WO2021065937A1 - 機械学習装置 - Google Patents
機械学習装置 Download PDFInfo
- Publication number
- WO2021065937A1 WO2021065937A1 PCT/JP2020/036985 JP2020036985W WO2021065937A1 WO 2021065937 A1 WO2021065937 A1 WO 2021065937A1 JP 2020036985 W JP2020036985 W JP 2020036985W WO 2021065937 A1 WO2021065937 A1 WO 2021065937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning
- image
- database
- classifier
- machine learning
- Prior art date
Links
- 238000010801 machine learning Methods 0.000 title claims abstract description 106
- 238000011156 evaluation Methods 0.000 claims abstract description 60
- 238000012545 processing Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 30
- 238000003745 diagnosis Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 12
- 238000002059 diagnostic imaging Methods 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000004171 remote diagnosis Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 3
- 238000012790 confirmation Methods 0.000 description 74
- 230000002159 abnormal effect Effects 0.000 description 39
- 230000006870 function Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 11
- 230000006872 improvement Effects 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/285—Selection of pattern recognition techniques, e.g. of classifiers in a multi-classifier system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Definitions
- the present invention relates to machine learning, and is applied to, for example, an image processing technique using machine learning for detecting a specific object (for example, cancer cells or bubbles on the liquid surface) contained in an captured image. It is possible.
- a specific object for example, cancer cells or bubbles on the liquid surface
- Patent Document 1 In Patent Document 1, a plurality of learning image data groups are set, machine learning is performed, and neural network parameters are calculated.
- the image group may include an image that does not contribute to the improvement of the identification accuracy of the classifier. Yes, the identification accuracy of the classifier does not necessarily improve. Further, in Patent Document 1, it is not possible to create a learning image database that can continuously improve the identification accuracy of the classifier.
- the machine learning device of one aspect of the present invention includes a processor that processes a data sample and a storage device that stores the result of the processing.
- the processor creates a plurality of classifiers from the plurality of learning databases, stores a plurality of learning data samples in each of the plurality of learning databases, creates an evaluation result of the discrimination performance of each of the plurality of discriminators, and based on the evaluation result.
- One learning database in the plurality of learning databases and a discriminator generated from the one learning database are determined as a learning database and a discriminator to be used.
- an appropriate learning database and classifier can be created and used.
- machine learning is performed using each image in the learning image database to create a plurality of classifiers, and the created plurality of classifiers are evaluated to obtain evaluation results, and a plurality of evaluation results are determined.
- the classifier and the learning image database can be updated.
- a machine learning device and a method thereof are provided.
- the embodiment of the present invention may be implemented by software running on a general-purpose computer, or may be implemented by dedicated hardware or a combination of software and hardware.
- each process according to the embodiment of the present invention will be described with "each processing unit as a program (for example, learning unit, etc.)" as the subject (acting subject), but the program is executed by a processor (CPU, etc.). Since the processing defined in the above is performed while using the memory and the communication port (communication control device), the explanation may be based on the processor.
- FIG. 1 is a block diagram showing a functional configuration of the machine learning device according to the first embodiment.
- the machine learning device 1 includes an input unit 10, a learning unit 11, an aptitude evaluation unit 12, an update determination unit 13, a drawing unit 14, a control unit 91, a learning image database (DB) (confirmation) 100, and learning.
- the image DB (confirmation + before confirmation) 101, the evaluation image 102, and the memory 90 are included.
- the machine learning device 1 may be mounted in an image acquisition device such as an image diagnosis support device, or is connected to the image acquisition device via a network as described later (third to fourth embodiments). It may be implemented in the server.
- the input unit 10, the learning unit 11, the aptitude evaluation unit 12, the update determination unit 13, and the drawing unit 14 in the machine learning device 1 may be realized by a program or a processor that executes the program, or by a hardware module. You may.
- Image data is input to the input unit 10.
- the input unit 10 is a encoded static image in JPG, Jpeg2000, PNG, BMP format, etc., which is imaged at predetermined time intervals by an image pickup means such as a camera built in an image acquisition device (not shown in FIG. 1). Image data or the like may be acquired as an input image.
- the input unit 10 is a Motion JPEG, MPEG, H. Still image data of frames at predetermined intervals may be extracted from moving image data in 264, HD / SDI format, etc., and the image may be acquired as an input image.
- the input unit 10 may acquire an input image from the imaging means via a bus, a network, or the like.
- the input unit 10 may acquire an image already stored in the removable recording medium as an input image.
- the image input from the input unit 10 is stored in the learning image DB (confirmation + before confirmation) 101 as a learning image (before confirmation).
- the learning image DB (confirmation) 100 stores a plurality of combinations of the learning image, the confirmed image, and the correct answer label.
- the correct label corresponding to each image is fixed.
- the learning image (before confirmation) is composed of a plurality of combinations of a learning image, an image before confirmation, and a correct label.
- the correct label for each image can be changed
- the learning unit 11 identifies an image of a specific object in the input image from the specific object, for example, an image of a normal tissue or cell from a normal tissue or cell, and an input image. Machine learning is performed so that images of abnormal tissues and cells inside can be distinguished from abnormal tissues and cells.
- the learning unit 11 creates a classifier CA (parameters necessary for discrimination (filter coefficient, offset value, etc.)) from the learning image DB (fixed) 100.
- the learning unit 11 creates the classifier CB from the learning image DB (confirmation + before confirmation) 101 in which the learning image (before confirmation) input from the input unit 10 is added to the learning image DB (confirmation) 100.
- the aptitude evaluation unit 12 calculates the discrimination result and the discrimination value of the classifiers CA and CB using the evaluation image 102.
- the update determination unit 13 controls whether or not the discriminator CA and the learning image DB (confirmation) 100 can be updated by using the discrimination result and the discrimination value of the discriminator CA and the CB obtained by the aptitude evaluation unit 12. Further, the update determination unit 13 determines the number of updates of the Ave dr1 and Ave dr2 , each M drN , the discriminator CA and the learning image DB (confirmed) determined by the update determination unit 13, which will be described later by the aptitude evaluation unit 12. Information such as the updated transition of Ave dr1 is saved in the memory 90.
- an output device such as a display or a printer.
- the control unit 91 is realized by, for example, a processor that executes a program, and is connected to each element in the machine learning device 1.
- Each component of the machine learning device 1 operates as described above autonomously or according to the instruction of the control unit 91.
- the learning unit 11 performs machine learning, generates a classifier CA from the learning image DB (confirmation) 100, and inputs the input unit 10 to the learning image DB (confirmation) 100.
- the classifier CB is created from the learning image DB (confirmation + before confirmation) 101 to which the learning image (before confirmation) input from is added.
- the aptitude evaluation unit 12 calculates the discrimination result and the discrimination value of the classifiers CA and CB using the evaluation image 102.
- the update determination unit 13 controls whether or not the discriminator CA and the learning image DB (confirmation) 100 can be updated by using the discrimination result and the discrimination value of the discriminator CA and the CB obtained by the aptitude evaluation unit 12.
- FIG. 2A is a diagram showing a hardware configuration example of the machine learning device 1 according to the first embodiment.
- the machine learning device 1 includes a CPU (processor) 201 that executes various programs, a memory 202 (main storage device) that stores various programs, and an auxiliary storage device 203 (corresponding to memory 90) that stores various data.
- the machine learning device 1 further includes an output device 204 for outputting an identification result and an updateability result of the classifier and the learning image DB (confirmation) 100, and an input device 205 for inputting an instruction or an image by the user.
- a communication device 206 for communicating with other devices, and the like. These components in the machine learning device 1 are connected to each other by a bus 207.
- the CPU 201 reads various programs from the memory 202 and executes them as needed.
- the memory 202 stores an input unit 10, a learning unit 11, an aptitude evaluation unit 12, an update determination unit 13, and a drawing unit 14 as programs.
- the auxiliary storage device 203 was determined by the learning image (before determination), the parameters of the classifiers CA and CB generated by the learning unit 11, the identification result and the identification value generated by the aptitude evaluation unit 12, and the update determination unit 13. Stores the update result.
- the auxiliary storage device 203 further stores the learning image DB (confirmation) 100, the learning image DB (confirmation + before confirmation) 101, the position information for drawing the detection frame generated by the drawing unit 14, and the like.
- the memory 202, the auxiliary storage device 203, or a combination thereof is a storage device.
- the output device 204 includes devices such as a display, a printer, and a speaker.
- the output device 204 is a display device, and displays the data generated by the drawing unit 14 on the screen.
- the input device 205 includes devices such as a keyboard, a mouse, and a microphone. An instruction by the user (including a determination of input of the learning image (before confirmation)) is input to the machine learning device 1 by the input device 205.
- the communication device 206 is not essential in the machine learning device 1, and the machine learning device 1 does not have to hold the communication device 206 when the communication device is included in the personal computer or the like connected to the image acquisition device.
- the communication device 206 receives, for example, data (including an image) transmitted from another device (for example, a server) connected via a network, and stores the data (including an image) in the auxiliary storage device 203.
- the machine learning device of the present embodiment performs machine learning using images in the learning image database to create a plurality of classifiers, and further evaluates the created plurality of classifiers to obtain an evaluation result.
- the machine learning device determines the evaluation result and controls whether or not the classifier and the learning image database can be updated, so that the classifier that can discriminate objects (for example, tissues, cells, etc.) in the image with higher accuracy, and ,
- a learning image database composed of images that contributes to the continuous improvement of the identification accuracy of the classifier can be created.
- FIG. 2B shows a configuration example of the learning unit 11.
- the learning unit 11 includes a feature extraction unit 111, a local identification unit 112, and an overall identification unit 113.
- the feature extraction unit 111 obtains the feature amount of the input image.
- FIG. 3 shows an example of obtaining a feature amount.
- the CNN in FIG. 3 represents a Convolutional Neural Network.
- the feature extraction unit 111 obtains the feature amount FAi of the object (for example, tissue, cell, etc.) of the input image Ai from the input image Ai by using the feature extractor FEA that performs the calculation of the formula 1.
- the learning unit 11 uses machine learning to filter coefficients so that the image of each object can be identified as each object (normal tissue or normal cell is normal tissue or normal cell, or abnormal tissue or abnormal cell is abnormal tissue or abnormal cell, etc.).
- pj is a pixel value
- bi is an offset value
- m is the number of filter coefficients
- h is a non-linear function.
- the feature extraction unit 111 arbitrarily obtains the calculation result of each filter 42 from the upper left to the lower right of the target image (for example, a pathological tissue image) 41 by using Equation 1.
- the feature amount fi of the filter i of the above is obtained.
- the matrix of the feature amount fi obtained by the feature extractor A is used as the feature amount FAi of the input image Ai.
- the method of creating the feature extractor FEA will be described later.
- the local identification unit 112 uses the feature amount FAi of the feature extractor FEA obtained by the feature extraction unit 111 and the nonlinear function NF (for example, the sigmoid function) according to the equation 2 for each local region. Calculate the value of object-likeness (for example, lesion-likeness). Based on the calculated value, the local identification unit 112 determines whether or not the object in the input image Ai is an object to be detected (for example, normal cells, abnormal cells, etc.).
- the object-likeness for example, lesion-likeness
- LS is a local identification value consisting of a three-dimensional array of class, height, and width
- FAi is a feature quantity consisting of a three-dimensional array of feature quantity numbers, height, and width obtained by the feature extraction unit 111.
- W is a filter for calculating a local identification value consisting of a four-dimensional array of classes, feature quantity numbers, heights, and widths
- B is an offset value for calculating local identification values consisting of a one-dimensional array of classes.
- c is the index of the class
- y is the vertical index of the feature
- x is the horizontal index of the feature
- fy is the vertical index of the filter
- fx is the horizontal index of the filter
- j is the index of the filter. Shown.
- the local identification value is calculated using the Convolution process, but the calculation method of the local identification value is not limited to this.
- the Convolution process or the nonlinear function may be applied a plurality of times to obtain the feature, or the feature amount at each coordinate may be input to another identification method such as Random forest or SVM to calculate the local identification value.
- the overall identification unit 113 obtains the basic identification value BS by using the local identification value LS obtained by the local identification unit 112 and a non-linear function (for example, a sigmoid function or the like).
- the overall identification unit 113 uses the basic identification value BS as a calculation result R indicating the value of the object-likeness (for example, lesion-likeness) of each object image in the input image, and determines whether the object in the input image Ai is an object to be detected. (For example, normal cells, abnormal cells, etc.) is determined (S1).
- the basic identification value BS is calculated using the global identification value GS of Equation 3 and Equation 4.
- GS is a global identification value consisting of a one-dimensional array of classes
- FAi is a feature quantity consisting of a three-dimensional array of feature quantities obtained by the feature extraction unit 111
- W is a class and feature.
- a filter for calculating a global identification value consisting of a four-dimensional array of quantity numbers, heights, and widths is shown.
- B is an offset value for calculating the global identification value consisting of a one-dimensional array of classes
- c is an index of the class.
- y is the vertical index of the feature
- x is the horizontal index of the feature
- fy is the vertical index of the filter
- fx is the horizontal index of the filter
- j is the index of the filter.
- Label of Equation 4 indicates a teacher label (correct answer label) for each image consisting of a one-dimensional array of classes.
- the learning unit 11 which will be described later, obtains the coefficient and offset value B of the updated filter W of the equation 3 by machine learning.
- NLL indicates a loss function, for example, a Negative log likelihood.
- Equation 3 calculates the global identification value using Convolution processing and horizontal / vertical averaging processing, but the calculation method of the global identification value is not limited to this.
- the averaging processing in the horizontal and vertical directions may be performed, or the feature amount at each coordinate is input to other identification methods such as Random forest and SVM.
- the average value in the horizontal and vertical directions of the values may be calculated. Further, the sum processing or the like may be used as well as the averaging processing in the horizontal and vertical directions.
- the overall identification unit 113 uses the local identification value to identify each object in the input image as each object (for example, normal tissue or normal cell as normal tissue or normal cell, abnormal tissue or abnormal cell as abnormal tissue). And abnormal cells), the feature amount of each object is learned using the existing machine learning technique, and the coefficient of the filter W and the offset value B are obtained.
- Convolutional Neural Network may be used as a machine learning technique.
- the learning unit 11 calculates the feature amount FAi of the input image Ai by the formula 1 using the input image Ai (for example, a pathological image) by prior machine learning.
- the learning unit 11 obtains the local identification value LS from the feature amount FAi by the equation 2.
- the learning unit 11 uses the basic identification value BS obtained from the local identification value LS to display an image of each target object on each target object (for example, abnormal tissue or abnormal cell, abnormal tissue or abnormal cell, normal tissue or normal cell).
- Each parameter from formula 1 to formula 3 is calculated so as to determine (normal tissue or normal cell).
- the learning unit 11 repeatedly performs the processes of the feature extraction unit 111, the local identification unit 112, and the overall identification unit 113 using the plurality of learning images of the learning image DB (determination) 100, and the processing of equations 1, 2 and Each parameter shown in Equation 3 (filter coefficient wj, filter W coefficient, offset values bi and B, etc.) is obtained.
- the learning unit 11 creates a classifier CA including a feature extractor that calculates the feature amount of the input image from the input image, a local classifier that obtains the local discrimination value, and a global classifier that obtains the global discrimination value.
- the learning unit 11 uses the plurality of learning images of the learning image DB (confirmation + before confirmation) 101, and each parameter (filter coefficient wj, filter W coefficient, offset) shown in Equation 1, Equation 2 and Equation 3 is used. The values bi and B, etc.) are obtained, and the classifier CB is created.
- the learning unit 11 stores the obtained parameters (filter coefficient wj, filter W coefficient, offset values bi and B, etc.) in the memory 90.
- the learning unit 11 adjusts the balance of the number of images of the identification type of each of the learning image DB (confirmation) 100 and the learning image DB (confirmation + before confirmation) 101 to create the classifiers CA and CB. For example, the learning unit 11 adjusts the number of images in the learning image DB (confirmation) 100 and the learning image DB (confirmation + before confirmation) 101 so that the difference in the number of images between the identification types becomes smaller than a predetermined threshold. .. As a result, a more appropriate evaluation can be performed. (Ii) Aptitude evaluation unit 12
- the aptitude evaluation unit 12 uses the evaluation image 102 and, with respect to the classifier CA and CB created by the learning unit 11 according to the equation 5, Ave drX (Ave dr1 ) of the classifier CA and Ave drX (Ave dr2 ) of the classifier CB. ) Is obtained to evaluate these classifiers.
- N represents the number of types to identify.
- the aptitude evaluation unit 12 can use a value different from Ave drX, and may use, for example, the maximum value of M drN.
- the update determination unit 13 does not update the classifier CA and the learning image DB (confirmation), and the image of the learning image DB (before confirmation) is displayed.
- the order is changed, for example, randomly.
- the learning unit 11 performs re-learning using the learning image DB (before determination) in which the order is changed.
- the update determination unit 13 relearns some images in the learning image DB (before confirmation) according to the user's specification via the input device or automatically. Change the correct answer label of. For example, the update determination unit 13 may determine whether or not the correct answer label has been changed for each mini-batch of images.
- the update determination unit 13 updates the number of updates of Ave dr1 and Ave dr2 obtained by the aptitude evaluation unit 12, each M drN , the classifier CA and the learning image DB (confirmed) 100 determined by the update determination unit 13, and the updated Ave dr1.
- the transition of the above is recorded in the memory 90 or the log file.
- the drawing unit 14 uses the GUI (graphical user interface) shown in FIG. 11 to obtain Ave dr1 and Ave dr2 obtained by the aptitude evaluation unit 12, each M drN , and a classifier CA determined by the update determination unit 13.
- the number of updates of the learning image DB (confirmed) and the transition of the updated Ave dr1 are displayed.
- Ave dr1 is displayed as 0.71
- Ave dr2 is displayed as 0.81
- M dr1 is displayed as 0.80
- M dr2 is displayed as 0.82
- the number of updates is displayed as 10.
- the drawing unit 14 displays the identification result of the unknown image input from the input unit 10 by each classifier.
- a specific part in the image is determined to be an object to be detected (for example, abnormal tissue or abnormal cell), as shown in FIG. 8, the drawing unit 14 is a portion of the object to be detected (for example, abnormal tissue).
- the detection frame 82 may be drawn in the input target image 81 in order to indicate (such as a location where abnormal cells are suspected).
- the drawing unit 14 may display the input target image 81 as it is without drawing on the input target image 81 in which the detection frame 82 is input. ..
- the drawing unit 14 displays the result (for example, tumor) 83 of the determined object-likeness.
- the drawing unit 14 is not an indispensable configuration for the machine learning device 1, and when the image diagnosis support device includes the drawing unit, the machine learning device 1 does not have to hold the drawing unit 14.
- FIG. 9 is a flowchart for explaining the operation of the learning unit 11 of the machine learning device 1 according to the first embodiment.
- the learning unit 11 will be described as the operating subject, but it may be read as if the CPU 201 is the operating subject and the CPU 201 executes each processing unit as a program.
- Step 901 The input unit 10 receives the learning input image Ai and outputs the input image Ai to the learning unit 11.
- Step 902 The learning unit 11 obtains a feature amount of an object (for example, a tissue, a cell, etc.) in the input image Ai by using a filter according to the above formula 1 by machine learning, and creates a feature extractor FEA.
- the learning unit 11 obtains the filter coefficient wj and the offset value bi for the feature amount FAi.
- Step 903 The learning unit 11 obtains the local identification value LS from the feature amount FAi by machine learning by the equation 2, calculates the value of the object-likeness (for example, the lesion-likeness, etc.) for each local region, and the object in the input image Ai is Each parameter (coefficient of the filter W, offset value B, etc.) for obtaining the local identification value is obtained so as to determine whether or not the object is to be detected (for example, normal cell, abnormal cell, etc.).
- Step 904 The learning unit 11 uses the basic identification value BS obtained from the local identification value LS by machine learning to display an image of each target object on each target object (for example, abnormal tissue or abnormal cell as abnormal tissue, abnormal cell, or normal tissue). And each parameter of the formula 3 (coefficient of the filter W, offset value B, etc.) is obtained so as to determine that the normal cell is a normal tissue or a normal cell.
- each parameter of the formula 3 coefficient of the filter W, offset value B, etc.
- Equation 1 Equation 2
- Equation 3 filter coefficient wj, filter W coefficient, offset value bi, B, etc.
- FIG. 10 is a flowchart for explaining the operation of the machine learning device 1 according to the present embodiment.
- each processing unit input unit 10, learning unit 11, etc.
- input unit 10, learning unit 11, etc. is described as an operating subject, but it may be read as if the CPU 201 is the operating subject and the CPU 201 executes each processing unit as a program.
- Step 1001 The input unit 10 outputs the input image Ai of the learning image DB (confirmation + before confirmation) to the learning unit 11.
- Step 1002 The learning unit 11 reads the parameters of Equations 1, 2 and 3 relating to the classifier CA from the memory 90. The learning unit 11 further performs machine learning using the learning image DB (confirmation + before confirmation) 101, and calculates each parameter of Equation 1, Equation 2 and Equation 3 relating to the classifier CB.
- Step 1003 The aptitude evaluation unit 12 calculates Ave dr1 of the discriminator CA and Ave dr2 of the discriminator CB from the equation 5 using each parameter of the discriminator CA and the CB and the evaluation image.
- Step 1004 The update determination unit 13 compares the calculated Ave dr1 and Ave dr2 . When Ave dr2 > Ave dr1 , the update determination unit 13 shifts to step 1005. On the other hand, when the calculation result Ave dr2 ⁇ Ave dr1 , the update determination unit 13 shifts to step 1006. (V) Step 1005 When Ave dr2 > TH1, the update determination unit 13 shifts to step 1007. On the other hand, when Ave dr2 ⁇ TH1, the update determination unit 13 shifts to step 1008.
- Step 1006 When Ave dr2 > TH1, the update determination unit 13 shifts to step 1008. On the other hand, when Ave dr2 ⁇ TH1, the update determination unit 13 shifts to step 1009. (Vii) Step 1007 The update determination unit 13 updates the classifier CA and the learning image DB (confirmation) 100.
- Step 1008 The update determination unit 13 changes the order of the images in the learning image DB (confirmation + before confirmation).
- (Ix) Step 1009 The update determination unit 13 replaces the correct answer label of the learning image DB (before confirmation).
- Step 1010 The update determination unit 13 checks whether the update determination has been completed for all the images in the learning image DB (confirmation + before confirmation), and if so, proceeds to step 1011. On the other hand, if it is not completed, the update determination unit 13 returns to step 1002 and repeats steps 1002 to 1009. (Xi) Step 1011 The update determination unit 13 stores the information of the classifier CA in the memory 90 (corresponding to the auxiliary storage device 203).
- the machine learning device automatically determines the image that contributes to the improvement of the identification accuracy of the classifier even if the learning image database contains an image that does not contribute to the improvement of the identification accuracy of the classifier. , Control whether the classifier and the learning image database can be updated according to the judgment result. More specifically, the machine learning device performs machine learning using each image of a plurality of learning image databases to create a plurality of classifiers, and further evaluates the created plurality of classifiers to evaluate the evaluation results. Ask. The machine learning device determines a plurality of evaluation results, controls whether or not the classifier and the training image database can be updated, and determines the learning image database and the classifier to be used.
- a learning image database composed of a classifier capable of discriminating an object (for example, a tissue, a cell, etc.) in an image with high accuracy and an image that contributes to continuous improvement of the classifying accuracy of the classifier is created. Is possible.
- the input learning image contains an image that does not contribute to the improvement of the identification accuracy of the classifier, it is possible to create a learning image database by excluding those images. Even if the input learning image does not contribute to the improvement of the identification accuracy of the classifier at that time, it can be used as an image that contributes to the improvement of the identification accuracy of the classifier by changing the order of the images to be learned and learning again. It becomes possible to do.
- the machine learning device 1 according to the second embodiment shown in FIG. 12 includes many components similar to those in FIG. 1 of the first embodiment, but the learning image DB of the first embodiment (confirmation + before confirmation). Instead of 101, the learning image DB (before confirmation) 201 is included, and the update determination unit 23 is included.
- the learning image DB (before confirmation) 201 is included, and the update determination unit 23 is included.
- the machine learning device 1 of the present embodiment performs machine learning using each image of the learning image database to create a plurality of classifiers, and further evaluates the created plurality of classifiers to obtain an evaluation result.
- the machine learning device 1 determines a plurality of evaluation results and controls whether or not the classifier and the learning image database can be updated or created.
- a classifier suitable for each facility or each time period which can discriminate objects (for example, tissues, cells, etc.) in the image with high accuracy, and an image that contributes to continuous improvement of the discriminating accuracy of the classifier. You can create a structured learning image database.
- the learning image DB (before confirmation) 201 stores the image input from the input unit 10, and does not store other images.
- the learning unit 11 creates the classifier CA from the learning image DB (confirmation) 100, and creates the classifier CB from the learning image DB (before confirmation) 201.
- the aptitude evaluation unit 12 evaluates the discriminator by obtaining Ave dr1 of the discriminator CA and Ave dr2 of the discriminator CB using the evaluation image.
- the update determination unit 23 compares a plurality of Ave drX obtained by the aptitude evaluation unit 12, and determines whether or not the classifiers CA, CB, the learning image DB (confirmed) 100, and the learning image DB (before confirmation) 201 can be updated or created. Control.
- the update determination unit 23 saves the classifier CB and the learning image DB (before confirmation) as a set with the evaluation image, separately from the classifier CA and the learning image DB (confirmation).
- the classifier CA created from the previously collected learning image DB (confirmation) is, for example, the classifier CB created from the learning image DB (before confirmation) collected at another facility or at another time. It is more suitable for identifying evaluation images. Therefore, the update determination unit 23 stores the classifier CA and the learning image DB (confirmation) as a set with the evaluation image.
- the hardware configuration example of the machine learning device 1 according to the present embodiment has the same configuration as that of FIG. 2, but unlike the machine learning device 1 according to the first embodiment, the memory 202 includes the update determination unit 23.
- the auxiliary storage device 203 of the machine learning device 1 includes a calculation result Ave drX obtained by the aptitude evaluation unit 12, classifiers CA and CB determined by the update determination unit 23, a learning image DB (confirmation) 100, and a learning image DB (confirmation). Previous) 201, the evaluation image, the parameters of Equation 1, Equation 2, and Equation 3 generated by the learning unit 11 are stored.
- FIG. 13 is a flowchart for explaining the operation of the machine learning device 1 according to the present embodiment.
- each processing unit input unit 10, learning unit 11, etc.
- input unit 10 input unit 10
- learning unit 11 learning unit 11
- FIG. 13 is a flowchart for explaining the operation of the machine learning device 1 according to the present embodiment.
- each processing unit input unit 10, learning unit 11, etc.
- input unit 10 input unit 10
- learning unit 11 learning unit 11
- FIG. 13 is a flowchart for explaining the operation of the machine learning device 1 according to the present embodiment.
- each processing unit input unit 10, learning unit 11, etc.
- the CPU 201 executes each processing unit as a program.
- Step 1301 The input unit 10 outputs the input image Ai of the learning image DB (before confirmation) 201 to the learning unit 11.
- Step 1302 The learning unit 11 reads the parameters of Equations 1, 2 and 3 relating to the classifier CA from the memory 90. Further, machine learning is performed using the learning image DB (before determination) 201, and each parameter of Equation 1, Equation 2 and Equation 3 relating to the classifier CB is calculated.
- Step 1303 The aptitude evaluation unit 12 calculates Ave dr1 of the discriminator CA and Ave dr2 of the discriminator CB from the equation 5 using each parameter of the discriminator CA and the CB and the evaluation image.
- Step 1304 The update determination unit 13 compares the calculated Ave dr1 and Ave dr2 . When Ave dr2 > Ave dr1 , the update determination unit 13 shifts to step 1305. On the other hand, when Ave dr2 ⁇ Ave dr1 , the update determination unit 13 shifts to step 1306.
- the update determination unit 13 stores the classifier CB, the learning image DB (before determination) 201, the evaluation image and the calculation result (Ave dr2 , Ave dr1 ) as a set in the memory 90 (corresponding to the auxiliary storage device 203).
- the update determination unit 13 stores the classifier CA, the learning image DB (confirmation) 100, the evaluation image, and the calculation results (Ave dr2 , Ave dr1 ) as a set in the memory 90 (corresponding to the auxiliary storage device 203).
- Step 1307 The update determination unit 13 checks whether the update determination has been completed for all the images in the learning image DB (before confirmation) 201, and if so, ends the process. On the other hand, if it is not completed, the update determination unit 13 returns to step 1302 and repeats steps 1302 to 1306.
- machine learning is performed using each image of a plurality of learning image databases to create a plurality of classifiers, and further, the created plurality of classifiers are evaluated to obtain an evaluation result.
- the second embodiment determines the learning image database and the classifier to be used by determining a plurality of evaluation results and controlling the updateability or creation of the classifier and the learning image database. This makes it possible to obtain a classifier and a learning image database that can accurately identify objects (for example, tissues, cells, etc.) in images for each facility.
- the machine learning device 1 holds a plurality of learning image DBs (confirmed) 100, and executes the above processing between each of the plurality of learning image DBs (confirmed) 100 and the learning image DB (before confirmation) 201. May be good. Thereby, a more suitable learning image DB and a classifier can be obtained.
- FIG. 14 is a functional block diagram showing the configuration of the remote diagnosis support system 1400 according to the third embodiment.
- the remote diagnosis support system 1400 includes a server (computer) 1403 and an image acquisition device 1405.
- the image acquisition device 1405 is, for example, a device such as a personal computer equipped with a virtual slide device or a camera, and is an image pickup unit 1401 for capturing a new image and a display unit for displaying a determination result transmitted from the server 1403. 1404 and.
- the image acquisition device 1405 includes a communication device that transmits image data to the server 1403 and receives the data transmitted from the server 1403.
- the server 1403 has an image diagnosis support device 5 that performs image processing on the image data transmitted from the image acquisition device 1405 by using the machine learning device 1 according to the first embodiment or the second embodiment, and an image. It includes a storage unit 1402 for storing the identification result output from the diagnosis support device 5. Although not shown, the server 1403 includes a communication device that receives the image data transmitted from the image acquisition device 1405 and transmits the determination result data to the image acquisition device 1405.
- the image diagnosis support device 5 uses the classifier (current classifier) obtained by the machine learning device 1 to detect an object (for example, a tissue, a cell, etc.) in an image generated by the imaging unit 1401. (For example, the presence or absence of abnormal tissue or abnormal cells (eg, cancer, etc.) is identified.
- the display unit 1404 displays the identification result transmitted from the server 1403 on the display device screen of the image acquisition device 1405.
- a regenerative medicine device including an imaging unit, an iPS cell culture device, an MRI, an ultrasonic image imaging device, or the like may be used.
- the remote diagnosis support system detects an object (for example, a tissue, a cell, etc.) in an image transmitted from a facility or the like at a different point using each parameter of the classifier obtained by the machine learning device 1. Accurately classify whether or not it is an object to be used (abnormal tissue, abnormal cell, etc.). Further, the classification result is transmitted to a facility or the like at a different point, and the classification result is displayed on the display unit of the image acquisition device in the facility or the like.
- an object for example, a tissue, a cell, etc.
- FIG. 15 is a functional block diagram showing the configuration of the net consignment service providing system 1500 according to the fourth embodiment.
- the net consignment service providing system 1500 includes a server (computer) 1503 and an image acquisition device 1505.
- the image acquisition device 1505 is, for example, a device such as a personal computer equipped with a virtual slide device or a camera.
- the image acquisition device 1505 includes an image pickup unit 1501 for capturing a new image, a storage unit 1504 for storing a classifier (currently a classifier) transmitted from the server 1503, and an image diagnosis support device 5.
- the image diagnosis support device 5 reads the classifier transmitted from the server 1503, and uses the first embodiment or the first embodiment or the first embodiment for an object (for example, a tissue, a cell, etc.) in an image newly captured by the imaging unit 1501. Using the classifier obtained by the machine learning device 1 according to the second embodiment, it is determined whether or not the object is an object to be detected (for example, abnormal tissue, abnormal cell, etc.).
- an object for example, a tissue, a cell, etc.
- the image acquisition device 1505 includes a communication device that transmits image data to the server 1503 and receives the data transmitted from the server 1503.
- the server 1503 includes a diagnostic imaging support device 5 and a storage unit 1502 that stores a classifier output from the machine learning device 1 of the diagnostic imaging support device 5.
- the image diagnosis support device 5 creates an classifier from the machine learning device 1 according to the first embodiment or the second embodiment for the image data transmitted from the image acquisition device 1505, and further creates the identification. Identification processing is performed using a device.
- the server 1503 has a communication device that receives the image data transmitted from the image acquisition device 1505 and transmits the classifier to the image acquisition device 1505.
- the machine learning device 1 in the image diagnosis support device 5 should detect an object (for example, a tissue or a cell) in an image imaged by the imaging unit 1501 (for example, a normal tissue or a cell is normal). Machine learning is performed so that tissues and cells, abnormal tissues and cells are judged to be abnormal tissues and cells, etc.), and a classifier is created.
- the classifier calculates the feature amount of an object (for example, tissue, cell, etc.) in an image of a facility or the like at a different point.
- the storage unit 1504 stores the classifier transmitted from the server 1503.
- the image diagnosis support device 5 in the image acquisition device 1505 reads a classifier from the storage unit 1504, and uses the classifier to create an object in the image newly captured by the image pickup unit 1501 of the image acquisition device 1505 (for example, an object in the image). (Tissues, cells, etc.) are classified as to whether or not they are objects to be detected (for example, abnormal tissues, abnormal cells, etc.), and the classification result is displayed on the display screen of the output device (display device) 204 of the image diagnosis support device 5. ..
- a regenerative medicine device including an imaging unit, an iPS cell culture device, an MRI, an ultrasonic image imaging device, or the like may be used.
- the online contract service providing system can detect an object (for example, a tissue or a cell) in an image transmitted from a facility or the like at a different point, and the object to be detected (for example, a normal tissue or a cell is normal).
- a classifier is created by performing machine learning so that tissues and cells, abnormal tissues and cells are classified as abnormal tissues and cells, etc.).
- the online consignment service providing system transmits the classifier to a different facility or the like at the above-mentioned point, and reads the classifier by an image acquisition device in the facility or the like.
- the classifier in the image acquisition device classifies whether or not an object (for example, tissue, cell, etc.) in a new image is an object to be detected (for example, abnormal tissue, abnormal cell, etc.).
- the learning unit 11 has obtained the feature amount by using a filter by machine learning, another feature amount such as HOG may be used.
- the learning unit 11 may use a square error, Hinge loss, or the like as the loss function instead of the Negative log likehood.
- the learning unit 11 may generate a discriminator by an arbitrary method different from the method of the above embodiment.
- identification by the above-described embodiment is performed by changing the number of dimensions of the input data from Equation 1 to Equation 3 from two dimensions to another dimension. Updating or generating the instrument and training database can also be applied to data samples that differ from the image, such as audio data samples, sensor data samples, and text data samples.
- the present invention can also be realized by a software program code that realizes the functions of the embodiment.
- a storage medium in which the program code is recorded is provided to the system or device, and the computer (or CPU or MPU) of the system or device reads the program code stored in the storage medium.
- the program code itself read from the storage medium realizes the function of the above-described embodiment, and the program code itself and the storage medium storing the program code itself constitute the present invention.
- the storage medium for supplying such a program code include a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, a non-volatile memory card, and a ROM. Etc. are used.
- the OS operating system
- the processing enables the function of the above-described embodiment to be realized. You may. Further, after the program code read from the storage medium is written in the memory on the computer, the CPU of the computer or the like performs a part or all of the actual processing based on the instruction of the program code, and the processing is performed. May realize the function of the above-described embodiment.
- the program code of the software that realizes the functions of the embodiment via the network, it is distributed as a storage means such as a hard disk or a memory of a system or an apparatus or a storage medium such as a CD-RW or a CD-R.
- the computer (or CPU or MPU) of the system or device may read and execute the program code stored in the storage means or the storage medium at the time of use.
- control lines and information lines are shown as necessary for explanation, and the product does not necessarily show all the control lines and information lines. All configurations may be interconnected.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Public Health (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
機械学習装置は、データサンプルを処理するプロセッサと、処理の結果を格納する記憶装置と、を含む。プロセッサは、複数学習データベースからから複数識別器を作成する。複数学習データベースそれぞれは複数学習データサンプルを格納する。プロセッサは、複数識別器それぞれの識別性能の評価結果を作成し、評価結果に基づいて、複数学習データベースにおける一つの学習データベースおよび前記一つの学習データベースから生成される識別器を、使用する学習データベースおよび識別器と決定する。
Description
本出願は、2019年10月1日に出願された日本出願である特願2019-181165の優先権を主張し、その内容を参照することにより、本出願に取り込む。
本発明は、機械学習に関し、例えば、撮像した画像内に含まれる特定の物体(例えば、がんの細胞や液面上の泡等)を検出するための機械学習を用いた画像処理技術に適用可能である。
近年、画像認識技術においては、機械学習等を用いた画像認識技術の検討が行われている。Deep Learning等を用いることで、画像内の物体の検出精度を向上している。画像内の物体を検出するための識別器を開発するために、例えば、特許文献1に提案される技術がある。当該特許文献1では、複数の学習画像データ群を設定して機械学習を行い、ニューラルネットワークのパラメータを算出する。
しかしながら、特許文献1のように、学習画像を複数の画像群に分けて再学習してパラメータを求めても、画像群の中に識別器の識別精度の向上に寄与しない画像が含まれることがあり、必ずしも識別器の識別精度は向上しない。また、特許文献1では、継続的に識別器の識別精度を向上できる学習画像データベースを作成できない。
本発明の一態様の機械学習装置は、データサンプルを処理するプロセッサと、前記処理の結果を格納する記憶装置と、を含む。前記プロセッサは、複数学習データベースから複数識別器を作成し、前記複数学習データベースそれぞれは複数学習データサンプルを格納し、前記複数識別器それぞれの識別性能の評価結果を作成し、前記評価結果に基づいて、前記複数学習データベースにおける一つの学習データベースおよび前記一つの学習データベースから生成される識別器を、使用する学習データベースおよび識別器と決定する。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本発明の態様は、要素および多様な要素の組み合わせおよび以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。本明細書の記述は典型的な例示に過ぎず、本発明の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
本発明の一態様によれば、適切な学習データベースおよび識別器を作成および使用することができる。
一実施形態は、学習画像データベースの各画像を用いて機械学習を行って複数の識別器を作成し、さらに、作成した複数の識別器を評価して評価結果を求め、複数の評価結果を判定して識別器および学習画像データベースの更新可否を制御する。これにより、画像内の物体(例えば、組織・細胞等)を高精度に識別可能な識別器および識別器の継続的な識別精度の向上に寄与する画像から構成される学習画像データベースの作成を実現する機械学習装置およびその方法を提供する。
以下、添付図面を参照して本発明の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本発明の原理に則った具体的な実施形態と実装例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
更に、本発明の実施形態は、後述されるように、汎用コンピュータ上で稼動するソフトウェアで実装してもよいし専用ハードウェア又はソフトウェアとハードウェアの組み合わせで実装してもよい。以下では「プログラムとしての各処理部(例えば、学習部等)」を主語(動作主体)として本発明の実施形態における各処理について説明を行うが、プログラムはプロセッサ(CPU等)によって実行されることで定められた処理をメモリおよび通信ポート(通信制御装置)を用いながら行うため、プロセッサを主語とした説明としてもよい。
(1)第1の実施形態
<機械学習装置の機能構成>
図1は、第1の実施形態による機械学習装置の機能構成を示すブロック図である。機械学習装置1は、入力部10と、学習部11と、適性評価部12と、更新判定部13と、描画部14と、制御部91と、学習画像データベース(DB)(確定)100、学習画像DB(確定+確定前)101、評価画像102、メモリ90と、を含む。機械学習装置1は、画像診断支援装置等の画像取得装置内に実装してもよいし、後述する(第3乃至第4の実施形態)ように、画像取得装置とネットワークを介して接続されるサーバ内に実装してもよい。
<機械学習装置の機能構成>
図1は、第1の実施形態による機械学習装置の機能構成を示すブロック図である。機械学習装置1は、入力部10と、学習部11と、適性評価部12と、更新判定部13と、描画部14と、制御部91と、学習画像データベース(DB)(確定)100、学習画像DB(確定+確定前)101、評価画像102、メモリ90と、を含む。機械学習装置1は、画像診断支援装置等の画像取得装置内に実装してもよいし、後述する(第3乃至第4の実施形態)ように、画像取得装置とネットワークを介して接続されるサーバ内に実装してもよい。
機械学習装置1における、入力部10、学習部11、適性評価部12、更新判定部13、および描画部14は、プログラム又はプログラムを実行するプロセッサによって実現してもよいし、ハードウェアモジュールにより実現してもよい。
入力部10には画像データが入力される。例えば、入力部10は、画像取得装置(図1において不図示)にビルトインされたカメラ等の撮像手段が、所定時間間隔で撮像した、JPG、Jpeg2000、PNG、BMP形式等の符号化された静止画像データ等を、入力画像として取得してもよい。
入力部10は、MotionJPEG、MPEG、H.264、HD/SDI形式等の動画像データから、所定間隔のフレームの静止画像データを抜き出して、その画像を入力画像として取得してもよい。入力部10は、撮像手段からバスやネットワーク等を介して入力画像を取得してよい。入力部10は、脱着可能な記録媒体に既に記憶されている画像を入力画像として取得してもよい。入力部10から入力され画像は、学習画像(確定前)として、学習画像DB(確定+確定前)101に格納される。
学習画像DB(確定)100は、学習用画像と確定された画像と正解ラベルとの複数の組み合わせを格納している。各画像に対応する正解ラベルは確定されている。学習画像(確定前)は、学習用画像と確定される前の画像と正解ラベルとの、複数の組み合わせで構成されている。各画像に対応する正解ラベルは、変更され得る
学習部11は、入力画像内の特定の物体の画像を当該特定の物体と識別するように、例えば、正常の組織や細胞の画像を正常の組織や細胞と識別するように、また、入力画像内の異常の組織や細胞の画像を異常の組織や細胞と識別するように、機械学習を行う。学習部11は、学習画像DB(確定)100から識別器CA(識別に必要なパラメータ(フィルタ係数、オフセット値等))を作成する。学習部11は、学習画像DB(確定)100に入力部10から入力した学習画像(確定前)を加えた学習画像DB(確定+確定前)101から、識別器CBを作成する。
適性評価部12は、評価画像102を用いて、識別器CAとCBの識別結果および識別値を算出する。更新判定部13は、適性評価部12にて求めた識別器CAとCBの識別結果および識別値を用いて、識別器CAおよび学習画像DB(確定)100の更新可否を制御する。また、更新判定部13は、適性評価部12にて求めた後述するAvedr1やAvedr2、各MdrN、更新判定部13が判定した識別器CAや学習画像DB(確定)の更新の回数や更新したAvedr1の推移等の情報を、メモリ90に保存する。
描画部14は、適性評価部12にて求めた後述するAvedr1やAvedr2、各MdrN、更新判定部13が判定した識別器CAや学習画像DB(確定)の更新回数や更新したAvedr1の推移等の情報を、ディスプレイやプリンタ等の出力装置に出力する。
制御部91は、例えば、プログラムを実行するプロセッサで実現され、機械学習装置1内の各要素に接続される。機械学習装置1の各構成要素は、自律的又は制御部91の指示により、上述のように動作する。
このように本実施形態の機械学習装置1では、学習部11は、機械学習を行って、学習画像DB(確定)100から識別器CAを生成し、学習画像DB(確定)100に入力部10から入力した学習画像(確定前)を加えた学習画像DB(確定+確定前)101から識別器CBを作成する。適性評価部12は、評価画像102を用いて、識別器CAとCBの識別結果および識別値を算出する。更新判定部13は、適性評価部12にて求めた識別器CAとCBの識別結果および識別値を用いて、識別器CAおよび学習画像DB(確定)100の更新可否を制御する。
<機械学習装置のハードウェア構成>
図2Aは、第1の実施形態による機械学習装置1のハードウェア構成例を示す図である。機械学習装置1は、各種プログラムを実行するCPU(プロセッサ)201と、各種プログラムを格納するメモリ202(主記憶装置)と、各種データを格納する補助記憶装置203(メモリ90に相当)を含む。機械学習装置1は、さらに、識別結果や識別器や学習画像DB(確定)100の更新可否結果を出力するための出力装置204と、ユーザによる指示や画像等を入力するための入力装置205と、他の装置と通信を行うための通信デバイス206と、を含む。機械学習装置1内のこれら構成要素は、バス207によって相互に接続されている。
図2Aは、第1の実施形態による機械学習装置1のハードウェア構成例を示す図である。機械学習装置1は、各種プログラムを実行するCPU(プロセッサ)201と、各種プログラムを格納するメモリ202(主記憶装置)と、各種データを格納する補助記憶装置203(メモリ90に相当)を含む。機械学習装置1は、さらに、識別結果や識別器や学習画像DB(確定)100の更新可否結果を出力するための出力装置204と、ユーザによる指示や画像等を入力するための入力装置205と、他の装置と通信を行うための通信デバイス206と、を含む。機械学習装置1内のこれら構成要素は、バス207によって相互に接続されている。
CPU201は、必要に応じてメモリ202から各種プログラムを読み込み、実行する。メモリ202は、プログラムとしての、入力部10と、学習部11と、適性評価部12と、更新判定部13と、描画部14とを格納する。
補助記憶装置203は、学習画像(確定前)、学習部11によって生成された識別器CAとCBのパラメータ、適性評価部12によって生成された識別結果と識別値、更新判定部13によって判定された更新結果を格納している。補助記憶装置203は、さらに、学習画像DB(確定)100および学習画像DB(確定+確定前)101、描画部14によって生成された検出枠を描画するための位置情報等を格納している。メモリ202、補助記憶装置203またはこれらの組み合わせは記憶装置である。
出力装置204は、ディスプレイ、プリンタ、スピーカ等のデバイスを含んで構成される。例えば、出力装置204は表示装置であり、描画部14によって生成されたデータを画面上に表示する。入力装置205は、キーボード、マウス、マイク等のデバイスを含んで構成される。入力装置205によってユーザによる指示(学習画像(確定前)入力の決定を含む)が、機械学習装置1に入力される。
通信デバイス206は、機械学習装置1において必須ではなく、画像取得装置に接続されたパソコン等に通信デバイスが含まれる場合には、機械学習装置1は通信デバイス206を保持していなくてもよい。通信デバイス206は、例えば、ネットワークを介して接続される他の装置(例えば、サーバ)から送信されてきたデータ(画像を含む)を受信し、補助記憶装置203に格納する。
本実施形態の機械学習装置は、学習画像データベースの画像を用いて機械学習を行って複数の識別器を作成し、さらに、作成した複数の識別器を評価して評価結果を求める。機械学習装置は、評価結果を判定して識別器および学習画像データベースの更新可否を制御することで、画像内の物体(例えば、組織・細胞等)をより高精度に識別可能な識別器、および、識別器の継続的な識別精度の向上に寄与する画像から構成される学習画像データベースを作成できる。
<各部の構成と動作>
以下、各要素の構成と動作について詳細に説明する。
(i)学習部11
図2Bは、学習部11の構成例を示す。学習部11は、特徴抽出部111、局所識別部112、全体識別部113を含む。
以下、各要素の構成と動作について詳細に説明する。
(i)学習部11
図2Bは、学習部11の構成例を示す。学習部11は、特徴抽出部111、局所識別部112、全体識別部113を含む。
(i-i)特徴抽出部111
特徴抽出部111は、入力画像の特徴量を求める。図3は、特徴量を求める例を示す。図3のCNNは、Convolutional Neural Networkを表す。例えば、特徴抽出部111は、式1の演算を行う特徴抽出器FEAを用いて、入力画像Aiから入力画像Aiの物体(例えば、組織・細胞等)の特徴量FAiを求める。
特徴抽出部111は、入力画像の特徴量を求める。図3は、特徴量を求める例を示す。図3のCNNは、Convolutional Neural Networkを表す。例えば、特徴抽出部111は、式1の演算を行う特徴抽出器FEAを用いて、入力画像Aiから入力画像Aiの物体(例えば、組織・細胞等)の特徴量FAiを求める。
学習部11は、各物体の画像を各物体(正常組織や正常細胞を正常組織や正常細胞、もしくは異常組織や異常細胞を異常組織や異常細胞等)と識別するように、機械学習によりフィルタ係数wjを求める。pjは画素値、biはオフセット値、mはフィルタ係数の数、hは非線形関数を示す。
図4に示すように、特徴抽出部111は、式1を用いて、対象画像(例として病理組織画像)41の左上から右下に対して、各フィルタ42の計算結果を求めることで、任意のフィルタiの特徴量fiを求める。例えば、特徴抽出器Aで求めた特徴量fiの行列を入力画像Aiの特徴量FAiとする。特徴抽出器FEAの作成方法については、後述する。
(i-ii)局所識別部112
(i-ii)局所識別部112
局所識別部112は、図5に示すように、特徴抽出部111で求めた特徴抽出器FEAの特徴量FAiと非線形関数NF(例えば、sigmoid関数等)を用いて、式2により、局所領域毎に物体らしさ(例えば、病変らしさ等)の値を算出する。局所識別部112は、算出した値に基づき、入力画像Ai内の物体が検出すべき物体か否か(例えば、正常細胞、もしくは異常細胞等)を判定する。
式2において、LSはクラス、高さ、幅の3次元配列から成る局所識別値、FAiは特徴抽出部111にて求めた特徴量の番号、高さ、幅の3次元配列から成る特徴量である。Wは、クラス、特徴量の番号、高さ、幅の4次元配列から成る局所識別値算出のためのフィルタ、Bはクラスの1次元配列から成る局所識別値算出のためのオフセット値である。cはクラスのインデックス、yは特徴量の垂直方向のインデックス、xは特徴量の水平方向のインデックス、fyはフィルタの垂直方向のインデックス、fxはフィルタの水平方向のインデックス、jはフィルタのインデックスを示す。
式2ではConvolution処理を用いて局所識別値を算出しているが、局所識別値の算出方法はこれに限らない。例えばConvolution処理や非線形関数等を複数回適用して求めてもよいし、各座標における特徴量をRandom forestやSVM等、その他の識別手法に入力して局所識別値を算出してもよい。
(i-iii)全体識別部113
全体識別部113は、図6に示すように、局所識別部112にて求めた局所識別値LSと非線形関数(例えば、sigmoid関数等)を用いて基礎識別値BSを求める。全体識別部113は、基礎識別値BSを入力画像内の各物体画像の物体らしさ(例えば、病変らしさ等)の値を示す計算結果Rとして、入力画像Ai内の物体が検出すべき物体か否か(例えば、正常細胞、もしくは異常細胞等)を判定する(S1)。
全体識別部113は、図6に示すように、局所識別部112にて求めた局所識別値LSと非線形関数(例えば、sigmoid関数等)を用いて基礎識別値BSを求める。全体識別部113は、基礎識別値BSを入力画像内の各物体画像の物体らしさ(例えば、病変らしさ等)の値を示す計算結果Rとして、入力画像Ai内の物体が検出すべき物体か否か(例えば、正常細胞、もしくは異常細胞等)を判定する(S1)。
基礎識別値BSは、式3の大局識別値GSと式4を用いて算出される。
式3において、GSはクラスの1次元配列から成る大局識別値、FAiは、特徴抽出部111で求めた特徴量の番号、高さ、幅の3次元配列から成る特徴量、Wはクラス、特徴量の番号、高さ、幅の4次元配列から成る大局識別値算出のためのフィルタを示す。Bはクラスの1次元配列から成る大局識別値算出のためのオフセット値、cはクラスのインデックスを示す。yは特徴量の垂直方向のインデックス、xは特徴量の水平方向のインデックス、fyはフィルタの垂直方向のインデックス、fxはフィルタの水平方向のインデックス、jはフィルタのインデックスを示す。
また、式4のLabelはクラスの1次元配列から成る画像単位の教師ラベル(正解ラベル)を示す。後述する学習部11は、機械学習により、式3の更新されるフィルタWの係数とオフセット値Bを求める。NLLは損失関数、例えば、Negative log likelihoodを示す。
式3はConvolution処理と水平・垂直方向の平均処理を用いて大局識別値を算出しているが、大局識別値の算出方法はこれに限らない。例えばConvolution処理や非線形関数等を複数回適用した後に、水平・垂直方向の平均処理を行ってもよいし、各座標における特徴量をRandom forestやSVM等、その他の識別手法に入力して得られた値の水平・垂直方向の平均値を算出してもよい。また水平・垂直方向の平均処理に限らず、総和処理等を用いてもよい。
学習部11は、全体識別部113が、局所識別値を用いて、入力画像内の各物体を各物体(例えば、正常組織や正常細胞を正常組織や正常細胞、異常組織や異常細胞を異常組織や異常細胞)と識別するように、既存の機械学習の技術を用いて各物体の特徴量を学習し、フィルタWの係数とオフセット値Bを求める。例えば、機械学習の技術として、Convolutional Neural Networkを用いてもよい。
学習部11は、図7に示すように、事前の機械学習により、入力画像Ai(例えば、病理画像)を用いて、式1により、入力画像Aiの特徴量FAiを算出する。次に、学習部11は、式2により、特徴量FAiから局所識別値LSを求める。学習部11は、局所識別値LSから求めた基礎識別値BSを用いて、各対象物体の画像を各対象物体(例えば、異常組織や異常細胞を異常組織や異常細胞、正常組織や正常細胞を正常組織や正常細胞)と判定するように、式1から式3までの各パラメータを算出する。
学習部11は、学習画像DB(確定)100の複数の学習用画像を用いて、特徴抽出部111、局所識別部112、および全体識別部113の処理を繰り返して行い、式1、式2および式3に示す各パラメータ(フィルタ係数wj、フィルタWの係数、オフセット値biとB等)を求める。
学習部11は、入力画像から入力画像の特徴量を算出する特徴抽出器、局所識別値を求める局所識別器、大局識別値を求める大局識別器から成る識別器CAを作成する。同様に、学習部11は、学習画像DB(確定+確定前)101の複数の学習画像を用いて、式1、式2および式3に示す各パラメータ(フィルタ係数wj、フィルタWの係数、オフセット値biとB等)を求め、識別器CBを作成する。学習部11は、求めた各パラメータ(フィルタ係数wj、フィルタWの係数、オフセット値biとB等)をメモリ90に格納する。
例えば、学習部11は、学習画像DB(確定)100および学習画像DB(確定+確定前)101それぞれの識別タイプの画像数のバランスを調整して、識別器CAおよびCBを作成する。例えば、学習部11は、学習画像DB(確定)100および学習画像DB(確定+確定前)101それぞれにおいて、識別タイプ間の画像数の差が所定の閾値より小さくなるように画像数を調整する。これにより、より適切な評価を行うことができる。
(ii)適性評価部12
(ii)適性評価部12
適性評価部12は、評価画像102を用いて、式5により、学習部11が作成した識別器CAとCBについて、識別器CAのAvedrX(Avedr1)と識別器CBのAvedrX(Avedr2)を求めることで、それら識別器の評価を行う。式5において、Nは識別するタイプの数を示す。各MdrNは対象の検出率を示す。例えば、N=2であり、Mdr1は良性腫瘍検出率(平均)を示し、Mdr2は悪性腫瘍検出率(平均)を示す。適性評価部12は、AvedrXと異なる値を使用することができ、例えば、MdrNの最大値を使用してもよい。
(iii)更新判定部13
更新判定部13は、適性評価部12で求めた複数のAvedrXを比較して、識別器CAおよび学習画像DB(確定)100の更新可否を制御する。例えば、Avedr2>Avedr1かつAvedr2>TH1(例えば、TH1=0.7)の場合(K1)、更新判定部13は、識別器CAおよび学習画像DB(確定)100の更新を行う。具体的には、更新判定部13は学習画像DB(確定)100の内容を学習画像DB(確定+確定前)101の内容に更新し、識別器CAを学習画像DB(確定+確定前)101で学習した識別器CBの内容に更新する。
更新判定部13は、適性評価部12で求めた複数のAvedrXを比較して、識別器CAおよび学習画像DB(確定)100の更新可否を制御する。例えば、Avedr2>Avedr1かつAvedr2>TH1(例えば、TH1=0.7)の場合(K1)、更新判定部13は、識別器CAおよび学習画像DB(確定)100の更新を行う。具体的には、更新判定部13は学習画像DB(確定)100の内容を学習画像DB(確定+確定前)101の内容に更新し、識別器CAを学習画像DB(確定+確定前)101で学習した識別器CBの内容に更新する。
また、Avedr2≦Avedr1かつAvedr2>TH1の場合(K2)、更新判定部13は、識別器CAおよび学習画像DB(確定)の更新を行わず、学習画像DB(確定前)の画像の順番を、例えばランダムに、入れ替える。学習部11は、順番が入れ替えられた学習画像DB(確定前)によって再学習を行う。K1の場合でもK2の場合でもない場合、更新判定部13は、再学習のために、入力装置を介したにユーザよる指定に従って又は自動的に、学習画像DB(確定前)におけるいくつかの画像の正解ラベルを変更する。例えば、更新判定部13は、画像のミニバッチ毎に正解ラベルの変更の有無を判定してもよい。
更新判定部13は、適性評価部12にて求めたAvedr1やAvedr2、各MdrN、更新判定部13が判定した識別器CAや学習画像DB(確定)100の更新回数や更新したAvedr1の推移等を、メモリ90またはログファイルに記録する。
(iv)描画部14
(iv)描画部14
描画部14は、一例として、図11に示すGUI(グラフィカルユーザーインタフェース)にて、適性評価部12にて求めたAvedr1やAvedr2、各MdrN、更新判定部13で判定した識別器CAや学習画像DB(確定)の更新回数や更新したAvedr1の推移等を表示する。図11の例は、Avedr1を0.71、Avedr2を0.81、Mdr1を0.80、Mdr2を0.82、更新回数を10と表示している。
また、描画部14は、入力部10から入力された未知の画像の各識別器での識別結果を表示する。画像内の特定の部分が検出すべき物体(例えば、異常組織や異常細胞)と判定されている場合、図8に示すように、描画部14は、検出すべき物体の箇所(例えば、異常組織や異常細胞が疑われる箇所等)を示すために、入力した対象画像81内に検出枠82を描画してもよい。一方、対象画像81が正常組織や正常細胞と判定された場合は、描画部14は、検出枠82を入力した対象画像81上に描画せず、入力した対象画像81をそのまま表示してもよい。
また、図8に示すように、描画部14は、判定した物体らしさの結果(例えば、腫瘍)83を表示する。描画部14は、機械学習装置1としては必須の構成ではなく、画像診断支援装置に描画部が含まれる場合には、機械学習装置1は描画部14を保持していなくてもよい。
<機械学習装置の処理手順>
図9は、第1の実施形態による機械学習装置1の学習部11の動作を説明するためのフローチャートである。以下では、学習部11を動作主体として記述するが、CPU201を動作主体とし、CPU201がプログラムとしての各処理部を実行するように読み替えてもよい。
図9は、第1の実施形態による機械学習装置1の学習部11の動作を説明するためのフローチャートである。以下では、学習部11を動作主体として記述するが、CPU201を動作主体とし、CPU201がプログラムとしての各処理部を実行するように読み替えてもよい。
(i)ステップ901
入力部10は、学習用入力画像Aiを受け付け、当該入力画像Aiを学習部11に出力する。
(ii)ステップ902
学習部11は、機械学習によって、上述の式1により、フィルタを用いて入力画像Aiにおける物体(例えば、組織や細胞等)の特徴量を求め、特徴抽出器FEAを作成する。学習部11は、特徴量FAiについて、フィルタ係数wj、オフセット値biを求める。
入力部10は、学習用入力画像Aiを受け付け、当該入力画像Aiを学習部11に出力する。
(ii)ステップ902
学習部11は、機械学習によって、上述の式1により、フィルタを用いて入力画像Aiにおける物体(例えば、組織や細胞等)の特徴量を求め、特徴抽出器FEAを作成する。学習部11は、特徴量FAiについて、フィルタ係数wj、オフセット値biを求める。
(iii)ステップ903
学習部11は、機械学習によって、式2により、特徴量FAiから局所識別値LSを求め、局所領域毎に物体らしさ(例えば、病変らしさ等)の値を算出し、入力画像Ai内の物体が検出すべき物体か否か(例えば、正常細胞、もしくは異常細胞等)を判定するように、局所識別値を求めるための式2の各パラメータ(フィルタWの係数、オフセット値B等)を求める。
学習部11は、機械学習によって、式2により、特徴量FAiから局所識別値LSを求め、局所領域毎に物体らしさ(例えば、病変らしさ等)の値を算出し、入力画像Ai内の物体が検出すべき物体か否か(例えば、正常細胞、もしくは異常細胞等)を判定するように、局所識別値を求めるための式2の各パラメータ(フィルタWの係数、オフセット値B等)を求める。
(iv)ステップ904
学習部11は、機械学習によって、局所識別値LSから求めた基礎識別値BSを用いて、各対象物体の画像を各対象物体(例えば、異常組織や異常細胞を異常組織や異常細胞、正常組織や正常細胞を正常組織や正常細胞)と判定するように、式3の各パラメータ(フィルタWの係数、オフセット値B等)を求める。
学習部11は、機械学習によって、局所識別値LSから求めた基礎識別値BSを用いて、各対象物体の画像を各対象物体(例えば、異常組織や異常細胞を異常組織や異常細胞、正常組織や正常細胞を正常組織や正常細胞)と判定するように、式3の各パラメータ(フィルタWの係数、オフセット値B等)を求める。
(v)ステップ905
学習部11は、式1、式2および式3の各パラメータ(フィルタ係数wj、フィルタWの係数、オフセット値bi、B等)をメモリ90に保存する。
学習部11は、式1、式2および式3の各パラメータ(フィルタ係数wj、フィルタWの係数、オフセット値bi、B等)をメモリ90に保存する。
図10は、本実施形態による機械学習装置1の動作を説明するためのフローチャートである。以下では、各処理部(入力部10、学習部11等)を動作主体として記述するが、CPU201を動作主体とし、CPU201がプログラムとしての各処理部を実行するように読み替えてもよい。
(i)ステップ1001
入力部10は、学習画像DB(確定+確定前)の入力画像Aiを学習部11に出力する。
(ii)ステップ1002
学習部11は、メモリ90から識別器CAに関する式1、式2および式3の各パラメータを読込む。学習部11は、さらに、学習画像DB(確定+確定前)101を用いて機械学習を行い、識別器CBに関する式1、式2および式3の各パラメータを算出する。
(iii)ステップ1003
適性評価部12は、識別器CAおよびCBそれぞれの各パラメータと評価画像を用いて、式5より、識別器CAのAvedr1と識別器CBのAvedr2を算出する。
入力部10は、学習画像DB(確定+確定前)の入力画像Aiを学習部11に出力する。
(ii)ステップ1002
学習部11は、メモリ90から識別器CAに関する式1、式2および式3の各パラメータを読込む。学習部11は、さらに、学習画像DB(確定+確定前)101を用いて機械学習を行い、識別器CBに関する式1、式2および式3の各パラメータを算出する。
(iii)ステップ1003
適性評価部12は、識別器CAおよびCBそれぞれの各パラメータと評価画像を用いて、式5より、識別器CAのAvedr1と識別器CBのAvedr2を算出する。
(iv)ステップ1004
更新判定部13は、算出したAvedr1とAvedr2を比較する。Avedr2>Avedr1の場合、更新判定部13は、ステップ1005に移行する。一方、計算結果Avedr2≦Avedr1の場合、更新判定部13は、ステップ1006に移行する。
(v)ステップ1005
Avedr2>TH1の場合、更新判定部13は、ステップ1007に移行する。一方、Avedr2≦TH1の場合、更新判定部13は、ステップ1008に移行する。
更新判定部13は、算出したAvedr1とAvedr2を比較する。Avedr2>Avedr1の場合、更新判定部13は、ステップ1005に移行する。一方、計算結果Avedr2≦Avedr1の場合、更新判定部13は、ステップ1006に移行する。
(v)ステップ1005
Avedr2>TH1の場合、更新判定部13は、ステップ1007に移行する。一方、Avedr2≦TH1の場合、更新判定部13は、ステップ1008に移行する。
(vi)ステップ1006
Avedr2>TH1の場合、更新判定部13は、ステップ1008に移行する。一方、Avedr2≦TH1の場合、更新判定部13は、はステップ1009に移行する。
(vii)ステップ1007
更新判定部13は、識別器CAと学習画像DB(確定)100を更新する。
Avedr2>TH1の場合、更新判定部13は、ステップ1008に移行する。一方、Avedr2≦TH1の場合、更新判定部13は、はステップ1009に移行する。
(vii)ステップ1007
更新判定部13は、識別器CAと学習画像DB(確定)100を更新する。
(viii)ステップ1008
更新判定部13は、学習画像DB(確定+確定前)の画像の順番を入れ換える。
(ix)ステップ1009
更新判定部13は、学習画像DB(確定前)の正解ラベルを付け替える。
更新判定部13は、学習画像DB(確定+確定前)の画像の順番を入れ換える。
(ix)ステップ1009
更新判定部13は、学習画像DB(確定前)の正解ラベルを付け替える。
(x)ステップ1010
更新判定部13は、学習画像DB(確定+確定前)の全ての画像について更新判定が終了したかをチェックし、終了していればステップ1011に移行する。一方、終了していない場合、更新判定部13は、ステップ1002に戻って、ステップ1002からステップ1009を繰返し行う。
(xi)ステップ1011
更新判定部13は、識別器CAの情報をメモリ90(補助記憶装置203に相当)に保存する。
更新判定部13は、学習画像DB(確定+確定前)の全ての画像について更新判定が終了したかをチェックし、終了していればステップ1011に移行する。一方、終了していない場合、更新判定部13は、ステップ1002に戻って、ステップ1002からステップ1009を繰返し行う。
(xi)ステップ1011
更新判定部13は、識別器CAの情報をメモリ90(補助記憶装置203に相当)に保存する。
上述のように、機械学習装置は、学習画像データベースの中に識別器の識別精度の向上に寄与しない画像が含まれている場合でも、識別器の識別精度の向上に寄与する画像を自動判定し、判定結果に応じて識別器および学習画像データベースの更新可否を制御する。より具体的には、機械学習装置は、複数の学習画像データベースの各画像を用いて機械学習を行って複数の識別器を作成し、さらに、作成した複数の識別器を評価して評価結果を求める。機械学習装置は、複数の評価結果を判定して識別器および学習画像データベースの更新可否を制御して、使用する学習画像データベースおよび識別器を決定する。これにより、画像内の物体(例えば、組織・細胞等)を高精度に識別可能な識別器および識別器の継続的な識別精度の向上に寄与する画像から構成される学習画像データベースを作成することが可能となる。
また、入力する学習画像の中に識別器の識別精度の向上に寄与しない画像が含まれていても、それらの画像を排除して学習画像データベースを作成することが可能となる。また、入力した学習画像がその時点で識別器の識別精度の向上に寄与しない場合でも、学習する画像の順番を変えて再度学習することで、識別器の識別精度の向上に寄与する画像として利用することが可能となる。
(2)第2の実施形態
以下において、第2の実施形態を説明する。図12に示す第2の実施形態に係る機械学習装置1は、第1の実施形態の図1と同様の構成要素を多く含むが、第1の実施形態の学習画像DB(確定+確定前)101の代わりに、学習画像DB(確定前)201を含み、また、更新判定部23を含む。以下において、図1と異なる構成について主に説明をする。
以下において、第2の実施形態を説明する。図12に示す第2の実施形態に係る機械学習装置1は、第1の実施形態の図1と同様の構成要素を多く含むが、第1の実施形態の学習画像DB(確定+確定前)101の代わりに、学習画像DB(確定前)201を含み、また、更新判定部23を含む。以下において、図1と異なる構成について主に説明をする。
本実施形態の機械学習装置1は、学習画像データベースの各画像を用いて機械学習を行って複数の識別器を作成し、さらに、作成した複数の識別器を評価して評価結果を求める。機械学習装置1は、複数の評価結果を判定して識別器および学習画像データベースの更新可否または作成を制御する。これにより、例えば施設毎または時期毎に適した、画像内の物体(例えば、組織・細胞等)を高精度に識別可能な識別器および識別器の継続的な識別精度の向上に寄与する画像から構成される学習画像データベースを作成できる。
<各部の構成と動作>
以下、図1と異なる各要素の構成と動作について詳細に説明する。
(i)学習画像DB(確定前)201
学習画像DB(確定前)201は、入力部10から入力された画像を格納し、その他の画像を格納していない。
以下、図1と異なる各要素の構成と動作について詳細に説明する。
(i)学習画像DB(確定前)201
学習画像DB(確定前)201は、入力部10から入力された画像を格納し、その他の画像を格納していない。
(ii)更新判定部23
学習部11は、学習画像DB(確定)100から識別器CAを作成し、学習画像DB(確定前)201から識別器CBを作成する。適性評価部12は、評価画像を用いて、識別器CAのAvedr1と識別器CBのAvedr2を求めることで、識別器の評価を行う。更新判定部23は、適性評価部12で求めた複数のAvedrXを比較して、識別器CA、CB、学習画像DB(確定)100および学習画像DB(確定前)201の更新可否または作成を制御する。
学習部11は、学習画像DB(確定)100から識別器CAを作成し、学習画像DB(確定前)201から識別器CBを作成する。適性評価部12は、評価画像を用いて、識別器CAのAvedr1と識別器CBのAvedr2を求めることで、識別器の評価を行う。更新判定部23は、適性評価部12で求めた複数のAvedrXを比較して、識別器CA、CB、学習画像DB(確定)100および学習画像DB(確定前)201の更新可否または作成を制御する。
すなわち、評価画像の全ての画像について、Avedr2>Avedr1の場合、以前に収集した学習画像DB(確定)100から作成した識別器CAよりも、例えば他施設または他時期に収集した学習画像DB(確定前)201から作成した識別器CBの方が、評価画像の識別に適している。そのため、更新判定部23は、識別器CAや学習画像DB(確定)とは別に、評価画像とセットにして識別器CBおよび学習画像DB(確定前)を保存する。
Avedr2≦Avedr1の場合、以前に収集した学習画像DB(確定)から作成した識別器CAの方が、例えば他施設または他時期で収集した学習画像DB(確定前)から作成した識別器CBよりも評価画像の識別に適している。そのため、更新判定部23は、評価画像とセットにして識別器CAおよび学習画像DB(確定)を保存する。
<機械学習装置のハードウェア構成>
本実施形態による機械学習装置1のハードウェア構成例は、図2と同様の構成を有するが、第1の実施形態に係る機械学習装置1と異なり、メモリ202に更新判定部23を含む。
本実施形態による機械学習装置1のハードウェア構成例は、図2と同様の構成を有するが、第1の実施形態に係る機械学習装置1と異なり、メモリ202に更新判定部23を含む。
機械学習装置1の補助記憶装置203は、適性評価部12で求めた計算結果AvedrX、更新判定部23によって判定された識別器CA、CB、学習画像DB(確定)100、学習画像DB(確定前)201および評価画像、学習部11によって生成した式1、式2および式3の各パラメータ等を記憶している。
図13は、本実施形態による機械学習装置1の動作を説明するためのフローチャートである。以下では、各処理部(入力部10、学習部11等)を動作主体として記述するが、CPU201を動作主体とし、CPU201がプログラムとしての各処理部を実行するように読み替えてもよい。
(i)ステップ1301
入力部10は、学習画像DB(確定前)201の入力画像Aiを学習部11に出力する。
(ii)ステップ1302
学習部11は、メモリ90から識別器CAに関する式1、式2および式3の各パラメータを読込む。また、学習画像DB(確定前)201を用いて機械学習を行い、識別器CBに関する式1、式2および式3の各パラメータを算出する。
入力部10は、学習画像DB(確定前)201の入力画像Aiを学習部11に出力する。
(ii)ステップ1302
学習部11は、メモリ90から識別器CAに関する式1、式2および式3の各パラメータを読込む。また、学習画像DB(確定前)201を用いて機械学習を行い、識別器CBに関する式1、式2および式3の各パラメータを算出する。
(iii)ステップ1303
適性評価部12は、識別器CAおよびCBそれぞれの各パラメータと評価画像を用いて、式5より、識別器CAのAvedr1と識別器CBのAvedr2を算出する。
(iv)ステップ1304
更新判定部13は、算出したAvedr1とAvedr2を比較する。Avedr2>Avedr1の場合、更新判定部13は、ステップ1305に移行する。一方、Avedr2≦Avedr1の場合、更新判定部13は、ステップ1306に移行する。
適性評価部12は、識別器CAおよびCBそれぞれの各パラメータと評価画像を用いて、式5より、識別器CAのAvedr1と識別器CBのAvedr2を算出する。
(iv)ステップ1304
更新判定部13は、算出したAvedr1とAvedr2を比較する。Avedr2>Avedr1の場合、更新判定部13は、ステップ1305に移行する。一方、Avedr2≦Avedr1の場合、更新判定部13は、ステップ1306に移行する。
(v)ステップ1305
更新判定部13は、識別器CB、学習画像DB(確定前)201、評価画像および計算結果(Avedr2、Avedr1)をセットにしてメモリ90(補助記憶装置203に相当)に保存する。
更新判定部13は、識別器CB、学習画像DB(確定前)201、評価画像および計算結果(Avedr2、Avedr1)をセットにしてメモリ90(補助記憶装置203に相当)に保存する。
(vi)ステップ1306
更新判定部13は、識別器CA、学習画像DB(確定)100、評価画像および計算結果(Avedr2、Avedr1)をセットにしてメモリ90(補助記憶装置203に相当)に保存する。
更新判定部13は、識別器CA、学習画像DB(確定)100、評価画像および計算結果(Avedr2、Avedr1)をセットにしてメモリ90(補助記憶装置203に相当)に保存する。
(vii)ステップ1307
更新判定部13は、学習画像DB(確定前)201の全ての画像について更新判定が終了したかをチェックし、終了していれば処理を終える。一方、終了していない場合、更新判定部13はステップ1302に戻って、ステップ1302からステップ1306を繰返し行う。
更新判定部13は、学習画像DB(確定前)201の全ての画像について更新判定が終了したかをチェックし、終了していれば処理を終える。一方、終了していない場合、更新判定部13はステップ1302に戻って、ステップ1302からステップ1306を繰返し行う。
第2の実施形態は、複数の学習画像データベースの各画像を用いて機械学習を行って複数の識別器を作成し、さらに、作成した複数の識別器を評価して評価結果を求める。第2の実施形態は複数の評価結果を判定して識別器および学習画像データベースの更新可否または作成を制御して、使用する学習画像データベースおよび識別器を決定する。これにより、施設毎の画像内の物体(例えば、組織・細胞等)を高精度に識別可能な識別器および学習画像データベースを得ることが可能となる。
また、識別器、学習画像DB、評価画像および計算結果をセットにしてデータを作成することで、計算結果を比較することで他施設(病院等)のデータで作成した識別器の性能を判定することが可能となる。
また、評価画像を任意の施設の画像データに変更することで、その施設の画像がどの施設用の識別器を使えば、画像内の物体を高精度に識別できるかを判定することが可能となる。
機械学習装置1は、複数の学習画像DB(確定)100を保持し、複数の学習画像DB(確定)100それぞれと、学習画像DB(確定前)201との間において、上記処理を実行してもよい。これにより、より適切な学習画像DBおよび識別器を得ることができる。
(3)第3の実施形態
図14は、第3の実施形態による遠隔診断支援システム1400の構成を示す機能ブロック図である。遠隔診断支援システム1400は、サーバ(計算機)1403と、画像取得装置1405と、を含む。
図14は、第3の実施形態による遠隔診断支援システム1400の構成を示す機能ブロック図である。遠隔診断支援システム1400は、サーバ(計算機)1403と、画像取得装置1405と、を含む。
画像取得装置1405は、例えばバーチャルスライド装置やカメラを装備したパソコンのような装置であり、新たな画像を撮像する撮像部1401と、サーバ1403から伝送されてきた判定結果を表示するための表示部1404と、を含む。なお、画像取得装置1405は、図示されてはいないが、画像データをサーバ1403に送信し、サーバ1403から送信されてきたデータを受信する通信デバイスを含む。
サーバ1403は、画像取得装置1405から伝送されてきた画像データに対して、第1の実施形態または第2の実施形態による機械学習装置1を用いて画像処理を行う画像診断支援装置5と、画像診断支援装置5から出力された識別結果を格納する格納部1402と、を含む。なお、サーバ1403は、図示されてはいないが、画像取得装置1405から送信されてきた画像データを受信し、画像取得装置1405に判定結果データを送信する通信デバイスを含む。
画像診断支援装置5は、機械学習装置1で求めた識別器(現在識別器)を用いて、撮像部1401で生成された画像内の物体(例えば、組織や細胞等)について、検出すべき物体(例えば、異常組織や異常細胞(例:がん等)の有無を識別する。表示部1404は、サーバ1403から伝送された識別結果を、画像取得装置1405の表示装置画面に表示する。
画像取得装置1405として、撮影部を含む再生医療装置やiPS細胞の培養装置、またはMRIや超音波画像撮像装置等を用いてもよい。
上述のように、第3の実施形態によれば、遠隔診断支援システムを提供することが可能となる。具体的には、遠隔診断支援システムは、地点の異なる施設等から伝送された画像内の物体(例えば、組織や細胞等)について、機械学習装置1で求めた識別器の各パラメータを用いて検出すべき物体(異常組織や異常細胞等)か否かを精度よく分類する。さらに、分類結果を上記地点の異なる施設等に伝送して、その施設等にある画像取得装置の表示部で分類結果を表示する。
(4)第4の実施形態
図15は、第4の実施形態によるネット受託サービス提供システム1500の構成を示す機能ブロック図である。ネット受託サービス提供システム1500は、サーバ(計算機)1503と、画像取得装置1505と、を含む。
図15は、第4の実施形態によるネット受託サービス提供システム1500の構成を示す機能ブロック図である。ネット受託サービス提供システム1500は、サーバ(計算機)1503と、画像取得装置1505と、を含む。
画像取得装置1505は、例えばバーチャルスライド装置やカメラを装備したパソコンのような装置である。画像取得装置1505は、新たな画像を撮像する撮像部1501と、サーバ1503から伝送された識別器(現在識別器)を格納する格納部1504と、画像診断支援装置5とを含む。
画像診断支援装置5は、サーバ1503から伝送された識別器を読込んで、撮像部1501にて新たに撮像された画像内の物体(例えば、組織や細胞等)について、第1の実施形態または第2の実施形態による機械学習装置1により求めた識別器を用いて、検出すべき物体(例えば、異常組織や異常細胞等)か否かを判定する。
なお、画像取得装置1505は、図示されてはいないが、画像データをサーバ1503に送信し、サーバ1503から送信されてきたデータを受信する通信デバイスを含む。
サーバ1503は、画像診断支援装置5と、画像診断支援装置5の機械学習装置1から出力された識別器を格納する格納部1502と、を含む。画像診断支援装置5は、画像取得装置1505から伝送されてきた画像データに対して、第1の実施形態または第2の実施形態による機械学習装置1から識別器の作成を行い、さらに作成した識別器を用いて識別処理を行う。
なお、サーバ1503は、図示されてはいないが、画像取得装置1505から送信されてきた画像データを受信し、画像取得装置1505に識別器を送信する通信デバイスを有している。
尚、画像診断支援装置5内の機械学習装置1は、撮像部1501で撮像した画像内の物体(例えば、組織や細胞等)について、検出すべき物体(例えば、正常の組織や細胞は正常の組織や細胞、異常の組織や細胞は異常の組織や細胞等)と判定するように機械学習を行い、識別器を作成する。識別器は、地点の異なる施設等の画像内の物体(例えば、組織・細胞等)の特徴量を算出する。格納部1504は、サーバ1503から伝送された識別器を格納する。
画像取得装置1505内の画像診断支援装置5は、格納部1504から識別器を読込み、その識別器を用いて、画像取得装置1505の撮像部1501にて新たに撮像した画像内の物体(例えば、組織や細胞等)について、検出すべき物体(例えば、異常組織や異常細胞等)か否かを分類し、画像診断支援装置5の出力装置(表示装置)204の表示画面に分類結果を表示する。
画像取得装置1505として、撮影部を含む再生医療装置やiPS細胞の培養装置、またはMRIや超音波画像撮像装置等を用いてもよい。
上述のように、第4の実施形態によれば、ネット受託サービス提供システムを提供することが可能となる。具体的には、ネット受託サービス提供システムは、地点の異なる施設等から伝送された画像内の物体(例えば、組織や細胞等)について、検出すべき物体(例えば、正常の組織や細胞は正常の組織や細胞、異常の組織や細胞は異常の組織や細胞等)と分類するように機械学習を行って識別器を作成する。ネット受託サービス提供システムは、識別器を上記地点の異なる施設等に伝送して、その施設等にある画像取得装置にて識別器を読込む。画像取得装置内の識別器は、新たな画像内の物体(例えば、組織や細胞等)について、検出すべき物体(例えば、異常組織や異常細胞等)か否かを分類する。
以上説明した各実施形態については、次のような変形が可能である。学習部11は、機械学習によりフィルタを用いて特徴量を求めたが、HOG等の他の特徴量を用いてもよい。学習部11は、損失関数として、Negative log likelihoodに代えて、2乗誤差やHinge loss等を用いてもよい。学習部11は、上記実施形態の方法と異なる任意の方法によって識別器を生成してよい。
上記実施形態は、識別器および学習画像データベースの更新または生成について説明したが、式1から式3への入力データの次元数を2次元から他の次元に変更することで、上記実施形態による識別器および学習データベースの更新または生成は、画像と異なるデータサンプル、例えば、音声データサンプル、センサデータサンプル、テキストデータサンプルにも適用することができる。
本発明は、実施形態の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、およびそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
さらに、実施の形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
最後に、ここで述べたプロセスおよび技術は本質的に如何なる特定の装置に関連することはなく、コンポーネントの如何なる相応しい組み合わせによってでも実装できる。更に、汎用目的の多様なタイプのデバイスがここで記述した方法に従って使用可能である。ここで述べた方法のステップを実行するのに、専用の装置を構築するのが有益である場合もある。また、実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。
例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。本発明は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本発明を実施するのに相応しいハードウェア、ソフトウェア、およびファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java等の広範囲のプログラム又はスクリプト言語で実装できる。
さらに、上述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。
加えて、本技術分野の通常の知識を有する者には、本発明のその他の実装がここに開示された本発明の明細書および実施形態の考察から明らかになる。記述された実施形態の多様な態様および/又はコンポーネントは、単独又は如何なる組み合わせでも使用することが出来る。
Claims (15)
- データサンプルを処理するプロセッサと、
前記処理の結果を格納する記憶装置と、を含み、
前記プロセッサは、
複数学習データベースから複数識別器を作成し、前記複数学習データベースそれぞれは複数学習データサンプルを格納し、
前記複数識別器それぞれの識別性能の評価結果を作成し、
前記評価結果に基づいて、前記複数学習データベースにおける一つの学習データベースおよび前記一つの学習データベースから生成される識別器を、使用する学習データベースおよび識別器と決定する、機械学習装置。 - 請求項1に記載の機械学習装置であって、
前記データサンプルは画像であり、
前記複数学習データベースは、それぞれ、学習画像データベースである、機械学習装置。 - 請求項2に記載の機械学習装置であって、
前記複数学習データベースは、第1学習データベースおよび第2学習データベースを含み、
前記第2学習データベースは、前記第1学習データベースが格納する画像および新規入力画像を格納し、
前記プロセッサは、前記第2学習データベースにより前記第1学習データベースを更新し、前記第2学習データベースから生成される識別器を使用する、ことの可否を判定する、機械学習装置。 - 請求項3に記載の機械学習装置であって、
前記プロセッサは、前記第1学習データベースから生成した第1識別器および前記第2学習データベースから生成した第2識別器それぞれの識別結果の比較結果に基づき、前記第2学習データベースにより前記第1学習データベースを更新し、前記第2学習データベースから生成される識別器を使用する、ことの可否を判定する、機械学習装置。 - 請求項4に記載の機械学習装置であって、
前記プロセッサは、
前記第1識別器の識別結果と前記第2識別器の識別結果との比較結果に基づき、前記新規入力画像の順番を入れ替えるか判定し、
前記順番を入れ替えると判定した場合に、前記新規入力画像の順番を入れ換えた前記第2学習データベースから、新規第2識別器を作成し、
前記第1識別器および前記新規第2識別器の識別結果の比較結果に基づき、前記第2学習データベースにより前記第1学習データベースを更新し、前記第2学習データベースから生成される識別器を使用する、ことの可否を判定する、機械学習装置。 - 請求項3に記載の機械学習装置であって、
前記第1学習データベースおよび前記第2学習データベースにおいて、識別タイプの画像数のバランスが調整されている、機械学習装置。 - 請求項2に記載の機械学習装置であって、
前記複数学習データベースは、第1学習データベースおよび第2学習データベースを含み、
前記第2学習データベースは、前記第1学習データベースの格納画像と異なる新規入力画像を格納し、
前記プロセッサは、前記第1学習データベースまたは前記第2学習データベースの一方を選択して使用すると判定する、機械学習装置。 - 画像を撮像する撮像装置を含む画像取得装置と、
請求項2に記載の機械学習装置を含む画像診断支援装置を含むサーバと、を含み、
前記画像診断支援装置は、前記機械学習装置により生成され使用されている現在識別器を含み、
前記画像取得装置は、前記サーバに前記画像を送信し、
前記サーバは、受信した前記画像を前記画像診断支援装置で処理して、前記現在識別器により識別された物体の画像と前記物体の識別結果とを、前記画像取得装置に送信し、
前記画像取得装置は、受信した前記物体の画像と前記識別結果とを、表示装置に表示する、遠隔診断支援システム。 - 画像を撮像する撮像装置を含む画像取得装置と、
請求項2に記載の機械学習装置を含む画像診断支援装置を含むサーバと、を含み、
前記画像診断支援装置は、前記機械学習装置により生成され使用されている現在識別器を含み、
前記サーバは、前記現在識別器を前記画像取得装置に送信し、
前記画像取得装置は、受信した前記現在識別器を用いて前記撮像装置により撮像された画像を処理し、前記現在識別器により識別された物体の画像と前記物体の識別結果を表示装置に表示する、ネット受託サービス提供システム。 - 画像を処理するプロセッサと、
前記処理の結果を格納する記憶装置と、を含み、
前記プロセッサは、
複数学習画像データベースからから複数識別器を作成し、
前記複数識別器それぞれの識別性能の評価結果を作成し、
前記評価結果に基づいて、前記複数学習画像データベースにおける一つの学習画像データベースおよび前記一つの学習画像データベースから生成される識別器を、使用する学習画像データベースおよび識別器と決定し、
前記一つの学習画像データベースから生成される前記識別器による新たな入力画像の識別結果を表示する、画像診断支援装置。 - 機械学習装置が識別器を作成する機械学習方法であって、
前記機械学習装置は、
データサンプルを処理するプロセッサと、
前記処理の結果を格納する記憶装置と、を含み、
前記機械学習方法は、
前記プロセッサが、複数学習データベースからから複数識別器を作成し、前記複数学習データベースそれぞれは複数学習データサンプルを格納し、
前記プロセッサが、前記複数識別器それぞれの識別性能の評価結果を作成し、
前記プロセッサが、前記評価結果に基づいて、前記複数学習データベースにおける一つの学習データベースおよび前記一つの学習データベースから生成される識別器を、使用する学習データベースおよび識別器と決定する、機械学習方法。 - 請求項11に記載の機械学習方法であって、
前記データサンプルは画像であり、
前記複数学習データベースは、それぞれ、学習画像データベースである、機械学習方法。 - 請求項12に記載の機械学習方法であって、
前記複数学習データベースは、第1学習データベースおよび第2学習データベースを含み、
前記第2学習データベースは、前記第1学習データベースが格納する画像および新規入力画像を格納し、
前記機械学習方法は、前記プロセッサが、前記第2学習データベースにより前記第1学習データベースを更新し、前記第2学習データベースから生成される識別器を使用する、ことの可否を判定する、機械学習方法。 - 請求項13に記載の機械学習方法であって、
前記プロセッサが、前記第1学習データベースから生成した第1識別器および前記第2学習データベースから生成した第2識別器それぞれの識別結果の比較結果に基づき、前記第2学習データベースにより前記第1学習データベースを更新し、前記第2学習データベースから生成される識別器を使用する、ことの可否を判定する、機械学習方法。 - 画像診断支援装置による画像診断支援方法であって、
前記画像診断支援装置は、
画像を処理するプロセッサと、
前記処理の結果を格納する記憶装置と、を含み、
前記画像診断支援方法は、
前記プロセッサが、複数学習画像データベースからから複数識別器を作成し、
前記プロセッサが、前記複数識別器それぞれの識別性能の評価結果を作成し、
前記プロセッサが、前記評価結果に基づいて、前記複数学習画像データベースにおける一つの学習画像データベースおよび前記一つの学習画像データベースから生成される識別器を、使用する学習画像データベースおよび識別器と決定し、
前記プロセッサが、前記一つの学習画像データベースから生成される前記識別器による新たな入力画像の識別結果を表示する、画像診断支援方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20870459.3A EP4039194A4 (en) | 2019-10-01 | 2020-09-29 | MACHINE LEARNING DEVICE |
CN202080064619.2A CN114424218A (zh) | 2019-10-01 | 2020-09-29 | 机器学习装置 |
US17/762,479 US20220351078A1 (en) | 2019-10-01 | 2020-09-29 | Machine learning device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-181165 | 2019-10-01 | ||
JP2019181165A JP7429514B2 (ja) | 2019-10-01 | 2019-10-01 | 機械学習装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065937A1 true WO2021065937A1 (ja) | 2021-04-08 |
Family
ID=75270988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/036985 WO2021065937A1 (ja) | 2019-10-01 | 2020-09-29 | 機械学習装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220351078A1 (ja) |
EP (1) | EP4039194A4 (ja) |
JP (1) | JP7429514B2 (ja) |
CN (1) | CN114424218A (ja) |
WO (1) | WO2021065937A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259648A1 (ja) * | 2021-06-09 | 2022-12-15 | ソニーグループ株式会社 | 情報処理プログラム、情報処理装置、情報処理方法、及び顕微鏡システム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018180794A (ja) * | 2017-04-07 | 2018-11-15 | 株式会社日立ハイテクノロジーズ | 画像診断支援装置及び画像診断支援システム、並びに画像診断支援方法 |
JP2019109553A (ja) * | 2017-12-15 | 2019-07-04 | コニカミノルタ株式会社 | 情報処理装置及び情報処理方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015192239A1 (en) * | 2014-06-20 | 2015-12-23 | Miovision Technologies Incorporated | Machine learning platform for performing large scale data analytics |
US10389928B2 (en) * | 2016-08-11 | 2019-08-20 | United States Of America, As Represented By The Secretary Of The Army | Weapon fire detection and localization algorithm for electro-optical sensors |
-
2019
- 2019-10-01 JP JP2019181165A patent/JP7429514B2/ja active Active
-
2020
- 2020-09-29 EP EP20870459.3A patent/EP4039194A4/en active Pending
- 2020-09-29 WO PCT/JP2020/036985 patent/WO2021065937A1/ja unknown
- 2020-09-29 CN CN202080064619.2A patent/CN114424218A/zh active Pending
- 2020-09-29 US US17/762,479 patent/US20220351078A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018180794A (ja) * | 2017-04-07 | 2018-11-15 | 株式会社日立ハイテクノロジーズ | 画像診断支援装置及び画像診断支援システム、並びに画像診断支援方法 |
JP2019109553A (ja) * | 2017-12-15 | 2019-07-04 | コニカミノルタ株式会社 | 情報処理装置及び情報処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4039194A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259648A1 (ja) * | 2021-06-09 | 2022-12-15 | ソニーグループ株式会社 | 情報処理プログラム、情報処理装置、情報処理方法、及び顕微鏡システム |
Also Published As
Publication number | Publication date |
---|---|
JP7429514B2 (ja) | 2024-02-08 |
JP2021056919A (ja) | 2021-04-08 |
CN114424218A (zh) | 2022-04-29 |
US20220351078A1 (en) | 2022-11-03 |
EP4039194A1 (en) | 2022-08-10 |
EP4039194A4 (en) | 2023-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3637320B1 (en) | Computer program, learning apparatus, detecting apparatus, learning method, and detecting method | |
CN104424466B (zh) | 对象检测方法、对象检测设备及图像拾取设备 | |
CN111524137B (zh) | 基于图像识别的细胞识别计数方法、装置和计算机设备 | |
CN110648322B (zh) | 一种子宫颈异常细胞检测方法及系统 | |
US11676268B2 (en) | Image diagnosis assisting apparatus, image diagnosis assisting system and image diagnosis assisting method | |
US10007834B2 (en) | Detection control device, detection system, non-transitory storage medium, and detection control method | |
CN107430757A (zh) | 细胞诊断支援装置、细胞诊断支援方法、远程诊断支援系统、服务提供系统及图像处理方法 | |
CN110503000B (zh) | 一种基于人脸识别技术的教学抬头率测量方法 | |
CN111932510A (zh) | 一种图像清晰度的确定方法及装置 | |
CN113261012B (zh) | 处理图像的方法、装置及系统 | |
EP4105943A1 (en) | Method and system for predicting reaction to immuno-oncology agent | |
US11972560B2 (en) | Machine learning device, image diagnosis support device, machine learning method and image diagnosis support method | |
US20230177699A1 (en) | Image processing method, image processing apparatus, and image processing system | |
JP2019212148A (ja) | 情報処理装置及び情報処理プログラム | |
WO2021065937A1 (ja) | 機械学習装置 | |
CN108805181B (zh) | 一种基于多分类模型的图像分类装置及分类方法 | |
US20240070537A1 (en) | Microscopy System and Method for Generating a Machine-Learned Model for Processing Microscope Data | |
WO2021246013A1 (ja) | 画像診断方法、画像診断支援装置、及び計算機システム | |
WO2023248788A1 (ja) | 識別器生成装置および画像診断支援装置 | |
JP7529592B2 (ja) | 画像診断支援装置、画像診断支援方法、遠隔診断支援システム、ネット受託サービスシステム | |
JP7365261B2 (ja) | コンピュータシステムおよびプログラム | |
CN117746266B (zh) | 一种基于半监督交互学习的树冠检测方法、装置及介质 | |
KR102461685B1 (ko) | 특징 맵을 이용한 출력 노드 변화 시각화 장치 및 방법 | |
US20230410273A1 (en) | Using luminance distributions to detect best areas of an image for prediction of noise levels | |
WO2023195405A1 (ja) | 細胞検出装置、細胞診断支援装置、細胞検出方法、及び細胞検出プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20870459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020870459 Country of ref document: EP Effective date: 20220502 |