WO2021066356A1 - Electronic expansion-and-redirection integrated valve - Google Patents

Electronic expansion-and-redirection integrated valve Download PDF

Info

Publication number
WO2021066356A1
WO2021066356A1 PCT/KR2020/012501 KR2020012501W WO2021066356A1 WO 2021066356 A1 WO2021066356 A1 WO 2021066356A1 KR 2020012501 W KR2020012501 W KR 2020012501W WO 2021066356 A1 WO2021066356 A1 WO 2021066356A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
expansion
refrigerant
hole
output port
Prior art date
Application number
PCT/KR2020/012501
Other languages
French (fr)
Korean (ko)
Inventor
박장식
홍태호
박지완
이찬얼
Original Assignee
동일기계공업 주식회사
동일테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동일기계공업 주식회사, 동일테크윈 주식회사 filed Critical 동일기계공업 주식회사
Publication of WO2021066356A1 publication Critical patent/WO2021066356A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an integrated electronic expansion and direction change valve, in particular, in a closed state to block the flow of refrigerant, as well as an expanded state in which the refrigerant is expanded by forming an expansion gap, or in a fully open state in which the refrigerant is circulated without expansion. It is to provide an expansion valve that can be switched between degrees and simplifies the configuration of the vehicle air conditioner, enables precise control, and increases the airtightness of the refrigerant and the processability and productivity of the product, thereby lowering the production cost of the product while lowering the market competitiveness. It relates to a device that can maximize the.
  • a refrigeration cycle includes a compressor, a condenser, an expansion valve, and an evaporator, and is widely used for cooling a refrigerator or an air conditioner for cooling by circulating a refrigerant.
  • the expansion valve constituting the refrigeration cycle is a valve that reduces the high-temperature and high-pressure liquid refrigerant condensed and liquefied in the condenser to a pressure that can cause evaporation by throttling action, and an appropriate amount of refrigerant to absorb sufficient heat from the evaporator. It plays a role of regulating supply.
  • the conventional expansion valve has a problem in that the configuration is complicated and precise control is difficult, and in particular, not only the processability and productivity are poor, but also the airtightness to the refrigerant is low.
  • the refrigeration cycle has been improved to construct a heat pump that circulates the refrigerant in the reverse direction, and thus it is used as a heat source such as a heating cabinet or a heating air conditioner.
  • the expansion valve for cooling and the expansion valve for heating were conventionally configured respectively, but in this case, there was a problem that not only the manufacturing cost increased, but also the circulation line of the refrigerant became complicated and control was difficult. .
  • Patent Document 1 Korean Patent Publication No. 2011-0043128, Patent Document 2, Domestic Patent Publication No. 10-0835259, and Patent Document 3, Korean Patent Publication No. 10-0432158, have two from one input port. A technique of expanding the refrigerant while switching the refrigerant to any of the above output ports is disclosed.
  • Patent Literature 1 to Patent Literature 3 is only focused on communicating any one of two or more output ports from one input port, and forms an expansion gap of an appropriate size to save the refrigerant.
  • the present invention is to solve the above problems, simplifies the configuration of a vehicle air conditioner, enables precise control, and increases the airtightness of the refrigerant and the workability and productivity of the product, thereby lowering the production cost of the product and enhancing market competitiveness.
  • the electronic expansion and direction change integrated valve according to the present invention has a block shape, and includes an input port through which refrigerant is supplied to one side, an output port through which refrigerant is discharged to the other side, and a flow path that communicates the input port and the output port.
  • a valve body formed therein Made in a plate shape, provided to be rotatable in a circumferential direction in the flow path between the input port and the output port, an expansion recess extending in a circumferential direction with a predetermined radial width, and an end of the expansion recess
  • a rotary valve in communication with a flow path hole having a radial width greater than that of the expansion recess;
  • a valve plate formed in a plate shape, stacked and arranged to contact the rotary valve, fixed non-rotatably in the flow path of the valve body, and having a through hole formed in a circumferential direction;
  • An airtight member made of synthetic resin or an elastic airtight material and provided so as to be integrally rotatable on at least one surface of the rotary valve toward the valve plate to secure airtightness between the through hole of the valve plate and the rotary valve; It is achieved by including a drive member for transmitting a rotational force to the rotational valve.
  • the expansion recesses overlap along the circumferential direction from the outer side in the radial direction of the through hole to form an expansion gap.
  • the output ports of the valve body include a first output port and a second output port independently formed from each other;
  • the through-holes of the valve plate include first through-holes and second through-holes spaced apart from each other in a circumferential direction corresponding to the first output port and the second output port, respectively; It is preferable that the refrigerant can be supplied by switching from one input port to one of the two output ports.
  • the airtight member and the rotary valve have a polygonal shape or an arc shape that engages and engages with each other in contact with each other, so that the airtight member rotates integrally when the rotary valve is rotated.
  • the driving member includes a shaft connected to the rotation center of the rotation valve and integrally rotating, and a step motor capable of controlling a rotation angle according to power control and transmitting rotational force to the shaft; It is preferable that the valve plate has a support groove rotatably supporting the lower end of the shaft at the center.
  • the present invention as described above enables precise control while simplifying the configuration of an air conditioner for a vehicle, and in particular, it is an invention capable of maximizing market competitiveness while lowering the production cost of the product by increasing the airtightness of the refrigerant and the workability and productivity of the product. .
  • FIG. 1 is a front cross-sectional view showing an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 2 is a plan view showing a rotary valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 3 is a view showing a state in which a rotary valve and an airtight member are integrated with each other in an example of the electronic expansion and direction change integrated valve according to the present invention.
  • FIG. 4 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 5 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 6 is a bottom exploded perspective view of a rotary valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 7 is a diagram illustrating an expansion gap formed according to a radial position of an expansion recess in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 8 is a diagram showing a closed state of an output port in an example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 9 is a diagram showing an expansion state of a refrigerant with respect to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 10 is a diagram showing a fully open state of a refrigerant to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 11 is a front cross-sectional view showing another example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 12 is a view showing the lower body of the valve body in another example of the integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 13 is a plan view showing a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 14 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in another example of the integrated electronic expansion and direction change valve according to the present invention
  • FIG. 15 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 16 is a bottom exploded perspective view of a rotary valve, an airtight member, and a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 17 is a perspective view showing a bush in another example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 18 is a view showing a closed state of both the first output port and the second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 19 is a diagram showing an expanded state of a refrigerant with respect to a first output port and a closed state of a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention
  • FIG. 20 is a diagram illustrating a fully open state of a refrigerant with respect to a first output port and a closed state of a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
  • 21 is a view showing a closed state of both the first output port and the second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 22 is a diagram showing a closed state of a first output port and an expanded state of a refrigerant with respect to a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention
  • FIG. 23 is a view showing a closed state of a first output port and a completely open state of a refrigerant to a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
  • valve body 101 input port
  • output port 102a first output port
  • valve plate 301 support groove
  • FIG. 1 is a front cross-sectional view showing an example of an electronic expansion and direction change integrated valve according to the present invention
  • FIG. 2 is a rotary valve, an airtight member, and a valve plate in an example of the electronic expansion and direction change integrated valve according to the present invention.
  • Fig. 2(a) shows a rotary valve
  • Fig. 2(b) shows an airtight member
  • Fig. 2(c) shows a valve plate, respectively.
  • Figure 3 is a diagram showing a state in which the rotary valve and the airtight member are integrated with each other in an example of the integrated electronic expansion and direction change valve according to the present invention
  • Figure 3 (a) is a perspective view
  • ( b) is a bottom perspective view
  • FIG. 4 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in an example of the electronic expansion and direction change integrated valve according to the present invention.
  • FIG. 5 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 6 is an exploded perspective view of the integrated electronic expansion and direction change valve according to the present invention.
  • it is an exploded perspective view of the bottom of the rotary valve, the airtight member, and the valve plate
  • FIG. 7 is an expansion gap formed according to the radial position of the expansion recess in an example of the integrated electronic expansion and direction change valve according to the present invention. It is a diagram explaining.
  • FIG. 8 is a view showing a closed state of an output port in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 9 is an output port in an example of an integrated electronic expansion and direction change valve according to the present invention
  • FIG. 10 is a diagram showing an expanded state of the refrigerant to and
  • FIG. 10 is a diagram illustrating a fully opened state of the refrigerant to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention.
  • each (a) is a plan view
  • (b) is a cross-sectional view taken along lines B-B to D-D shown in Fig. (a).
  • FIG. 11 is a front cross-sectional view showing another example of the electronic expansion and direction change integrated valve according to the present invention
  • FIG. 12 is a lower portion of the valve body in another example of the electronic expansion and direction change integrated valve according to the present invention.
  • Figure 12 (a) is a plan view
  • Figure 12 (b) is a cross-sectional view taken along line AA of Figure 12 (a)
  • Figure 13 is an integrated electronic expansion and direction change according to the present invention It is a plan view showing a valve plate in another example of a valve.
  • FIG. 14 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in another example of the electronic expansion and direction change integrated valve according to the present invention
  • FIG. 15 is an electronic expansion and direction change integrated valve according to the present invention.
  • FIG. 16 is a rotary valve, an airtight member, and in another example of the electronic expansion and direction change integrated valve according to the present invention. It is an exploded perspective view of the bottom of the valve plate.
  • Fig. 17 is a perspective view showing a bush in another example of an integrated electronic expansion and direction change valve according to the present invention.
  • FIG. 18 is a diagram showing a closed state of both the first output port and the second output port in another example of the electronic expansion and direction change integrated valve according to the present invention
  • FIG. 19 is an electronic expansion and direction according to the present invention.
  • FIG. 20 is a diagram showing another example of the electronic expansion and direction switching integrated valve according to the present invention. It is a diagram showing a state in which the refrigerant is completely open to the first output port and a state in which the second output port is closed.
  • FIG. 21 is a diagram showing a closed state of both the first output port and the second output port in another example of the electronic expansion and direction change integrated valve according to the present invention
  • FIG. 22 is an electronic expansion and direction according to the present invention.
  • FIG. 23 is a diagram showing another example of the electronic expansion and direction switching integrated valve according to the present invention. A diagram showing a closed state of the first output port and a completely open state of the refrigerant to the second output port.
  • each (a) is a plan view
  • (b) is a cross-sectional view taken along lines E-E to J-J shown in each (a).
  • the electronic expansion and direction change integrated valve according to the present invention simplifies the configuration of the vehicle air conditioner and enables precise control, and in particular, increases the airtightness of the refrigerant and the processability and productivity of the product, thereby lowering the production cost of the product and enhancing market competitiveness. What can be maximized is the basic feature of the technology.
  • the present invention is an integrated valve for electronic expansion and direction change through which the refrigerant passes when the refrigerant is circulated for cooling in a vehicle air conditioner, and may be provided between the condenser and the evaporator.
  • an example of the electronic expansion and direction change integrated valve according to the present invention is made of a block shape, as shown in Figs. 1 to 10, an input port 101 for supplying a refrigerant to one side, and a refrigerant to the other side.
  • a valve body 100 having an output port 102 discharged and a flow path 110 communicating the input port 101 and the output port 102 therein; Made of a plate shape, provided to be rotatable in the circumferential direction within the flow path 110 between the input port 101 and the output port 102, and extends along the circumferential direction with a predetermined radial width (w)
  • the expansion recess 210 is connected to the end of the expansion recess 210, the flow path hole 220 having a radial width (W) wider than the radial width (w) of the expansion recess (210)
  • the rotary valve 200 is formed; A valve plate in which a through hole 310 is formed in a circumferential direction, which is formed in a plate shape, is stacked and disposed to contact the rotary valve 200, and is fixed to be non-rotatably in the flow path 110 of the valve body 100.
  • an example of the electronic expansion and direction change integrated valve of the present invention basically includes a valve body 100, a rotary valve 200, a valve plate 300, an airtight member 400, and a driving member 500. I'm doing it.
  • the valve body 100 is a structure constituting the basic skeleton in the integrated electronic expansion and direction change valve of the present invention, and is made of a block shape, preferably a substantially hexahedral block shape.
  • valve body 100 there will be no limitation on the external shape of the valve body 100, and may be a polygonal column or a cylindrical shape, including a square column of a hexahedron.
  • an input port 101 to which a refrigerant is supplied may be formed on one side, that is, on the upper side in the drawing, and on the other side of the valve body 100, that is, on the lower side in the drawing.
  • An output port 102 through which the refrigerant is discharged may be formed.
  • a flow path 110 for communicating the input port 101 and the output port 102 into one is formed in the valve body 100, so that the refrigerant flows through the flow path 110 to the input port. It can pass from 101 to the output port 102.
  • the refrigerant entering the input port 101 may be discharged to the output port 102.
  • the input port 101 is formed on the upper side of the valve body 100 and the output port 102 is formed on the lower side, and is described below, but each port according to the arrangement direction of the valve body 100 It will be apparent that the location of is subject to change and is not limited thereto.
  • a rotary valve 200 and a valve plate 300 for controlling passage and expansion of the refrigerant may be provided.
  • valve body 100 may be formed of a single body, but is divided into a plurality of bodies as shown in FIG. 1 in consideration of formability and assembly properties. So it can be made.
  • valve body 100 may be manufactured by being divided into a main body 120, a lower body 130, and a fixed body 140, and then assembled into one.
  • the main body 120 is located at the center of the valve body 100 and has a flow path 110 penetrating through it, and the rotary valve 200 and the airtight member 400 and the valve plate to be described below. 300 may be provided on the inner circumferential surface of the main body 120.
  • the inner circumferential surface of the main body 120 is processed to a uniform inner diameter without a step, so that it is possible to increase workability.
  • the input port 101 and the output port 102 are formed in the lower body 130, and the main body 120 described above as shown in FIG. 1 is disposed in the inner center of the lower body 130. It can be.
  • the fixed body 140 may be assembled by maintaining airtightness in the upper opening of the lower body 130.
  • the flow path 110 from the input port 101 to the output port 102 by the main body 120, the lower body 130, and the fixed body 140 ) May be formed.
  • reference numeral 104 is a sealing, located between the main body 120 and the lower body 130 to prevent the leakage of the refrigerant, and located between the fixed body 140 and the lower body 130 to prevent the refrigerant It will be able to prevent the leakage of.
  • the driving member 500 to be described later may be provided through the fixed body 140.
  • the rotary valve 200 is a disk made of a plate material having a predetermined thickness, as shown in Figs. 2 to 6, and between the input port 101 and the output port 102 It is disposed in the flow path 110 so as to cross the flow path 110 and is provided to be rotatable in the circumferential direction.
  • the rotary valve 200 may be provided on the inner circumferential surface of the main body 120 in the valve body 100.
  • the rotation valve 200 is rotated to have an outer diameter slightly smaller than the inner diameter of the main body 120 so that the valve body 100 can smoothly rotate within the inner circumferential surface of the main body 120
  • the valve 200 is formed.
  • the rotary valve 200 has an expansion recess 210 and a flow path hole 220 formed along the circumferential direction.
  • the expansion recess 210 is formed in a shape extending along the circumferential direction with a predetermined radial width w, and the flow path hole 220 is communicated with the end of the expansion recess 210 It has a radial width (W) wider than the radial width (w) of the expansion recess 210 and is formed in a shape extending along the circumferential direction.
  • the forming position of the expansion recess 210 may be located within the radial width W of the flow path hole 220 so that the expansion recess 210 and the flow path hole 220 communicate with each other, It may be located at the center side or outside the flow path hole 220 out of the radial width (W).
  • the expansion recess 210 is located outside the radial direction of the rotary valve 200 so that the expansion recess An example in which the 210 and the flow path hole 220 are formed in communication will be described below.
  • the expansion recess 210 overlaps the through hole 310 of the valve plate 300 to be described later to form an expansion gap, thereby expanding the refrigerant.
  • the flow path hole 220 overlaps the through hole 310 so as to pass the refrigerant as it is without expansion of the refrigerant.
  • the rotation direction of the rotation valve 200 may be controlled in both clockwise and counterclockwise directions in FIG. 2A, but in consideration of control precision, the rotation valve 200 is in one direction, For example, it would be desirable to control it to rotate only counterclockwise.
  • the rotation valve 200 is controlled to rotate only in the counterclockwise direction, as illustrated in FIG. 2A, the expansion recess 210 and the flow path hole 220 are expanded. It is preferable that the flow path hole 220 is positioned on the clockwise side with respect to the recess 210.
  • the expansion recess 210 overlaps the through hole 310 before the flow path hole 220, so that the refrigerant expands beforehand, and then the rotary valve ( When 200 is further rotated, it would be better to allow the flow path hole 220 to overlap the through hole 310 so that the refrigerant can be completely opened.
  • the rotary valve 200 is stacked and disposed so that the valve plate 300 abuts and contacts, and in particular, the valve plate 300 is stacked and disposed to abut and contact the lower side of the rotary valve 200. will be.
  • the rotary valve 200 is provided so as to be rotatable in the circumferential direction within the valve body 100, while the valve plate 300 is fixedly installed in the valve body 100 so as not to be rotatable.
  • valve plate 300 is made of a plate material, and the outer circumferential shape of the valve body 100 may be manufactured in a polygonal shape in order to prevent rotation within the valve body 100.
  • a cutout (not shown) partially cut off is formed on the outer periphery, and together with this, the valve body 100 It is preferable that a protrusion (not shown) corresponding to this cutout is formed in the valve body 100 so that the valve plate 300 is non-rotatably assembled into the valve body 100.
  • valve plate 300 is limited in rotation in the circumferential direction in a state assembled to the valve body 100, and a refrigerant between the outer circumferential surface of the valve plate 300 and the inner circumferential surface of the main body 120 Airtightness must be maintained to prevent leakage of the product.
  • valve plate 300 has a predetermined radial width and extends along the circumferential direction as shown in FIG. 2(c), and a fan-shaped through hole 310 with a roughly cut off center is formed. .
  • the shape of the through hole 310 may be manufactured to have substantially the same shape as the flow path hole 220 of the rotary valve 200 described above, but the cross-sectional area of the through hole 310 is the flow path hole 220 and A similar or slightly wider one would be better.
  • the radial width is kept similar, while the circumferential width is greater than the flow path hole 220. 310) should be formed somewhat wider.
  • the radial position where the expansion recess 210 is formed and the circumferential width of the through hole 310 affect the control precision of the electronic expansion and direction change integrated valve according to the present invention. This will be described later.
  • the rotary valve 200 can control whether or not the refrigerant expands as well as the opening and closing of the expansion valve according to the present invention by a relative rotational motion with the valve plate 300 fixed in the valve body 100. There is.
  • an expansion gap is formed to allow the refrigerant to expand. Will be.
  • an airtight member 400 is additionally provided on at least one surface of the rotary valve 200.
  • the airtight member 400 is made of an elastic airtight material such as synthetic resin, Teflon, rubber, or silicone, and is provided to be integrally rotatable with the rotary valve 200 toward the valve plate 300.
  • the airtight member 400 may be manufactured separately from the rotary valve 200 and then integrated through adhesion, or the airtight member 400 and the rotary valve 200 are integrated through insert injection, etc. It could also be molded and manufactured.
  • the airtight member 400 functions only when the rotary valve 200 completely closes the through hole 310 of the valve plate 300, the above-described The airtight member 400 will not need to be provided.
  • valve body 230 located inside the expansion recess 210 in which the refrigerant expands by forming a fine gap with the through hole 310 of the valve plate 300 in the rotary valve 200
  • hermetic member 400 will be provided.
  • the airtight member 400 may be formed in all portions of the rotary valve 200 except for the valve body 230, The airtight member 400 closes the through hole 310 of the valve plate 300 to maintain high airtightness.
  • an airtight member 400 may be provided on the lower side of the rotary valve 200 in contact with the valve plate 300, and to expand the refrigerant.
  • the airtight member 400 is provided in portions other than the valve body 230.
  • the rotary valve 200 may be formed in advance in the shape of the airtight member 400 as illustrated in FIG. 6. Correspondingly, it will need to be engraved.
  • the airtight member 400 is positioned at a portion corresponding to the through hole 310, thereby refrigerant It becomes possible to effectively prevent the leakage of.
  • the driving member 500 may include a motor as a driving source for transmitting the rotational force to the rotation valve 200 described above.
  • the driving member 500 has a shaft 510 connected to the rotation center of the rotation valve 200 to rotate integrally, and the rotation angle can be controlled according to power control. It may include a step motor 520 that transmits the rotational force to the shaft 510.
  • the rotational force output to the output shaft of the step motor 520 is transmitted to the shaft 510 directly as shown in FIG. 1 or indirectly as shown in FIG. 11, although it will be described in another example below in order to rotate the shaft 510 It will be possible.
  • the output shaft of the step motor 520 may be integrally configured with the shaft 510 as shown in FIG. 1.
  • the shaft 510 is disposed so that a part of the shaft 510 passes through the flow path 110 of the valve body 100 described above, and the valve plate 300 and the airtight member 400 from the bottom of the shaft 510 And, the rotary valve 200 will be sequentially stacked and positioned.
  • valve plate 300 is not affected by the rotation of the shaft 510, and only the rotation center is supported by the shaft 510, and the shaft 510 is It is placed in an idle state.
  • the rotation valve 200 has a protrusion as shown in FIGS. 2 to 6 in the coupling hole 201 formed in the center of the rotation valve 200 so that it can rotate integrally with the shaft 510 as described above. Protrusion is formed, and a cutout (not shown) is formed in the shaft 510 to correspond to the protrusion of the coupling hole 201 described above, so that the protrusion of the coupling hole 201 and the cutout of the shaft 510 are Are interlocked.
  • the shaft 510 and the rotary valve 200 can rotate integrally, it is possible to transmit the rotational force of the shaft 510 to the rotary valve 200.
  • valve plate 300 a structure in which the rotary valve 200 is stacked on the valve plate 300 has been described, but although not shown, a structure in which the valve plate 300 is stacked on the rotary valve 200 may be used as necessary, and two valves A structure in which the rotary valve 200 is positioned between the plates 300 may be good.
  • the airtight member 400 may be provided on the upper side or both upper and lower sides of the rotary valve 200, and in the case of a structure in which the rotary valve 200 is positioned between the two valve plates 300, leakage of refrigerant It will be most effective in preventing it.
  • the main sealing 160 is made of an airtight material having elasticity, and is provided between the valve plate 300 and the lower body 130, thereby distinguishing the input port 101 and the output port 102 from each other with high airtightness. do.
  • the expansion efficiency means the degree of throttling
  • the throttling means a valve, a cock, or a plate with a small hole attached to a part of the fluid passage to narrow the cross-sectional area of the flow. It is forcibly increased, and as a result, the distance between molecules increases and the pressure drops, which is a phenomenon.
  • the expansion recess 210 may be formed approximately in the middle of the radial direction of the rotary valve 200 to be formed in communication with the flow path hole 220, or As shown in (b), the expansion recess 210 may be formed at the radial center side of the rotary valve 200 to communicate with the flow path hole 220, or the expansion recess 210 may be formed as shown in FIG. 7(c). The recess 210 may be formed outside the rotary valve 200 in the radial direction to be formed in communication with the flow path hole 220.
  • the expansion recess 210 when the expansion recess 210 is formed approximately in the radial direction of the rotary valve 200 to communicate with the flow path hole 220, the expansion recess Regardless of the circumferential width of 210, the cross-sectional area connected to the through hole 310 formed in the valve plate 300 is determined according to the size of the radial width w of the expansion recess 210, and this cross-sectional area Will affect the expansion efficiency of the refrigerant.
  • the end of the expansion recess 210 must be finely overlapped with the through hole 310 to form an expansion gap, so the rotary valve 200 More precise control is inevitably required to control the rotation angle of the machine.
  • the expansion recess 210 is overlapped along the circumferential direction from the outer side in the radial direction of the through hole 310 to form an expansion gap.
  • the airtight member 400 and the rotary valve 200 are formed in a polygonal shape or an arc shape to be engaged with each other in contact with each other, and the airtightness when the rotary valve 200 is rotated. It would be desirable to allow the member 400 to rotate integrally.
  • a convex convex portion is formed in an approximately square pillar shape near the center of the rotary valve 200, and the convex portion has a square pillar shape near the center of the airtight member 400. It is possible to form a concave concave portion corresponding to the concave portion, so that the concave portion and the convex portion engage with each other.
  • a convex convex portion is formed in a substantially hook-shaped arc shape near the center of the airtight member 400, and a concave convex portion is formed in the vicinity of the center of the rotary valve 200 to correspond to the convex portion. It is also possible to make the convex portions engage with each other.
  • the driving member 500 has a shaft 510 connected to the rotation center of the rotation valve 200 and integrally rotating as described above, and a rotation angle control according to power control It is possible and includes a step motor 520 that transmits rotational force to the shaft 510;
  • the valve plate 300 has a support groove 301 rotatably supporting the lower end of the shaft 510 in the center.
  • a support groove 301 is formed in the center of the valve plate 300 as shown in FIG. 5, and the support groove 301 of the valve plate 300 is rotatable at the lower end of the shaft 510 as shown in FIG. By being supported, it is possible to reliably prevent eccentricity with respect to the shaft 510.
  • the lower end of the shaft 510 pushes the valve plate 300 downward, so that the bottom surface of the valve plate 300 presses the main sealing 160 located at the lower side thereof, so that the valve plate 300 and the main It becomes possible to ensure a higher airtightness between the sealing (160).
  • the output port 102 of the valve body 100 includes a first output port (102a) and a second output port (102b) formed independently of each other, ;
  • the through hole 310 of the valve plate 300 corresponds to the first output port 102a) and the second output port 102b, respectively, and a first through hole 311 and a first through hole 311 spaced apart from each other in the circumferential direction.
  • two output ports 102a and 102b are formed in the valve body 100 in order to circulate the refrigerant through different paths during cooling and heating.
  • two through holes 311 and 312 are formed in the valve plate 300.
  • another example of the electronic expansion and direction change integrated valve of the present invention is for application to a heat pump of an air conditioner for a vehicle, particularly for an electric vehicle, both of the forward circulation of the refrigerant for cooling and the reverse circulation of the refrigerant for heating.
  • a heat pump of an air conditioner for a vehicle particularly for an electric vehicle
  • both of the forward circulation of the refrigerant for cooling and the reverse circulation of the refrigerant for heating As one electromagnetic valve through which the refrigerant passes, it may be provided between the condenser and the evaporator.
  • a first output port 102a) and a second output port 102b through which refrigerant is discharged are formed on the left and right sides of the valve body 100 to face each other.
  • a flow path 110 for communicating the input port 101, the first output port 102a, and the second output port 102b into one is formed in the valve body 100. , Through this flow path 110, the refrigerant may pass from the input port 101 to the first output port 102a) or the second output port 102b.
  • the refrigerant entering the input port 101 will be discharged to the first output port 102a, and during heating, the refrigerant entering the input port 101 is discharged to the second output port 102b. ), etc. will be possible.
  • the input port 101 is formed on the upper side of the valve body 100, and the first output port 102a) and the second output port 102b are formed on the lower side, and the valve It will be apparent that the position of each port may be changed according to the arrangement direction of the body 100, and is not limited thereto.
  • the lower body 130 has the above-described input port 101, a first output port 102a), and a second output port 102b, and the lower body 130
  • the main body 120 described above as shown in FIG. 11 may be disposed in the inner center of ).
  • the first output port 102a) and the second output port 102b are disposed to face each other on the left and right sides of the drawing at substantially equal heights, and the input port 101
  • the first output port 102a) and the second output port 102b may be formed at a right angle, but with a height difference.
  • the input port 101 is formed in the same direction as the second output port 102b (left side in the drawing) but with a height difference, but in reality, as shown in FIG. 12, the input port 101 (101) is preferably formed in a direction perpendicular to both the first output port (102a) and the second output port (102b), which is a mistake when connecting the refrigerant pipe to the expansion valve according to the present invention. It will play a role in preventing assembly and increasing design freedom for the heat pump.
  • the rotary valve 200 is in the flow path 110 so as to cross the flow path 110 between the input port 101 and the first output port 102a and the second output port 102b. It is arranged and provided to be rotatable in the circumferential direction.
  • the expansion recess 210 is overlapped with the first through hole 311 or the second through hole 312 of the valve plate 300 to form an expansion gap, thereby expanding the refrigerant.
  • the flow path hole 220 is overlapped with the first through hole 311 or the second through hole 312 so as to pass the refrigerant as it is without expansion of the refrigerant.
  • valve plate 300 has a first through hole 311 and a second through hole 312 spaced apart along the circumferential direction as shown in FIG. 13, and preferably, a phase angle difference of approximately 180 degrees.
  • a first through hole 311 and a second through hole 312 are formed so as to be symmetrical with each other.
  • the first through hole 311 corresponds to the first output port 102a formed in the lower body 130 of the valve body 100 as shown in FIG. 11, and the second through hole 312 Is corresponding to the second output port (102b) formed on the lower body (130) of the valve body (100).
  • first through hole 311 and the second through hole 312 are preferably formed to have the same shape and cross-sectional area as shown in FIGS. 13 to 16.
  • the rotary valve 200 controls the opening and closing of the expansion valve according to the present invention by a relative rotational motion with the valve plate 300 fixed in the valve body 100, so as to control whether the refrigerant is expanded or not. It is also possible to control the refrigerant flow path switching.
  • a cover 150 is additionally provided on the upper side of the valve body 100.
  • the cover 150 is assembled on the upper side by wrapping the upper portion of the lower body 130 in the valve body 100 described above, and in particular, the driving member 500 may be provided on the cover 150.
  • the cover 150 may be assembled to surround the upper end of the lower body 130 by a plurality of fastening means 151.
  • the rotational force of the step motor 520 is indirectly transmitted to the shaft 510, and the output shaft and the shaft of the step motor 520 as shown in FIG. Between 510, for example, a reduction gear 530 may be additionally disposed.
  • the reduction gear 530 is a two-stage gear having a separate rotation shaft and having a large diameter portion having a large outer diameter and a small diameter portion having a small outer diameter.
  • the rotation shaft for rotatably supporting the reduction gear 530 may be provided in a peripheral configuration such as the cover 150 or the fixed body 140, and in FIG. 11, the rotation shaft of the reduction gear 530 is the cover 150 An example that is supported by is shown.
  • the large diameter portion of the reduction gear 530 is engaged with the output shaft gear 521 fixed to the output shaft of the step motor 520, and the small diameter portion of the reduction gear 530 is fixed to the shaft 510. It is engaged with the shaft gear 511.
  • a bush 600 is provided in the middle of the shaft 510 to increase the adhesion between the rotary valve 200 and the valve plate 300 as shown in FIG. 11.
  • the bush 600 may be provided in the middle of the shaft 510 so that the above-described rotary valve 200 applies a force downward toward the valve plate 300.
  • the bush 600 may be fixed to the shaft 510 by a separate fastening means.
  • the bush 600 is composed of a boss 610 through which the shaft 510 passes in the center as shown in FIG. 17, and a plurality of fan-shaped blades 620 extending radially from the boss 610.
  • the valve body 100 is divided into a plurality of bodies, and one of the divided bodies is most preferably supporting the edge of the wing 620 of the bush 600 downward.
  • the edge of the blade 620 of the bush 600 is positioned inside the inner circumferential surface of the main body 120 described above as shown in FIG. 11, and the fixed body 140 of the valve body 100 includes the bush 600 ) Is formed to protrude a stepped portion 141 for supporting downwardly of the wing 620.
  • the fixed body 140 As the fixed body 140 is placed on the lower body 130 and fastened with the fastening ring 106 to be screwed, the fixed body 140 is assembled downward, and as a result, the fixed body ( The stepped portion 141 of the 140) supports the edge of the wing 620 of the bush 600 downward.
  • the air conditioner of a vehicle when the air conditioner of a vehicle, more preferably an electric vehicle, cools, the refrigerant flows into the input port 101 in the valve body 100, and the refrigerant is discharged through the first output port 102a. I will be able to.
  • the refrigerant flowing from the valve body 100 to the input port 101 may be discharged through the second output port 102b.
  • the air conditioning controller of the electric vehicle sends an appropriate power or electrical signal to the step motor 520 to rotate the output shaft of the step motor 520 at a desired angle, and accordingly, the output shaft of the step motor 520 is The rotary valve 200 is rotated on the valve plate 300.
  • the first through hole 311 and the second through hole 312 of the valve plate 300 are more reliably closed by the airtight member 400 provided in the rotary valve 200.
  • the rotary valve 200 is further rotated counterclockwise by approximately 60 degrees by the step motor 520 of the driving member 500, as shown in FIG. 19, the rotary valve 200 is rotated. Only the expansion recess 210 of the valve 200 overlaps the first through hole 311 of the valve plate 300 while forming a fine expansion gap in the radial outer side.
  • the second through hole 312 of the valve plate 300 is maintained in a closed state by the rotary valve 200.
  • the second through hole 312 of the valve plate 300 is reliably closed by the airtight member 400 provided in the rotary valve 200, and the first through hole 311 is The expansion gap is formed between the expansion recess 210 which is the outer circumferential surface of the valve body 230 formed inside the expansion recess 210.
  • the refrigerant supplied to the input port 101 of the valve body 100 is an expansion gap formed between the expansion recess 210 of the rotary valve 200 and the first through hole 311 of the valve plate 300 After being expanded in, the air conditioner is cooled by being discharged to the first output port 102a.
  • the second through hole 312 of the valve plate 300 is continuously maintained in a closed state by the rotary valve 200.
  • the second through hole 312 of the valve plate 300 is more reliably closed by the airtight member 400 provided in the rotary valve 200.
  • the refrigerant supplied to the input port 101 of the valve body 100 passes through the flow path hole 220 of the rotary valve 200 and the first through hole 311 of the valve plate 300 as it is without expansion. After that, it is discharged to the first output port (102a).
  • the first through hole 311 and the second through hole 312 of the valve plate 300 are more reliably closed by the airtight member 400 provided in the rotary valve 200.
  • the rotary valve 200 is further rotated counterclockwise by approximately 60 degrees by the step motor 520 of the driving member 500, as shown in FIG. 22, the rotary valve 200 is rotated. Only the expansion recess 210 of the valve 200 overlaps the second through hole 312 of the valve plate 300 while forming a fine expansion gap in the radial direction.
  • the first through hole 311 of the valve plate 300 is kept in a closed state by the rotary valve 200.
  • the first through hole 311 of the valve plate 300 is reliably closed by the airtight member 400 provided in the rotary valve 200, and the second through hole 312 is The expansion gap is formed between the expansion recess 210 which is the outer circumferential surface of the valve body 230 formed inside the expansion recess 210.
  • the refrigerant supplied to the input port 101 of the valve body 100 is an expansion gap formed between the expansion recess 210 of the rotary valve 200 and the second through hole 312 of the valve plate 300 After being expanded in, the air conditioner is heated by being discharged to the second output port 102b.
  • the first through hole 311 of the valve plate 300 is continuously maintained in a closed state by the rotary valve 200.
  • the first through hole 311 of the valve plate 300 is more reliably closed by the airtight member 400 provided in the rotary valve 200.
  • the refrigerant supplied to the input port 101 of the valve body 100 passes through the flow path hole 220 of the rotary valve 200 and the second through hole 312 of the valve plate 300 without expansion. Then, it is discharged to the second output port (102b).
  • the electronic expansion and direction change integrated valve of the present invention configured as described above enables precise control while simplifying the configuration of the vehicle air conditioner, and in particular, increases the airtightness of the refrigerant and the processability and productivity of the product, thereby increasing the production cost of the product. It is an invention with an excellent advantage of maximizing market competitiveness while lowering the value.
  • the present invention as described above enables precise control while simplifying the configuration of an air conditioner for a vehicle, and in particular, it is an invention capable of maximizing market competitiveness while lowering the production cost of the product by increasing the airtightness of the refrigerant and the workability and productivity of the product. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)
  • Servomotors (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

The present invention relates to an electronic expansion-and-redirection integrated valve. More particularly, the present invention provides an expansion valve capable of switching not only to a closed state in which the flow of a refrigerant is blocked, but also to an expansion state in which an expansion gap is formed so as to expand the refrigerant or to a fully open state in which the refrigerant is circulated without being expanded. The expansion valve comprises: a valve body (100) having a block shape and having a channel (110) formed therein such that an input port (101) and an output port (102) communicate with each other; a rotary valve (200) provided to be able to rotate in the circumferential direction inside the channel (110), the rotary valve (200) having an expansion recess (210) and a channel hole (220) formed therein; a valve plate (300) having a through-hole (310) formed therein; an airtight member (400) made of an elastic airtight material and integrally provided on at least one surface of the rotary valve (200) to be able to rotate toward the valve plate (300), thereby securing airtightness between the through-hole (310) of the valve plate (300) and the rotary valve (200); and a driving member (500) for delivering rotary power to the rotary valve (200). Accordingly, precise control is enabled while simplifying the configuration of a vehicle air conditioner. Particularly, airtightness regarding the refrigerant, and processability and productivity regarding the product are improved, thereby lowering the product production cost and maximizing market competitiveness.

Description

전자식 팽창 및 방향전환 일체화 밸브Electronic expansion and direction change integrated valve
본 발명은 전자식 팽창 및 방향전환 일체화 밸브에 관한 것으로서 특히, 냉매의 흐름을 차단하는 폐쇄 상태는 물론, 팽창 간극을 형성하여 냉매를 팽창시키는 팽창 상태나 냉매를 팽창시키지 않고 그대로 유통시키는 완전 개방 상태로도 절환하는 것이 가능한 팽창밸브를 제공하기 위한 것으로서, 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있는 장치에 관한 것이다.The present invention relates to an integrated electronic expansion and direction change valve, in particular, in a closed state to block the flow of refrigerant, as well as an expanded state in which the refrigerant is expanded by forming an expansion gap, or in a fully open state in which the refrigerant is circulated without expansion. It is to provide an expansion valve that can be switched between degrees and simplifies the configuration of the vehicle air conditioner, enables precise control, and increases the airtightness of the refrigerant and the processability and productivity of the product, thereby lowering the production cost of the product while lowering the market competitiveness. It relates to a device that can maximize the.
일반적으로 냉동 사이클은 압축기, 응축기, 팽창밸브, 그리고 증발기를 포함하며, 냉매를 순환시킴으로써 냉장고나 냉방용 공조기 등의 냉방에 널리 사용되고 있다.In general, a refrigeration cycle includes a compressor, a condenser, an expansion valve, and an evaporator, and is widely used for cooling a refrigerator or an air conditioner for cooling by circulating a refrigerant.
여기에서 냉동 사이클을 구성하는 팽창밸브는 응축기에서 응축 액화된 고온·고압의 액체 냉매를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압해 주는 밸브로서, 증발기에서 충분한 열을 흡수할 수 있는 적정한 냉매량을 조절 공급하는 역할을 하게 된다.Here, the expansion valve constituting the refrigeration cycle is a valve that reduces the high-temperature and high-pressure liquid refrigerant condensed and liquefied in the condenser to a pressure that can cause evaporation by throttling action, and an appropriate amount of refrigerant to absorb sufficient heat from the evaporator. It plays a role of regulating supply.
하지만, 기존의 팽창밸브는 구성이 복잡하고 정밀 제어가 어려우며, 특히 가공성 및 생산성이 떨어질 뿐만 아니라 냉매에 대한 기밀성도 낮다는 문제점을 가지고 있었다.However, the conventional expansion valve has a problem in that the configuration is complicated and precise control is difficult, and in particular, not only the processability and productivity are poor, but also the airtightness to the refrigerant is low.
최근에는 이러한 냉동 사이클을 개선하여 냉매를 역방향으로 순환시키는 히트펌프를 구성함으로써 온장고나 난방용 공조기 등의 열원으로도 사용하고 있는 실정이다.Recently, the refrigeration cycle has been improved to construct a heat pump that circulates the refrigerant in the reverse direction, and thus it is used as a heat source such as a heating cabinet or a heating air conditioner.
이와 같은 히트펌프의 구성에 따라 종래에는 냉방용 팽창밸브와 난방용 팽창밸브를 각각 구성하고 있었으나, 이러한 경우 제조 단가의 상승을 초래할 뿐 아니라 냉매의 순환 관로가 복잡해지고 제어에 어려움이 발생한다는 문제점이 있었다.According to the configuration of such a heat pump, the expansion valve for cooling and the expansion valve for heating were conventionally configured respectively, but in this case, there was a problem that not only the manufacturing cost increased, but also the circulation line of the refrigerant became complicated and control was difficult. .
이에 따라, 정방향 및 역방향의 양방향으로 냉매를 통과시키면서 팽창시키는 양방향 팽창밸브와 함께, 한 개의 입력 포트로부터 두 개의 출력 포트 중 어느 하나로 냉매를 통과시키면서 팽창시키는 3방향 팽창밸브가 개발되었다.Accordingly, a two-way expansion valve that expands while passing the refrigerant in both forward and reverse directions, and a three-way expansion valve that expands while passing the refrigerant through one of two output ports from one input port have been developed.
특허문헌 1인 국내 공개특허공보 제2011-0043128호, 특허문헌 2인 국내 등록특허공보 제10-0835259호, 그리고 특허문헌 3인 국내 등록특허공보 제10-0432158호에는 한 개의 입력 포트로부터 두 개 이상의 출력 포트 중 어느 하나로 냉매를 절환시키면서 팽창시키는 기술이 개시되어 있다. Patent Document 1, Korean Patent Publication No. 2011-0043128, Patent Document 2, Domestic Patent Publication No. 10-0835259, and Patent Document 3, Korean Patent Publication No. 10-0432158, have two from one input port. A technique of expanding the refrigerant while switching the refrigerant to any of the above output ports is disclosed.
하지만, 특허문헌 1 내지 특허문헌 3에 개시된 종래의 팽창밸브는 단순히 한 개의 입력 포트로부터 두 개 이상의 출력 포트 중 어느 하나를 연통시키는 것에 초점이 맞춰져 있을 뿐, 적절한 크기의 팽창 간극을 형성하여 냉매를 팽창시키는 팽창 상태와 냉매를 팽창시키지 않고 그대로 통과시키는 완전 개방 상태로 조절할 수는 없다는 종래 기술상의 문제점이 있었다.However, the conventional expansion valve disclosed in Patent Literature 1 to Patent Literature 3 is only focused on communicating any one of two or more output ports from one input port, and forms an expansion gap of an appropriate size to save the refrigerant. There is a problem in the prior art that it cannot be adjusted to an expanded state to expand and a fully open state to pass the refrigerant as it is without expanding.
본 발명은 상기의 문제점을 해소하기 위한 것으로, 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있도록 하는 전자식 팽창 및 방향전환 일체화 밸브를 제공하고자 한다.The present invention is to solve the above problems, simplifies the configuration of a vehicle air conditioner, enables precise control, and increases the airtightness of the refrigerant and the workability and productivity of the product, thereby lowering the production cost of the product and enhancing market competitiveness. We intend to provide an integrated electronic expansion and direction change valve that can be maximized.
이러한 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브는, 블록 형상으로 이루어져, 일측에 냉매가 공급되는 입력 포트와, 타측에 냉매가 배출되는 출력 포트와, 상기 입력 포트와 상기 출력 포트를 연통시키는 유로가 내부에 형성된 밸브바디와; 판 형상으로 이루어져, 상기 입력 포트와 상기 출력 포트 사이의 상기 유로 내에서 원주방향으로 회전 가능하게 마련되되, 소정의 반경방향 폭으로 원주방향을 따라 연장되는 팽창 리세스와, 상기 팽창 리세스의 말단에 연통되되 상기 팽창 리세스의 반경방향 폭 보다 넓은 반경방향 폭을 갖는 유로구멍이 형성되는 회전 밸브와; 판 형상으로 이루어져, 상기 회전 밸브에 접촉하도록 적층 배치되되 상기 밸브바디의 유로 내에 회전 불가하게 고정되며, 원주방향을 따라 관통공이 형성되는 밸브 플레이트와; 합성수지 또는 탄성 기밀재질로 이루어져 상기 밸브 플레이트를 향하여 상기 회전 밸브의 적어도 일면에 일체로 회전 가능하게 마련되어, 상기 밸브 플레이트의 관통공과 상기 회전 밸브의 상호간에 기밀성을 확보하는 기밀부재와; 상기 회전 밸브에 회전력을 전달하는 구동부재를 포함함으로써 달성된다.The electronic expansion and direction change integrated valve according to the present invention has a block shape, and includes an input port through which refrigerant is supplied to one side, an output port through which refrigerant is discharged to the other side, and a flow path that communicates the input port and the output port. A valve body formed therein; Made in a plate shape, provided to be rotatable in a circumferential direction in the flow path between the input port and the output port, an expansion recess extending in a circumferential direction with a predetermined radial width, and an end of the expansion recess A rotary valve in communication with a flow path hole having a radial width greater than that of the expansion recess; A valve plate formed in a plate shape, stacked and arranged to contact the rotary valve, fixed non-rotatably in the flow path of the valve body, and having a through hole formed in a circumferential direction; An airtight member made of synthetic resin or an elastic airtight material and provided so as to be integrally rotatable on at least one surface of the rotary valve toward the valve plate to secure airtightness between the through hole of the valve plate and the rotary valve; It is achieved by including a drive member for transmitting a rotational force to the rotational valve.
이때, 상기 팽창 리세스는 상기 관통공의 반경방향 외측에서 원주방향을 따라 중첩되어 팽창 간극을 형성하는 것이 좋다.In this case, it is preferable that the expansion recesses overlap along the circumferential direction from the outer side in the radial direction of the through hole to form an expansion gap.
또한, 상기 밸브바디의 출력 포트는 서로 독립적으로 형성된 제1 출력 포트 및 제2 출력 포트를 포함하며; 상기 밸브 플레이트의 관통공은 상기 제1 출력 포트 및 상기 제2 출력 포트에 각각 대응하여 원주방향을 따라 이격 형성된 제1 관통공 및 제2 관통공을 포함하여; 1개의 입력 포트로부터 2개의 출력 포트 중 어느 하나로 절환하여 냉매를 공급 가능한 것이 양호하다.Further, the output ports of the valve body include a first output port and a second output port independently formed from each other; The through-holes of the valve plate include first through-holes and second through-holes spaced apart from each other in a circumferential direction corresponding to the first output port and the second output port, respectively; It is preferable that the refrigerant can be supplied by switching from one input port to one of the two output ports.
게다가, 상기 기밀부재와 상기 회전 밸브에는 상호간의 접촉부위에 서로 맞물려 결합하는 다각형상 또는 원호형상이 형성되어, 상기 회전 밸브의 회전 시 상기 기밀부재가 일체로 회전하도록 하는 것이 바람직하다.In addition, it is preferable that the airtight member and the rotary valve have a polygonal shape or an arc shape that engages and engages with each other in contact with each other, so that the airtight member rotates integrally when the rotary valve is rotated.
특히, 상기 구동부재는, 상기 회전 밸브의 회전 중심에 연결되어 일체로 회전하는 샤프트와, 전원 제어에 따라 회전각도 제어가 가능하며 상기 샤프트에 회전력을 전달하는 스텝모터를 포함하며; 상기 밸브 플레이트는 중앙에 상기 샤프트의 하단을 회전 가능하게 지지하는 지지홈이 형성되는 것이 바람직할 것이다.In particular, the driving member includes a shaft connected to the rotation center of the rotation valve and integrally rotating, and a step motor capable of controlling a rotation angle according to power control and transmitting rotational force to the shaft; It is preferable that the valve plate has a support groove rotatably supporting the lower end of the shaft at the center.
이상과 같은 본 발명은 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있는 발명인 것이다.The present invention as described above enables precise control while simplifying the configuration of an air conditioner for a vehicle, and in particular, it is an invention capable of maximizing market competitiveness while lowering the production cost of the product by increasing the airtightness of the refrigerant and the workability and productivity of the product. .
도 1은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예를 도시하는 정단면도,1 is a front cross-sectional view showing an example of an integrated electronic expansion and direction change valve according to the present invention,
도 2는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트를 도시하는 평면도,2 is a plan view showing a rotary valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 3은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브와 기밀부재가 서로 일체화 된 상태를 도시하는 도,3 is a view showing a state in which a rotary valve and an airtight member are integrated with each other in an example of the electronic expansion and direction change integrated valve according to the present invention.
도 4는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트가 적층된 상태를 도시하는 평면도,4 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 5는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 분해사시도,5 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 6은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 저면 분해사시도,6 is a bottom exploded perspective view of a rotary valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 7은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 팽창 리세스의 반경방향 위치에 따라 형성되는 팽창 간극을 설명하는 도,7 is a diagram illustrating an expansion gap formed according to a radial position of an expansion recess in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 8은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트의 폐쇄 상태를 나타내는 도,8 is a diagram showing a closed state of an output port in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 9는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트에 대한 냉매의 팽창 상태를 나타내는 도,9 is a diagram showing an expansion state of a refrigerant with respect to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 10은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트에 대한 냉매의 완전 개방 상태를 나타내는 도,10 is a diagram showing a fully open state of a refrigerant to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention;
도 11은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예를 도시하는 정단면도,11 is a front cross-sectional view showing another example of an integrated electronic expansion and direction change valve according to the present invention;
도 12는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 밸브바디의 하부 몸체를 도시하는 도,12 is a view showing the lower body of the valve body in another example of the integrated electronic expansion and direction change valve according to the present invention.
도 13은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 밸브 플레이트를 도시하는 평면도,13 is a plan view showing a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention;
도 14는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트가 적층된 상태를 도시하는 평면도,14 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in another example of the integrated electronic expansion and direction change valve according to the present invention;
도 15는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 분해사시도,15 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention;
도 16은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 저면 분해사시도,16 is a bottom exploded perspective view of a rotary valve, an airtight member, and a valve plate in another example of an integrated electronic expansion and direction change valve according to the present invention;
도 17은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 부시를 도시하는 사시도,17 is a perspective view showing a bush in another example of an integrated electronic expansion and direction change valve according to the present invention;
도 18은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트 및 제2 출력 포트 모두의 폐쇄 상태를 나타내는 도,18 is a view showing a closed state of both the first output port and the second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
도 19는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트에 대한 냉매의 팽창 상태 및 제2 출력 포트의 폐쇄 상태를 나타내는 도,19 is a diagram showing an expanded state of a refrigerant with respect to a first output port and a closed state of a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention;
도 20은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트에 대한 냉매의 완전 개방 상태 및 제2 출력 포트의 폐쇄 상태를 나타내는 도,FIG. 20 is a diagram illustrating a fully open state of a refrigerant with respect to a first output port and a closed state of a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
도 21은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트 및 제2 출력 포트 모두의 폐쇄 상태를 나타내는 도,21 is a view showing a closed state of both the first output port and the second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
도 22는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트의 폐쇄 상태 및 제2 출력 포트에 대한 냉매의 팽창 상태를 나타내는 도,22 is a diagram showing a closed state of a first output port and an expanded state of a refrigerant with respect to a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention;
도 23은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트의 폐쇄 상태 및 제2 출력 포트에 대한 냉매의 완전 개방 상태를 나타내는 도.23 is a view showing a closed state of a first output port and a completely open state of a refrigerant to a second output port in another example of the integrated electronic expansion and direction change valve according to the present invention.
[부호의 설명][Explanation of code]
100 : 밸브바디 101 : 입력 포트100: valve body 101: input port
102 : 출력 포트 102a : 제1 출력 포트 102: output port 102a: first output port
102b : 제2 출력 포트 104 : 씰링102b: second output port 104: sealing
106 : 체결링 110 : 유로106: fastening ring 110: euro
120 : 메인 몸체 130 : 하부 몸체120: main body 130: lower body
140 : 고정 몸체 141 : 단턱부140: fixed body 141: stepped portion
150 : 커버 151 : 체결수단150: cover 151: fastening means
160 : 메인 씰링 200 : 회전 밸브160: main sealing 200: rotary valve
201 : 결합공 210 : 팽창 리세스201: coupling hole 210: expansion recess
220 : 유로구멍 230 : 밸브체220: flow path 230: valve body
300 : 밸브 플레이트 301 : 지지홈300: valve plate 301: support groove
310 : 관통공 311 : 제1 관통공310: through hole 311: first through hole
312 : 제2 관통공 400 : 기밀부재312: second through hole 400: airtight member
500 : 구동부재 510 : 샤프트500: drive member 510: shaft
511 : 샤프트 기어 520 : 스텝모터511: shaft gear 520: step motor
521 : 출력축 기어 530 : 감속기어521: output shaft gear 530: reduction gear
600 : 부시 610 : 보스600: bush 610: boss
620 : 날개 w : 팽창 리세스의 반경방향 폭620: wing w: radial width of the expansion recess
W : 개방공의 반경방향 폭W: radial width of the open hole
도 1은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예를 도시하는 정단면도이며, 도 2는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트를 도시하는 평면도로서, 도 2의 (a)는 회전 밸브를, 도 2의 (b)는 기밀부재를, 그리고 도 2의 (c)는 밸브 플레이트를 각각 나타낸다.1 is a front cross-sectional view showing an example of an electronic expansion and direction change integrated valve according to the present invention, and FIG. 2 is a rotary valve, an airtight member, and a valve plate in an example of the electronic expansion and direction change integrated valve according to the present invention. As a plan view showing, Fig. 2(a) shows a rotary valve, Fig. 2(b) shows an airtight member, and Fig. 2(c) shows a valve plate, respectively.
그리고, 도 3은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브와 기밀부재가 서로 일체화 된 상태를 도시하는 도로서, 도 3의 (a)는 사시도이며, 도 3의 (b)는 저면사시도이고, 도 4는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트가 적층된 상태를 도시하는 평면도이다.And, Figure 3 is a diagram showing a state in which the rotary valve and the airtight member are integrated with each other in an example of the integrated electronic expansion and direction change valve according to the present invention, Figure 3 (a) is a perspective view, ( b) is a bottom perspective view, and FIG. 4 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in an example of the electronic expansion and direction change integrated valve according to the present invention.
또한, 도 5는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 분해사시도이며, 도 6은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 저면 분해사시도이고, 도 7은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 팽창 리세스의 반경방향 위치에 따라 형성되는 팽창 간극을 설명하는 도이다.In addition, FIG. 5 is an exploded perspective view of a rotating valve, an airtight member, and a valve plate in an example of an integrated electronic expansion and direction change valve according to the present invention, and FIG. 6 is an exploded perspective view of the integrated electronic expansion and direction change valve according to the present invention. In one example, it is an exploded perspective view of the bottom of the rotary valve, the airtight member, and the valve plate, and FIG. 7 is an expansion gap formed according to the radial position of the expansion recess in an example of the integrated electronic expansion and direction change valve according to the present invention. It is a diagram explaining.
게다가, 도 8은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트의 폐쇄 상태를 나타내는 도이며, 도 9는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트에 대한 냉매의 팽창 상태를 나타내는 도이고, 도 10은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예에 있어서 출력 포트에 대한 냉매의 완전 개방 상태를 나타내는 도이다.In addition, FIG. 8 is a view showing a closed state of an output port in an example of an integrated electronic expansion and direction change valve according to the present invention, and FIG. 9 is an output port in an example of an integrated electronic expansion and direction change valve according to the present invention. FIG. 10 is a diagram showing an expanded state of the refrigerant to and FIG. 10 is a diagram illustrating a fully opened state of the refrigerant to an output port in an example of an integrated electronic expansion and direction change valve according to the present invention.
이때, 도 8 내지 도 10에 있어서, 각 도의 (a)는 평면도이고, 각 도의 (b)는 각 도의 (a)에 나타낸 B-B선 내지 D-D선에 대한 각각의 단면도이다.In this case, in Figs. 8 to 10, each (a) is a plan view, and (b) is a cross-sectional view taken along lines B-B to D-D shown in Fig. (a).
다음으로, 도 11은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예를 도시하는 정단면도이며, 도 12는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 밸브바디의 하부 몸체를 도시하는 도로서, 도 12의 (a)는 평면도이며, 도 12의 (b)는 도 12 (a)의 A-A선에 대한 단면도이고, 도 13은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 밸브 플레이트를 도시하는 평면도이다.Next, FIG. 11 is a front cross-sectional view showing another example of the electronic expansion and direction change integrated valve according to the present invention, and FIG. 12 is a lower portion of the valve body in another example of the electronic expansion and direction change integrated valve according to the present invention. As a diagram showing the body, Figure 12 (a) is a plan view, Figure 12 (b) is a cross-sectional view taken along line AA of Figure 12 (a), Figure 13 is an integrated electronic expansion and direction change according to the present invention It is a plan view showing a valve plate in another example of a valve.
그리고, 도 14는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트가 적층된 상태를 도시하는 평면도이며, 도 15는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 분해사시도이고, 도 16은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 회전 밸브, 기밀부재, 그리고 밸브 플레이트에 대한 저면 분해사시도이다.14 is a plan view showing a state in which a rotary valve, an airtight member, and a valve plate are stacked in another example of the electronic expansion and direction change integrated valve according to the present invention, and FIG. 15 is an electronic expansion and direction change integrated valve according to the present invention. An exploded perspective view of a rotary valve, an airtight member, and a valve plate in another example of a direction change integrated valve, and FIG. 16 is a rotary valve, an airtight member, and in another example of the electronic expansion and direction change integrated valve according to the present invention. It is an exploded perspective view of the bottom of the valve plate.
게다가, 도 17는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 부시를 도시하는 사시도이다.In addition, Fig. 17 is a perspective view showing a bush in another example of an integrated electronic expansion and direction change valve according to the present invention.
또한, 도 18은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트 및 제2 출력 포트 모두의 폐쇄 상태를 나타내는 도이며, 도 19는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트에 대한 냉매의 팽창 상태 및 제2 출력 포트의 폐쇄 상태를 나타내는 도이고, 도 20은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트에 대한 냉매의 완전 개방 상태 및 제2 출력 포트의 폐쇄 상태를 나타내는 도이다.In addition, FIG. 18 is a diagram showing a closed state of both the first output port and the second output port in another example of the electronic expansion and direction change integrated valve according to the present invention, and FIG. 19 is an electronic expansion and direction according to the present invention. In another example of the integrated switching valve, a diagram showing the expanded state of the refrigerant with respect to the first output port and the closed state of the second output port, and FIG. 20 is a diagram showing another example of the electronic expansion and direction switching integrated valve according to the present invention. It is a diagram showing a state in which the refrigerant is completely open to the first output port and a state in which the second output port is closed.
그리고, 도 21은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트 및 제2 출력 포트 모두의 폐쇄 상태를 나타내는 도이며, 도 22는 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트의 폐쇄 상태 및 제2 출력 포트에 대한 냉매의 팽창 상태를 나타내는 도이고, 도 23은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서 제1 출력 포트의 폐쇄 상태 및 제2 출력 포트에 대한 냉매의 완전 개방 상태를 나타내는 도이다.And, FIG. 21 is a diagram showing a closed state of both the first output port and the second output port in another example of the electronic expansion and direction change integrated valve according to the present invention, and FIG. 22 is an electronic expansion and direction according to the present invention. In another example of the integrated switching valve, a diagram showing a closed state of the first output port and an expanded state of the refrigerant with respect to the second output port, and FIG. 23 is a diagram showing another example of the electronic expansion and direction switching integrated valve according to the present invention. A diagram showing a closed state of the first output port and a completely open state of the refrigerant to the second output port.
이때, 도 18 내지 도 23에 있어서, 각 도의 (a)는 평면도이고, 각 도의 (b)는 각 도의 (a)에 나타낸 E-E선 내지 J-J선에 대한 각각의 단면도이다.At this time, in FIGS. 18 to 23, each (a) is a plan view, and (b) is a cross-sectional view taken along lines E-E to J-J shown in each (a).
본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브는 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있는 것을 그 기술상의 기본 특징으로 한다.The electronic expansion and direction change integrated valve according to the present invention simplifies the configuration of the vehicle air conditioner and enables precise control, and in particular, increases the airtightness of the refrigerant and the processability and productivity of the product, thereby lowering the production cost of the product and enhancing market competitiveness. What can be maximized is the basic feature of the technology.
본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.An embodiment of the present invention will be described in detail with reference to the accompanying drawings as follows.
본 발명은 차량용 공조기에 있어서 냉방을 위한 냉매의 순환 시 냉매가 경유하는 전자식 팽창 및 방향전환 일체화 밸브로서, 응축기와 증발기 사이에 마련될 수 있을 것이다.The present invention is an integrated valve for electronic expansion and direction change through which the refrigerant passes when the refrigerant is circulated for cooling in a vehicle air conditioner, and may be provided between the condenser and the evaporator.
우선, 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브에 대한 일예는 도 1 내지 도 10에 도시한 바와 같이, 블록 형상으로 이루어져, 일측에 냉매가 공급되는 입력 포트(101)와, 타측에 냉매가 배출되는 출력 포트(102)와, 상기 입력 포트(101)와 상기 출력 포트(102)를 연통시키는 유로(110)가 내부에 형성된 밸브바디(100)와; 판 형상으로 이루어져, 상기 입력 포트(101)와 상기 출력 포트(102) 사이의 상기 유로(110) 내에서 원주방향으로 회전 가능하게 마련되되, 소정의 반경방향 폭(w)으로 원주방향을 따라 연장되는 팽창 리세스(210)와, 상기 팽창 리세스(210)의 말단에 연통되되 상기 팽창 리세스(210)의 반경방향 폭(w) 보다 넓은 반경방향 폭(W)을 갖는 유로구멍(220)이 형성되는 회전 밸브(200)와; 판 형상으로 이루어져, 상기 회전 밸브(200)에 접촉하도록 적층 배치되되 상기 밸브바디(100)의 유로(110) 내에 회전 불가하게 고정되며, 원주방향을 따라 관통공(310)이 형성되는 밸브 플레이트(300)와; 합성수지 또는 탄성 기밀재질로 이루어져 상기 밸브 플레이트(300)를 향하여 상기 회전 밸브(200)의 적어도 일면에 일체로 회전 가능하게 마련되어, 상기 밸브 플레이트(300)의 관통공(310)과 상기 회전 밸브(200)의 상호간에 기밀성을 확보하는 기밀부재(400)와; 상기 회전 밸브(200)에 회전력을 전달하는 구동부재(500)를 포함하는 것이 바람직하다.First, an example of the electronic expansion and direction change integrated valve according to the present invention is made of a block shape, as shown in Figs. 1 to 10, an input port 101 for supplying a refrigerant to one side, and a refrigerant to the other side. A valve body 100 having an output port 102 discharged and a flow path 110 communicating the input port 101 and the output port 102 therein; Made of a plate shape, provided to be rotatable in the circumferential direction within the flow path 110 between the input port 101 and the output port 102, and extends along the circumferential direction with a predetermined radial width (w) The expansion recess 210 is connected to the end of the expansion recess 210, the flow path hole 220 having a radial width (W) wider than the radial width (w) of the expansion recess (210) The rotary valve 200 is formed; A valve plate in which a through hole 310 is formed in a circumferential direction, which is formed in a plate shape, is stacked and disposed to contact the rotary valve 200, and is fixed to be non-rotatably in the flow path 110 of the valve body 100. 300) and; It is made of synthetic resin or an elastic airtight material and is integrally rotatably provided on at least one surface of the rotation valve 200 toward the valve plate 300, and the through hole 310 of the valve plate 300 and the rotation valve 200 ) And an airtight member 400 for securing airtightness between them; It is preferable to include a driving member 500 for transmitting a rotational force to the rotation valve 200.
즉, 본 발명의 전자식 팽창 및 방향전환 일체화 밸브에 대한 일예는 기본적으로 밸브바디(100), 회전 밸브(200), 밸브 플레이트(300), 기밀부재(400), 그리고 구동부재(500)를 포함하고 있다.That is, an example of the electronic expansion and direction change integrated valve of the present invention basically includes a valve body 100, a rotary valve 200, a valve plate 300, an airtight member 400, and a driving member 500. I'm doing it.
우선, 밸브바디(100)는 본 발명의 전자식 팽창 및 방향전환 일체화 밸브에 있어서 기본 골격을 이루는 구성으로, 블록 형상, 바람직하게는 대략 육면체의 블록 형상으로 이루어져 있다.First, the valve body 100 is a structure constituting the basic skeleton in the integrated electronic expansion and direction change valve of the present invention, and is made of a block shape, preferably a substantially hexahedral block shape.
이때, 상기 밸브바디(100)의 외형에 제한은 없을 것이며, 육면체인 사각기둥을 포함하여, 다각기둥이나 원기둥 형상이어도 좋다.At this time, there will be no limitation on the external shape of the valve body 100, and may be a polygonal column or a cylindrical shape, including a square column of a hexahedron.
이러한 밸브바디(100)에 있어서 도 1과 같이 일측, 즉 도면에 있어서 상측에는 냉매가 공급되는 입력 포트(101)가 형성될 수 있고, 상기 밸브바디(100)의 타측, 즉 도면에 있어서 하측에는 냉매가 배출되는 출력 포트(102)가 형성될 수 있을 것이다.In such a valve body 100, as shown in FIG. 1, an input port 101 to which a refrigerant is supplied may be formed on one side, that is, on the upper side in the drawing, and on the other side of the valve body 100, that is, on the lower side in the drawing. An output port 102 through which the refrigerant is discharged may be formed.
이와 함께, 상기 밸브바디(100)의 내부에는 상기 입력 포트(101)와 상기 출력 포트(102)를 하나로 연통시키는 유로(110)가 형성되어 있어, 이 유로(110)를 통해 냉매가 상기 입력 포트(101)로부터 상기 출력 포트(102)로 통과할 수 있는 것이다.In addition, a flow path 110 for communicating the input port 101 and the output port 102 into one is formed in the valve body 100, so that the refrigerant flows through the flow path 110 to the input port. It can pass from 101 to the output port 102.
이에 따라, 예를 들어, 냉방 구동 시 입력 포트(101)로 들어온 냉매가 출력 포트(102)로 배출되는 등이 가능할 것이다.Accordingly, for example, when cooling is driven, the refrigerant entering the input port 101 may be discharged to the output port 102.
설명의 편의를 위하여 밸브바디(100)의 상측에 입력 포트(101)가 형성되고, 하측에 출력 포트(102)가 형성된 것으로 예시하여 이하 설명하지만, 밸브바디(100)의 배치 방향에 따라 각 포트의 위치는 변경될 수 있을 것이며, 이에 국한되는 것이 아님은 자명할 것이다.For convenience of explanation, the input port 101 is formed on the upper side of the valve body 100 and the output port 102 is formed on the lower side, and is described below, but each port according to the arrangement direction of the valve body 100 It will be apparent that the location of is subject to change and is not limited thereto.
이와 같은 밸브바디(100)의 유로(110) 중간에는 냉매의 통과 및 팽창 여부를 제어하는 회전 밸브(200)와 밸브 플레이트(300)가 마련될 것이다.In the middle of the flow path 110 of the valve body 100, a rotary valve 200 and a valve plate 300 for controlling passage and expansion of the refrigerant may be provided.
여기에서, 상술한 밸브바디(100)를 보다 상세하게 설명하면, 상기 밸브바디(100)는 하나의 몸체로 이루어질 수 있지만, 성형성이나 조립성 등을 고려하여 도 1과 같이 다수의 몸체로 분할하여 제작될 수 있을 것이다.Here, when the above-described valve body 100 is described in more detail, the valve body 100 may be formed of a single body, but is divided into a plurality of bodies as shown in FIG. 1 in consideration of formability and assembly properties. So it can be made.
예를 들어, 상기 밸브바디(100)는 메인 몸체(120), 하부 몸체(130), 그리고 고정 몸체(140) 등으로 분할하여 제작된 후, 하나로 조립될 수 있다.For example, the valve body 100 may be manufactured by being divided into a main body 120, a lower body 130, and a fixed body 140, and then assembled into one.
우선, 상기 메인 몸체(120)는 밸브바디(100)의 가장 중앙에 위치하여 상하로 유로(110)가 관통 형성된 구성으로, 이하에서 설명할 회전 밸브(200) 및 기밀부재(400)와 밸브 플레이트(300)가 이 메인 몸체(120)의 내주면에 마련될 수 있다.First, the main body 120 is located at the center of the valve body 100 and has a flow path 110 penetrating through it, and the rotary valve 200 and the airtight member 400 and the valve plate to be described below. 300 may be provided on the inner circumferential surface of the main body 120.
이때, 상기 메인 몸체(120)의 내주면은 단턱 없이 균일한 내경으로 가공되어 가공성을 높이는 것이 가능해진다.At this time, the inner circumferential surface of the main body 120 is processed to a uniform inner diameter without a step, so that it is possible to increase workability.
그리고, 상기 하부 몸체(130)에는 상술한 입력 포트(101)와 출력 포트(102)가 형성되며, 상기 하부 몸체(130)의 내부 중앙에 도 1과 같이 상술한 메인 몸체(120)가 배치될 수 있는 것이다.In addition, the input port 101 and the output port 102 are formed in the lower body 130, and the main body 120 described above as shown in FIG. 1 is disposed in the inner center of the lower body 130. It can be.
또한, 도 1과 같이 고정 몸체(140)가 상기 하부 몸체(130)의 상측 개구에 기밀을 유지하여 조립될 수 있을 것이다.In addition, as shown in FIG. 1, the fixed body 140 may be assembled by maintaining airtightness in the upper opening of the lower body 130.
이러한 구성에 따라, 밸브바디(100)에 있어서 메인 몸체(120), 하부 몸체(130), 그리고 고정 몸체(140)에 의해 상기 입력 포트(101)로부터 상기 출력 포트(102)에 이르는 유로(110)가 형성될 수 있을 것이다.According to this configuration, in the valve body 100, the flow path 110 from the input port 101 to the output port 102 by the main body 120, the lower body 130, and the fixed body 140 ) May be formed.
도 1에 있어서, 도면부호 104는 씰링으로써, 메인 몸체(120)와 하부 몸체(130) 사이에 위치하여 냉매의 누설을 방지하고, 고정 몸체(140)와 하부 몸체(130) 사이에 위치하여 냉매의 누설을 방지할 수 있을 것이다.In Figure 1, reference numeral 104 is a sealing, located between the main body 120 and the lower body 130 to prevent the leakage of the refrigerant, and located between the fixed body 140 and the lower body 130 to prevent the refrigerant It will be able to prevent the leakage of.
이때, 이후에 설명할 구동부재(500)가 상기 고정 몸체(140)를 관통하여 마련될 수 있을 것이다.In this case, the driving member 500 to be described later may be provided through the fixed body 140.
다음으로, 회전 밸브(200)는 도 2 내지 도 6에 도시한 바와 같이, 대략 소정 두께를 가진 판재로 제작된 디스크를 가공한 것으로, 상기 입력 포트(101)와 상기 출력 포트(102) 사이의 상기 유로(110)를 가로 지르도록 상기 유로(110) 내에 배치되어 원주방향으로 회전 가능하게 마련된다.Next, the rotary valve 200 is a disk made of a plate material having a predetermined thickness, as shown in Figs. 2 to 6, and between the input port 101 and the output port 102 It is disposed in the flow path 110 so as to cross the flow path 110 and is provided to be rotatable in the circumferential direction.
앞서 설명한 바와 같이, 상기 회전 밸브(200)는 밸브바디(100)에 있어서 메인 몸체(120)의 내주면에 마련될 수 있을 것이다.As described above, the rotary valve 200 may be provided on the inner circumferential surface of the main body 120 in the valve body 100.
이때, 상기 회전 밸브(200)는 상기 밸브바디(100)에 있어서 메인 몸체(120)의 내주면 내에서 원활하게 회전할 수 있도록, 상기 메인 몸체(120)의 내경 보다 다소 작은 외경을 가지도록 상기 회전 밸브(200)가 형성된다.At this time, the rotation valve 200 is rotated to have an outer diameter slightly smaller than the inner diameter of the main body 120 so that the valve body 100 can smoothly rotate within the inner circumferential surface of the main body 120 The valve 200 is formed.
이러한 회전 밸브(200)에는 도 2에 도시한 바와 같이, 팽창 리세스(210) 및 유로구멍(220)이 원주방향을 따라 형성되어 있다.As shown in FIG. 2, the rotary valve 200 has an expansion recess 210 and a flow path hole 220 formed along the circumferential direction.
우선, 상기 팽창 리세스(210)는 소정의 반경방향 폭(w)으로 원주방향을 따라 연장되는 형상으로 성형되며, 상기 유로구멍(220)은 상기 팽창 리세스(210)의 말단에 연통되되 상기 팽창 리세스(210)의 반경방향 폭(w) 보다 넓은 반경방향 폭(W)을 가지고 원주방향을 따라 연장되는 형상으로 성형되어 있다.First, the expansion recess 210 is formed in a shape extending along the circumferential direction with a predetermined radial width w, and the flow path hole 220 is communicated with the end of the expansion recess 210 It has a radial width (W) wider than the radial width (w) of the expansion recess 210 and is formed in a shape extending along the circumferential direction.
이때, 상기 팽창 리세스(210)의 성형 위치는, 상기 팽창 리세스(210)와 상기 유로구멍(220)이 연통되도록 상기 유로구멍(220)의 반경방향 폭(W) 내에 위치하여도 좋고, 상기 유로구멍(220)의 반경방향 폭(W)을 벗어나 중앙측이나 외측에 위치하여도 좋을 것이다.At this time, the forming position of the expansion recess 210 may be located within the radial width W of the flow path hole 220 so that the expansion recess 210 and the flow path hole 220 communicate with each other, It may be located at the center side or outside the flow path hole 220 out of the radial width (W).
다만, 냉매의 팽창을 효과적으로 수행하기 위한 팽창 리세스(210)의 바람직한 위치에 대해서는 추후 설명하기로 하고, 우선 팽창 리세스(210)가 회전 밸브(200)의 반경방향 외측에 위치하여 팽창 리세스(210)와 유로구멍(220)이 연통 형성된 예를 들어 이하 설명하기로 한다.However, the preferred position of the expansion recess 210 for effectively performing the expansion of the refrigerant will be described later. First, the expansion recess 210 is located outside the radial direction of the rotary valve 200 so that the expansion recess An example in which the 210 and the flow path hole 220 are formed in communication will be described below.
그리고, 상기 회전 밸브(200)에 있어서 팽창 리세스(210)는 이후에 설명할 밸브 플레이트(300)의 관통공(310)과 중첩되어 팽창 간극을 형성함으로써 냉매를 팽창시키는 구성이다.In addition, in the rotary valve 200, the expansion recess 210 overlaps the through hole 310 of the valve plate 300 to be described later to form an expansion gap, thereby expanding the refrigerant.
또한, 상기 회전 밸브(200)에 있어서 유로구멍(220)은 관통공(310)과 중첩되어 냉매의 팽창 없이 냉매를 그대로 통과시키는 작용을 하게 될 것이다.In addition, in the rotary valve 200, the flow path hole 220 overlaps the through hole 310 so as to pass the refrigerant as it is without expansion of the refrigerant.
여기에서, 상기 회전 밸브(200)의 회전 방향은 도 2의 (a)에 있어서 시계 방향 및 반시계 방향의 양방향으로 제어가 이루어질 수 있으나, 제어 정밀도를 고려하여 상기 회전 밸브(200)를 일방향, 예를 들면, 반시계 방향으로만 회전하도록 제어하는 것이 바람직할 것이다.Here, the rotation direction of the rotation valve 200 may be controlled in both clockwise and counterclockwise directions in FIG. 2A, but in consideration of control precision, the rotation valve 200 is in one direction, For example, it would be desirable to control it to rotate only counterclockwise.
만약, 상기 회전 밸브(200)를 반시계 방향으로만 회전하도록 제어하는 경우, 도 2의 (a)에 예시한 바와 같이 팽창 리세스(210)와 유로구멍(220)의 상호 위치에 대해서는, 팽창 리세스(210)를 기준으로 시계 방향 측에 유로구멍(220)이 위치하도록 하는 것이 바람직하다.If the rotation valve 200 is controlled to rotate only in the counterclockwise direction, as illustrated in FIG. 2A, the expansion recess 210 and the flow path hole 220 are expanded. It is preferable that the flow path hole 220 is positioned on the clockwise side with respect to the recess 210.
즉, 회전 밸브(200)의 반시계 방향 회전 시, 팽창 리세스(210)가 유로구멍(220) 보다 먼저 관통공(310)과 중첩되도록 함으로써, 냉매의 팽창이 선행된 후, 상기 회전 밸브(200)가 더 회전하면 유로구멍(220)이 관통공(310)과 중첩되도록 하여 냉매의 완전 개방이 수행될 수 있도록 하는 것이 좋을 것이다.That is, when the rotary valve 200 rotates in a counterclockwise direction, the expansion recess 210 overlaps the through hole 310 before the flow path hole 220, so that the refrigerant expands beforehand, and then the rotary valve ( When 200 is further rotated, it would be better to allow the flow path hole 220 to overlap the through hole 310 so that the refrigerant can be completely opened.
그리고, 도 1과 같이 상기 회전 밸브(200)에는 밸브 플레이트(300)가 맞닿아 접촉하도록 적층 배치되며, 특히, 밸브 플레이트(300)가 회전 밸브(200)의 하측에 맞닿아 접촉하도록 적층 배치될 것이다.In addition, as shown in FIG. 1, the rotary valve 200 is stacked and disposed so that the valve plate 300 abuts and contacts, and in particular, the valve plate 300 is stacked and disposed to abut and contact the lower side of the rotary valve 200. will be.
이때, 앞서 설명한 바와 같이 회전 밸브(200)는 밸브바디(100) 내에서 원주방향으로 회전 가능하게 마련되는 반면, 상기 밸브 플레이트(300)는 상기 밸브바디(100) 내에 회전 불가능하게 고정 설치된다.At this time, as described above, the rotary valve 200 is provided so as to be rotatable in the circumferential direction within the valve body 100, while the valve plate 300 is fixedly installed in the valve body 100 so as not to be rotatable.
이와 같은, 밸브 플레이트(300)는 판재로 이루어진 것으로, 상기 밸브바디(100) 내에서 회전이 불가하도록 하기 위해 외주 형상을 다각형 등으로 제작할 수 있을 것이다.As such, the valve plate 300 is made of a plate material, and the outer circumferential shape of the valve body 100 may be manufactured in a polygonal shape in order to prevent rotation within the valve body 100.
하지만, 이보다는 성형성이나 조립성을 고려하여 밸브 플레이트(300)를 디스크 형태로 제작한 후, 외주연에 일부가 잘려나간 절입부(미도시)를 형성하고, 이와 함께, 밸브바디(100)에는 이 절입부에 대응하는 돌출부(미도시)를 형성하여, 밸브 플레이트(300)가 밸브바디(100) 내에 회전 불가하게 조립되는 것이 양호할 것이다.However, after making the valve plate 300 in the form of a disk in consideration of formability and assembling property, a cutout (not shown) partially cut off is formed on the outer periphery, and together with this, the valve body 100 It is preferable that a protrusion (not shown) corresponding to this cutout is formed in the valve body 100 so that the valve plate 300 is non-rotatably assembled into the valve body 100.
이에 따라, 상기 밸브 플레이트(300)는 상기 밸브바디(100)에 조립된 상태에서 원주방향으로의 회전이 제한되며, 상기 밸브 플레이트(300)의 외주면과 상기 메인 몸체(120)의 내주면 사이에서는 냉매의 누설이 발생치 않도록 기밀을 유지하여야 할 것이다.Accordingly, the valve plate 300 is limited in rotation in the circumferential direction in a state assembled to the valve body 100, and a refrigerant between the outer circumferential surface of the valve plate 300 and the inner circumferential surface of the main body 120 Airtightness must be maintained to prevent leakage of the product.
이때, 상기 밸브 플레이트(300)에는 도 2의 (c)에 도시한 바와 같이 소정의 반경방향 폭을 가지고 원주방향을 따라 연장되어, 대략 중심이 잘려나간 부채꼴 형상의 관통공(310)이 형성된다.At this time, the valve plate 300 has a predetermined radial width and extends along the circumferential direction as shown in FIG. 2(c), and a fan-shaped through hole 310 with a roughly cut off center is formed. .
특히, 상기 관통공(310)의 형상은 상술한 회전 밸브(200)의 유로구멍(220)과 대략 동일한 형상으로 제작될 수 있으나, 상기 관통공(310)의 단면적은 상기 유로구멍(220)과 유사하거나 약간 넓은 것이 좋을 것이다.In particular, the shape of the through hole 310 may be manufactured to have substantially the same shape as the flow path hole 220 of the rotary valve 200 described above, but the cross-sectional area of the through hole 310 is the flow path hole 220 and A similar or slightly wider one would be better.
이때, 상기 유로구멍(220) 보다 상기 관통공(310)의 단면적을 약간 넓게 형성하고자 하는 경우, 반경방향 폭은 유사하게 유지하는 반면, 원주방향 폭은 상기 유로구멍(220) 보다 상기 관통공(310)이 다소 넓게 형성되는 것이 좋다.In this case, in the case where the cross-sectional area of the through hole 310 is to be slightly wider than the flow path hole 220, the radial width is kept similar, while the circumferential width is greater than the flow path hole 220. 310) should be formed somewhat wider.
앞서 설명한 회전 밸브(200)에 있어서 팽창 리세스(210)가 형성되는 반경방향 위치와 상기 관통공(310)의 원주방향 폭은 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 제어 정밀도에 영향을 미치는 것으로 이에 대한 설명은 후술하기로 한다.In the rotary valve 200 described above, the radial position where the expansion recess 210 is formed and the circumferential width of the through hole 310 affect the control precision of the electronic expansion and direction change integrated valve according to the present invention. This will be described later.
이러한 구성에 따라, 상기 회전 밸브(200)는 밸브바디(100) 내에 고정된 밸브 플레이트(300)와의 상대 회전 운동에 의해 본 발명에 따른 팽창밸브의 개폐 제어는 물론 냉매의 팽창 여부를 제어할 수 있는 것이다.According to this configuration, the rotary valve 200 can control whether or not the refrigerant expands as well as the opening and closing of the expansion valve according to the present invention by a relative rotational motion with the valve plate 300 fixed in the valve body 100. There is.
예를 들어, 도 9와 같이 상술한 회전 밸브(200)의 팽창 리세스(210)가 밸브 플레이트(300)의 관통공(310)과 중첩되는 경우, 팽창 간극을 형성하여 냉매의 팽창이 이루어지게 될 것이다.For example, when the expansion recess 210 of the rotary valve 200 described above overlaps with the through hole 310 of the valve plate 300 as shown in FIG. 9, an expansion gap is formed to allow the refrigerant to expand. Will be.
그리고, 상기 회전 밸브(200)가 반시계 방향으로 더 회전하여 도 10과 같이 유로구멍(220)이 밸브 플레이트(300)의 관통공(310)과 중첩되는 경우에는, 냉매의 유로가 넓게 확보되어 냉매의 팽창 없이 완전 개방 상태가 될 것이다.In addition, when the rotary valve 200 further rotates counterclockwise so that the flow path 220 overlaps the through hole 310 of the valve plate 300 as shown in FIG. 10, the flow path of the refrigerant is secured wider. It will be fully open without expansion of the refrigerant.
또한, 도 8과 같이 회전 밸브(200)의 팽창 리세스(210)나 유로구멍(220) 중 어느 것도 밸브 플레이트(300)의 관통공(310)에 중첩되지 않는 경우, 팽창밸브는 폐쇄 상태가 되어 냉매의 흐름이 차단될 것이다.In addition, as shown in FIG. 8, when neither of the expansion recess 210 or the flow path hole 220 of the rotary valve 200 overlaps the through hole 310 of the valve plate 300, the expansion valve is in a closed state. The flow of refrigerant will be blocked.
특히, 본 발명에 있어서는 이러한 폐쇄 상태에서 냉매의 누설을 보다 확실하게 방지하기 위하여 상기 회전 밸브(200)의 적어도 일면에는 기밀부재(400)가 추가로 마련되어 있다.In particular, in the present invention, in order to more reliably prevent leakage of refrigerant in such a closed state, an airtight member 400 is additionally provided on at least one surface of the rotary valve 200.
상기 기밀부재(400)는 합성수지나 테프론, 고무, 실리콘 등의 탄성 기밀재질로 이루어져 상기 밸브 플레이트(300)를 향하여 상기 회전 밸브(200)에 일체로 회전 가능하게 마련된다.The airtight member 400 is made of an elastic airtight material such as synthetic resin, Teflon, rubber, or silicone, and is provided to be integrally rotatable with the rotary valve 200 toward the valve plate 300.
이때, 상기 기밀부재(400)는 회전 밸브(200)와는 별도로 제작한 후 접착 등을 통해 일체화 하는 것도 가능하며, 또는 인서트 사출 등을 통하여 상기 기밀부재(400)와 상기 회전 밸브(200)가 일체로 성형 제작될 수도 있을 것이다.At this time, the airtight member 400 may be manufactured separately from the rotary valve 200 and then integrated through adhesion, or the airtight member 400 and the rotary valve 200 are integrated through insert injection, etc. It could also be molded and manufactured.
특히, 상기 기밀부재(400)는 오직 회전 밸브(200)가 밸브 플레이트(300)의 관통공(310)을 완전히 폐쇄시키는 경우에만 기능하기 때문에, 상술한 회전 밸브(200)의 전체 면적에 대하여 상기 기밀부재(400)가 마련될 필요는 없을 것이다.In particular, since the airtight member 400 functions only when the rotary valve 200 completely closes the through hole 310 of the valve plate 300, the above-described The airtight member 400 will not need to be provided.
즉, 상기 회전 밸브(200)에 있어서 밸브 플레이트(300)의 관통공(310)과 미세한 간극을 형성하여 냉매의 팽창을 실시하게 되는 팽창 리세스(210)의 안쪽에 위치하는 밸브체(230)에는 상기 기밀부재(400)가 마련될 필요가 없을 것이다.That is, the valve body 230 located inside the expansion recess 210 in which the refrigerant expands by forming a fine gap with the through hole 310 of the valve plate 300 in the rotary valve 200 There will be no need for the hermetic member 400 to be provided.
하지만, 밸브 플레이트(300)의 관통공(310)을 완전히 폐쇄시키기 위하여, 상기 회전 밸브(200)에 있어서 밸브체(230)를 제외한 모든 부위에는 상기 기밀부재(400)가 형성될 수 있을 것이며, 상기 밸브 플레이트(300)의 관통공(310)을 상기 기밀부재(400)가 폐쇄하여 높은 기밀성을 보유하게 되는 것이다.However, in order to completely close the through hole 310 of the valve plate 300, the airtight member 400 may be formed in all portions of the rotary valve 200 except for the valve body 230, The airtight member 400 closes the through hole 310 of the valve plate 300 to maintain high airtightness.
이를 위해, 도 3 내지 도 6에 예시한 바와 같이, 상기 회전 밸브(200)에 있어서 밸브 플레이트(300)와 접촉하는 하측면에 기밀부재(400)가 마련될 수 있으며, 냉매의 팽창을 실시하는 밸브체(230)를 제외한 부분에 상기 기밀부재(400)가 마련되는 것이다.To this end, as illustrated in FIGS. 3 to 6, an airtight member 400 may be provided on the lower side of the rotary valve 200 in contact with the valve plate 300, and to expand the refrigerant. The airtight member 400 is provided in portions other than the valve body 230.
상기 기밀부재(400)의 두께에 제한을 없을 것이며, 도면에는 상기 회전 밸브(200)의 절반 두께에 상응하는 기밀부재(400)를 예시하였다.There will be no limit to the thickness of the airtight member 400, and the airtight member 400 corresponding to the thickness of half of the rotary valve 200 is illustrated in the drawings.
이에 따라, 인서트 사출하지 않고, 상기 회전 밸브(200)에 상기 기밀부재(400)를 접착하는 경우에는 도 6에 예시한 바와 같이 상기 회전 밸브(200)는 미리 상기 기밀부재(400)의 형상에 대응하여 음각 성형될 필요가 있을 것이다.Accordingly, when the airtight member 400 is adhered to the rotary valve 200 without insert injection, the rotary valve 200 may be formed in advance in the shape of the airtight member 400 as illustrated in FIG. 6. Correspondingly, it will need to be engraved.
이러한 구성에 따라, 상기 회전 밸브(200)가 밸브 플레이트(300)의 관통공(310)을 폐쇄시킬 때, 기밀부재(400)가 상기 관통공(310)에 대응하는 부위에 위치하게 됨으로써, 냉매의 누설을 효과적으로 방지할 수 있게 된다.According to this configuration, when the rotary valve 200 closes the through hole 310 of the valve plate 300, the airtight member 400 is positioned at a portion corresponding to the through hole 310, thereby refrigerant It becomes possible to effectively prevent the leakage of.
마지막으로, 구동부재(500)는 상술한 회전 밸브(200)에 회전력을 전달하기 위한 구동원으로서 모터를 포함할 수 있을 것이다.Finally, the driving member 500 may include a motor as a driving source for transmitting the rotational force to the rotation valve 200 described above.
우선, 상기 구동부재(500)는 도 1에 도시한 바와 같이, 상기 회전 밸브(200)의 회전 중심에 연결되어 일체로 회전하는 샤프트(510)와, 전원 제어에 따라 회전각도 제어가 가능하며 상기 샤프트(510)에 회전력을 전달하는 스텝모터(520)를 포함할 수 있다.First, as shown in FIG. 1, the driving member 500 has a shaft 510 connected to the rotation center of the rotation valve 200 to rotate integrally, and the rotation angle can be controlled according to power control. It may include a step motor 520 that transmits the rotational force to the shaft 510.
그리고, 상기 스텝모터(520)의 출력축으로 출력되는 회전력은 상기 샤프트(510)를 회전시키기 위하여 도 1과 같이 직접적으로 또는 이하 다른 예에서 설명하겠지만 도 11과 같이 간접적으로 상기 샤프트(510)에 전달될 수 있을 것이다.In addition, the rotational force output to the output shaft of the step motor 520 is transmitted to the shaft 510 directly as shown in FIG. 1 or indirectly as shown in FIG. 11, although it will be described in another example below in order to rotate the shaft 510 It will be possible.
여기에서, 스텝모터(520)의 회전력이 샤프트(510)에 직접 전달되는 경우에는 도 1과 같이 상기 스텝모터(520)의 출력축이 샤프트(510)와 일체로 구성될 수 있을 것이다.Here, when the rotational force of the step motor 520 is directly transmitted to the shaft 510, the output shaft of the step motor 520 may be integrally configured with the shaft 510 as shown in FIG. 1.
이러한 경우, 상기 스텝모터(520)에 대한 출력축의 회전속도는 상기 샤프트(510)에 별도의 감속 없이 직접 전달될 것이다.In this case, the rotational speed of the output shaft with respect to the step motor 520 will be directly transmitted to the shaft 510 without a separate deceleration.
그리고, 상기 샤프트(510)는 그 일부가 상술한 밸브바디(100)의 유로(110)를 통과하도록 배치되어, 상기 샤프트(510)의 하부에는 아래로부터 밸브 플레이트(300), 기밀부재(400), 그리고 회전 밸브(200)가 순차적으로 적층되어 위치할 것이다.In addition, the shaft 510 is disposed so that a part of the shaft 510 passes through the flow path 110 of the valve body 100 described above, and the valve plate 300 and the airtight member 400 from the bottom of the shaft 510 And, the rotary valve 200 will be sequentially stacked and positioned.
그리고, 상기 밸브 플레이트(300)는 상기 샤프트(510)의 회전에 영향을 받지 않으며, 회전 중심만 상기 샤프트(510)에 지지될 뿐인 것으로, 상기 샤프트(510)는 상기 밸브 플레이트(300)에 대하여 아이들 상태로 배치된다.In addition, the valve plate 300 is not affected by the rotation of the shaft 510, and only the rotation center is supported by the shaft 510, and the shaft 510 is It is placed in an idle state.
하지만, 상기 회전 밸브(200)는 상술한 바와 같이 상기 샤프트(510)와 일체로 회전할 수 있도록 상기 회전 밸브(200)의 중심에 형성된 결합공(201)에는 도 2 내지 도 6과 같이 돌출부가 돌출 형성되어 있으며, 상기 샤프트(510)에는 상술한 결합공(201)의 돌출부에 대응하여 절입부(미도시)가 형성되어 있어, 결합공(201)의 돌출부와 샤프트(510)의 절입부가 서로 맞물려 있다.However, the rotation valve 200 has a protrusion as shown in FIGS. 2 to 6 in the coupling hole 201 formed in the center of the rotation valve 200 so that it can rotate integrally with the shaft 510 as described above. Protrusion is formed, and a cutout (not shown) is formed in the shaft 510 to correspond to the protrusion of the coupling hole 201 described above, so that the protrusion of the coupling hole 201 and the cutout of the shaft 510 are Are interlocked.
이에 따라, 샤프트(510)와 회전 밸브(200)가 일체로 회전할 수 있게 됨으로써, 상기 샤프트(510)의 회전력을 상기 회전 밸브(200)에 전달하는 것이 가능하다.Accordingly, since the shaft 510 and the rotary valve 200 can rotate integrally, it is possible to transmit the rotational force of the shaft 510 to the rotary valve 200.
지금까지는 밸브 플레이트(300)의 위에 회전 밸브(200)가 적층되는 구조에 대하여 설명하였으나, 미도시하였지만 필요에 따라 회전 밸브(200) 위에 밸브 플레이트(300)가 적층되는 구조이어도 좋고, 2개의 밸브 플레이트(300) 사이에 회전 밸브(200)가 위치하는 구조이어도 양호할 것이다.Until now, a structure in which the rotary valve 200 is stacked on the valve plate 300 has been described, but although not shown, a structure in which the valve plate 300 is stacked on the rotary valve 200 may be used as necessary, and two valves A structure in which the rotary valve 200 is positioned between the plates 300 may be good.
이러한 경우, 기밀부재(400)는 상기 회전 밸브(200)의 상측 또는 상하 양측에 마련될 수도 있을 것이며, 2개의 밸브 플레이트(300) 사이에 회전 밸브(200)를 위치시키는 구조의 경우 냉매의 누설을 예방하는 데에 가장 효과적일 것이다.In this case, the airtight member 400 may be provided on the upper side or both upper and lower sides of the rotary valve 200, and in the case of a structure in which the rotary valve 200 is positioned between the two valve plates 300, leakage of refrigerant It will be most effective in preventing it.
추가적으로, 도 1에 도시한 바와 같이, 하부 몸체(130)에 있어서 출력 포트(102)와 연통되는 개구 둘레를 따라 링 형상의 메인 씰링(160)을 부가하는 것이 바람직 할 것이다.Additionally, as shown in FIG. 1, it would be desirable to add a ring-shaped main sealing 160 along the periphery of the opening communicating with the output port 102 in the lower body 130.
이러한 메인 씰링(160)은 탄성을 지닌 기밀재료로 제작된 것으로, 밸브 플레이트(300)와 하부 몸체(130) 사이에 마련됨으로써, 입력 포트(101)와 출력 포트(102) 서로를 기밀성 높게 구분 짓게 된다.The main sealing 160 is made of an airtight material having elasticity, and is provided between the valve plate 300 and the lower body 130, thereby distinguishing the input port 101 and the output port 102 from each other with high airtightness. do.
그 결과, 상술한 회전 밸브(200)의 제어에 의해 밸브바디(100)에 있어서 입력 포트(101)로부터 출력 포트(102)로의 냉매를 차단할 때, 냉매가 누설되는 것을 효과적으로 차단할 수 있게 된다.As a result, when the refrigerant is shut off from the input port 101 to the output port 102 in the valve body 100 by the control of the rotary valve 200 described above, leakage of the refrigerant can be effectively prevented.
지금까지는 단순히 팽창 리세스(210)와 유로구멍(220)을 형성하여 냉매의 팽창 상태나 냉매의 팽창 없이 냉매를 그대로 통과시키는 작용에 관하여 설명하였지만, 본 발명에 있어서 상기 팽창 리세스(210)의 위치를 적절하게 한정하는 것으로 냉매의 팽창 효율을 증대시키는 것이 가능하다.Until now, the operation of simply forming the expansion recess 210 and the flow path hole 220 to pass the refrigerant as it is without the expansion of the refrigerant or expansion of the refrigerant has been described. By appropriately defining the position, it is possible to increase the expansion efficiency of the refrigerant.
여기에서 팽창 효율이란, 교축 정도를 의미하는 것으로, 교축이란 유체 통로의 일부에 밸브, 콕 또는 가느다란 구멍이 뚫린 판 등을 부착하여 흐름의 단면적을 좁히면, 이미 존재하는 압력차에 의해 유속이 강제적으로 증가되고, 이로 인해 분자간 거리가 멀어져 압력이 강하하는데 이 현상을 말한다.Here, the expansion efficiency means the degree of throttling, and the throttling means a valve, a cock, or a plate with a small hole attached to a part of the fluid passage to narrow the cross-sectional area of the flow. It is forcibly increased, and as a result, the distance between molecules increases and the pressure drops, which is a phenomenon.
즉, 적절한 크기의 팽창 간극을 형성하여 교축 정도가 높을수록 팽창 효율이 양호하다고 할 수 있을 것이다.In other words, it can be said that the higher the degree of throttling by forming an expansion gap of an appropriate size, the better the expansion efficiency.
예를 들어, 도 7의 (a)와 같이 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 중간 정도에 형성되어 유로구멍(220)과 연통 형성될 수 있을 것이며, 혹은 도 7의 (b)와 같이 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 중심측에 형성되어 유로구멍(220)과 연통 형성될 수도 있고, 또는 도 7의 (c)와 같이 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 외측에 형성되어 유로구멍(220)과 연통 형성될 수 있을 것이다.For example, as shown in (a) of FIG. 7, the expansion recess 210 may be formed approximately in the middle of the radial direction of the rotary valve 200 to be formed in communication with the flow path hole 220, or As shown in (b), the expansion recess 210 may be formed at the radial center side of the rotary valve 200 to communicate with the flow path hole 220, or the expansion recess 210 may be formed as shown in FIG. 7(c). The recess 210 may be formed outside the rotary valve 200 in the radial direction to be formed in communication with the flow path hole 220.
우선, 도 7의 (a)에 도시한 바와 같이, 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 중간 정도에 형성되어 유로구멍(220)과 연통 형성되는 경우, 상기 팽창 리세스(210)의 원주방향 폭에 무관하게 상기 팽창 리세스(210)의 반경방향 폭(w)의 크기에 따라 밸브 플레이트(300)에 형성된 관통공(310)과 연결되는 단면적이 결정되며, 이러한 단면적은 냉매에 대한 팽창 효율에 영향을 미치게 된다.First, as shown in (a) of FIG. 7, when the expansion recess 210 is formed approximately in the radial direction of the rotary valve 200 to communicate with the flow path hole 220, the expansion recess Regardless of the circumferential width of 210, the cross-sectional area connected to the through hole 310 formed in the valve plate 300 is determined according to the size of the radial width w of the expansion recess 210, and this cross-sectional area Will affect the expansion efficiency of the refrigerant.
이 단면적을 적절하게 유지하여 팽창 효율을 높이기 위해서는 상기 팽창 리세스(210)의 끝단이 관통공(310)과 미세하게 중첩되어 팽창 간극을 형성하는 상태를 유지해야 하기 때문에, 상기 회전 밸브(200)의 회전각도 제어에 보다 정밀한 제어가 요구될 수밖에 없다.In order to increase the expansion efficiency by properly maintaining this cross-sectional area, the end of the expansion recess 210 must be finely overlapped with the through hole 310 to form an expansion gap, so the rotary valve 200 More precise control is inevitably required to control the rotation angle of the machine.
게다가, 도 7의 (b)에 도시한 바와 같이, 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 중심측에 형성되어 유로구멍(220)과 연통 형성되는 경우에는, 상기 회전 밸브(200)의 회전 각도를 정밀하게 제어할 필요는 없다.In addition, as shown in (b) of FIG. 7, when the expansion recess 210 is formed at the radial center side of the rotary valve 200 to communicate with the flow path hole 220, the rotary valve It is not necessary to precisely control the rotation angle of (200).
하지만, 회전 밸브(200)의 팽창 리세스(210)와 밸브 플레이트(300)의 관통공(310)이 중첩되는 원주방향 폭이 현저하게 작기 때문에, 냉매에 대한 팽창 간극을 길게 형성하는 데에는 제한이 있는 것이다.However, since the circumferential width at which the expansion recess 210 of the rotary valve 200 and the through hole 310 of the valve plate 300 overlap is remarkably small, there is a limitation in forming a long expansion gap for the refrigerant. There is.
반면에, 도 7의 (c)에 도시한 바와 같이, 상기 팽창 리세스(210)가 회전 밸브(200)의 반경방향 외주측에 형성되어 유로구멍(220)과 연통 형성되는 경우에는, 상술한 바와 같이 회전 밸브(200)의 회전 각도를 정밀하게 제어할 필요도 없고, 회전 밸브(200)의 팽창 리세스(210)와 밸브 플레이트(300)의 관통공(310)이 중첩되는 원주방향 폭을 비교적 길게 확보할 수 있음으로써, 결과적으로 팽창 간극을 길게 형성하는 것도 가능해진다.On the other hand, as shown in (c) of FIG. 7, when the expansion recess 210 is formed on the outer peripheral side in the radial direction of the rotary valve 200 to communicate with the flow path hole 220, the above-described As described above, there is no need to precisely control the rotation angle of the rotation valve 200, and the circumferential width at which the expansion recess 210 of the rotation valve 200 and the through hole 310 of the valve plate 300 overlap. By being able to secure relatively long, it becomes possible to form the expansion gap long as a result.
그 결과, 본 발명에 있어서 상기 팽창 리세스(210)는, 상기 관통공(310)의 반경방향 외측에서 원주방향을 따라 중첩되어 팽창 간극을 형성하는 것이 가장 바람직할 것이다.As a result, in the present invention, it is most preferable that the expansion recess 210 is overlapped along the circumferential direction from the outer side in the radial direction of the through hole 310 to form an expansion gap.
다음으로, 상술한 회전 밸브(200)와 기밀부재(400)의 결합성을 향상시키는 것에 대하여 설명하기로 한다.Next, it will be described to improve the coupling property of the rotary valve 200 and the hermetic member 400 described above.
즉, 본 발명에 있어서, 상기 기밀부재(400)와 상기 회전 밸브(200)에는 상호간의 접촉부위에 서로 맞물려 결합하는 다각형상 또는 원호형상이 형성되어, 상기 회전 밸브(200)의 회전 시 상기 기밀부재(400)가 일체로 회전하도록 하는 것이 바람직할 것이다.That is, in the present invention, the airtight member 400 and the rotary valve 200 are formed in a polygonal shape or an arc shape to be engaged with each other in contact with each other, and the airtightness when the rotary valve 200 is rotated. It would be desirable to allow the member 400 to rotate integrally.
예를 들어, 도 5 및 도 6에 도시한 바와 같이 회전 밸브(200)의 중앙 인근에는 대략 사각기둥 형상으로 볼록한 철부를 형성하고, 상기 기밀부재(400)의 중앙 인근에는 사각기둥 형상의 상기 철부에 대응하도록 오목한 요부를 형성하여, 이러한 요부와 철부가 서로 맞물리도록 하는 것이 가능하다.For example, as shown in Figs. 5 and 6, a convex convex portion is formed in an approximately square pillar shape near the center of the rotary valve 200, and the convex portion has a square pillar shape near the center of the airtight member 400. It is possible to form a concave concave portion corresponding to the concave portion, so that the concave portion and the convex portion engage with each other.
이와 더불어, 상기 기밀부재(400)의 중앙 인근에는 대략 후크 모양의 원호형상으로 볼록한 철부를 형성하고, 상기 회전 밸브(200)의 중앙 인근에는 상기 철부에 대응하도록 오목한 요부를 형성하여, 이러한 요부와 철부가 서로 맞물리도록 하는 것도 가능하다.In addition, a convex convex portion is formed in a substantially hook-shaped arc shape near the center of the airtight member 400, and a concave convex portion is formed in the vicinity of the center of the rotary valve 200 to correspond to the convex portion. It is also possible to make the convex portions engage with each other.
그 결과, 회전 밸브(200)와 기밀부재(400)의 결합력을 증대시키는 것이 가능해져, 상기 회전 밸브(200)의 회전 시 접착 또는 인서트 사출에 의해 성형된 상기 기밀부재(400)가 분리되는 것을 효과적으로 예방할 수 있게 된다.As a result, it is possible to increase the coupling force between the rotary valve 200 and the airtight member 400, so that when the rotary valve 200 is rotated, the airtight member 400 molded by adhesion or insert injection is separated. It can be effectively prevented.
이와 더불어, 본 발명에 있어서, 상기 구동부재(500)는, 앞서 설명한 바와 같이 상기 회전 밸브(200)의 회전 중심에 연결되어 일체로 회전하는 샤프트(510)와, 전원 제어에 따라 회전각도 제어가 가능하며 상기 샤프트(510)에 회전력을 전달하는 스텝모터(520)를 포함하며; 특히 상기 밸브 플레이트(300)는 중앙에 상기 샤프트(510)의 하단을 회전 가능하게 지지하는 지지홈(301)이 형성되는 것이 양호하다.In addition, in the present invention, the driving member 500 has a shaft 510 connected to the rotation center of the rotation valve 200 and integrally rotating as described above, and a rotation angle control according to power control It is possible and includes a step motor 520 that transmits rotational force to the shaft 510; In particular, it is preferable that the valve plate 300 has a support groove 301 rotatably supporting the lower end of the shaft 510 in the center.
즉, 도 5와 같이 밸브 플레이트(300)의 중앙에 지지홈(301)을 형성하고, 도 1과 같이 상기 샤프트(510)의 하단을 밸브 플레이트(300)의 지지홈(301)이 회전 가능하게 지지하게 됨으로써, 상기 샤프트(510)에 대한 편심을 확실하게 방지할 수 있게 된다.That is, a support groove 301 is formed in the center of the valve plate 300 as shown in FIG. 5, and the support groove 301 of the valve plate 300 is rotatable at the lower end of the shaft 510 as shown in FIG. By being supported, it is possible to reliably prevent eccentricity with respect to the shaft 510.
이뿐 아니라, 상기 샤프트(510)의 하단은 밸브 플레이트(300)를 아래 쪽으로 밀게 되어, 상기 밸브 플레이트(300) 저면이 그 하측에 위치한 메인 씰링(160)을 누르게 되어, 밸브 플레이트(300)와 메인 씰링(160) 사이에 보다 높은 기밀성을 확보하도록 하는 것이 가능해진다.In addition, the lower end of the shaft 510 pushes the valve plate 300 downward, so that the bottom surface of the valve plate 300 presses the main sealing 160 located at the lower side thereof, so that the valve plate 300 and the main It becomes possible to ensure a higher airtightness between the sealing (160).
다음으로 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 대하여 도 11 내지 도 20을 참조하여 설명하기로 한다.Next, another example of the electronic expansion and direction change integrated valve according to the present invention will be described with reference to FIGS. 11 to 20.
본 발명의 전자식 팽창 및 방향전환 일체화 밸브의 다른 예는, 밸브바디(100)의 출력 포트(102)는 서로 독립적으로 형성된 제1 출력 포트(102a)) 및 제2 출력 포트(102b)를 포함하며; 상기 밸브 플레이트(300)의 관통공(310)은 상기 제1 출력 포트(102a)) 및 상기 제2 출력 포트(102b)에 각각 대응하여 원주방향을 따라 이격 형성된 제1 관통공(311) 및 제2 관통공(312)을 포함하여; 1개의 입력 포트(101)로부터 2개의 출력 포트(102a)(102b) 중 어느 하나로 절환하여 냉매를 공급 가능한 것에 특징이 있다.Another example of the electronic expansion and direction change integrated valve of the present invention, the output port 102 of the valve body 100 includes a first output port (102a) and a second output port (102b) formed independently of each other, ; The through hole 310 of the valve plate 300 corresponds to the first output port 102a) and the second output port 102b, respectively, and a first through hole 311 and a first through hole 311 spaced apart from each other in the circumferential direction. Including 2 through holes 312; It is characterized in that the refrigerant can be supplied by switching from one input port 101 to one of the two output ports 102a and 102b.
즉, 본 발명의 전자식 팽창 및 방향전환 일체화 밸브에 대한 다른 예에 있어서는 냉방과 난방 시 서로 다른 경로로 냉매를 순환시키기 위하여, 밸브바디(100)에 2개의 출력 포트(102a)(102b)가 형성되고, 밸브 플레이트(300)에 2개의 관통공(311)(312)이 형성되어 있다.That is, in another example of the electronic expansion and direction change integrated valve of the present invention, two output ports 102a and 102b are formed in the valve body 100 in order to circulate the refrigerant through different paths during cooling and heating. And, two through holes 311 and 312 are formed in the valve plate 300.
이에 따라, 본 발명의 전자식 팽창 및 방향전환 일체화 밸브에 대한 다른 예는 차량용, 특히 전기 차량용 공조기의 히트펌프에 적용하기 위한 것으로, 냉방을 위한 냉매의 정방향 순환 및 난방을 위한 냉매의 역방향 순환 둘 모두에 대하여 냉매가 경유하는 하나의 전자식 밸브로서, 응축기와 증발기 사이에 마련될 수 있을 것이다.Accordingly, another example of the electronic expansion and direction change integrated valve of the present invention is for application to a heat pump of an air conditioner for a vehicle, particularly for an electric vehicle, both of the forward circulation of the refrigerant for cooling and the reverse circulation of the refrigerant for heating. As one electromagnetic valve through which the refrigerant passes, it may be provided between the condenser and the evaporator.
앞서 설명한 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 일예와 동일한 구성 및 작용의 설명은 생략하기로 한다.Description of the same configuration and operation as an example of the electronic expansion and direction change integrated valve according to the present invention described above will be omitted.
우선, 도 11 및 도 12와 같이 상기 밸브바디(100)의 하측에는 좌우 양면에 냉매가 배출되는 제1 출력 포트(102a)) 및 제2 출력 포트(102b)가 서로 대향하여 형성되어 있다.First, as shown in FIGS. 11 and 12, a first output port 102a) and a second output port 102b through which refrigerant is discharged are formed on the left and right sides of the valve body 100 to face each other.
이와 함께, 상기 밸브바디(100)의 내부에는 상기 입력 포트(101), 상기 제1 출력 포트(102a)), 그리고 상기 제2 출력 포트(102b)를 하나로 연통시키는 유로(110)가 형성되어 있어, 이 유로(110)를 통해 냉매가 상기 입력 포트(101)로부터 상기 제1 출력 포트(102a)) 또는 상기 제2 출력 포트(102b)로 통과할 수 있는 것이다.In addition, a flow path 110 for communicating the input port 101, the first output port 102a, and the second output port 102b into one is formed in the valve body 100. , Through this flow path 110, the refrigerant may pass from the input port 101 to the first output port 102a) or the second output port 102b.
이에 따라, 예를 들어, 냉방 시에는 입력 포트(101)로 들어온 냉매가 제1 출력 포트(102a))로 배출될 것이고, 난방 시에는 입력 포트(101)로 들어온 냉매가 제2 출력 포트(102b)로 배출되는 등이 가능할 것이다.Accordingly, for example, during cooling, the refrigerant entering the input port 101 will be discharged to the first output port 102a, and during heating, the refrigerant entering the input port 101 is discharged to the second output port 102b. ), etc. will be possible.
설명의 편의를 위하여 밸브바디(100)의 상측에 입력 포트(101)가 형성되고, 하측에 제1 출력 포트(102a)) 및 제2 출력 포트(102b)가 형성된 것으로 예시하여 이하 설명하지만, 밸브바디(100)의 배치 방향에 따라 각 포트의 위치는 변경될 수 있을 것이며, 이에 국한되는 것이 아님은 자명할 것이다.For convenience of explanation, the input port 101 is formed on the upper side of the valve body 100, and the first output port 102a) and the second output port 102b are formed on the lower side, and the valve It will be apparent that the position of each port may be changed according to the arrangement direction of the body 100, and is not limited thereto.
그리고, 상기 하부 몸체(130)에는 도 12에 도시한 바와 같이, 상술한 입력 포트(101)와 제1 출력 포트(102a)) 및 제2 출력 포트(102b)가 형성되며, 상기 하부 몸체(130)의 내부 중앙에 도 11과 같이 상술한 메인 몸체(120)가 배치될 수 있는 것이다.In addition, as shown in FIG. 12, the lower body 130 has the above-described input port 101, a first output port 102a), and a second output port 102b, and the lower body 130 The main body 120 described above as shown in FIG. 11 may be disposed in the inner center of ).
이때, 도 12와 같이 상기 제1 출력 포트(102a))와 상기 제2 출력 포트(102b)는 거의 대등한 높이에 있어서 도면상 좌우에 서로 대향하도록 배치되고, 상기 입력 포트(101)는 이러한 제1 출력 포트(102a)) 및 제2 출력 포트(102b)와는 직각을 이루되 높이 차이를 두고 형성될 수 있을 것이다.At this time, as shown in FIG. 12, the first output port 102a) and the second output port 102b are disposed to face each other on the left and right sides of the drawing at substantially equal heights, and the input port 101 The first output port 102a) and the second output port 102b may be formed at a right angle, but with a height difference.
다만, 도 11에는 설명의 편의를 위하여 입력 포트(101)가 제2 출력 포트(102b)와 동일한 방향(도면상 좌측)으로 다만 높이 차이를 두고 형성된 것으로 예시하였지만, 실제로는 도 12와 같이 입력 포트(101)가 제1 출력 포트(102a) 및 제2 출력 포트(102b) 둘 모두에 대하여 각각 직각을 이루는 방향으로 형성되는 것이 바람직하며, 이는 본 발명에 따른 팽창 밸브에 냉매의 관로를 연결할 때 오조립을 방지하고, 히트펌프에 대한 설계 자유도를 높이는 역할을 하게 될 것이다.However, in FIG. 11, for convenience of explanation, it is illustrated that the input port 101 is formed in the same direction as the second output port 102b (left side in the drawing) but with a height difference, but in reality, as shown in FIG. 12, the input port 101 (101) is preferably formed in a direction perpendicular to both the first output port (102a) and the second output port (102b), which is a mistake when connecting the refrigerant pipe to the expansion valve according to the present invention. It will play a role in preventing assembly and increasing design freedom for the heat pump.
다음으로, 회전 밸브(200)는 상기 입력 포트(101)와 상기 제1 출력 포트(102a) 및 상기 제2 출력 포트(102b) 사이의 상기 유로(110)를 가로 지르도록 상기 유로(110) 내에 배치되어 원주방향으로 회전 가능하게 마련된다.Next, the rotary valve 200 is in the flow path 110 so as to cross the flow path 110 between the input port 101 and the first output port 102a and the second output port 102b. It is arranged and provided to be rotatable in the circumferential direction.
이때, 상기 회전 밸브(200)에 있어서 팽창 리세스(210)는 밸브 플레이트(300)의 제1 관통공(311) 또는 제2 관통공(312)과 중첩되어 팽창 간극을 형성함으로써 냉매를 팽창시키며, 유로구멍(220)은 제1 관통공(311) 또는 제2 관통공(312)과 중첩되어 냉매의 팽창 없이 냉매를 그대로 통과시키는 작용을 하게 된다.At this time, in the rotary valve 200, the expansion recess 210 is overlapped with the first through hole 311 or the second through hole 312 of the valve plate 300 to form an expansion gap, thereby expanding the refrigerant. , The flow path hole 220 is overlapped with the first through hole 311 or the second through hole 312 so as to pass the refrigerant as it is without expansion of the refrigerant.
그리고, 상기 밸브 플레이트(300)에는 도 13에 도시한 바와 같이 원주방향을 따라 이격되어 제1 관통공(311) 및 제2 관통공(312)이 형성되며, 바람직하게는 대략 180도의 위상각 차이를 두고 서로 대칭되도록 제1 관통공(311) 및 제2 관통공(312)이 형성된다.In addition, the valve plate 300 has a first through hole 311 and a second through hole 312 spaced apart along the circumferential direction as shown in FIG. 13, and preferably, a phase angle difference of approximately 180 degrees. A first through hole 311 and a second through hole 312 are formed so as to be symmetrical with each other.
여기에서, 상기 제1 관통공(311)은 도 11과 같이 상기 밸브바디(100)의 하부 몸체(130)에 형성된 제1 출력 포트(102a)에 대응하는 것이며, 상기 제2 관통공(312)은 밸브바디(100)의 하부 몸체(130)에 형성된 제2 출력 포트(102b)에 대응하는 것이다.Here, the first through hole 311 corresponds to the first output port 102a formed in the lower body 130 of the valve body 100 as shown in FIG. 11, and the second through hole 312 Is corresponding to the second output port (102b) formed on the lower body (130) of the valve body (100).
그리고, 상기 제1 관통공(311) 및 상기 제2 관통공(312)은 도 13 내지 도 16에 도시한 바와 같이 동일한 형상 및 단면적을 갖도록 형성되는 것이 바람직하다.In addition, the first through hole 311 and the second through hole 312 are preferably formed to have the same shape and cross-sectional area as shown in FIGS. 13 to 16.
이러한 구성에 따라, 상기 회전 밸브(200)는 밸브바디(100) 내에 고정된 밸브 플레이트(300)와의 상대 회전 운동에 의해 본 발명에 따른 팽창밸브의 개폐를 제어하여, 냉매의 팽창 여부 제어는 물론 냉매의 유로 절환도 제어할 수 있게 된다.According to this configuration, the rotary valve 200 controls the opening and closing of the expansion valve according to the present invention by a relative rotational motion with the valve plate 300 fixed in the valve body 100, so as to control whether the refrigerant is expanded or not. It is also possible to control the refrigerant flow path switching.
또한, 본 발명의 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서는 도 11에 도시한 바와 같이, 밸브바디(100)의 상측에 추가적으로 커버(150)가 마련된다.In addition, in another example of the electronic expansion and direction change integrated valve of the present invention, as shown in FIG. 11, a cover 150 is additionally provided on the upper side of the valve body 100.
상기 커버(150)는 상술한 밸브바디(100)에 있어서 하부 몸체(130)의 상부를 감싸 상측에 조립되는 것으로, 특히 구동부재(500)가 이 커버(150) 상에 마련될 수 있을 것이다.The cover 150 is assembled on the upper side by wrapping the upper portion of the lower body 130 in the valve body 100 described above, and in particular, the driving member 500 may be provided on the cover 150.
이러한 커버(150)는 복수의 체결수단(151)에 의해 하부 몸체(130)의 상단을 감싸도록 조립될 수 있을 것이다.The cover 150 may be assembled to surround the upper end of the lower body 130 by a plurality of fastening means 151.
본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브의 다른 예에 있어서는 스텝모터(520)의 회전력이 상기 샤프트(510)에 간접적으로 전달되며, 도 11과 같이 상기 스텝모터(520)의 출력축과 상기 샤프트(510)의 사이에 예를 들어 감속기어(530)가 추가로 배치될 수 있을 것이다.In another example of the integrated electronic expansion and direction change valve according to the present invention, the rotational force of the step motor 520 is indirectly transmitted to the shaft 510, and the output shaft and the shaft of the step motor 520 as shown in FIG. Between 510, for example, a reduction gear 530 may be additionally disposed.
이와 같이 감속기어(530)가 적용되는 경우, 도 11에 도시한 바와 같이 상기 감속기어(530)는 별도의 회전축을 가지며 외경이 큰 대경부 및 외경이 작은 소경부가 형성된 2단 기어이다.When the reduction gear 530 is applied as described above, as shown in FIG. 11, the reduction gear 530 is a two-stage gear having a separate rotation shaft and having a large diameter portion having a large outer diameter and a small diameter portion having a small outer diameter.
이러한 감속기어(530)를 회전 가능하게 지지하는 회전축은 커버(150)나 고정 몸체(140) 등의 주변 구성에 마련될 수 있을 것이며, 도 11에는 감속기어(530)의 회전축이 커버(150)에 지지되어 있는 예를 나타내었다.The rotation shaft for rotatably supporting the reduction gear 530 may be provided in a peripheral configuration such as the cover 150 or the fixed body 140, and in FIG. 11, the rotation shaft of the reduction gear 530 is the cover 150 An example that is supported by is shown.
이때, 상기 감속기어(530)에 있어서 대경부는 상기 스텝모터(520)의 출력축에 고정된 출력축 기어(521)와 치합하게 되며, 상기 감속기어(530)의 소경부는 상기 샤프트(510)에 고정된 샤프트 기어(511)와 치합하게 된다.At this time, the large diameter portion of the reduction gear 530 is engaged with the output shaft gear 521 fixed to the output shaft of the step motor 520, and the small diameter portion of the reduction gear 530 is fixed to the shaft 510. It is engaged with the shaft gear 511.
이에 따라, 상기 스텝모터(520)의 회전력은 상기 감속기어(530)에서 감속된 후, 샤프트(510)에 전달될 수 있으며, 높은 토크를 발휘하는 것이 가능해진다.Accordingly, after the rotational force of the step motor 520 is reduced by the reduction gear 530, it can be transmitted to the shaft 510, and a high torque can be exhibited.
이와 더불어, 상기 샤프트(510)의 중간에는 도 11과 같이 상기 회전 밸브(200)와 상기 밸브 플레이트(300) 상호간의 밀착력을 증대시키기 위한 부시(600)가 마련되는 것이 바람직할 것이다.In addition, it is preferable that a bush 600 is provided in the middle of the shaft 510 to increase the adhesion between the rotary valve 200 and the valve plate 300 as shown in FIG. 11.
상기 부시(600)는 상기 샤프트(510)의 중간에 마련되어 상술한 회전 밸브(200)가 밸브 플레이트(300)를 향하여 아래쪽으로 힘을 가하도록 마련될 수 있을 것이다.The bush 600 may be provided in the middle of the shaft 510 so that the above-described rotary valve 200 applies a force downward toward the valve plate 300.
이를 위해, 상기 부시(600)는 상기 샤프트(510)에 별도의 체결수단으로 위치 고정될 수 있을 것이다.To this end, the bush 600 may be fixed to the shaft 510 by a separate fastening means.
하지만, 이 보다 상기 부시(600)는 도 17과 같이 중앙에 상기 샤프트(510)가 관통하는 보스(610)와, 상기 보스(610)로부터 방사상으로 연장된 다수의 부채꼴 형상 날개(620)로 이루어지며, 상기 밸브바디(100)는 다수의 몸체로 분할 형성되되, 분할된 몸체 중 어느 하나는 상기 부시(600)의 날개(620) 테두리를 하향 지지하는 것이 가장 바람직할 것이다.However, rather than this, the bush 600 is composed of a boss 610 through which the shaft 510 passes in the center as shown in FIG. 17, and a plurality of fan-shaped blades 620 extending radially from the boss 610. The valve body 100 is divided into a plurality of bodies, and one of the divided bodies is most preferably supporting the edge of the wing 620 of the bush 600 downward.
즉, 상기 부시(600)의 날개(620) 테두리가 도 11과 같이 상술한 메인 몸체(120) 내주면 안쪽에 위치하도록 하고, 상기 밸브바디(100)에 있어서 고정 몸체(140)에는 상기 부시(600)의 날개(620)를 하향 지지하는 단턱부(141)를 돌출 형성하게 된다.That is, the edge of the blade 620 of the bush 600 is positioned inside the inner circumferential surface of the main body 120 described above as shown in FIG. 11, and the fixed body 140 of the valve body 100 includes the bush 600 ) Is formed to protrude a stepped portion 141 for supporting downwardly of the wing 620.
이에 따라, 상기 고정 몸체(140)를 하부 몸체(130) 상에 올려 놓고, 나사 체결되는 체결링(106)으로 체결함에 따라 상기 고정 몸체(140)는 하향 조립되며, 그 결과, 상기 고정 몸체(140)의 단턱부(141)가 상기 부시(600)의 날개(620) 테두리를 아래쪽으로 지지하게 되는 것이다.Accordingly, as the fixed body 140 is placed on the lower body 130 and fastened with the fastening ring 106 to be screwed, the fixed body 140 is assembled downward, and as a result, the fixed body ( The stepped portion 141 of the 140) supports the edge of the wing 620 of the bush 600 downward.
이러한 구성에 따라, 회전 밸브(200)와 밸브 플레이트(300) 상호간의 밀착력을 보다 효과적으로 증대시킬 수 있음으로써, 냉매의 누설을 효과적으로 방지할 수도 있게 된다.According to this configuration, it is possible to increase the adhesion between the rotary valve 200 and the valve plate 300 more effectively, thereby effectively preventing the leakage of the refrigerant.
이하, 도면을 참조하여 본 발명에 따른 전자식 팽창 및 방향전환 일체화 밸브에 대한 다른 예의 작용을 상세히 설명하면 다음과 같다.Hereinafter, the operation of another example of the electronic expansion and direction change integrated valve according to the present invention will be described in detail with reference to the drawings.
예를 들어, 차량, 보다 바람직하게는 전기 차량의 공조장치가 냉방 시에는 밸브바디(100)에 있어서 입력 포트(101)로 냉매가 유입되며, 제1 출력 포트(102a)를 통해 냉매가 배출될 수 있을 것이다.For example, when the air conditioner of a vehicle, more preferably an electric vehicle, cools, the refrigerant flows into the input port 101 in the valve body 100, and the refrigerant is discharged through the first output port 102a. I will be able to.
그리고, 난방 시에는 밸브바디(100)에 있어서 입력 포트(101)로 유입된 냉매는 제2 출력 포트(102b)를 통해 배출될 수 있을 것이다.In addition, during heating, the refrigerant flowing from the valve body 100 to the input port 101 may be discharged through the second output port 102b.
이때, 전기 차량의 공조 제어기는 스텝모터(520)에 적절한 전원 또는 전기적 신호를 보내 상기 스텝모터(520)의 출력축을 소망하는 각도로 회전시키게 되며, 이에 따라, 상기 스텝모터(520)의 출력축은 회전 밸브(200)를 밸브 플레이트(300) 상에서 회전시키게 된다.At this time, the air conditioning controller of the electric vehicle sends an appropriate power or electrical signal to the step motor 520 to rotate the output shaft of the step motor 520 at a desired angle, and accordingly, the output shaft of the step motor 520 is The rotary valve 200 is rotated on the valve plate 300.
이러한 작용을 회전 밸브(200)의 회전 각도에 따라 구분하여 상세히 설명하면 다음과 같다.This action will be described in detail by dividing it according to the rotation angle of the rotation valve 200 as follows.
우선, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 회전하여 도 18에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 팽창 리세스(210) 및 유로구멍(220) 둘 모두는 밸브 플레이트(300)의 제1 관통공(311) 및 제2 관통공(312) 어느 것과도 중첩되지 않는 폐쇄 상태가 된다.First, when the rotary valve 200 is rotated by the step motor 520 of the driving member 500 and the rotary valve 200 is positioned as shown in FIG. 18, the expansion recess of the rotary valve 200 ( Both the 210 and the flow path 220 are in a closed state that does not overlap with either the first through hole 311 and the second through hole 312 of the valve plate 300.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 모두 차단되어 제1 출력 포트(102a) 및 제2 출력 포트(102b) 중 어디로도 배출되지 않게 된다.Accordingly, all of the refrigerant supplied to the input port 101 of the valve body 100 is cut off so that the refrigerant is not discharged to either of the first output port 102a and the second output port 102b.
특히, 상기 밸브 플레이트(300)의 제1 관통공(311) 및 제2 관통공(312)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 보다 확실하게 폐쇄된다.In particular, the first through hole 311 and the second through hole 312 of the valve plate 300 are more reliably closed by the airtight member 400 provided in the rotary valve 200.
하지만, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 대략 60도 가량 반시계방향으로 더 회전하여 도 19에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 팽창 리세스(210)만이 밸브 플레이트(300)의 제1 관통공(311)과 반경방향 외측에서 미세한 팽창 간극을 형성하면서 중첩된다.However, when the rotary valve 200 is further rotated counterclockwise by approximately 60 degrees by the step motor 520 of the driving member 500, as shown in FIG. 19, the rotary valve 200 is rotated. Only the expansion recess 210 of the valve 200 overlaps the first through hole 311 of the valve plate 300 while forming a fine expansion gap in the radial outer side.
이때, 밸브 플레이트(300)의 제2 관통공(312)은 회전 밸브(200)에 의해 폐쇄 상태로 유지된다.At this time, the second through hole 312 of the valve plate 300 is maintained in a closed state by the rotary valve 200.
특히, 상기 밸브 플레이트(300)의 제2 관통공(312)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 확실하게 폐쇄되며, 제1 관통공(311)은 회전 밸브(200)의 팽창 리세스(210) 안쪽에 형성된 밸브체(230)의 외주면인 팽창 리세스(210)와의 사이에서 팽창 간극을 형성하게 되는 것이다.In particular, the second through hole 312 of the valve plate 300 is reliably closed by the airtight member 400 provided in the rotary valve 200, and the first through hole 311 is The expansion gap is formed between the expansion recess 210 which is the outer circumferential surface of the valve body 230 formed inside the expansion recess 210.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 회전 밸브(200)의 팽창 리세스(210)와 밸브 플레이트(300)의 제1 관통공(311) 사이에 형성된 팽창 간극에서 팽창된 후, 제1 출력 포트(102a)로 배출됨으로써 공조기의 냉방이 실시되는 것이다.Accordingly, the refrigerant supplied to the input port 101 of the valve body 100 is an expansion gap formed between the expansion recess 210 of the rotary valve 200 and the first through hole 311 of the valve plate 300 After being expanded in, the air conditioner is cooled by being discharged to the first output port 102a.
이후, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 대략 60도 가량 더 회전하여 도 20에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 유로구멍(220)이 밸브 플레이트(300)의 제1 관통공(311)과 넓은 단면적으로 중첩됨으로써, 냉매의 팽창은 발생치 않고 완전 개방 상태가 되는 것이다.Thereafter, when the rotary valve 200 is further rotated by about 60 degrees by the step motor 520 of the driving member 500 and the rotary valve 200 is positioned as shown in FIG. 20, the rotary valve 200 Since the passage hole 220 of the valve plate 300 overlaps with the first through hole 311 of the valve plate 300 in a wide cross-sectional area, expansion of the refrigerant does not occur and is in a completely open state.
이때, 밸브 플레이트(300)의 제2 관통공(312)은 회전 밸브(200)에 의해 폐쇄 상태로 계속 유지된다.At this time, the second through hole 312 of the valve plate 300 is continuously maintained in a closed state by the rotary valve 200.
특히, 상기 밸브 플레이트(300)의 제2 관통공(312)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 보다 확실하게 폐쇄된다.In particular, the second through hole 312 of the valve plate 300 is more reliably closed by the airtight member 400 provided in the rotary valve 200.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 회전 밸브(200)의 유로구멍(220)과 밸브 플레이트(300)의 제1 관통공(311)을 팽창 없이 그대로 통과한 후, 제1 출력 포트(102a)로 배출되는 것이다.Accordingly, the refrigerant supplied to the input port 101 of the valve body 100 passes through the flow path hole 220 of the rotary valve 200 and the first through hole 311 of the valve plate 300 as it is without expansion. After that, it is discharged to the first output port (102a).
그리고, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 대략 60도 가량 더 회전하여 도 21에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 팽창 리세스(210) 및 유로구멍(220) 둘 모두가 다시 밸브 플레이트(300)의 제1 관통공(311) 및 제2 관통공(312) 어느 것과도 중첩되지 않는 폐쇄 상태로 된다.And, when the rotary valve 200 is further rotated by approximately 60 degrees by the step motor 520 of the driving member 500 and the rotary valve 200 is positioned as shown in FIG. 21, the rotary valve 200 Both the expansion recess 210 and the flow path hole 220 of the valve plate 300 are again in a closed state that does not overlap with either the first through hole 311 and the second through hole 312.
특히, 상기 밸브 플레이트(300)의 제1 관통공(311) 및 제2 관통공(312)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 보다 확실하게 폐쇄된다.In particular, the first through hole 311 and the second through hole 312 of the valve plate 300 are more reliably closed by the airtight member 400 provided in the rotary valve 200.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 다시 모두 차단되어 제1 출력 포트(102a) 및 제2 출력 포트(102b) 중 어디로도 배출되지 않게 된다.Accordingly, all of the refrigerant supplied to the input port 101 of the valve body 100 is cut off again, so that the refrigerant is not discharged to either of the first output port 102a and the second output port 102b.
하지만, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 대략 60도 가량 반시계방향으로 더 회전하여 도 22에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 팽창 리세스(210)만이 밸브 플레이트(300)의 제2 관통공(312)와 반경방향 외측에서 미세한 팽창 간극을 형성하면서 중첩된다.However, when the rotary valve 200 is further rotated counterclockwise by approximately 60 degrees by the step motor 520 of the driving member 500, as shown in FIG. 22, the rotary valve 200 is rotated. Only the expansion recess 210 of the valve 200 overlaps the second through hole 312 of the valve plate 300 while forming a fine expansion gap in the radial direction.
이때, 밸브 플레이트(300)의 제1 관통공(311)은 회전 밸브(200)에 의해 계속 폐쇄 상태로 유지된다.At this time, the first through hole 311 of the valve plate 300 is kept in a closed state by the rotary valve 200.
특히, 상기 밸브 플레이트(300)의 제1 관통공(311)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 확실하게 폐쇄되며, 제2 관통공(312)은 회전 밸브(200)의 팽창 리세스(210) 안쪽에 형성된 밸브체(230)의 외주면인 팽창 리세스(210)와의 사이에서 팽창 간극을 형성하게 되는 것이다.In particular, the first through hole 311 of the valve plate 300 is reliably closed by the airtight member 400 provided in the rotary valve 200, and the second through hole 312 is The expansion gap is formed between the expansion recess 210 which is the outer circumferential surface of the valve body 230 formed inside the expansion recess 210.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 회전 밸브(200)의 팽창 리세스(210)와 밸브 플레이트(300)의 제2 관통공(312) 사이에 형성된 팽창 간극에서 팽창된 후, 제2 출력 포트(102b)로 배출됨으로써 공조기의 난방이 실시되는 것이다.Accordingly, the refrigerant supplied to the input port 101 of the valve body 100 is an expansion gap formed between the expansion recess 210 of the rotary valve 200 and the second through hole 312 of the valve plate 300 After being expanded in, the air conditioner is heated by being discharged to the second output port 102b.
이후, 구동부재(500)의 스텝모터(520)에 의해 회전 밸브(200)가 대략 60도 가량 더 회전하여 도 23에 도시한 바와 같이 회전 밸브(200)가 위치하는 경우에는 회전 밸브(200)의 유로구멍(220)이 밸브 플레이트(300)의 제2 관통공(312)와 넓은 단면적으로 중첩됨으로써, 냉매의 팽창은 발생치 않고 완전 개방 상태가 되는 것이다.Thereafter, when the rotary valve 200 is further rotated by approximately 60 degrees by the step motor 520 of the driving member 500 and the rotary valve 200 is positioned as shown in FIG. 23, the rotary valve 200 Since the flow path hole 220 of the valve plate 300 overlaps with the second through hole 312 of the valve plate 300 in a wide cross-sectional area, expansion of the refrigerant does not occur and is in a completely open state.
이때, 밸브 플레이트(300)의 제1 관통공(311)은 회전 밸브(200)에 의해 폐쇄 상태로 계속 유지된다.At this time, the first through hole 311 of the valve plate 300 is continuously maintained in a closed state by the rotary valve 200.
특히, 상기 밸브 플레이트(300)의 제1 관통공(311)은 회전 밸브(200)에 마련된 기밀부재(400)에 의해 보다 확실하게 폐쇄된다.In particular, the first through hole 311 of the valve plate 300 is more reliably closed by the airtight member 400 provided in the rotary valve 200.
이에 따라, 밸브바디(100)의 입력 포트(101)로 공급되는 냉매는 회전 밸브(200)의 유로구멍(220)과 밸브 플레이트(300)의 제2 관통공(312)을 팽창 없이 그대로 통과한 후, 제2 출력 포트(102b)로 배출되는 것이다.Accordingly, the refrigerant supplied to the input port 101 of the valve body 100 passes through the flow path hole 220 of the rotary valve 200 and the second through hole 312 of the valve plate 300 without expansion. Then, it is discharged to the second output port (102b).
따라서, 상기와 같이 구성된 본 발명의 전자식 팽창 및 방향전환 일체화 밸브는, 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있다는 탁월한 이점을 지닌 발명인 것이다.Therefore, the electronic expansion and direction change integrated valve of the present invention configured as described above enables precise control while simplifying the configuration of the vehicle air conditioner, and in particular, increases the airtightness of the refrigerant and the processability and productivity of the product, thereby increasing the production cost of the product. It is an invention with an excellent advantage of maximizing market competitiveness while lowering the value.
특히, 밸브바디(100)에 2개의 출력 포트(102a)(102b)를 형성하고, 밸브 플레이트(300)에 2개의 관통공(311)(312)을 형성함으로써, 히트펌프의 냉방과 난방 시 하나의 팽창밸브를 통해 서로 다른 경로로 냉매를 순환시키는 것도 가능해진다.In particular, by forming two output ports (102a) (102b) in the valve body (100) and forming two through holes (311, 312) in the valve plate 300, one during cooling and heating of the heat pump. It is also possible to circulate the refrigerant through different paths through the expansion valve of.
상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명의 범위는 상기의 도면이나 실시예에 한정되지 않는다.The above embodiments are examples for specifically explaining the technical idea of the present invention, and the scope of the present invention is not limited to the above drawings or embodiments.
이상과 같은 본 발명은 차량용 공조기의 구성을 단순화 하면서 정밀 제어를 가능하게 하고, 특히 냉매에 대한 기밀성 및 제품에 대한 가공성 및 생산성을 높여 제품의 생산단가를 낮추는 한편 시장 경쟁력을 극대화 시킬 수 있는 발명인 것이다.The present invention as described above enables precise control while simplifying the configuration of an air conditioner for a vehicle, and in particular, it is an invention capable of maximizing market competitiveness while lowering the production cost of the product by increasing the airtightness of the refrigerant and the workability and productivity of the product. .

Claims (5)

  1. 블록 형상으로 이루어져, 일측에 냉매가 공급되는 입력 포트와, 타측에 냉매가 배출되는 출력 포트와, 상기 입력 포트와 상기 출력 포트를 연통시키는 유로가 내부에 형성된 밸브바디와;A valve body having an input port through which a refrigerant is supplied to one side, an output port through which the refrigerant is discharged to the other side, and a flow path communicating the input port and the output port therein;
    판 형상으로 이루어져, 상기 입력 포트와 상기 출력 포트 사이의 상기 유로 내에서 원주방향으로 회전 가능하게 마련되되, 소정의 반경방향 폭으로 원주방향을 따라 연장되는 팽창 리세스와, 상기 팽창 리세스의 말단에 연통되되 상기 팽창 리세스의 반경방향 폭 보다 넓은 반경방향 폭을 갖는 유로구멍이 형성되는 회전 밸브와;Made in a plate shape, provided to be rotatable in a circumferential direction in the flow path between the input port and the output port, an expansion recess extending in a circumferential direction with a predetermined radial width, and an end of the expansion recess A rotary valve in communication with a flow path hole having a radial width greater than that of the expansion recess;
    판 형상으로 이루어져, 상기 회전 밸브에 접촉하도록 적층 배치되되 상기 밸브바디의 유로 내에 회전 불가하게 고정되며, 원주방향을 따라 관통공이 형성되는 밸브 플레이트와;A valve plate formed in a plate shape, stacked and arranged to contact the rotary valve, fixed non-rotatably in the flow path of the valve body, and having a through hole formed in a circumferential direction;
    합성수지 또는 탄성 기밀재질로 이루어져 상기 밸브 플레이트를 향하여 상기 회전 밸브의 적어도 일면에 일체로 회전 가능하게 마련되어, 상기 밸브 플레이트의 관통공과 상기 회전 밸브의 상호간에 기밀성을 확보하는 기밀부재와;An airtight member made of synthetic resin or an elastic airtight material and provided so as to be integrally rotatable on at least one surface of the rotary valve toward the valve plate to secure airtightness between the through hole of the valve plate and the rotary valve;
    상기 회전 밸브에 회전력을 전달하는 구동부재를 포함하는 것을 특징으로 하는 전자식 팽창 및 방향전환 일체화 밸브.Electronic expansion and direction change integrated valve comprising a driving member for transmitting a rotational force to the rotary valve.
  2. 제1항에 있어서, 상기 팽창 리세스는 상기 관통공의 반경방향 외측에서 원주방향을 따라 중첩되어 팽창 간극을 형성하는 것을 특징으로 하는 전자식 팽창 및 방향전환 일체화 밸브.The electronic expansion and direction change integrated valve according to claim 1, wherein the expansion recesses overlap along the circumferential direction from the outer side in the radial direction of the through hole to form an expansion gap.
  3. 제2항에 있어서, 상기 밸브바디의 출력 포트는 서로 독립적으로 형성된 제1 출력 포트 및 제2 출력 포트를 포함하며;The method of claim 2, wherein the output ports of the valve body include a first output port and a second output port independently formed from each other;
    상기 밸브 플레이트의 관통공은 상기 제1 출력 포트 및 상기 제2 출력 포트에 각각 대응하여 원주방향을 따라 이격 형성된 제1 관통공 및 제2 관통공을 포함하여;The through-holes of the valve plate include first through-holes and second through-holes spaced apart from each other in a circumferential direction corresponding to the first output port and the second output port, respectively;
    1개의 입력 포트로부터 2개의 출력 포트 중 어느 하나로 절환하여 냉매를 공급 가능한 것을 특징으로 하는 전자식 팽창 및 방향전환 일체화 밸브.Electronic expansion and direction change integrated valve, characterized in that the refrigerant can be supplied by switching from one input port to one of two output ports.
  4. 제3항에 있어서, 상기 기밀부재와 상기 회전 밸브에는 상호간의 접촉부위에 서로 맞물려 결합하는 다각형상 또는 원호형상이 형성되어, 상기 회전 밸브의 회전 시 상기 기밀부재가 일체로 회전하도록 하는 것을 특징으로 하는 전자식 팽창 및 방향전환 일체화 밸브.The method of claim 3, wherein the airtight member and the rotary valve are formed in a polygonal shape or an arc shape that engages and engages with each other in contact with each other, so that the airtight member rotates integrally when the rotary valve is rotated. Electronic expansion and direction change integrated valve.
  5. 제4항에 있어서, 상기 구동부재는, 상기 회전 밸브의 회전 중심에 연결되어 일체로 회전하는 샤프트와, 전원 제어에 따라 회전각도 제어가 가능하며 상기 샤프트에 회전력을 전달하는 스텝모터를 포함하며;The method of claim 4, wherein the driving member comprises a shaft connected to a rotation center of the rotation valve and integrally rotating, and a step motor capable of controlling a rotation angle according to power control and transmitting rotational force to the shaft;
    상기 밸브 플레이트는 중앙에 상기 샤프트의 하단을 회전 가능하게 지지하는 지지홈이 형성되는 것을 특징으로 하는 전자식 팽창 및 방향전환 일체화 밸브.The valve plate is an integrated electronic expansion and direction change valve, characterized in that the support groove for rotatably supporting the lower end of the shaft is formed in the center.
PCT/KR2020/012501 2019-10-02 2020-09-16 Electronic expansion-and-redirection integrated valve WO2021066356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0122469 2019-10-02
KR1020190122469A KR102447040B1 (en) 2019-10-02 2019-10-02 Integrated electronic valve for expansion and switching direction

Publications (1)

Publication Number Publication Date
WO2021066356A1 true WO2021066356A1 (en) 2021-04-08

Family

ID=75337195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012501 WO2021066356A1 (en) 2019-10-02 2020-09-16 Electronic expansion-and-redirection integrated valve

Country Status (2)

Country Link
KR (1) KR102447040B1 (en)
WO (1) WO2021066356A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512686B1 (en) * 2021-07-05 2023-03-23 동일기계공업 주식회사 Micro flow rate control valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317839A (en) * 2000-05-01 2001-11-16 Saginomiya Seisakusho Inc Combination valve of four-way selector valve and motorized expansion valve
KR20110104890A (en) * 2010-03-17 2011-09-23 가부시기가이샤 후지고오키 Channel switching valve and heat pump system using the same
JP2015218893A (en) * 2014-05-21 2015-12-07 ダイキン工業株式会社 Channel switching valve and air conditioner
KR20190046989A (en) * 2016-11-09 2019-05-07 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 Vehicle fluid heat exchange assembly and thermal management system
KR20190087527A (en) * 2016-11-30 2019-07-24 쯔지앙 산화 인텔리전트 컨트롤스 씨오., 엘티디. Electronic expansion valve and refrigeration system having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441058B1 (en) 2004-01-26 2004-07-19 주식회사 이지음 Two-way direction expansion valve with accumulated thin plate
KR100835259B1 (en) 2007-02-23 2008-06-05 자화전자 주식회사 Random direction electronic expansion valve
KR101139390B1 (en) 2009-10-21 2012-04-27 자화전자(주) Multi-way electronic expansion valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317839A (en) * 2000-05-01 2001-11-16 Saginomiya Seisakusho Inc Combination valve of four-way selector valve and motorized expansion valve
KR20110104890A (en) * 2010-03-17 2011-09-23 가부시기가이샤 후지고오키 Channel switching valve and heat pump system using the same
JP2015218893A (en) * 2014-05-21 2015-12-07 ダイキン工業株式会社 Channel switching valve and air conditioner
KR20190046989A (en) * 2016-11-09 2019-05-07 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 Vehicle fluid heat exchange assembly and thermal management system
KR20190087527A (en) * 2016-11-30 2019-07-24 쯔지앙 산화 인텔리전트 컨트롤스 씨오., 엘티디. Electronic expansion valve and refrigeration system having the same

Also Published As

Publication number Publication date
KR102447040B1 (en) 2022-09-26
KR20210040227A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2021066356A1 (en) Electronic expansion-and-redirection integrated valve
WO2011081458A2 (en) Vehicle actuator
WO2016013798A1 (en) Refrigerator and control method thereof
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2020017751A1 (en) Oven
WO2020130375A1 (en) Refrigerator
WO2020027596A1 (en) Method for controlling refrigerator
WO2018070761A1 (en) Four-way valve for switching refrigerant channel
WO2015163661A1 (en) Intake device, power generator, external combustion system using intake device and power generator, internal combustion system using intake device and power generator, and air hybrid power generation system using intake device and power generator
WO2024034878A1 (en) Ball valve and vehicle thermal management device comprising same
WO2011065693A2 (en) Displacement control valve for variable displacement compressor
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2022145734A1 (en) Refrigerator
WO2021118021A1 (en) Refrigerator
WO2022145847A1 (en) Refrigerator and control method therefor
WO2022124568A1 (en) Refrigerator
WO2023054843A1 (en) Valve apparatus
WO2019045484A2 (en) Air conditioner
WO2021206241A1 (en) Refrigerator
WO2021210738A1 (en) Refrigerator
AU2020342041A1 (en) Refrigerator and method of controlling the same
WO2023200175A1 (en) Valve assembly for controlling fluid
WO2018038528A1 (en) Refrigerator
WO2023204353A1 (en) Scroll compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872874

Country of ref document: EP

Kind code of ref document: A1