WO2021065872A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2021065872A1
WO2021065872A1 PCT/JP2020/036814 JP2020036814W WO2021065872A1 WO 2021065872 A1 WO2021065872 A1 WO 2021065872A1 JP 2020036814 W JP2020036814 W JP 2020036814W WO 2021065872 A1 WO2021065872 A1 WO 2021065872A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
electrode
medical device
electrode portion
flexibly
Prior art date
Application number
PCT/JP2020/036814
Other languages
French (fr)
Japanese (ja)
Inventor
拓 周
大久保 到
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2021065872A1 publication Critical patent/WO2021065872A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor

Definitions

  • the present invention relates to a medical device that is inserted into a living body and treats a living tissue by energization.
  • IRE Irreversible Electroporation
  • the irreversible electrosurgical method is attracting attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves.
  • a medical device that treats a cancer that is difficult to remove by surgery by using an irreversible electric perforation method is known.
  • a medical device that performs an irreversible electric drilling method has a plurality of electrodes that can be expanded in the radial direction along the circumferential direction, and electricity can flow between the electrodes while the electrodes are in close contact with living tissue.
  • Such a medical device includes, for example, those listed in Patent Document 1.
  • the medical device is inserted into the living body via a tube body inserted in the living body in advance.
  • a valve body is provided at the entrance of the tube body inserted into the living body to prevent blood from flowing out. If the electrodes of the medical device are made flexible, the adhesion to the lesion is improved, but the electrodes are easily deformed when passing through the valve body, which may lead to poor expansion of the electrodes. Further, when the operator holds the electrode portion by hand and inserts the electrode portion, the electrode portion may be deformed.
  • the electrode of the medical device of Patent Document 1 has a small width at the tip and a base end and a large width at the middle portion, so that the rigidity of the middle portion expanding at the lesion portion is high and the adhesion at the lesion portion is low. Conceivable.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a medical device having an electrode portion that has both adhesion in a lesion portion and suppression of deformation by a valve body or an operator. To do.
  • the medical device that achieves the above object includes a long shaft portion, an electrode portion that is arranged at the tip portion of the shaft portion, is elongated along the axis of the shaft portion, and is expandable in the radial direction.
  • the electrode portion includes a first portion including the tip end portion of the electrode portion and a proximal end portion of the electrode portion, and is arranged on the proximal end side of the first portion to insulate the surface. It has a second portion, and the first portion has a current-carrying portion including a surface conductive layer exposed in the expansion direction of the electrode portion, and is formed more flexibly than the second portion.
  • the first portion of the electrode portion that comes into contact with the lesion portion is flexible, and the other portion is hard. Therefore, the adhesion of the electrode portion in the lesion portion and the deformation suppression by the valve body are suppressed. Can be compatible with each other. Further, by holding the second portion of the electrode portion by hand, it is possible to prevent the electrode portion from being damaged at the time of insertion.
  • the first portion has a tip insulating portion arranged at the tip end portion of the electrode portion and the energizing portion arranged on the proximal end side of the tip insulating portion, and the energizing portion has the energizing portion. If the tip insulating portion is formed more flexibly than the second portion and the tip insulating portion is formed more flexibly than the current-carrying portion, the discontinuity of flexibility in the length direction can be relaxed.
  • the first portion is formed flexibly because the thickness is smaller than that of the second portion, the first portion can be easily formed flexibly by adjusting the thickness.
  • the first portion is formed more flexibly by having a material that is more flexible than the second portion, the first portion can be easily formed flexibly by selecting the material. ..
  • the electrode portion is formed by laminating a plurality of layers, and the laminated state can be set if the first portion is flexibly formed by having fewer layers than the second portion. By doing so, the first portion can be easily and flexibly formed.
  • the first portion is flexibly formed by having a notch in the width direction at least a part in the length direction of the electrode portion, the shape, size, number, etc. of the notch may be formed.
  • the first part can be easily and flexibly formed by the setting of.
  • the shaft portion includes a long outer pipe and an inner pipe that is inserted into the outer pipe so as to protrude from the tip portion of the outer pipe and is slidable in the axial direction with respect to the outer pipe.
  • the tip end portion of the electrode portion is fixed to the tip end portion of the inner tube and the base end portion of the electrode portion is fixed to the tip end portion of the outer tube, it can be connected to the outer tube.
  • the electrode portion having the flexible portion can be expanded and contracted.
  • a balloon for expanding the electrode portion is provided at the tip end portion of the shaft portion, and the electrode portion is flexible if at least a part of the first portion is joined to the balloon. Since the first portion is joined to the balloon, the electrode portion can prevent the expansion of the balloon from being hindered.
  • the second portion does not come into contact with the expanded balloon, only the flexible region of the electrode portion comes into contact with the biological tissue, and the adhesion of the electrode portion can be improved.
  • FIG. 5 is an enlarged cross-sectional view of the vicinity of the tip of the medical device in the second embodiment.
  • the medical device 10 of the present embodiment is percutaneously inserted into a living body cavity, contacts a living body tissue at a target site, applies an electric current, and carries out an irreversible electric drilling method.
  • the medical device 10 can also be used for high frequency ablation and electrochemotherapy.
  • the medical device 10 has an electrode portion 40 at the tip end portion of a long tubular shaft portion 21.
  • the shaft portion 21 has an outer pipe 30 and an inner pipe 24.
  • the inner pipe 24 is inserted into the outer pipe 30 so as to protrude from the tip end portion of the outer pipe 30, and is slidable in the axial direction with respect to the outer pipe 30.
  • the medical device 10 has a balloon 22.
  • the medical device 10 has a connecting line 33 for applying a voltage to the electrode portion 40 along the length direction.
  • the connection line 33 is connected to a power supply unit 12 provided outside the medical device 10.
  • the power supply unit 12 can apply a voltage to the electrode unit 40.
  • the tip portion of the outer tube 30 is provided with a tip member 31 for fixing the base end portion of the electrode portion 40
  • the tip portion of the inner tube 24 is provided with a tip fixing member 45 for fixing the tip portion of the electrode portion 40.
  • Each is provided.
  • the balloon 22 is provided at the tip of the inner tube 24.
  • a hub 23 is provided at the base end of the inner pipe 24.
  • the inner pipe 24 has a double pipe structure in which the inner first pipe body 25 and the outer second pipe body 26 are arranged concentrically.
  • a guide wire lumen 27 through which the guide wire 11 is inserted is formed inside the hollow of the first tube body 25.
  • an expansion lumen 28 for circulating the expansion fluid of the balloon 22 is formed inside the hollow of the second tube body 26 and outside the first tube body 25.
  • the first tubular body 25 projects further to the distal end side than the distal end of the second tubular body 26.
  • the base end side end of the balloon 22 is fixed to the second tube body 26, and the tip end side end is fixed to the first tube body 25.
  • the inside of the balloon 22 communicates with the expansion lumen 28.
  • the balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 via the expansion lumen 28.
  • the expansion fluid may be a gas or a liquid, and for example, a gas such as helium gas, CO 2 gas, O 2 gas, or laughing gas, or a liquid such as physiological saline, a contrast medium, or a mixture thereof can be used.
  • the outer tube 30 and the inner tube 24 are preferably formed of a material having a certain degree of flexibility.
  • a material having a certain degree of flexibility include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin.
  • fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane and polytetrafluoroethylene, silicone rubber and latex rubber.
  • the balloon 22 is formed of a thin-film balloon film, and is formed of a flexible material like the outer tube 30 and the inner tube 24. Further, the strength required to surely spread the electrode portion 40 is also required.
  • the material of the balloon 22 the ones mentioned above for the outer tube 30 and the inner tube 24 can be used, or other materials may be used.
  • the electrode portion 40 is a flexible linear member, which is elongated along the axis of the shaft portion 21 and is provided in a plurality in the circumferential direction. In FIG. 1 and the like, for simplification, only two electrode portions 40 are shown, but in reality, a large number of electrode portions 40 are provided depending on the circumferential direction.
  • the distance between the electrode portions 40 is preferably in the range of 3 to 10 mm, but may be other than this range. Further, the electrode portions 40 may be arranged unevenly in the circumferential direction.
  • the tip member 31 has a plurality of fixing holes 31a in the circumferential direction in order to fix the base end portion of the electrode portion 40.
  • the number of fixing holes 31a corresponds to the number of electrode portions 40, and the fixing holes 31a are evenly arranged in the circumferential direction of the tip member 31.
  • the tip fixing member 45 has a plurality of accommodating portions 45a in the circumferential direction in order to fix the tip portion of the electrode portion 40.
  • the number of accommodating portions 45a matches the number of electrode portions 40, and the accommodating portions 45a are evenly arranged in the circumferential direction of the tip fixing member 45.
  • the connecting line 33 is spirally wound and embedded in the first pipe body 25 of the inner pipe 24.
  • the connecting line 33 is pulled out from the tip of the first tubular body 25 into the tip fixing member 45, and is connected to the tip of the electrode portion 40 arranged in the accommodating portion 45a.
  • Each electrode unit 40 is connected to the power supply unit 12 via a connection line 33. As a result, a voltage can be applied from the power supply unit 12 between the electrode units 40 adjacent to each other in the circumferential direction.
  • the electrode portion 40 includes a first portion 41 including a tip portion of the electrode portion 40 and having an energizing portion 43, and a base end portion of the electrode portion 40, and includes a first portion 41.
  • the second portion 42 arranged on the base end side of the above is continuous in the length direction.
  • the surface of the second portion 42 is insulated.
  • the first portion 41 has a conductive connecting portion 54 at the tip portion thereof, and a connecting line 33 is connected to the first portion 41.
  • the surfaces of the conductive connecting portion 54 and the energizing portion 43 exposed in the expansion direction of the electrode portion 40 have conductivity, and the surfaces of the other portions are insulated.
  • the first portion 41 is formed more flexibly than the second portion 42.
  • the tip insulating portion 44 on the tip side of the energizing portion 43 is formed more flexibly. Therefore, in the electrode portion 40, the energizing portion 43 is flexibly formed from the second portion 42, and the tip insulating portion 44 is flexibly formed from the energizing portion 43.
  • the electrode portion 40 is formed by laminating a plurality of layers.
  • the lower surface is the side in contact with the balloon 22, and the upper surface is the side in contact with the living body.
  • the electrode portion 40 is provided with a conductive layer 50 over substantially the entire length.
  • the conductive layer 50 is made of copper.
  • the conductive layer 50 may be formed of a material having conductivity, and may be formed of a metal other than copper or the like.
  • a first insulating layer 51 is provided on the lower surface side of the conductive layer 50 via an adhesive layer 56.
  • the first insulating layer 51 is made of a hard and highly insulating resin material. Examples of such a resin material include polyimide, PET, PEEK and the like.
  • a second insulating layer 52 is provided in the region of the second portion 42 on the upper surface side of the conductive layer 50 via the adhesive layer 56.
  • the second insulating layer 52 is made of the same material as the first insulating layer 51.
  • the second portion 42 is formed of three layers, the first insulating layer 51, the conductive layer 50, and the second insulating layer 52, except for the adhesive layer 56.
  • the first insulating layer 51 and the second insulating layer 52 are joined to each other by an adhesive layer 56 at the base end portion. As a result, the conductive layer 50 is not exposed on the base end surface of the electrode portion 40.
  • a surface conductive layer 55 is provided in the region of the current-carrying portion 43 on the upper surface side of the conductive layer 50, and is exposed in the expansion direction of the electrode portion 40.
  • the surface conductive layer 55 is made of gold and has good conductivity and X-ray impermeableness.
  • the surface conductive layer 55 may be formed of a material having conductivity and X-ray impermeableness other than gold. Since the first insulating layer 51 and the conductive layer 50 are common to the current-carrying portion 43 in the thickness direction, the flexibility of the surface conductive layer 55 determines whether or not it is more flexible than the second portion 42. Therefore, the thickness of the surface conductive layer 55 is set so that the current-carrying portion 43 is more flexible than the second portion 42.
  • a third insulating layer 53 and a conductive connecting portion 54 are provided in the region of the tip insulating portion 44 on the upper surface side of the conductive layer 50.
  • the material of the third insulating layer 53 is the same as that of the first insulating layer 51 and the second insulating layer 52, and the thickness of the third insulating layer 53 is smaller than that of the second insulating layer 52.
  • the tip insulating portion 44 is formed more flexibly than the second portion 42.
  • the thickness of the third insulating layer 53 is set so that the tip insulating portion 44 is more flexible than the energizing portion 43.
  • the conductive connecting portion 54 is made of the same material as the surface conductive layer 55.
  • the first insulating layer 51 and the third insulating layer 53 are joined to each other by an adhesive layer 56 at the tip portion. As a result, the conductive layer 50 is not exposed on the tip surface of the electrode portion 40.
  • each layer of the electrode portion 40 can be set as follows, for example.
  • the conductive layer 50 is 10 ⁇ m
  • the first insulating layer 51 is 15 ⁇ m
  • the second insulating layer 52 is 25 ⁇ m
  • the third insulating layer 53 is 10 ⁇ m
  • the surface conductive layer 55 is 10 ⁇ m.
  • the thickness of each layer may be set to a value other than these, provided that the energizing portion 43 is more flexible than the second portion 42 and the tip insulating portion 44 is more flexible than the energizing portion 43. Good.
  • the flexural modulus of the first portion 41 is preferably in the range of 25 to 75% of that of the second portion 42. .. However, it may be outside this range.
  • first insulating layer 51 and the third insulating layer 53 have a constant thickness along the length direction of the electrode portion 40 in FIG. 4, but the thickness is gradually reduced toward the tip side. Good. As a result, the tip side of the electrode portion 40 can be formed more flexibly.
  • the electrode portion 40 has a tip insulating portion 44 bonded to the surface of the balloon 22 by adhesion.
  • the energizing portion 43 and the second portion 42 are not joined to the balloon 22. However, the energizing portion 43 may be partially or wholly joined to the balloon 22.
  • the electrode portion 40 expands in the radial direction as shown in FIG.
  • the tip insulating portion 44 is bonded to the balloon 22 as described above, and is supported by the balloon 22 to increase the diameter from the tip to the proximal end. Further, it is preferable that the tip insulating portion 44 is adhered so as not to have a gap between the tip insulating portion 44 and the balloon 22. This makes it possible to prevent the formation of a thrombus between the tip insulating portion 44 and the balloon 22.
  • the energizing portion 43 is located near the central portion having the largest diameter of the balloon 22, is supported by the balloon 22, and is in close contact with the living tissue.
  • the second portion 42 is reduced in diameter from the tip end to the base end without contacting the balloon 22.
  • the tip insulating portion 44 joined to and supported by the balloon 22 is the most flexible
  • the energizing portion 43 supported by the balloon 22 is the next most flexible
  • the second portion 42 not in contact with the balloon 22 is the most flexible. It is formed to be hard. Therefore, when the electrode portion 40 is expanded at the lesion portion, the electrode portion 40 can be flexibly deformed according to the shape of the lesion portion, and the adhesion of the electrode portion 40 to the living tissue can be improved. it can. Further, since the first portion 41 is more flexible than the second portion 42, even if the first portion 41 is joined to the balloon 22, the expansion of the balloon can be prevented from being hindered.
  • the second portion 42 that does not come into direct contact with the living tissue is formed to be hard, its deformation can be suppressed when the electrode portion 40 is inserted into the valve body. Further, even if the second portion 42 is held by hand and the electrode portion 40 is inserted through the valve body, since the second portion 42 has rigidity, it is possible to prevent the electrode portion 40 from being deformed or destroyed. ..
  • the electrode portion 60 of the first modification has a first portion 60a on the distal end side and a second portion 60b on the proximal end side.
  • the electrode portion 60 has a conductive layer 63 over almost the entire length, and a first insulating layer 65a is provided on the lower surface side thereof via an adhesive layer 69.
  • a second insulating layer 65b is provided in the region of the second portion 60b via an adhesive layer 69, and a surface conductive layer 68 is provided in the energizing portion 61. ..
  • the first insulating layer 65a and the second insulating layer 65b are joined by an adhesive layer 69 at the base end portion.
  • a third insulating layer 65c is formed on the upper surface side of the conductive layer 63 in the tip insulating portion 62.
  • the tip insulating portion 62 is also formed with a conductive connecting portion 67.
  • the third insulating layer 65c has the same thickness as the second insulating layer 65b of the second portion 60b, and is made of a material more flexible than the second insulating layer 65b.
  • the second insulating layer 65b is made of a hard resin material such as polyimide, PET, or PEEK, like the electrode portion 40 described above, whereas the third insulating layer 65c is made of nylon, urethane, elastomer, or the like. It is made of a flexible and insulating resin material.
  • the material of the third insulating layer 65c may be a photosolder resist containing a photosensitive / thermosetting resin as a main component.
  • the tip of the third insulating layer 65c is joined to the first insulating layer 65a via an adhesive layer 69.
  • the third insulating layer 65c is made of a more flexible material than the second insulating layer 65b, and the third insulating layer 65c is the third insulating layer 53 in the electrode portion 40 described above.
  • the second insulating layer 65b may be made of a similar material and the second insulating layer 65b may be made of a harder material, or the materials of both the second insulating layer 65b and the third insulating layer 65c may be changed.
  • the flexural modulus of the first portion 60a is 25 to 75% of that of the second portion 60b. It is preferably in the range. However, it may be outside this range.
  • the electrode portion 70 of the second modification has a first portion 70a on the distal end side and a second portion 70b on the proximal end side.
  • the electrode portion 60 has a conductive layer 73 extending over the second portion 70b and the energizing portion 71, and on the lower surface side of the conductive layer 73, a first insulating layer 75a extends over the entire length of the electrode portion 70 via an adhesive layer 79. Is formed.
  • a second insulating layer 75b is formed in the region of the second portion 70b, and a surface conductive layer 78 is formed in the region of the energizing portion 71.
  • a third insulating layer 75c is formed on the upper surface side of the first insulating layer 75a via an adhesive layer 79. That is, in this modification, the tip insulating portion 72 does not have the conductive layer 73, and the tip insulating portion 72 is thinner and more flexible than the second portion 70.
  • the tip insulating portion 72 does not have the conductive layer 73, the conductive connecting portion 77 is formed in the second portion 70. Therefore, the connection line 33 from the power supply unit 12 is connected to the base end portion of the electrode portion 70, unlike the previous examples.
  • the flexural modulus of the first portion 70a is preferably in the range of 25 to 75% of that of the second portion 70b. However, it may be outside this range.
  • the first insulating layer 75a and the third insulating layer 75c may be gradually thinned toward the tip side. As a result, the tip side of the electrode portion 70 can be formed more flexibly.
  • the tip insulating portion described above may be adopted at the same time.
  • the thickness of the third insulating layer 53 is smaller than that of the second insulating layer 52, and the material of the third insulating layer 65c is more flexible than that of the second insulating layer 65b like the electrode portion 60.
  • the conductive layer 73 is not provided on the tip insulating portion 72, and the third insulating layer 75c is formed on the upper surface side of the first insulating layer 75a via the adhesive layer 79. You may do so.
  • the electrode portion 80 of the third modification has a first portion 80a on the distal end side and a second portion 80b on the proximal end side.
  • the configuration of the first portion 80a is the same as that of the electrode portion 40 of FIG. 4, and includes an energizing portion 81 and a tip insulating portion 82.
  • a first insulating layer 85a is provided on one side of the conductive layer 83, and a surface conductive layer 88, a third insulating layer 85c, and a conductive connecting portion 87 are provided on the other side.
  • the second portion 80b is formed of one layer of the second insulating layer 85b. In this way, the second portion 80b may be formed by only one layer.
  • the flexural modulus of the first portion 80a is preferably in the range of 25 to 75% of that of the second portion 80b. However, it may be outside this range.
  • the electrode portions 90, 100, 110 of the fourth to sixth modified examples will be described.
  • the first portion is flexibly formed by the notch in the width direction of the tip insulating portion.
  • the electrode portion 90 of the third modification has a second portion 90b and a first portion 90a having an energizing portion 91 and a tip insulating portion 92.
  • the tip insulating portion 92 is narrower than the second portion 90b.
  • notches 94 in the space are formed on both sides of the tip insulating portion 92 in the width direction. Since the tip insulating portion 92 has the cutout portion 94, the first portion 90a is formed more flexibly than the second portion 90b.
  • the width of the tip insulating portion 92 changes depending on the width of the notch portion 94, and the flexibility can be adjusted.
  • the flexural modulus of the first portion 90a is preferably in the range of 25 to 75% of the second portion 90b, but may be outside this range.
  • the electrode portion 100 of the fourth modification has a second portion 100b and a first portion 100a having an energizing portion 101 and a tip insulating portion 102.
  • the tip insulating portion 102 has a plurality of cutout portions 104 in which a part of both sides is notched.
  • the notch 104 makes the first portion 100a more flexible than the second portion 100b.
  • the flexibility of the first portion 100a can be adjusted according to the size and number of the cutout portions 104.
  • the flexural modulus of the first portion 100a is preferably in the range of 25 to 75% of the second portion 100b, but may be outside this range.
  • the electrode portion 110 of the fifth modification has a second portion 110b and a first portion 110a having an energizing portion 111 and a tip insulating portion 112.
  • a plurality of hole-shaped notches 114 are formed in the tip insulating portion 112.
  • the notch 114 makes the first portion 110a more flexible than the second portion 110b.
  • the flexibility of the first portion 110a can be adjusted by the size and number of the cutouts 114.
  • the flexural modulus of the first portion 110a is preferably in the range of 25 to 75% of that of the second portion 110b, but may be outside this range.
  • first portion may be formed more flexibly than the second portion by combining the fourth to sixth modifications and the configurations of the electrode portions described before.
  • the balloon 22 is used to expand the electrode portion 40, but in the second embodiment, the balloon is not provided.
  • the shaft portion 121 has an outer tube 122 and an inner tube 123, and the inner tube 123 inserted into the lumen of the outer tube 122 has a single lumen.
  • a fixing member 125 is provided at the tip of the outer tube 122 to fix the base end of the electrode portion 124.
  • a tip fixing member 126 is provided at the tip of the inner tube 123 to fix the tip of the electrode portion 124.
  • the electrode portion 124 either the electrode portion 40 of the first embodiment or the electrode portion of a modified example thereof can be used as it is.
  • the electrode portion 124 can be expanded by the operator pulling the inner tube 123 in the axial direction with respect to the outer tube 122.
  • an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like.
  • the guide wire is inserted into the introducer, the guide wire is projected toward the tip side, and then the tip of the guiding catheter is inserted into the tip of the introducer. Insert into the blood vessel through the opening. After that, the guiding catheter is gradually pushed to the target site while leading the guide wire.
  • the end of the guide wire is inserted into the opening at the tip of the guide wire lumen 27 of the inner tube 24, and the guide wire is ejected from the hub 23.
  • the medical device 10 is inserted from the tip into the guiding catheter inserted into the blood vessel, and the electrode portion 40 and the shaft portion 21 are pushed along the guide wire.
  • the second portion 42 of the electrode portion 40 is held by hand and inserted into the guiding catheter from the first portion 41. Since the second portion 42 is harder than the first portion 41, the electrode portion 40 can be inserted without being damaged.
  • the expansion fluid is supplied into the balloon 22 via the expansion lumen 28 to expand the balloon 22.
  • the electrode 40 has a shape that is expanded in the radial direction by the balloon 22. In this state, a voltage is applied between the power supply unit 12 and the electrode 40.
  • the balloon 22 and the electrode portion 40 are contracted. Then, all the instruments inserted into the blood vessels are removed to complete the procedure.
  • the medical device 10 is an electrode arranged at a long shaft portion 21 and a tip portion of the shaft portion 21 and elongated along the axis of the shaft portion 21 and expandable in the radial direction.
  • the electrode portion 40 includes a first portion 41 including the tip end portion of the electrode portion 40 and a proximal end portion of the electrode portion 40, and is arranged on the proximal end side of the first portion 41.
  • the first portion 41 has a second portion 42 whose surface is insulated, and the first portion 41 has a current-carrying portion 43 including a surface conductive layer 55 exposed in the expansion direction of the electrode portion 40, and is more than a second portion 42. It is formed flexibly.
  • the first portion 41 of the electrode portion 40 that comes into contact with the lesion portion is flexible, and the other portion is hard. Therefore, the adhesion of the electrode portion 40 in the lesion portion and the suppression of deformation by the valve body are compatible. Can be done. Further, by holding the first portion of the electrode portion 40 by hand, it is possible to prevent the electrode portion 40 from being damaged at the time of insertion.
  • the first portion 41 has a tip insulating portion 44 on the tip side and an energizing portion 43 on the proximal end side, the energizing portion 43 is formed more flexibly than the second portion 42, and the tip insulating portion 44 is energized. If it is formed more flexibly than the portion 43, the discontinuity of flexibility in the length direction can be relaxed.
  • the first portion 41 is made to be flexibly formed because the thickness is smaller than that of the second portion 42, the first portion 41 can be easily formed flexibly by adjusting the thickness.
  • the first portion 60a is formed more flexibly by having a material more flexible than the second portion 60b, the first portion 60a can be easily formed flexibly by selecting the material. it can.
  • the electrode portion 70 is formed by laminating a plurality of layers, and the first portion 70a can be flexibly formed by having fewer layers than the second portion 70b, so that the laminated state can be set. By doing so, the first portion 70a can be easily formed flexibly.
  • the first portion 80a is flexibly formed by having the notch portion 84 in the width direction at least a part in the length direction of the electrode portion 40, the shape and size of the notch portion 84 and The first portion 80a can be easily and flexibly formed by setting the number and the like.
  • the shaft portion 21 has a long outer pipe 30 and an inner pipe 24 that is inserted into the outer pipe 30 so as to protrude from the tip portion of the outer pipe 30 and is slidable in the axial direction with respect to the outer pipe 30.
  • the tip of the electrode portion 40 is fixed to the tip of the inner tube 24, and the base end of the electrode portion 40 is fixed to the tip of the outer tube 30.
  • a balloon 22 for expanding the electrode portion 40 is provided at the tip portion of the shaft portion 21, and the electrode portion 40 is flexible if at least a part of the first portion 41 is joined to the balloon 22. Since the first portion 41 is joined to the balloon 22, the electrode portion 40 can prevent the expansion of the balloon 22 from being hindered.
  • the second portion 42 does not come into contact with the expanded balloon 22, only the flexible region of the electrode portion 40 can be brought into contact with the biological tissue, and the adhesion of the electrode portion 40 can be improved. ..
  • each example is provided with one energizing portion, but may have a plurality of energizing portions.
  • each energizing unit can be connected in series or in parallel.
  • each example in which a plurality of layers are laminated may further have layers other than these.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is a medical device which has an electrode part that closely adheres to a lesion and suppresses deformation by a valve body or an operator. The medical device (10) comprises a long shaft part (21), and an electrode part (40) which is disposed at a distal end of the shaft part (21), is long and thin along the axis of the shaft part (21), and is radially expandable. The electrode part (40) has a first portion (41) that includes a distal end of the electrode part (40), and a second portion (42) that includes a base end of the electrode part (40), is disposed on the base end side of the first portion (41), and has an insulated surface. The first portion (41): includes a conducting part (43) having a surface conducting layer (55) that is exposed in the expanding direction of the electrode part (40); and is formed to be more flexible than the second portion (42).

Description

医療デバイスMedical device
 本発明は、生体内に挿入され生体組織に対し通電による治療を行う医療デバイスに関する。 The present invention relates to a medical device that is inserted into a living body and treats a living tissue by energization.
 医療デバイスとして、不可逆電気穿孔法(IRE:Irreversible Electroporation)による治療を行うものが知られている。不可逆電気穿孔法は、非熱性であり、周囲の血管や神経への損傷を抑えることができることから、注目されている。例えば、外科手術での除去が困難ながんに対して、不可逆電気穿孔法を用いて治療を行う医療装置が知られている。 As a medical device, a device that performs treatment by an irreversible electric drilling method (IRE: Irreversible Electroporation) is known. The irreversible electrosurgical method is attracting attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves. For example, a medical device that treats a cancer that is difficult to remove by surgery by using an irreversible electric perforation method is known.
 不可逆電気穿孔法を行う医療デバイスは、径方向に拡張可能な電極を周方向に沿って複数有し、電極が生体組織に密着した状態で、電極間に電気を流すことができる。このような医療デバイスとして、例えば特許文献1に挙げるようなものがある。 A medical device that performs an irreversible electric drilling method has a plurality of electrodes that can be expanded in the radial direction along the circumferential direction, and electricity can flow between the electrodes while the electrodes are in close contact with living tissue. Such a medical device includes, for example, those listed in Patent Document 1.
特許第6013186号公報Japanese Patent No. 6013186
 医療デバイスは、予め生体内に挿入された管体を介して生体に挿入される。生体に挿入された管体の入口には、血液が流出しないように弁体が設けられている。医療デバイスの電極を柔軟にすると、病変部に対する密着性は良好になるが、弁体を通過する際に変形しやすく、電極の拡張不良などに繋がる可能性がある。また、電極部を術者が手で持って挿入する際にも、電極部を変形させてしまう可能性がある。 The medical device is inserted into the living body via a tube body inserted in the living body in advance. A valve body is provided at the entrance of the tube body inserted into the living body to prevent blood from flowing out. If the electrodes of the medical device are made flexible, the adhesion to the lesion is improved, but the electrodes are easily deformed when passing through the valve body, which may lead to poor expansion of the electrodes. Further, when the operator holds the electrode portion by hand and inserts the electrode portion, the electrode portion may be deformed.
 一方で、医療デバイスの電極を硬くすると、弁体を通過する際等における変形は抑えられるが、病変部での密着性が低下する。特に、病変部が異形な場合に、電極が生体組織に密着しにくい。特許文献1の医療デバイスの電極は、先端部と基端部の幅が小さく、中間部の幅が大きいので、病変部で拡張する中間部の剛性が高く、病変部での密着性が低いと考えられる。 On the other hand, if the electrodes of the medical device are hardened, the deformation when passing through the valve body is suppressed, but the adhesion at the lesion portion is lowered. In particular, when the lesion is irregular, it is difficult for the electrodes to adhere to the living tissue. The electrode of the medical device of Patent Document 1 has a small width at the tip and a base end and a large width at the middle portion, so that the rigidity of the middle portion expanding at the lesion portion is high and the adhesion at the lesion portion is low. Conceivable.
 本発明は、上述した課題を解決するためになされたものであり、病変部における密着性と、弁体や術者による変形の抑制を両立した電極部を有する医療デバイスを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a medical device having an electrode portion that has both adhesion in a lesion portion and suppression of deformation by a valve body or an operator. To do.
 上記目的を達成する本発明に係る医療デバイスは、長尺なシャフト部と、前記シャフト部の先端部に配置され、前記シャフト部の軸に沿って細長く、径方向に拡張可能な電極部と、を備え、前記電極部は、該電極部の先端部を含む第1の部分と、前記電極部の基端部を含み、前記第1の部分の基端側に配置され、表面が絶縁された第2の部分とを有し、 前記第1の部分は、前記電極部の拡張方向に露出する表面導電層を含む通電部を有し、前記第2の部分より柔軟に形成される。 The medical device according to the present invention that achieves the above object includes a long shaft portion, an electrode portion that is arranged at the tip portion of the shaft portion, is elongated along the axis of the shaft portion, and is expandable in the radial direction. The electrode portion includes a first portion including the tip end portion of the electrode portion and a proximal end portion of the electrode portion, and is arranged on the proximal end side of the first portion to insulate the surface. It has a second portion, and the first portion has a current-carrying portion including a surface conductive layer exposed in the expansion direction of the electrode portion, and is formed more flexibly than the second portion.
 上記のように構成した医療デバイスは、電極部のうち病変部に接触する第1の部分は柔軟で、それ以外の部分は硬いため、電極部の病変部における密着性と、弁体による変形抑制を両立することができる。また、電極部のうち第2の部分を手で持つことで、挿入時に電極部を破損等することを防止できる。 In the medical device configured as described above, the first portion of the electrode portion that comes into contact with the lesion portion is flexible, and the other portion is hard. Therefore, the adhesion of the electrode portion in the lesion portion and the deformation suppression by the valve body are suppressed. Can be compatible with each other. Further, by holding the second portion of the electrode portion by hand, it is possible to prevent the electrode portion from being damaged at the time of insertion.
 また、前記第1の部分は、前記電極部の先端部に配置された先端絶縁部と、該先端絶縁部より基端側に配置された前記通電部と、を有し、前記通電部は前記第2の部分より柔軟に形成され、前記先端絶縁部は前記通電部より柔軟に形成されるようにすれば、長さ方向における柔軟性の非連続性を緩和できる。 Further, the first portion has a tip insulating portion arranged at the tip end portion of the electrode portion and the energizing portion arranged on the proximal end side of the tip insulating portion, and the energizing portion has the energizing portion. If the tip insulating portion is formed more flexibly than the second portion and the tip insulating portion is formed more flexibly than the current-carrying portion, the discontinuity of flexibility in the length direction can be relaxed.
 また、前記第1の部分は、前記第2の部分より厚みが小さいことにより柔軟に形成されるようにすれば、厚みを調整することで簡単に第1の部分を柔軟に形成できる。 Further, if the first portion is formed flexibly because the thickness is smaller than that of the second portion, the first portion can be easily formed flexibly by adjusting the thickness.
 また、前記第1の部分は、前記第2の部分より柔軟な材料を有していることにより柔軟に形成されるようにすれば、材料の選択により簡単に第1の部分を柔軟に形成できる。 Further, if the first portion is formed more flexibly by having a material that is more flexible than the second portion, the first portion can be easily formed flexibly by selecting the material. ..
 また、前記電極部は複数の層が積層されて形成されており、前記第1の部分は、前記第2の部分より層が少ないことにより柔軟に形成されるようにすれば、積層状態を設定することで簡単に第1の部分を柔軟に形成できる。 Further, the electrode portion is formed by laminating a plurality of layers, and the laminated state can be set if the first portion is flexibly formed by having fewer layers than the second portion. By doing so, the first portion can be easily and flexibly formed.
 また、前記第1の部分は、前記電極部の長さ方向の少なくとも一部に幅方向における切欠部を有することにより柔軟に形成されるようにすれば、切欠部の形状や大きさ及び数などの設定により簡単に第1の部分を柔軟に形成できる。 Further, if the first portion is flexibly formed by having a notch in the width direction at least a part in the length direction of the electrode portion, the shape, size, number, etc. of the notch may be formed. The first part can be easily and flexibly formed by the setting of.
 また、前記シャフト部は、長尺な外管と、該外管の先端部から突出するように前記外管内に挿通され、前記外管に対して軸方向にスライド可能な内管と、を有し、前記電極部の先端部は、前記内管の先端部に固定されており、前記電極部の基端部は、前記外管の先端部に固定されているようにすれば、外管と内管とが軸方向にスライドすることにより、柔軟な部分を有する電極部を拡張、収縮させることができる。 Further, the shaft portion includes a long outer pipe and an inner pipe that is inserted into the outer pipe so as to protrude from the tip portion of the outer pipe and is slidable in the axial direction with respect to the outer pipe. However, if the tip end portion of the electrode portion is fixed to the tip end portion of the inner tube and the base end portion of the electrode portion is fixed to the tip end portion of the outer tube, it can be connected to the outer tube. By sliding the inner tube in the axial direction, the electrode portion having the flexible portion can be expanded and contracted.
 また、前記シャフト部の先端部には、前記電極部を拡張させるバルーンが設けられ、前記電極部は前記第1の部分の少なくとも一部が前記バルーンに接合されているようにすれば、柔軟な第1の部分がバルーンに接合されているので、バルーンの拡張を電極部が妨げないようにすることができる。 Further, a balloon for expanding the electrode portion is provided at the tip end portion of the shaft portion, and the electrode portion is flexible if at least a part of the first portion is joined to the balloon. Since the first portion is joined to the balloon, the electrode portion can prevent the expansion of the balloon from being hindered.
 また、前記第2の部分は拡張した前記バルーンに接触しないようにすれば、電極部のうち柔軟な領域のみ生体組織に接触させるようにして、電極部の密着性を向上させることができる。 Further, if the second portion does not come into contact with the expanded balloon, only the flexible region of the electrode portion comes into contact with the biological tissue, and the adhesion of the electrode portion can be improved.
第1の実施形態における医療デバイスの概略を示す正面図である。It is a front view which shows the outline of the medical device in 1st Embodiment. 医療デバイスの先端部付近の拡大断面図である。It is an enlarged sectional view near the tip of a medical device. 電極部の平面図である。It is a top view of the electrode part. 電極部を長さ方向と平行な面で切断した断面図である。It is sectional drawing which cut | cut the electrode part in the plane parallel to the length direction. 電極部が拡張した状態における医療デバイスの先端部付近の拡大断面図である。It is an enlarged cross-sectional view near the tip part of the medical device in the state where the electrode part is expanded. 第1の変形例の電極部を長さ方向と平行な面で切断した断面図である。It is sectional drawing which cut | cut the electrode part of the 1st modification in the plane parallel to the length direction. 第2の変形例の電極部を長さ方向と平行な面で切断した断面図である。It is sectional drawing which cut | cut the electrode part of the 2nd modification in the plane parallel to the length direction. 第3の変形例の電極部を長さ方向と平行な面で切断した断面図である。It is sectional drawing which cut | cut the electrode part of the 3rd modification in the plane parallel to the length direction. 第4~6の変形例の電極部を長さ方向と平行な面で切断した断面図である。It is sectional drawing which cut | cut the electrode part of the 4th to 6th modified examples in the plane parallel to the length direction. 第2の実施形態における医療デバイスの先端部付近の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of the tip of the medical device in the second embodiment.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、本明細書では、医療デバイス10の生体内腔に挿入する側を「先端」若しくは「先端側」、操作する手元側を「基端」若しくは「基端側」と称することとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensional ratios in the drawings may be exaggerated and differ from the actual ratios for convenience of explanation. Further, in the present specification, the side of the medical device 10 to be inserted into the living body cavity is referred to as "tip" or "tip side", and the hand side to be operated is referred to as "base end" or "base end side".
 本実施形態の医療デバイス10は、生体内腔に対し経皮的に挿入され、目的部位の生体組織に接触して電流を印加し、不可逆電気穿孔法を実施するものである。また、医療デバイス10は、高周波焼灼や電気化学療法(Electro-Chemicaltherapy)にも使用することができる。 The medical device 10 of the present embodiment is percutaneously inserted into a living body cavity, contacts a living body tissue at a target site, applies an electric current, and carries out an irreversible electric drilling method. The medical device 10 can also be used for high frequency ablation and electrochemotherapy.
 図1に示すように、医療デバイス10は、長尺管状のシャフト部21の先端部に電極部40を有している。シャフト部21は、外管30と内管24とを有している。内管24は、外管30の先端部から突出するように外管30内に挿通され、外管30に対して軸方向にスライド可能である。また、医療デバイス10はバルーン22を有している。医療デバイス10は、電極部40に電圧を印加するための接続線33を長さ方向に沿って有している。接続線33は、医療デバイス10の外部に設けられる電源部12に接続されている。電源部12は、電極部40に対して電圧を与えることができる。また、外管30の先端部には、電極部40の基端部を固定する先端部材31が、内管24の先端部には、電極部40の先端部を固定する先端固定部材45が、それぞれ設けられている。 As shown in FIG. 1, the medical device 10 has an electrode portion 40 at the tip end portion of a long tubular shaft portion 21. The shaft portion 21 has an outer pipe 30 and an inner pipe 24. The inner pipe 24 is inserted into the outer pipe 30 so as to protrude from the tip end portion of the outer pipe 30, and is slidable in the axial direction with respect to the outer pipe 30. In addition, the medical device 10 has a balloon 22. The medical device 10 has a connecting line 33 for applying a voltage to the electrode portion 40 along the length direction. The connection line 33 is connected to a power supply unit 12 provided outside the medical device 10. The power supply unit 12 can apply a voltage to the electrode unit 40. Further, the tip portion of the outer tube 30 is provided with a tip member 31 for fixing the base end portion of the electrode portion 40, and the tip portion of the inner tube 24 is provided with a tip fixing member 45 for fixing the tip portion of the electrode portion 40. Each is provided.
 バルーン22は、内管24の先端部に設けられている。内管24の基端部には、ハブ23が設けられる。 The balloon 22 is provided at the tip of the inner tube 24. A hub 23 is provided at the base end of the inner pipe 24.
 図2に示すように、内管24は、内側の第1管体25と外側の第2管体26とが同心円状に配置された二重管構造となっている。第1管体25の中空内部には、ガイドワイヤ11を挿通させるガイドワイヤルーメン27が形成される。また、第2管体26の中空内部であって、第1管体25の外側には、バルーン22の拡張用流体を流通させる拡張ルーメン28が形成される。 As shown in FIG. 2, the inner pipe 24 has a double pipe structure in which the inner first pipe body 25 and the outer second pipe body 26 are arranged concentrically. A guide wire lumen 27 through which the guide wire 11 is inserted is formed inside the hollow of the first tube body 25. Further, an expansion lumen 28 for circulating the expansion fluid of the balloon 22 is formed inside the hollow of the second tube body 26 and outside the first tube body 25.
 第1管体25は、第2管体26の先端よりもさらに先端側まで突出している。バルーン22は、基端側端部が第2管体26に固定され、先端側端部が第1管体25に固定されている。これにより、バルーン22の内部が拡張ルーメン28と連通している。拡張ルーメン28を介してバルーン22に拡張用流体を注入することで、バルーン22を拡張させることができる。拡張用流体は気体でも液体でもよく、例えばヘリウムガス、COガス、Oガス、笑気ガス等の気体や、生理食塩水、造影剤、およびその混合剤等の液体を用いることができる。 The first tubular body 25 projects further to the distal end side than the distal end of the second tubular body 26. The base end side end of the balloon 22 is fixed to the second tube body 26, and the tip end side end is fixed to the first tube body 25. As a result, the inside of the balloon 22 communicates with the expansion lumen 28. The balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 via the expansion lumen 28. The expansion fluid may be a gas or a liquid, and for example, a gas such as helium gas, CO 2 gas, O 2 gas, or laughing gas, or a liquid such as physiological saline, a contrast medium, or a mixture thereof can be used.
 外管30と内管24は、ある程度の可撓性を有する材料により形成されるのが好ましい。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリテトラフルオロエチレン等のフッ素樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。 The outer tube 30 and the inner tube 24 are preferably formed of a material having a certain degree of flexibility. Examples of such a material include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin. Examples thereof include fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane and polytetrafluoroethylene, silicone rubber and latex rubber.
 バルーン22は、薄膜状のバルーン膜によって形成されており、外管30や内管24と同様に、可撓性を有する材料によって形成される。また、電極部40を確実に押し広げる程度の強度も必要とされる。バルーン22の材質には、外管30や内管24について上で挙げたものを用いることができ、また、それ以外であってもよい。 The balloon 22 is formed of a thin-film balloon film, and is formed of a flexible material like the outer tube 30 and the inner tube 24. Further, the strength required to surely spread the electrode portion 40 is also required. As the material of the balloon 22, the ones mentioned above for the outer tube 30 and the inner tube 24 can be used, or other materials may be used.
 次に、電極部40について説明する。電極部40は可撓性を有した線状の部材であり、シャフト部21の軸に沿って細長く、周方向に複数設けられる。図1等では、簡略化のため、電極部40は2本のみ示されているが、実際には電極部40は周方向により多数が設けられる。電極部40間の間隔は、3~10mmの範囲が望ましいが、この範囲以外であってもよい。また、電極部40は、周方向に不均等に配置されていてもよい。 Next, the electrode portion 40 will be described. The electrode portion 40 is a flexible linear member, which is elongated along the axis of the shaft portion 21 and is provided in a plurality in the circumferential direction. In FIG. 1 and the like, for simplification, only two electrode portions 40 are shown, but in reality, a large number of electrode portions 40 are provided depending on the circumferential direction. The distance between the electrode portions 40 is preferably in the range of 3 to 10 mm, but may be other than this range. Further, the electrode portions 40 may be arranged unevenly in the circumferential direction.
 先端部材31は、電極部40の基端部を固定するため、周方向に複数の固定孔31aを有している。固定孔31aの数は、電極部40の数に一致し、固定孔31aは、先端部材31の周方向に均等に配置される。 The tip member 31 has a plurality of fixing holes 31a in the circumferential direction in order to fix the base end portion of the electrode portion 40. The number of fixing holes 31a corresponds to the number of electrode portions 40, and the fixing holes 31a are evenly arranged in the circumferential direction of the tip member 31.
 先端固定部材45は、電極部40の先端部を固定するため、周方向に複数の収容部45aを有している。収容部45aの数は、電極部40の数に一致し、収容部45aは、先端固定部材45の周方向に均等に配置される。 The tip fixing member 45 has a plurality of accommodating portions 45a in the circumferential direction in order to fix the tip portion of the electrode portion 40. The number of accommodating portions 45a matches the number of electrode portions 40, and the accommodating portions 45a are evenly arranged in the circumferential direction of the tip fixing member 45.
 接続線33は、螺旋状に券回されて内管24の第1管体25内に埋設されている。接続線33は第1管体25の先端から先端固定部材45内に引き出され、収容部45a内に配置された電極部40の先端部に接続される。接続線33を介して各電極部40は電源部12に接続されている。これにより、周方向に隣接する電極部40間には、電源部12から電圧を印加できる。 The connecting line 33 is spirally wound and embedded in the first pipe body 25 of the inner pipe 24. The connecting line 33 is pulled out from the tip of the first tubular body 25 into the tip fixing member 45, and is connected to the tip of the electrode portion 40 arranged in the accommodating portion 45a. Each electrode unit 40 is connected to the power supply unit 12 via a connection line 33. As a result, a voltage can be applied from the power supply unit 12 between the electrode units 40 adjacent to each other in the circumferential direction.
 電極部40は、図3に示すように、当該電極部40の先端部を含み、通電部43を有する第1の部分41と、当該電極部40の基端部を含み、第1の部分41の基端側に配置される第2の部分42とが長さ方向に連続している。第2の部分42は、表面が絶縁されている。第1の部分41は、先端部に導電接続部54を有しており、接続線33が接続される。第1の部分41は、電極部40の拡張方向に露出する導電接続部54と通電部43の表面は導電性を有し、それ以外の部分は表面が絶縁されている。第1の部分41は第2の部分42より柔軟に形成されている。また、第1の部分41のうち、通電部43より先端側の先端絶縁部44がより柔軟に形成されている。このため、電極部40は、第2の部分42より通電部43が、通電部43より先端絶縁部44が、それぞれ柔軟に形成されている。 As shown in FIG. 3, the electrode portion 40 includes a first portion 41 including a tip portion of the electrode portion 40 and having an energizing portion 43, and a base end portion of the electrode portion 40, and includes a first portion 41. The second portion 42 arranged on the base end side of the above is continuous in the length direction. The surface of the second portion 42 is insulated. The first portion 41 has a conductive connecting portion 54 at the tip portion thereof, and a connecting line 33 is connected to the first portion 41. In the first portion 41, the surfaces of the conductive connecting portion 54 and the energizing portion 43 exposed in the expansion direction of the electrode portion 40 have conductivity, and the surfaces of the other portions are insulated. The first portion 41 is formed more flexibly than the second portion 42. Further, of the first portion 41, the tip insulating portion 44 on the tip side of the energizing portion 43 is formed more flexibly. Therefore, in the electrode portion 40, the energizing portion 43 is flexibly formed from the second portion 42, and the tip insulating portion 44 is flexibly formed from the energizing portion 43.
 図4に示すように、電極部40は、複数の層が積層されて形成されている。図4において下面はバルーン22に接する側であり、上面は生体に接する側である。電極部40には、ほぼ全長に渡って導電層50が設けられている。導電層50は、銅で形成されている。ただし、導電層50は導電性を有する材料で形成されていればよく、銅以外の金属等で形成されていてもよい。 As shown in FIG. 4, the electrode portion 40 is formed by laminating a plurality of layers. In FIG. 4, the lower surface is the side in contact with the balloon 22, and the upper surface is the side in contact with the living body. The electrode portion 40 is provided with a conductive layer 50 over substantially the entire length. The conductive layer 50 is made of copper. However, the conductive layer 50 may be formed of a material having conductivity, and may be formed of a metal other than copper or the like.
 導電層50の下面側には、接着層56を介して第1絶縁層51が設けられている。第1絶縁層51は、硬質で絶縁性の高い樹脂材で形成される。このような樹脂材としては、例えばポリイミド、PET、PEEKなどが挙げられる。 A first insulating layer 51 is provided on the lower surface side of the conductive layer 50 via an adhesive layer 56. The first insulating layer 51 is made of a hard and highly insulating resin material. Examples of such a resin material include polyimide, PET, PEEK and the like.
 導電層50の上面側のうち、第2の部分42の領域には、接着層56を介して第2絶縁層52が設けられている。第2絶縁層52は、第1絶縁層51と同様の材料で形成される。これにより、第2の部分42は、接着層56を除くと、第1絶縁層51と導電層50及び第2絶縁層52の3層で形成される。また、第1絶縁層51と第2絶縁層52は、基端部において接着層56により互いに接合されている。これにより、導電層50は電極部40の基端面に露出しない。 A second insulating layer 52 is provided in the region of the second portion 42 on the upper surface side of the conductive layer 50 via the adhesive layer 56. The second insulating layer 52 is made of the same material as the first insulating layer 51. As a result, the second portion 42 is formed of three layers, the first insulating layer 51, the conductive layer 50, and the second insulating layer 52, except for the adhesive layer 56. Further, the first insulating layer 51 and the second insulating layer 52 are joined to each other by an adhesive layer 56 at the base end portion. As a result, the conductive layer 50 is not exposed on the base end surface of the electrode portion 40.
 導電層50の上面側のうち、通電部43の領域には、表面導電層55が設けられており、電極部40の拡張方向に露出する。表面導電層55は、金で形成されており、良好な導電性及びX線不透過性を有している。ただし、表面導電層55は、金以外の導電性及びX線不透過性を有する材料で形成されていてもよい。通電部43は、厚み方向において第1絶縁層51と導電層50が共通するので、表面導電層55の柔軟性によって、第2の部分42より柔軟か否かが定まる。このため、表面導電層55は、第2の部分42より通電部43が柔軟となるように厚みが設定される。 A surface conductive layer 55 is provided in the region of the current-carrying portion 43 on the upper surface side of the conductive layer 50, and is exposed in the expansion direction of the electrode portion 40. The surface conductive layer 55 is made of gold and has good conductivity and X-ray impermeableness. However, the surface conductive layer 55 may be formed of a material having conductivity and X-ray impermeableness other than gold. Since the first insulating layer 51 and the conductive layer 50 are common to the current-carrying portion 43 in the thickness direction, the flexibility of the surface conductive layer 55 determines whether or not it is more flexible than the second portion 42. Therefore, the thickness of the surface conductive layer 55 is set so that the current-carrying portion 43 is more flexible than the second portion 42.
 導電層50の上面側のうち、先端絶縁部44の領域には、第3絶縁層53と導電接続部54が設けられている。第3絶縁層53は、材料は第1絶縁層51や第2絶縁層52と同様であり、厚みは第2絶縁層52よりも小さい。これにより、先端絶縁部44は第2の部分42より柔軟に形成される。また、第3絶縁層53は、先端絶縁部44が通電部43よりも柔軟となるように厚みが設定される。導電接続部54は、表面導電層55と同様の材料で形成される。第1絶縁層51と第3絶縁層53は、先端部において接着層56により互いに接合されている。これにより、導電層50は電極部40の先端面に露出しない。 A third insulating layer 53 and a conductive connecting portion 54 are provided in the region of the tip insulating portion 44 on the upper surface side of the conductive layer 50. The material of the third insulating layer 53 is the same as that of the first insulating layer 51 and the second insulating layer 52, and the thickness of the third insulating layer 53 is smaller than that of the second insulating layer 52. As a result, the tip insulating portion 44 is formed more flexibly than the second portion 42. Further, the thickness of the third insulating layer 53 is set so that the tip insulating portion 44 is more flexible than the energizing portion 43. The conductive connecting portion 54 is made of the same material as the surface conductive layer 55. The first insulating layer 51 and the third insulating layer 53 are joined to each other by an adhesive layer 56 at the tip portion. As a result, the conductive layer 50 is not exposed on the tip surface of the electrode portion 40.
 電極部40の各層の厚みは、例えば以下のように設定することができる。導電層50は10μm、第1絶縁層51は15μm、第2絶縁層52は25μm、第3絶縁層53は10μm、表面導電層55は10μmである。ただし、各層の厚みは、前述のように、第2の部分42より通電部43が、通電部43より先端絶縁部44が、それぞれ柔軟となるのであれば、これら以外の数値に設定されてもよい。 The thickness of each layer of the electrode portion 40 can be set as follows, for example. The conductive layer 50 is 10 μm, the first insulating layer 51 is 15 μm, the second insulating layer 52 is 25 μm, the third insulating layer 53 is 10 μm, and the surface conductive layer 55 is 10 μm. However, as described above, the thickness of each layer may be set to a value other than these, provided that the energizing portion 43 is more flexible than the second portion 42 and the tip insulating portion 44 is more flexible than the energizing portion 43. Good.
 このように、第3絶縁層53及び表面導電層55の厚みを調整することで、第1の部分41の曲げ弾性率は、第2の部分42の25~75%の範囲となることが好ましい。ただし、この範囲外であってもよい。 By adjusting the thicknesses of the third insulating layer 53 and the surface conductive layer 55 in this way, the flexural modulus of the first portion 41 is preferably in the range of 25 to 75% of that of the second portion 42. .. However, it may be outside this range.
 また、第1絶縁層51や第3絶縁層53につき、図4では電極部40の長さ方向に沿って一定の厚みを有しているが、先端側に向かって次第に薄くなるようにしてもよい。これにより、電極部40の先端側ほど柔軟に形成することができる。 Further, the first insulating layer 51 and the third insulating layer 53 have a constant thickness along the length direction of the electrode portion 40 in FIG. 4, but the thickness is gradually reduced toward the tip side. Good. As a result, the tip side of the electrode portion 40 can be formed more flexibly.
 電極部40は、図2に示すように、先端絶縁部44がバルーン22の表面に対し接着により接合される。通電部43及び第2の部分42はバルーン22には接合されない。ただし、通電部43については、一部あるいは全体をバルーン22に接合してもよい。 As shown in FIG. 2, the electrode portion 40 has a tip insulating portion 44 bonded to the surface of the balloon 22 by adhesion. The energizing portion 43 and the second portion 42 are not joined to the balloon 22. However, the energizing portion 43 may be partially or wholly joined to the balloon 22.
 バルーン22が拡張すると、図5に示すように、電極部40は径方向に拡張する。電極部40のうち、先端絶縁部44は、前述のようにバルーン22に接着により接合されているため、バルーン22に支持されて先端から基端に向かって拡径する。また、先端絶縁部44は、バルーン22との間に隙間がないように接着されていることが好ましい。これにより、先端絶縁部44とバルーン22との間で血栓が形成されることを防止できる。通電部43は、バルーン22の最も径の大きい中央部付近に位置し、バルーン22に支持されて生体組織に密着する。第2の部分42は、バルーン22に接することなく先端から基端に向かって縮径する。 When the balloon 22 expands, the electrode portion 40 expands in the radial direction as shown in FIG. Of the electrode portions 40, the tip insulating portion 44 is bonded to the balloon 22 as described above, and is supported by the balloon 22 to increase the diameter from the tip to the proximal end. Further, it is preferable that the tip insulating portion 44 is adhered so as not to have a gap between the tip insulating portion 44 and the balloon 22. This makes it possible to prevent the formation of a thrombus between the tip insulating portion 44 and the balloon 22. The energizing portion 43 is located near the central portion having the largest diameter of the balloon 22, is supported by the balloon 22, and is in close contact with the living tissue. The second portion 42 is reduced in diameter from the tip end to the base end without contacting the balloon 22.
 電極部40は、バルーン22に接合されて支持される先端絶縁部44が最も柔軟で、バルーン22に支持される通電部43が次に柔軟で、バルーン22に接しない第2の部分42が最も硬くなるように形成されている。このため、病変部で電極部40を拡張させた際に、電極部40が病変部の形状に合わせて柔軟に変形することができ、電極部40の生体組織に対する密着性を良好にすることができる。また、第2の部分42より第1の部分41が柔軟であることから、第1の部分41がバルーン22に接合されていても、バルーンの拡張を妨げないようにすることができる。 In the electrode portion 40, the tip insulating portion 44 joined to and supported by the balloon 22 is the most flexible, the energizing portion 43 supported by the balloon 22 is the next most flexible, and the second portion 42 not in contact with the balloon 22 is the most flexible. It is formed to be hard. Therefore, when the electrode portion 40 is expanded at the lesion portion, the electrode portion 40 can be flexibly deformed according to the shape of the lesion portion, and the adhesion of the electrode portion 40 to the living tissue can be improved. it can. Further, since the first portion 41 is more flexible than the second portion 42, even if the first portion 41 is joined to the balloon 22, the expansion of the balloon can be prevented from being hindered.
 その一方で、生体組織に直接接触しない第2の部分42については硬くなるように形成されているので、電極部40を弁体に挿通させる際に、その変形を抑制できる。また、第2の部分42を手で持って電極部40を弁体に挿通させても、第2の部分42が剛性を有しているため、電極部40を変形あるいは破壊することを防止できる。 On the other hand, since the second portion 42 that does not come into direct contact with the living tissue is formed to be hard, its deformation can be suppressed when the electrode portion 40 is inserted into the valve body. Further, even if the second portion 42 is held by hand and the electrode portion 40 is inserted through the valve body, since the second portion 42 has rigidity, it is possible to prevent the electrode portion 40 from being deformed or destroyed. ..
 次に、電極部の変形例について説明する。図6に示すように、第1の変形例の電極部60は、先端側の第1の部分60aと基端側の第2の部分60bとを有している。電極部60は、ほぼ全長に渡る導電層63を有し、その下面側には接着層69を介して第1絶縁層65aが設けられている。また、導電層63の上面側のうち、第2の部分60bの領域には、接着層69を介して第2絶縁層65bが、通電部61には表面導電層68が、それぞれ設けられている。第1絶縁層65aと第2絶縁層65bは、基端部において接着層69により接合されている。 Next, a modified example of the electrode portion will be described. As shown in FIG. 6, the electrode portion 60 of the first modification has a first portion 60a on the distal end side and a second portion 60b on the proximal end side. The electrode portion 60 has a conductive layer 63 over almost the entire length, and a first insulating layer 65a is provided on the lower surface side thereof via an adhesive layer 69. Further, on the upper surface side of the conductive layer 63, a second insulating layer 65b is provided in the region of the second portion 60b via an adhesive layer 69, and a surface conductive layer 68 is provided in the energizing portion 61. .. The first insulating layer 65a and the second insulating layer 65b are joined by an adhesive layer 69 at the base end portion.
 先端絶縁部62には、導電層63の上面側に、第3絶縁層65cが形成されている。また、先端絶縁部62には、導電接続部67も形成される。第3絶縁層65cは、第2の部分60bの第2絶縁層65bと同じ厚みを有し、第2絶縁層65bより柔軟な材料で形成されている。第2絶縁層65bは、前述の電極部40と同様、ポリイミド、PET、PEEKなどの硬質な樹脂材で形成されているのに対し、第3絶縁層65cは、ナイロン、ウレタン、エラストマーなどのより柔軟でかつ絶縁性を有する樹脂材で形成されている。また、第3絶縁層65cの材料としては、感光性・熱硬化性樹脂を主成分とするフォトソルダーレジストであってもよい。なお、第3絶縁層65cの先端部は、接着層69を介して第1絶縁層65aと接合されている。 A third insulating layer 65c is formed on the upper surface side of the conductive layer 63 in the tip insulating portion 62. The tip insulating portion 62 is also formed with a conductive connecting portion 67. The third insulating layer 65c has the same thickness as the second insulating layer 65b of the second portion 60b, and is made of a material more flexible than the second insulating layer 65b. The second insulating layer 65b is made of a hard resin material such as polyimide, PET, or PEEK, like the electrode portion 40 described above, whereas the third insulating layer 65c is made of nylon, urethane, elastomer, or the like. It is made of a flexible and insulating resin material. Further, the material of the third insulating layer 65c may be a photosolder resist containing a photosensitive / thermosetting resin as a main component. The tip of the third insulating layer 65c is joined to the first insulating layer 65a via an adhesive layer 69.
 また、本変形例では、第2絶縁層65bより第3絶縁層65cの方が柔軟な材料で形成されていればよく、第3絶縁層65cが前述の電極部40における第3絶縁層53と同様な材料で形成され、第2絶縁層65bがより硬質な材料で形成されてもよいし、第2絶縁層65bと第3絶縁層65cの両方の材料を変更してもよい。 Further, in this modification, it is sufficient that the third insulating layer 65c is made of a more flexible material than the second insulating layer 65b, and the third insulating layer 65c is the third insulating layer 53 in the electrode portion 40 described above. The second insulating layer 65b may be made of a similar material and the second insulating layer 65b may be made of a harder material, or the materials of both the second insulating layer 65b and the third insulating layer 65c may be changed.
 このように、材料の選択により第3絶縁層65cの第2絶縁層65bに対する柔軟性を調整することで、第1の部分60aの曲げ弾性率は、第2の部分60bの25~75%の範囲となることが好ましい。ただし、この範囲外であってもよい。 In this way, by adjusting the flexibility of the third insulating layer 65c with respect to the second insulating layer 65b by selecting the material, the flexural modulus of the first portion 60a is 25 to 75% of that of the second portion 60b. It is preferably in the range. However, it may be outside this range.
 次に、第2の変形例の電極部70について説明する。図7に示すように、本変形例の電極部70は、先端側の第1の部分70aと基端側の第2の部分70bとを有している。電極部60は、第2の部分70bと通電部71に渡る導電層73を有し、導電層73の下面側には、電極部70の全長に渡り第1絶縁層75aが接着層79を介して形成されている。導電層73の上面側には、第2の部分70bの領域に第2絶縁層75bが、通電部71の領域に表面導電層78が、それぞれ形成されている。先端絶縁部72には、第1絶縁層75aの上面側に接着層79を介して第3絶縁層75cが形成されている。すなわち、本変形例では、先端絶縁部72が導電層73を有しておらず、その分、先端絶縁部72は第2の部分70に比べて厚みが小さく、柔軟に形成される。 Next, the electrode portion 70 of the second modification will be described. As shown in FIG. 7, the electrode portion 70 of this modified example has a first portion 70a on the distal end side and a second portion 70b on the proximal end side. The electrode portion 60 has a conductive layer 73 extending over the second portion 70b and the energizing portion 71, and on the lower surface side of the conductive layer 73, a first insulating layer 75a extends over the entire length of the electrode portion 70 via an adhesive layer 79. Is formed. On the upper surface side of the conductive layer 73, a second insulating layer 75b is formed in the region of the second portion 70b, and a surface conductive layer 78 is formed in the region of the energizing portion 71. In the tip insulating portion 72, a third insulating layer 75c is formed on the upper surface side of the first insulating layer 75a via an adhesive layer 79. That is, in this modification, the tip insulating portion 72 does not have the conductive layer 73, and the tip insulating portion 72 is thinner and more flexible than the second portion 70.
 本変形例では、先端絶縁部72に導電層73を有していないので、導電接続部77は第2の部分70に形成される。このため、電源部12からの接続線33は、これまでの例と異なり、電極部70の基端部に接続される。 In this modification, since the tip insulating portion 72 does not have the conductive layer 73, the conductive connecting portion 77 is formed in the second portion 70. Therefore, the connection line 33 from the power supply unit 12 is connected to the base end portion of the electrode portion 70, unlike the previous examples.
 このように、電極部70を構成する各部の層構造を変えることで、第1の部分70aの曲げ弾性率は、第2の部分70bの25~75%の範囲となることが好ましい。ただし、この範囲外であってもよい。 By changing the layer structure of each portion constituting the electrode portion 70 in this way, the flexural modulus of the first portion 70a is preferably in the range of 25 to 75% of that of the second portion 70b. However, it may be outside this range.
 また、本例においても、第1絶縁層75aや第3絶縁層75cにつき、先端側に向かって次第に薄くなるようにしてもよい。これにより、電極部70の先端側ほど柔軟に形成することができる。 Further, also in this example, the first insulating layer 75a and the third insulating layer 75c may be gradually thinned toward the tip side. As a result, the tip side of the electrode portion 70 can be formed more flexibly.
 また、これまで説明した先端絶縁部の構成を、2つまたは3つ同時に採用してもよい。例えば、電極部40のように、第3絶縁層53の厚みを第2絶縁層52より小さくしつつ、電極部60のように、第3絶縁層65cの材質を第2絶縁層65bより柔軟な素材とし、さらに、電極部70のように、先端絶縁部72の部分には導電層73を設けず、第3絶縁層75cが接着層79を介して第1絶縁層75aの上面側に形成されるようにしてもよい。 Further, two or three configurations of the tip insulating portion described above may be adopted at the same time. For example, like the electrode portion 40, the thickness of the third insulating layer 53 is smaller than that of the second insulating layer 52, and the material of the third insulating layer 65c is more flexible than that of the second insulating layer 65b like the electrode portion 60. Further, unlike the electrode portion 70, the conductive layer 73 is not provided on the tip insulating portion 72, and the third insulating layer 75c is formed on the upper surface side of the first insulating layer 75a via the adhesive layer 79. You may do so.
 次に、第3の変形例の電極部80について説明する。図8に示すように、第3の変形例の電極部80は、先端側の第1の部分80aと基端側の第2の部分80bとを有している。第1の部分80aの構成は図4の電極部40と同様であり、通電部81と先端絶縁部82とを有している。また、導電層83の一方側に第1絶縁層85aが、他方側に表面導電層88と第3絶縁層85c及び導電接続部87が設けられる。第2の部分80bは、第2の絶縁層85bの一層で形成されている。このように、第2の部分80bを一層のみで形成してもよい。この場合にも、第1の部分80aの曲げ弾性率は、第2の部分80bの25~75%の範囲となることが好ましい。ただし、この範囲外であってもよい。 Next, the electrode portion 80 of the third modification will be described. As shown in FIG. 8, the electrode portion 80 of the third modification has a first portion 80a on the distal end side and a second portion 80b on the proximal end side. The configuration of the first portion 80a is the same as that of the electrode portion 40 of FIG. 4, and includes an energizing portion 81 and a tip insulating portion 82. Further, a first insulating layer 85a is provided on one side of the conductive layer 83, and a surface conductive layer 88, a third insulating layer 85c, and a conductive connecting portion 87 are provided on the other side. The second portion 80b is formed of one layer of the second insulating layer 85b. In this way, the second portion 80b may be formed by only one layer. Also in this case, the flexural modulus of the first portion 80a is preferably in the range of 25 to 75% of that of the second portion 80b. However, it may be outside this range.
 次に、第4~6の変形例の電極部90,100,110について説明する。これらは、いずれも先端絶縁部の幅方向における切欠部によって、第1の部分を柔軟に形成している。図9(a)に示すように、第3の変形例の電極部90は、第2の部分90bと、通電部91及び先端絶縁部92を有する第1の部分90aとを有している。先端絶縁部92は、第2の部分90bより幅が狭い。これにより、先端絶縁部92の両側部には、幅方向において空間の切欠部94が形成される。先端絶縁部92が切欠部94を有していることで、第1の部分90aは第2の部分90bより柔軟に形成される。切欠部94の幅により、先端絶縁部92の幅が変化し、柔軟性を調整することができる。本例においても、第1の部分90aの曲げ弾性率は、第2の部分90bの25~75%の範囲となることが好ましいが、この範囲外であってもよい。 Next, the electrode portions 90, 100, 110 of the fourth to sixth modified examples will be described. In each of these, the first portion is flexibly formed by the notch in the width direction of the tip insulating portion. As shown in FIG. 9A, the electrode portion 90 of the third modification has a second portion 90b and a first portion 90a having an energizing portion 91 and a tip insulating portion 92. The tip insulating portion 92 is narrower than the second portion 90b. As a result, notches 94 in the space are formed on both sides of the tip insulating portion 92 in the width direction. Since the tip insulating portion 92 has the cutout portion 94, the first portion 90a is formed more flexibly than the second portion 90b. The width of the tip insulating portion 92 changes depending on the width of the notch portion 94, and the flexibility can be adjusted. Also in this example, the flexural modulus of the first portion 90a is preferably in the range of 25 to 75% of the second portion 90b, but may be outside this range.
 図9(b)に示すように、第4の変形例の電極部100は、第2の部分100bと、通電部101及び先端絶縁部102を有する第1の部分100aとを有している。先端絶縁部102は、両側の一部が切り欠かれた切欠部104を複数有している。この切欠部104によって、第1の部分100aは第2の部分100bより柔軟に形成される。切欠部104の大きさや数によって、第1の部分100aの柔軟性を調整することができる。本例においても、第1の部分100aの曲げ弾性率は、第2の部分100bの25~75%の範囲となることが好ましいが、この範囲外であってもよい。 As shown in FIG. 9B, the electrode portion 100 of the fourth modification has a second portion 100b and a first portion 100a having an energizing portion 101 and a tip insulating portion 102. The tip insulating portion 102 has a plurality of cutout portions 104 in which a part of both sides is notched. The notch 104 makes the first portion 100a more flexible than the second portion 100b. The flexibility of the first portion 100a can be adjusted according to the size and number of the cutout portions 104. Also in this example, the flexural modulus of the first portion 100a is preferably in the range of 25 to 75% of the second portion 100b, but may be outside this range.
 図9(c)に示すように、第5の変形例の電極部110は、第2の部分110bと、通電部111及び先端絶縁部112を有する第1の部分110aとを有している。先端絶縁部112には、孔状の切欠部114が複数形成されている。この切欠部114によって、第1の部分110aは第2の部分110bより柔軟に形成される。切欠部114の大きさや数によって、第1の部分110aの柔軟性を調整することができる。本例においても、第1の部分110aの曲げ弾性率は、第2の部分110bの25~75%の範囲となることが好ましいが、この範囲外であってもよい。 As shown in FIG. 9C, the electrode portion 110 of the fifth modification has a second portion 110b and a first portion 110a having an energizing portion 111 and a tip insulating portion 112. A plurality of hole-shaped notches 114 are formed in the tip insulating portion 112. The notch 114 makes the first portion 110a more flexible than the second portion 110b. The flexibility of the first portion 110a can be adjusted by the size and number of the cutouts 114. Also in this example, the flexural modulus of the first portion 110a is preferably in the range of 25 to 75% of that of the second portion 110b, but may be outside this range.
 また、第4~6の変形例と、それ以前に説明した電極部の構成とを組み合わせることで、第1の部分を第2の部分より柔軟に形成してもよい。 Further, the first portion may be formed more flexibly than the second portion by combining the fourth to sixth modifications and the configurations of the electrode portions described before.
 次に、第2の実施形態の医療デバイス120について説明する。第1の実施形態では、電極部40を拡張させるためにバルーン22を用いているが、第2の実施形態ではバルーンを有していない。図10に示すように、シャフト部121は、外管122と内管123を有し、外管122の内腔に挿通される内管123は、単一のルーメンを有している。外管122の先端部には、固定部材125が設けられて電極部124の基端部を固定する。内管123の先端部には、先端固定部材126が設けられて電極部124の先端部を固定する。電極部124には、第1の実施形態の電極部40及びその変形例の電極部のいずれかをそのまま用いることができる。術者が内管123を外管122に対して軸方向に引っ張ることで、電極部124を拡張させることができる。 Next, the medical device 120 of the second embodiment will be described. In the first embodiment, the balloon 22 is used to expand the electrode portion 40, but in the second embodiment, the balloon is not provided. As shown in FIG. 10, the shaft portion 121 has an outer tube 122 and an inner tube 123, and the inner tube 123 inserted into the lumen of the outer tube 122 has a single lumen. A fixing member 125 is provided at the tip of the outer tube 122 to fix the base end of the electrode portion 124. A tip fixing member 126 is provided at the tip of the inner tube 123 to fix the tip of the electrode portion 124. For the electrode portion 124, either the electrode portion 40 of the first embodiment or the electrode portion of a modified example thereof can be used as it is. The electrode portion 124 can be expanded by the operator pulling the inner tube 123 in the axial direction with respect to the outer tube 122.
 次に、医療デバイス10を用いた処置方法の例について説明する。始めに、セルジンガー法などによりイントロデューサー(図示しない)を経皮的に血管に穿刺する。次に、ガイドワイヤ(図示しない)を挿入後、ガイディングカテーテル(図示しない)を、イントロデューサーに挿入し、ガイドワイヤを先端側に突出させてから、ガイディングカテーテルの先端部をイントロデューサーの先端部開口から血管内へ挿入する。この後、ガイドワイヤを先行させつつ、ガイディングカテーテルを目的部位まで徐々に押し進める。 Next, an example of a treatment method using the medical device 10 will be described. First, an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like. Next, after inserting the guide wire (not shown), the guiding catheter (not shown) is inserted into the introducer, the guide wire is projected toward the tip side, and then the tip of the guiding catheter is inserted into the tip of the introducer. Insert into the blood vessel through the opening. After that, the guiding catheter is gradually pushed to the target site while leading the guide wire.
 次に、バルーン22及び電極部40が収縮した状態において、内管24のガイドワイヤルーメン27の先端部開口部に、ガイドワイヤの末端を挿入し、ハブ23からガイドワイヤを出す。次に、血管内に挿入されているガイディングカテーテル内に、医療デバイス10を先端部から挿入し、ガイドワイヤに沿わせて電極部40及びシャフト部21を押し進める。電極部40をガイディングカテーテルに挿入する際には、電極部40の第2の部分42を手で持って、第1の部分41からガイディングカテーテル内に挿入する。第2の部分42は第1の部分41より硬いので、電極部40を破損等することなく挿入することができる。 Next, with the balloon 22 and the electrode portion 40 contracted, the end of the guide wire is inserted into the opening at the tip of the guide wire lumen 27 of the inner tube 24, and the guide wire is ejected from the hub 23. Next, the medical device 10 is inserted from the tip into the guiding catheter inserted into the blood vessel, and the electrode portion 40 and the shaft portion 21 are pushed along the guide wire. When inserting the electrode portion 40 into the guiding catheter, the second portion 42 of the electrode portion 40 is held by hand and inserted into the guiding catheter from the first portion 41. Since the second portion 42 is harder than the first portion 41, the electrode portion 40 can be inserted without being damaged.
 電極部40を目的位置まで挿入したら、拡張ルーメン28を介して拡張用流体をバルーン22内に供給し、バルーン22を拡張させる。これにより、図5に示すように、電極40がバルーン22によって径方向に拡張した形状となる。この状態で、電源部12から電極40間に電圧が印加される。 After the electrode portion 40 is inserted to the target position, the expansion fluid is supplied into the balloon 22 via the expansion lumen 28 to expand the balloon 22. As a result, as shown in FIG. 5, the electrode 40 has a shape that is expanded in the radial direction by the balloon 22. In this state, a voltage is applied between the power supply unit 12 and the electrode 40.
 電圧の印加が完了したら、バルーン22及び電極部40を収縮させる。その後、血管内に挿入された全ての器具を抜出し、処置を完了する。 When the voltage application is completed, the balloon 22 and the electrode portion 40 are contracted. Then, all the instruments inserted into the blood vessels are removed to complete the procedure.
 以上のように、本実施形態に係る医療デバイス10は、長尺なシャフト部21と、シャフト部21の先端部に配置され、シャフト部21の軸に沿って細長く、径方向に拡張可能な電極部40と、を備え、電極部40は、電極部40の先端部を含む第1の部分41と、電極部40の基端部を含み、第1の部分41の基端側に配置され、表面が絶縁された第2の部分42とを有し、第1の部分41は、電極部40の拡張方向に露出する表面導電層55を含む通電部43を有し、第2の部分42より柔軟に形成される。これにより、電極部40のうち病変部に接触する第1の部分41は柔軟で、それ以外の部分は硬いため、電極部40の病変部における密着性と、弁体による変形抑制を両立することができる。また、電極部40のうち第1の部分を手で持つことで、挿入時に電極部40を破損等することを防止できる。 As described above, the medical device 10 according to the present embodiment is an electrode arranged at a long shaft portion 21 and a tip portion of the shaft portion 21 and elongated along the axis of the shaft portion 21 and expandable in the radial direction. The electrode portion 40 includes a first portion 41 including the tip end portion of the electrode portion 40 and a proximal end portion of the electrode portion 40, and is arranged on the proximal end side of the first portion 41. The first portion 41 has a second portion 42 whose surface is insulated, and the first portion 41 has a current-carrying portion 43 including a surface conductive layer 55 exposed in the expansion direction of the electrode portion 40, and is more than a second portion 42. It is formed flexibly. As a result, the first portion 41 of the electrode portion 40 that comes into contact with the lesion portion is flexible, and the other portion is hard. Therefore, the adhesion of the electrode portion 40 in the lesion portion and the suppression of deformation by the valve body are compatible. Can be done. Further, by holding the first portion of the electrode portion 40 by hand, it is possible to prevent the electrode portion 40 from being damaged at the time of insertion.
 また、第1の部分41は、先端側の先端絶縁部44と基端側の通電部43とを有し、通電部43は第2の部分42より柔軟に形成され、先端絶縁部44は通電部43より柔軟に形成されるようにすれば、長さ方向における柔軟性の非連続性を緩和できる。 Further, the first portion 41 has a tip insulating portion 44 on the tip side and an energizing portion 43 on the proximal end side, the energizing portion 43 is formed more flexibly than the second portion 42, and the tip insulating portion 44 is energized. If it is formed more flexibly than the portion 43, the discontinuity of flexibility in the length direction can be relaxed.
 また、第1の部分41は、第2の部分42より厚みが小さいことにより柔軟に形成されるようにすれば、厚みを調整することで簡単に第1の部分41を柔軟に形成できる。 Further, if the first portion 41 is made to be flexibly formed because the thickness is smaller than that of the second portion 42, the first portion 41 can be easily formed flexibly by adjusting the thickness.
 また、第1の部分60aは、第2の部分60bより柔軟な材料を有していることにより柔軟に形成されるようにすれば、材料の選択により簡単に第1の部分60aを柔軟に形成できる。 Further, if the first portion 60a is formed more flexibly by having a material more flexible than the second portion 60b, the first portion 60a can be easily formed flexibly by selecting the material. it can.
 また、電極部70は複数の層が積層されて形成されており、第1の部分70aは、第2の部分70bより層が少ないことにより柔軟に形成されるようにすれば、積層状態を設定することで簡単に第1の部分70aを柔軟に形成できる。 Further, the electrode portion 70 is formed by laminating a plurality of layers, and the first portion 70a can be flexibly formed by having fewer layers than the second portion 70b, so that the laminated state can be set. By doing so, the first portion 70a can be easily formed flexibly.
 また、第1の部分80aは、電極部40の長さ方向の少なくとも一部に幅方向における切欠部84を有することにより柔軟に形成されるようにすれば、切欠部84の形状や大きさ及び数などの設定により簡単に第1の部分80aを柔軟に形成できる。 Further, if the first portion 80a is flexibly formed by having the notch portion 84 in the width direction at least a part in the length direction of the electrode portion 40, the shape and size of the notch portion 84 and The first portion 80a can be easily and flexibly formed by setting the number and the like.
 また、シャフト部21は、長尺な外管30と、外管30の先端部から突出するように外管30内に挿通され、外管30に対して軸方向にスライド可能な内管24と、を有し、電極部40の先端部は、内管24の先端部に固定されており、電極部40の基端部は、外管30の先端部に固定されているようにすれば、外管30と内管24とが軸方向にスライドすることにより、柔軟な部分を有する電極部40を拡張、収縮させることができる。 Further, the shaft portion 21 has a long outer pipe 30 and an inner pipe 24 that is inserted into the outer pipe 30 so as to protrude from the tip portion of the outer pipe 30 and is slidable in the axial direction with respect to the outer pipe 30. , And the tip of the electrode portion 40 is fixed to the tip of the inner tube 24, and the base end of the electrode portion 40 is fixed to the tip of the outer tube 30. By sliding the outer tube 30 and the inner tube 24 in the axial direction, the electrode portion 40 having a flexible portion can be expanded and contracted.
 また、シャフト部21の先端部には、電極部40を拡張させるバルーン22が設けられ、電極部40は第1の部分41の少なくとも一部がバルーン22に接合されているようにすれば、柔軟な第1の部分41がバルーン22に接合されているので、バルーン22の拡張を電極部40が妨げないようにすることができる。 Further, a balloon 22 for expanding the electrode portion 40 is provided at the tip portion of the shaft portion 21, and the electrode portion 40 is flexible if at least a part of the first portion 41 is joined to the balloon 22. Since the first portion 41 is joined to the balloon 22, the electrode portion 40 can prevent the expansion of the balloon 22 from being hindered.
 また、第2の部分42は拡張したバルーン22に接触しないようにすれば、電極部40のうち柔軟な領域のみ生体組織に接触させるようにして、電極部40の密着性を向上させることができる。 Further, if the second portion 42 does not come into contact with the expanded balloon 22, only the flexible region of the electrode portion 40 can be brought into contact with the biological tissue, and the adhesion of the electrode portion 40 can be improved. ..
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、各例における電極部は、通電部が1つ設けられているが、複数の通電部を有していてもよい。この場合に各通電部は、直列あるいは並列に接続されることができる。 The present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, the electrode portion in each example is provided with one energizing portion, but may have a plurality of energizing portions. In this case, each energizing unit can be connected in series or in parallel.
 また、複数の層が積層された各例の電極部について、これら以外の層をさらに有していてもよい。 Further, the electrode portion of each example in which a plurality of layers are laminated may further have layers other than these.
 なお、本出願は、2019年9月30日に出願された日本特許出願2019-179474号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2019-179474 filed on September 30, 2019, and the disclosure contents thereof are referred to and incorporated as a whole.
 10  医療デバイス
 12  電源部
 20  バルーンカテーテル
 21  シャフト部
 22  バルーン
 23  ハブ
 24  内管
 25  第1管体
 26  第2管体
 27  ガイドワイヤルーメン
 28  拡張ルーメン
 30  外管
 31  先端部材
 33  接続線
 40  電極部
 41  第1の部分
 42  第2の部分
 43  通電部
 44  先端絶縁部
 45  先端固定部材
 50  導電層
 51  第1絶縁層
 52  第2絶縁層
 53  第3絶縁層
 54  導電接続部
 55  表面導電層
 56  接着層
10 Medical device 12 Power supply 20 Balloon catheter 21 Shaft 22 Balloon 23 Hub 24 Inner pipe 25 1st conductor 26 2nd conductor 27 Guide wire lumen 28 Expansion lumen 30 Outer pipe 31 Tip member 33 Connection line 40 Electrode Part 1 42 Second part 43 Energizing part 44 Tip insulating part 45 Tip fixing member 50 Conductive layer 51 First insulating layer 52 Second insulating layer 53 Third insulating layer 54 Conductive connection part 55 Surface conductive layer 56 Adhesive layer

Claims (9)

  1.  長尺なシャフト部と、
     前記シャフト部の先端部に配置され、前記シャフト部の軸に沿って細長く、径方向に拡張可能な電極部と、を備え、
     前記電極部は、該電極部の先端部を含む第1の部分と、前記電極部の基端部を含み、前記第1の部分の基端側に配置され、表面が絶縁された第2の部分とを有し、
     前記第1の部分は、前記電極部の拡張方向に露出する表面導電層を含む通電部を有し、前記第2の部分より柔軟に形成される医療デバイス。
    With a long shaft
    An electrode portion arranged at the tip portion of the shaft portion, elongated along the axis of the shaft portion, and expandable in the radial direction, is provided.
    The electrode portion includes a first portion including the tip end portion of the electrode portion and a base end portion of the electrode portion, and is arranged on the base end side of the first portion and has a surface insulated second. Have a part and
    The first portion is a medical device having a current-carrying portion including a surface conductive layer exposed in the expansion direction of the electrode portion, and is formed more flexibly than the second portion.
  2.  前記第1の部分は、前記電極部の先端部に配置された先端絶縁部と、該先端絶縁部より基端側に配置された前記通電部と、を有し、
     前記通電部は前記第2の部分より柔軟に形成され、前記先端絶縁部は前記通電部より柔軟に形成される請求項1に記載の医療デバイス。
    The first portion has a tip insulating portion arranged at the tip end portion of the electrode portion and the energizing portion arranged on the proximal end side of the tip insulating portion.
    The medical device according to claim 1, wherein the energizing portion is formed more flexibly than the second portion, and the tip insulating portion is formed more flexibly than the energizing portion.
  3.  前記第1の部分は、前記第2の部分より厚みが小さいことにより柔軟に形成される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the first portion is flexibly formed because the thickness is smaller than that of the second portion.
  4.  前記第1の部分は、前記第2の部分より柔軟な材料を有していることにより柔軟に形成される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the first portion is formed more flexibly by having a material that is more flexible than the second portion.
  5.  前記電極部は複数の層が積層されて形成されており、前記第1の部分は、前記第2の部分より層が少ないことにより柔軟に形成される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the electrode portion is formed by laminating a plurality of layers, and the first portion is flexibly formed by having fewer layers than the second portion.
  6.  前記第1の部分は、前記電極部の長さ方向の少なくとも一部に幅方向における切欠部を有することにより柔軟に形成される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the first portion is flexibly formed by having a notch in the width direction at least a part in the length direction of the electrode portion.
  7.  前記シャフト部は、長尺な外管と、該外管の先端部から突出するように前記外管内に挿通され、前記外管に対して軸方向にスライド可能な内管と、を有し、
     前記電極部の先端部は、前記内管の先端部に固定されており、前記電極部の基端部は、前記外管の先端部に固定されている請求項1~6のいずれか1項に記載の医療デバイス。
    The shaft portion has a long outer pipe and an inner pipe that is inserted into the outer pipe so as to protrude from the tip end portion of the outer pipe and is slidable in the axial direction with respect to the outer pipe.
    The tip of the electrode portion is fixed to the tip portion of the inner tube, and the base end portion of the electrode portion is fixed to the tip portion of the outer tube, any one of claims 1 to 6. The medical device described in.
  8.  前記シャフト部の先端部には、前記電極部を拡張させるバルーンが設けられ、前記電極部は前記第1の部分の少なくとも一部が前記バルーンに接合されている請求項1~7のいずれか1項に記載の医療デバイス。 Any one of claims 1 to 7, wherein a balloon for expanding the electrode portion is provided at the tip end portion of the shaft portion, and at least a part of the first portion of the electrode portion is joined to the balloon. The medical device described in the section.
  9.  前記第2の部分は拡張した前記バルーンに接触しない請求項8に記載の医療デバイス。 The medical device according to claim 8, wherein the second part does not come into contact with the expanded balloon.
PCT/JP2020/036814 2019-09-30 2020-09-29 Medical device WO2021065872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179474 2019-09-30
JP2019179474A JP2022173169A (en) 2019-09-30 2019-09-30 medical device

Publications (1)

Publication Number Publication Date
WO2021065872A1 true WO2021065872A1 (en) 2021-04-08

Family

ID=75336937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036814 WO2021065872A1 (en) 2019-09-30 2020-09-29 Medical device

Country Status (2)

Country Link
JP (1) JP2022173169A (en)
WO (1) WO2021065872A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519670A (en) * 2004-11-12 2008-06-12 アスマティックス,インコーポレイテッド Apparatus and method for improved energy delivery
JP2010088697A (en) * 2008-10-09 2010-04-22 Hoya Corp High frequency snare for endoscope
JP2015501162A (en) * 2011-09-14 2015-01-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Ablation device with ion conductive balloon
JP2018108376A (en) * 2017-01-05 2018-07-12 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Hybrid balloon basket catheter
WO2019181612A1 (en) * 2018-03-20 2019-09-26 テルモ株式会社 Medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519670A (en) * 2004-11-12 2008-06-12 アスマティックス,インコーポレイテッド Apparatus and method for improved energy delivery
JP2010088697A (en) * 2008-10-09 2010-04-22 Hoya Corp High frequency snare for endoscope
JP2015501162A (en) * 2011-09-14 2015-01-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Ablation device with ion conductive balloon
JP2018108376A (en) * 2017-01-05 2018-07-12 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Hybrid balloon basket catheter
WO2019181612A1 (en) * 2018-03-20 2019-09-26 テルモ株式会社 Medical device

Also Published As

Publication number Publication date
JP2022173169A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
US9463065B2 (en) Method of treating a living body tissue
EP2289448B1 (en) Tissue ablation system including a balloon anchor wire
WO2020026217A1 (en) Medical device
JP4970049B2 (en) Peripheral ablation device assembly with two inflatable members
WO2019181612A1 (en) Medical device
JP2007516802A (en) Peripheral ablation device assembly with inflatable member
WO2019181634A1 (en) Medical device
CN112702965B (en) Medical apparatus and instruments
EP1790304B1 (en) Tissue ablation system including a balloon anchor wire
WO2021065872A1 (en) Medical device
US20220008128A1 (en) Medical device
JP2020025731A (en) Medical device
WO2021187153A1 (en) Catheter and method for fixing electric wire to catheter
WO2024130853A1 (en) Shock wave balloon catheter device
WO2021065871A1 (en) Medical device
WO2024060518A1 (en) Shock wave balloon catheter device
JP2022120368A (en) catheter
CN116867445A (en) Focus penetrating impact wave guide tube
CN117503265A (en) Shock wave sacculus catheter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP