WO2020026217A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2020026217A1
WO2020026217A1 PCT/IB2019/058116 IB2019058116W WO2020026217A1 WO 2020026217 A1 WO2020026217 A1 WO 2020026217A1 IB 2019058116 W IB2019058116 W IB 2019058116W WO 2020026217 A1 WO2020026217 A1 WO 2020026217A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
electrode
medical device
lumen
shaft portion
Prior art date
Application number
PCT/IB2019/058116
Other languages
French (fr)
Japanese (ja)
Inventor
周拓
大久保到
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2020026217A1 publication Critical patent/WO2020026217A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Definitions

  • the present invention relates to a medical device that is inserted into a living body and performs a treatment on a living tissue by ablation.
  • Irreversible electroporation As a medical device, a device that performs treatment by irreversible electroporation (IRE: Irreversible @ Electroporation) is known. Irreversible electroporation has attracted attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves. For example, a medical device that treats cancer that is difficult to remove by a surgical operation using irreversible electroporation is known.
  • Pulmonary vein isolation which ablates the junction between the pulmonary vein and the left atrium and destroys cardiomyocytes, may be performed for atrial fibrillation caused by abnormal excitation in the myocardial sleeve of the pulmonary vein wall .
  • pulmonary vein isolation a high frequency is generated from the tip of an ablation catheter, and the myocardium is cauterized to a point and necrotic.
  • the ablation catheter is moved to cauterize the pulmonary vein inflow circumferentially to isolate the pulmonary veins.
  • Patent Literature 1 discloses a medical device in which a balloon is provided at a distal end portion of a catheter shaft, and an electrode for high-frequency power supply is arranged on the balloon. A plurality of lumens are formed in the catheter shaft, and one of them has a lead wire electrically connected to the electrode.
  • the electrodes may be electrically short-circuited.
  • the base end portion of the electrode and the conductive wire are entangled.
  • the present invention has been made in order to solve the above-described problems, and provides a medical device capable of suppressing an electric short circuit and entanglement of an electrode for outputting energy to a living body and a conductive wire electrically connected to the electrode. With the goal.
  • a medical device that achieves the above object is a long shaft portion, and is disposed at a tip portion of the shaft portion, extends along a length direction of the shaft portion, and is deformable in a radial direction of the shaft portion.
  • a plurality of electrode portions, and a plurality of conductive wires that pass current to the electrode portion, and the shaft portion is formed with a plurality of housing lumens, and each of the housing lumens includes the conductive wire and the conductive wire. At least a base end of the electrode unit connected to the conductive wire can be accommodated.
  • the base ends of the conductor and the electrode portion are individually accommodated in each of the plurality of accommodation lumens, it is possible to suppress an electrical short circuit or entanglement between the conductors or between the electrode portions.
  • FIG. 2 is a schematic front view illustrating the medical device according to the first embodiment.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB of FIG. 2.
  • the medical device 10 according to the first embodiment is inserted percutaneously into a living body cavity, contacts a living tissue at a target site, applies an electric current, and performs irreversible electroporation.
  • the target of the medical device 10 of the present embodiment is a treatment for performing electroporation over the entire periphery of the entrance of the pulmonary vein in pulmonary vein isolation.
  • the medical device 10 can be applied to other treatments.
  • the medical device 10 includes a long shaft portion 21, a balloon 22 which is an expansion body provided at a distal end portion of the shaft portion 21, and a hub provided at a base end portion of the shaft portion 21. 23 and a plurality of electrode portions 40 provided around the balloon 22.
  • the shaft portion 21 includes an outer tube 30, an inner tube 31 disposed coaxially inside the outer tube 30, and a conductive wire 37 electrically connected to the electrode portion 40.
  • a guide wire lumen 38 is formed along the length direction.
  • a guide wire can be inserted into the guide wire lumen 38.
  • An expansion lumen 39 is formed inside the outer tube 30 and outside the inner tube 31.
  • An expansion fluid for expanding the balloon 22 can flow through the expansion lumen 39.
  • the conducting wire 37 is drawn out from the base end of the shaft section 21 and is connected to the power supply section 12 provided outside the shaft section 21.
  • the power supply unit 12 can apply a high voltage to the electrode unit 40 in a pulsed manner.
  • the outer tube 30 has a first tube 32 and a second tube 33 coaxially.
  • the second tube 33 covers the first tube 32 and is fixed to the first tube 32.
  • the first tube 32 is a circular tube, and extends to the distal end side from the second tube 33.
  • the proximal end of the balloon 22 is fixed to the outer peripheral surface of the first tube 32 closer to the distal end than the second tube 33.
  • the balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 via the expansion lumen 39 inside the first tube 32.
  • the expansion fluid may be a gas or a liquid.
  • a gas such as helium gas, CO 2 gas, O 2 gas, laughing gas, or a liquid such as a physiological saline solution, a contrast agent, and a mixture thereof can be used.
  • the second tube 33 has a plurality of accommodation lumens 35 formed along the length of the second tube 33.
  • the plurality of accommodation lumens 35 are arranged between the inner peripheral surface and the outer peripheral surface of the circular second tubular body 33 so as to be evenly arranged in the circumferential direction. Note that the plurality of accommodation lumens 35 need not be evenly arranged.
  • Each accommodation lumen 35 is open toward the distal end at the distal end surface of the second tubular body 33 located closer to the proximal end than the balloon 22.
  • Each accommodation lumen 35 includes a conducting wire 37 electrically connected to the electrode portion 40, a base end of the electrode portion 40, and a base end fixing portion 34 for fixing the conducting wire 37 and the electrode portion 40 to the accommodation lumen 35. Are located.
  • the proximal fixing portion 34 is located inside the accommodation lumen 35 on the proximal side of the distal end of the accommodation lumen 35.
  • the base fixing portion 34 can be formed by heating and melting a part of the shaft portion 21.
  • the base fixing portion 34 may be formed by an adhesive or the like.
  • the base fixing part 34 fixes the base part of the electrode part 40 and the tip part of the conductive wire 37 to the shaft part 21.
  • the proximal end fixing portion 34 suppresses leakage of blood and the like to the proximal end side through the accommodation lumen 35.
  • the base fixing portion 34 may be fixed to only one of the base portion of the electrode portion 40 or the tip portion of the conductor 37.
  • the inner tube 31 extends to a more distal end than the outermost end of the outer tube 30.
  • the distal end of the balloon 22 is fixed to the outer peripheral surface of the inner tube 31 on the distal end side of the outer tube 30.
  • the outer diameter of the shaft portion 21 is not particularly limited, it is preferable that the shaft portion 21 be minimally invasive and not too large in order to satisfy compatibility with a general sheath or guiding catheter to be inserted. It is within 2.0 mm, preferably within 2.9 mm.
  • the difference between the inner diameter of the outer tube 30 and the outer diameter of the inner tube 31 is preferably such that the time required for expansion and contraction of the balloon 22 does not become too long, and is, for example, 0.3 mm or more.
  • the constituent materials of the outer tube 30 and the inner tube 31 preferably have a certain degree of flexibility.
  • Such materials include, for example, polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft polyvinyl chloride resin, Examples include polyamide, polyamide elastomer, polyimide, polyester, polyester elastomer, polyurethane, fluorine resin such as polytetrafluoroethylene, silicone rubber, latex rubber, and the like.
  • the second tube 33 can be formed of polyamide and the first tube 32 can be formed of polyimide.
  • a pipe body is prepared in which the most advanced position of the second tubular body 33 matches the most advanced position of the first tubular body 32, and the tip of the tubular body is melted with polyamide but melted with polyimide. Soak in no solvent.
  • the outer tube 30 in which the leading end of the first tubular body 32 is located on the distal end side of the leading end of the second tubular body 33 can be easily manufactured.
  • not only the distal end portion but also the proximal end portion of the outer tube 30 may have a shape in which the first tubular body 32 protrudes from the second tubular body 33 toward the proximal end side.
  • the second tube 33 and the first tube 32 may be integrally formed, and then processed into a shape in which only the first tube 32 protrudes toward the distal end by centerless polishing or the like.
  • the balloon 22 is a cylindrical body that can be flexibly deformed.
  • the distal end of the balloon 22 is fixed to the outer peripheral surface of the distal end of the inner tube 31, and the proximal end of the balloon 22 is fixed to the outer peripheral surface of the distal end of the outer tube 30.
  • the balloon 22 is preferably in the form of a thin film and has flexibility. Further, the balloon 22 is required to have such strength that the electrode portion 40 is surely pushed open.
  • the constituent material of the balloon 22 those described above for the shaft portion 21 can be used, and other materials (for example, various elastomer materials such as a hydrogenated styrene-based thermoplastic elastomer (SEBS)) may be used. .
  • SEBS hydrogenated styrene-based thermoplastic elastomer
  • the electrode portion 40 has a first fixing portion 46 on the base end side of the balloon 22, and the first fixing portion 46 is fixed to the base fixing portion 34 inside the accommodation lumen 35. Further, the electrode section 40 has a second fixing section 47 on the distal end side of the balloon 22, and the second fixing section 47 is fixed to a distal fixing section 45 provided in the inner tube 31. The electrode portion 40 is located on the outer peripheral side of the balloon 22 and is not fixed to the balloon 22.
  • the electrode section 40 has a conduction section 42 in a region arranged around the balloon 22.
  • the conduction portion 42 is a region whose surface is not insulated, and can supply a current to the living tissue when it comes into contact with the living tissue.
  • the conduction portion 42 is located on the outer peripheral surface of the electrode portion 40 that comes into contact with the living tissue, that is, the surface opposite to the surface that comes into contact with the balloon 22.
  • the region other than the conductive portion 42 of the electrode portion 40 is an insulating portion 43, and it is preferable that the surface is coated with an insulating coat. Note that the portion in close contact with the balloon 22 does not need to be provided with an insulating coat because the balloon 22 does not contact the living body or blood.
  • the insulating section 43 does not apply a current to the living tissue.
  • Each of the electrode portions 40 has an electrode body 41 located on the distal end side of the electrode portion 40 and an elastic portion 44 located on the proximal end side of the electrode portion 40.
  • the base end of the electrode body 41 is electrically and structurally joined to the front end of the expandable portion 44.
  • the base end of the electrode body 41 is located inside the accommodation lumen 35 when the balloon 22 is deflated.
  • the electrode body 41 is formed of a conductive and flexible wire.
  • the electrode main body 41 in the present embodiment is formed of a superelastic metal represented by nickel titanium.
  • the electrode main body 41 may be formed of a material having another conductivity.
  • the electrode body 41 may be an FPC (flexible printed circuit board) or the like.
  • the cross-sectional shape orthogonal to the length direction of the electrode body 41 is, for example, a rectangle, and the long side is in contact with the balloon 22.
  • the plurality of electrode main bodies 41 arranged in the circumferential direction of the balloon 22 are easily bent in the radial direction of the balloon 22 and are not easily deformed in the direction approaching each other. Therefore, electrical short-circuiting and entanglement between the electrode main bodies 41 can be suppressed.
  • the cross-sectional shape of the electrode body 41 is not limited to a rectangle, but may be a circle, an ellipse, a square, or the like. Further, between the distal end portion of the accommodation lumen 35 and the proximal end portion of the balloon 22, a component such as the distal end fixing portion 45 for determining the position of the electrode portion 40 more precisely may be provided.
  • the expansion and contraction portion 44 has conductivity and can expand and contract in the length direction.
  • the elastic portion 44 has higher elasticity than the balloon 22, but is not limited thereto.
  • the expansion and contraction portion 44 is formed by a coil-shaped spring member.
  • the expansion and contraction of the expansion and contraction portion 44 means that the expansion and contraction are possible in the length direction of the electrode portion 40.
  • Flexible materials generally have flexibility in the bending direction and may be capable of lengthening and contracting.
  • the spring member forming the expandable portion 44 has good conductivity and durability during expansion and contraction, and can be easily joined to the electrode body 41.
  • a conductive material for example, a superelastic metal represented by nickel titanium or a metal such as stainless steel, steel, gold, platinum, tungsten, silver, or copper can be preferably used.
  • the elastic portion 44 may be formed of an elastic FPC or a curled covered electric wire, or may be formed of another conductive material. As shown in FIG. 5B, the elastic portion 44 can extend in the length direction from the state of FIG. 5A.
  • an insulating coat is applied to the surface of the elastic portion 44 so as not to apply an electric current to a living tissue that is not a target portion.
  • the elastic part 44 is not limited as long as it is an elastic body that has conductivity and can expand and contract in the length direction.
  • the expandable portion 44 may be a bellows member.
  • the expansion and contraction portion 44 includes an elastic linear rubber member 44A and a conductive and flexible coil spring member 44B. They may be configured in combination.
  • the elastic portion 44 may be a linear rubber member having conductivity.
  • a rubber member 44F containing a conductive material 44E such as carbon nanotubes or copper particles can be used.
  • the elastic part 44 is housed in the housing lumen 35 of the shaft part 21.
  • the distal end of the expansion and contraction portion 44 is joined to the electrode body 41 by soldering, and is electrically connected.
  • the base end of the expansion / contraction part 44 is joined to the conducting wire 37 drawn into the base end fixing part 34 by soldering, and becomes electrically conductive.
  • the surface of the elastic portion 44, including the joints at both ends, is subjected to insulating coating or insulating treatment.
  • the joining method may be laser fusion, welding using various types of metal brazing, adhesion using a conductive adhesive, or mechanical connection using a chuck or the like.
  • FIG. 1 and the like only two electrode portions 40 are shown for simplicity, but a larger number is provided in the circumferential direction as shown in FIGS.
  • eight electrode portions 40 are provided evenly in the circumferential direction.
  • the number of the electrode portions 40 may be larger or smaller.
  • the electrode portions 40 may be unevenly arranged in the circumferential direction.
  • the voltage is applied between the adjacent electrode units 40, an electrode paired with the electrode unit 40 may be arranged outside the body, and the voltage may be applied between the electrode outside the body and the electrode unit 40.
  • the electrode portion 40 when the balloon 22 is expanded, the electrode portion 40 is deformed by the expanding force of the balloon 22. Thereby, the electrode part 40 expands to the outside of the shaft part 21 in the radial direction, and is pressed against the living tissue.
  • the elastic part 44 expands in the housing lumen 35.
  • Each of the plurality of electrode units 40 arranged in the circumferential direction is provided with a telescopic unit 44 and is independent of the balloon 22. For this reason, the elastic portions 44 of the respective electrode portions 40 can have different lengths.
  • the shape of the balloon 22 when expanded is not uniform in the circumferential direction.
  • a non-uniform shape in the circumferential direction of a living body lumen is often found in a transition portion between a wide space such as a heart chamber and a narrow space such as a blood vessel.
  • a wide space such as a heart chamber
  • a narrow space such as a blood vessel.
  • an entrance portion of a pulmonary vein, an entrance portion of a left atrial appendage, and the like are given.
  • the electrode portion 40 can be expanded while following the shape of the balloon 22. Accordingly, the electrode section 40 follows the shape of the body cavity, and the current can be reliably applied to the target portion.
  • the electrode section 40 is not fixed to the balloon 22, but may be fixed to the surface of the balloon 22. In this case, it is necessary to prevent the expansion and contraction portion 44 from being fixed to the balloon 22. Thereby, the expansion / contraction part 44 can be extended so that the electrode part 40 is deformed following the expansion of the balloon 22.
  • the hub 23 has a first port 24 having an opening communicating with the guidewire lumen 38 and a second port 25 having an opening communicating with the expansion lumen 39.
  • an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like.
  • the guiding catheter is inserted into the introducer.
  • the distal end of the guiding catheter is inserted into the blood vessel from the distal end opening of the introducer.
  • the guiding catheter is gradually pushed to the target site while the guidewire is being advanced.
  • the operator forms a through hole in the atrial septum by penetrating a predetermined puncture device from the right atrium side to the left atrium side.
  • the puncture device for example, a device such as a sharp-pointed wire can be used. Delivery of the puncture device can be via a guiding catheter. Also, the puncture device can be delivered to the atrial septum instead of the guidewire, for example, after removing the guidewire from the guiding catheter.
  • the specific structure of the puncture device used for penetrating the atrial septum, the specific procedure for forming the through hole, and the like are not particularly limited. After forming the through hole, the surgeon pushes the through hole open using a dilator. Next, the operator passes the guiding catheter through the through-hole, and pushes the guiding catheter to a target site (for example, near the pulmonary vein) using a guide wire.
  • the distal end of the guide wire is inserted into the distal end opening of the guide wire lumen 38 of the shaft portion 21, and the guide wire is taken out from the first port 24 of the hub 23.
  • the medical device 10 is inserted into the guiding catheter inserted into the blood vessel from the distal end, and pushed along the guide wire.
  • the guide wire at this time may be a ring catheter with electrodes.
  • the joint between the electrode main body 41 and the expansion / contraction part 44 does not protrude from the housing lumen 35 in the distal direction. Therefore, it is possible to prevent the joint between the electrode main body 41 and the expansion / contraction part 44 from being caught by the opening of the housing lumen 35.
  • the joint between the electrode main body 41 and the expansion / contraction part 44 may protrude from the accommodation lumen 35 in the distal direction. In this case, the electrode section 40 can be largely moved, and the electrode section 40 can be greatly expanded.
  • the electrode section 40 is pressed against the living body wall 61 by the balloon 22. In this state, a voltage is applied from the power supply unit 12 to the electrode unit 40.
  • a pulsed voltage is applied from the power supply unit 12 to the pair of electrode units 40, 40 adjacent in the circumferential direction.
  • a current flows between the pair of electrode portions 40 adjacent in the circumferential direction.
  • a pulsed voltage is applied to the other pair of electrode portions 40, 40 adjacent in the circumferential direction.
  • the application of the voltage is sequentially performed to all the paired electrode units 40 and 40 adjacent in the circumferential direction. An example of the applied voltage is described below.
  • the electric field intensity applied by the power supply unit 12 is 1500 V / cm, and the pulse width of the voltage is 100 ⁇ sec.
  • the application of voltage to all pairs of circumferentially adjacent electrode portions 40 is repeated once every two seconds, 60 to 180 times in accordance with the refractory period of the ventricular muscle. As a result, cells at the entrance of the pulmonary vein are necrotized over the entire circumference.
  • a current may flow between a plurality of electrode units 40 that are not adjacent to each other, or a current may flow between the electrode unit 40 and a counter electrode plate attached to the body surface.
  • the balloon 22 When the application of the voltage is completed, the balloon 22 is deflated. As a result, the electrode section 40 also contracts in the radial direction by its own restoring force. At this time, the elastic portion 44 contracts in the length direction, and the base end of the electrode main body 41 is accommodated in the accommodation lumen 35. Thereafter, all the instruments inserted into the blood vessel are withdrawn, and the procedure is completed.
  • the medical device 10 is disposed at the long shaft portion 21 and the distal end portion of the shaft portion 21, extends along the length direction of the shaft portion 21, and
  • the shaft portion 21 has a plurality of electrode portions 40 that can be deformed in the radial direction, and a plurality of conductive wires 37 that pass current to the electrode portion 40.
  • the shaft portion 21 has a plurality of accommodation lumens 35 formed therein. Each of the accommodation lumens 35 can accommodate the conductor 37 and the electrode portion 40 connected to the conductor 37. Accordingly, the medical device 10 individually stores the base end of the electrode unit 40 in each of the plurality of housing lumens 35, so that an electrical short circuit between the electrode units 40 can be suppressed.
  • the voltage may vary depending on the electrode unit 40, it is particularly effective to be able to suppress an electrical short circuit. Furthermore, since the medical device 10 individually accommodates the bases of the conductor 37 and the electrode portion 40 in each of the plurality of accommodation lumens 35, the medical device 10 securely accommodates the conductor 37 and the electrode portion 40 in the accommodation lumen 35 without entanglement. it can. Therefore, the medical device 10 can improve the safety and reliability of the operation of the electrode unit 40 and the conducting wire 37 in the living body. In particular, since the conducting wire 37 and the electrode portion 40 are not easily entangled, the medical device 10 can be safely removed without increasing the outer diameter.
  • the outer diameter of the distal end portion of the medical device 10 is reduced.
  • the outer diameter of the distal end of the medical device 10 can be reduced back after the ablation procedure. For this reason, the medical device 10 can be inserted into a thin living body lumen, and can be easily accommodated in a sheath or a guiding catheter.
  • the plurality of electrode portions 40 each have an extendable portion 44 that is extendable and contractible in the length direction and has conductivity, and at least a part of the extendable portion 44 can be accommodated in the accommodation lumen 35.
  • each of the electrode portions 40 can protrude from the housing lumen 35 by the extension of the elastic portion 44, and is accommodated in the individual accommodation lumen 35 by the contraction of the elastic portion 44. Therefore, the medical device 10 can effectively suppress an electrical short circuit or entanglement between the electrode units 40.
  • the electrode section 40 is fixed to the shaft section 21 at a position closer to the base end than the opening on the distal end side of the accommodation lumen 35. Thereby, at least a part of the base end of the electrode unit 40 is housed in the housing lumen 35.
  • the base end portion of the electrode portion 40 deformed in the radial direction of the shaft portion 21 can protrude from the housing lumen 35 in the distal direction, and then return to the housing lumen 35. Therefore, the medical device 10 can keep the outer diameter small, and can effectively suppress an electrical short circuit or entanglement between the electrode portions 40.
  • the medical device 10 has an expandable body (for example, a balloon 22) located between the shaft portion 21 and the electrode portion 40 and expandable radially outward of the shaft portion 21.
  • the medical device 10 can press the electrode unit 40 by the expanding body to be in close contact with the living tissue.
  • the shaft portion 21 has a long inner tube 31 and an outer tube 30 that covers the inner tube 31, and the outer tube 30 covers the first tube 32 and the first tube 32.
  • a second tube 33, and at least a part of the accommodation lumen 35 is located in the second tube 33, and the leading end of the first tube 32 is located at the extreme end of the second tube 33.
  • the proximal end of the expansion body is fixed to the first tube 32 located on the distal side of the distal end and on the distal side of the second tube 33, and is located on the distal side of the second tube 33. Is fixed to the inner tube 31 located at the position shown in FIG.
  • the medical device 10 is configured such that the base end portion of the expansion body is disposed in the first tube 32 located on the distal side with respect to the second tube 33, so that the accommodation lumen 35 of the second tube 33 is provided.
  • the electrode portion 40 protruding from the outside can be arranged outside the expansion body.
  • a guide wire lumen 38 into which a guide wire can be inserted is formed inside the inner tube 31, and an expandable body (for example, the balloon 22) is expanded between the inner tube 31 and the outer tube 30.
  • An expansion lumen 39 through which fluid can flow is formed.
  • the medical device 10 can insert a guidewire into the guidewire lumen 38 and can circulate a fluid through the expansion lumen 39 to expand the expansion body.
  • the medical device 10 according to the second embodiment differs from the first embodiment only in the form of the second tube 33 of the outer tube 30 as shown in FIG.
  • the second tube 33 of the outer tube 30 has a tubular inner layer 51 and a tubular outer layer 52 covering the inner layer 51. That is, the outer tube 30 has the inner tube 31, the inner layer 51, and the outer layer 52. Note that the shaft portion 21 may be formed of four or more layers.
  • the inner layer 51 and the outer layer 52 are provided coaxially.
  • a plurality of grooves 53 are formed on the outer peripheral surface of the inner layer 51 along the length direction of the outer tube 30. By covering the outer layer 52 on the inner layer 51 and fixing it to the inner layer 51, the groove 53 is covered with the inner layer 51 to form the accommodation lumen 35.
  • the groove 53 may be formed on the inner peripheral surface of the outer layer 52. In addition, the groove 53 may be formed on both the outer peripheral surface of the inner layer 51 and the inner peripheral surface of the outer layer 52.
  • the second tubular body 33 has the tubular inner layer 51 and the tubular outer layer 52 covering the inner layer 51, and the outer peripheral surface of the inner layer 51.
  • a groove 53 forming at least a part of the accommodation lumen 35 is provided on the inner peripheral surface of the outer layer 52.
  • the accommodation lumen 35 can be formed in the outer tube 30 by forming the groove 53 on the outer peripheral surface of the inner layer 51 and / or the inner peripheral surface of the outer layer 52. Therefore, the medical device 10 can easily form the accommodation lumen 35 and can easily arrange the conducting wire 37 and the electrode unit 40 in the accommodation lumen 35.
  • the base fixing portion 34 located in the accommodation lumen 35 can be easily formed with an adhesive or the like.
  • the medical device 10 according to the third embodiment is different from the first embodiment only in the form of the outer tube 30 and the electrode unit 40.
  • the second tube 33 of the outer tube 30 is not fixed to the inner first tube 32. Therefore, the second tube 33 is slidable in the length direction of the outer tube 30 with respect to the first tube 32.
  • Each of the electrode portions 40 has an electrode main body 41 and does not have an elastic portion. The base end of the electrode main body 41 is electrically and structurally connected to the conducting wire 37 inside the accommodation lumen 35.
  • the balloon 22 when the balloon 22 is expanded in the radial direction of the shaft section 21 and the electrode section 40 is pressed against the living tissue, as shown in FIG.
  • the proximal end moves toward the distal end.
  • the second tubular body 33 to which the base end of the electrode section 40 is fixed slides with respect to the first tubular body 32, and moves to the distal end side together with the base end of the electrode section 40.
  • the first tube 32 is relatively positioned with respect to the second tube 33 along the length direction of the second tube 33. Can be moved to Thereby, the medical device 10 can deform the electrode portion 40 in the radial direction of the shaft portion 21 while relatively moving the first tube 32 and the second tube 33. For this reason, the tensile force acting in the length direction of the electrode unit 40 can be reduced, and the limitation on the material and structure of the electrode unit 40 can be relaxed.
  • the present invention is not limited to only the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention.
  • the medical device 10 of the above-described embodiment is used for treating a pulmonary vein
  • the medical device 10 may treat other sites, such as a renal artery, an ascending vena cava, and a ventricle.
  • the expansion body of the medical device 10 may not be a balloon. Further, the medical device 10 does not have to have an expansion body that presses the electrode unit 40 radially outward.
  • the medical device 10 according to the third embodiment can expand the electrode unit 40 without a balloon.
  • the electrode portion 40 can be expanded in the radial direction of the shaft portion 21 by moving the second tube body 33 shown in FIG.
  • the electrode section 40 may be formed of only an elastic portion that has conductivity and can expand and contract in the length direction.

Abstract

The purpose of the present invention is to provide a medical device which prevents electrical short-circuit on or entanglement of electrodes for outputting energy to a living body and conductor wires for applying a voltage to the electrodes. Provided is a medical device (10) comprising: a long shaft (21); a plurality of electrodes (40) that are positioned at the tip end of the shaft (21), extend in the longitudinal direction of the shaft (21), and can be deformed in the radial direction of the shaft (21); and a plurality of conductor wires (37) that conduct a current to the electrodes (40), wherein the shaft (21) has a plurality of storage lumens (35) formed to respectively store the conductor wires (37) and the base ends of the electrodes (40) to be connected with the conductor wires (37).

Description

医療デバイスMedical device
本発明は、生体内に挿入され生体組織に対しアブレーションによる処置を行う医療デバイスに関する。The present invention relates to a medical device that is inserted into a living body and performs a treatment on a living tissue by ablation.
医療デバイスとして、不可逆電気穿孔法(IRE:Irreversible Electroporation)による治療を行うものが知られている。不可逆電気穿孔法は、非熱性であり、周囲の血管や神経への損傷を抑えることができることから、注目されている。例えば、外科手術での除去が困難ながんに対して、不可逆電気穿孔法を用いて治療を行う医療装置が知られている。2. Description of the Related Art As a medical device, a device that performs treatment by irreversible electroporation (IRE: Irreversible @ Electroporation) is known. Irreversible electroporation has attracted attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves. For example, a medical device that treats cancer that is difficult to remove by a surgical operation using irreversible electroporation is known.
肺静脈壁の心筋スリーブで発生する異常興奮が原因となる心房細動に対して、肺静脈と左心房との接合部をアブレーションし、心筋細胞を破壊する肺静脈隔離術が行われることがある。肺静脈隔離術では、アブレーションカテーテルの先端から高周波を発生させて、心筋を点状に焼灼して壊死させる。アブレーションカテーテルは、肺静脈流入部を円周状に焼灼するように移動され、肺静脈を隔離する。Pulmonary vein isolation, which ablates the junction between the pulmonary vein and the left atrium and destroys cardiomyocytes, may be performed for atrial fibrillation caused by abnormal excitation in the myocardial sleeve of the pulmonary vein wall . In pulmonary vein isolation, a high frequency is generated from the tip of an ablation catheter, and the myocardium is cauterized to a point and necrotic. The ablation catheter is moved to cauterize the pulmonary vein inflow circumferentially to isolate the pulmonary veins.
例えば特許文献1には、カテーテルシャフトの先端部にバルーンを設け、バルーンに高周波通電用の電極を配置した医療デバイスが開示されている。カテーテルシャフトには、複数のルーメンが形成され、そのうちの1つに、電極に電気的に接続される導線が配置されている。For example, Patent Literature 1 discloses a medical device in which a balloon is provided at a distal end portion of a catheter shaft, and an electrode for high-frequency power supply is arranged on the balloon. A plurality of lumens are formed in the catheter shaft, and one of them has a lead wire electrically connected to the electrode.
米国特許公開第2017/0354463号明細書U.S. Patent Publication No. 2017/0354443
バルーンの周囲に複数の電極を配置する場合、電極の基端部や電極へ電圧を印可する導線が同じルーメン内に配置されると、電極同士が電気的に短絡する可能性がある。また、電極の基端部や導線が絡み合う可能性がある。In the case where a plurality of electrodes are arranged around the balloon, if the base end of the electrodes or a conductor for applying a voltage to the electrodes is arranged in the same lumen, the electrodes may be electrically short-circuited. In addition, there is a possibility that the base end portion of the electrode and the conductive wire are entangled.
本発明は、上述した課題を解決するためになされたものであり、生体へエネルギーを出力する電極や電極に電気的に接続される導線の電気的短絡や絡まりを抑制できる医療デバイスを提供することを目的とする。The present invention has been made in order to solve the above-described problems, and provides a medical device capable of suppressing an electric short circuit and entanglement of an electrode for outputting energy to a living body and a conductive wire electrically connected to the electrode. With the goal.
上記目的を達成する医療デバイスは、長尺なシャフト部と、前記シャフト部の先端部に配置され、前記シャフト部の長さ方向に沿って延在し、かつ前記シャフト部の径方向に変形可能である複数の電極部と、前記電極部へ電流を通す複数の導線と、を有し、前記シャフト部は、複数の収容ルーメンが形成されており、前記収容ルーメンの各々に、前記導線および当該導線に接続される前記電極部の少なくとも基端部を収容可能である。A medical device that achieves the above object is a long shaft portion, and is disposed at a tip portion of the shaft portion, extends along a length direction of the shaft portion, and is deformable in a radial direction of the shaft portion. A plurality of electrode portions, and a plurality of conductive wires that pass current to the electrode portion, and the shaft portion is formed with a plurality of housing lumens, and each of the housing lumens includes the conductive wire and the conductive wire. At least a base end of the electrode unit connected to the conductive wire can be accommodated.
上記のように構成した医療デバイスは、複数の収容ルーメンの各々に導線および電極部の基端部を個別に収容するため、導線同士や電極部同士の電気的短絡や絡まりを抑制できる。In the medical device configured as described above, since the base ends of the conductor and the electrode portion are individually accommodated in each of the plurality of accommodation lumens, it is possible to suppress an electrical short circuit or entanglement between the conductors or between the electrode portions.
第1の実施形態に係る医療デバイスを示す概略正面図である。 FIG. 2 is a schematic front view illustrating the medical device according to the first embodiment.
医療デバイスの先端部を示す断面図である。 It is sectional drawing which shows the front-end | tip part of a medical device.
図2のA-A線に沿う断面図である。 FIG. 3 is a sectional view taken along line AA in FIG. 2.
図2のB-B線に沿う断面図である。 FIG. 3 is a sectional view taken along line BB of FIG. 2.
伸縮部を示す正面図であり、(A)は収縮した状態、(B)は伸長した状態を示す。 It is a front view showing an expansion-contraction part, (A) shows a contracted state and (B) shows an extended state.
伸縮部の変形例を示す正面図であり、(A)は第1の変形例、(B)は第2の変形例、(C)は第3の変形例、(D)は第4の変形例を示す。 It is a front view which shows the modification of an expansion-contraction part, (A) is a 1st modification, (B) is a 2nd modification, (C) is a 3rd modification, (D) is a 4th modification. Here is an example.
電極部を拡張させた状態の医療デバイスの先端部を示す断面図である。 It is sectional drawing which shows the front-end | tip part of the medical device in the state which expanded the electrode part.
第2の実施形態に係る医療デバイスの先端部を示す断面図である。 It is sectional drawing which shows the front-end | tip part of the medical device which concerns on 2nd Embodiment.
第3の実施形態に係る医療デバイスの先端部を示す断面図であり、(A)は電極部が収縮した状態、(B)は電極部が拡張した状態を示す。 It is sectional drawing which shows the front-end | tip part of the medical device which concerns on 3rd Embodiment, (A) shows the state where the electrode part contracted, (B) shows the state where the electrode part expanded.
以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法は、説明の都合上、誇張されて実際の寸法とは異なる場合がある。また、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。本明細書では、管腔に挿入する側を「先端側」、操作する手元側を「基端側」と称することとする。
<第一の実施形態>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensions in the drawings may be exaggerated and different from actual dimensions for convenience of explanation. In the specification and the drawings, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted. In the present specification, the side to be inserted into the lumen will be referred to as “distal side”, and the proximal side for operation will be referred to as “proximal side”.
<First embodiment>
第1の実施形態に係る医療デバイス10は、生体内腔に対し経皮的に挿入され、目的部位の生体組織に接触して電流を付与し、不可逆電気穿孔法を実施するものである。本実施形態の医療デバイス10が対象とするのは、肺静脈隔離術において、肺静脈の入口部を全周に渡って電気穿孔する治療である。ただし、後述するように、医療デバイス10は、その他の治療にも適用できる。The medical device 10 according to the first embodiment is inserted percutaneously into a living body cavity, contacts a living tissue at a target site, applies an electric current, and performs irreversible electroporation. The target of the medical device 10 of the present embodiment is a treatment for performing electroporation over the entire periphery of the entrance of the pulmonary vein in pulmonary vein isolation. However, as described later, the medical device 10 can be applied to other treatments.
図1、2に示すように、医療デバイス10は、長尺なシャフト部21と、シャフト部21の先端部に設けられる拡張体であるバルーン22と、シャフト部21の基端部に設けられるハブ23と、バルーン22の周囲に設けられる複数の電極部40とを有している。As shown in FIGS. 1 and 2, the medical device 10 includes a long shaft portion 21, a balloon 22 which is an expansion body provided at a distal end portion of the shaft portion 21, and a hub provided at a base end portion of the shaft portion 21. 23 and a plurality of electrode portions 40 provided around the balloon 22.
シャフト部21は、図1~4に示すように、外管30と、外管30の内側に同軸状に配置される内管31と、電極部40に電気的に接続される導線37とを有している。内管31の内部には、長さ方向に沿うガイドワイヤルーメン38が形成される。ガイドワイヤルーメン38には、ガイドワイヤを挿入可能である。外管30の内部であって内管31の外部には、拡張ルーメン39が形成される。拡張ルーメン39には、バルーン22を拡張させるための拡張用流体を流通可能である。導線37は、シャフト部21の基端部から引き出され、シャフト部21の外部に設けられる電源部12に接続されている。電源部12は、電極部40に対して高電圧をパルス状に与えることができる。As shown in FIGS. 1 to 4, the shaft portion 21 includes an outer tube 30, an inner tube 31 disposed coaxially inside the outer tube 30, and a conductive wire 37 electrically connected to the electrode portion 40. Have. Inside the inner tube 31, a guide wire lumen 38 is formed along the length direction. A guide wire can be inserted into the guide wire lumen 38. An expansion lumen 39 is formed inside the outer tube 30 and outside the inner tube 31. An expansion fluid for expanding the balloon 22 can flow through the expansion lumen 39. The conducting wire 37 is drawn out from the base end of the shaft section 21 and is connected to the power supply section 12 provided outside the shaft section 21. The power supply unit 12 can apply a high voltage to the electrode unit 40 in a pulsed manner.
外管30は、第1の管体32と第2の管体33とを同軸状に有している。第2の管体33は、第1の管体32を覆い、第1の管体32に固定されている。The outer tube 30 has a first tube 32 and a second tube 33 coaxially. The second tube 33 covers the first tube 32 and is fixed to the first tube 32.
第1の管体32は、円管であり、第2の管体33よりも先端側まで延在している。第2の管体33よりも先端側の第1の管体32の外周面には、バルーン22の基端部が固定されている。The first tube 32 is a circular tube, and extends to the distal end side from the second tube 33. The proximal end of the balloon 22 is fixed to the outer peripheral surface of the first tube 32 closer to the distal end than the second tube 33.
第1の管体32の内部の拡張ルーメン39を介してバルーン22内部に拡張用流体を注入することで、バルーン22を拡張させることができる。拡張用流体は気体でも液体でもよく、例えばヘリウムガス、COガス、Oガス、笑気ガス等の気体や、生理食塩水、造影剤、及びその混合剤等の液体を用いることができる。The balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 via the expansion lumen 39 inside the first tube 32. The expansion fluid may be a gas or a liquid. For example, a gas such as helium gas, CO 2 gas, O 2 gas, laughing gas, or a liquid such as a physiological saline solution, a contrast agent, and a mixture thereof can be used.
第2の管体33は、第2の管体33の長さ方向に沿う複数の収容ルーメン35が形成されている。複数の収容ルーメン35は、円管状の第2の管体33の内周面と外周面の間に、周方向に均等に並んで配置されている。なお、複数の収容ルーメン35は、均等に配置されなくてもよい。各々の収容ルーメン35は、バルーン22より基端側に位置する第2の管体33の先端面で、先端側に向かって開口している。各々の収容ルーメン35は、電極部40に電気的に接続される導線37と、電極部40の基端部と、導線37および電極部40を収容ルーメン35に固定する基端固定部34とが配置されている。基端固定部34は、収容ルーメン35の内部の、収容ルーメン35の最先端よりも基端側に位置している。基端固定部34は、シャフト部21の一部を加熱溶融させて形成できる。または、基端固定部34は、接着剤等により形成されてもよい。基端固定部34は、電極部40の基端部および導線37の先端部をシャフト部21に対して固定している。さらに、基端固定部34は、血液等が収容ルーメン35を通って基端側へ漏出することを抑制する。なお、基端固定部34は、電極部40の基端部または導線37の先端部の一方にのみ固定されてもよい。The second tube 33 has a plurality of accommodation lumens 35 formed along the length of the second tube 33. The plurality of accommodation lumens 35 are arranged between the inner peripheral surface and the outer peripheral surface of the circular second tubular body 33 so as to be evenly arranged in the circumferential direction. Note that the plurality of accommodation lumens 35 need not be evenly arranged. Each accommodation lumen 35 is open toward the distal end at the distal end surface of the second tubular body 33 located closer to the proximal end than the balloon 22. Each accommodation lumen 35 includes a conducting wire 37 electrically connected to the electrode portion 40, a base end of the electrode portion 40, and a base end fixing portion 34 for fixing the conducting wire 37 and the electrode portion 40 to the accommodation lumen 35. Are located. The proximal fixing portion 34 is located inside the accommodation lumen 35 on the proximal side of the distal end of the accommodation lumen 35. The base fixing portion 34 can be formed by heating and melting a part of the shaft portion 21. Alternatively, the base fixing portion 34 may be formed by an adhesive or the like. The base fixing part 34 fixes the base part of the electrode part 40 and the tip part of the conductive wire 37 to the shaft part 21. Further, the proximal end fixing portion 34 suppresses leakage of blood and the like to the proximal end side through the accommodation lumen 35. Note that the base fixing portion 34 may be fixed to only one of the base portion of the electrode portion 40 or the tip portion of the conductor 37.
内管31は、外管30の最先端よりさらに先端側まで延在している。外管30よりも先端側の内管31の外周面には、バルーン22の先端部が固定されている。The inner tube 31 extends to a more distal end than the outermost end of the outer tube 30. The distal end of the balloon 22 is fixed to the outer peripheral surface of the inner tube 31 on the distal end side of the outer tube 30.
シャフト部21の外径は、特に限定されないが、シャフト部21が低侵襲であり、かつ挿入する一般的なシースやガイディングカテーテルとの互換性を満たすために大きすぎないことが好ましく、例えば4.0mm以内、好ましくは2.9mm以内である。外管30の内径と内管31の外径との差は、バルーン22の拡張および収縮に要する時間が長くなり過ぎないことが好ましく、例えば0.3mm以上である。Although the outer diameter of the shaft portion 21 is not particularly limited, it is preferable that the shaft portion 21 be minimally invasive and not too large in order to satisfy compatibility with a general sheath or guiding catheter to be inserted. It is within 2.0 mm, preferably within 2.9 mm. The difference between the inner diameter of the outer tube 30 and the outer diameter of the inner tube 31 is preferably such that the time required for expansion and contraction of the balloon 22 does not become too long, and is, for example, 0.3 mm or more.
外管30および内管31の構成材料は、ある程度の可撓性を有することが好ましい。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリイミド、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリテトラフルオロエチレン等のフッ素樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。The constituent materials of the outer tube 30 and the inner tube 31 preferably have a certain degree of flexibility. Such materials include, for example, polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft polyvinyl chloride resin, Examples include polyamide, polyamide elastomer, polyimide, polyester, polyester elastomer, polyurethane, fluorine resin such as polytetrafluoroethylene, silicone rubber, latex rubber, and the like.
一例として、第2の管体33をポリアミドにより形成し、第1の管体32をポリイミドにより形成できる。例えば、第2の管体33の最先端の位置と第1の管体32の最先端の位置を一致させた管体を作製し、その管体の先端部を、ポリアミドを溶かすがポリイミドを溶かさない溶媒に浸ける。これにより、第1の管体32の最先端が第2の管体33の最先端よりも先端側に位置する外管30を、容易に作製できる。なお、外管30の先端部だけでなく、基端部も同様に、第1の管体32が第2の管体33から基端側へ突出した形状とすることもできる。なお、第2の管体33と第1の管体32を一体で成形し、その後、センタレス研磨などで、第1の管体32のみが先端側に突出した形状に加工してもよい。As an example, the second tube 33 can be formed of polyamide and the first tube 32 can be formed of polyimide. For example, a pipe body is prepared in which the most advanced position of the second tubular body 33 matches the most advanced position of the first tubular body 32, and the tip of the tubular body is melted with polyamide but melted with polyimide. Soak in no solvent. Thereby, the outer tube 30 in which the leading end of the first tubular body 32 is located on the distal end side of the leading end of the second tubular body 33 can be easily manufactured. In addition, not only the distal end portion but also the proximal end portion of the outer tube 30 may have a shape in which the first tubular body 32 protrudes from the second tubular body 33 toward the proximal end side. Note that the second tube 33 and the first tube 32 may be integrally formed, and then processed into a shape in which only the first tube 32 protrudes toward the distal end by centerless polishing or the like.
バルーン22は、柔軟に変形可能な筒体である。バルーン22の先端部は、内管31の先端部の外周面に固定され、バルーン22の基端部は、外管30の先端部の外周面に固定されている。バルーン22は、薄膜状であり、可撓性を有することが好ましい。また、バルーン22は、電極部40を確実に押し広げる程度の強度も必要とされる。バルーン22の構成材料は、シャフト部21について上で挙げたものを用いることができ、また、それ以外(例えば、水添スチレン系熱可塑性エラストマー(SEBS)などの各種エラストマー素材)であってもよい。The balloon 22 is a cylindrical body that can be flexibly deformed. The distal end of the balloon 22 is fixed to the outer peripheral surface of the distal end of the inner tube 31, and the proximal end of the balloon 22 is fixed to the outer peripheral surface of the distal end of the outer tube 30. The balloon 22 is preferably in the form of a thin film and has flexibility. Further, the balloon 22 is required to have such strength that the electrode portion 40 is surely pushed open. As the constituent material of the balloon 22, those described above for the shaft portion 21 can be used, and other materials (for example, various elastomer materials such as a hydrogenated styrene-based thermoplastic elastomer (SEBS)) may be used. .
電極部40は、バルーン22より基端側に第1固定部46を有し、この第1固定部46が、収容ルーメン35の内部の基端固定部34に固定されている。また、電極部40は、バルーン22より先端側に第2固定部47を有し、この第2固定部47が、内管31に設けられる先端固定部45に固定されている。電極部40は、バルーン22の外周側に位置しており、バルーン22に固定されていない。The electrode portion 40 has a first fixing portion 46 on the base end side of the balloon 22, and the first fixing portion 46 is fixed to the base fixing portion 34 inside the accommodation lumen 35. Further, the electrode section 40 has a second fixing section 47 on the distal end side of the balloon 22, and the second fixing section 47 is fixed to a distal fixing section 45 provided in the inner tube 31. The electrode portion 40 is located on the outer peripheral side of the balloon 22 and is not fixed to the balloon 22.
電極部40は、バルーン22の周囲に配置される領域に導通部42を有する。導通部42は、表面が絶縁されていない領域であり、生体組織と接触した際に、生体組織に対して電流を供給できる。導通部42は、電極部40の生体組織に接触する外周側の面、すなわち、バルーン22と接する面の反対面に位置する。電極部40の導通部42以外の領域は絶縁部43であり、表面には絶縁コートが施されていることが望ましい。なお、バルーン22に密接している部分は、バルーン22によって生体や血液に接触しないため、絶縁コートがなくてもよい。絶縁部43は、生体組織に対し電流を付与しない。The electrode section 40 has a conduction section 42 in a region arranged around the balloon 22. The conduction portion 42 is a region whose surface is not insulated, and can supply a current to the living tissue when it comes into contact with the living tissue. The conduction portion 42 is located on the outer peripheral surface of the electrode portion 40 that comes into contact with the living tissue, that is, the surface opposite to the surface that comes into contact with the balloon 22. The region other than the conductive portion 42 of the electrode portion 40 is an insulating portion 43, and it is preferable that the surface is coated with an insulating coat. Note that the portion in close contact with the balloon 22 does not need to be provided with an insulating coat because the balloon 22 does not contact the living body or blood. The insulating section 43 does not apply a current to the living tissue.
各々の電極部40は、電極部40の先端側に位置する電極本体41と、電極部40の基端側に位置する伸縮部44とを有している。電極本体41の基端部は、伸縮部44の先端部に電気的および構造的に接合されている。電極本体41の基端部は、バルーン22が収縮している状態において、収容ルーメン35の内部に位置している。電極本体41は、導電性及び可撓性を有する線材で形成されている。本実施形態における電極本体41は、ニッケルチタンに代表される超弾性金属で形成されている。ただし、電極本体41は、それ以外の導電性を有する材料で形成されてもよい。例えば、電極本体41は、FPC(フレキシブルプリント回路基板)等でもよい。電極本体41の長さ方向と直交する断面形状は、例えば長方形であり、長辺側が、バルーン22と接触する。これにより、バルーン22の周方向に並ぶ複数の電極本体41は、バルーン22の径方向に曲がりやすく、互いに近づく方向へは変形しにくい。したがって、電極本体41同士の電気的短絡や絡まりを抑制できる。なお、電極本体41の断面形状は、長方形に限定されず、例えば円形、楕円形、正方形等であってもよい。また、収容ルーメン35の先端部とバルーン22の基端部の間に、先端固定部45のように、電極部40の位置をさらに精密に決めるための部品が設けられてもよい。Each of the electrode portions 40 has an electrode body 41 located on the distal end side of the electrode portion 40 and an elastic portion 44 located on the proximal end side of the electrode portion 40. The base end of the electrode body 41 is electrically and structurally joined to the front end of the expandable portion 44. The base end of the electrode body 41 is located inside the accommodation lumen 35 when the balloon 22 is deflated. The electrode body 41 is formed of a conductive and flexible wire. The electrode main body 41 in the present embodiment is formed of a superelastic metal represented by nickel titanium. However, the electrode main body 41 may be formed of a material having another conductivity. For example, the electrode body 41 may be an FPC (flexible printed circuit board) or the like. The cross-sectional shape orthogonal to the length direction of the electrode body 41 is, for example, a rectangle, and the long side is in contact with the balloon 22. Thereby, the plurality of electrode main bodies 41 arranged in the circumferential direction of the balloon 22 are easily bent in the radial direction of the balloon 22 and are not easily deformed in the direction approaching each other. Therefore, electrical short-circuiting and entanglement between the electrode main bodies 41 can be suppressed. The cross-sectional shape of the electrode body 41 is not limited to a rectangle, but may be a circle, an ellipse, a square, or the like. Further, between the distal end portion of the accommodation lumen 35 and the proximal end portion of the balloon 22, a component such as the distal end fixing portion 45 for determining the position of the electrode portion 40 more precisely may be provided.
伸縮部44は、導電性を有するとともに、長さ方向に伸縮可能である。伸縮部44は、バルーン22よりも伸縮性が高いが、これに限定されない。伸縮部44は、図5(A)に示すように、コイル状のバネ部材によって形成される。伸縮部44が伸縮可能であるとは、電極部40の長さ方向において伸び縮みが可能であることを言う。柔軟な材料は、一般的には曲げ方向の可撓性を有し、長さ方向への伸び縮みが可能なこともある。本実施形態において伸縮部44を形成するバネ部材は、導電性、伸縮時の耐久性が良好であり、電極本体41と容易に接合できる。The expansion and contraction portion 44 has conductivity and can expand and contract in the length direction. The elastic portion 44 has higher elasticity than the balloon 22, but is not limited thereto. As shown in FIG. 5A, the expansion and contraction portion 44 is formed by a coil-shaped spring member. The expansion and contraction of the expansion and contraction portion 44 means that the expansion and contraction are possible in the length direction of the electrode portion 40. Flexible materials generally have flexibility in the bending direction and may be capable of lengthening and contracting. In the present embodiment, the spring member forming the expandable portion 44 has good conductivity and durability during expansion and contraction, and can be easily joined to the electrode body 41.
伸縮部44の構成材料は、導電性を有する材料、例えばニッケルチタンに代表される超弾性金属や、ステンレス、鉄鋼、金、白金、タングステン、銀、銅等の金属を好適に使用できる。また、伸縮部44は、伸縮性を有するFPCやカール状被覆電線で形成されていてもよいし、その他の導電性を有する材料で形成されていてもよい。図5(B)に示すように、伸縮部44は、図5(A)の状態から長さ方向に伸長することができる。また、目的部位ではない生体組織に対し電流を付与しないようにするため、伸縮部44の表面には、絶縁コートが施されている。As a constituent material of the elastic portion 44, a conductive material, for example, a superelastic metal represented by nickel titanium or a metal such as stainless steel, steel, gold, platinum, tungsten, silver, or copper can be preferably used. The elastic portion 44 may be formed of an elastic FPC or a curled covered electric wire, or may be formed of another conductive material. As shown in FIG. 5B, the elastic portion 44 can extend in the length direction from the state of FIG. 5A. In addition, an insulating coat is applied to the surface of the elastic portion 44 so as not to apply an electric current to a living tissue that is not a target portion.
伸縮部44は、導電性を有し、長さ方向に伸縮可能な弾性体であれば、限定されない。例えば、図6(A)に示す第1の変形例のように、伸縮部44は、蛇腹部材であってもよい。また、図6(B)に示す第2の変形例のように、伸縮部44は、伸縮性を有する線状のゴム部材44Aと、導電性及び可撓性を有するコイル状のばね部材44Bを組み合わせて構成されてもよい。また、伸縮部44は、導電性を有する線状のゴム部材などであってもよい。導電性を有するゴム部材としては、図6(C)に示すように、線状のゴム部材44Cの表面に導電性インクで導通路44Dが印刷されたものや、図6(D)に示すように、カーボンナノチューブや銅粒子等の導電性材料44Eを含有したゴム部材44Fなどが挙げられる。The elastic part 44 is not limited as long as it is an elastic body that has conductivity and can expand and contract in the length direction. For example, as in a first modified example shown in FIG. 6A, the expandable portion 44 may be a bellows member. Also, as in a second modification shown in FIG. 6B, the expansion and contraction portion 44 includes an elastic linear rubber member 44A and a conductive and flexible coil spring member 44B. They may be configured in combination. The elastic portion 44 may be a linear rubber member having conductivity. As the conductive rubber member, as shown in FIG. 6 (C), a conductive rubber ink printed on the surface of a linear rubber member 44C with a conductive ink 44D, or as shown in FIG. 6 (D). For example, a rubber member 44F containing a conductive material 44E such as carbon nanotubes or copper particles can be used.
伸縮部44は、図2に示すように、シャフト部21の収容ルーメン35内に収納されている。伸縮部44の先端部は、電極本体41と半田付けにより接合され、電気的に導通する。伸縮部44の基端部は、基端固定部34に引き込まれた導線37と半田付けにより接合され、電気的に導通する。伸縮部44は、両端の接合部を含め、表面が絶縁コートあるいは絶縁処理されている。なお、接合方法は、レーザー融着、各種金属ロウを用いた溶着、導電性接着剤による接着、チャック等による機械的連結でもよい。As shown in FIG. 2, the elastic part 44 is housed in the housing lumen 35 of the shaft part 21. The distal end of the expansion and contraction portion 44 is joined to the electrode body 41 by soldering, and is electrically connected. The base end of the expansion / contraction part 44 is joined to the conducting wire 37 drawn into the base end fixing part 34 by soldering, and becomes electrically conductive. The surface of the elastic portion 44, including the joints at both ends, is subjected to insulating coating or insulating treatment. The joining method may be laser fusion, welding using various types of metal brazing, adhesion using a conductive adhesive, or mechanical connection using a chuck or the like.
図1等では、簡略化のため、電極部40は2本のみ示されているが、図3、4に示すように、周方向に、より多数が設けられる。電極部40は、本実施形態では、8本が周方向に均等に設けられている。ただし、電極部40の数はこれより多くてもよく、少なくてもよい。また、電極部40は、周方向に不均等に配置されていてもよい。電圧は、隣接する電極部40間に付与されるが、体外に電極部40と対をなす電極を配置し、その体外の電極と電極部40との間に電圧が付与されてもよい。In FIG. 1 and the like, only two electrode portions 40 are shown for simplicity, but a larger number is provided in the circumferential direction as shown in FIGS. In the present embodiment, eight electrode portions 40 are provided evenly in the circumferential direction. However, the number of the electrode portions 40 may be larger or smaller. Further, the electrode portions 40 may be unevenly arranged in the circumferential direction. Although the voltage is applied between the adjacent electrode units 40, an electrode paired with the electrode unit 40 may be arranged outside the body, and the voltage may be applied between the electrode outside the body and the electrode unit 40.
図7に示すように、バルーン22を拡張させると、バルーン22の拡張力により電極部40は変形する。これにより、電極部40は、シャフト部21の径方向の外側に拡張し、生体組織に押し付けられる。電極部40が径方向に拡張変形する際には、収容ルーメン35内で伸縮部44が伸長する。周方向に並ぶ複数の電極部40は、それぞれに伸縮部44が設けられると共に、バルーン22とは独立している。このため、各電極部40の伸縮部44が、それぞれ異なる長さとなることができる。バルーン22は、挿入された生体内腔の形状によっては、拡張時の形状が周方向に不均一となる。特に、生体内腔の周方向に不均一な形状は、心腔内のような広い空間と血管のような狭い空間との移行部分に多く見られる。例えば、肺静脈の入口部や、左心耳の入口部などが挙げられる。この場合でも、各伸縮部44がそれぞれ独立して伸長可能であることで、電極部40はバルーン22の形状に追従しつつ拡張することができる。これにより、電極部40が生体内腔の形状に追従し、目的部位に対して確実に電流を付与できる。As shown in FIG. 7, when the balloon 22 is expanded, the electrode portion 40 is deformed by the expanding force of the balloon 22. Thereby, the electrode part 40 expands to the outside of the shaft part 21 in the radial direction, and is pressed against the living tissue. When the electrode part 40 expands and deforms in the radial direction, the elastic part 44 expands in the housing lumen 35. Each of the plurality of electrode units 40 arranged in the circumferential direction is provided with a telescopic unit 44 and is independent of the balloon 22. For this reason, the elastic portions 44 of the respective electrode portions 40 can have different lengths. Depending on the shape of the inserted body lumen, the shape of the balloon 22 when expanded is not uniform in the circumferential direction. In particular, a non-uniform shape in the circumferential direction of a living body lumen is often found in a transition portion between a wide space such as a heart chamber and a narrow space such as a blood vessel. For example, an entrance portion of a pulmonary vein, an entrance portion of a left atrial appendage, and the like are given. Also in this case, since each of the expansion and contraction portions 44 can be independently extended, the electrode portion 40 can be expanded while following the shape of the balloon 22. Accordingly, the electrode section 40 follows the shape of the body cavity, and the current can be reliably applied to the target portion.
本実施形態において、電極部40はバルーン22に固定されていないが、バルーン22の表面に固定されてもよい。この場合、伸縮部44はバルーン22と固定されないようにする必要がある。これにより、伸縮部44は、電極部40がバルーン22の拡張に追従して変形するように伸長することができる。In the present embodiment, the electrode section 40 is not fixed to the balloon 22, but may be fixed to the surface of the balloon 22. In this case, it is necessary to prevent the expansion and contraction portion 44 from being fixed to the balloon 22. Thereby, the expansion / contraction part 44 can be extended so that the electrode part 40 is deformed following the expansion of the balloon 22.
ハブ23は、図1に示すように、シャフト部21の基端部が固定されている。ハブ23は、ガイドワイヤルーメン38と連通する開口を有する第1ポート24と、拡張ルーメン39と連通する開口を有する第2ポート25とを有している。As shown in FIG. 1, the base end of the shaft portion 21 is fixed to the hub 23. The hub 23 has a first port 24 having an opening communicating with the guidewire lumen 38 and a second port 25 having an opening communicating with the expansion lumen 39.
次に、医療デバイス10を用いた処置方法について説明する。始めに、セルジンガー法などによりイントロデューサー(図示しない)を経皮的に血管に穿刺する。次に、ガイドワイヤ(図示しない)をガイディングカテーテル(図示しない)に挿入した後、ガイディングカテーテルを、イントロデューサーに挿入する。次に、ガイドワイヤを先端側に突出させてから、ガイディングカテーテルの先端部を、イントロデューサーの先端部開口から血管内へ挿入する。この後、ガイドワイヤを先行させつつ、ガイディングカテーテルを目的部位まで徐々に押し進める。術者は、右心房側から左心房側に向かって、所定の穿刺デバイスを貫通させることにより、心房中隔に貫通孔を形成する。穿刺デバイスは、例えば、先端が尖ったワイヤ等のデバイスを利用することができる。穿刺デバイスの送達は、ガイディングカテーテルを介して行うことができる。また、穿刺デバイスは、例えば、ガイディングカテーテルからガイドワイヤを抜去した後、ガイドワイヤに代えて心房中隔まで送達することができる。なお、心房中隔の貫通に使用される穿刺デバイスの具体的な構造、貫通孔を形成する際の具体的な手順等は特に限定されない。術者は、貫通孔を形成後、ダイレータを使って、貫通孔を押し広げる。次に、術者は、貫通孔にガイディングカテーテルを通し、ガイディングカテーテルを、ガイドワイヤを使って目的部位(例えば、肺静脈付近)まで押し進める。Next, a treatment method using the medical device 10 will be described. First, an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like. Next, after inserting a guide wire (not shown) into the guiding catheter (not shown), the guiding catheter is inserted into the introducer. Next, after projecting the guide wire toward the distal end, the distal end of the guiding catheter is inserted into the blood vessel from the distal end opening of the introducer. Thereafter, the guiding catheter is gradually pushed to the target site while the guidewire is being advanced. The operator forms a through hole in the atrial septum by penetrating a predetermined puncture device from the right atrium side to the left atrium side. As the puncture device, for example, a device such as a sharp-pointed wire can be used. Delivery of the puncture device can be via a guiding catheter. Also, the puncture device can be delivered to the atrial septum instead of the guidewire, for example, after removing the guidewire from the guiding catheter. The specific structure of the puncture device used for penetrating the atrial septum, the specific procedure for forming the through hole, and the like are not particularly limited. After forming the through hole, the surgeon pushes the through hole open using a dilator. Next, the operator passes the guiding catheter through the through-hole, and pushes the guiding catheter to a target site (for example, near the pulmonary vein) using a guide wire.
次に、シャフト部21のガイドワイヤルーメン38の先端部開口部に、ガイドワイヤの末端を挿入し、ハブ23の第1ポート24からガイドワイヤを出す。次に、血管内に挿入されているガイディングカテーテル内に、医療デバイス10を先端部から挿入し、ガイドワイヤに沿わせて押し進める。なお、このときのガイドワイヤは、電極付きのリングカテーテルでもよい。Next, the distal end of the guide wire is inserted into the distal end opening of the guide wire lumen 38 of the shaft portion 21, and the guide wire is taken out from the first port 24 of the hub 23. Next, the medical device 10 is inserted into the guiding catheter inserted into the blood vessel from the distal end, and pushed along the guide wire. Note that the guide wire at this time may be a ring catheter with electrodes.
図7に示すように、電極部40を目的位置である肺静脈60の入口まで挿入したら、第2ポート25および拡張ルーメン39を介して拡張用流体をバルーン22内に供給する。これにより、バルーン22が拡張し、電極部40がバルーン22によって押されて径方向に拡張した形状となる。このとき、バルーン22とともに変形することで不足する電極部40の長さを、伸縮部44が伸長して補うことができる。収容ルーメン35に収容されている電極本体41の基端部は、収容ルーメン35から先端方向へ引き出される。電極本体41の基端は、バルーン22が拡張しても、収容ルーメン35内に位置する。このため、電極本体41と伸縮部44の接合部は、収容ルーメン35から先端方向へ突出しない。したがって、電極本体41と伸縮部44の接合部が、収容ルーメン35の開口部に引っ掛かることを抑制できる。なお、電極本体41と伸縮部44の接合部は、収容ルーメン35から先端方向へ突出してもよい。この場合、電極部40を大きく移動させて、電極部40を大きく拡張させることができる。電極部40は、バルーン22によって生体壁61に押し付けられる。この状態で、電源部12から電極部40に電圧が付与される。As shown in FIG. 7, when the electrode unit 40 is inserted up to the entrance of the pulmonary vein 60, which is the target position, an inflation fluid is supplied into the balloon 22 via the second port 25 and the inflation lumen 39. As a result, the balloon 22 is expanded, and the electrode portion 40 is pushed by the balloon 22 to have a shape expanded in the radial direction. At this time, the length of the electrode portion 40 that is insufficient due to the deformation together with the balloon 22 can be compensated by the expansion and contraction portion 44 extending. The base end of the electrode body 41 housed in the housing lumen 35 is pulled out from the housing lumen 35 in the distal direction. The base end of the electrode main body 41 is located in the accommodation lumen 35 even when the balloon 22 is expanded. For this reason, the joint between the electrode main body 41 and the expansion / contraction part 44 does not protrude from the housing lumen 35 in the distal direction. Therefore, it is possible to prevent the joint between the electrode main body 41 and the expansion / contraction part 44 from being caught by the opening of the housing lumen 35. The joint between the electrode main body 41 and the expansion / contraction part 44 may protrude from the accommodation lumen 35 in the distal direction. In this case, the electrode section 40 can be largely moved, and the electrode section 40 can be greatly expanded. The electrode section 40 is pressed against the living body wall 61 by the balloon 22. In this state, a voltage is applied from the power supply unit 12 to the electrode unit 40.
電源部12からは、まず、周方向に隣接する一対の電極部40,40に対して、パルス状の電圧が付与される。これにより、周方向に隣接する一対の電極部40,40間に電流が流れる。次に、周方向に隣接する他の対の電極部40,40に対して、パルス状の電圧が付与される。電圧の付与は、周方向に隣接する全ての対となる電極部40,40に対して、順次行われる。付与される電圧の一例を以下に挙げる。電源部12が付与する電界強度は、1500V/cmであり、電圧のパルス幅は100μsecである。周方向に隣接する電極部40の全ての対に対する電圧付与は、2秒に1回のサイクルで、心室筋の不応期に合わせて、60~180回繰り返される。これによって、肺静脈の入口の細胞を全周に渡って壊死させる。なお、隣接していない複数の電極部40の間で電流を流してもよく、電極部40と体表に貼り付けられた対極板との間で電流を流してもよい。First, a pulsed voltage is applied from the power supply unit 12 to the pair of electrode units 40, 40 adjacent in the circumferential direction. As a result, a current flows between the pair of electrode portions 40 adjacent in the circumferential direction. Next, a pulsed voltage is applied to the other pair of electrode portions 40, 40 adjacent in the circumferential direction. The application of the voltage is sequentially performed to all the paired electrode units 40 and 40 adjacent in the circumferential direction. An example of the applied voltage is described below. The electric field intensity applied by the power supply unit 12 is 1500 V / cm, and the pulse width of the voltage is 100 μsec. The application of voltage to all pairs of circumferentially adjacent electrode portions 40 is repeated once every two seconds, 60 to 180 times in accordance with the refractory period of the ventricular muscle. As a result, cells at the entrance of the pulmonary vein are necrotized over the entire circumference. In addition, a current may flow between a plurality of electrode units 40 that are not adjacent to each other, or a current may flow between the electrode unit 40 and a counter electrode plate attached to the body surface.
電圧の付与が完了したら、バルーン22を収縮させる。これにより、電極部40も、自己の復元力によって径方向に収縮する。このとき、伸縮部44が長さ方向へ収縮し、電極本体41の基端部が、収容ルーメン35に収容される。その後、血管内に挿入された全ての器具を抜出し、処置を完了する。When the application of the voltage is completed, the balloon 22 is deflated. As a result, the electrode section 40 also contracts in the radial direction by its own restoring force. At this time, the elastic portion 44 contracts in the length direction, and the base end of the electrode main body 41 is accommodated in the accommodation lumen 35. Thereafter, all the instruments inserted into the blood vessel are withdrawn, and the procedure is completed.
以上のように、第1の実施形態に係る医療デバイス10は、長尺なシャフト部21と、シャフト部21の先端部に配置され、シャフト部21の長さ方向に沿って延在し、かつシャフト部21の径方向に変形可能である複数の電極部40と、電極部40へ電流を通す複数の導線37と、を有し、シャフト部21は、複数の収容ルーメン35が形成されており、収容ルーメン35の各々に、導線37および当該導線37に接続される電極部40を収容可能である。これにより、医療デバイス10は、複数の収容ルーメン35の各々に電極部40の基端部を個別に収容するため、電極部40同士の電気的短絡を抑制できる。本実施形態では、電極部40によって電圧が異なる場合があるため、電気的短絡を抑制できることは、特に有効である。さらに、医療デバイス10は、複数の収容ルーメン35の各々に導線37および電極部40の基端部を個別に収容するため、導線37や電極部40を絡ませずに、収容ルーメン35に確実に収容できる。したがって、医療デバイス10は、生体内における電極部40および導線37の動作の安全性および確実性を向上できる。特に、医療デバイス10は、導線37および電極部40が絡まり難いため、外径が大きくならず安全に抜去できる。また、電極部40の一部が収容ルーメン35に収容されるため、医療デバイス10の先端部の外径が小さくなる。医療デバイス10の先端部の外径は、アブレーションを行う処置の後にも、小さく戻ることができる。このため、医療デバイス10は、細い生体内腔へ挿入でき、かつシースやガイディングカテーテルへ容易に収容できる。As described above, the medical device 10 according to the first embodiment is disposed at the long shaft portion 21 and the distal end portion of the shaft portion 21, extends along the length direction of the shaft portion 21, and The shaft portion 21 has a plurality of electrode portions 40 that can be deformed in the radial direction, and a plurality of conductive wires 37 that pass current to the electrode portion 40. The shaft portion 21 has a plurality of accommodation lumens 35 formed therein. Each of the accommodation lumens 35 can accommodate the conductor 37 and the electrode portion 40 connected to the conductor 37. Accordingly, the medical device 10 individually stores the base end of the electrode unit 40 in each of the plurality of housing lumens 35, so that an electrical short circuit between the electrode units 40 can be suppressed. In the present embodiment, since the voltage may vary depending on the electrode unit 40, it is particularly effective to be able to suppress an electrical short circuit. Furthermore, since the medical device 10 individually accommodates the bases of the conductor 37 and the electrode portion 40 in each of the plurality of accommodation lumens 35, the medical device 10 securely accommodates the conductor 37 and the electrode portion 40 in the accommodation lumen 35 without entanglement. it can. Therefore, the medical device 10 can improve the safety and reliability of the operation of the electrode unit 40 and the conducting wire 37 in the living body. In particular, since the conducting wire 37 and the electrode portion 40 are not easily entangled, the medical device 10 can be safely removed without increasing the outer diameter. In addition, since a part of the electrode portion 40 is housed in the housing lumen 35, the outer diameter of the distal end portion of the medical device 10 is reduced. The outer diameter of the distal end of the medical device 10 can be reduced back after the ablation procedure. For this reason, the medical device 10 can be inserted into a thin living body lumen, and can be easily accommodated in a sheath or a guiding catheter.
また、複数の電極部40は、長さ方向に伸縮可能であると共に導電性を備えた伸縮部44を各々に有し、伸縮部44の少なくとも一部は、収容ルーメン35に収容可能である。これにより、各々の電極部40は、伸縮部44の伸長によって収容ルーメン35から突出できると共に、伸縮部44の収縮によって、個別の収容ルーメン35に収容される。したがって、医療デバイス10は、電極部40同士の電気的短絡や絡まりを効果的に抑制できる。In addition, the plurality of electrode portions 40 each have an extendable portion 44 that is extendable and contractible in the length direction and has conductivity, and at least a part of the extendable portion 44 can be accommodated in the accommodation lumen 35. Thus, each of the electrode portions 40 can protrude from the housing lumen 35 by the extension of the elastic portion 44, and is accommodated in the individual accommodation lumen 35 by the contraction of the elastic portion 44. Therefore, the medical device 10 can effectively suppress an electrical short circuit or entanglement between the electrode units 40.
また、電極部40は、収容ルーメン35の先端側の開口部よりも基端側の位置でシャフト部21に固定されている。これにより、電極部40の基端部の少なくとも一部は、収容ルーメン35に収容される。例えば、シャフト部21の径方向へ変形した電極部40の基端部は、収容ルーメン35から先端方向へ突出した後、収容ルーメン35に戻ることができる。したがって、医療デバイス10は、外径を小さく保持でき、かつ電極部40同士の電気的短絡や絡まりを効果的に抑制できる。The electrode section 40 is fixed to the shaft section 21 at a position closer to the base end than the opening on the distal end side of the accommodation lumen 35. Thereby, at least a part of the base end of the electrode unit 40 is housed in the housing lumen 35. For example, the base end portion of the electrode portion 40 deformed in the radial direction of the shaft portion 21 can protrude from the housing lumen 35 in the distal direction, and then return to the housing lumen 35. Therefore, the medical device 10 can keep the outer diameter small, and can effectively suppress an electrical short circuit or entanglement between the electrode portions 40.
また、シャフト部21および電極部40の間に位置し、シャフト部21の径方向外側へ拡張可能な拡張体(例えば、バルーン22)を有する。これにより、医療デバイス10は、拡張する拡張体により電極部40を押圧し、電極部40を生体組織に密着させることができる。In addition, it has an expandable body (for example, a balloon 22) located between the shaft portion 21 and the electrode portion 40 and expandable radially outward of the shaft portion 21. Thereby, the medical device 10 can press the electrode unit 40 by the expanding body to be in close contact with the living tissue.
また、シャフト部21は、長尺な内管31と、内管31を覆う外管30と、を有し、外管30は、第1の管体32と、第1の管体32を覆う第2の管体33と、を有し、収容ルーメン35の少なくとも一部は、第2の管体33に位置し、第1の管体32の最先端は、第2の管体33の最先端よりも先端側に位置し、第2の管体33よりも先端側に位置する第1の管体32に、拡張体の基端部が固定され、第2の管体33よりも先端側に位置する内管31に、拡張体の先端部が固定されている。これにより、医療デバイス10は、第2の管体33よりも先端側に位置する第1の管体32に拡張体の基端部が配置されるため、第2の管体33の収容ルーメン35から突出する電極部40を、拡張体の外側に配置できる。The shaft portion 21 has a long inner tube 31 and an outer tube 30 that covers the inner tube 31, and the outer tube 30 covers the first tube 32 and the first tube 32. A second tube 33, and at least a part of the accommodation lumen 35 is located in the second tube 33, and the leading end of the first tube 32 is located at the extreme end of the second tube 33. The proximal end of the expansion body is fixed to the first tube 32 located on the distal side of the distal end and on the distal side of the second tube 33, and is located on the distal side of the second tube 33. Is fixed to the inner tube 31 located at the position shown in FIG. Accordingly, the medical device 10 is configured such that the base end portion of the expansion body is disposed in the first tube 32 located on the distal side with respect to the second tube 33, so that the accommodation lumen 35 of the second tube 33 is provided. The electrode portion 40 protruding from the outside can be arranged outside the expansion body.
また、医療デバイス10は、内管31の内側に、ガイドワイヤを挿入可能なガイドワイヤルーメン38が形成され、内管31と外管30の間に、拡張体(例えば、バルーン22)を拡張させる流体を流通可能な拡張ルーメン39が形成されている。これにより、医療デバイス10は、ガイドワイヤルーメン38にガイドワイヤを挿入可能であり、かつ拡張ルーメン39に流体を流通させて拡張体を拡張可能である。
<第2の実施形態>
In the medical device 10, a guide wire lumen 38 into which a guide wire can be inserted is formed inside the inner tube 31, and an expandable body (for example, the balloon 22) is expanded between the inner tube 31 and the outer tube 30. An expansion lumen 39 through which fluid can flow is formed. Thereby, the medical device 10 can insert a guidewire into the guidewire lumen 38 and can circulate a fluid through the expansion lumen 39 to expand the expansion body.
<Second embodiment>
第2の実施形態に係る医療デバイス10は、図8に示すように、外管30の第2の管体33の形態のみが、第1実施形態と異なる。The medical device 10 according to the second embodiment differs from the first embodiment only in the form of the second tube 33 of the outer tube 30 as shown in FIG.
外管30の第2の管体33は、管状の内層51と、内層51を覆う管状の外層52とを有している。すなわち、外管30は、内管31、内層51および外層52を有している。なお、シャフト部21は、4層以上で形成されてもよい。内層51および外層52は、同軸状に設けられている。内層51の外周面に、外管30の長さ方向に沿う複数の溝部53が形成されている。外層52を内層51に被せて内層51に固定することで、溝部53は、内層51に覆われて収容ルーメン35を形成している。なお、溝部53は、外層52の内周面に形成されてもよい。また、溝部53は、内層51の外周面および外層52の内周面の両方に形成されてもよい。The second tube 33 of the outer tube 30 has a tubular inner layer 51 and a tubular outer layer 52 covering the inner layer 51. That is, the outer tube 30 has the inner tube 31, the inner layer 51, and the outer layer 52. Note that the shaft portion 21 may be formed of four or more layers. The inner layer 51 and the outer layer 52 are provided coaxially. A plurality of grooves 53 are formed on the outer peripheral surface of the inner layer 51 along the length direction of the outer tube 30. By covering the outer layer 52 on the inner layer 51 and fixing it to the inner layer 51, the groove 53 is covered with the inner layer 51 to form the accommodation lumen 35. The groove 53 may be formed on the inner peripheral surface of the outer layer 52. In addition, the groove 53 may be formed on both the outer peripheral surface of the inner layer 51 and the inner peripheral surface of the outer layer 52.
以上のように、第2の実施形態に係る医療デバイス10において、第2の管体33は、管状の内層51と、内層51を覆う管状の外層52と、を有し、内層51の外周面および/または外層52の内周面に、収容ルーメン35の少なくとも一部を形成する溝部53が設けられている。これにより、内層51の外周面および/または外層52の内周面に溝部53を形成することで、外管30に収容ルーメン35を形成できる。したがって、医療デバイス10は、収容ルーメン35を容易に形成できると共に、収容ルーメン35に導線37や電極部40を容易に配置できる。また、収容ルーメン35に位置する基端固定部34を、接着剤等によって容易に形成できる。
<第3の実施形態>
As described above, in the medical device 10 according to the second embodiment, the second tubular body 33 has the tubular inner layer 51 and the tubular outer layer 52 covering the inner layer 51, and the outer peripheral surface of the inner layer 51. A groove 53 forming at least a part of the accommodation lumen 35 is provided on the inner peripheral surface of the outer layer 52. Thus, the accommodation lumen 35 can be formed in the outer tube 30 by forming the groove 53 on the outer peripheral surface of the inner layer 51 and / or the inner peripheral surface of the outer layer 52. Therefore, the medical device 10 can easily form the accommodation lumen 35 and can easily arrange the conducting wire 37 and the electrode unit 40 in the accommodation lumen 35. Further, the base fixing portion 34 located in the accommodation lumen 35 can be easily formed with an adhesive or the like.
<Third embodiment>
第3の実施形態に係る医療デバイス10は、図9(A)に示すように、外管30および電極部40の形態のみが、第1実施形態と異なる。As shown in FIG. 9A, the medical device 10 according to the third embodiment is different from the first embodiment only in the form of the outer tube 30 and the electrode unit 40.
外管30の第2の管体33は、内側の第1の管体32に対して固定されていない。したがって、第2の管体33は、第1の管体32に対して、外管30の長さ方向へ摺動可能である。各々の電極部40は、電極本体41を有し、伸縮部を有していない。電極本体41の基端部は、収容ルーメン35の内部で、導線37に電気的および構造的に接続されている。The second tube 33 of the outer tube 30 is not fixed to the inner first tube 32. Therefore, the second tube 33 is slidable in the length direction of the outer tube 30 with respect to the first tube 32. Each of the electrode portions 40 has an electrode main body 41 and does not have an elastic portion. The base end of the electrode main body 41 is electrically and structurally connected to the conducting wire 37 inside the accommodation lumen 35.
第3の実施形態において、バルーン22をシャフト部21の径方向に拡張させて電極部40を生体組織に押し付けると、図9(B)に示すように、伸縮部を有さない電極部40の基端部は、先端側へ移動する。このとき、電極部40の基端部が固定されている第2の管体33は、第1の管体32に対して摺動し、電極部40の基端部と共に先端側へ移動する。In the third embodiment, when the balloon 22 is expanded in the radial direction of the shaft section 21 and the electrode section 40 is pressed against the living tissue, as shown in FIG. The proximal end moves toward the distal end. At this time, the second tubular body 33 to which the base end of the electrode section 40 is fixed slides with respect to the first tubular body 32, and moves to the distal end side together with the base end of the electrode section 40.
以上のように、第3の実施形態に係る医療デバイス10において、第1の管体32は、第2の管体33に対して当該第2の管体33の長さ方向に沿って相対的に移動可能である。これにより、医療デバイス10は、第1の管体32および第2の管体33を相対的に移動させつつ、電極部40をシャフト部21の径方向に変形させることができる。このため、電極部40の長さ方向に作用する引張力を減少させることができ、電極部40の材料や構造の制限を緩和できる。As described above, in the medical device 10 according to the third embodiment, the first tube 32 is relatively positioned with respect to the second tube 33 along the length direction of the second tube 33. Can be moved to Thereby, the medical device 10 can deform the electrode portion 40 in the radial direction of the shaft portion 21 while relatively moving the first tube 32 and the second tube 33. For this reason, the tensile force acting in the length direction of the electrode unit 40 can be reduced, and the limitation on the material and structure of the electrode unit 40 can be relaxed.
なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、上述の実施形態の医療デバイス10は、肺静脈の処置に用いるものを示したが、それ以外の部位、例えば、腎動脈、上行大静脈、心室などを処置するものであってもよい。Note that the present invention is not limited to only the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, although the medical device 10 of the above-described embodiment is used for treating a pulmonary vein, the medical device 10 may treat other sites, such as a renal artery, an ascending vena cava, and a ventricle.
また、医療デバイス10の拡張体は、バルーンでなくてもよい。また、医療デバイス10は、電極部40を径方向外側へ押圧する拡張体を有さなくてもよい。例えば、第3実施形態に係る医療デバイス10は、バルーンがなくても、電極部40を拡張させることができる。図9に示す第2の管体33を内管31対して先端側へ移動させることで、電極部40を、シャフト部21の径方向へ拡張させることができる。Further, the expansion body of the medical device 10 may not be a balloon. Further, the medical device 10 does not have to have an expansion body that presses the electrode unit 40 radially outward. For example, the medical device 10 according to the third embodiment can expand the electrode unit 40 without a balloon. The electrode portion 40 can be expanded in the radial direction of the shaft portion 21 by moving the second tube body 33 shown in FIG.
また、電極部40は、導電性を有するとともに、長さ方向に伸縮可能な伸縮部のみにより形成されてもよい。In addition, the electrode section 40 may be formed of only an elastic portion that has conductivity and can expand and contract in the length direction.
なお、本出願は、2018年8月1日に出願された日本特許出願番号2018-144738号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。This application is based on Japanese Patent Application No. 2018-144738 filed on August 1, 2018, the disclosures of which are referenced and incorporated as a whole.
10  医療デバイス
21  シャフト部
22  バルーン(拡張部)
23  ハブ
30  外管
31  内管
32  第1の管体
33  第2の管体
34  基端固定部
35  収容ルーメン
37  導線
38  ガイドワイヤルーメン
39  拡張ルーメン
40  電極部
41  電極本体
44  伸縮部
51  内層
52  外層
53  溝部
10 Medical device 21 Shaft part 22 Balloon (expansion part)
23 Hub 30 Outer tube 31 Inner tube 32 First tube 33 Second tube 34 Base end fixing part 35 Housing lumen 37 Conducting wire 38 Guide wire lumen 39 Expansion lumen 40 Electrode part 41 Electrode body 44 Elastic part 51 Inner layer 52 Outer layer 53 groove

Claims (8)

  1. 長尺なシャフト部と、
    前記シャフト部の先端部に配置され、前記シャフト部の長さ方向に沿って延在し、前記シャフト部の径方向に変形可能である複数の電極部と、
    前記電極部へ電流を通す複数の導線と、を有し、
    前記シャフト部は、複数の収容ルーメンが形成されており、前記収容ルーメンの各々に、前記導線および当該導線に接続される前記電極部の基端部を収容可能である医療デバイス。
    With a long shaft part,
    A plurality of electrode portions arranged at a tip portion of the shaft portion, extending along a length direction of the shaft portion, and being deformable in a radial direction of the shaft portion;
    A plurality of conducting wires for passing a current to the electrode portion,
    The medical device, wherein the shaft portion is formed with a plurality of accommodation lumens, and each of the accommodation lumens can accommodate the conductive wire and a base end of the electrode portion connected to the conductive wire.
  2. 複数の前記電極部は、長さ方向に伸縮可能であると共に導電性を備えた伸縮部を各々に有し、
    前記伸縮部の少なくとも基端部は、前記収容ルーメンに収容可能である請求項1に記載の医療デバイス。
    The plurality of electrode portions each have a stretchable portion having conductivity that can be stretched and contracted in the length direction,
    The medical device according to claim 1, wherein at least a proximal end of the elastic portion can be housed in the housing lumen.
  3. 前記電極部は、前記収容ルーメンの先端側の開口部よりも基端側の位置で前記シャフト部に固定されている請求項1または2に記載の医療デバイス。The medical device according to claim 1, wherein the electrode portion is fixed to the shaft portion at a position closer to a base end than an opening on a distal end side of the housing lumen.
  4. 前記シャフト部および電極部の間に位置し、前記シャフト部の径方向外側へ拡張可能な拡張体を有する請求項1~3のいずれか1項に記載の医療デバイス。The medical device according to any one of claims 1 to 3, further comprising an expandable member located between the shaft portion and the electrode portion, the expandable member being expandable radially outward of the shaft portion.
  5. 前記シャフト部は、長尺な内管と、前記内管を覆う外管と、を有し、
    前記外管は、第1の管体と、前記第1の管体を覆う第2の管体と、を有し、
    前記収容ルーメンの少なくとも一部は、前記第2の管体に位置し、第1の管体の最先端は、前記第2の管体の最先端よりも先端側に位置し、
    前記第2の管体よりも先端側に位置する前記第1の管体に、前記拡張体の基端部が固定され、
    前記第2の管体よりも先端側に位置する前記内管に、前記拡張体の先端部が固定されている請求項4に記載の医療デバイス。
    The shaft portion has a long inner tube and an outer tube that covers the inner tube,
    The outer tube has a first tube and a second tube that covers the first tube,
    At least a part of the accommodation lumen is located in the second tubular body, and a leading end of the first tubular body is located on a tip side of a leading end of the second tubular body,
    A base end portion of the expansion body is fixed to the first tube body located on the distal end side with respect to the second tube body,
    The medical device according to claim 4, wherein a distal end portion of the expansion body is fixed to the inner tube located on a distal end side with respect to the second tubular body.
  6. 前記内管の内側に、ガイドワイヤを挿入可能なガイドワイヤルーメンが形成され、
    前記内管と外管の間に、前記拡張体を拡張させる流体を流通可能な拡張ルーメンが形成されている請求項5に記載の医療デバイス。
    A guide wire lumen into which a guide wire can be inserted is formed inside the inner tube,
    The medical device according to claim 5, wherein an expansion lumen through which a fluid for expanding the expansion body can flow is formed between the inner tube and the outer tube.
  7. 前記第2の管体は、管状の内層と、前記内層を覆う管状の外層と、を有し、
    前記内層の外周面および/または前記外層の内周面に、前記収容ルーメンの少なくとも一部を形成する溝部が設けられている請求項5または6に記載の医療デバイス。
    The second tube has a tubular inner layer, and a tubular outer layer covering the inner layer,
    The medical device according to claim 5, wherein a groove that forms at least a part of the accommodation lumen is provided on an outer peripheral surface of the inner layer and / or an inner peripheral surface of the outer layer.
  8. 前記第1の管体は、前記第2の管体に対して当該第2の管体の長さ方向に沿って相対的に移動可能である請求項5~7のいずれか1項に記載の医療デバイス。The method according to any one of claims 5 to 7, wherein the first tube is relatively movable with respect to the second tube along a length direction of the second tube. Medical device.
PCT/IB2019/058116 2018-08-01 2019-09-25 Medical device WO2020026217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144738A JP2020018606A (en) 2018-08-01 2018-08-01 Medical device
JP2018-144738 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020026217A1 true WO2020026217A1 (en) 2020-02-06

Family

ID=69230840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/058116 WO2020026217A1 (en) 2018-08-01 2019-09-25 Medical device

Country Status (2)

Country Link
JP (1) JP2020018606A (en)
WO (1) WO2020026217A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242620A1 (en) * 2020-05-27 2021-12-02 Medtronic, Inc. Safety default return path for electric field therapy
CN116549097A (en) * 2023-05-18 2023-08-08 浙江伽奈维医疗科技有限公司 Conformal ablation assembly, ablation assembly for pancreatic tissue, and ablation system
US11786300B2 (en) 2021-04-07 2023-10-17 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
US11850051B2 (en) 2019-04-30 2023-12-26 Biosense Webster (Israel) Ltd. Mapping grid with high density electrode array
US11878095B2 (en) 2018-12-11 2024-01-23 Biosense Webster (Israel) Ltd. Balloon catheter with high articulation
US11896298B2 (en) 2021-07-06 2024-02-13 Btl Medical Development A.S. Pulsed field ablation device and method
US11918383B2 (en) 2020-12-21 2024-03-05 Biosense Webster (Israel) Ltd. Visualizing performance of catheter electrodes
US11918341B2 (en) 2019-12-20 2024-03-05 Biosense Webster (Israel) Ltd. Selective graphical presentation of electrophysiological parameters
US11950930B2 (en) 2019-12-12 2024-04-09 Biosense Webster (Israel) Ltd. Multi-dimensional acquisition of bipolar signals from a catheter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US7027869B2 (en) * 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
JP2012183401A (en) * 2004-11-12 2012-09-27 Asthmatx Inc Improved device and method for delivering energy
JP2016127920A (en) * 2014-12-31 2016-07-14 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Basket catheter with improved spine flexibility
JP2016152926A (en) * 2009-11-11 2016-08-25 ホライラ, インコーポレイテッド Systems, apparatuses, and methods for treating tissue and controlling stenosis
WO2019181634A1 (en) * 2018-03-20 2019-09-26 テルモ株式会社 Medical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US7027869B2 (en) * 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
JP2012183401A (en) * 2004-11-12 2012-09-27 Asthmatx Inc Improved device and method for delivering energy
JP2016152926A (en) * 2009-11-11 2016-08-25 ホライラ, インコーポレイテッド Systems, apparatuses, and methods for treating tissue and controlling stenosis
JP2016127920A (en) * 2014-12-31 2016-07-14 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Basket catheter with improved spine flexibility
WO2019181634A1 (en) * 2018-03-20 2019-09-26 テルモ株式会社 Medical device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11878095B2 (en) 2018-12-11 2024-01-23 Biosense Webster (Israel) Ltd. Balloon catheter with high articulation
US11850051B2 (en) 2019-04-30 2023-12-26 Biosense Webster (Israel) Ltd. Mapping grid with high density electrode array
US11950930B2 (en) 2019-12-12 2024-04-09 Biosense Webster (Israel) Ltd. Multi-dimensional acquisition of bipolar signals from a catheter
US11918341B2 (en) 2019-12-20 2024-03-05 Biosense Webster (Israel) Ltd. Selective graphical presentation of electrophysiological parameters
WO2021242620A1 (en) * 2020-05-27 2021-12-02 Medtronic, Inc. Safety default return path for electric field therapy
US11950841B2 (en) 2020-09-22 2024-04-09 Biosense Webster (Israel) Ltd. Basket catheter having insulated ablation electrodes and diagnostic electrodes
US11950840B2 (en) 2020-09-22 2024-04-09 Biosense Webster (Israel) Ltd. Basket catheter having insulated ablation electrodes
US11918383B2 (en) 2020-12-21 2024-03-05 Biosense Webster (Israel) Ltd. Visualizing performance of catheter electrodes
US11786300B2 (en) 2021-04-07 2023-10-17 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
US11832785B2 (en) 2021-04-07 2023-12-05 Btl Medical Development A.S. Pulsed field ablation device and method
US11896298B2 (en) 2021-07-06 2024-02-13 Btl Medical Development A.S. Pulsed field ablation device and method
CN116549097A (en) * 2023-05-18 2023-08-08 浙江伽奈维医疗科技有限公司 Conformal ablation assembly, ablation assembly for pancreatic tissue, and ablation system

Also Published As

Publication number Publication date
JP2020018606A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2020026217A1 (en) Medical device
WO2019181612A1 (en) Medical device
JP7279018B2 (en) medical device
JP5877162B2 (en) Balloon catheter and energization system
US6764486B2 (en) Ablation device for cardiac tissue, especially for forming a circular lesion around a vessel orifice in the heart
JP7407119B2 (en) medical device
WO2016158291A1 (en) Balloon-type ablation catheter and ablation catheter device
CN114404034A (en) Ablation device
JP2024509644A (en) Pulsed field ablation device and method
US20160113711A1 (en) Ablation catheter and method of forming a circular lesion
US20220008128A1 (en) Medical device
US20230054269A1 (en) Basket Catheter with Porous Sheath
CN113317866B (en) Ablation assembly, ablation device and method of operation
CN114027967B (en) Pulsed electric field balloon component and ablation catheter device using same
JP2020025731A (en) Medical device
CN116158833A (en) Ablation system
WO2021187153A1 (en) Catheter and method for fixing electric wire to catheter
WO2020196142A1 (en) Medical device
WO2023281888A1 (en) Medical device
CN216495608U (en) Pulsed electric field balloon component and ablation catheter device applying same
EP3960107B1 (en) Proximal electrode cooling
JP2022120368A (en) catheter
JP2021142210A (en) Catheter system and voltage application method for catheter system
JP2022176157A (en) Distal assembly for catheter with lumens running along spines
CN117479899A (en) Systems and methods for isolating leads in electroporation devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845030

Country of ref document: EP

Kind code of ref document: A1