WO2021065996A1 - Analysis apparatus - Google Patents

Analysis apparatus Download PDF

Info

Publication number
WO2021065996A1
WO2021065996A1 PCT/JP2020/037112 JP2020037112W WO2021065996A1 WO 2021065996 A1 WO2021065996 A1 WO 2021065996A1 JP 2020037112 W JP2020037112 W JP 2020037112W WO 2021065996 A1 WO2021065996 A1 WO 2021065996A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
incident
light source
Prior art date
Application number
PCT/JP2020/037112
Other languages
French (fr)
Japanese (ja)
Inventor
大市 草場
Original Assignee
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsマテリアルズ株式会社 filed Critical Nsマテリアルズ株式会社
Priority to JP2021551361A priority Critical patent/JPWO2021065996A1/ja
Publication of WO2021065996A1 publication Critical patent/WO2021065996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to an analyzer that analyzes a sample using an image sensor.
  • Patent Document 1 discloses an analyzer that photographs a sample in which a color reaction occurs by irradiating an analysis chip provided with a plurality of reaction chambers with light with an image sensor.
  • the analyzer disclosed in Patent Document 1 diffuses the light from the light source through the light scattering plate and then irradiates the plurality of reaction chambers of the analysis chip. Therefore, depending on the size of the light scattering plate, the amount of light emitted to other than the reaction chamber increases, and the utilization rate of the light from the light source decreases.
  • an analysis chip made of a flat plate is horizontally arranged, and a light source is located below the analytical chip. Therefore, the light source, the light scattering plate, and the analysis chip need to be arranged in the vertical direction, and the vertical dimension of the analyzer becomes relatively large.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an analyzer that is compact and can efficiently irradiate a plurality of reaction chambers of an analysis chip with light. ..
  • the analyzer is an apparatus for analyzing the sample using an analysis chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent.
  • the analyzer includes a light source, a light guide plate, and an image sensor that captures a range including the plurality of reaction chambers.
  • the light guide plate is located on the first surface located on the side where the light from the light source is incident on the light guide plate and on the opposite side of the first surface, and is incident on the light guide plate from the first surface. It has a second surface that reflects light traveling inside the surface, and a third surface that intersects the first surface and the second surface and is photographed by the image sensor. On the third surface, an emission region for emitting light inside the light guide plate is provided facing the reaction chamber.
  • the third surface of the light guide plate is provided with an emission region for emitting light inside the light guide plate facing the reaction chamber. Therefore, if the emission region corresponds to the reaction chamber, the light can be emitted. Most of the light can illuminate only the reaction chamber. Therefore, the utilization rate of the light from the light source is improved. Further, in the light guide plate, since the first surface located on the side where the light from the light source is incident on the light guide plate and the third surface photographed by the image sensor intersect, the light source and the image sensor are aligned on a straight line. Instead, they can be arranged so that their central axes are orthogonal to each other. As a result, the size of the analyzer can be reduced.
  • the second surface is curved so as to collect the internally reflected light. According to this, the internally reflected light is condensed, and the amount of light at the focused portion is increased. Therefore, if the emission region is provided on the third surface near the focused portion, bright light is irradiated to the reaction chamber through the emission region.
  • a plurality of the above light sources are arranged in parallel with respect to the first surface, and the first surface is curved so that the central portion in the longitudinal direction projects outward. According to this, the optical axes of the plurality of light sources are not parallel but intersect in the light guide plate. Therefore, the light in the light guide plate is easily collected.
  • the width of the light guide plate gradually decreases from the first surface to the second surface.
  • the distance between the first surface and the two side surfaces intersecting the second surface gradually becomes smaller from the first surface to the second surface.
  • the light reflected by these side surfaces has a smaller reflection angle than when the distance between the side surfaces is constant. Therefore, even if the length connecting the first surface and the second surface of the light guide plate is reduced, light having a uniform intensity can be obtained in the vicinity of the second surface.
  • the emission region is composed of a plurality of emission portions. According to this, if the dimensions and shapes and arrangements of the plurality of emitting parts are matched with the corresponding reaction chambers, the utilization rate of the light from the light source is further improved.
  • the second surface has a plurality of parts that are at different positions in the direction orthogonal to the third surface.
  • Each of the plurality of portions is curved so as to collect the light internally reflected according to the corresponding emitting portion. Therefore, if each emitting portion is provided on the third surface near each location where the light is collected, bright light is irradiated to each reaction chamber through each emitting portion.
  • the analyzer is an apparatus for analyzing the sample using an analysis chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent.
  • the analyzer includes a light source, a light guide plate, and an image sensor that captures a range including the plurality of reaction chambers.
  • the light guide plate has an incident portion facing the light source, an inner surface that reflects light incident from the incident portion, and an emitting portion facing a second direction in which the incident portion and the light source intersect the first direction facing each other. And a diffuser plate facing the light source portion in the second direction.
  • the reaction chamber faces the exit portion in the second direction.
  • the light incident on the incident portion of the light guide plate from the light source is emitted from the exit portion while being reflected by the inner surface.
  • the light emitted from the emitting unit is diffused by the diffuser plate and is incident on a plurality of reaction chambers. This improves the utilization rate of the light from the light source.
  • the light guide plate since the light is emitted in the second direction intersecting the first direction in which the incident portion and the light source face each other, it is not necessary to arrange the light source and the image sensor in a straight line. As a result, the size of the analyzer can be reduced.
  • a plurality of the above light sources are arranged in parallel with respect to the incident portion.
  • the shortest distance between the inner surface and the pair of surfaces facing the first direction and the third direction intersecting with the second direction gradually decreases from the incident portion to the exit portion.
  • the light guide plate has a box shape, and the incident portion and the exit portion are openings.
  • an analyzer that is compact and can efficiently irradiate a plurality of reaction chambers of an analysis chip with light.
  • FIG. 1A is a perspective view of the analyzer 10 according to the embodiment of the present invention
  • FIG. 1B is a schematic side view
  • FIG. 2A is a top view of the analytical chip 20 used in the analyzer 10 of FIG. 1
  • FIG. 2B is a side sectional view taken along the line II (b) -II (b).
  • FIG. 3 is a top view of the light guide plate 50 and the light source 40 of the analyzer 10 of FIG. 4A and 4B are explanatory views of the upper surface of the light guide plate 50
  • FIG. 4A is a comparative example
  • FIG. 4B is a diagram showing an example of the present invention.
  • FIG. 5 is a perspective view of the light guide plate 50A of the analyzer 10 of the modified example.
  • FIG. 5 is a perspective view of the light guide plate 50A of the analyzer 10 of the modified example.
  • FIG. 6 is an explanatory view of the upper surface of the light guide plate 50A of FIG.
  • FIG. 7 is a perspective view showing the light guide plate 70 according to the modified example.
  • FIG. 8 is a perspective view showing the main body 71.
  • FIG. 9 is a schematic view showing the reflection of light on the main body 71.
  • the present embodiment is only one embodiment of the present invention, and the embodiments can be changed without changing the gist of the present invention.
  • the analyzer 10 As shown in FIGS. 1A and 1B, the analyzer 10 according to the present embodiment is an apparatus for analyzing a sample using the analysis chip 20, and includes a support structure 30, a light source 40, and the like. A light guide plate 50 and an image sensor 60 are provided.
  • the analysis chip 20 has a substantially flat base portion 21 and a projecting portion 22 projecting upward from a part of the base portion 21.
  • the analysis chip 20 is made of a transparent resin.
  • a mortar-shaped injection portion 23 into which a sample is injected is defined in the protrusion portion 22.
  • a plurality of (seven in the illustrated example) reaction chambers 24 are defined inside the base 21. In the reaction chamber 24, the other reaction chambers 24 are arranged in a substantially arc shape in the horizontal direction with one of the reaction chambers 24 as the center. These reaction chambers 24 are connected to the injection unit 23 via the flow path 25, and the sample injected into the injection unit 23 is guided.
  • the plurality of reaction chambers 24 have a cylindrical shape having the same dimensions as each other.
  • the sample is, for example, diluted serum, but is not limited to this.
  • Reagents that cause a color reaction in the sample are pre-distributed in the plurality of reaction chambers 24. These reagents are different types of reagents. Therefore, when the sample is injected into the injection unit 23 and reaches each reaction chamber 24, different color reactions occur in the plurality of reaction chambers 24. As a result, as many items as the number of reaction chambers 24 can be inspected at one time.
  • the support structure 30 horizontally holds the base 31, the chip receiving portion 32 formed on the base 31, and the lower portion of the lens barrel 61 of the image sensor 60.
  • An image sensor support portion 36 that supports the sensor 60 and a top portion 37 are provided.
  • the analyzer 10 is assembled by the support structure 30.
  • the light source 40 in the present embodiment includes a plurality of LED (light emitting diode) light sources 40a to 40f (collectively referred to as "light source 40").
  • the LED light sources 40a to 40f are all short-wavelength LEDs, and the central wavelengths of light are different from each other.
  • the LED light source 40 has a wavelength such that the LED light source has a wavelength such that the contrast with the color density of the portion where the color reaction occurs in the reaction chamber 24 becomes large.
  • the LED light sources 40a to 40f are connected to a control device (not shown). By controlling this control device, the operation and stop of the LED light source can be switched. These plurality of LED light sources 40a to 40f are not operated at the same time.
  • the LED light sources 40 having a wavelength suitable for the color reaction in one or several of the plurality of reaction chambers 24 are sequentially adopted.
  • a wavelength that produces colored light suitable for the color reaction in all the reaction chambers 24 is adopted.
  • the light guide plate 50 has a flat plate shape.
  • the dimensions of the light guide plate 50 are, for example, the maximum dimension in the width direction W is about 35 mm to about 40 mm, the dimension in the longitudinal direction is about 50 mm to about 60 mm, and the dimension in the thickness direction is about 5 mm.
  • the term "light guide plate” is generally understood to diffuse light incident from an end surface and emit light from one main surface.
  • the light guide plate 50 connects two end faces 51, 52, two main faces 53, 54 connecting these two end faces 51, 52, two end faces 51, 52, and two main faces 53, 54. It has one side surface 55, 56. Of the two end faces 51 and 52, the incident end face (first surface) 51 is located on the side where the light from the light sources 40a to 40f is incident on the light guide plate 50.
  • the incident end face 51 is preferably curved so that the central portion 51aa in the longitudinal direction thereof protrudes outward.
  • the incident end face 51 may be arcuate when viewed from above.
  • a plurality of notches 51a to 51f are formed on the incident end surface 51, and light sources 40a to 40f are provided for each of the notches 51a to 51f.
  • the incident end face 51 may be a flat surface without a notch.
  • the light sources 40a to 40f are arranged in parallel on the outside of the incident end surface 51 (that is, the outside of the light guide plate 50).
  • the optical axes La to Lf of the LED light sources 40a to 40f intersect in the light guide plate 50. As a result, the light in the light guide plate 50 is easily collected, and the amount of light in the central portion of the light guide plate 50 in the width direction W is increased.
  • the opposite end surface (second surface) 52 is located on the opposite side of the incident end surface 51, and reflects the light emitted from the light source 40 and traveling inside the light guide plate 50.
  • the imaged surface (third surface) 53 which is the upper main surface, intersects the incident end surface 51 and the opposite end surface 52, and is photographed by the image sensor 60.
  • the upper main surface 53 of the light guide plate 50 is the surface to be photographed, but the lower main surface 54 may be the surface to be photographed. In that case, the image sensor 60 is arranged below the light guide plate 50.
  • Each surface 51 to 56 of the light guide plate 50 is a type that totally reflects the light incident on the light guide plate 50 except for a part of the surface to be imaged 53.
  • the light guide plate 50 is made of, for example, glass or acrylic.
  • the light guide plate 50 may also be made of polycarbonate, PET (polyethylene terephthalate), or vinyl chloride.
  • a reflective sheet may be attached to each of the surfaces 51 to 56 of the light guide plate 50, except for the above-mentioned part of the surface to be photographed 53.
  • the width (dimension of W in the width direction) of the light guide plate 50 gradually decreases from the incident end surface 51 to the opposite end surface 52. That is, the distance between the side surface 55 and the side surface 56 gradually decreases from the incident end surface 51 to the opposite end surface 52. According to this, the light reflected by the side surfaces 55 and 56 has a smaller reflection angle than the case where the distance between the side surface 55 and the side surface 56 is constant. That is, the light reflected by the side surfaces 55 and 56 is reflected near the incident end surface 51. Therefore, even if the length of the light guide plate 50 in the longitudinal direction L is reduced, light having a uniform intensity can be obtained in the vicinity of the opposite end surface 52.
  • the opposite end surface 52 is curved so as to collect the light reflected in the light guide plate 50.
  • the opposite end surface 52 is a semi-cylindrical peripheral surface. According to this, the light internally reflected by the opposite end surface 52 is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface. Therefore, if the surface to be imaged 53 on the central axis is provided with the emission region 53a, bright light is irradiated to the reaction chamber 24 (FIG. 2A) through the emission region 53a. However, the emission region 53a of the surface to be photographed 53 does not have to be on the central axis.
  • the opposite end surface 52 may be a cylindrical peripheral surface of an arc smaller than a semi-cylinder.
  • the emission region 53a is provided on the surface to be imaged 53 on the central axis of the peripheral surface of the cylinder.
  • the peripheral surface of the cylinder is not limited to the peripheral surface of the equirectangular cylinder, and may be, for example, the peripheral surface of the elliptical cylinder.
  • the emission region 53a is preferably provided on the imaged surface 53 on the axis of the intermediate portion between the two focal axes.
  • the opposite end surface 52 may also be, for example, a curved surface obtained by smoothing a polygonal surface obtained by connecting the tangent surfaces of a plurality of cylindrical arcs.
  • the opposite end surface 52 may be made of a fine polygonal surface. Regardless of the shape of the reflection side end surface 52, it is preferable that the emission region 53a is provided on the imaged surface 53 on the axis where the internally reflected light is most collected.
  • the light emitted from the LED light source has a spread. Therefore, as shown in FIG. 4A, when the opposite end surface 52 is flat without being curved, the light emitted from the LED light source 40 has an intensity in the light guide plate 50 of AA near the opposite end surface 52. Although it is uniform, the amount of light is small due to its spread. On the other hand, the amount of light emitted from the LED light source 40 at AB near the incident end surface 51 in the light guide plate 50 is sufficient, but the intensity is non-uniform. On the other hand, as shown in FIG. 4B, when the opposite end surface 52 is curved, the light emitted from the LED light source 40 is inside in the vicinity B near the opposite end surface 52 in the light guide plate 50. The amount of light is sufficient due to the reflection. From this, in the vicinity B near the opposite end surface 52, the light intensity is uniform and the amount of light is sufficient. Note that FIGS. 4A and 4B are simplified for the purpose of explanation and are not consistent with other drawings.
  • the surface to be photographed 53 has an emission region 53a that emits light inside the light guide plate 50.
  • the emission region 53a is located closer to the opposite end surface 52 of the surface to be imaged 53. Specifically, it is located on the end surface 52 side opposite to the center in the longitudinal direction L of the light guide plate 50.
  • the incident end surface located on the side where the light from the light sources 40a to 40f is incident on the light guide plate 50.
  • the light intensity is more uniform in the vicinity of the opposite end surface 52 located on the opposite side than in 51. Therefore, by locating the emission region 53a closer to the end surface 52 on the opposite side of the incident end surface 51 in this way, the reaction chamber 24 (FIG. 2A) is irradiated with light having a uniform intensity.
  • the emission region 53a is composed of a plurality of emission portions 53a.
  • the emitting portion 53aa is realized by subjecting the surface to be photographed 53 to surface processing such as uneven processing. That is, a known technique for causing the light guide plate to emit light from the surface is adopted.
  • Each emitting portion 53aa has a circular shape having the same dimensions. The diameter of this circle is, for example, about 1.5 mm to about 2 mm.
  • the shape of each exit portion 53aa matches the circular shape of the bottom surface of each columnar reaction chamber 24 of the analysis chip 20.
  • the number of the emitting portions 53aa is the same as the number of the reaction chambers 24 of the analysis chip 20 (7 in the illustrated example), and the arrangement is also supported.
  • the centers of the plurality of emitting portions 53aa arranged in an arc shape may be located on the central axis of the semi-cylindrical peripheral surface. According to this, since the emission region 53a is provided at the position where the light is collected by the internal reflection of the opposite end surface 52, bright light is irradiated to the reaction chamber 24 through the emission region 53a.
  • Chip receiving unit 32 The chip receiving portion 32 of the support structure 30 shown in FIG. 1 (b) has an extension extending outside the projecting portion 22 of the base 21 of the analytical chip 20 shown in FIG. 2 (b). A space for receiving the part 26 is defined. When the extending portion 26 of the analysis chip 20 is inserted, the projecting portion 22 abuts on the chip receiving portion 32 and is locked. As a result, the analysis chip 20 is positioned with respect to the chip receiving portion 32.
  • the bottom surface of the reaction chamber 24 corresponding directly above each of the plurality of emitting portions 53aa is located. Therefore, almost all the light emitted from each emission unit 53aa irradiates the corresponding reaction chamber 24 from below. Therefore, there is almost no light that irradiates other than the reaction chamber 24, and the utilization rate of the light from the light source 40 is improved.
  • the emission region 53a may be composed of one emission unit 53aa.
  • the size of this one exit portion 53aa is set to substantially the same size as the region surrounding all the reaction chambers 24, the amount of light emitted to other than the reaction chamber can be suppressed.
  • the surface processing of the light guide plate is easy.
  • the image sensor 60 is arranged above the chip receiving portion 32, and photographs the range including all the reaction chambers 24 of the analysis chip 20.
  • the image sensor 60 is, for example, a CCD image sensor or a CMOS image sensor, but any image sensor may be used as long as it can acquire a two-dimensional image.
  • the light irradiated to all the reaction chambers 24 of the analysis chip 20 is first narrowed down by the lens barrel 61. Next, it is taken into the image sensor 60 via the lens 62 having a color filter. As a result, the color information of each pixel is added to the image captured by the image sensor 60. Therefore, a color image of a range including all the reaction chambers 24 of the analysis chip 20 can be obtained.
  • a processing device (not shown) is connected to the image sensor 60. With this processing device, the color reaction in each reaction chamber 24 can be determined from the captured image by a known method.
  • the extending portion 26 of the analytical chip 20 in which the color reaction occurs in each reaction chamber 24 is inserted into the space of the chip receiving portion 32.
  • the light source 40 is activated when the extending portion 26 engages with this space or when the operator operates a button (not shown).
  • a control device (not shown) operates only one of the light sources 40 (for example, the LED light source 40a), and the LED light source 40a irradiates the light.
  • the light emitted from the LED light source 40a enters the light guide plate 50 and travels inside the light guide plate 50.
  • the light internally reflected by various surfaces including the opposite end surface 52 passes through the exit portion 53aa and is emitted to the outside.
  • the opposite end surface 52 is curved so as to collect the light reflected in the light guide plate 50, and the emission region 53a is located closer to the opposite end surface 52 of the imaged surface 53.
  • the transmitted light has a uniform intensity and a sufficient amount of light.
  • each emission unit 53aa irradiates the corresponding reaction chamber 24 from below.
  • the colored portion in the reaction chamber corresponding to the light having the wavelength of the LED light source 40a clearly appears in the image captured by the image sensor 60.
  • the image captured in this way is stored in a storage area (not shown).
  • the control device of the light source 40 and the control device connected to the image sensor 60 are interlocked with each other or realized by the same device. Therefore, after confirming that the image was taken while the first LED light source 40a was operating, the control device stops the LED light source 40a and operates another LED light source (for example, the LED light source 40b). As a result, of these reaction chambers 24, the colored portion in the reaction chamber corresponding to the light having the wavelength of the LED light source 40b clearly appears in the image captured by the image sensor 60. The image captured in this way is stored in a storage area (not shown).
  • the above process is repeated in order for all the LED light sources 40a to 40f. As a result, as many images as the number of LED light sources 40a to 40f can be obtained.
  • a processing device (not shown) connected to the image sensor 60 can determine the color reaction for each of these images. The operator's intervention is only to insert the analysis chip 20 into the space of the chip receiving portion 32, or in addition to that, only to operate a button that triggers the analysis. Therefore, it is possible to analyze a sample for a plurality of reagents almost automatically.
  • the emission region 53a is used as the reaction chamber 24. Most of the emitted light can irradiate only the reaction chamber 24. Therefore, the utilization rate of the light from the light source 40 is improved. Further, in the light guide plate 50, since the first surface 51 located on the side where the light from the light source 40 is incident on the light guide plate 50 and the third surface 53 photographed by the image sensor 60 intersect with each other, the light source The 40 and the image sensor 60 can be arranged so that their central axes are orthogonal to each other, not on a straight line. As a result, the size of the analyzer 10 can be reduced.
  • the light internally reflected by the second surface 52 is condensed, so that the amount of light at the focused portion is increased. Therefore, if the emission region 53a is provided on the third surface 53 near the focused portion, the reaction chamber 24 is irradiated with bright light through the emission region 53a.
  • the plurality of light sources 40a to 40f are arranged in parallel with respect to the first surface 51, so that the central portion 51aa in the longitudinal direction of the first surface 51 projects outward. Since it is curved, the optical axes La to Lf of the plurality of light sources 40a to 40f are not parallel but intersect in the light guide plate 50. Therefore, the light in the light guide plate 50 is easily collected.
  • the width of the light guide plate 50 gradually decreases from the first surface 51 to the second surface 52, the two side surfaces 55 and 56 intersecting the first surface 51 and the second surface 52.
  • the interval gradually decreases from the first surface 51 to the second surface 52.
  • the light reflected by the side surfaces 55 and 56 has a smaller reflection angle than the case where the distance between the side surfaces 55 and 56 is constant. Therefore, even if the length connecting the first surface and the second surface of the light guide plate is reduced, light having a uniform intensity can be obtained in the vicinity of the second surface 52.
  • the emission region 53a is composed of a plurality of emission portions 53aa, if the dimensions and shapes and arrangements of the plurality of emission portions 53aa are matched with the corresponding reaction chambers 24, the utilization rate of the light from the light source 40 is achieved. Is further improved.
  • the opposite end surface (second surface) 52A of the light guide plate 50A has a plurality of portions 52Aa to 52Ag at different positions in the direction orthogonal to the surface to be imaged, that is, in the thickness direction D of the light guide plate 50A. Has. Each of these collects internally reflected light at different positions Pa to Pf, as shown in FIG. Therefore, if each emission unit 53aa (FIG. 3) is provided above these, bright light is irradiated to each reaction chamber 24 through each emission unit 53aa.
  • These plurality of parts 52Aa to 52Ag are semi-cylindrical peripheral surfaces, respectively. According to this, the light internally reflected at each portion 52Aa to 52Ag is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface. Therefore, if each emitting portion 53aa is provided on the surface to be imaged 53 on the central axis, brighter light is irradiated to the reaction chamber 24 (FIG. 2A) through each emitting portion 53aa.
  • exit portions 53aa are provided, but any number may be provided.
  • it corresponds to the reaction chamber 24 of the analytical chip 20. That is, the analyzer 10 may be specialized for a specific analysis chip 20.
  • the light sources 40a to 40f have been described as entering the inside of the light guide plate 50 from the incident end surface 51, but the light sources 40a to 40f may be arranged outside the incident end surface 51. That is, the "first surface located on the side where the light from the light source is incident on the light guide plate" is not limited to the form in which the light source is arranged inside the first surface 51, but also the first surface 51. A form in which a light source is arranged on the outside is also included.
  • a plurality of light sources are provided, but the number of light sources 40 may be one.
  • the light source has been described as a short wavelength LED light source, the wavelength of the long wavelength LED light source may be switched and used.
  • the light source has been described as an LED light source, any light source may be used as long as it can emit light having a desired wavelength from the light guide plate 50 emission region 53a.
  • the light guide plate 70 described later may be used instead of the light guide plate 50.
  • the light guide plate 70 has a main body 71 and a diffusion plate 72.
  • the main body 71 has a box shape.
  • the main body 71 has, for example, the same dimensions as the light guide plate 50 described above. That is, as for the dimensions of the main body 71, for example, the maximum dimension in the width direction W (an example in the third direction) is about 35 mm to about 40 mm, the dimension in the longitudinal direction L (an example in the first direction) is about 50 mm to about 60 mm, and the thickness.
  • the dimension of the direction D is about 5 mm.
  • the main body 71 has a box shape having an end surface 73, side surfaces 74 and 75, and main surfaces 76 and 77.
  • the end face 73 connects the side surfaces 74 and 75.
  • the main surface 76 connects the side surfaces 74 and 75.
  • the main surface 77 connects the end surface 73 and the side surfaces 74 and 75.
  • the main body 71 has an opening 78 on one side of the longitudinal direction L and opposite to the end face 73.
  • the opening 78 opens all of one end of the main body 71 in the longitudinal direction L.
  • the opening 78 is an example of an incident portion.
  • the main body 71 has an upward opening 79 on the other side of the longitudinal direction L, that is, on the end surface 73 side and where the main surface 76 is located.
  • the opening 79 opens a part of the main surface 76.
  • the opening 79 is an example of the exit portion.
  • the light sources 80a to 80e are LED light sources.
  • the light sources 80a to 80e face the opening 78 in the longitudinal direction L.
  • the opening 78 has a width facing all of the light sources 80a to 80e. The light emitted from the light sources 80a to 80e enters the internal space of the main body 71 through the opening 78.
  • the opening 79 and the diffusion plate 72 face each other in the thickness direction D.
  • the opening 79 is a part of the main surface 76 on the end face 73 side, and the opening area thereof is larger than the region including all the reaction chambers 24 of the analytical chip 20. Therefore, when the analytical chip 20 is mounted on the analyzer 10, all reaction chambers 24 are located within the projection area of the opening 79.
  • the opening 79 may be located on the main surface 77. In that case, the image sensor 60 is arranged below the light guide plate 50.
  • the main body 71 is made of, for example, a material having a relatively high reflectance such as white acrylic or ABS, or a mirror-finished or plated metal plate. Further, a reflective sheet may be attached to the inner surface of the main body 71.
  • the width (dimension of W in the width direction) of the main body 71 gradually decreases from the opening 78 toward the end face 73. That is, the shortest distance between the side surfaces 74 and 75 gradually decreases from the opening 78 toward the end surface 73.
  • the reflection angle of the light reflected on the inner surface corresponding to the side surfaces 74 and 75 is smaller than the reflection angle when the shortest distance between the side surfaces 74 and 75 is constant. Therefore, even if the length of the main body 71 in the longitudinal direction L is reduced, it is easy to obtain light having a uniform intensity near the end face 73.
  • the end face 73 is curved so as to collect the light reflected in the main body 71.
  • the end face 73 is a semi-cylindrical peripheral surface. According to this, the light reflected on the inner surface of the end surface 73 is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface.
  • the diffuser plate 72 is a flat plate having a main surface having an area sufficiently larger than the opening area of the opening 79.
  • the diffuser plate 72 is, for example, a glass or acrylic main surface on which fine irregularities are processed.
  • the diffuser plate 72 transmits light in the thickness direction D. The light transmitted through the diffuser plate 72 is randomly refracted and diffused on each main surface of the diffuser plate 72.
  • the light emitted from one of the light sources 80a to 80e enters the internal space of the main body 71 through the opening 78 of the main body 71.
  • the light diffused from the light source 80b travels straight toward the end face 73, or travels toward the end face 73 while being reflected by each inner surface of the internal space of the main body 71.
  • the reflected light gathers in the vicinity of the end face 53, but the light is not always in a uniform state in the entire region of the opening 79.
  • the light emitted from the main body 71 through the opening 79 is diffused when passing through the diffuser plate 72 to have uniform brightness, and irradiates each reaction chamber 24.
  • the light sources 80a to 80ef may be located outside the main body 71, or a part of them may be located in the internal space of the main body 71. Further, the number of light sources is not limited, and may be one, for example.

Abstract

[Problem] To provide an analysis apparatus having an improved utilization rate of light from a light source and having a simple structure. [Solution] This analysis apparatus 10 analyzes a sample using an analysis chip 20 provided with a plurality of reaction chambers 24 for causing a coloring reaction between the sample and a reagent. The analysis apparatus 10 comprises a light source 40, a light guide plate 50, and an image sensor 60 that photographs an area including the plurality of reaction chambers 24. The light guide plate 50 has: a first surface 51 located on a side where light from the light source 40 is incident on the light guide plate 50; a second surface 52 that is located on an opposite side of the first surface 51 and reflects the light incident from the first surface 51 and traveling inside the light guide plate 50; and a third surface 53 that intersects the first surface 51 and the second surface 52 and is photographed by the image sensor 60, wherein the third surface 53 is provided with an emission region 53a that faces the reaction chamber 24 and emits light inside the light guide plate 50. 

Description

分析装置Analysis equipment
 本発明は、イメージセンサを用いて試料を分析する分析装置に関する。 The present invention relates to an analyzer that analyzes a sample using an image sensor.
 血液や体液などの試料と試薬とを呈色反応させて、呈色の程度によって試料中の成分を分析する分析方法が知られている。特許文献1には、複数の反応室を備えた分析用チップに光が照射され、呈色反応を生じた試料をイメージセンサで撮影する分析装置が開示されている。 An analysis method is known in which a sample such as blood or body fluid is subjected to a color reaction with a reagent, and the components in the sample are analyzed according to the degree of coloration. Patent Document 1 discloses an analyzer that photographs a sample in which a color reaction occurs by irradiating an analysis chip provided with a plurality of reaction chambers with light with an image sensor.
特開2014-044049号公報Japanese Unexamined Patent Publication No. 2014-04049
 しかしながら、特許文献1に開示された分析装置は、光源からの光を光散乱板を介して拡散してから分析用チップの複数の反応室に照射している。そのため、光散乱板の大きさによっては反応室以外に照射される光が多くなり、光源からの光の利用率が低下する。 However, the analyzer disclosed in Patent Document 1 diffuses the light from the light source through the light scattering plate and then irradiates the plurality of reaction chambers of the analysis chip. Therefore, depending on the size of the light scattering plate, the amount of light emitted to other than the reaction chamber increases, and the utilization rate of the light from the light source decreases.
 また、特許文献1に開示された分析装置では、平板からなる分析用チップが水平に配置され、光源はその下方に位置する。そのため、光源、光散乱板および分析用チップは上下方向に配置される必要があり、分析装置の上下方向の寸法が比較的大きくなる。 Further, in the analyzer disclosed in Patent Document 1, an analysis chip made of a flat plate is horizontally arranged, and a light source is located below the analytical chip. Therefore, the light source, the light scattering plate, and the analysis chip need to be arranged in the vertical direction, and the vertical dimension of the analyzer becomes relatively large.
 本発明は、前述された事情に鑑みてなされたものであり、その目的は、小型で、かつ、分析用チップの複数の反応室に効率的に光を照射できる分析装置を提供することである。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an analyzer that is compact and can efficiently irradiate a plurality of reaction chambers of an analysis chip with light. ..
 (1) 本発明に係る分析装置は、試料と試薬との呈色反応を生じさせるための反応室が複数設けられている分析用チップを用いて上記試料を分析するための装置である。上記分析装置は、光源と、導光板と、上記複数の反応室を含む範囲を撮影するイメージセンサと、を備えている。上記導光板は、上記光源からの光が当該導光板に入射される側に位置する第1面、上記第1面の反対側に位置しており、前記第1面から入射されて当該導光板の内部を進行する光を反射する第2面、ならびに、上記第1面および上記第2面と交差しており、上記イメージセンサにより撮影される第3面を有している。上記第3面に、上記反応室に面して当該導光板の内部の光を出射する出射領域が設けられている。 (1) The analyzer according to the present invention is an apparatus for analyzing the sample using an analysis chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent. The analyzer includes a light source, a light guide plate, and an image sensor that captures a range including the plurality of reaction chambers. The light guide plate is located on the first surface located on the side where the light from the light source is incident on the light guide plate and on the opposite side of the first surface, and is incident on the light guide plate from the first surface. It has a second surface that reflects light traveling inside the surface, and a third surface that intersects the first surface and the second surface and is photographed by the image sensor. On the third surface, an emission region for emitting light inside the light guide plate is provided facing the reaction chamber.
 上記構成によれば、導光板の第3面に、反応室に面して導光板の内部の光を出射する出射領域が設けられているため、出射領域を反応室に対応させれば、出射光のほとんどが反応室のみを照射することができる。そのため、光源からの光の利用率が向上する。また、導光板において、光源からの光が導光板に入射される側に位置する第1面と、イメージセンサにより撮影される第3面とは交差しているため、光源とイメージセンサを直線上ではなく互いの中心軸が直交するように配置することができる。これにより、分析装置の小型化が実現される。 According to the above configuration, the third surface of the light guide plate is provided with an emission region for emitting light inside the light guide plate facing the reaction chamber. Therefore, if the emission region corresponds to the reaction chamber, the light can be emitted. Most of the light can illuminate only the reaction chamber. Therefore, the utilization rate of the light from the light source is improved. Further, in the light guide plate, since the first surface located on the side where the light from the light source is incident on the light guide plate and the third surface photographed by the image sensor intersect, the light source and the image sensor are aligned on a straight line. Instead, they can be arranged so that their central axes are orthogonal to each other. As a result, the size of the analyzer can be reduced.
 (2) 好ましくは、上記第2面は、内部反射する光を集光するように湾曲している。これによれば、内部反射した光が集光されることで、その集光される箇所での光量が大きくなる。そのため、集光される箇所の付近の第3面に出射領域が設けられていれば、出射領域を介して明るい光が反応室に照射される。 (2) Preferably, the second surface is curved so as to collect the internally reflected light. According to this, the internally reflected light is condensed, and the amount of light at the focused portion is increased. Therefore, if the emission region is provided on the third surface near the focused portion, bright light is irradiated to the reaction chamber through the emission region.
 (3) 好ましくは、複数の上記光源が上記第1面に対して並列されており、上記第1面は、長手方向の中央部が外側に突出するように湾曲している。これによれば、複数の光源の光軸は平行ではなく導光板内で交差する。したがって、導光板内における光は集光されやすい。 (3) Preferably, a plurality of the above light sources are arranged in parallel with respect to the first surface, and the first surface is curved so that the central portion in the longitudinal direction projects outward. According to this, the optical axes of the plurality of light sources are not parallel but intersect in the light guide plate. Therefore, the light in the light guide plate is easily collected.
 (4) 好ましくは、上記導光板は、上記第1面から上記第2面に向けて幅が次第に小さくなっている。これによれば、第1面および第2面と交差する2つの側面の間隔が第1面から第2面にかけて次第に小さくなっている。これら側面で反射した光は、側面同士の間隔が一定である場合に比べて反射角が小さい。したがって、導光板において第1面と第2面を結ぶ長さを小さくしても、第2面付近で強度が均一な光が得られる。 (4) Preferably, the width of the light guide plate gradually decreases from the first surface to the second surface. According to this, the distance between the first surface and the two side surfaces intersecting the second surface gradually becomes smaller from the first surface to the second surface. The light reflected by these side surfaces has a smaller reflection angle than when the distance between the side surfaces is constant. Therefore, even if the length connecting the first surface and the second surface of the light guide plate is reduced, light having a uniform intensity can be obtained in the vicinity of the second surface.
 (5) 好ましくは、上記出射領域が複数の出射部から構成されている。これによれば、複数の出射部の寸法形状および配置をそれぞれ対応する反応室に合致させれば、光源からの光の利用率がさらに向上する。 (5) Preferably, the emission region is composed of a plurality of emission portions. According to this, if the dimensions and shapes and arrangements of the plurality of emitting parts are matched with the corresponding reaction chambers, the utilization rate of the light from the light source is further improved.
 (6) 好ましくは、上記第2面は、上記第3面と直交する方向において異なる位置となる複数の部位を有する。上記複数の部位のそれぞれは、対応する前記出射部に応じて内部反射する光を集光するように湾曲している。そのため、集光される各箇所の付近の第3面に各出射部が設けられていれば、各出射部を介して明るい光が各反応室に照射される。 (6) Preferably, the second surface has a plurality of parts that are at different positions in the direction orthogonal to the third surface. Each of the plurality of portions is curved so as to collect the light internally reflected according to the corresponding emitting portion. Therefore, if each emitting portion is provided on the third surface near each location where the light is collected, bright light is irradiated to each reaction chamber through each emitting portion.
 (7) 本発明に係る分析装置は、試料と試薬との呈色反応を生じさせるための反応室が複数設けられている分析用チップを用いて上記試料を分析する装置である。本分析装置は、光源と、導光板と、上記複数の反応室を含む範囲を撮影するイメージセンサと、を備える。上記導光板は、上記光源と対向する入射部と、上記入射部から入射した光を反射する内面と、上記入射部と上記光源とが対向する第1方向と交差する第2方向を向く出射部と、上記出射部と第2方向に対向する拡散板と、を有する。上記反応室は上記出射部と第2方向に対向する。 (7) The analyzer according to the present invention is an apparatus for analyzing the sample using an analysis chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent. The analyzer includes a light source, a light guide plate, and an image sensor that captures a range including the plurality of reaction chambers. The light guide plate has an incident portion facing the light source, an inner surface that reflects light incident from the incident portion, and an emitting portion facing a second direction in which the incident portion and the light source intersect the first direction facing each other. And a diffuser plate facing the light source portion in the second direction. The reaction chamber faces the exit portion in the second direction.
 上記構成によれば、光源から導光板の入射部に入射された光は、内面によって反射されつつ出射部から出射する。出射部から出射した光は拡散板により拡散されて複数の反応室へ入射する。これにより、光源からの光の利用率が向上する。また、導光板において、入射部と光源とが対向する第1方向と交差する第2方向へ光が出射されるので、光源とイメージセンサとを直線上に配置しなくてもよい。これにより、分析装置の小型化が実現される。 According to the above configuration, the light incident on the incident portion of the light guide plate from the light source is emitted from the exit portion while being reflected by the inner surface. The light emitted from the emitting unit is diffused by the diffuser plate and is incident on a plurality of reaction chambers. This improves the utilization rate of the light from the light source. Further, in the light guide plate, since the light is emitted in the second direction intersecting the first direction in which the incident portion and the light source face each other, it is not necessary to arrange the light source and the image sensor in a straight line. As a result, the size of the analyzer can be reduced.
 (8) 好ましくは、複数の上記光源が上記入射部に対して並列する。 (8) Preferably, a plurality of the above light sources are arranged in parallel with respect to the incident portion.
 (9) 好ましくは、上記内面は、上記入射部から上記出射部に向けて、上記第1方向及び上記第2方向と交差する第3方向に対向する一対の面の最短距離が次第に小さくなっている。 (9) Preferably, the shortest distance between the inner surface and the pair of surfaces facing the first direction and the third direction intersecting with the second direction gradually decreases from the incident portion to the exit portion. There is.
 (10) 好ましくは、上記導光板は箱形状であり、上記入射部及び上記出射部は開口である。 (10) Preferably, the light guide plate has a box shape, and the incident portion and the exit portion are openings.
 本発明によれば、小型で、かつ、分析用チップの複数の反応室に効率的に光を照射できる分析装置を実現できる。 According to the present invention, it is possible to realize an analyzer that is compact and can efficiently irradiate a plurality of reaction chambers of an analysis chip with light.
図1(a)は、本発明の実施形態に係る分析装置10の斜視図であり、(b)は概略側面図である。FIG. 1A is a perspective view of the analyzer 10 according to the embodiment of the present invention, and FIG. 1B is a schematic side view. 図2(a)は、図1の分析装置10で用いられる分析用チップ20の上面図であり、(b)はII(b)-II(b)線に沿った側断面図である。FIG. 2A is a top view of the analytical chip 20 used in the analyzer 10 of FIG. 1, and FIG. 2B is a side sectional view taken along the line II (b) -II (b). 図3は、図1の分析装置10の導光板50および光源40の上面図である。FIG. 3 is a top view of the light guide plate 50 and the light source 40 of the analyzer 10 of FIG. 図4(a)および(b)は導光板50の上面説明図であり、(a)は比較例、(b)は本発明の例を示す図である。4A and 4B are explanatory views of the upper surface of the light guide plate 50, FIG. 4A is a comparative example, and FIG. 4B is a diagram showing an example of the present invention. 図5は、変形例の分析装置10の導光板50Aの斜視図である。FIG. 5 is a perspective view of the light guide plate 50A of the analyzer 10 of the modified example. 図6は、図5の導光板50Aの上面説明図である。FIG. 6 is an explanatory view of the upper surface of the light guide plate 50A of FIG. 図7は、変形例に係る導光板70を示す斜視図である。FIG. 7 is a perspective view showing the light guide plate 70 according to the modified example. 図8は、本体71を示す斜視図である。FIG. 8 is a perspective view showing the main body 71. 図9は、本体71における光の反射を示す模式図である。FIG. 9 is a schematic view showing the reflection of light on the main body 71.
 以下、本発明の好ましい実施形態が説明される。なお、本実施形態は、本発明の一実施態様にすぎず、本発明の要旨を変更しない範囲で実施態様が変更できることは言うまでもない。 Hereinafter, preferred embodiments of the present invention will be described. Needless to say, the present embodiment is only one embodiment of the present invention, and the embodiments can be changed without changing the gist of the present invention.
[分析装置10]
 図1(a)および(b)に示されるように、本実施形態に係る分析装置10は、分析用チップ20を用いて試料を分析する装置であり、支持構造体30と、光源40と、導光板50と、イメージセンサ60とを備える。
[Analyzer 10]
As shown in FIGS. 1A and 1B, the analyzer 10 according to the present embodiment is an apparatus for analyzing a sample using the analysis chip 20, and includes a support structure 30, a light source 40, and the like. A light guide plate 50 and an image sensor 60 are provided.
[分析用チップ20]
 図2(a)および(b)に示されるように、分析用チップ20は、略平板状の基部21と、この基部21の一部から上方に突設した突設部22とを有する。分析用チップ20は透明樹脂からなる。突設部22には、試料が注入される、すり鉢状の注入部23が画定されている。基部21の内部には、複数(図示の例では7つ)の反応室24が画定されている。反応室24は、そのうちの1つの反応室24を中心として、水平方向に略円弧状に他の反応室24が配置されている。これら反応室24は、注入部23に流路25を介して連結されており、注入部23に注入された試料が導かれる。複数の反応室24は互いに同一寸法の円柱形状からなる。試料は、例えば希釈された血清であるが、これに限定されるものではない。複数の反応室24には、試料に呈色反応を生じさせる試薬が予め分配されている。これら試薬はそれぞれ異なる種類の試薬である。そのため、試料が注入部23に注入されて各反応室24に到達すると、複数の反応室24でそれぞれ異なる呈色反応が生じる。これにより、反応室24の数だけの項目の検査を一度に実施することができる。
[Analytical chip 20]
As shown in FIGS. 2A and 2B, the analysis chip 20 has a substantially flat base portion 21 and a projecting portion 22 projecting upward from a part of the base portion 21. The analysis chip 20 is made of a transparent resin. A mortar-shaped injection portion 23 into which a sample is injected is defined in the protrusion portion 22. A plurality of (seven in the illustrated example) reaction chambers 24 are defined inside the base 21. In the reaction chamber 24, the other reaction chambers 24 are arranged in a substantially arc shape in the horizontal direction with one of the reaction chambers 24 as the center. These reaction chambers 24 are connected to the injection unit 23 via the flow path 25, and the sample injected into the injection unit 23 is guided. The plurality of reaction chambers 24 have a cylindrical shape having the same dimensions as each other. The sample is, for example, diluted serum, but is not limited to this. Reagents that cause a color reaction in the sample are pre-distributed in the plurality of reaction chambers 24. These reagents are different types of reagents. Therefore, when the sample is injected into the injection unit 23 and reaches each reaction chamber 24, different color reactions occur in the plurality of reaction chambers 24. As a result, as many items as the number of reaction chambers 24 can be inspected at one time.
[支持構造体30]
 図1(a)および(b)に示されるように、支持構造体30は、基部31と、この基部31上に構成されたチップ受入部32と、イメージセンサ60の鏡筒61の下部を水平方向に位置決めする鏡筒下部位置決め部33と、当該支持構造体30の支柱である2つの支柱部34,34と、鏡筒61の上部を水平方向に位置決めする鏡筒上部位置決め部35と、イメージセンサ60を支持するイメージセンサ支持部36と、頂部37とを備える。この支持構造体30によって、分析装置10はアセンブリ化されている。
[Support structure 30]
As shown in FIGS. 1A and 1B, the support structure 30 horizontally holds the base 31, the chip receiving portion 32 formed on the base 31, and the lower portion of the lens barrel 61 of the image sensor 60. Image of the lens barrel lower positioning unit 33 for positioning in the direction, the two support columns 34 and 34 that are the columns of the support structure 30, and the lens barrel upper positioning unit 35 for horizontally positioning the upper part of the lens barrel 61. An image sensor support portion 36 that supports the sensor 60 and a top portion 37 are provided. The analyzer 10 is assembled by the support structure 30.
[光源40]
 図3に示されるように、本実施形態における光源40は、複数のLED(発光ダイオード)光源40a~40f(総称して「光源40」と称する。)からなる。LED光源40a~40fは、いずれも短波長LEDからなり、光の中心波長が互いに異なる。LED光源40は、反応室24において呈色反応が生じた部分の呈色濃度とのコントラストが大きくなる色光となるような波長を有するものである。LED光源40a~40fは図示しない制御装置に接続されている。この制御装置の制御によって、LED光源の作動と停止が切り替えられる。これら複数のLED光源40a~40fは、同時に作動されるわけではない。複数のLED光源40a~40fが切り替えられることで、複数の反応室24の1つまたはいくつかにおける呈色反応に適した波長のLED光源40が逐次採用される。そして、結果として全ての反応室24における呈色反応に適した色光となるような波長が採用されることになる。
[Light source 40]
As shown in FIG. 3, the light source 40 in the present embodiment includes a plurality of LED (light emitting diode) light sources 40a to 40f (collectively referred to as "light source 40"). The LED light sources 40a to 40f are all short-wavelength LEDs, and the central wavelengths of light are different from each other. The LED light source 40 has a wavelength such that the LED light source has a wavelength such that the contrast with the color density of the portion where the color reaction occurs in the reaction chamber 24 becomes large. The LED light sources 40a to 40f are connected to a control device (not shown). By controlling this control device, the operation and stop of the LED light source can be switched. These plurality of LED light sources 40a to 40f are not operated at the same time. By switching the plurality of LED light sources 40a to 40f, the LED light sources 40 having a wavelength suitable for the color reaction in one or several of the plurality of reaction chambers 24 are sequentially adopted. As a result, a wavelength that produces colored light suitable for the color reaction in all the reaction chambers 24 is adopted.
[導光板50]
 図1(a)および(b)ならびに図3に示されるように、導光板50は平板状である。導光板50の寸法は、例えば、幅方向Wの最大寸法が約35mm~約40mm、長手方向の寸法が約50mm~約60mm、厚み方向の寸法が約5mmである。なお、本明細書において「導光板」とは、端面から入射した光を拡散させて、一主面から光を出射すると一般的に理解されているものである。
[Light guide plate 50]
As shown in FIGS. 1 (a) and 1 (b) and FIG. 3, the light guide plate 50 has a flat plate shape. The dimensions of the light guide plate 50 are, for example, the maximum dimension in the width direction W is about 35 mm to about 40 mm, the dimension in the longitudinal direction is about 50 mm to about 60 mm, and the dimension in the thickness direction is about 5 mm. In the present specification, the term "light guide plate" is generally understood to diffuse light incident from an end surface and emit light from one main surface.
 この導光板50の一部は支持構造体30内に嵌まり込んでいる。導光板50は、2つの端面51,52と、これら2つの端面51,52を接続する2つの主面53,54と、2つの端面51,52および2つの主面53,54を接続する2つの側面55,56とを有する。2つの端面51,52のうち、入射端面(第1面)51は、光源40a~40fからの光が導光板50に入射される側に位置する。 A part of the light guide plate 50 is fitted in the support structure 30. The light guide plate 50 connects two end faces 51, 52, two main faces 53, 54 connecting these two end faces 51, 52, two end faces 51, 52, and two main faces 53, 54. It has one side surface 55, 56. Of the two end faces 51 and 52, the incident end face (first surface) 51 is located on the side where the light from the light sources 40a to 40f is incident on the light guide plate 50.
 入射端面51は、好ましくはその長手方向の中央部51aaが外側に突出するように湾曲している。詳細には、入射端面51は上面視で円弧状であってもよい。本実施形態では、入射端面51に複数の切欠51a~51fが形成されて、それぞれに光源40a~40fが設けられている。なお、入射端面51は切欠のない平面であってもよい。その場合、入射端面51の外側(つまり、導光板50の外部)に光源40a~40fが並列される。LED光源40a~40fの光軸La~Lfは導光板50内で交差する。これにより、導光板50内における光は集光されやすく、導光板50の幅方向Wの中央部分の光量が大きくなる。 The incident end face 51 is preferably curved so that the central portion 51aa in the longitudinal direction thereof protrudes outward. Specifically, the incident end face 51 may be arcuate when viewed from above. In the present embodiment, a plurality of notches 51a to 51f are formed on the incident end surface 51, and light sources 40a to 40f are provided for each of the notches 51a to 51f. The incident end face 51 may be a flat surface without a notch. In that case, the light sources 40a to 40f are arranged in parallel on the outside of the incident end surface 51 (that is, the outside of the light guide plate 50). The optical axes La to Lf of the LED light sources 40a to 40f intersect in the light guide plate 50. As a result, the light in the light guide plate 50 is easily collected, and the amount of light in the central portion of the light guide plate 50 in the width direction W is increased.
 反対側端面(第2面)52は入射端面51の反対側に位置しており、光源40から照射されて導光板50の内部を進行する光を反射する。2つの主面53,54のうち、上側の主面である被撮影面(第3面)53は、入射端面51および反対側端面52と交差し、イメージセンサ60により撮影される。本実施形態では導光板50の上側の主面53が被撮影面であるが、下側の主面54が被撮影面であってもよい。その場合、イメージセンサ60は、導光板50の下方に配置される。 The opposite end surface (second surface) 52 is located on the opposite side of the incident end surface 51, and reflects the light emitted from the light source 40 and traveling inside the light guide plate 50. Of the two main surfaces 53 and 54, the imaged surface (third surface) 53, which is the upper main surface, intersects the incident end surface 51 and the opposite end surface 52, and is photographed by the image sensor 60. In the present embodiment, the upper main surface 53 of the light guide plate 50 is the surface to be photographed, but the lower main surface 54 may be the surface to be photographed. In that case, the image sensor 60 is arranged below the light guide plate 50.
 導光板50の各面51~56は、被撮影面53の一部を除いて、導光板50に入射した光が全反射するものである。導光板50は、例えば、ガラスまたはアクリルからなる。導光板50は、この他に、ポリカーボネート、PET(ポリエチレンテレフタレート)、または塩化ビニルであってもよい。なお、被撮影面53の上記一部を除いて、導光板50の各面51~56には反射シートが貼付されていてもよい。 Each surface 51 to 56 of the light guide plate 50 is a type that totally reflects the light incident on the light guide plate 50 except for a part of the surface to be imaged 53. The light guide plate 50 is made of, for example, glass or acrylic. The light guide plate 50 may also be made of polycarbonate, PET (polyethylene terephthalate), or vinyl chloride. A reflective sheet may be attached to each of the surfaces 51 to 56 of the light guide plate 50, except for the above-mentioned part of the surface to be photographed 53.
 導光板50は、また、入射端面51から反対側端面52にかけて幅(幅方向Wの寸法)が次第に小さくなっている。すなわち、側面55と側面56の間隔が入射端面51から反対側端面52にかけて次第に小さくなっている。これによれば、側面55,56で反射した光は、側面55と側面56の間隔が一定の場合に比べて反射角が小さい。つまり、側面55,56で反射した光は入射端面51の近くに反射される。したがって、導光板50の長手方向Lの長さを小さくしても反対側端面52付近で強度が均一な光が得られる。 The width (dimension of W in the width direction) of the light guide plate 50 gradually decreases from the incident end surface 51 to the opposite end surface 52. That is, the distance between the side surface 55 and the side surface 56 gradually decreases from the incident end surface 51 to the opposite end surface 52. According to this, the light reflected by the side surfaces 55 and 56 has a smaller reflection angle than the case where the distance between the side surface 55 and the side surface 56 is constant. That is, the light reflected by the side surfaces 55 and 56 is reflected near the incident end surface 51. Therefore, even if the length of the light guide plate 50 in the longitudinal direction L is reduced, light having a uniform intensity can be obtained in the vicinity of the opposite end surface 52.
 反対側端面52は、導光板50内で反射する光を集光するように湾曲している。例えば、反対側端面52は半円筒周面である。これによれば、反対側端面52で内部反射した光は半円筒周面の中心軸近傍に集光されやすい。したがって、この中心軸上の被撮影面53に出射領域53aが設けられていれば、出射領域53aを介して明るい光が反応室24(図2(a))に照射される。ただし、被撮影面53の出射領域53aは、中心軸上になくてもよい。反対側端面52は、半円筒よりも小さい円弧の円筒周面であってもよい。この場合も、好ましくは、円筒周面の中心軸上の被撮影面53に出射領域53aが設けられる。また、円筒周面は 正円筒周面に限らず、例えば楕円筒周面であってもよい。楕円筒周面の場合、好ましくは、2つの焦点軸の中間部分の軸上の被撮影面53に出射領域53aが設けられる。反対側端面52は、また、例えば、複数の円筒弧の接面をつなぎ合わせた多角面を滑らかにした曲面であってもよい。この他に、反対側端面52は、微細な多角面からなってもよい。いかなる形状の反射側端面52であっても、内部反射した光が最も多く集光される箇所の軸上の被撮影面53に出射領域53aが設けられるのが好ましい。  The opposite end surface 52 is curved so as to collect the light reflected in the light guide plate 50. For example, the opposite end surface 52 is a semi-cylindrical peripheral surface. According to this, the light internally reflected by the opposite end surface 52 is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface. Therefore, if the surface to be imaged 53 on the central axis is provided with the emission region 53a, bright light is irradiated to the reaction chamber 24 (FIG. 2A) through the emission region 53a. However, the emission region 53a of the surface to be photographed 53 does not have to be on the central axis. The opposite end surface 52 may be a cylindrical peripheral surface of an arc smaller than a semi-cylinder. Also in this case, preferably, the emission region 53a is provided on the surface to be imaged 53 on the central axis of the peripheral surface of the cylinder. Further, the peripheral surface of the cylinder is not limited to the peripheral surface of the equirectangular cylinder, and may be, for example, the peripheral surface of the elliptical cylinder. In the case of the peripheral surface of the elliptical cylinder, the emission region 53a is preferably provided on the imaged surface 53 on the axis of the intermediate portion between the two focal axes. The opposite end surface 52 may also be, for example, a curved surface obtained by smoothing a polygonal surface obtained by connecting the tangent surfaces of a plurality of cylindrical arcs. In addition to this, the opposite end surface 52 may be made of a fine polygonal surface. Regardless of the shape of the reflection side end surface 52, it is preferable that the emission region 53a is provided on the imaged surface 53 on the axis where the internally reflected light is most collected.
 ところで、LED光源から照射される光は拡がりを有する。そのため、図4(a)に示されるように、反対側端面52が湾曲せずに平坦である場合、LED光源40から照射された光は反対側端面52付近AAの導光板50内で強度は均一ではあるがその拡がりのために光量は少ない。その一方、導光板50内の入射端面51付近ABで、LED光源40から照射された光は光量は十分であるが強度は不均一である。これに対して、図4(b)に示されるように、反対側端面52が湾曲していると、導光板50内の反対側端面52付近Bで、LED光源40から照射された光は内部反射によって光量が十分となる。これより、反対側端面52付近Bでは、光の強度が均一である上に光量が十分となる。なお、図4(a)および(b)は、説明を目的としているため、簡略化されており、他の図面と整合するものではない。 By the way, the light emitted from the LED light source has a spread. Therefore, as shown in FIG. 4A, when the opposite end surface 52 is flat without being curved, the light emitted from the LED light source 40 has an intensity in the light guide plate 50 of AA near the opposite end surface 52. Although it is uniform, the amount of light is small due to its spread. On the other hand, the amount of light emitted from the LED light source 40 at AB near the incident end surface 51 in the light guide plate 50 is sufficient, but the intensity is non-uniform. On the other hand, as shown in FIG. 4B, when the opposite end surface 52 is curved, the light emitted from the LED light source 40 is inside in the vicinity B near the opposite end surface 52 in the light guide plate 50. The amount of light is sufficient due to the reflection. From this, in the vicinity B near the opposite end surface 52, the light intensity is uniform and the amount of light is sufficient. Note that FIGS. 4A and 4B are simplified for the purpose of explanation and are not consistent with other drawings.
 図3に示されるように、被撮影面53は、導光板50の内部の光を出射する出射領域53aを有する。出射領域53aは、被撮影面53のうちの反対側端面52寄りに位置する。具体的には、導光板50の長手方向Lにおける中央よりも反対側端面52側に位置する。ここで、図4(a)および(b)に関連して説明したように、図3の導光板50では、光源40a~40fからの光が導光板50に入射される側に位置する入射端面51よりも、その反対側に位置する反対側端面52付近の方が光の強度は均一である。そのため、このように出射領域53aが入射端面51よりも反対側端面52の近くに位置することで、強度が均一な光が反応室24(図2(a))に照射される。 As shown in FIG. 3, the surface to be photographed 53 has an emission region 53a that emits light inside the light guide plate 50. The emission region 53a is located closer to the opposite end surface 52 of the surface to be imaged 53. Specifically, it is located on the end surface 52 side opposite to the center in the longitudinal direction L of the light guide plate 50. Here, as described in relation to FIGS. 4A and 4B, in the light guide plate 50 of FIG. 3, the incident end surface located on the side where the light from the light sources 40a to 40f is incident on the light guide plate 50. The light intensity is more uniform in the vicinity of the opposite end surface 52 located on the opposite side than in 51. Therefore, by locating the emission region 53a closer to the end surface 52 on the opposite side of the incident end surface 51 in this way, the reaction chamber 24 (FIG. 2A) is irradiated with light having a uniform intensity.
 出射領域53aは、複数の出射部53aaから構成されている。出射部53aaは、被撮影面53に凹凸加工のような表面加工を施すことによって実現されている。すなわち、導光板を面発光させるための公知の技法が採用されている。各出射部53aaは同一寸法の円形状である。この円の直径は、例えば、約1.5mm~約2mmである。本実施形態において、各出射部53aaの形状は、分析用チップ20の円柱状の各反応室24の底面の円形状と合致する。また、出射部53aaの数は分析用チップ20の反応室24の数と同一(図示の例では7つ)であり、配置も対応している。反対側端面52が半円筒周面の場合、円弧状に配置された複数の出射部53aaの中心が、この半円筒周面の中心軸上に位置してもよい。これによれば、反対側端面52の内部反射によって集光される箇所に出射領域53aが設けられているため、出射領域53aを介して明るい光が反応室24に照射される。 The emission region 53a is composed of a plurality of emission portions 53a. The emitting portion 53aa is realized by subjecting the surface to be photographed 53 to surface processing such as uneven processing. That is, a known technique for causing the light guide plate to emit light from the surface is adopted. Each emitting portion 53aa has a circular shape having the same dimensions. The diameter of this circle is, for example, about 1.5 mm to about 2 mm. In the present embodiment, the shape of each exit portion 53aa matches the circular shape of the bottom surface of each columnar reaction chamber 24 of the analysis chip 20. Further, the number of the emitting portions 53aa is the same as the number of the reaction chambers 24 of the analysis chip 20 (7 in the illustrated example), and the arrangement is also supported. When the opposite end surface 52 is a semi-cylindrical peripheral surface, the centers of the plurality of emitting portions 53aa arranged in an arc shape may be located on the central axis of the semi-cylindrical peripheral surface. According to this, since the emission region 53a is provided at the position where the light is collected by the internal reflection of the opposite end surface 52, bright light is irradiated to the reaction chamber 24 through the emission region 53a.
[チップ受入部32]
 図1(b)に示される支持構造体30のチップ受入部32には、図2(b)に示される分析用チップ20の基部21のうち、突設部22の外側で延出する延出部26を受け入れるための空間が画定されている。分析用チップ20の延出部26が挿入されると、突設部22がチップ受入部32に当接して係止される。これにより、分析用チップ20はチップ受入部32に対して位置決めされる。
[Chip receiving unit 32]
The chip receiving portion 32 of the support structure 30 shown in FIG. 1 (b) has an extension extending outside the projecting portion 22 of the base 21 of the analytical chip 20 shown in FIG. 2 (b). A space for receiving the part 26 is defined. When the extending portion 26 of the analysis chip 20 is inserted, the projecting portion 22 abuts on the chip receiving portion 32 and is locked. As a result, the analysis chip 20 is positioned with respect to the chip receiving portion 32.
 分析用チップ20がチップ受入部32に対して位置決めされると、複数の出射部53aaのそれぞれの直上に対応する反応室24の底面が位置する。そのため、各出射部53aaから出射された光のほとんど全てが、対応する反応室24を下側から照射することになる。したがって、反応室24以外を照射する光はほとんどなく、光源40からの光の利用率が向上する。 When the analysis chip 20 is positioned with respect to the chip receiving portion 32, the bottom surface of the reaction chamber 24 corresponding directly above each of the plurality of emitting portions 53aa is located. Therefore, almost all the light emitted from each emission unit 53aa irradiates the corresponding reaction chamber 24 from below. Therefore, there is almost no light that irradiates other than the reaction chamber 24, and the utilization rate of the light from the light source 40 is improved.
 なお、出射領域53aは、1つの出射部53aaから構成されてもよい。この場合、この1つの出射部53aaの大きさを、全ての反応室24を囲む領域とほぼ同一の大きさにすれば、反応室以外に照射される光の量を抑えることができる。その一方、出射部35aaは1つだけであるため、導光板の表面加工が容易である。 The emission region 53a may be composed of one emission unit 53aa. In this case, if the size of this one exit portion 53aa is set to substantially the same size as the region surrounding all the reaction chambers 24, the amount of light emitted to other than the reaction chamber can be suppressed. On the other hand, since there is only one emitting portion 35aa, the surface processing of the light guide plate is easy.
[イメージセンサ60]
 図1(b)に示されるように、イメージセンサ60はチップ受入部32の上方に配置されており、分析用チップ20の全ての反応室24を含む範囲を撮影する。イメージセンサ60は、例えばCCDイメージセンサやCMOSイメージセンサであるが、2次元画像が取得できるものであればいかなるイメージセンサであってもよい。分析用チップ20の全ての反応室24に照射された光は、まず、鏡筒61で絞り込まれる。次に、カラーフィルタを有するレンズ62を介してイメージセンサ60に取り込まれる。これにより、イメージセンサ60に取り込まれる画像は、各画素の色情報が付加されている。そのため、分析用チップ20の全ての反応室24を含む範囲のカラー画像が得られる。
[Image sensor 60]
As shown in FIG. 1 (b), the image sensor 60 is arranged above the chip receiving portion 32, and photographs the range including all the reaction chambers 24 of the analysis chip 20. The image sensor 60 is, for example, a CCD image sensor or a CMOS image sensor, but any image sensor may be used as long as it can acquire a two-dimensional image. The light irradiated to all the reaction chambers 24 of the analysis chip 20 is first narrowed down by the lens barrel 61. Next, it is taken into the image sensor 60 via the lens 62 having a color filter. As a result, the color information of each pixel is added to the image captured by the image sensor 60. Therefore, a color image of a range including all the reaction chambers 24 of the analysis chip 20 can be obtained.
 イメージセンサ60には図示しない処理装置が接続されている。この処理装置によって、公知の手法により、撮影された画像から各反応室24における呈色反応を判定することができる。 A processing device (not shown) is connected to the image sensor 60. With this processing device, the color reaction in each reaction chamber 24 can be determined from the captured image by a known method.
[分析装置10の使用方法]
 以下に、分析装置10の使用方法が説明される。
[How to use the analyzer 10]
The usage of the analyzer 10 will be described below.
 図1に示されるように、各反応室24において呈色反応が生じている分析用チップ20の延出部26が、チップ受入部32の空間に挿入される。延出部26がこの空間に係合したことを契機として、または、オペレータが図示しないボタンを操作することを契機として、光源40が作動する。具体的には、図示しない制御装置が光源40のうちの一つ(例えばLED光源40a)のみを作動して、そのLED光源40aが光を照射する。LED光源40aから照射された光は導光板50に入射し、導光板50の内部を進行する。反対側端面52を含む様々な面で内部反射された光は、出射部53aaを透過して外部に出射される。ここで、反対側端面52は導光板50内で反射する光を集光するように湾曲し、出射領域53aは被撮影面53のうちの反対側端面52寄りに位置するため、出射領域53aを透過する光は、強度が均一である上に光量が十分である。 As shown in FIG. 1, the extending portion 26 of the analytical chip 20 in which the color reaction occurs in each reaction chamber 24 is inserted into the space of the chip receiving portion 32. The light source 40 is activated when the extending portion 26 engages with this space or when the operator operates a button (not shown). Specifically, a control device (not shown) operates only one of the light sources 40 (for example, the LED light source 40a), and the LED light source 40a irradiates the light. The light emitted from the LED light source 40a enters the light guide plate 50 and travels inside the light guide plate 50. The light internally reflected by various surfaces including the opposite end surface 52 passes through the exit portion 53aa and is emitted to the outside. Here, the opposite end surface 52 is curved so as to collect the light reflected in the light guide plate 50, and the emission region 53a is located closer to the opposite end surface 52 of the imaged surface 53. The transmitted light has a uniform intensity and a sufficient amount of light.
 各出射部53aaを透過して外部に出射された光は、対応する反応室24を下側から照射する。これら反応室24のうち、LED光源40aの波長の光に対応した反応室における呈色した部分が、イメージセンサ60によって撮影される画像に明確に現れる。このように撮影された画像は図示しない記憶領域に保存される。 The light transmitted to the outside through each emission unit 53aa irradiates the corresponding reaction chamber 24 from below. Of these reaction chambers 24, the colored portion in the reaction chamber corresponding to the light having the wavelength of the LED light source 40a clearly appears in the image captured by the image sensor 60. The image captured in this way is stored in a storage area (not shown).
 光源40の制御装置とイメージセンサ60に接続された制御装置とは、互いに連動しているか、または同一の装置によって実現されている。そのため、最初のLED光源40aが作動中に画像が撮影されたことを確認した後に、制御装置は、LED光源40aを停止して別のLED光源(例えばLED光源40b)を作動する。これにより、これら反応室24のうち、LED光源40bの波長の光に対応した反応室における呈色した部分が、イメージセンサ60によって撮影される画像に明確に現れる。このように撮影された画像は図示しない記憶領域に保存される。 The control device of the light source 40 and the control device connected to the image sensor 60 are interlocked with each other or realized by the same device. Therefore, after confirming that the image was taken while the first LED light source 40a was operating, the control device stops the LED light source 40a and operates another LED light source (for example, the LED light source 40b). As a result, of these reaction chambers 24, the colored portion in the reaction chamber corresponding to the light having the wavelength of the LED light source 40b clearly appears in the image captured by the image sensor 60. The image captured in this way is stored in a storage area (not shown).
 以上の処理が、全てのLED光源40a~40fに対して順番に繰り返される。その結果、LED光源40a~40fの数だけ画像が得られる。イメージセンサ60に接続された図示しない処理装置は、これらの画像それぞれについて呈色反応を判定することができる。なお、オペレータの介入は、分析用チップ20をチップ受入部32の空間に挿入することのみか、または、それに加えて分析の契機となるボタン操作のみである。そのため、ほぼ自動で、複数の試薬に対して試料の分析が可能である。 The above process is repeated in order for all the LED light sources 40a to 40f. As a result, as many images as the number of LED light sources 40a to 40f can be obtained. A processing device (not shown) connected to the image sensor 60 can determine the color reaction for each of these images. The operator's intervention is only to insert the analysis chip 20 into the space of the chip receiving portion 32, or in addition to that, only to operate a button that triggers the analysis. Therefore, it is possible to analyze a sample for a plurality of reagents almost automatically.
[本実施形態の作用効果]
 本実施形態によれば、導光板の第3面53に、反応室24に面して導光板50の内部の光を出射する出射領域53aが設けられているため、出射領域53aを反応室24に対応させれば、出射光のほとんどが反応室24のみを照射するものとすることができる。そのため、光源40からの光の利用率が向上する。また、導光板50において、光源40からの光が導光板50に入射される側に位置する第1面51と、イメージセンサ60により撮影される第3面53とは交差しているため、光源40とイメージセンサ60を直線上ではなく互いの中心軸が直交するように配置することができる。これにより、分析装置10の小型化が実現される。
[Action and effect of this embodiment]
According to the present embodiment, since the third surface 53 of the light guide plate is provided with an emission region 53a that faces the reaction chamber 24 and emits light inside the light guide plate 50, the emission region 53a is used as the reaction chamber 24. Most of the emitted light can irradiate only the reaction chamber 24. Therefore, the utilization rate of the light from the light source 40 is improved. Further, in the light guide plate 50, since the first surface 51 located on the side where the light from the light source 40 is incident on the light guide plate 50 and the third surface 53 photographed by the image sensor 60 intersect with each other, the light source The 40 and the image sensor 60 can be arranged so that their central axes are orthogonal to each other, not on a straight line. As a result, the size of the analyzer 10 can be reduced.
 また、本実施形態によれば、第2面52で内部反射した光が集光されることで、その集光される箇所での光量が大きくなる。そのため、集光される箇所の付近の第3面53に出射領域53aが設けられていれば、出射領域53aを介して明るい光が反応室24に照射される。 Further, according to the present embodiment, the light internally reflected by the second surface 52 is condensed, so that the amount of light at the focused portion is increased. Therefore, if the emission region 53a is provided on the third surface 53 near the focused portion, the reaction chamber 24 is irradiated with bright light through the emission region 53a.
 さらに、本実施形態によれば、複数の上記光源40a~40fが上記第1面51に対して並列されており、上記第1面51は、長手方向の中央部51aaが外側に突出するように湾曲しているため、複数の光源40a~40fの光軸La~Lfは平行ではなく導光板50内で交差する。したがって、導光板50内における光は集光されやすい。 Further, according to the present embodiment, the plurality of light sources 40a to 40f are arranged in parallel with respect to the first surface 51, so that the central portion 51aa in the longitudinal direction of the first surface 51 projects outward. Since it is curved, the optical axes La to Lf of the plurality of light sources 40a to 40f are not parallel but intersect in the light guide plate 50. Therefore, the light in the light guide plate 50 is easily collected.
 さらに、上記導光板50は、上記第1面51から上記第2面52に向けて幅が次第に小さくなっているため、第1面51および第2面52と交差する2つの側面55,56の間隔が第1面51から第2面52にかけて次第に小さくなっている。これら側面55,56で反射した光は、側面55,56同士の間隔が一定である場合に比べて反射角が小さい。したがって、導光板において第1面と第2面を結ぶ長さを小さくしても、第2面52付近で強度が均一な光が得られる。 Further, since the width of the light guide plate 50 gradually decreases from the first surface 51 to the second surface 52, the two side surfaces 55 and 56 intersecting the first surface 51 and the second surface 52. The interval gradually decreases from the first surface 51 to the second surface 52. The light reflected by the side surfaces 55 and 56 has a smaller reflection angle than the case where the distance between the side surfaces 55 and 56 is constant. Therefore, even if the length connecting the first surface and the second surface of the light guide plate is reduced, light having a uniform intensity can be obtained in the vicinity of the second surface 52.
 さらに、上記出射領域53aが複数の出射部53aaから構成されているため、複数の出射部53aaの寸法形状および配置をそれぞれ対応する反応室24に合致させれば、光源40からの光の利用率がさらに向上する。 Further, since the emission region 53a is composed of a plurality of emission portions 53aa, if the dimensions and shapes and arrangements of the plurality of emission portions 53aa are matched with the corresponding reaction chambers 24, the utilization rate of the light from the light source 40 is achieved. Is further improved.
[変形例]
 以上、本発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。上記実施形態に係る分析装置10の各構成要素に関して、実施の形態に応じて、適宜、構成要素の省略、置換、及び追加が行われてもよい。また、分析装置10の各構成要素の形状及び大きさも、実施の形態に応じて、適宜、設定されてよい。例えば、以下の変更が可能である。
[Modification example]
Although the embodiments of the present invention have been described in detail above, the above description is merely an example of the present invention in all respects. Needless to say, various improvements and modifications can be made without departing from the scope of the present invention. With respect to each component of the analyzer 10 according to the above embodiment, the component may be omitted, replaced, or added as appropriate according to the embodiment. Further, the shape and size of each component of the analyzer 10 may be appropriately set according to the embodiment. For example, the following changes can be made.
 図5に示されるように、導光板50Aの反対側端面(第2面)52Aは、被撮影面と直交する方向、つまり導光板50Aの厚み方向Dにおいて異なる位置となる複数の部位52Aa~52Agを有する。これらは、それぞれ、図6に示されるように、異なる位置Pa~Pfに内部反射した光を集光する。そのため、これらの上方に各出射部53aa(図3)が設けられていれば、各出射部53aaを介して明るい光が各反応室24に照射される。 As shown in FIG. 5, the opposite end surface (second surface) 52A of the light guide plate 50A has a plurality of portions 52Aa to 52Ag at different positions in the direction orthogonal to the surface to be imaged, that is, in the thickness direction D of the light guide plate 50A. Has. Each of these collects internally reflected light at different positions Pa to Pf, as shown in FIG. Therefore, if each emission unit 53aa (FIG. 3) is provided above these, bright light is irradiated to each reaction chamber 24 through each emission unit 53aa.
 これら複数の部位52Aa~52Agはそれぞれ半円筒周面である。これによれば、各部位52Aa~52Agで内部反射した光はその半円筒周面の中心軸近傍に集光されやすい。したがって、これら中心軸上の被撮影面53に各出射部53aaが設けられていれば、各出射部53aaを介してさらに明るい光が反応室24(図2(a))に照射される。 These plurality of parts 52Aa to 52Ag are semi-cylindrical peripheral surfaces, respectively. According to this, the light internally reflected at each portion 52Aa to 52Ag is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface. Therefore, if each emitting portion 53aa is provided on the surface to be imaged 53 on the central axis, brighter light is irradiated to the reaction chamber 24 (FIG. 2A) through each emitting portion 53aa.
 上記実施形態では、出射部53aaは7つ設けられていたが、いくつ設けられてもよい。好ましくは、分析用チップ20の反応室24に対応している。すなわち、分析装置10は、特定の分析用チップ20に特化したものであってもよい。 In the above embodiment, seven exit portions 53aa are provided, but any number may be provided. Preferably, it corresponds to the reaction chamber 24 of the analytical chip 20. That is, the analyzer 10 may be specialized for a specific analysis chip 20.
 上記実施形態では、光源40a~40fは入射端面51から導光板50の内方に入り込むものとして説明したが、入射端面51の外側に光源40a~40fが配置されていてもよい。すなわち、「上記光源からの光が当該導光板に入射される側に位置する第1面」には、第1面51の内側に光源が配置されている形態のみならず、第1面51の外側に光源が配置されている形態も含まれる。 In the above embodiment, the light sources 40a to 40f have been described as entering the inside of the light guide plate 50 from the incident end surface 51, but the light sources 40a to 40f may be arranged outside the incident end surface 51. That is, the "first surface located on the side where the light from the light source is incident on the light guide plate" is not limited to the form in which the light source is arranged inside the first surface 51, but also the first surface 51. A form in which a light source is arranged on the outside is also included.
 上記実施形態では、光源は複数設けられていたが、光源40は1つであってもよい。また、光源は短波長のLED光源として説明したが、長波長のLED光源の波長を切り替えて使用してもよい。さらに、光源はLED光源として説明したが、導光板50出射領域53aから所望の波長の光を出射できるのであれば、いかなる光源が用いられてもよい。 In the above embodiment, a plurality of light sources are provided, but the number of light sources 40 may be one. Further, although the light source has been described as a short wavelength LED light source, the wavelength of the long wavelength LED light source may be switched and used. Further, although the light source has been described as an LED light source, any light source may be used as long as it can emit light having a desired wavelength from the light guide plate 50 emission region 53a.
 また、上記実施形態において、導光板50に代えて、後述される導光板70が用いられてもよい。 Further, in the above embodiment, the light guide plate 70 described later may be used instead of the light guide plate 50.
 図7に示されるように、導光板70は、本体71と拡散板72とを有する。図7及び図8に示されるように、本体71は、箱形状である。本体71は、例えば、前述された導光板50と同等の寸法である。すなわち、本体71の寸法は、例えば、幅方向W(第3方向の一例)の最大寸法が約35mm~約40mm、長手方向L(第1方向の一例)の寸法が約50mm~約60mm、厚み方向D(第2方向の一例)の寸法が約5mmである。 As shown in FIG. 7, the light guide plate 70 has a main body 71 and a diffusion plate 72. As shown in FIGS. 7 and 8, the main body 71 has a box shape. The main body 71 has, for example, the same dimensions as the light guide plate 50 described above. That is, as for the dimensions of the main body 71, for example, the maximum dimension in the width direction W (an example in the third direction) is about 35 mm to about 40 mm, the dimension in the longitudinal direction L (an example in the first direction) is about 50 mm to about 60 mm, and the thickness. The dimension of the direction D (an example of the second direction) is about 5 mm.
 本体71は、端面73と、側面74,75と、主面76,77と、を有する箱形状である。端面73は、側面74,75を接続する。主面76は、側面74,75を接続する。主面77は、端面73及び側面74,75を接続する。本体71は、長手方向Lの一方であって端面73と反対側に開口78を有する。開口78は、本体71の長手方向Lの一方端のすべてを開放する。開口78は、入射部の一例である。本体71は、長手方向Lの他方、すなわち端面73側であって主面76が位置する上向きに開口79を有する。開口79は、主面76の一部を開放する。開口79が出射部の一例である。 The main body 71 has a box shape having an end surface 73, side surfaces 74 and 75, and main surfaces 76 and 77. The end face 73 connects the side surfaces 74 and 75. The main surface 76 connects the side surfaces 74 and 75. The main surface 77 connects the end surface 73 and the side surfaces 74 and 75. The main body 71 has an opening 78 on one side of the longitudinal direction L and opposite to the end face 73. The opening 78 opens all of one end of the main body 71 in the longitudinal direction L. The opening 78 is an example of an incident portion. The main body 71 has an upward opening 79 on the other side of the longitudinal direction L, that is, on the end surface 73 side and where the main surface 76 is located. The opening 79 opens a part of the main surface 76. The opening 79 is an example of the exit portion.
 図7に示されるように、5つの光源80a~80eが幅方向Wに一列に並んでいる。光源80a~80eは、LED光源である。光源80a~80eは、開口78と長手方向Lにおいて対向している。開口78は、光源80a~80eの全てと対向する幅を有する。光源80a~80eから出射された光は、開口78を通じて本体71の内部空間へ進入する。 As shown in FIG. 7, five light sources 80a to 80e are arranged in a row in the width direction W. The light sources 80a to 80e are LED light sources. The light sources 80a to 80e face the opening 78 in the longitudinal direction L. The opening 78 has a width facing all of the light sources 80a to 80e. The light emitted from the light sources 80a to 80e enters the internal space of the main body 71 through the opening 78.
 図7に示されるように、開口79と拡散板72とは厚み方向Dにおいて対向している。開口79は、主面76の端面73側の一部であり、その開口面積は、分析用チップ20の全ての反応室24を含む領域よりも大きい。したがって、分析用チップ20が分析装置10に装着されると、全ての反応室24が開口79の投影領域内に位置する。なお、開口79は、主面77に位置してもよい。その場合、イメージセンサ60は、導光板50の下方に配置される。 As shown in FIG. 7, the opening 79 and the diffusion plate 72 face each other in the thickness direction D. The opening 79 is a part of the main surface 76 on the end face 73 side, and the opening area thereof is larger than the region including all the reaction chambers 24 of the analytical chip 20. Therefore, when the analytical chip 20 is mounted on the analyzer 10, all reaction chambers 24 are located within the projection area of the opening 79. The opening 79 may be located on the main surface 77. In that case, the image sensor 60 is arranged below the light guide plate 50.
 本体71のすべての内面は、光を全反射する。本体71は、例えば、白いアクリルやABSなどの反射率が比較的高い材料や、鏡面加工やメッキされた金属板からなる。また、本体71の内面に反射シートが貼付されていてもよい。 All inner surfaces of the main body 71 totally reflect light. The main body 71 is made of, for example, a material having a relatively high reflectance such as white acrylic or ABS, or a mirror-finished or plated metal plate. Further, a reflective sheet may be attached to the inner surface of the main body 71.
 本体71は、開口78から端面73に向かって幅(幅方向Wの寸法)が次第に小さくなっている。すなわち、側面74,75の最短距離が開口78から端面73に向かって次第に小さくなっている。これにより、側面74,75に対応する内面で反射した光の反射角は、側面74,75の最短距離が一定の場合の反射角よりも小さい。したがって、本体71の長手方向Lの長さを小さくしても端面73付近で強度が均一な光が得られやすい。 The width (dimension of W in the width direction) of the main body 71 gradually decreases from the opening 78 toward the end face 73. That is, the shortest distance between the side surfaces 74 and 75 gradually decreases from the opening 78 toward the end surface 73. As a result, the reflection angle of the light reflected on the inner surface corresponding to the side surfaces 74 and 75 is smaller than the reflection angle when the shortest distance between the side surfaces 74 and 75 is constant. Therefore, even if the length of the main body 71 in the longitudinal direction L is reduced, it is easy to obtain light having a uniform intensity near the end face 73.
 端面73は、本体71内で反射する光を集光するように湾曲している。例えば、端面73は半円筒周面である。これによれば、端面73の内面で反射した光は半円筒周面の中心軸近傍に集光されやすい。 The end face 73 is curved so as to collect the light reflected in the main body 71. For example, the end face 73 is a semi-cylindrical peripheral surface. According to this, the light reflected on the inner surface of the end surface 73 is likely to be focused in the vicinity of the central axis of the semi-cylindrical peripheral surface.
 拡散板72は、開口79の開口面積よりも充分に大きな面積の主面を有する平板である。拡散板72は、例えばガラスやアクリルの主面に微細な凹凸加工が施されたものである。拡散板72は、厚み方向Dに光を透過する。拡散板72を透過する光は、拡散板72の各主面においてランダムに屈折して拡散する。 The diffuser plate 72 is a flat plate having a main surface having an area sufficiently larger than the opening area of the opening 79. The diffuser plate 72 is, for example, a glass or acrylic main surface on which fine irregularities are processed. The diffuser plate 72 transmits light in the thickness direction D. The light transmitted through the diffuser plate 72 is randomly refracted and diffused on each main surface of the diffuser plate 72.
 図9に示されるように、例えば、光源80a~80eの一つから、例えば光源80bから照射された光は、本体71の開口78を通じて本体71の内部空間に進入する。光源80bから拡散した光は、端面73へ向かって直進したり、また、本体71の内部空間の各内面において反射しつつ端面73へ向かって進行したりする。端面53付近において反射した光が集まるが、必ずしも、開口79の全領域において光は均一な状態ではない。開口79を通じて本体71から出射した光は、拡散板72を透過するときに拡散されて均一な明るさとなり、各反応室24を照射する。 As shown in FIG. 9, for example, the light emitted from one of the light sources 80a to 80e, for example, from the light source 80b, enters the internal space of the main body 71 through the opening 78 of the main body 71. The light diffused from the light source 80b travels straight toward the end face 73, or travels toward the end face 73 while being reflected by each inner surface of the internal space of the main body 71. The reflected light gathers in the vicinity of the end face 53, but the light is not always in a uniform state in the entire region of the opening 79. The light emitted from the main body 71 through the opening 79 is diffused when passing through the diffuser plate 72 to have uniform brightness, and irradiates each reaction chamber 24.
 上記変形例においても、光源80a~80efは、本体71の外側に位置していても、一部が本体71の内部空間に位置していてもよい。また、光源の個数は限定されず、例えば1つであってもよい。 Also in the above modification, the light sources 80a to 80ef may be located outside the main body 71, or a part of them may be located in the internal space of the main body 71. Further, the number of light sources is not limited, and may be one, for example.
10・・・分析装置
20・・・分析用チップ
24・・・反応室
40・・・光源
50(50A)・・・導光板
51・・・第1面
52(52A)・・・第2面
52Aa~52Af・・・部位
53・・・第3面
53a・・・出射領域
53aa・・・出射部
60・・・イメージセンサ
70・・・導光板
71・・・拡散板
78・・・開口(入射部)
79・・・開口(出射部)
10 ... Analytical apparatus 20 ... Analytical chip 24 ... Reaction chamber 40 ... Light source 50 (50A) ... Light guide plate 51 ... First surface 52 (52A) ... Second surface 52Aa to 52Af ... Part 53 ... Third surface 53a ... Emission area 53aa ... Emission part 60 ... Image sensor 70 ... Light guide plate 71 ... Diffusion plate 78 ... Opening ( Incident part)
79 ... Aperture (exit part)

Claims (10)

  1.  試料と試薬との呈色反応を生じさせるための反応室が複数設けられている分析用チップを用いて上記試料を分析する分析装置であって、
     光源と、
     導光板と、
     上記複数の反応室を含む範囲を撮影するイメージセンサと、を備えており、
     上記導光板は、
      上記光源からの光が当該導光板に入射される側に位置する第1面、
      上記第1面の反対側に位置しており、前記第1面から入射されて当該導光板の内部を進行する光を反射する第2面、ならびに、
      上記第1面および上記第2面と交差しており、上記イメージセンサにより撮影される第3面を有しており、
      上記第3面に、上記反応室に面して当該導光板の内部の光を出射する出射領域が設けられている分析装置。
    An analyzer that analyzes the sample using an analytical chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent.
    Light source and
    Light guide plate and
    It is equipped with an image sensor that captures the range including the above-mentioned multiple reaction chambers.
    The light guide plate
    The first surface located on the side where the light from the light source is incident on the light guide plate,
    The second surface, which is located on the opposite side of the first surface and reflects light incident from the first surface and traveling inside the light guide plate, and
    It intersects the first surface and the second surface, and has a third surface photographed by the image sensor.
    An analyzer in which an emission region for emitting light inside the light guide plate is provided on the third surface so as to face the reaction chamber.
  2.  上記第2面は、内部反射する光を集光するように湾曲している請求項1に記載の分析装置。 The analyzer according to claim 1, wherein the second surface is curved so as to collect internally reflected light.
  3.  複数の上記光源が上記第1面に対して並列されており、上記第1面は、長手方向の中央部が外側に突出するように湾曲している請求項1または2に記載の分析装置。 The analyzer according to claim 1 or 2, wherein a plurality of the light sources are arranged in parallel with respect to the first surface, and the first surface is curved so that the central portion in the longitudinal direction projects outward.
  4.  上記導光板は、上記第1面から上記第2面に向けて幅が次第に小さくなっている請求項1から3のいずれかに記載の分析装置。 The analyzer according to any one of claims 1 to 3, wherein the light guide plate has a width gradually decreasing from the first surface to the second surface.
  5.  上記出射領域が複数の出射部から構成されている請求項1から4のいずれかに記載の分析装置。 The analyzer according to any one of claims 1 to 4, wherein the emission region is composed of a plurality of emission units.
  6.  上記第2面は、上記第3面と直交する方向において異なる位置となる複数の部位を有し、
     上記複数の部位のそれぞれは、対応する前記出射部に応じて内部反射する光を集光するように湾曲している請求項5に記載の分析装置。
    The second surface has a plurality of portions at different positions in a direction orthogonal to the third surface.
    The analyzer according to claim 5, wherein each of the plurality of portions is curved so as to collect light internally reflected according to the corresponding emitting portion.
  7.  試料と試薬との呈色反応を生じさせるための反応室が複数設けられている分析用チップを用いて上記試料を分析する分析装置であって、
     光源と、
     導光板と、
     上記複数の反応室を含む範囲を撮影するイメージセンサと、を備えており、
     上記導光板は、
      上記光源と対向する入射部と、
      上記入射部から入射した光を反射する内面と、
      上記入射部と上記光源とが対向する第1方向と交差する第2方向を向く出射部と、
      上記出射部と第2方向に対向する拡散板と、を有しており、
      上記反応室は上記出射部と第2方向に対向する分析装置。
    An analyzer that analyzes the sample using an analytical chip provided with a plurality of reaction chambers for causing a color reaction between the sample and the reagent.
    Light source and
    Light guide plate and
    It is equipped with an image sensor that captures the range including the above-mentioned multiple reaction chambers.
    The light guide plate
    The incident part facing the light source and
    The inner surface that reflects the light incident from the incident part and
    An exit portion facing the second direction where the incident portion and the light source intersect the first direction facing each other,
    It has the above-mentioned emitting portion and a diffusion plate facing in the second direction.
    The reaction chamber is an analyzer that faces the exit portion in the second direction.
  8.  複数の上記光源が上記入射部に対して並列する請求項7に記載の分析装置。 The analyzer according to claim 7, wherein the plurality of light sources are arranged in parallel with respect to the incident portion.
  9.  上記内面は、上記入射部から上記出射部に向けて、上記第1方向及び上記第2方向と交差する第3方向に対向する一対の面の最短距離が次第に小さくなっている請求項7又は8に記載の分析装置。 Claim 7 or 8 in which the shortest distance between the pair of surfaces facing the first direction and the third direction intersecting the second direction is gradually reduced from the incident portion to the exit portion. The analyzer described in.
  10.  上記導光板は箱形状であり、
     上記入射部及び上記出射部は、開口である請求項7から9のいずれかに記載の分析装置。
    The light guide plate is box-shaped and has a box shape.
    The analyzer according to any one of claims 7 to 9, wherein the incident portion and the emitting portion are openings.
PCT/JP2020/037112 2019-10-03 2020-09-30 Analysis apparatus WO2021065996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551361A JPWO2021065996A1 (en) 2019-10-03 2020-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-183033 2019-10-03
JP2019183033 2019-10-03

Publications (1)

Publication Number Publication Date
WO2021065996A1 true WO2021065996A1 (en) 2021-04-08

Family

ID=75336976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037112 WO2021065996A1 (en) 2019-10-03 2020-09-30 Analysis apparatus

Country Status (2)

Country Link
JP (1) JPWO2021065996A1 (en)
WO (1) WO2021065996A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502726A (en) * 1988-02-14 1991-06-20 ルーコズ ヴァルタ integrated optical interferometry
JP2011059095A (en) * 2009-08-12 2011-03-24 Sony Corp Light detection device
JP2011141270A (en) * 2009-12-11 2011-07-21 Arkray Inc Light source unit and analysis device
JP2012517019A (en) * 2009-01-30 2012-07-26 クラウディオ・オリベイラ・エガロン Side-illuminated multipoint multi-parameter optical fiber sensor
JP2012519311A (en) * 2009-03-02 2012-08-23 エムバイオ ダイアグノスティクス,インコーポレイティド Waveguide with integrated lens
JP2014094122A (en) * 2012-11-09 2014-05-22 Konica Minolta Inc Light transmission device, and optical element
US20140319378A1 (en) * 2011-12-21 2014-10-30 Imec Optical fluorescence-based chemical and biochemical sensors and methods for fabricating such sensors
JP2017096677A (en) * 2015-11-19 2017-06-01 国立大学法人九州大学 Light guide path built-in chip, light guide member, and light guide method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502726A (en) * 1988-02-14 1991-06-20 ルーコズ ヴァルタ integrated optical interferometry
JP2012517019A (en) * 2009-01-30 2012-07-26 クラウディオ・オリベイラ・エガロン Side-illuminated multipoint multi-parameter optical fiber sensor
JP2012519311A (en) * 2009-03-02 2012-08-23 エムバイオ ダイアグノスティクス,インコーポレイティド Waveguide with integrated lens
JP2011059095A (en) * 2009-08-12 2011-03-24 Sony Corp Light detection device
JP2011141270A (en) * 2009-12-11 2011-07-21 Arkray Inc Light source unit and analysis device
US20140319378A1 (en) * 2011-12-21 2014-10-30 Imec Optical fluorescence-based chemical and biochemical sensors and methods for fabricating such sensors
JP2014094122A (en) * 2012-11-09 2014-05-22 Konica Minolta Inc Light transmission device, and optical element
JP2017096677A (en) * 2015-11-19 2017-06-01 国立大学法人九州大学 Light guide path built-in chip, light guide member, and light guide method

Also Published As

Publication number Publication date
JPWO2021065996A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CN109804238B (en) Optical inspection device
US8017079B2 (en) Apparatus for and method of measuring bio-chips using uniform total internal reflection illumination
WO2009081969A1 (en) Biological image acquisition device
US20150009320A1 (en) Visually inspecting optical fibers
JPH11511561A (en) Fluorometer
US20090310213A1 (en) Microscope
CN105445850B (en) Light guide and light fixture including light guide
JP3472750B2 (en) Surface inspection equipment
JPS59226850A (en) Device and method of measuring liquid sample
EP3521890A1 (en) Observation apparatus
US20140357948A1 (en) Illumination optical system for endscope and endoscope
WO2021065996A1 (en) Analysis apparatus
WO2004051317A1 (en) Light sensor, and detecting mechanism and light-measuring mechanism in analyzing device
US7684042B2 (en) Device having an optical part for analyzing micro particles
JP2008004284A (en) Lighting system and object surface examination device using same
CN112912794A (en) Lighting device
KR20200041079A (en) Apparatus for detecting plankton using depth of focus and method thereof
JP4148761B2 (en) Test tool detection mechanism and analyzer equipped with this detection mechanism
US20160018631A1 (en) High versatile combinable microscope base and microscope having the same
KR100534030B1 (en) 2-dimensional bar code reading device
EP1028312A1 (en) Optical analysis device
CN112986236A (en) Apparatus and method for determining the position and/or extent of a droplet
JP6823484B2 (en) Image collection device, coin-like medium processing machine and image collection method
KR100942438B1 (en) A light source device for micro-plate
JP2012002748A (en) Bio-device photographing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873302

Country of ref document: EP

Kind code of ref document: A1