#Y. If gNB#Y does not know whether gNB#X is the same operator, gNB#Y reads higher layer signaling (e.g., SIB1) information containing gNB#X's operator ID, PLMN ID, or global cell ID information to UE#Y.
  • SIB1 higher layer signaling
  • gNB#Y can update the operator information of gNB#X.
  • gNB#X transmitting an SS/PBCH block on frequency #X explicitly/implicitly includes higher layer signaling (for convenience) containing operator ID, PLMN ID, or global cell ID information on the SS/PBCH block. , SIB1, but it may correspond to other cell-common higher layer signaling), it is necessary to deliver information on the CORESET#0 and type0-PDCCH CSS set for scheduling the loaded PDSCH.
  • the terminal decoding the PBCH payload in the SS/PBCH block with the frequency #X as the center frequency, not the synchronization raster is defined in the 5150 to 5170 MHz band corresponding to the SS/PBCH block.
  • PBCH payload information decoded based on an SS/PBCH block having a synchronization raster of 5155.68 MHz as a center frequency can be analyzed.
  • the terminal receiving the RB/RE level offset value from the PBCH payload corresponding to the frequency #X uses the corresponding value to a specific RE (eg, minimum RB) of the SS/PBCH block on the synchronization raster.
  • a specific RE eg, minimum RB
  • the frequency resource location of CORESET#0 can be recognized by interpreting it as an offset value from the first RE on the index to a specific RE (eg, the first RE on the minimum RB index) of CORESET#0.
  • a specific RE eg, the first RE on the minimum RB index
  • the terminal receiving the RB/RE level offset value from the PBCH payload corresponding to frequency #X transfers the value to the specific frequency of CORESET #0 from the channel raster of the band to which frequency #X belongs.
  • the frequency resource location of CORESET#0 can be recognized by interpreting it as an offset value to the resource (eg, center frequency).
  • a terminal receiving a value from among a plurality of candidates from a PBCH payload corresponding to frequency #X is The frequency resource location of CORESET #0 can be recognized by interpreting it as an actual resource among candidates for the CORESET#0 frequency resource domain.
  • /PBCH block transmission may be restricted to a center frequency resource allowed.
  • the interval between center frequencies in which SS/PBCH block transmission is allowed may be a PRB or a multiple of PRB interval.
  • the PRB may be based on 30 kHz SCS (or 15 kHz SCS).
  • Offset signaling of the PRB or PRB multiple interval between the SS/PBCH block and CORESET#0 may be required, and if the required signaling value is less than 8, it can be set through the CORESET configuration in the MIB as shown in Table 11/12, and 8 If it is exceeded, it may be set using some or all of the bits for the CORESET configuration and/or k SSB value in the MIB.
  • the center frequency value of the SS/PBCH block is 15 kHz SCS granules.
  • a signaling method for an N QCL SSB value may be different from a signaling method in an SS/PBCH block transmitted from a synchronization raster.
  • the N QCL SSB value indicates the QCL relationship between different candidate SSB indices, and in the existing NR-U, based on a combination of (1) 1 bit corresponding to subCarrierSpacingCommon and (2) 1 spare bit or 1 bit ssb-SubcarrierOffset LSB, One of ⁇ 1,2,4,8 ⁇ is indicated through the PBCH payload (see Table 6).
  • the ssb-SubcarrierOffset value is used to indicate the k_SSB value in the frequency range (FR) 1.
  • FR frequency range
  • both the synchronization raster and the channel raster are located at 30 kHz granularity, so the ssb-SubcarrierOffset LSB 1 bit indicated in units of 15 kHz is redundant. Thus, 1 bit of the LSB could be used to signal the N QCL SSB value.
  • ANR Automatic Neighbor Relations
  • transmission may be allowed at any 15 kHz granularity on the frequency axis.
  • ANR refers to a method that aims to minimize or eliminate manual operations on neighbor information as much as possible when installing a new base station and optimizing neighbor information.
  • the UE may read the Cell Global Identifier (CGI) of the cell from the SS/PBCH block and report to the base station.
  • CGI Cell Global Identifier
  • the UE may perform only channel measurement for the cell based on the SS/PBCH block.
  • the channel raster defined in the 5 GHz band for the NR-U system is located on the 30 kHz granularity
  • REs of CORESET #0 may also be located on the 30 kHz granularity. Accordingly, the SS/PBCH block is transmitted with 15 kHz granularity, but if CORESET #0 is transmitted with 30 kHz granularity, ssb-SubcarrierOffset LSB 1 bit may also be required for k_SSB signaling.
  • the N QCL SSB value can be signaled in the manner shown in Table 6, but in the case of the SS/PBCH block using the frequency resource other than the synchronization raster as the center frequency, Opt1 or The N QCL SSB value can be signaled through Opt2.
  • the N QCL SSB value can be signaled through the combination of subCarrierSpacingCommon with other bits in the PBCH payload.
  • Signaling for the N QCL SSB value can be set with only 1 bit corresponding to subCarrierSpacingCommon.
  • Opt1 is combined with 1 bit on the PBCH payload (e.g., 1 MSB of 4 bits of pdcch-ConfigSIB1, 1 bit of dmrs-TypeA-Position, etc.), and N QCL SSB value as shown in Table 6. This is how you signal.
  • MSB 1 bit among 4 pdcch-ConfigSIB1 bits can be used is because 8 reserved states may not be signaled as shown in Table 9.
  • the UE may assume that the first DMRS of the type A DMRS is transmitted in the 3rd (or 4th) symbol in the slot at all times.
  • Opt2 When it is difficult to utilize an additional 1 bit on the PBCH payload, Opt2 signals the N QCL SSB value only with subCarrierSpacingCommon as shown in Table 17.
  • Table 17 is only an example of signaling, and values corresponding to actual scs15or60 and scs30or120 may be replaced with any one of 1/2/4/8, respectively.
  • N QCL SSB value is a combination of 1 bit corresponding to subcarrierSpacingCommon and 1 bit of ssb-SubcarrierOffset LSB, it is indicated through PBCH payload that it is one of ⁇ 1,2,4,8 ⁇ (Table 6 Reference), it may be necessary to define the LSB value of k SSB.
  • the center frequency of the SS/PBCH block is 1) the same as the synchronization raster or 2) the same as the channel raster, or 3) the interval with the channel/synchronization raster is an integer multiple of 30 kHz
  • the LSB value of k SSB is '0. It can be defined as'.
  • the LSB value of k SSB may be defined as '1'.
  • the spacing of synchronization/channel rasters for the NR-U system is all defined as an integer multiple of 30 kHz. Therefore, when the carrier band is configured with the channel raster as the center frequency, and the SS/PBCH block (centered on the synchronization raster) and CORESET#0 are transmitted/configured in a part within the band, the minimum RE of CORESET#0 (for example, for at least one RE (for example, 1 st sub-carrier) spacing st subcarriers) and SS / PBCH block can not but integer times of 30 kHz.
  • the PBCH payload signals the RE/RB level interval between the minimum RE of CORESET#0 and the minimum RE of the SS/PBCH block.
  • the RE level interval is expressed as k SSB 5 bits (that is, MSB 1 bit + ssb-SubcarrierOffset 4 bits among 3 bits in the MIB used for the candidate SSB index in FR 2)
  • the RB level interval is [Method #1] ] ] ]
  • the CRB grid is created at the point where the RE level interval by k SSB is separated from the minimum RE of the SS/PBCH block as the reference point, and the RB level offset of the CORESET#0 configuration is applied to the reference point, so that the minimum of CORESET#0.
  • the RE location can be found (see Fig. 11).
  • the LSB 1-bit of ssb-SubcarrierOffset may always be '0'. Therefore, it can be used to signal the N QCL SSB value by substituting the corresponding value for another purpose.
  • N QCL SSB value is a combination of 1 bit corresponding to subCarrierSpacing Common and 1 bit of ssb-SubcarrierOffset LSB, it is indicated through the PBCH payload that it is one of ⁇ 1,2,4,8 ⁇ ,
  • the LSB 1 bit of ssb-SubcarrierOffset (or k SSB ) is assumed to be '0'. Can be.
  • the center frequency of the SS/PBCH block and the interval between the channel/synchronization raster do not satisfy an integer multiple of 30 kHz (including 0), and the corresponding interval meets an integer multiple (not including 0) of 15 kHz. Then, the LSB 1 bit of ssb-SubcarrierOffset (or k SSB ) may be assumed to be '1'.
  • Case A The center frequency of the SS/PBCH block and the interval between the channel/synchronization raster are an integer multiple of 30 kHz (including 0).
  • Case B The center frequency of the SS/PBCH block and the interval between the channel/synchronization raster are not an integer multiple (including 0) of 30 kHz.
  • k SSB may be understood to be defined as follows (see Table 19).
  • k_SSB MSB 1 bit + ssb-SubcarrierOffset 4 bits among 3 bits in the MIB used for the candidate SSB index,
  • Licensed/unlicensed carriers are classified according to the frequency of the carrier in which the SS/PBCH block is detected, and the interval of the channel/synchronization raster may be pre-defined in the standard for each carrier (type). Or, even for the same frequency, whether a licensed carrier or an unlicensed carrier may differ depending on the region. In this case, whether a licensed/unlicensed carrier may be classified by different values of the PBCH payload or CRC, or a synchronization raster for a licensed band and a synchronization raster for an unlicensed band may be separately pre-defined in a standard at a corresponding frequency.
  • the terminal may perform PDCCH monitoring by finding the location of CORESET#0 based on k SSB. In addition, the terminal may perform the operation of FIG. 9 based on the N QCL SSB.
  • the present method includes 2 MSB bits constituting k SSB in the existing Rel-15 NR (i.e., MSB 1 bit among 3 bits in the MIB used for candidate SSB index in FR 2 and MSB among 4 ssb-SubcarrierOffset 4 bits. 1 bit) is applicable only when it is not '11'. That is, as shown in Table 20, when the k SSB value is 24 or more in the Rel-15 NR system (i.e., all 2 MSB bits constituting k SSB are '1'), the k SSB value is CORESET# in the corresponding SS/PBCH block.
  • 0 is not provided, it is used to inform the location of the nearest other SS/PBCH block (including CORESET#0 information).
  • 2 MSB bits constituting k SSB (even in an unlicensed band) (that is, MSB 1 of 3 bits in MIB used for candidate SSB index in FR 2 and MSB 1 of ssb-SubcarrierOffset 4 bits) If bit) is '11', it can be interpreted as shown in Table 20 by setting the ssb-SubcarrierOffset LSB value to the LSB of k SSB as in the existing Rel-15 NR system.
  • the LSB value of k SSB may be set by applying this method.
  • the 2 MSB bits are '11' which (although called unlicensed band) constituting the k SSB as existing Rel-15 NR system set ssb-SubcarrierOffset LSB value to the LSB of the k SSB, configuring k SSB
  • the LSB value of k SSB is always set to '0', and the position of CORESET#0 is not centered on the synchronization raster (for ANR purposes, etc.)
  • the location of the SS/PBCH block (which needs to be found) can be constrained to be only a multiple of 30 kHz from the synchronization raster.
  • the offset value from the specific RE (eg, the first RE on the minimum RB index) of the SS/PBCH block to the specific RE (eg, the first RE on the minimum RB index) of CORESET#0, and the base station It can be signaled through the PBCH payload of the PBCH block.
  • the offset value may be defined as the value of the RB and/or RE level, and the range of the RB level offset value is determined by the synchronization raster and channel raster defined in the NR-U frequency band. ) Can be determined.
  • the RE is for indicating a unit on the frequency axis, and the RE order may correspond to the RE order within one OFDM symbol. Therefore, RE can be replaced with a subcarrier.
  • a terminal attempting initial access in a frequency band corresponding to the NR-U system can expect 30 kHz SCS SS/PBCH and CORESET#0.
  • the frequency domain/position and time axis section of CORESET#0 may be defined.
  • Table 10 shows the CORESET for the Type0-PDCCH search space set when the ⁇ SS/PBCH block, PDCCH ⁇ SCS is ⁇ 30, 30 ⁇ kHz in the frequency band where the minimum channel band is 5 MHz or 10 MHz in the existing NR system. Represents a set of RBs and slot symbols.
  • the number of RBs of 30 kHz CORESET#0 may be 48, and the time axis interval may be limited to one or two (OFDM) symbols.
  • the range of the RB level offset value may be determined by the synchronization raster and the channel raster defined in the NR-U frequency band. For example, for each band in which the NR-U system can operate and a carrier/BWP band combination, the maximum/minimum value of the RB level offset value between the minimum RB index of the SS/PBCH block and the minimum RB index of CORESET#0 is [ When in the range A, B], all or part of the values between A and B can be signaled in the column corresponding to the offset in Table 10.
  • the RB level offset value can be signaled.
  • the RE level offset value may be signaled through the k SSB value in the same manner as in the NR system.
  • the terminal when the terminal receives an SS/PBCH block having a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 to 5170 MHz band, SS/PBCH from the PBCH payload of the corresponding SS/PBCH block.
  • The'offset X'value which is the frequency offset between the block and CORESET#0, can be signaled.
  • the frequency axis position difference between RB#0 of the SS/PBCH block and RB#0 of 51 PRBs may be within 1 PRB, as shown in FIG. 14, and RB#0 and 51 PRBs of the SS/PBCH block as shown in FIG.
  • the frequency axis position difference between RB#0 of may be more than 4 PRBs.
  • -1 PRB may be required as the RB offset.
  • the last PRB of CORESET#0 is aligned with the second PRB from the last among 51 PRBs in consideration of interference with adjacent 20 MHz.
  • 2 PRBs may be required as the RB offset.
  • information on the RB offset value from the minimum -1 to the maximum 2 PRBs needs to be set, and the time/frequency axis resource location of CORESET#0 through the PBCH payload in the manner shown in Table 12 below. Can be set.
  • the "reserved" state may be used to prepare when an RB offset value that is not in the range of [-1,2] is required.
  • the number of RBs is set to 96 PRBs as shown in Table 13, and the RB offset corresponds to twice the 30 kHz SCS-based RB offset values (as shown in Table 12). It can be set to values.
  • the number of RBs is set to 96 PRBs, and the RB offset is in addition to values corresponding to twice the 30 kHz SCS-based RB offset values (as shown in Table 12), and 15 kHz SCS-based RB-granularity. Can be set as a tee.
  • the difference in absolute frequency domain resources corresponding to 20 PRBs of the SS/PBCH block is reflected. I can. That is, since the SS/PBCH block is 20 PRBs irrespective of the SCS, the frequency axis resources are reduced (by 20 PRBs based on 15 kHz SCS) in the case of 15 kHz SCS compared to the case of 30 kHz SCS.
  • the RB offset value may be filled as shown in Table 15 with RB granularity values interposed therebetween.
  • Table 12 exemplifies the configuration of CORESET #0 when the SS/PBCH block is based on 30 kHz SCS
  • Tables 13 to 15 exemplify the configuration of CORESET #0 when the SS/PBCH block is based on 15 kHz SCS.
  • a to d each represent an integer.
  • the RB offset is defined based on the SCS of CORESET (i.e., CORESET#0) for the Type0-PDCCH CSS set, and as shown in Figs. 12-15, the SCS of CORESET #0 is the SCS of the corresponding SS/PBCH block. Is the same as
  • the offset value from the channel raster corresponding to the frequency band in which the SS/PBCH block is transmitted to the specific frequency resource (eg, center frequency) of CORESET #0 is determined through the PBCH payload of the SS/PBCH block. It can be signaled.
  • the offset value may be a value of the RB and/or RE level, and the range of the RB level offset value may be determined (different according to each frequency band) by a channel raster defined in the NR-U frequency band.
  • the channel raster value in this proposal may mean a channel raster in a situation that assumes coexistence with Wi-Fi.
  • the channel raster value in the present proposal may mean a channel raster value under the assumption of a specific carrier band value (eg, 20 MHz).
  • the RB level offset value from the channel raster to a specific frequency resource (eg, center frequency) of CORESET#0
  • a specific frequency resource eg, center frequency
  • all or part of the values between A and B can be signaled in the column corresponding to the offset in Table 10.
  • the RB level offset value can be signaled.
  • the terminal when the terminal receives an SS/PBCH block with a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 to 5170 MHz band, through the PBCH payload of the corresponding SS/PBCH block, the corresponding An offset value between a specific channel raster value (eg, 5160 MHz) defined in the band and the center frequency of CORESET #0 can be signaled.
  • a specific channel raster value eg, 5160 MHz
  • the terminal CORESET# consisting of 48 PRBs with the channel raster as the center frequency.
  • a frequency resource region of 0 can be recognized.
  • the offset value from the channel raster corresponding to the frequency band in which the SS/PBCH block is transmitted to the specific frequency resource (e.g., center frequency) of CORESET#0 can be set through the PBCH payload of the SS/PBCH block.
  • the RE level offset value (not the RB level offset) can be signaled as the corresponding offset value. That is, the specific channel raster and the center frequency of CORESET#0 are aligned, and the RB grid of CORESET#0 and the RB grid on the carrier/BWP operated by the base station in the corresponding frequency band can be aligned through the k SSB value.
  • Candidates for a plurality of CORESET#0 frequency resource regions corresponding to the band in which the SS/PBCH block is transmitted can be defined, and which candidate is the actual resource is the PBCH page of the corresponding SS/PBCH block. It can be signaled via load.
  • the candidates for the plurality of CORESET#0 frequency resource regions are the carrier/BWP band, the number of PRBs used in the carrier/BWP band, and/or the location of the 20 MHz band in which the SS/PBCH block in the carrier/BWP band is transmitted.
  • an SS/PBCH block is located at 20 MHz or an SS/PBCH block at a lower 20 MHz within a 40 MHz carrier band
  • the offset value between the SS/PBCH block and CORESET #0 is defined as offset X.
  • the offset value between the SS/PBCH block and CORESET #0 is defined as offset Y.
  • an offset value between the SS/PBCH block and CORESET #0 may be defined as an offset Z.
  • the base station may signal which value of the offset X/Y/Z is through the PBCH payload.
  • the UE receives an SS/PBCH block with a center frequency of 5155.68 MHz, which is a synchronization raster defined in the 5150 ⁇ 5170 MHz band, it receives one of the offset X/Y/Z from the PBCH payload of the SS/PBCH block. can do.
  • the terminal may recognize the minimum RB position of CORESET #0 by applying the received offset.
  • This example is an example of signaling the offset value between the SS/PBCH block and CORESET#0, but as in [Method #2A], the offset value to the channel raster and a specific frequency resource (eg, center frequency) of CORESET#0 is signaled. May be.
  • the corresponding offset value may be differently defined/interpreted according to the frequency band corresponding to the SS/PBCH block.
  • Method #4A For an SS/PBCH block that is not a synchronization raster, when the terminal needs to determine the location of the CORESET#0 frequency resource by decoding the corresponding PBCH payload, it is defined on the band corresponding to the corresponding SS/PBCH block. Information from the decoded PBCH payload can be reinterpreted assuming the SS/PBCH block transmitted in the synchronization raster.
  • the base station may need to provide CORESET#0 frequency resource information.
  • the (physical) cell ID used between cells in the same band may be the same.
  • the base station (even if the SS/PBCH block that is not transmitted in the synchronization raster) contains the operator ID, Public Land Mobile Network (PLMN) ID, or global cell ID information. , SIB1) for CORESET#0 and type0-PDCCH CSS set may need to be transmitted.
  • PLMN Public Land Mobile Network
  • gNB#Y may instruct UE#Y to measure frequency #X.
  • UE#Y which has performed the measurement for frequency #X, may report the cell ID of gNB#X that has been found and the measurement result for the cell to gNB#Y. If gNB#Y does not know whether gNB#X is the same operator, gNB#Y reads higher layer signaling (e.g., SIB1) information containing gNB#X's operator ID, PLMN ID, or global cell ID information to UE#Y.
  • SIB1 higher layer signaling
  • gNB#Y can update the operator information of gNB#X.
  • gNB#X transmitting an SS/PBCH block on frequency #X explicitly/implicitly includes higher layer signaling (for convenience) containing operator ID, PLMN ID, or global cell ID information on the SS/PBCH block. , SIB1, but it may correspond to other cell-common higher layer signaling), it is necessary to deliver information on the CORESET#0 and type0-PDCCH CSS set for scheduling the loaded PDSCH.
  • the base station in consideration of the terminal decoding the PBCH payload in the SS/PBCH block with frequency #X as the center frequency, not the synchronization raster, the base station is 5150 to 5170 MHz corresponding to the corresponding SS/PBCH block.
  • Corresponding PBCH payload information may be configured and transmitted based on an SS/PBCH block having a center frequency of 5155.68 MHz, which is a synchronization raster defined in a band, as a center frequency.
  • the UE receiving the RB/RE level offset value from the PBCH payload corresponding to the frequency #X uses the corresponding value to a specific RE (eg, minimum RB) of the SS/PBCH block on the synchronization raster.
  • the frequency resource location of CORESET#0 can be recognized by interpreting it as an offset value from the first RE on the index to a specific RE (eg, the first RE on the minimum RB index) of CORESET#0.
  • the base station transmitting the RB/RE level offset value from the PBCH payload corresponding to frequency #X transfers the value of CORESET #0 from the channel raster corresponding to the band to which frequency #X belongs.
  • PBCH payload information may be configured and transmitted by calculating an offset value up to a specific frequency resource (eg, a center frequency).
  • a base station signaling one value of a plurality of candidates from a PBCH payload corresponding to frequency #X uses the corresponding value in a plurality of 5150 to 5170 MHz bands to which frequency #X belongs. It is possible to signal which resource is actually among candidates for the CORESET#0 frequency resource domain.
  • /PBCH block transmission may be restricted to a center frequency resource allowed.
  • the interval between center frequencies in which SS/PBCH block transmission is allowed may be a PRB or a multiple of PRB interval.
  • the PRB may be based on 30 kHz SCS (or 15 kHz SCS).
  • Offset signaling of the PRB or PRB multiple interval between the SS/PBCH block and CORESET#0 may be required, and if the required signaling value is less than 8, it can be set through the CORESET configuration in the MIB as shown in Table 11/12, and 8 If it is exceeded, it may be set using some or all of the bits for the CORESET configuration and/or k SSB value in the MIB.
  • Method #6A For an SS/PBCH block that is not a synchronization raster, if the terminal needs to determine the location of the CORESET#0 frequency resource by decoding the corresponding PBCH payload, the center frequency value of the SS/PBCH block is 15 kHz SCS granules. In order to support all locations without restriction on laity , a signaling method for an N QCL SSB value may be different from a signaling method in an SS/PBCH block transmitted from a synchronization raster.
  • the N QCL SSB value indicates the QCL relationship between different candidate SSB indices, and in the existing NR-U, based on a combination of (1) 1 bit corresponding to subCarrierSpacingCommon and (2) 1 spare bit or 1 bit ssb-SubcarrierOffset LSB, One of ⁇ 1,2,4,8 ⁇ is indicated through the PBCH payload (see Table 6).
  • the ssb-SubcarrierOffset value is used to indicate the k_SSB value in the frequency range (FR) 1.
  • FR frequency range
  • both the synchronization raster and the channel raster are located at 30 kHz granularity, so the ssb-SubcarrierOffset LSB 1 bit indicated in units of 15 kHz is redundant. Thus, 1 bit of the LSB could be used to signal the N QCL SSB value.
  • transmission may be allowed at any 15 kHz granularity on the frequency axis. Since the channel raster defined in the 5 GHz band for the NR-U system is located on the 30 kHz granularity, the REs of CORESET#0 can also be located on the 25 kHz granularity.
  • ANR Automatic Neighbor Relations
  • the SS/PBCH block is transmitted with 15 kHz granularity, but if CORESET #0 is transmitted with 30 kHz granularity, ssb-SubcarrierOffset LSB 1 bit may also be required for k_SSB signaling.
  • CORESET #0 is transmitted with 30 kHz granularity
  • ssb-SubcarrierOffset LSB 1 bit may also be required for k_SSB signaling.
  • another method of signaling the N QCL SSB value is proposed.
  • the N QCL SSB value can be signaled in the manner shown in Table 6, but in the case of the SS/PBCH block using the frequency resource other than the synchronization raster as the center frequency, Opt1 or The N QCL SSB value can be signaled through Opt2.
  • the N QCL SSB value can be signaled through the combination of subCarrierSpacingCommon with other bits in the PBCH payload.
  • Signaling for the N QCL SSB value can be set with only 1 bit corresponding to subCarrierSpacingCommon.
  • Opt1 is combined with 1 bit on the PBCH payload (e.g., 1 MSB of 4 bits of pdcch-ConfigSIB1, 1 bit of dmrs-TypeA-Position, etc.), and N QCL SSB value as shown in Table 6. This is how you signal.
  • MSB 1 bit among 4 pdcch-ConfigSIB1 bits can be used is because 8 reserved states may not be signaled as shown in Table 9.
  • the base station can always transmit the first DMRS of the type A DMRS in the 3rd (or 4th) symbol in the slot.
  • Opt2 When it is difficult to utilize an additional 1 bit on the PBCH payload, Opt2 signals the N QCL SSB value only with subCarrierSpacingCommon as shown in Table 17.
  • Table 17 is only an example of signaling, and values corresponding to actual scs15or60 and scs30or120 may be replaced with any one of 1/2/4/8, respectively.
  • N QCL SSB value is a combination of 1 bit corresponding to subcarrierSpacingCommon and 1 bit of ssb-SubcarrierOffset LSB, it is indicated through PBCH payload that it is one of ⁇ 1,2,4,8 ⁇ (Table 6 Reference), it may be necessary to define the LSB value of k SSB.
  • the center frequency of the SS/PBCH block is 1) the same as the synchronization raster or 2) the same as the channel raster, or 3) the interval with the channel/synchronization raster is an integer multiple of 30 kHz
  • the LSB value of k SSB is '0. It can be defined as'.
  • the LSB value of k SSB may be defined as '1'.
  • the spacing of synchronization/channel rasters for the NR-U system is all defined as an integer multiple of 30 kHz. Therefore, when the carrier band is configured with the channel raster as the center frequency, and the SS/PBCH block (centered on the synchronization raster) and CORESET#0 are transmitted/configured in a part within the band, the minimum RE of CORESET#0 (for example, for at least one RE (for example, 1 st sub-carrier) spacing st subcarriers) and SS / PBCH block can not but integer times of 30 kHz.
  • the PBCH payload signals the RE/RB level interval between the minimum RE of CORESET#0 and the minimum RE of the SS/PBCH block.
  • the RE level interval is expressed as k SSB 5 bits (that is, MSB 1 bit + ssb-SubcarrierOffset 4 bits among 3 bits in the MIB used for candidate SSB index in FR 2)
  • the RB level interval is [Method #1A Signaled based on the CORESET configuration table as described in [ Specifically, the CRB grid is created at the point where the RE level interval by k SSB is separated from the minimum RE of the SS/PBCH block as the reference point, and the RB level offset of the CORESET#0 configuration is applied to the reference point, so that the minimum of CORESET#0.
  • the center frequency of the SS/PBCH block not centered on the synchronization raster is not an integer multiple of 30 kHz, but an integer multiple (not including 0) of 15 kHz (e.g., 15, 45, ...)
  • Corresponding CORESET#0 is because, in order to match the grid with the channel raster, the spacing between the REs and the channel raster on CORESET#0 will be maintained at an integer multiple of 30 kHz.
  • N QCL SSB value is a combination of 1 bit corresponding to subCarrierSpacing Common and 1 bit of ssb-SubcarrierOffset LSB, it is indicated through the PBCH payload that it is one of ⁇ 1,2,4,8 ⁇ ,
  • the LSB 1 bit of ssb-SubcarrierOffset (or k SSB ) is assumed to be '0'. Can be.
  • the center frequency of the SS/PBCH block and the interval between the channel/synchronization raster do not satisfy an integer multiple of 30 kHz (including 0), and the corresponding interval meets an integer multiple (not including 0) of 15 kHz.
  • the LSB 1 bit of ssb-SubcarrierOffset (or k SSB ) may be assumed to be '1'. Suggestions can be summarized in Table 18 in combination with Table 6.
  • k SSB may be understood to be defined as follows (see Table 19).
  • k_SSB MSB 1 bit + ssb-SubcarrierOffset 4 bits among 3 bits in the MIB used for the candidate SSB index,
  • Licensed/unlicensed carriers are classified according to the frequency of the carrier in which the SS/PBCH block is detected, and the interval of the channel/synchronization raster may be pre-defined in the standard for each carrier (type).
  • the base station may transmit the PDCCH at the location CORESET#0 based on k SSB. Or, even for the same frequency, whether a licensed carrier or an unlicensed carrier may differ depending on the region. In this case, whether a licensed/unlicensed carrier may be classified by different values of the PBCH payload or CRC, or a synchronization raster for a licensed band and a synchronization raster for an unlicensed band may be separately pre-defined in a standard at a corresponding frequency.
  • the base station may perform the operation of FIG. 9 based on the N QCL SSB.
  • the present method includes 2 MSB bits constituting k SSB in the existing Rel-15 NR (i.e., MSB 1 bit among 3 bits in the MIB used for candidate SSB index in FR 2 and MSB among 4 ssb-SubcarrierOffset 4 bits. 1 bit) is applicable only when it is not '11'. That is, as shown in Table 20, when the k SSB value is 24 or more in the Rel-15 NR system (i.e., all 2 MSB bits constituting k SSB are '1'), the k SSB value is CORESET# in the corresponding SS/PBCH block.
  • 0 is not provided, it is used to inform the location of the nearest other SS/PBCH block (including CORESET#0 information).
  • 2 MSB bits constituting k SSB (even in an unlicensed band) (that is, MSB 1 of 3 bits in MIB used for candidate SSB index in FR 2 and MSB 1 of ssb-SubcarrierOffset 4 bits) If bit) is '11', it can be interpreted as shown in Table 20 by setting the ssb-SubcarrierOffset LSB value to the LSB of k SSB as in the existing Rel-15 NR system.
  • the LSB value of k SSB may be set by applying this method.
  • the 2 MSB bits are '11' which (although called unlicensed band) constituting the k SSB as existing Rel-15 NR system set ssb-SubcarrierOffset LSB value to the LSB of the k SSB, configuring k SSB
  • the LSB value of k SSB is always set to '0', and the position of CORESET#0 is not centered on the synchronization raster (for ANR purposes, etc.)
  • the location of the SS/PBCH block (which needs to be found) can be constrained to be only a multiple of 30 kHz from the synchronization raster.
  • a base station operating on a 5 GHz or 6 GHz band as shown in FIG. 21 transmits an SS/PBCH block with a synchronization raster defined in the corresponding band as a center frequency, and transmits a frequency resource of CORESET # 0.
  • Information about may be transmitted through the PBCH payload in the corresponding SS/PBCH block (S2102).
  • the terminal receiving the SS/PBCH block, the band in which the SS/PBCH block was found and/or the PBCH payload in the SS/PBCH block (e.g., CORESET configuration (e.g., pdcch-ConfigSIB1), k SSB , other information) It is possible to recognize the frequency resource domain of CORESET #0 by analyzing (S2104).
  • the UE can obtain information on the type0-PDCCH monitoring occasion by analyzing the PBCH payload (eg, pdcch-ConfigSIB1) in the SS/PBCH block. Thereafter, the UE may receive the PDCCH in the CORESET#0 frequency resource region of the type0-PDCCH monitoring opportunity, and obtain SI (eg, SIB1) through the PDSCH scheduled by the corresponding PDCCH.
  • the base station is transmitting an SS/PBCH block having a frequency not defined as a synchronization raster on an unlicensed band as a center frequency for the purpose of ANR
  • the corresponding In the SS/PBCH block information on CORESET#0 and/or type0-PDCCH monitoring opportunity may be transmitted (S2202).
  • the UE assumes the received SS/PBCH block as an SS/PBCH block transmitted on the synchronization raster in the band to which the corresponding SS/PBCH block belongs, and applies the PBCH information obtained from the band and the discovered SS/PBCH block.
  • the UE may receive the PDCCH in the CORESET#0 frequency resource region of the type0-PDCCH monitoring opportunity, and obtain SI (eg, SIB1) through the PDSCH scheduled by the corresponding PDCCH.
  • SI eg, SIB1
  • the 5 GHz or 6 GHz band can be replaced with an unlicensed band/UCell.
  • the proposal of the present specification may be understood as a method of configuring/interpreting MIB information related to CORESET#0 differently according to the type of the frequency band (or cell) in which the SS/PBCH block is detected.
  • the UE may obtain pdcch-ConfigSIB1 from the MIB. Thereafter, the UE may perform different interpretation of pdcch-ConfigSIB1 according to whether the frequency band (or cell) in which the SS/PBCH block is detected is a licensed band/LCell or an unlicensed band/UCell.
  • the UE can interpret the MSB 4 bits of pdcch-ConfigSIB1 as follows.
  • the information in the table exemplifies CORESET#0 configuration information.
  • the CORESET#0 configuration information may further include, for example, at least one of a multiplexing pattern, the number of RBs, and/or the number of symbols.
  • Offset for LCell and Offset for UCell may be independently set.
  • Offset for LCell may be defined based on 3GPP TS 38.213 Tables 13-11 to 13-15, and Offset for UCell may be defined according to the proposal of this specification in consideration of channel/synchronization raster.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 23 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • At least one memory may store instructions or programs, and the instructions or programs are at least operably connected to the at least one memory when executed. It is possible to cause a single processor to perform operations according to some embodiments or implementations of the present disclosure.
  • a computer-readable storage medium may store at least one instruction or computer program, and the at least one instruction or computer program is executed by at least one processor. It is possible to cause a single processor to perform operations according to some embodiments or implementations of the present disclosure.
  • a processing device or apparatus may include at least one processor and at least one computer memory that is connectable to the at least one processor.
  • the at least one computer memory may store instructions or programs, and the instructions or programs, when executed, cause at least one processor to be operably connected to the at least one memory. It may be possible to perform operations according to embodiments or implementations.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 23).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 24, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 24.
  • the transceiver(s) 114 may include one or more transceivers 106 and 206 and/or one or more antennas 108 and 208 of FIG. 24.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 23, 100a), vehicles (FIGS. 23, 100b-1, 100b-2), XR devices (FIGS. 23, 100c), portable devices (FIGS. 23, 100d), and home appliances (Figs. 23, 100e), IoT devices (Figs. 23, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 23 and 400), a base station (FIGS. 23 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 25, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like, based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 비면허 대역에서 SSB를 검출하는 단계로서, 상기 SSB는 CORESET 구성에 관한 인덱스를 포함하고, 상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB 오프셋을 결정하는 단계; 및 상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, 비면허 대역에서 SSB(synchronization signal block)를 검출하는 단계로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고, 상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 단계; 및 상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 단계를 포함하고, 상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함하는 방법이 제공된다:
Figure PCTKR2020013515-appb-img-000001
여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
본 발명의 제2 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 단말이 제공되며, 상기 동작은 다음을 포함한다: 비면허 대역에서 SSB(synchronization signal block)를 검출하는 것으로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고, 상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 것, 및 상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 것을 포함하고, 상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함한다:
Figure PCTKR2020013515-appb-img-000002
여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
본 발명의 제3 양상으로, 단말을 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 장치가 제공되며, 상기 동작은 다음을 포함한다: 비면허 대역에서 SSB(synchronization signal block)를 검출하는 것으로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고, 상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 것, 및 상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 것을 포함하고, 상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함한다:
Figure PCTKR2020013515-appb-img-000003
여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
본 발명의 제4 양상으로, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독가능한 저장 매체가 제공되며, 상기 동작은 다음을 포함한다: 비면허 대역에서 SSB(synchronization signal block)를 검출하는 것으로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고, 상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 것, 및 상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 것을 포함하고, 상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함한다:
Figure PCTKR2020013515-appb-img-000004
여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
바람직하게, a, b, c 및 d는 각각 a, a+1, a+2 및 a+3일 수 있다.
바람직하게, 상기 SSB의 센터 주파수가 동기화 래스터에 대응할 수 있다.
바람직하게, 상기 모니터링에 기반하여, 상기 CORESET로부터 PDCCH(physical downlink control channel)를 검출하는 것을 더 포함할 수 있다.
바람직하게, 상기 PDCCH에 대응하는 PDSCH(physical downlink shared channel)를 통해 시스템 정보를 수신하는 것을 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 6은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 7~9은 SSB(Synchronization Signal Block) 구조/전송을 예시한다.
도 10은 시스템 정보 획득 과정을 예시한다.
도 11은 SSB와 CORESET(Control Resource Set)의 위치를 예시한다.
도 12~20은 본 발명의 제안에 따른 SSB/CORESET 구성을 예시한다.
도 21~22는 본 발명의 제안에 따른 신호 송수신을 예시한다.
도 23~26은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
[표 1]
Figure PCTKR2020013515-appb-img-000005
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
[표 2]
Figure PCTKR2020013515-appb-img-000006
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
[표 3]
Figure PCTKR2020013515-appb-img-000007
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널(예, PDCCH)을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널(예, PUCCH)을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터(예, PDSCH) 전송을 위해 사용되거나, UL 데이터(예, PUSCH) 전송을 위해 사용될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG(Resource Element Group) 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 4는 검색 공간 타입별 특징을 예시한다.
[표 4]
Figure PCTKR2020013515-appb-img-000008
표 5는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
[표 5]
Figure PCTKR2020013515-appb-img-000009
도 5는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC(Licensed Component Carrier)로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC(Unlicensed Component Carrier)로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, Component Carrier, CC)는 셀로 통칭될 수 있다.
캐리어 병합(Carrier Aggregation, CA)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 5(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 5(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 5(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 6은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
유럽에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(channel occupancy time)(예, 1~10ms)과 상기 채널 점유 시간의 최소 5%에 해당되는 아이들 기간(idle period)이 하나의 고정(fixed) 프레임을 구성하며, CCA는 아이들 기간 내 끝 부분에 CCA 슬롯 (최소 20μs) 동안 채널을 관측하는 동작으로 정의된다. 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행하고, 채널이 비점유(unoccupied) 상태인 경우에는 채널 점유 시간 동안 데이터를 송신하고 채널이 점유(occupied) 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
한편, LBE의 경우, 통신 노드는 먼저 q∈{4, 5, … , 32}의 값을 설정한 후 1개 CCA 슬롯에 대한 CCA를 수행하고. 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다. 첫 번째 CCA 슬롯에서 채널이 점유 상태이면 통신 노드는 랜덤하게 N∈{1, 2, … , q}의 값을 골라 카운터의 초기값으로 저장하고, 이후 CCA 슬롯 단위로 채널 상태를 센싱하면서 CCA 슬롯 단위로 채널이 비점유 상태이면 카운터에 저장된 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
실시예
도 7은 SSB(Synchronization Signal Block) 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다. SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
도 8은 SSB 전송을 예시한다. 도 8을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SSB 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SSB 버스트 세트 내에서 후보(candidate) SSB의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. 후보 SSB의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스). 명세서에서 후보 SSB와 SSB 후보와 혼용된다.
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다.
- 공유 스펙트럼 채널 접속 동작이 수행/지원되지 않는 경우(for operation without shared spectrum channel access)(예, L(licensed)-band, LCell(licensed cell)): 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- 공유 스펙트럼 채널 접속 동작이 수행/지원되는 경우(for operation with shared spectrum channel access)(예, U(unlicensed)-band, UCell(unlicensed cell)): n=0, 1, 2, 3, 4이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다.
- 공유 스펙트럼 채널 접속 동작이 수행/지원되지 않는 경우: (1) 페어드(paired) 스펙트럼 동작의 경우, 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 FR1 내이고 3 GHz보다 큰 경우 n=0, 1, 2, 3이다. (2) 비-페어드 스펙트럼 동작의 경우, 반송파 주파수가 2.4 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 FR1 내이고 2.4 GHz보다 큰 경우 n=0, 1, 2, 3이다.
- 공유 스펙트럼 채널 접속 동작이 수행/지원되는 경우: n=0, 1, 2, 3, 4, 6, 7, 8, 9이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. FR2 내의 반송파 주파수인 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. FR2 내의 반송파 주파수인 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
공유 스펙트럼 채널 접속 동작의 경우, 공유 스펙트럼 채널 접속 동작의 경우, 단말은 하프-프레임 내 SSB 전송이 하프-프레임 내 첫 번째 슬롯의 첫 번째 심볼로부터 시작하는 디스커버리 버스트 전송 윈도우 내에 있다고 가정한다. 단말은 서빙 셀 별로 디스커버리 버스트 전송 윈도우 구간을 제공 받을 수 있다. 디스커버리 버스트 전송 윈도우 구간이 제공되지 않은 경우, 단말은 디스커버리 버스트 전송 윈도우 구간을 하프-프레임으로 간주한다. 각 서빙 셀에 대해, 단말은 디스커버리 버스트 전송 윈도우의 반복 주기는 SSB 수신을 위한 하프-프레임의 반복 주기와 동일하다고 가정한다. 단말은 서빙 셀의 SSB들 중에서 동일한 디스커버리 버스트 전송 윈도우 내의, 또는 서로 다른 디스커버리 버스트 전송 윈도우에 걸쳐 (N PBCH DM-RS mod N QCL SSB) 값이 동일한 SSB(들)은 QCL(quasi co-located) 관계에 있다고 가정할 수 있다. N PBCH DM-RS는 PBCH의 DM-RS 시퀀스 인덱스를 나타내고, N QCL SSB은 (i) ssbPositionQCL-Relationship에 의해 제공되거나, (ii) ssbPositionQCL-Relationship이 제공되지 않는다면, 표 6에 기반하여 SSB의 MIB로부터 얻어질 수 있다.
[표 6]
Figure PCTKR2020013515-appb-img-000010
ssbSubcarrierSpacingCommon은 오직 "operation without shared spectrum"인 경우의 RMSI의 SCS를 나타낸다. 단말은 디스커버리 버스트 전송 윈도우 내에서 서빙 셀 상 전송되는 SSB들의 개수가 N QCL SSB보다 많지 않다고 가정한다. 단말은 SSB 인덱스를 (N PBCH DM-RS mod N QCL SSB), 또는 (i mod N QCL SSB)에 따라 결정할 수 있다. 여기서, i 는 후보 SSB 인덱스를 나타낸다. 따라서, 하나 이상의 후보 SSB가 하나의 SSB 인덱스에 대응될 수 있다. 동일한 SSB 인덱스에 대응하는 후보 SSB들은 QCL된다.
도 9는 SS/PBCH 블록 후보 위치의 예를 나타낸다. 도 9는 N QCL SSB가 4이고, ssb-PositionsInBurst가 '10100000'으로 설정된 경우를 예시한다. 이 경우, SSB (= SS/PBCH 블록) 인덱스가 #0/#2인 SSB만 전송될 수 있다. ssb-PositionsInBurst 및 N QCL SSB는 DRS(Discovery Reference Signal) 전송 윈도우 (혹은, 디스커버리 버스트 전송 윈도우) 내의 레이트 매칭 패턴을 제공하는데 사용될 수 있다. 예를 들어, 단말은 ssb-PositionsInBurst에 의해 제공되는 실제 전송된 SSB 인덱스와 QCL된 모든 SSB 후보 위치 인덱스에 대해 레이트 매칭을 수행할 수 있다. 도 9에서, 단말은 SSB 후보 위치 인덱스 0/2/4/6/8/10/12/14/16/18의 시간/주파수 자원에 대한 레이트 매칭을 수행할 수 있다. 따라서, C-RNTI, MCS-C-RNTI, CS-RNTI, RA-RNTI, MsbB-RNTI, P-RNTI, TC-RNTI에 의해 CRC 스크램블링된 PDCCH에 의해 스케줄링된 PDSCH를 수신할 때(혹은, SPS를 갖는 PDSCH (또는 CRC를 갖는) SI-RNTI에 의해 스크램블링되고 PDCCH(즉, DCI) 내의 시스템 정보 지시자가 1로 설정되면), 단말은 PDSCH 자원 할당이 SSB 전송 자원(예, SS/PBCH 블록 후보 위치 인덱스 0/2/4/6/8/10/12/14/16/18)을 포함하는 PRB와 중첩되는 경우 ssb-PositionsInBurst에 따라 SSB 전송을 가정할 수 있다. 즉, 단말은 SSB가 전송되는 OFDM 심볼에서 SSB 전송 자원을 포함하는 PRB는 PDSCH를 위해 가용하지 않다고(즉, 매핑되지 않는다고) 가정할 수 있다.
도 10은 시스템 정보(SI) 획득 과정을 예시한다. NR 시스템에서 초기 접속을 시도하는 단말은 PBCH 페이로드 (혹은 MIB)를 통해 시스템 정보(SI)(예, SIB1) 수신을 위한 PDCCH 구성 정보를 획득할 수 있다(S1102). 여기서, PDCCH 구성 정보는 (1) SI를 싣는 PDSCH를 스케줄링하는 PDCCH가 전송될 CORESET(이하, CORESET#0)의 시간/주파수 자원 정보, 및 (2) CORESET#0과 연동된 CSS 세트(이하, type0-PDCCH CSS 세트)에 관한 정보를 의미할 수 있다. 따라서, 단말은 PDCCH 구성 정보를 토대로 (SI를 싣는 PDSCH를 스케줄링하는) PDCCH를 수신하고, 해당 PDCCH가 스케줄링한 PDSCH를 통해 SI를 획득할 수 있다(S1104). 또한, 단말은 기지국에게 온-디맨드 SI를 요청하고(S1106), 요청한 SI를 수신할 수 있다(S1108).
MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlockType1) 수신과 관련된 정보/파라미터를 포함하며 SSB의 PBCH를 통해 전송된다. MIB의 정보는 3GPP TS 38.331을 참조할 수 있으며, 다음의 필드를 포함할 수 있다.
- subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120},
- ssb-SubcarrierOffset INTEGER (0..15),
- pdcch-ConfigSIB1 INTEGER (0..255),
- dmrs-TypeA-Position ENUMERATED {pos2, pos3},
각 필드에 관한 설명은 표 7을 참조할 수 있다.
[표 7]
Figure PCTKR2020013515-appb-img-000011
도 11은 SSB와 CORESET#0의 주파수 위치를 예시한다. 채널 래스터는 RF 채널 위치를 식별하는데 사용되는 RF 참조 주파수들의 서브세트로 정의된다. RF 참조 주파수는 모든 주파수 대역에 대해 정의되며, RF 참조 주파수의 그래뉼래리티(즉, 주파수 간격)은 예를 들어 5kHz(주파수 범위 0~3000 MHz), 15kHz(주파수 범위 3000~24250 MHz)일 수 있다. 동기화 래스터는 채널 래스터들의 서브세트로서, 단말이 시스템 정보 획득에 사용하는 SSB의 주파수 위치 SS REF를 나타낸다. SS REF는 SSB가 차지하는 20개 PRB들의 센터 주파수와 일치될 수 있다. 표 8은 SS REF와 GSCN(Global Synchronization Channel Number)의 관계를 나타낸다.
[표 8]
Figure PCTKR2020013515-appb-img-000012
SSB 검출 후, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET(예, CORESET#0)을 구성하는 복수의 연속된 RB와 하나 이상의 연속된 심볼과 (ii) PDCCH 기회(즉, PDCCH 수신을 위한 시간 도메인 위치)(예, 검색 공간#0)를 결정할 수 있다. 구체적으로, pdcch-ConfigSIB1는 8비트 정보이며, (i)은 MSB(Most Significant Bit) 4비트에 의해 기반하여 결정되고(3GPP TS 38.213 Table 13-1~13-10 참조), (ii)는 LSB(Least Significant Bit) 4비트에 의해 기반하여 결정된다(3GPP TS 38.213 Table 13-11~13-15 참조).
표 9는 pdcch-ConfigSIB1의 MSB 4비트에 의해 지시되는 정보를 예시한다.
[표 9]
Figure PCTKR2020013515-appb-img-000013
*: SSB의 1 st RB와 RMSI CORESET의 1 st RB간의 오프셋 값을 나타낸다.
주파수 도메인에서 CORESET#0의 위치는 SSB를 기준으로 부반송파 오프셋과 RB 오프셋에 기반하여 결정된다. 도 11을 참조하면, k SSB는 CRB(Common Resource Block) N SSB CRB의 부반송파#0으로부터 SSB의 부반송파#0까지의 부반송파 오프셋을 나타낸다. 여기서, N SSB CRB는 상위 계층(예, RRC) 파라미터 offsetToPointA에 의해 식별된다. k SSB는 5 비트 값으로서, 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트(= k SSB의 MSB 1 비트) + ssb-SubcarrierOffset 4 비트(= k SSB의 LSB 4 비트)로 구성된다. RB 오프셋은 CORESET#0의 가장 작은 RB 인덱스로부터, 대응되는 SSB의 첫 번째 RB와 겹치는 CRB의 가장 작은 RB 인덱스까지의 오프셋을 나타내며, 표 9의 오프셋 (RB)에 기반하여 결정될 수 있다.
상술한 바와 같이, NR 시스템은 (3 GHz 이상의 대역에서) 15 kHz 간격의 채널 래스터를 정의하고 있으며(표 8 참조), 해당 값은 캐리어에서 단말의 신호 송수신을 위한 참조 주파수 기능을 한다. 일 예로, 캐리어/BWP에 대응되는 PRB(Physical Resource Block) 자원 영역의 센터 주파수가 채널 래스터를 의미할 수 있다. NR-U는 5 GHz 및/혹은 6 GHz 등의 대역에서 정의될 수 있으며, 적어도 Wi-Fi (및/혹은 LTE LAA)와 공존하는 환경에서는 캐리어/BWP 대역의 자원 영역이 Wi-Fi와 정렬(align)되도록 정의될 수 있다. 일 예로, Wi-Fi가 5150~5170 MHz, 5170~5190 MHz와 같이 20 MHz 간격 채널화(channelization)로 정의되어 있음을 참고하여, 채널 래스터 값은 NR-U 캐리어 대역이 20 MHz이면 5150~5170 MHz, 5170~5190 MHz에 최대한 정렬되도록, 40 MHz이면 5150~5190 MHz에 최대한 정렬되도록 정의될 수 있다. 또한, NR에 정의된 채널 래스터 값들 중 Wi-Fi 채널과 정렬되도록 캐리어/BWP 대역 및 대응되는 주파수 영역에 따라 특정 채널 래스터 값이 정의될 수 있다(이하, down selection). 일 예로, 5150~5170 MHz 및 5170~5190 MHz에 대응되는 20 MHz 캐리어 대역의 경우, 채널 래스터 값이 각각 5160 MHz (표 8의 N REF=744000에 대응) 및 5180.01 MHz (표 8의 N REF=745334에 대응)으로 정의될 수 있다. 다른 예로, 5150~5190 MHz에 대응되는 40 MHz 캐리어 대역의 경우, 채널 래스터 값이 5169.99 MHz (표 8의 N REF=744666에 대응)로 정의될 수 있다. 또한, NR-U가 Wi-Fi (및/혹은 LTE LAA)와 공존하지 않는 환경에서는 다운 선택 없이 모든 15 kHz SCS 간격의 채널 래스터를 허용하거나, 다운 선택을 하더라도 캐리어 대역 및 대응되는 주파수 영역에 따라 복수의 채널 래스터 값이 정의될 수 있다.
또한, NR에서는 SS/PBCH 블록 검출에 대한 단말 복잡도를 고려하여 채널 래스터보다 드문(sparse) 밀도(density)로 동기화 래스터가 정의된다. 동기화 래스터는 SS/PBCH 블록이 차지하는 20 PRBs의 센터 주파수와 일치될 수 있다. 한편, 5 GHz 및/혹은 6 GHz 등의 대역에서 정의될 수 있는 NR-U에서는, (NR에 정의된) 1.44 MHz 간격의 동기화 래스터들 중 일부 값이 동기화 래스터로 정의될 수 있다. 구체적으로, 각 20 MHz 별로 하나의 동기화 래스터 값이 정의될 수 있으며, 해당 동기화 래스터 값은 20 MHz의 센터 주파수에 가깝거나 SS/PBCH 블록을 20 MHz의 끝단에 최대한 위치시키도록 정의될 수 있다. 일 예로, 도 12와 같이 5150~5170 MHz 영역의 경우, 기존 NR의 동기화 래스터 후보에 속하면서, SS/PBCH 블록 20 PRBs가 해당 영역에 포함되면서 최대한 5150 MHz에 가깝도록, 동기화 래스터 값이 5155.68 MHz (표 8의 GSCN=8996에 대응)로 정의될 수 있다. 또한, 본 명세에서는 도 12의 예와 같이 (51 PRBs로 구성된) 캐리어/BWP와 48 PRBs CORESET#0간 RB 그리드를 맞추는 동작을 기본적으로 가정한다.
이하, 본 명세에서는, 비면허 대역에서 동작하는 NR 시스템에서 SI 정보 획득을 위한 CORESET#0 자원 설정 방법, 및 단말이 이를 해석하는 방법에 대해 제안한다. 예를 들어, 본 명세에서는 동기화 래스터 및 채널 래스터가 정의될 때에, PBCH 페이로드 (혹은 MIB)를 통해 CORESEST#0의 자원 영역을 설정하는 방법을 제안한다. 또한, 본 명세에서는 SS/PBCH 블록이 동기화 래스터가 아닌 주파수를 센터 주파수로 하여 전송되는 경우, SS/PBCH 블록 내 PBCH 페이로드 (혹은 MIB)를 통해 CORESEST#0의 자원 영역을 설정하는 방법을 제안한다.
본 명세의 제안 방법은 NR-U 시스템/셀(예, 공유 스펙트럼)에서의 동작에 국한하여 적용될 수 있다. 예를 들어, NR-U 시스템/셀(예, 공유 스펙트럼)이 아닌 경우, 기존 NR 시스템에 사용되는 방법이 본 명세의 제안 방법과 조합될 수 있다.
1) Receiver (Entity A; 예, UE):
[방법#1] SS/PBCH 블록의 특정 RE (예, 최소 RB 인덱스 상 첫 RE)로부터 CORESET#0의 특정 RE (예, 최소 RB 인덱스 상 첫 RE)까지의 오프셋 값을, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 설정 받을 수 있다. 이때, 오프셋 값은 RB 및/혹은 RE 레벨의 값으로 정의될 수 있으며, RB 레벨 오프셋 값은 NR-U용 주파수 대역에 정의된 동기화 래스터 및 채널 래스터에 의해 그 범위가 (각 주파수 대역에 따라 다르게) 결정될 수 있다. 여기서, RE는 주파수 축에서의 단위를 나타내기 위한 것으로서, RE 순서는 하나의 OFDM 심볼 내에서의 RE 순서에 해당할 수 있다. 따라서, RE는 부반송파로 대체될 수 있다.
NR-U 시스템에 대응되는 주파수 대역에서 초기 접속을 시도하는 단말은 30 kHz SCS SS/PBCH 및 CORESET#0을 기대할 수 있다. 이 경우, 기존 NR 시스템과 동일하게, CORESET#0의 주파수 영역/위치 및 시간 축 구간이 정의될 수 있다. 표 10은 기존의 NR 시스템에서 최소 채널 대역이 5 MHz 또는 10 MHz인 주파수 밴드에서 {SS/PBCH 블록, PDCCH} SCS가 {30, 30} kHz인 경우에 Type0-PDCCH 검색 공간 세트를 위한 CORESET의 RB들과 슬롯 심볼의 세트를 나타낸다.
[표 10]
Figure PCTKR2020013515-appb-img-000014
하지만, NR-U에서 30 kHz CORESET#0의 RB 개수는 48개, 시간 축 구간은 1개 또는 2개 (OFDM) 심볼로 제약이 가해질 수 있다. 또한, RB 레벨 오프셋 값은 NR-U용 주파수 대역에 정의된 동기화 래스터 및 채널 래스터에 의해 범위가 결정될 수 있다. 일 예로, NR-U 시스템이 동작할 수 있는 각 대역 및 캐리어/BWP 대역 조합에 대해, SS/PBCH 블록의 최소 RB 인덱스와 CORESET#0의 최소 RB 인덱스간 RB 레벨 오프셋 값의 최대/최소값이 [A, B] 범위에 있을 때, 표 10의 오프셋에 대응되는 컬럼에서 A~B 사이의 전체 혹은 일부 값을 시그널링 할 수 있다. 일 예로, A=-2, B=5인 경우, 총 16개 상태들 중 8개 상태는 1개 심볼, 나머지 8개 상태는 2개 심볼에 대응되며, 각 8개 상태는 -2~5의 RB 레벨 오프셋 값을 시그널링 할 수 있다. 추가로, RE 레벨 오프셋 값은 NR 시스템과 동일하게 k SSB 값을 통해 시그널링 될 수 있다.
표 11은 A=-2, B=5인 경우의 CORESET#0 구성을 예시한다.
[표 11]
Figure PCTKR2020013515-appb-img-000015
일 예로, 도 13과 같이, 단말이 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드로부터 SS/PBCH 블록과 CORESET#0간의 주파수 오프셋인 '오프셋 X' 값을 시그널링 받을 수 있다. 일 예로, 표 11의 인덱스#4 값을 PBCH 페이로드를 통해 시그널링 받고, k SSB=6 값을 PBCH 페이로드를 통해 시그널링 받은 경우, 단말은 SS/PBCH 블록으로부터 2 RBs 및 6 REs 떨어진 곳으로부터 CORESET#0 주파수 영역이 시작됨을 인지할 수 있다.
다른 예로, 도 14와 같이 SS/PBCH 블록의 RB#0와 51 PRBs의 RB#0간 주파수 축 위치 차이가 1 PRB 이내일 수 있으며, 도 15와 같이 SS/PBCH 블록의 RB#0와 51 PRBs의 RB#0간 주파수 축 위치 차이가 4 PRBs 초과일 수도 있다. 도 14의 경우에는, 인접 20 MHz와의 간섭 등을 고려하여 CORESET#0의 첫 PRB는 51 PRBs 중 두 번째 PRB와 정렬되는 것이 바람직할 수 있다. 이 경우, RB 오프셋으로 -1 PRB가 필요할 수 있다. 동일하게, 도 15의 경우에도, 인접 20 MHz와의 간섭 등을 고려하여 CORESET#0의 마지막 PRB는 51 PRBs 중 마지막에서 두 번째 PRB와 정렬되는 것이 바람직할 수 있다. 이 경우, RB 오프셋으로 2 PRBs가 필요할 수 있다. 이러한 경우를 고려하여, 최소 -1부터 최대 2 PRBs까지의 RB 오프셋 값에 관한 정보가 설정될 필요가 있으며, 하기 표 12와 같은 방법으로 PBCH 페이로드를 통해 CORESET#0의 시간/주파수 축 자원 위치를 설정할 수 있다. 표 12에서 "reserved" 상태는 [-1,2]의 범위가 아닌 RB 오프셋 값이 필요하게 될 때를 대비하기 위함일 수 있다. 혹은, [-k,k] (예, k=2) 범위의 RB 오프셋 및 reserved 상태들이 시그널링 될 수 있다.
또한, SS/PBCH 블록이 15 kHz SCS 기반으로 전송되는 경우, 표 13과 같이 RB 개수는 96 PRBs로 설정되고, RB 오프셋은 (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들로 설정될 수 있다. 혹은, 표 14와 같이 RB 개수는 96 PRBs로 설정되고, RB 오프셋은 (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들에 추가로, 15 kHz SCS 기반 RB-그래뉼래리티로 설정될 수 있다. 혹은, 표 15와 같이, (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들에 추가로, SS/PBCH 블록의 20 PRBs에 대응되는 절대 주파수 영역 자원의 차이가 반영된 값일 수 있다. 즉, SS/PBCH 블록은 SCS에 무관하게 20 PRBs이므로 30 kHz SCS일 때에 비해, 15 kHz SCS의 경우 주파수 축 자원이 (15 kHz SCS 기준 20 PRBs 만큼) 줄어든다. 따라서, {30 kHz SCS 기반 RB 오프셋 값 들의 2 배} + 10 (SS/PBCH 블록의 중심 주파수를 기준으로 10 PRBs 만큼 줄어들기 때문) 값에 대응되는 값들 (혹은, 해당 대응되는 값들의 최소/최대값을 사이로 하는 RB 그래뉼래리티 값들)로 표 15와 같이 RB 오프셋 값이 채워질 수 있다.
표 12는 SS/PBCH 블록이 30 kHz SCS 기반인 경우의 CORESET#0 구성을 예시하고, 표 13~15는 SS/PBCH 블록이 15 kHz SCS 기반인 경우의 CORESET#0 구성을 예시한다. 표에서 a~d는 각각 정수를 나타낸다. RB 오프셋은 Type0-PDCCH CSS 세트를 위한 CORESET (즉, CORESET#0)의 SCS를 기준으로 정의되며, 도 12~15에 도시한 바와 같이, CORESET#0의 SCS는 대응되는 SS/PBCH 블록의 SCS와 동일하다.
[표 12]
Figure PCTKR2020013515-appb-img-000016
[표 13]
Figure PCTKR2020013515-appb-img-000017
[표 14]
Figure PCTKR2020013515-appb-img-000018
[표 15]
Figure PCTKR2020013515-appb-img-000019
도 16은 본 발명의 일 예에 따른 동작을 예시한다. 도 16을 참조하면, 단말은 비면허 대역에서 SSB를 검출할 수 있다(S1602). 여기서, SSB는 CORESET 구성에 관한 인덱스를 포함할 수 있다(표 12~15의 Index 참조). 이후, 단말은 인덱스에 기반하여, SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB 오프셋을 결정할 수 있다(S1604). 또한, 단말은 RB 오프셋에 기반하여, 비면허 대역 내에서 CORESET을 모니터링 할 수 있다(S1606). 여기서, SSB의 SCS에 기반하여, 인덱스와 RB 오프셋간의 관계는 다음의 관계를 포함할 수 있다. 아래의 관계는 도 12와 도 15의 조합을 예시하며, 도 12와 도 13/14의 조합도 가능하다.
Figure PCTKR2020013515-appb-img-000020
여기서, n, a, b, c 및 d는 각각 정수를 나타낸다. 여기서, a, b, c 및 d는 각각 a, a+1, a+2 및 a+3일 수 있다. 여기서, SSB의 센터 주파수는 도 12~15에 도시한 바와 같이 동기화 래스터에 대응할 수 있다. 또한, 단말은 모니터링에 기반하여(S1606), CORESET로부터 PDCCH를 검출하고, 검출된 PDCCH에 대응하는 PDSCH를 통해 시스템 정보를 수신할 수 있다(미도시).
[방법#2] SS/PBCH 블록이 전송된 주파수 대역에 대응되는 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 설정 받을 수 있다. 이때, 오프셋 값은 RB 및/혹은 RE 레벨의 값일 수 있으며, RB 레벨 오프셋 값은 NR-U 용 주파수 대역에서 정의된 채널 래스터에 의해 범위가 (각 주파수 대역에 따라 다르게) 결정될 수 있다.
Wi-Fi와의 공존 여부에 따라 채널 래스터 후보들이 달라질 수 있다면, 본 제안에서의 채널 래스터 값은 Wi-Fi와의 공존을 가정한 상황에서의 채널 래스터를 의미할 수 있다. 또한, 캐리어/BWP 대역에 따라 채널 래스터 후보들이 달라질 수 있다면, 본 제안에서의 채널 래스터 값은 특정 캐리어 대역 값(예, 20 MHz)을 가정한 상태에서의 채널 래스터 값을 의미할 수 있다.
일 예로, NR-U가 동작할 수 있는 각 대역 및 특정 캐리어 대역(예, 20 MHz) 조합에 대해, 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 RB 레벨 오프셋 값의 최대/최소값이 [A, B] 범위에 있을 때, 표 10의 오프셋에 대응되는 컬럼에서 A~B 사이의 전체 혹은 일부 값을 시그널링 할 수 있다. 일 예로, A=-3, B=4 인 경우, 총 16개 상태들 중 8개 상태는 1개 심볼, 나머지 8개 상태는 2개 심볼에 대응되며, 각 8개 상태는 -3~4의 RB 레벨 오프셋 값을 시그널링 할 수 있다. 추가로, RE 레벨 오프셋 값은 NR 시스템과 동일하게 k SSB 값을 통해 시그널링 될 수 있다.
표 16은 A=-3, B=4인 경우의 CORESET#0 구성을 예시한다.
[표 16]
Figure PCTKR2020013515-appb-img-000021
일 예로, 도 17과 같이, 단말이 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz를 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해, 해당 대역에 정의된 특정 채널 래스터 값(예, 5160 MHz)와 CORESET#0의 센터 주파수간 오프셋 값을 시그널링 받을 수 있다. 예를 들어, 표 16의 인덱스#3 값을 PBCH 페이로드를 통해 시그널링 받고, k SSB=0 값을 PBCH 페이로드를 통해 시그널링 받은 경우, 단말은 채널 래스터를 센터 주파수로 하는 48 PRBs로 구성된 CORESET#0의 주파수 자원 영역을 인지할 수 있다.다른 예로, SS/PBCH 블록이 전송된 주파수 대역에 대응되는 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 설정 받을 수 있을 때, 해당 오프셋 값은 (RB 레벨 오프셋이 아닌) RE 레벨 오프셋 값만이 시그널링 될 수 있다. 즉, 특정 채널 래스터와 CORESET#0의 센터 주파수를 정렬하고, k SSB 값을 통해 CORESET#0의 RB 그리드와 해당 주파수 대역에서 기지국이 운용하는 캐리어/BWP 상 RB 그리드를 정렬할 수 있다. 이때, k SSB 값은 기준점인, 채널 래스터를 기준으로 (낮은(lower) 주파수 방향으로) n RE 오프셋(들)(n은 음수일 수 있음)을 의미하거나, (높은(higher) 주파수 방향으로) n RE 오프셋(들)(n은 양수일 수 있음)을 의미할 수 있다. 일 예로, k SSB 값이 1~12이면 높은 주파수 방향으로의 RE 오프셋을 의미하고(예, k SSB=n이면 높은 주파수 방향으로의 n RE 오프셋), k SSB 값이 13~23이면 낮은 주파수 방향으로의 RE 오프셋을 의미할 수 있다(예, k SSB=n이면 낮은 주파수 방향으로의 (n-12) RE 오프셋).
[방법#3] SS/PBCH 블록이 전송된 대역에 대응되는 복수의 CORESET#0 주파수 자원 영역에 대한 후보들이 정의될 수 있으며, 그 중 어떤 후보가 실제 자원인지가 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 설정 받을 수 있다. 이때, 복수의 CORESET#0 주파수 자원 영역에 대한 후보들은 캐리어/BWP 대역, 캐리어/BWP 대역 내에서 사용되는 PRB 개수, 및/혹은 캐리어/BWP 대역 내의 SS/PBCH 블록이 전송된 20 MHz 대역의 위치(예, 40 MHz 캐리어 대역 내에서 높은(higher) 20 MHz에 SS/PBCH 블록이 위치할지 낮은(lower) 20 MHz에 SS/PBCH 블록이 위치할지) 등에 따라 다르게 정의될 수 있다. 또한, 시그널링을 통해 CORESET#0 위치뿐 아니라 RB 그리드를 동시에 알려줄 수 있다.
편의상, 도 17과 같이 5150~5170 MHz 대역에서 20 MHz 캐리어를 51 PRBs로 운용하는 경우, SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 X로 정의한다. 또한, 도 18과 같이 5150~5170 MHz 대역에서 20 MHz 캐리어를 50 PRBs로 운용하는 경우 SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 Y로 정의한다. 또한, 도 19와 같이 5150~5190 MHz 대역에서 40 MHz 캐리어를 106 PRBs로 운용하는 경우, SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 Z로 정의할 수 있다.
기지국은 PBCH 페이로드를 통해 오프셋 X/Y/Z 중 어떤 값인지를 시그널링 할 수 있다. 단말은 5150~5170 MHz 대역에서 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드로부터 오프셋 X/Y/Z 중 한 값을 수신할 수 있다. 단말은 수신한 오프셋을 적용하여 CORESET#0의 최소 RB 위치를 인지할 수 있다. 해당 예시는 SS/PBCH 블록과 CORESET#0간의 오프셋 값을 시그널링 하는 예시이지만, [방법#2]와 같이 채널 래스터와 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을 시그널링 할 수도 있다. 또한, 해당 오프셋 값은 SS/PBCH 블록에 대응되는 주파수 대역에 따라 다르게 정의/해석될 수 있다.
[방법#4] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, 해당 SS/PBCH 블록에 대응되는 대역 상에 정의된 동기화 래스터에서 전송된 SS/PBCH 블록이라 가정하여 디코딩된 PBCH 페이로드로부터의 정보를 재해석할 수 있다.
다음과 같은 동기 하에서, 동기화 래스터가 아닌 SS/PBCH 블록의 경우에도 기지국은 CORESET#0 주파수 자원 정보를 제공해야 할 필요가 있을 수 있다.
비면허 대역에서 서로 다른 운영자(operator)들이 공존할 수 있고, 동일 운영자라 할 지라도 unplanned deployment 환경일 수 있으므로, 동일 대역에서 셀 간에 사용되는 (물리) 셀 ID가 동일할 수 있다. 이로 인한 단말의 혼동을 해결하기 위해, 기지국은 (동기화 래스터에서 전송되지 않는 SS/PBCH 블록이라 할 지라도) 운영자 ID, PLMN(Public Land Mobile Network) ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(예, SIB1)을 위한 CORESET#0 및 type0-PDCCH CSS 세트에 대한 정보를 전송해야 할 수 있다. 일 예로, 주파수#X (주파수#X는 동기화 래스터와 일치하지 않을 수 있음) 상에서 SS/PBCH 블록을 전송하는 gNB#X가 있고, gNB#Y와 연계(association)된 UE#Y가 있을 때, gNB#Y가 UE#Y에게 주파수#X에 대한 측정을 지시할 수 있다. 주파수#X에 대한 측정을 수행한 UE#Y는, 발견한 gNB#X의 셀 ID와 해당 셀에 대한 측정 결과를 gNB#Y에게 보고할 수 있다. gNB#Y 입장에서 gNB#X가 동일 운영자인지 모르는 경우, gNB#Y는 UE#Y에게 gNB#X의 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(예, SIB1) 정보를 읽고 해당 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보를 보고하도록 지시할 수 있다. 해당 정보를 수신한 gNB#Y는 gNB#X의 운영자 정보 등을 업데이트 할 수 있다. 이러한 동작을 고려하여, 주파수#X 상에서 SS/PBCH 블록을 전송하는 gNB#X는 SS/PBCH 블록 상에 명시적으로/암묵적으로 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(편의상, SIB1이라고 명명하나, 그 외의 셀-공통 상위 계층 시그널링에 대응될 수 있음)이 실린 PDSCH를 스케줄링 하는, CORESET#0 및 type0-PDCCH CSS 세트에 대한 정보를 전달할 필요가 있다.
일 예로, 도 20과 같이, 동기화 래스터가 아닌 주파수#X를 센터 주파수로 하는 SS/PBCH 블록 내의 PBCH 페이로드를 디코딩 한 단말은, 해당 SS/PBCH 블록에 대응되는 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 기반으로 디코딩된 PBCH 페이로드 정보를 해석할 수 있다. 구체적으로, [방법#1]과 같이 주파수#X에 대응되는 PBCH 페이로드로부터 RB/RE 레벨 오프셋 값을 수신한 단말은, 해당 값을 동기화 래스터 상 SS/PBCH 블록의 특정 RE(예, 최소 RB 인덱스 상 첫 RE)로부터 CORESET#0의 특정 RE(예, 최소 RB 인덱스 상 첫 RE)까지의 오프셋 값으로 해석하여 CORESET#0의 주파수 자원 위치를 인지할 수 있다. 혹은, [방법#2]와 같이 주파수#X에 대응되는 PBCH 페이로드로부터 RB/RE 레벨 오프셋 값을 수신한 단말은, 해당 값을 주파수#X가 속한 대역의 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값으로 해석하여 CORESET#0의 주파수 자원 위치를 인지할 수 있다. 혹은, [방법#3]과 같이 주파수#X에 대응되는 PBCH 페이로드로부터 복수의 후보 중 하나의 값을 수신한 단말은, 해당 값을 주파수#X가 속한 5150~5170 MHz 대역에 대응되는 복수의 CORESET#0 주파수 자원 영역에 대한 후보들 중 실제 어떤 자원인지로 해석하여 CORESET#0의 주파수 자원 위치를 인지할 수 있다.
[방법#5] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, 제한된 PBCH 페이로드를 고려하여 동기화 래스터가 아닌, SS/PBCH 블록 전송이 허용된 센터 주파수 자원에 제약이 가해질 수 있다. SS/PBCH 블록 전송이 허용된 센터 주파수간 간격은 PRB 혹은 PRB 배수 간격일 수 있다. 여기서, PRB는 30 kHz SCS (혹은 15 kHz SCS) 기반일 수 있다. SS/PBCH 블록과 CORESET#0 간 PRB 혹은 PRB 배수 간격의 오프셋 시그널링이 필요할 수 있고, 해당 시그널링이 필요한 값이 8개 이하이면 표 11/12와 같이 MIB 내 CORESET 구성을 통해 설정할 수 있고, 8개 초과인 경우 MIB 내 CORESET 구성 및/혹은 k SSB 값을 위한 비트들 중 일부 혹은 전체를 활용하여 설정할 수도 있다.
[방법#6] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, SS/PBCH 블록의 센터 주파수 값이 15 kHz SCS 그래뉼래리티 상에 제약 없이 모두 위치할 수 있도록 지원하기 위해, N QCL SSB 값에 대한 시그널링 방법이 동기화 래스터에서 전송되는 SS/PBCH 블록에서 시그널링 하는 방법과 달라질 수 있다.
N QCL SSB 값은 서로 다른 후보 SSB 인덱스 간의 QCL 관계를 알려주며, 기존 NR-U에서는 (1) subCarrierSpacingCommon에 대응되는 1 비트와 (2) spare 1 비트 또는 ssb-SubcarrierOffset LSB 1 비트의 조합에 기반하여, {1,2,4,8} 중 한 값이 PBCH 페이로드를 통해 지시된다(표 6 참조). ssb-SubcarrierOffset 값은 주파수 범위(FR) 1에서 k_SSB 값을 지시하는 데 쓰인다. 기존 NR-U에서는 동기화 래스터와 채널 래스터가 모두 30 kHz 그래뉼래리티에 위치하게 되어, 15 kHz 단위로 지시되는 ssb-SubcarrierOffset LSB 1 비트는 리던던트(redundant) 하다. 따라서, 해당 LSB 1 비트가 N QCL SSB 값을 시그널링 하는 데 사용될 수 있었다.
그러나, 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 (예, ANR(Automatic Neighbor Relations) 용도의) SS/PBCH 블록의 경우, 주파수 축 상 어느 15 kHz 그래뉼래리티에서도 전송이 허용될 수 있다. ANR은 새로운 기지국을 설치하고 이웃 정보를 최적화할 때 이웃 정보에 수작업을 가능한 최소화하거나, 제거하는 것을 목표로 하는 방법을 의미한다. ANR 용도의 SS/PBCH 블록이 셀에 있는 경우, 단말은 SS/PBCH 블록으로부터 해당 셀의 CGI(Cell Global Identifier)을 읽은 뒤, 기지국에 보고할 수 있다. 반면, 비-ANR 용도의 SS/PBCH 블록이 셀에 있는 경우, 단말은 SS/PBCH 블록 기반으로 해당 셀에 대한 채널 측정만을 수행할 수 있다. 한편, NR-U 시스템을 위해 5 GHz 밴드에 정의된 채널 래스터는 30 kHz 그래뉼래리티 상에 위치하므로, CORESET#0의 RE들도 30 kHz 그래뉼래리티 상에 위치할 수 있다. 이에 따라, SS/PBCH 블록은 15 kHz 그래뉼래리티로 전송되나, CORESET#0은 30 kHz 그래뉼래리티로 전송된다면 ssb-SubcarrierOffset LSB 1 비트도 k_SSB 시그널링을 위해 필요할 수 있다. 이때, ssb-SubcarrierOffset LSB 1 비트를 활용하여 N QCL SSB 값을 시그널링 할 수 없는 문제가 발생하므로, N QCL SSB 값을 시그널링 하는 다른 방법을 제안한다. 즉, 동기화 래스터에서 전송되는 SS/PBCH 블록의 경우는 표 6과 같은 방법으로 N QCL SSB 값을 시그널링 할 수 있으나, 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 SS/PBCH 블록의 경우는 Opt1 혹은 Opt2을 통해 N QCL SSB 값을 시그널링 할 수 있다.
- Opt1: ssb-SubcarrierOffset의 LSB 대신, PBCH 페이로드 내의 다른 비트와 subCarrierSpacingCommon의 결합을 통해 N QCL SSB 값을 시그널링 할 수 있다.
- Opt2: N QCL SSB 값에 대한 시그널링은 subCarrierSpacingCommon에 대응되는 1 비트로만 설정할 수 있다.
Opt1은 subCarrierSpacingCommon에 추가로, PBCH 페이로드 상의 1 비트(예, pdcch-ConfigSIB1 4 비트 중 MSB 1 비트, dmrs-TypeA-Position 1 비트 등)과의 결합을 통해, 표 6과 같이 N QCL SSB 값을 시그널링 하는 방법이다. pdcch-ConfigSIB1 4 비트 중 MSB 1 비트를 활용할 수 있는 이유는, 표 9와 같이 8 개의 reserved 상태는 시그널링 되지 않을 수 있기 때문이다. 또한, dmrs-TypeA-Position 1 비트를 활용하면, Type A DMRS 위치에 대한 가정이 필요한데 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 SS/PBCH 블록 대응되는 시스템 정보를 수신하기 위한 PDCCH/PDSCH 등을 수신함에 있어서, 단말은 슬롯 내 항상 3 번째 (혹은 4 번째) 심볼에서 type A DMRS의 첫 번째 DMRS가 전송됨을 가정할 수 있다.
Opt2는 PBCH 페이로드 상 추가 1 비트를 활용하기 힘든 경우, 표 17과 같이, subCarrierSpacingCommon만으로 N QCL SSB 값을 시그널링 한다. 표 17은 시그널링의 예시일 뿐, 실제 scs15or60 및 scs30or120에 대응되는 값은 1/2/4/8 중 어느 한 값으로 각각 대체될 수 있다.
[표 17]
Figure PCTKR2020013515-appb-img-000022
[방법#7] N QCL SSB 값이 subcarrierSpacingCommon에 대응되는 1 비트와 ssb-SubcarrierOffset LSB 1 비트의 조합으로 {1,2,4,8} 중에 한 값임이 PBCH 페이로드를 통해 지시될 때(표 6 참조), k SSB의 LSB 값에 대한 정의가 필요할 수 있다. 구체적으로, SS/PBCH 블록의 센터 주파수가 1) 동기화 래스터와 동일하거나 2) 채널 래스터와 동일하거나 3) 채널/동기화 래스터와의 간격이 30 kHz의 정수배인 경우, k SSB의 LSB 값은 '0'으로 정의될 수 있다. 반면, SS/PBCH 블록의 센터 주파수가, 채널/동기화 래스터와의 간격이 15 kHz의 (0을 포함하지 않는) 정수배인 경우, k SSB의 LSB 값은 '1'로 정의될 수 있다.
5 GHz 밴드에서 NR-U 시스템을 위한 동기화/채널 래스터들의 간격은 모두 30 kHz의 정수배로 정의된다. 따라서, 채널 래스터를 중심 주파수로 하여 캐리어 대역을 구성하고, 해당 대역 내의 일부에서 (동기화 래스터를 중심으로 한) SS/PBCH 블록 및 CORESET#0가 전송/구성될 때, CORESET#0의 최소 RE(예, 1 st 부반송파)와 SS/PBCH 블록의 최소 RE(예, 1 st 부반송파)간 간격은 30 kHz의 정수배일 수 밖에 없다. 구체적으로, PBCH 페이로드는 CORESET#0의 최소 RE와 SS/PBCH 블록의 최소 RE 간 RE/RB 레벨 간격을 시그널링 한다. 여기서, RE 레벨 간격은 k SSB 5 비트 (즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset 4 비트)로 표현되며, RB 레벨 간격은 [방법#1]에서 설명한 바와 같이 CORESET 구성 표에 기반하여 시그널링 된다. 구체적으로, SS/PBCH 블록의 최소 RE로부터 k SSB만큼의 RE 레벨 간격이 떨어진 지점을 기준점으로, CRB 그리드를 생성하고, 해당 기준점에 CORESET#0 구성의 RB 레벨 오프셋을 적용하여 CORESET#0의 최소 RE 위치를 찾아낼 수 있다(도 11 참조). 여기서, k SSB는 15 kHz 간격의 시그널링인데(즉, SCS=15 kHz를 기준으로 하는 부반송파 개수), NR-U 시스템에서 CORESET#0의 최소 RE와 (동기화 래스터를 중심으로 한) SS/PBCH 블록의 최소 RE간의 간격은 30 kHz의 정수배 관계가 만족되므로, ssb-SubcarrierOffset의 LSB 1 비트는 항상 '0'일 수 있다. 따라서, 해당 값을 다른 용도로 대체하여, 예를 들어, N QCL SSB 값을 시그널링 하는 데에 활용할 수 있다.
하지만, [방법#6]에서 설명한 바와 같이 (ANR 목적 등으로) 동기화 래스터를 중심으로 하지 않는 SS/PBCH 블록에 대해서도 대응되는 CORESET#0 위치를 찾아야 할 수 있다. 이때, SS/PBCH 블록의 센터 주파수가, (1) 채널 래스터와 동일하거나, (2) 채널/동기화 래스터와의 간격이 30 kHz의 정수배인 경우(예, 0, 30, 60, ...), k SSB의 LSB 값은 여전히 (동기화 래스터에서 전송되는 SS/PBCH 블록의 경우와 동일하게) '0' 으로 정의될 수 있다(예, k SSB = 00000, 00010, 00100, ...; xxxx0, x = 0 또는 1). 반면, 동기화 래스터를 중심으로 하지 않은 SS/PBCH 블록의 센터 주파수가, 채널/동기화 래스터와의 간격이 30 kHz의 정수배가 아니고 15 kHz의 (0 을 포함하지 않는) 정수배인 경우(예, 15, 45, ...), k SSB의 LSB 값은 '1'로 정의될 수 있다(예, k_SSB = 00001, 00011, ...; xxxx1, x = 0 또는 1). 대응되는 CORESET#0는 채널 래스터와의 그리드를 맞추기 위해, CORESET#0 상 RE들과 채널 래스터간의 간격은 30 kHz의 정수배로 유지될 것이기 때문이다. 따라서, 동기화 래스터를 중심으로 하지 않은 SS/PBCH 블록의 센터 주파수가 채널/동기화 래스터와의 간격이 30 kHz의 정수배가 아니고 15 kHz의 (0을 포함하지 않는) 정수배인 경우는 홀수 k SSB 값을 시그널링 할 수 있다(즉, LSB 값 = 1).
다시 말해, N QCL SSB 값이 subCarrierSpacing Common에 대응되는 1 비트와 ssb-SubcarrierOffset LSB 1 비트의 조합으로 {1,2,4,8} 중에 한 값임이 PBCH 페이로드를 통해 지시될 때,
- SS/PBCH 블록의 센터 주파수와, 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배를 만족하면, ssb-SubcarrierOffset (또는, k SSB)의 LSB 1 비트는 '0'으로 가정될 수 있다.
- 반면, SS/PBCH 블록의 센터 주파수와, 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배를 만족하지 않고, 해당 간격이 15 kHz의 (0을 포함하지 않는) 정수배를 만족하면, ssb-SubcarrierOffset (또는, k SSB)의 LSB 1 비트는 '1'로 가정될 수 있다.
제안 사항은 표 6과 조합하여 다음과 같이 정리될 수 있다.
[표 18]
Figure PCTKR2020013515-appb-img-000023
* case A: SS/PBCH 블록의 센터 주파수와 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배임
* case B: SS/PBCH 블록의 센터 주파수와 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배가 아님
또는, k SSB는 다음과 같이 정의되는 것으로 이해될 수 있다(표 19 참조).
- SS/PBCH 블록이 면허 캐리어에서 검출된 경우: k_SSB = 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset 4 비트,
- SS/PBCH 블록이 비면허 캐리어에서 검출된 경우: k_SSB = 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset MSB 3 비트들 + X (X = 0 for case A, 1 for case B; 표 9 참조).
[표 19]
Figure PCTKR2020013515-appb-img-000024
면허/비면허 캐리어는 SS/PBCH 블록이 검출된 캐리어의 주파수에 따라 구별되며, 채널/동기화 래스터의 간격은 각 캐리어 (타입) 별로 규격에 기-정의될 수 있다. 혹은, 동일 주파수라 할 지라도 지역에 따라 면허 캐리어인지 비면허 캐리어인지 다를 수 있다. 이 경우, 면허/비면허 캐리어 여부는, PBCH 페이로드 혹은 CRC 값을 달리하여 구분되거나, 해당 주파수에서 면허 밴드용 동기화 래스터와 비면허 밴드용 동기화 래스터를 별도로 규격에 기-정의하여 구분될 수 있다. 단말은 k SSB에 기반하여 CORESET#0 위치를 찾아 PDCCH 모니터링을 수행할 수 있다. 또한, 단말은 N QCL SSB에 기반하여 도 9의 동작을 수행할 수 있다.
추가적으로, 본 방법은 기존 Rel-15 NR에서 k SSB를 구성하는 2 MSB 비트들(즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트와 ssb-SubcarrierOffset 4 비트들 중 MSB 1 비트)가 '11'이 아닌 경우에 한해 적용될 수 있다. 즉, 표 20과 같이, Rel-15 NR 시스템에서 k SSB 값이 24이상인 경우(즉, k SSB를 구성하는 2 MSB 비트가 모두 '1'), k SSB 값은 해당 SS/PBCH 블록에서는 CORESET#0가 제공되지 않으므로 가장 가까운 (CORESET#0 정보를 포함한) 다른 SS/PBCH 블록의 위치를 알려주는 용도로 사용되기 때문이다. 다시 말해, (비면허 밴드라 할 지라도) k SSB를 구성하는 2 MSB 비트들 (즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트와 ssb-SubcarrierOffset 4 비트들 중 MSB 1 비트)가 '11'이면 기존 Rel-15 NR 시스템과 같이 ssb-SubcarrierOffset LSB 값을 k SSB의 LSB로 설정하여 표 20과 같이 해석할 수 있다. 반면, k SSB를 구성하는 2 MSB 비트들이 '00' 혹은 '10' 혹은 '01'인 경우, 본 방법을 적용하여 k SSB의 LSB 값이 설정될 수 있다. 다른 방법으로, (비면허 밴드라고 할 지라도) k SSB를 구성하는 2 MSB 비트들이 '11'이라면 기존 Rel-15 NR 시스템과 같이 ssb-SubcarrierOffset LSB 값을 k SSB의 LSB로 설정하고, k SSB를 구성하는 2 MSB 비트들이 '00' 혹은 '10' 혹은 '01'인 경우, k SSB의 LSB 값은 항상 '0'으로 설정하고, 동기화 래스터를 중심으로 하지 않은 (ANR 목적 등으로 CORESET#0 위치를 찾아야 할 필요가 있는) SS/PBCH 블록의 위치를 동기화 래스터로부터 30 kHz의 배수만 되도록 제약을 가할 수 있다.
[표 20]
Figure PCTKR2020013515-appb-img-000025
2) Trasnsmitter (Entity B; 예, BS):
[방법#1A] SS/PBCH 블록의 특정 RE (예, 최소 RB 인덱스 상 첫 RE)로부터 CORESET#0의 특정 RE (예, 최소 RB 인덱스 상 첫 RE)까지의 오프셋 값을, 기지국은 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 시그널링 할 수 있다. 이때, 오프셋 값은 RB 및/혹은 RE 레벨의 값으로 정의될 수 있으며, RB 레벨 오프셋 값은 NR-U용 주파수 대역에 정의된 동기화 래스터 및 채널 래스터에 의해 그 범위가 (각 주파수 대역에 따라 다르게) 결정될 수 있다. 여기서, RE는 주파수 축에서의 단위를 나타내기 위한 것으로서, RE 순서는 하나의 OFDM 심볼 내에서의 RE 순서에 해당할 수 있다. 따라서, RE는 부반송파로 대체될 수 있다.
NR-U 시스템에 대응되는 주파수 대역에서 초기 접속을 시도하는 단말은 30 kHz SCS SS/PBCH 및 CORESET#0을 기대할 수 있다. 이 경우, 기존 NR 시스템과 동일하게, CORESET#0의 주파수 영역/위치 및 시간 축 구간이 정의될 수 있다. 표 10은 기존의 NR 시스템에서 최소 채널 대역이 5 MHz 또는 10 MHz인 주파수 밴드에서 {SS/PBCH 블록, PDCCH} SCS가 {30, 30} kHz인 경우에 Type0-PDCCH 검색 공간 세트를 위한 CORESET의 RB들과 슬롯 심볼의 세트를 나타낸다.
하지만, NR-U에서 30 kHz CORESET#0의 RB 개수는 48개, 시간 축 구간은 1개 또는 2개 (OFDM) 심볼로 제약이 가해질 수 있다. 또한, RB 레벨 오프셋 값은 NR-U용 주파수 대역에 정의된 동기화 래스터 및 채널 래스터에 의해 범위가 결정될 수 있다. 일 예로, NR-U 시스템이 동작할 수 있는 각 대역 및 캐리어/BWP 대역 조합에 대해, SS/PBCH 블록의 최소 RB 인덱스와 CORESET#0의 최소 RB 인덱스간 RB 레벨 오프셋 값의 최대/최소값이 [A, B] 범위에 있을 때, 표 10의 오프셋에 대응되는 컬럼에서 A~B 사이의 전체 혹은 일부 값을 시그널링 할 수 있다. 일 예로, A=-2, B=5인 경우, 총 16개 상태들 중 8개 상태는 1개 심볼, 나머지 8개 상태는 2개 심볼에 대응되며, 각 8개 상태는 -2~5의 RB 레벨 오프셋 값을 시그널링 할 수 있다. 추가로, RE 레벨 오프셋 값은 NR 시스템과 동일하게 k SSB 값을 통해 시그널링 될 수 있다. 표 11은 A=-2, B=5인 경우의 CORESET#0 구성을 예시한다.
일 예로, 도 13과 같이, 단말이 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드로부터 SS/PBCH 블록과 CORESET#0간의 주파수 오프셋인 '오프셋 X' 값을 시그널링 받을 수 있다. 일 예로, 표 11의 인덱스#4 값을 PBCH 페이로드를 통해 시그널링 받고, k SSB=6 값을 PBCH 페이로드를 통해 시그널링 받은 경우, 단말은 SS/PBCH 블록으로부터 2 RBs 및 6 REs 떨어진 곳으로부터 CORESET#0 주파수 영역이 시작됨을 인지할 수 있다.
다른 예로, 도 14와 같이 SS/PBCH 블록의 RB#0와 51 PRBs의 RB#0간 주파수 축 위치 차이가 1 PRB 이내일 수 있으며, 도 15와 같이 SS/PBCH 블록의 RB#0와 51 PRBs의 RB#0간 주파수 축 위치 차이가 4 PRBs 초과일 수도 있다. 도 14의 경우에는, 인접 20 MHz와의 간섭 등을 고려하여 CORESET#0의 첫 PRB는 51 PRBs 중 두 번째 PRB와 정렬되는 것이 바람직할 수 있다. 이 경우, RB 오프셋으로 -1 PRB가 필요할 수 있다. 동일하게, 도 15의 경우에도, 인접 20 MHz와의 간섭 등을 고려하여 CORESET#0의 마지막 PRB는 51 PRBs 중 마지막에서 두 번째 PRB와 정렬되는 것이 바람직할 수 있다. 이 경우, RB 오프셋으로 2 PRBs가 필요할 수 있다. 이러한 경우를 고려하여, 최소 -1부터 최대 2 PRBs까지의 RB 오프셋 값에 관한 정보가 설정될 필요가 있으며, 하기 표 12와 같은 방법으로 PBCH 페이로드를 통해 CORESET#0의 시간/주파수 축 자원 위치를 설정할 수 있다. 표 12에서 "reserved" 상태는 [-1,2]의 범위가 아닌 RB 오프셋 값이 필요하게 될 때를 대비하기 위함일 수 있다. 혹은, [-k,k] (예, k=2) 범위의 RB 오프셋 및 reserved 상태들이 시그널링 될 수 있다.
또한, SS/PBCH 블록이 15 kHz SCS 기반으로 전송되는 경우, 표 13과 같이 RB 개수는 96 PRBs로 설정되고, RB 오프셋은 (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들로 설정될 수 있다. 혹은, 표 14와 같이 RB 개수는 96 PRBs로 설정되고, RB 오프셋은 (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들에 추가로, 15 kHz SCS 기반 RB-그래뉼래리티로 설정될 수 있다. 혹은, 표 15와 같이, (표 12와 같은) 30 kHz SCS 기반 RB 오프셋 값들의 2 배에 대응되는 값들에 추가로, SS/PBCH 블록의 20 PRBs에 대응되는 절대 주파수 영역 자원의 차이가 반영된 값일 수 있다. 즉, SS/PBCH 블록은 SCS에 무관하게 20 PRBs이므로 30 kHz SCS일 때에 비해, 15 kHz SCS의 경우 주파수 축 자원이 (15 kHz SCS 기준 20 PRBs 만큼) 줄어든다. 따라서, {30 kHz SCS 기반 RB 오프셋 값 들의 2 배} + 10 (SS/PBCH 블록의 중심 주파수를 기준으로 10 PRBs 만큼 줄어들기 때문) 값에 대응되는 값들 (혹은, 해당 대응되는 값들의 최소/최대값을 사이로 하는 RB 그래뉼래리티 값들)로 표 15와 같이 RB 오프셋 값이 채워질 수 있다.
표 12는 SS/PBCH 블록이 30 kHz SCS 기반인 경우의 CORESET#0 구성을 예시하고, 표 13~15는 SS/PBCH 블록이 15 kHz SCS 기반인 경우의 CORESET#0 구성을 예시한다. 표에서 a~d는 각각 정수를 나타낸다. RB 오프셋은 Type0-PDCCH CSS 세트를 위한 CORESET (즉, CORESET#0)의 SCS를 기준으로 정의되며, 도 12~15에 도시한 바와 같이, CORESET#0의 SCS는 대응되는 SS/PBCH 블록의 SCS와 동일하다.
[방법#2A] SS/PBCH 블록이 전송된 주파수 대역에 대응되는 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 시그널링 할 수 있다. 이때, 오프셋 값은 RB 및/혹은 RE 레벨의 값일 수 있으며, RB 레벨 오프셋 값은 NR-U 용 주파수 대역에서 정의된 채널 래스터에 의해 범위가 (각 주파수 대역에 따라 다르게) 결정될 수 있다.
Wi-Fi와의 공존 여부에 따라 채널 래스터 후보들이 달라질 수 있다면, 본 제안에서의 채널 래스터 값은 Wi-Fi와의 공존을 가정한 상황에서의 채널 래스터를 의미할 수 있다. 또한, 캐리어/BWP 대역에 따라 채널 래스터 후보들이 달라질 수 있다면, 본 제안에서의 채널 래스터 값은 특정 캐리어 대역 값(예, 20 MHz)을 가정한 상태에서의 채널 래스터 값을 의미할 수 있다.
일 예로, NR-U가 동작할 수 있는 각 대역 및 특정 캐리어 대역(예, 20 MHz) 조합에 대해, 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 RB 레벨 오프셋 값의 최대/최소값이 [A, B] 범위에 있을 때, 표 10의 오프셋에 대응되는 컬럼에서 A~B 사이의 전체 혹은 일부 값을 시그널링 할 수 있다. 일 예로, A=-3, B=4 인 경우, 총 16개 상태들 중 8개 상태는 1개 심볼, 나머지 8개 상태는 2개 심볼에 대응되며, 각 8개 상태는 -3~4의 RB 레벨 오프셋 값을 시그널링 할 수 있다. 추가로, RE 레벨 오프셋 값은 NR 시스템과 동일하게 k SSB 값을 통해 시그널링 될 수 있다. 표 16은 A=-3, B=4인 경우의 CORESET#0 구성을 예시한다.
일 예로, 도 17과 같이, 단말이 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz를 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해, 해당 대역에 정의된 특정 채널 래스터 값(예, 5160 MHz)와 CORESET#0의 센터 주파수간 오프셋 값을 시그널링 받을 수 있다. 예를 들어, 표 16의 인덱스#3 값을 PBCH 페이로드를 통해 시그널링 받고, k SSB=0 값을 PBCH 페이로드를 통해 시그널링 받은 경우, 단말은 채널 래스터를 센터 주파수로 하는 48 PRBs로 구성된 CORESET#0의 주파수 자원 영역을 인지할 수 있다.
다른 예로, SS/PBCH 블록이 전송된 주파수 대역에 대응되는 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을, 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 설정 받을 수 있을 때, 해당 오프셋 값은 (RB 레벨 오프셋이 아닌) RE 레벨 오프셋 값만이 시그널링 될 수 있다. 즉, 특정 채널 래스터와 CORESET#0의 센터 주파수를 정렬하고, k SSB 값을 통해 CORESET#0의 RB 그리드와 해당 주파수 대역에서 기지국이 운용하는 캐리어/BWP 상 RB 그리드를 정렬할 수 있다. 이때, k SSB 값은 기준점인, 채널 래스터를 기준으로 (낮은(lower) 주파수 방향으로) n RE 오프셋(들)(n은 음수일 수 있음)을 의미하거나, (높은(higher) 주파수 방향으로) n RE 오프셋(들)(n은 양수일 수 있음)을 의미할 수 있다. 일 예로, k SSB 값이 1~12이면 높은 주파수 방향으로의 RE 오프셋을 의미하고(예, k SSB=n이면 높은 주파수 방향으로의 n RE 오프셋), k SSB 값이 13~23이면 낮은 주파수 방향으로의 RE 오프셋을 의미할 수 있다(예, k SSB=n이면 낮은 주파수 방향으로의 (n-12) RE 오프셋).
[방법#3A] SS/PBCH 블록이 전송된 대역에 대응되는 복수의 CORESET#0 주파수 자원 영역에 대한 후보들이 정의될 수 있으며, 그 중 어떤 후보가 실제 자원인지가 해당 SS/PBCH 블록의 PBCH 페이로드를 통해 시그널링 할 수 있다. 이때, 복수의 CORESET#0 주파수 자원 영역에 대한 후보들은 캐리어/BWP 대역, 캐리어/BWP 대역 내에서 사용되는 PRB 개수, 및/혹은 캐리어/BWP 대역 내의 SS/PBCH 블록이 전송된 20 MHz 대역의 위치(예, 40 MHz 캐리어 대역 내에서 높은(higher) 20 MHz에 SS/PBCH 블록이 위치할지 낮은(lower) 20 MHz에 SS/PBCH 블록이 위치할지) 등에 따라 다르게 정의될 수 있다. 또한, 시그널링을 통해 CORESET#0 위치뿐 아니라 RB 그리드를 동시에 알려줄 수 있다.
편의상, 도 17과 같이 5150~5170 MHz 대역에서 20 MHz 캐리어를 51 PRBs로 운용하는 경우, SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 X로 정의한다. 또한, 도 18과 같이 5150~5170 MHz 대역에서 20 MHz 캐리어를 50 PRBs로 운용하는 경우 SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 Y로 정의한다. 또한, 도 19와 같이 5150~5190 MHz 대역에서 40 MHz 캐리어를 106 PRBs로 운용하는 경우, SS/PBCH 블록과 CORESET#0간 오프셋 값을 오프셋 Z로 정의할 수 있다.
기지국은 PBCH 페이로드를 통해 오프셋 X/Y/Z 중 어떤 값인지를 시그널링 할 수 있다. 단말은 5150~5170 MHz 대역에서 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 수신했을 때, 해당 SS/PBCH 블록의 PBCH 페이로드로부터 오프셋 X/Y/Z 중 한 값을 수신할 수 있다. 단말은 수신한 오프셋을 적용하여 CORESET#0의 최소 RB 위치를 인지할 수 있다. 해당 예시는 SS/PBCH 블록과 CORESET#0간의 오프셋 값을 시그널링 하는 예시이지만, [방법#2A]와 같이 채널 래스터와 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값을 시그널링 할 수도 있다. 또한, 해당 오프셋 값은 SS/PBCH 블록에 대응되는 주파수 대역에 따라 다르게 정의/해석될 수 있다.
[방법#4A] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, 해당 SS/PBCH 블록에 대응되는 대역 상에 정의된 동기화 래스터에서 전송된 SS/PBCH 블록이라 가정하여 디코딩된 PBCH 페이로드로부터의 정보를 재해석할 수 있다.
다음과 같은 동기 하에서, 동기화 래스터가 아닌 SS/PBCH 블록의 경우에도 기지국은 CORESET#0 주파수 자원 정보를 제공해야 할 필요가 있을 수 있다.
비면허 대역에서 서로 다른 운영자(operator)들이 공존할 수 있고, 동일 운영자라 할 지라도 unplanned deployment 환경일 수 있으므로, 동일 대역에서 셀 간에 사용되는 (물리) 셀 ID가 동일할 수 있다. 이로 인한 단말의 혼동을 해결하기 위해, 기지국은 (동기화 래스터에서 전송되지 않는 SS/PBCH 블록이라 할 지라도) 운영자 ID, PLMN(Public Land Mobile Network) ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(예, SIB1)을 위한 CORESET#0 및 type0-PDCCH CSS 세트에 대한 정보를 전송해야 할 수 있다. 일 예로, 주파수#X (주파수#X는 동기화 래스터와 일치하지 않을 수 있음) 상에서 SS/PBCH 블록을 전송하는 gNB#X가 있고, gNB#Y와 연계(association)된 UE#Y가 있을 때, gNB#Y가 UE#Y에게 주파수#X에 대한 측정을 지시할 수 있다. 주파수#X에 대한 측정을 수행한 UE#Y는, 발견한 gNB#X의 셀 ID와 해당 셀에 대한 측정 결과를 gNB#Y에게 보고할 수 있다. gNB#Y 입장에서 gNB#X가 동일 운영자인지 모르는 경우, gNB#Y는 UE#Y에게 gNB#X의 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(예, SIB1) 정보를 읽고 해당 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보를 보고하도록 지시할 수 있다. 해당 정보를 수신한 gNB#Y는 gNB#X의 운영자 정보 등을 업데이트 할 수 있다. 이러한 동작을 고려하여, 주파수#X 상에서 SS/PBCH 블록을 전송하는 gNB#X는 SS/PBCH 블록 상에 명시적으로/암묵적으로 운영자 ID, PLMN ID 또는 글로벌 셀 ID 정보가 담긴 상위 계층 시그널링(편의상, SIB1이라고 명명하나, 그 외의 셀-공통 상위 계층 시그널링에 대응될 수 있음)이 실린 PDSCH를 스케줄링 하는, CORESET#0 및 type0-PDCCH CSS 세트에 대한 정보를 전달할 필요가 있다.
일 예로, 도 20과 같이, 동기화 래스터가 아닌 주파수#X를 센터 주파수로 하는 SS/PBCH 블록 내의 PBCH 페이로드를 디코딩 한 단말을 고려하여 기지국은, 해당 SS/PBCH 블록에 대응되는 5150~5170 MHz 대역에 정의된 동기화 래스터인 5155.68 MHz을 센터 주파수로 하는 SS/PBCH 블록을 기반으로 해당 PBCH 페이로드 정보를 구성하여 전송할 수 있다. 구체적으로, [방법#1A]과 같이 주파수#X에 대응되는 PBCH 페이로드로부터 RB/RE 레벨 오프셋 값을 수신한 단말은, 해당 값을 동기화 래스터 상 SS/PBCH 블록의 특정 RE(예, 최소 RB 인덱스 상 첫 RE)로부터 CORESET#0의 특정 RE(예, 최소 RB 인덱스 상 첫 RE)까지의 오프셋 값으로 해석하여 CORESET#0의 주파수 자원 위치를 인지할 수 있다. 혹은, [방법#2A]와 같이 주파수#X에 대응되는 PBCH 페이로드로부터 RB/RE 레벨 오프셋 값을 전송한 기지국은, 해당 값을 주파수#X가 속한 대역에 대응되는 채널 래스터로부터 CORESET#0의 특정 주파수 자원(예, 센터 주파수)까지의 오프셋 값으로 계산하여 PBCH 페이로드 정보를 구성하여 전송할 수 있다. 혹은, [방법#3A]와 같이 주파수#X에 대응되는 PBCH 페이로드로부터 복수의 후보 중 하나의 값을 시그널링하는 기지국은, 해당 값을 주파수#X가 속한 5150~5170 MHz 대역에 대응되는 복수의 CORESET#0 주파수 자원 영역에 대한 후보들 중 실제 어떤 자원인지를 시그널링 수 있다.
[방법#5A] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, 제한된 PBCH 페이로드를 고려하여 동기화 래스터가 아닌, SS/PBCH 블록 전송이 허용된 센터 주파수 자원에 제약이 가해질 수 있다. SS/PBCH 블록 전송이 허용된 센터 주파수간 간격은 PRB 혹은 PRB 배수 간격일 수 있다. 여기서, PRB는 30 kHz SCS (혹은 15 kHz SCS) 기반일 수 있다. SS/PBCH 블록과 CORESET#0 간 PRB 혹은 PRB 배수 간격의 오프셋 시그널링이 필요할 수 있고, 해당 시그널링이 필요한 값이 8개 이하이면 표 11/12와 같이 MIB 내 CORESET 구성을 통해 설정할 수 있고, 8개 초과인 경우 MIB 내 CORESET 구성 및/혹은 k SSB 값을 위한 비트들 중 일부 혹은 전체를 활용하여 설정할 수도 있다.
[방법#6A] 동기화 래스터가 아닌 SS/PBCH 블록에 대해, 단말이 해당 PBCH 페이로드를 디코딩 하여 CORESET#0 주파수 자원 위치를 파악해야 하는 경우, SS/PBCH 블록의 센터 주파수 값이 15 kHz SCS 그래뉼래리티 상에 제약 없이 모두 위치할 수 있도록 지원하기 위해, N QCL SSB 값에 대한 시그널링 방법이 동기화 래스터에서 전송되는 SS/PBCH 블록에서 시그널링 하는 방법과 달라질 수 있다.
N QCL SSB 값은 서로 다른 후보 SSB 인덱스 간의 QCL 관계를 알려주며, 기존 NR-U에서는 (1) subCarrierSpacingCommon에 대응되는 1 비트와 (2) spare 1 비트 또는 ssb-SubcarrierOffset LSB 1 비트의 조합에 기반하여, {1,2,4,8} 중 한 값이 PBCH 페이로드를 통해 지시된다(표 6 참조). ssb-SubcarrierOffset 값은 주파수 범위(FR) 1에서 k_SSB 값을 지시하는 데 쓰인다. 기존 NR-U에서는 동기화 래스터와 채널 래스터가 모두 30 kHz 그래뉼래리티에 위치하게 되어, 15 kHz 단위로 지시되는 ssb-SubcarrierOffset LSB 1 비트는 리던던트(redundant) 하다. 따라서, 해당 LSB 1 비트가 N QCL SSB 값을 시그널링 하는 데 사용될 수 있었다.
그러나, 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 (예, ANR(Automatic Neighbor Relations) 용도의) SS/PBCH 블록의 경우, 주파수 축 상 어느 15 kHz 그래뉼래리티에서도 전송이 허용될 수 있다. NR-U 시스템을 위해 5 GHz 밴드에 정의된 채널 래스터는 30 kHz 그래뉼래리티 상에 위치하므로, CORESET#0의 RE들도 25 kHz 그래뉼래리티 상에 위치할 수 있다. 이에 따라, SS/PBCH 블록은 15 kHz 그래뉼래리티로 전송되나, CORESET#0은 30 kHz 그래뉼래리티로 전송된다면 ssb-SubcarrierOffset LSB 1 비트도 k_SSB 시그널링을 위해 필요할 수 있다. 이때, ssb-SubcarrierOffset LSB 1 비트를 활용하여 N QCL SSB 값을 시그널링 할 수 없는 문제가 발생하므로, N QCL SSB 값을 시그널링 하는 다른 방법을 제안한다. 즉, 동기화 래스터에서 전송되는 SS/PBCH 블록의 경우는 표 6과 같은 방법으로 N QCL SSB 값을 시그널링 할 수 있으나, 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 SS/PBCH 블록의 경우는 Opt1 혹은 Opt2을 통해 N QCL SSB 값을 시그널링 할 수 있다.
- Opt1: ssb-SubcarrierOffset의 LSB 대신, PBCH 페이로드 내의 다른 비트와 subCarrierSpacingCommon의 결합을 통해 N QCL SSB 값을 시그널링 할 수 있다.
- Opt2: N QCL SSB 값에 대한 시그널링은 subCarrierSpacingCommon에 대응되는 1 비트로만 설정할 수 있다.
Opt1은 subCarrierSpacingCommon에 추가로, PBCH 페이로드 상의 1 비트(예, pdcch-ConfigSIB1 4 비트 중 MSB 1 비트, dmrs-TypeA-Position 1 비트 등)과의 결합을 통해, 표 6과 같이 N QCL SSB 값을 시그널링 하는 방법이다. pdcch-ConfigSIB1 4 비트 중 MSB 1 비트를 활용할 수 있는 이유는, 표 9와 같이 8 개의 reserved 상태는 시그널링 되지 않을 수 있기 때문이다. 또한, dmrs-TypeA-Position 1 비트를 활용하면, Type A DMRS 위치에 대한 가정이 필요한데 동기화 래스터가 아닌 주파수 자원을 센터 주파수로 하는 SS/PBCH 블록 대응되는 시스템 정보를 수신하기 위한 PDCCH/PDSCH 등을 수신함에 있어서, 기지국은 슬롯 내 항상 3 번째 (혹은 4 번째) 심볼에서 type A DMRS의 첫 번째 DMRS가 전송할 수 있다.
Opt2는 PBCH 페이로드 상 추가 1 비트를 활용하기 힘든 경우, 표 17과 같이, subCarrierSpacingCommon만으로 N QCL SSB 값을 시그널링 한다. 표 17은 시그널링의 예시일 뿐, 실제 scs15or60 및 scs30or120에 대응되는 값은 1/2/4/8 중 어느 한 값으로 각각 대체될 수 있다.
[방법#7A] N QCL SSB 값이 subcarrierSpacingCommon에 대응되는 1 비트와 ssb-SubcarrierOffset LSB 1 비트의 조합으로 {1,2,4,8} 중에 한 값임이 PBCH 페이로드를 통해 지시될 때(표 6 참조), k SSB의 LSB 값에 대한 정의가 필요할 수 있다. 구체적으로, SS/PBCH 블록의 센터 주파수가 1) 동기화 래스터와 동일하거나 2) 채널 래스터와 동일하거나 3) 채널/동기화 래스터와의 간격이 30 kHz의 정수배인 경우, k SSB의 LSB 값은 '0'으로 정의될 수 있다. 반면, SS/PBCH 블록의 센터 주파수가, 채널/동기화 래스터와의 간격이 15 kHz의 (0을 포함하지 않는) 정수배인 경우, k SSB의 LSB 값은 '1'로 정의될 수 있다.
5 GHz 밴드에서 NR-U 시스템을 위한 동기화/채널 래스터들의 간격은 모두 30 kHz의 정수배로 정의된다. 따라서, 채널 래스터를 중심 주파수로 하여 캐리어 대역을 구성하고, 해당 대역 내의 일부에서 (동기화 래스터를 중심으로 한) SS/PBCH 블록 및 CORESET#0가 전송/구성될 때, CORESET#0의 최소 RE(예, 1 st 부반송파)와 SS/PBCH 블록의 최소 RE(예, 1 st 부반송파)간 간격은 30 kHz의 정수배일 수 밖에 없다. 구체적으로, PBCH 페이로드는 CORESET#0의 최소 RE와 SS/PBCH 블록의 최소 RE 간 RE/RB 레벨 간격을 시그널링 한다. 여기서, RE 레벨 간격은 k SSB 5 비트 (즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset 4 비트)로 표현되며, RB 레벨 간격은 [방법#1A]에서 설명한 바와 같이 CORESET 구성 표에 기반하여 시그널링 된다. 구체적으로, SS/PBCH 블록의 최소 RE로부터 k SSB만큼의 RE 레벨 간격이 떨어진 지점을 기준점으로, CRB 그리드를 생성하고, 해당 기준점에 CORESET#0 구성의 RB 레벨 오프셋을 적용하여 CORESET#0의 최소 RE 위치를 찾아낼 수 있다(도 11 참조). 여기서, k SSB는 15 kHz 간격의 시그널링인데(즉, SCS=15 kHz를 기준으로 하는 부반송파 개수), NR-U 시스템에서 CORESET#0의 최소 RE와 (동기화 래스터를 중심으로 한) SS/PBCH 블록의 최소 RE간의 간격은 30 kHz의 정수배 관계가 만족되므로, ssb-SubcarrierOffset의 LSB 1 비트는 항상 '0'일 수 있다. 따라서, 해당 값을 다른 용도로 대체하여, 예를 들어, N QCL SSB 값을 시그널링 하는 데에 활용할 수 있다.
하지만, [방법#6A]에서 설명한 바와 같이 (ANR 목적 등으로) 동기화 래스터를 중심으로 하지 않는 SS/PBCH 블록에 대해서도 대응되는 CORESET#0 위치를 찾아야 할 수 있다. 이때, SS/PBCH 블록의 센터 주파수가, (1) 채널 래스터와 동일하거나, (2) 채널/동기화 래스터와의 간격이 30 kHz의 정수배인 경우(예, 0, 30, 60, ...), k SSB의 LSB 값은 여전히 (동기화 래스터에서 전송되는 SS/PBCH 블록의 경우와 동일하게) '0' 으로 정의될 수 있다(예, k SSB = 00000, 00010, 00100, ...; xxxx0, x = 0 또는 1). 반면, 동기화 래스터를 중심으로 하지 않은 SS/PBCH 블록의 센터 주파수가, 채널/동기화 래스터와의 간격이 30 kHz의 정수배가 아니고 15 kHz의 (0 을 포함하지 않는) 정수배인 경우(예, 15, 45, ...), k SSB의 LSB 값은 '1'로 정의될 수 있다(예, k_SSB = 00001, 00011, ...; xxxx1, x = 0 또는 1). 대응되는 CORESET#0는 채널 래스터와의 그리드를 맞추기 위해, CORESET#0 상 RE들과 채널 래스터간의 간격은 30 kHz의 정수배로 유지될 것이기 때문이다. 따라서, 동기화 래스터를 중심으로 하지 않은 SS/PBCH 블록의 센터 주파수가 채널/동기화 래스터와의 간격이 30 kHz의 정수배가 아니고 15 kHz의 (0을 포함하지 않는) 정수배인 경우는 홀수 k SSB 값을 시그널링 할 수 있다(즉, LSB 값 = 1).
다시 말해, N QCL SSB 값이 subCarrierSpacing Common에 대응되는 1 비트와 ssb-SubcarrierOffset LSB 1 비트의 조합으로 {1,2,4,8} 중에 한 값임이 PBCH 페이로드를 통해 지시될 때,
- SS/PBCH 블록의 센터 주파수와, 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배를 만족하면, ssb-SubcarrierOffset (또는, k SSB)의 LSB 1 비트는 '0'으로 가정될 수 있다.
- 반면, SS/PBCH 블록의 센터 주파수와, 채널/동기화 래스터의 간격이 30 kHz의 (0을 포함하는) 정수배를 만족하지 않고, 해당 간격이 15 kHz의 (0을 포함하지 않는) 정수배를 만족하면, ssb-SubcarrierOffset (또는, k SSB)의 LSB 1 비트는 '1'로 가정될 수 있다. 제안 사항은 표 6과 조합하여 표 18과 같이 정리될 수 있다.
또는, k SSB는 다음과 같이 정의되는 것으로 이해될 수 있다(표 19 참조).
- SS/PBCH 블록이 면허 캐리어에서 검출된 경우: k_SSB = 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset 4 비트,
- SS/PBCH 블록이 비면허 캐리어에서 검출된 경우: k_SSB = 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트 + ssb-SubcarrierOffset MSB 3 비트들 + X (X = 0 for case A, 1 for case B; 표 19 참조).
면허/비면허 캐리어는 SS/PBCH 블록이 검출된 캐리어의 주파수에 따라 구별되며, 채널/동기화 래스터의 간격은 각 캐리어 (타입) 별로 규격에 기-정의될 수 있다. 기지국은 k SSB에 기반하는 CORESET#0 위치에서 PDCCH를 전송할 수 있다. 혹은, 동일 주파수라 할 지라도 지역에 따라 면허 캐리어인지 비면허 캐리어인지 다를 수 있다. 이 경우, 면허/비면허 캐리어 여부는, PBCH 페이로드 혹은 CRC 값을 달리하여 구분되거나, 해당 주파수에서 면허 밴드용 동기화 래스터와 비면허 밴드용 동기화 래스터를 별도로 규격에 기-정의하여 구분될 수 있다. 또한, 기지국은 N QCL SSB에 기반하여 도 9의 동작을 수행할 수 있다.
추가적으로, 본 방법은 기존 Rel-15 NR에서 k SSB를 구성하는 2 MSB 비트들(즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트와 ssb-SubcarrierOffset 4 비트들 중 MSB 1 비트)가 '11'이 아닌 경우에 한해 적용될 수 있다. 즉, 표 20과 같이, Rel-15 NR 시스템에서 k SSB 값이 24이상인 경우(즉, k SSB를 구성하는 2 MSB 비트가 모두 '1'), k SSB 값은 해당 SS/PBCH 블록에서는 CORESET#0가 제공되지 않으므로 가장 가까운 (CORESET#0 정보를 포함한) 다른 SS/PBCH 블록의 위치를 알려주는 용도로 사용되기 때문이다. 다시 말해, (비면허 밴드라 할 지라도) k SSB를 구성하는 2 MSB 비트들 (즉, FR 2에서 후보 SSB 인덱스에 사용되는 MIB 내 3 비트들 중 MSB 1 비트와 ssb-SubcarrierOffset 4 비트들 중 MSB 1 비트)가 '11'이면 기존 Rel-15 NR 시스템과 같이 ssb-SubcarrierOffset LSB 값을 k SSB의 LSB로 설정하여 표 20과 같이 해석할 수 있다. 반면, k SSB를 구성하는 2 MSB 비트들이 '00' 혹은 '10' 혹은 '01'인 경우, 본 방법을 적용하여 k SSB의 LSB 값이 설정될 수 있다. 다른 방법으로, (비면허 밴드라고 할 지라도) k SSB를 구성하는 2 MSB 비트들이 '11'이라면 기존 Rel-15 NR 시스템과 같이 ssb-SubcarrierOffset LSB 값을 k SSB의 LSB로 설정하고, k SSB를 구성하는 2 MSB 비트들이 '00' 혹은 '10' 혹은 '01'인 경우, k SSB의 LSB 값은 항상 '0'으로 설정하고, 동기화 래스터를 중심으로 하지 않은 (ANR 목적 등으로 CORESET#0 위치를 찾아야 할 필요가 있는) SS/PBCH 블록의 위치를 동기화 래스터로부터 30 kHz의 배수만 되도록 제약을 가할 수 있다.
3) Receiver & Transmitter (Between Receiver and Transmitter)
본 명세의 제안에 따라, 도 21과 같이 5 GHz 혹은 6 GHz 대역 상 동작하는 기지국은, 대응되는 대역에서 정의된 동기화 래스터를 중심 주파수로 하여 SS/PBCH 블록을 전송하고, CORESET#0의 주파수 자원에 대한 정보를 해당 SS/PBCH 블록 내 PBCH 페이로드를 통해 전송할 수 있다(S2102). SS/PBCH 블록을 수신한 단말은, 해당 SS/PBCH 블록이 발견된 대역 및/혹은 SS/PBCH 블록 내 PBCH 페이로드(예, CORESET 구성(예, pdcch-ConfigSIB1), k SSB, 기타 다른 정보)를 해석하여 CORESET#0의 주파수 자원 영역을 인지할 수 있다(S2104). 또한, 단말은 SS/PBCH 블록 내 PBCH 페이로드(예, pdcch-ConfigSIB1)를 해석하여 type0-PDCCH 모니터링 기회(monitoring occasion)에 대한 정보를 얻을 수 있다. 이후, 단말은 type0-PDCCH 모니터링 기회의 CORESET#0 주파수 자원 영역에서 PDCCH를 수신하고, 해당 PDCCH가 스케줄링한 PDSCH를 통해 SI(예, SIB1)를 획득할 수 있다.
혹은, 본 명세의 제안에 따라, 도 22와 같이, 일 예로, ANR을 목적으로 기지국이 비면허 대역 상 동기화 래스터로 정의되지 않은 주파수를 중심 주파수로 하는 SS/PBCH 블록을 전송 중이라 할 지라도, 해당 SS/PBCH 블록에서 CORESET#0 및/혹은 type0-PDCCH 모니터링 기회에 대한 정보가 전송될 수 있다(S2202). 단말은 수신된 SS/PBCH 블록을, 해당 SS/PBCH 블록이 속한 대역 내 동기화 래스터 상에서 전송된 SS/PBCH 블록으로 가정하고, 해당 대역 및 발견된 SS/PBCH 블록으로부터 획득한 PBCH 정보 등을 적용함에 있어서, 해당 SS/PBCH 블록이 동기화 래스터를 통해 전송된 것처럼 해석하여 CORESET#0 및/혹은 type0-PDCCH 모니터링 기회에 대한 정보를 얻을 수 있다(S2204). 이후, 단말은 type0-PDCCH 모니터링 기회의 CORESET#0 주파수 자원 영역에서 PDCCH를 수신하고, 해당 PDCCH가 스케줄링한 PDSCH를 통해 SI(예, SIB1)를 획득할 수 있다.
본 명세의 제안에서 5 GHz 혹은 6 GHz 대역은 비면허 대역/UCell로 대체될 수 있다. 또한, 본 명세의 제안은, SS/PBCH 블록이 검출된 주파수 밴드(혹은, 셀)의 타입에 따라 CORESET#0와 관련된 MIB 정보를 다르게 구성/해석하는 방법으로 이해될 수 있다. 예를 들어, 방법#1의 경우, 단말은 SS/PBCH 블록이 검출한 뒤, MIB로부터 pdcch-ConfigSIB1를 획득할 수 있다. 이후, 단말은 SS/PBCH 블록이 검출된 주파수 밴드(혹은, 셀)이 면허 대역/LCell 혹은 비면허 대역/UCell인지에 따라 pdcch-ConfigSIB1의 해석을 다르게 할 수 있다. 예를 들어, 단말은 pdcch-ConfigSIB1의 MSB 4비트를 다음과 같이 해석할 수 있다.
[표 21]
Figure PCTKR2020013515-appb-img-000026
* 표 내의 정보는 CORESET#0 구성 정보를 예시한다. CORESET#0 구성 정보는 예를 들어, 다중화 패턴, RB 개수 및/또는 심볼 개수 중 적어도 하나를 더 포함할 수 있다.* Offset for LCell과 Offset for UCell은 독립적으로 설정될 수 있다. 예를 들어, Offset for LCell은 3GPP TS 38.213 Table 13-11~13-15에 기반하여 정의될 수 있고, Offset for UCell은 채널/동기화 래스터를 고려하여 본 명세의 제안에 따라 정의될 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 23는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 23를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 24는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 24를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 23의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 명세서에서, 적어도 하나의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 적어도 하나의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 적어도 하나의 지시 또는 컴퓨터 프로그램은 적어도 하나의 프로세서에 의해 실행될 때 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 프로세싱 기기(device) 또는 장치(apparatus)는 적어도 하나의 프로세서와 상기 적어도 하나의 프로세서여 연결 가능한 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 상기 적어도 하나의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
도 25은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 23 참조).
도 25을 참조하면, 무선 기기(100, 200)는 도 24의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 24의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 24의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 23, 100a), 차량(도 23, 100b-1, 100b-2), XR 기기(도 23, 100c), 휴대 기기(도 23, 100d), 가전(도 23, 100e), IoT 기기(도 23, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 23, 400), 기지국(도 23, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 25에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 26은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 26를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 25의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 방법에 있어서,
    비면허 대역에서 SSB(synchronization signal block)를 검출하는 단계로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고,
    상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 단계; 및
    상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 단계를 포함하고,
    상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함하는 방법:
    Figure PCTKR2020013515-appb-img-000027
    여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
  2. 제1항에 있어서,
    a, b, c 및 d는 각각 a, a+1, a+2 및 a+3인 방법.
  3. 제1항에 있어서,
    상기 SSB의 센터 주파수가 동기화 래스터에 대응하는 방법.
  4. 제1항에 있어서,
    상기 모니터링에 기반하여, 상기 CORESET로부터 PDCCH(physical downlink control channel)를 검출하는 것을 더 포함하는 방법.
  5. 제4항에 있어서,
    상기 PDCCH에 대응하는 PDSCH(physical downlink shared channel)를 통해 시스템 정보를 수신하는 것을 포함하는 방법.
  6. 무선 통신 시스템에 사용되는 단말에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은,
    비면허 대역에서 SSB(synchronization signal block)를 검출하는 것으로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고;
    상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 것; 및
    상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 것을 포함하고,
    상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함하는 단말:
    Figure PCTKR2020013515-appb-img-000028
    여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
  7. 제6항에 있어서,
    a, b, c 및 d는 각각 a, a+1, a+2 및 a+3인 단말.
  8. 제6항에 있어서,
    상기 SSB의 센터 주파수가 동기화 래스터에 대응하는 단말.
  9. 제6항에 있어서,
    상기 모니터링에 기반하여, 상기 CORESET로부터 PDCCH(physical downlink control channel)를 검출하는 것을 더 포함하는 단말.
  10. 제9항에 있어서,
    상기 PDCCH에 대응하는 PDSCH(physical downlink shared channel)를 통해 시스템 정보를 수신하는 것을 포함하는 단말.
  11. 단말을 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은:
    비면허 대역에서 SSB(synchronization signal block)를 검출하는 것으로서, 상기 SSB는 CORESET(control resource set) 구성에 관한 인덱스를 포함하고;
    상기 인덱스에 기반하여, 상기 SSB에 연계된 CORESET의 주파수 위치를 식별하는데 사용되는 RB(resource block) 오프셋을 결정하는 것; 및
    상기 RB 오프셋에 기반하여, 상기 비면허 대역 내에서 CORESET을 모니터링 하는 것을 포함하고,
    상기 SSB의 SCS(subcarrier spacing)에 기반하여, 상기 인덱스와 상기 RB 오프셋간의 관계는 하기 표의 관계를 포함하는 장치:
    Figure PCTKR2020013515-appb-img-000029
    여기서, n, a, b, c 및 d는 각각 정수를 나타낸다.
  12. 제11항에 있어서,
    a, b, c 및 d는 각각 a, a+1, a+2 및 a+3인 장치.
  13. 제11항에 있어서,
    상기 SSB의 센터 주파수가 동기화 래스터에 대응하는 장치.
  14. 제11항에 있어서,
    상기 모니터링에 기반하여, 상기 CORESET로부터 PDCCH(physical downlink control channel)를 검출하는 것을 더 포함하는 장치.
  15. 제14항에 있어서,
    상기 PDCCH에 대응하는 PDSCH(physical downlink shared channel)를 통해 시스템 정보를 수신하는 것을 포함하는 장치.
PCT/KR2020/013515 2019-10-02 2020-10-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2021066629A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227007103A KR102536875B1 (ko) 2019-10-02 2020-10-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR1020227040704A KR20220162182A (ko) 2019-10-02 2020-10-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN202080069507.6A CN114503740A (zh) 2019-10-02 2020-10-05 在无线通信系统中发送/接收无线信号的方法和设备
EP20871449.3A EP4037231A4 (en) 2019-10-02 2020-10-05 METHOD AND APPARATUS FOR TRANSMITTING/RECEIVING A WIRELESS SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
US17/711,537 US11576195B2 (en) 2019-10-02 2022-04-01 Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US17/992,576 US11716723B2 (en) 2019-10-02 2022-11-22 Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US18/334,066 US12127195B2 (en) 2019-10-02 2023-06-13 Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2019-0122681 2019-10-02
KR20190122681 2019-10-02
KR20190141833 2019-11-07
KR10-2019-0141833 2019-11-07
KR20190142517 2019-11-08
KR10-2019-0142517 2019-11-08
KR20200026305 2020-03-03
KR10-2020-0026305 2020-03-03
KR20200028504 2020-03-06
KR10-2020-0028504 2020-03-06
US202063012031P 2020-04-17 2020-04-17
US63/012,031 2020-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/711,537 Continuation US11576195B2 (en) 2019-10-02 2022-04-01 Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021066629A1 true WO2021066629A1 (ko) 2021-04-08

Family

ID=75338462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013515 WO2021066629A1 (ko) 2019-10-02 2020-10-05 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (5)

Country Link
US (2) US11576195B2 (ko)
EP (1) EP4037231A4 (ko)
KR (2) KR20220162182A (ko)
CN (1) CN114503740A (ko)
WO (1) WO2021066629A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242889B (zh) * 2019-07-18 2022-07-01 大唐移动通信设备有限公司 下行控制信道的检测方法、传输方法及设备
US11895634B2 (en) * 2021-01-28 2024-02-06 Qualcomm Incorporated Control resource set (CORESET) configuration for narrowband new radio (NR)
US12069597B2 (en) * 2021-11-17 2024-08-20 Qualcomm Incorporated PDSCH rate-matching in NTN
US20240146457A1 (en) * 2022-10-28 2024-05-02 Samsung Electronics Co., Ltd. Method and apparatus for ss/pbch block for narrow channel bandwidth
WO2024138671A1 (en) * 2022-12-30 2024-07-04 Zte Corporation Transmission mechanism with 120 khz subcarrier spacing in fr1 for wireless communications
WO2024093394A1 (en) * 2023-07-26 2024-05-10 Lenovo (Beijing) Limited Retrieval of system information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082032A (ko) * 2017-01-09 2018-07-18 주식회사 아이티엘 Nr 시스템을 위한 동기화 신호 및 구성 정보 송수신 방법 및 장치
WO2019095954A1 (zh) * 2017-11-14 2019-05-23 电信科学技术研究院有限公司 一种资源配置方法及装置、计算机存储介质
US20190159180A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Designs for remaining minimum system information (rmsi) control resource set (coreset) and other system information (osi) coreset

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
WO2020146791A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Control resource set configuration enhancement for off-raster synchronization signal blocks in an integrated access and backhaul
US11743904B2 (en) * 2019-03-28 2023-08-29 Ofinno, Llc Configured grant processes in a wireless device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082032A (ko) * 2017-01-09 2018-07-18 주식회사 아이티엘 Nr 시스템을 위한 동기화 신호 및 구성 정보 송수신 방법 및 장치
WO2019095954A1 (zh) * 2017-11-14 2019-05-23 电信科学技术研究院有限公司 一种资源配置方法及装置、计算机存储介质
US20190159180A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Designs for remaining minimum system information (rmsi) control resource set (coreset) and other system information (osi) coreset

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.213
ERICSSON: "SSB raster design of Rel-16 NR-U", 3GPP DRAFT; R4-1904255 (R16 NR-U) SSB RASTER OF NR-U, vol. RAN WG4, 1 April 2019 (2019-04-01), Xi’an, China, pages 1 - 8, XP051714603 *
NOKIA, NOKIA SHANGHAI BELL: "Initial Access Signals and Channels for NR-U", 3GPP DRAFT; R1-1904192_INITIAL ACCESS SIGNALS AND CHANNELS_NOKIA, vol. RAN WG1, 29 March 2019 (2019-03-29), Xi’an, China, pages 1 - 24, XP051691333 *

Also Published As

Publication number Publication date
US20220225372A1 (en) 2022-07-14
US11716723B2 (en) 2023-08-01
KR102536875B1 (ko) 2023-05-30
EP4037231A1 (en) 2022-08-03
KR20220162182A (ko) 2022-12-07
CN114503740A (zh) 2022-05-13
KR20220044768A (ko) 2022-04-11
US20230345486A1 (en) 2023-10-26
US20230092031A1 (en) 2023-03-23
EP4037231A4 (en) 2022-11-16
US11576195B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2021066629A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032742A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032687A1 (ko) Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
WO2020091494A1 (ko) Nr v2x에서 자원을 할당하는 방법 및 장치
WO2020091348A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 동작 수행 방법 및 상기 방법을 이용하는 단말
WO2020171677A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020060360A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020197351A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020130593A1 (ko) 무선 통신 시스템에서 bwp 스위칭을 수행하기 위한 방법 및 장치
WO2020060358A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021066633A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032558A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032679A1 (ko) Nr v2x에서 유연한 슬롯 포맷을 고려한 통신 방법 및 장치
WO2022071755A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020167084A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020167062A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020145751A1 (ko) 비면허 대역에서 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2021086084A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020111836A1 (ko) 무선 통신 시스템에서 동작하는 방법 및 장치
WO2020204496A1 (ko) 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
WO2020145746A1 (ko) 비면허 대역에서 동기 신호 블록의 시간 정보를 획득하는 방법 및 이를 위한 장치
WO2020091574A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020145801A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020091575A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022030867A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227007103

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871449

Country of ref document: EP

Effective date: 20220426