WO2019181634A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2019181634A1
WO2019181634A1 PCT/JP2019/009870 JP2019009870W WO2019181634A1 WO 2019181634 A1 WO2019181634 A1 WO 2019181634A1 JP 2019009870 W JP2019009870 W JP 2019009870W WO 2019181634 A1 WO2019181634 A1 WO 2019181634A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
medical device
stretchable
expansion
distal end
Prior art date
Application number
PCT/JP2019/009870
Other languages
French (fr)
Japanese (ja)
Inventor
大久保到
周拓
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2020508238A priority Critical patent/JP7279018B2/en
Publication of WO2019181634A1 publication Critical patent/WO2019181634A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to a medical device that is inserted into a living body and performs treatment by ablation on a living tissue.
  • Irreversible electroporation is known. Irreversible electroporation is attracting attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves. For example, medical devices are known that treat cancer that is difficult to remove by surgery using irreversible electroporation.
  • pulmonary vein isolation may be performed to ablate the junction between the pulmonary vein and the left atrium and destroy myocardial cells .
  • pulmonary vein isolation a high frequency is generated from the distal end of the ablation catheter, and the myocardium is cauterized into points to cause necrosis.
  • the ablation catheter is moved so as to cauterize the pulmonary vein inflow portion and isolate the pulmonary vein.
  • Patent Document 1 discloses a medical device having an electrode to which irreversible electroporation can be applied to an arterial lesion.
  • Patent Document 2 discloses a medical device that can be inserted into a ventricle and can reduce myocardial tissue by irreversible electroporation.
  • Patent Document 3 discloses a medical device in which an expansion element is provided at the distal end portion of an elongated body, and an electroporation treatment portion is further provided at the distal end side.
  • Patent Document 4 discloses a medical device in which a plurality of electrodes are provided at a distal end portion and electric power is supplied to the electrodes to perform electroporation treatment.
  • the electrodes When a plurality of electrodes are arranged around the balloon and the electrodes are expanded and deformed in the radial direction by expanding the balloon, the electrodes are uniformly expanded and deformed in the circumferential direction. For this reason, when the surface of the balloon expands unevenly in the circumferential direction, the deformation of the electrode cannot follow the expansion of the balloon, and the electrode may float from the surface of the balloon.
  • the distance between the distal end portion and the proximal end portion of the electrode changes with expansion deformation.
  • a slide along the axial direction occurs between the balloon-side shaft and the electrode-side shaft, and blood may enter the shaft through a gap necessary for the slide.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a medical device that has good followability to an expansion body and can eliminate sliding between shafts.
  • the medical device according to the present invention that achieves the above object includes a long shaft portion, an expansion body provided at a tip portion of the shaft portion, and a plurality of electrodes provided along the length direction around the expansion body.
  • Each of the plurality of electrode portions has a stretchable portion that can be stretched and contracted in the length direction.
  • the medical device configured as described above can be deformed while the electrode section follows the expansion of the expansion body because the electrode section can expand and deform in the radial direction while the expansion and contraction section expands. Further, since the electrode portion itself can be expanded and contracted, it is not necessary to provide a shaft that slides in accordance with the deformation of the electrode portion, and sliding between the shafts can be eliminated.
  • the side of the medical device 10 to be inserted into the living body lumen is referred to as “tip” or “tip side”, and the proximal side for operation is referred to as “base end” or “base end side”.
  • the medical device 10 according to the first embodiment is inserted percutaneously into a living body lumen, and is subjected to irreversible electroporation by applying a current by contacting a living tissue at a target site.
  • the medical device 10 of this embodiment is intended for a treatment in which electroporation is performed over the entire circumference of the pulmonary vein entrance in pulmonary vein isolation.
  • the medical device according to the present invention can be applied to other treatments.
  • the medical device 10 includes a long shaft portion 21, a balloon 22 that is an expansion body provided at the distal end portion of the shaft portion 21, and a hub 23 provided at the proximal end portion of the shaft portion 21. And a plurality of electrode portions 40 provided around the balloon 22.
  • the shaft portion 21 has a connection line 37 for applying a voltage to the electrode portion 40 along the length direction.
  • the connection line 37 is drawn from the proximal end portion of the shaft portion 21 and is connected to the power supply portion 12 provided outside the shaft portion 21.
  • the power supply unit 12 can apply a high voltage to the electrode unit 40 in a pulsed manner.
  • the shaft portion 21 has an outer tube portion 30 and an inner tube portion 31 concentrically. Inside the inner tube portion 31, a guide wire lumen 32 is formed along the length direction. An expansion lumen 33 is formed inside the outer tube portion 30 and outside the inner tube portion 31.
  • the distal end portion of the outer tube portion 30 is located inside the balloon 22.
  • An expansion opening 34 that connects the expansion lumen 33 and the inside of the balloon 22 is formed at the distal end of the outer tube portion 30.
  • the balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 through the expansion lumen 33 and the expansion opening 34.
  • the expansion fluid may be a gas or a liquid.
  • a gas such as helium gas, CO 2 gas, O 2 gas, or laughing gas, or a liquid such as physiological saline, a contrast medium, or a mixture thereof can be used.
  • the inner tube portion 31 extends further to the distal end side than the distal end of the outer tube portion 30, and the distal end portion is located on the distal end side from the balloon 22.
  • the balloon 22 has a proximal end portion fixed to the outer surface of the outer tube portion 30 and a distal end portion fixed to the outer surface of the inner tube portion 31.
  • a telescopic part lumen 35 for accommodating the base end part of the electrode part 40 is formed on the outermost peripheral part of the shaft part 21.
  • the expansion / contraction portion lumen 35 is open toward the distal end side on the proximal end side from the balloon 22.
  • a connection part 36 for electrically connecting the electrode part 40 and the connection line 37 is provided at the innermost part of the expansion / contraction part lumen 35.
  • a plurality of the stretchable part lumens 35 are provided in the circumferential direction so as to respectively correspond to the electrode parts 40 provided in the circumferential direction.
  • the shaft portion 21 is preferably formed of a material having a certain degree of flexibility.
  • a material having a certain degree of flexibility include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft polyvinyl chloride resin, Examples thereof include fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polytetrafluoroethylene, silicone rubber, and latex rubber.
  • the balloon 22 is formed of a thin-film balloon film, and is formed of a flexible material, like the shaft portion 21. Moreover, the intensity
  • the material of the balloon 22 those described above for the shaft portion 21 can be used, and other materials may be used.
  • the electrode part 40 is formed of a wire material having conductivity and flexibility.
  • the electrode part 40 of this embodiment is formed of a superelastic metal typified by nickel titanium.
  • an FPC flexible printed circuit board
  • the part formed with the wire of the electrode part 40 does not have a stretching property in the length direction.
  • the electrode part 40 is fixed to the shaft part 21 in the first fixing part 35a on the proximal end side from the balloon 22.
  • the electrode portion 40 is fixed to a tip fixing member 45 provided on the shaft portion 21 at a second fixing portion 45 a on the tip side of the balloon 22.
  • the tip fixing member 45 is fixed to the inner tube portion 31 of the shaft portion 21.
  • the electrode part 40 is located on the outer peripheral side of the balloon 22 and is not fixed to the balloon 22.
  • the electrode part 40 has a conduction part 41 in a region arranged around the balloon 22.
  • electrical_connection part 41 is an area
  • a region other than the conductive portion 41 of the electrode portion 40 is an insulating portion 42, and an insulating coat is applied to the surface.
  • the insulating part 42 does not apply a current to the living tissue.
  • the base part of the electrode part 40 is provided with a stretchable part 43 that can be stretched in the length direction.
  • the stretchable portion 43 is formed by a coiled spring member.
  • the expansion / contraction part 43 being expandable / contractible means that the electrode part 40 can be expanded and contracted in the length direction.
  • the flexible material generally has flexibility in the bending direction, and may be able to expand and contract in the length direction.
  • the stretchable portion 43 is formed using the flexibility of the material and is stretched and contracted in the length direction, the diameter of the stretchable portion 43 changes due to expansion and contraction, so that the electrical resistance also changes.
  • the spring member forming the stretchable portion 43 has good conductivity to the electrode portion 40 and durability during the stretch, and can be easily joined to the wire portion of the electrode portion 40 by soldering.
  • the stretchable part 43 is formed of a conductive material, for example, a metal. Further, the stretchable part 43 may be formed of a stretchable FPC or a curled covered electric wire, or may be formed of other conductive materials. As shown in FIG. 3B, the stretchable portion 43 can extend in the length direction from the state of FIG. In addition, an insulating coat is applied to the surface of the stretchable portion 43 in order to prevent current from being applied to the living tissue that is not the target site.
  • the stretchable portion 43 may be a bellows member as shown in FIG. In this case, the expansion and contraction can be extended in the length direction as shown in FIG.
  • the stretchable portion 43 which is a bellows member, can also be formed of a conductive metal, FPC, or other material.
  • the stretchable portion 43 may be other than a spring member or a bellows member as long as it is an elastic body that has conductivity and can be stretched in the length direction.
  • a linear rubber member having conductivity can be used.
  • the rubber member having conductivity for example, rubber containing carbon nanotubes, or a material in which a conduction path is printed with a conductive ink on the rubber surface can be used.
  • the stretchable part 43 may not be stored in the stretchable part lumen 35.
  • the expansion / contraction part 43 is accommodated in the expansion / contraction part lumen 35 of the shaft part 21.
  • the distal end portion of the stretchable portion 43 is joined to the wire portion of the electrode portion 40 by soldering and is electrically connected.
  • the base end portion of the expansion / contraction part 43 is joined to the connection line 37 drawn into the connection part 36 by soldering, and is electrically connected.
  • the surface of the stretchable part 43 including the joints at both ends is subjected to an insulation coating or insulation treatment.
  • the bonding method may be laser welding or welding using various metal brazing.
  • FIG. 1 and the like only two electrode portions 40 are shown for simplification, but a large number of electrode portions 40 are provided in the circumferential direction as shown in FIG. In this embodiment, six electrode portions 40 are equally provided in the circumferential direction. However, the number of electrode portions 40 may be larger or smaller than this. Moreover, the electrode part 40 may be unevenly arrange
  • the electrode part 40 has the conduction
  • the electrode portion 40 when the balloon 22 is expanded, the electrode portion 40 is expanded and deformed in the radial direction by the expansion force of the balloon 22. As a result, the electrode unit 40 is pressed against the living tissue.
  • the stretchable part 43 extends in the stretchable part lumen 35.
  • Each of the plurality of electrode portions 40 in the circumferential direction is provided with a stretchable portion 43, and the electrode portion 40 and the stretchable portion 43 are independent of the balloon 22, so that the stretchable portion 43 of each electrode portion 40 is provided. Can be of different lengths.
  • the balloon 22 has a non-uniform shape in the circumferential direction depending on the shape of the inserted living body lumen.
  • a non-uniform shape in the circumferential direction of the living body lumen is often seen in a transition portion between a wide space such as in the heart chamber and a narrow space such as a blood vessel.
  • Examples include the pulmonary vein entrance and the left atrial appendage entrance.
  • each of the stretchable parts 43 can be extended independently, so that the electrode part 40 can be expanded and deformed while following the shape of the balloon 22. Thereby, the electrode part 40 follows the shape of a biological lumen, and can apply an electric current reliably with respect to the target site
  • the electrode unit 40 is not fixed to the balloon 22, but the electrode unit 40 may be fixed to the surface of the balloon 22. In this case, it is necessary to prevent the stretchable portion 43 from being fixed to the balloon 22. Thereby, the expansion-contraction part 43 can be extended so that the electrode part 40 may follow the expansion of the balloon 22 and deform
  • an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like.
  • a guide wire (not shown)
  • the guide wire is protruded toward the distal end side, and the distal end portion of the guiding catheter is inserted into the introducer. Insert into the blood vessel through the tip opening.
  • the guiding catheter is gradually pushed to the target site while the guide wire is advanced. The surgeon forms a through hole in the atrial septum by penetrating a predetermined puncture device from the right atrium side toward the left atrium side.
  • the puncture device for example, a device such as a wire with a sharp tip can be used. Delivery of the puncture device can be performed via a guiding catheter. In addition, the puncture device can be delivered to the atrial septum instead of the guide wire after the guide wire is removed from the guiding catheter, for example. In addition, the specific structure of the puncture device used for the penetration of the atrial septum, the specific procedure for forming the through hole, etc. are not particularly limited. After forming the through hole, the dilator is used to expand the through hole, the guiding catheter is passed through the through hole, and the guide wire is used to push the target hole (for example, near the pulmonary vein). The guiding catheter may have a mechanism for moving the distal end portion of the guiding catheter.
  • the end of the guide wire is inserted into the opening of the distal end portion of the guide wire lumen 32 of the shaft portion 21, and the guide wire is taken out from the hub 23.
  • the medical device 10 is inserted into the guiding catheter inserted into the blood vessel from the distal end portion and pushed along the guide wire.
  • the expansion fluid is supplied into the balloon 22 via the expansion lumen 33, and the balloon 22 is expanded.
  • the expansion / contraction part 43 expand extends, it becomes the shape which the electrode part 40 expanded to radial direction with the balloon 22, and the electrode part 40 is pressed on a biological tissue.
  • a voltage is applied from the power supply unit 12 to the electrode unit 40.
  • a pulsed voltage is applied from the power supply unit 12 to a pair of electrode units 40 and 40 adjacent in the circumferential direction. Thereby, an electric current flows between a pair of electrode parts 40 and 40 adjacent to the circumferential direction.
  • a pulsed voltage is applied to the other pair of electrode portions 40, 40 adjacent in the circumferential direction.
  • the application of voltage is sequentially performed on all pairs of electrode portions 40, 40 that are adjacent in the circumferential direction.
  • An example of the applied voltage is given below.
  • the electric field strength applied by the power supply unit 12 is 1500 V / cm, and the voltage pulse width is 100 ⁇ sec.
  • the voltage application to all pairs of the electrode portions 40 adjacent in the circumferential direction is repeated 60 to 180 times in a cycle of once every 2 seconds in accordance with the refractory period of the ventricular muscle.
  • cells at the entrance of the pulmonary vein are necrotized over the entire circumference.
  • the balloon 22 When the voltage application is completed, the balloon 22 is deflated. Thereby, the electrode part 40 also shrinks in the radial direction. Thereafter, all instruments inserted into the blood vessel are removed to complete the procedure.
  • the medical device 50 according to the second embodiment has a distal end side expansion / contraction section lumen 56 on the distal end fixing member 55.
  • the electrode portion 51 has a proximal end side stretchable portion 52 at the proximal end portion and a distal end side stretchable portion 53 at the distal end portion.
  • the base end side expansion / contraction part 52 is accommodated in the expansion / contraction part lumen 35 of the shaft part 21.
  • the distal-side expansion / contraction part 53 is accommodated in the distal-end-side expansion / contraction part lumen 56 of the distal end fixing member 55.
  • the base end side stretchable part 52 and the tip end side stretchable part 53 can also be provided at the base end part and the tip end part of the electrode part 51, respectively. Thereby, each elongation amount of the base end side expansion-contraction part 52 and the front end side expansion-contraction part 53 can be made small, and frictional resistance can be made small.
  • a spring member, a bellows member, a rubber member, or the like can be used for the base end side stretchable portion 52 and the distal end side stretchable portion 53.
  • the base end side expansion / contraction part 52 needs to have conductivity for electrical connection with the electrode part 51.
  • the distal end side stretchable part 53 may not have conductivity.
  • the electrode part 51 may be provided with the distal end side stretchable part 53 and the proximal end side stretchable part 52 may not be provided.
  • the positional relationship between the distal end of the shaft part 21 and the electrode part 40 is fixed. Easy to grasp the position at the time of deformation and easy to operate.
  • the distal end side stretchable portion 53 can be formed of a material having no conductivity, and the base end portion of the electrode portion 51 is directly connected to the connection line 37. be able to.
  • the medical device 60 of the present embodiment has an electrode part 61 whose whole length direction is an expandable part.
  • the electrode portion 61 is formed of a material that can be elastically expanded and contracted, for example, rubber. However, it may be formed of other materials such as a stretchable resin.
  • the electrode portion 61 has a proximal end portion fixed to the shaft portion 21 and a distal end portion fixed to the distal end fixing member 45.
  • a conductive part 61b having conductivity is formed on the surface of a base part 61a made of rubber. Since the area
  • the conduction part 61b can be formed by printing conductive ink on the surface of the base part 61a.
  • the electrode portion 61 is formed with a continuous portion 61c extending from the proximal end of the conducting portion 61b toward the proximal end side.
  • the continuous portion 61c is also formed together with the conductive portion 61b by printing conductive ink on the surface of the base portion 61a.
  • a base end portion of the continuous portion 61 c is electrically connected to the connection line 37. Thereby, the conduction
  • the surface of the continuous part 61 c is provided with an insulating coat so as not to be exposed on the surface of the electrode part 61.
  • the conducting part 61b and the continuous part 61c of the electrode part 61 may be formed of rubber containing a conductive member such as a carbon nanotube or copper particles. Other portions may be formed of rubber that does not contain a conductive material.
  • the entire electrode part 61 can also be formed of a stretchable part.
  • the electrode portion 61 expands by expansion of the balloon 22 and expands and deforms in the radial direction together with the balloon 22. Since the whole electrode part 61 is an extension part, the connection part of a wire and an extension part can be eliminated, and the electrode part 61 can be made into a simple structure.
  • the electrode unit 61 is not fixed to the balloon 22, but the electrode unit 61 may be fixed to the surface of the balloon 22. In this case, expansion of the balloon 22 causes the membrane of the balloon 22 to expand, and the electrode portion 61 also expands and expands and deforms in the radial direction.
  • the medical device 10 is provided along the length direction around the elongated shaft portion 21, the expansion body 22 provided at the distal end portion of the shaft portion 21, and the expansion body 22.
  • each of the electrode portions 40 has a stretchable portion 43 that is at least partially stretchable in the length direction. Accordingly, when the expansion body 22 is expanded, the electrode portion 40 can be expanded and deformed in the radial direction while the expansion / contraction portion 43 is extended. Therefore, the electrode portion 40 can be deformed while following the expansion of the expansion body 43.
  • the electrode part 40 itself can be expanded and contracted, it is not necessary to provide a shaft that slides in accordance with the deformation of the electrode part 40, and sliding between the shafts can be eliminated.
  • the electrode portion 40 has a base end portion and a tip end portion
  • the shaft portion 21 has a first fixing portion 35a to which the base end portion of the electrode portion 40 is fixed and a tip end portion of the electrode portion 40 fixed.
  • the second fixing portion 45a, the first fixing portion 35a is located on the proximal end side of the expansion body 22, the second fixing portion 45a is located on the distal end side of the expansion body 22, and the electrode
  • the part 40 can be deformed independently of the expansion body 22. Thereby, the expansion body 22 can be freely expanded according to the shape of the living body lumen, and the electrode portion 40 can be deformed following the expansion.
  • the expansion-contraction part 43 is arrange
  • the stretchable portion 53 is arranged on the tip side of the electrode portion 40, a material that does not have conductivity can be used for the stretchable portion 53.
  • the stretchable parts 52 and 53 are arranged on the proximal end side and the distal end side of the electrode part 40, respectively, the stretch amount of each stretchable part 52 and 53 can be reduced, and the frictional resistance can be reduced.
  • the expansion / contraction part 43 is a spring member, it can be easily connected to the connection line 37 and can be manufactured easily, and the durability can be increased.
  • the shaft part 21 has the expansion-contraction part lumen
  • rumen 35 which accommodates the expansion-contraction part 43, the expansion-contraction part 43 can be expanded-contracted, without interfering with the exterior.
  • the stretchable portion 43 is a rubber member having stretchability, it is not necessary to provide a lumen for the stretchable portion 43 in the shaft portion 21.
  • the electrode part 61 is a rubber member having elasticity, and if the conductive part 61b is provided on at least a part of the surface of the rubber member, the connection between the electrode part and the extension part becomes unnecessary, and the manufacture of the parts is simplified.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention.
  • the medical device 10 according to the above-described embodiment is used for the treatment of the pulmonary vein, it may be used to treat other parts such as the renal artery, the ascending vena cava, and the ventricle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is a medical device which has good followability to a dilator and can eliminate sliding between shafts. This medical device (10) includes a long shaft portion (21), a dilator (22) that is provided on a distal end of the shaft portion (21), and a plurality of electrode portions (40) that are provided around the dilator (22) along a length direction. Each of the plurality of electrode portions (40) has a stretchable portion (43) at least a portion of which is stretchable in the length direction. Additionally, each electrode portion (40) has a distal end fixed more to the distal end side than the dilator (22) of the shaft portion (21) and a base end fixed more to the proximal end side than the dilator (22) of the shaft portion (21), and is deformable independent of the dilator (22).

Description

医療デバイスMedical device
 本発明は、生体内に挿入され生体組織に対しアブレーションによる治療を行う医療デバイスに関する。 The present invention relates to a medical device that is inserted into a living body and performs treatment by ablation on a living tissue.
 医療デバイスとして、不可逆電気穿孔法(IRE:Irreversible Electroporation)による治療を行うものが知られている。不可逆電気穿孔法は、非熱性であり、周囲の血管や神経への損傷を抑えることができることから、注目されている。例えば、外科手術での除去が困難ながんに対して、不可逆電気穿孔法を用いて治療を行う医療装置が知られている。 A medical device that performs treatment by irreversible electroporation (IRE) is known. Irreversible electroporation is attracting attention because it is non-thermal and can suppress damage to surrounding blood vessels and nerves. For example, medical devices are known that treat cancer that is difficult to remove by surgery using irreversible electroporation.
 肺静脈壁の心筋スリーブで発生する異常興奮が原因となる心房細動に対して、肺静脈と左心房との接合部をアブレーションし、心筋細胞を破壊する肺静脈隔離術が行われることがある。肺静脈隔離術では、アブレーションカテーテルの先端から高周波を発生させて、心筋を点状に焼灼して壊死させる。アブレーションカテーテルは、肺静脈流入部を円周状に焼灼するように移動され、肺静脈を隔離する。 For atrial fibrillation caused by abnormal excitation in the myocardial sleeve of the pulmonary vein wall, pulmonary vein isolation may be performed to ablate the junction between the pulmonary vein and the left atrium and destroy myocardial cells . In pulmonary vein isolation, a high frequency is generated from the distal end of the ablation catheter, and the myocardium is cauterized into points to cause necrosis. The ablation catheter is moved so as to cauterize the pulmonary vein inflow portion and isolate the pulmonary vein.
 このように生体内腔に対して治療を行う場合に、前述の不可逆電気穿孔法を適用することが考えられる。生体内腔に対して不可逆電気穿孔法を適用する医療デバイスとしては、例えば下記特許文献に示すようなものがある。特許文献1には、動脈病変に対して不可逆電気穿孔法を適用可能な電極を有する医療デバイスが開示されている。特許文献2には、心室内に挿入可能で、不可逆電気穿孔法による心筋組織の減少を図ることができる医療デバイスが開示されている。特許文献3には、延伸体の先端部に拡張要素を設け、そのさらに先端側に電気穿孔治療部を設けた医療デバイスが開示されている。特許文献4には、先端部に複数の電極を設け、その電極に電力を供給して電気穿孔治療を行う医療デバイスが開示されている。 It is conceivable to apply the above-described irreversible electroporation method when treating a living body lumen in this way. Examples of medical devices that apply irreversible electroporation to a living body lumen include those shown in the following patent documents. Patent Document 1 discloses a medical device having an electrode to which irreversible electroporation can be applied to an arterial lesion. Patent Document 2 discloses a medical device that can be inserted into a ventricle and can reduce myocardial tissue by irreversible electroporation. Patent Document 3 discloses a medical device in which an expansion element is provided at the distal end portion of an elongated body, and an electroporation treatment portion is further provided at the distal end side. Patent Document 4 discloses a medical device in which a plurality of electrodes are provided at a distal end portion and electric power is supplied to the electrodes to perform electroporation treatment.
米国特許公開第2009/0248012号明細書US Patent Publication No. 2009/0248012 国際公開第2014/195933号明細書International Publication No. 2014/195933 Specification 米国特許公開第2013/0110098号明細書US Patent Publication No. 2013/0110098 米国特許公開第2014/0066913号明細書US Patent Publication No. 2014/0066913
 バルーンの周囲に複数の電極を配置し、バルーンの拡張によって電極を径方向に拡張変形させる場合、電極は周方向に一様に拡張変形する。このため、バルーンの表面が周方向において不均一に拡張した場合、電極の変形がバルーンの拡張に追従できず、電極がバルーンの表面から浮いてしまう可能性がある。 When a plurality of electrodes are arranged around the balloon and the electrodes are expanded and deformed in the radial direction by expanding the balloon, the electrodes are uniformly expanded and deformed in the circumferential direction. For this reason, when the surface of the balloon expands unevenly in the circumferential direction, the deformation of the electrode cannot follow the expansion of the balloon, and the electrode may float from the surface of the balloon.
 また、電極は、拡張変形に伴い、先端部と基端部との距離が変化する。これにより、バルーン側のシャフトと電極側のシャフトとの間で、軸方向に沿う摺動が発生し、この摺動に必要な隙間から血液がシャフト内に浸入する可能性もある。 Also, the distance between the distal end portion and the proximal end portion of the electrode changes with expansion deformation. As a result, a slide along the axial direction occurs between the balloon-side shaft and the electrode-side shaft, and blood may enter the shaft through a gap necessary for the slide.
 本発明は、上述した課題を解決するためになされたものであり、拡張体に対する追従性が良好で、シャフト間の摺動もなくすことができる医療デバイスを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a medical device that has good followability to an expansion body and can eliminate sliding between shafts.
 上記目的を達成する本発明に係る医療デバイスは、長尺なシャフト部と、該シャフト部の先端部に設けられる拡張体と、該拡張体の周囲に長さ方向に沿って設けられる複数の電極部とを有する医療デバイスであって、複数の前記電極部は、少なくとも一部が長さ方向に伸縮可能な伸縮部をそれぞれに有する。 The medical device according to the present invention that achieves the above object includes a long shaft portion, an expansion body provided at a tip portion of the shaft portion, and a plurality of electrodes provided along the length direction around the expansion body. Each of the plurality of electrode portions has a stretchable portion that can be stretched and contracted in the length direction.
 上記のように構成した医療デバイスは、拡張体が拡張すると、伸縮部が伸長しながら電極部が径方向に拡張変形できるので、電極部が拡張体の拡張に追従しながら変形できる。また、電極部自体が伸縮できることから、電極部の変形に合わせて摺動するシャフトを設ける必要がなく、シャフト間の摺動をなくすことができる。 When the expansion body expands, the medical device configured as described above can be deformed while the electrode section follows the expansion of the expansion body because the electrode section can expand and deform in the radial direction while the expansion and contraction section expands. Further, since the electrode portion itself can be expanded and contracted, it is not necessary to provide a shaft that slides in accordance with the deformation of the electrode portion, and sliding between the shafts can be eliminated.
第1の実施形態における医療デバイスの概略を示す正面図である。It is a front view which shows the outline of the medical device in 1st Embodiment. 医療デバイスの先端部付近の断面図である。It is sectional drawing of the front-end | tip part vicinity of a medical device. バネ部材で形成された伸縮部の収縮時と伸長時の正面図である。It is a front view at the time of expansion and contraction of the expansion / contraction part formed with the spring member. 蛇腹部材で形成された伸長部の収縮時と伸長時の正面図である。It is a front view at the time of the expansion | extension part formed by the bellows member at the time of shrinkage | contraction. 医療デバイスの先端部を軸方向と垂直な平面で切った断面図である。It is sectional drawing which cut the front-end | tip part of the medical device with the plane perpendicular | vertical to an axial direction. バルーンを拡張させた状態の医療デバイスの先端部付近の断面図である。It is sectional drawing of the front-end | tip part vicinity of the medical device of the state which expanded the balloon. 第2の実施形態における医療デバイスの先端部付近の正面図である。It is a front view near the front-end | tip part of the medical device in 2nd Embodiment. 第3の実施形態における医療デバイスの先端部付近の正面図である。It is a front view near the front-end | tip part of the medical device in 3rd Embodiment. ゴム部材で形成された電極部の平面図である。It is a top view of the electrode part formed with the rubber member.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、本明細書では、医療デバイス10の生体内腔に挿入する側を「先端」若しくは「先端側」、操作する手元側を「基端」若しくは「基端側」と称することとする。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio. Further, in this specification, the side of the medical device 10 to be inserted into the living body lumen is referred to as “tip” or “tip side”, and the proximal side for operation is referred to as “base end” or “base end side”.
 第1の実施形態の医療デバイス10は、生体内腔に対し経皮的に挿入され、目的部位の生体組織に接触して電流を印加し、不可逆電気穿孔法を実施するものである。本実施形態の医療デバイス10が対象とするのは、肺静脈隔離術において、肺静脈の入口部を全周に渡って電気穿孔する治療である。ただし、後述するように、本発明に係る医療デバイスは、その他の治療にも適用することができる。 The medical device 10 according to the first embodiment is inserted percutaneously into a living body lumen, and is subjected to irreversible electroporation by applying a current by contacting a living tissue at a target site. The medical device 10 of this embodiment is intended for a treatment in which electroporation is performed over the entire circumference of the pulmonary vein entrance in pulmonary vein isolation. However, as will be described later, the medical device according to the present invention can be applied to other treatments.
 図1に示すように、医療デバイス10は、長尺なシャフト部21と、シャフト部21の先端部に設けられる拡張体であるバルーン22と、シャフト部21の基端部に設けられるハブ23と、バルーン22の周囲に設けられる複数の電極部40とを有している。 As shown in FIG. 1, the medical device 10 includes a long shaft portion 21, a balloon 22 that is an expansion body provided at the distal end portion of the shaft portion 21, and a hub 23 provided at the proximal end portion of the shaft portion 21. And a plurality of electrode portions 40 provided around the balloon 22.
 シャフト部21は、電極部40に電圧を印加するための接続線37を長さ方向に沿って有している。接続線37は、シャフト部21の基端部から引き出され、シャフト部21の外部に設けられる電源部12に接続されている。電源部12は、電極部40に対して高電圧をパルス状に与えることができる。 The shaft portion 21 has a connection line 37 for applying a voltage to the electrode portion 40 along the length direction. The connection line 37 is drawn from the proximal end portion of the shaft portion 21 and is connected to the power supply portion 12 provided outside the shaft portion 21. The power supply unit 12 can apply a high voltage to the electrode unit 40 in a pulsed manner.
 医療デバイス10の先端部付近の構造について詳細に説明する。図2に示すように、シャフト部21は、外管部30と内管部31とを同心円状に有している。内管部31の内部には、長さ方向に沿うガイドワイヤルーメン32が形成される。外管部30の内部であって内管部31の外部には、拡張ルーメン33が形成される。 The structure near the tip of the medical device 10 will be described in detail. As shown in FIG. 2, the shaft portion 21 has an outer tube portion 30 and an inner tube portion 31 concentrically. Inside the inner tube portion 31, a guide wire lumen 32 is formed along the length direction. An expansion lumen 33 is formed inside the outer tube portion 30 and outside the inner tube portion 31.
 外管部30の先端部は、バルーン22の内部に位置している。外管部30の先端部には、拡張ルーメン33とバルーン22内部とを連通させる拡張用開口部34が形成されている。拡張ルーメン33及び拡張用開口部34を介してバルーン22内部に拡張用流体を注入することで、バルーン22を拡張させることができる。拡張用流体は気体でも液体でもよく、例えばヘリウムガス、COガス、Oガス、笑気ガス等の気体や、生理食塩水、造影剤、及びその混合剤等の液体を用いることができる。 The distal end portion of the outer tube portion 30 is located inside the balloon 22. An expansion opening 34 that connects the expansion lumen 33 and the inside of the balloon 22 is formed at the distal end of the outer tube portion 30. The balloon 22 can be expanded by injecting an expansion fluid into the balloon 22 through the expansion lumen 33 and the expansion opening 34. The expansion fluid may be a gas or a liquid. For example, a gas such as helium gas, CO 2 gas, O 2 gas, or laughing gas, or a liquid such as physiological saline, a contrast medium, or a mixture thereof can be used.
 内管部31は、外管部30の先端よりさらに先端側まで延び、その先端部はバルーン22より先端側に位置している。バルーン22は、基端部が外管部30の外表面に、先端部が内管部31の外表面に、それぞれ固定されている。 The inner tube portion 31 extends further to the distal end side than the distal end of the outer tube portion 30, and the distal end portion is located on the distal end side from the balloon 22. The balloon 22 has a proximal end portion fixed to the outer surface of the outer tube portion 30 and a distal end portion fixed to the outer surface of the inner tube portion 31.
 シャフト部21の最外周部には、電極部40の基端部を収納する伸縮部ルーメン35が形成されている。伸縮部ルーメン35は、バルーン22より基端側で、先端側に向かって開口している。伸縮部ルーメン35の最奥部には、電極部40と接続線37とを電気的に接続させる接続部36が設けられている。伸縮部ルーメン35は、周方向に複数設けられる電極部40にそれぞれ対応するように、周方向に複数が設けられる。 A telescopic part lumen 35 for accommodating the base end part of the electrode part 40 is formed on the outermost peripheral part of the shaft part 21. The expansion / contraction portion lumen 35 is open toward the distal end side on the proximal end side from the balloon 22. A connection part 36 for electrically connecting the electrode part 40 and the connection line 37 is provided at the innermost part of the expansion / contraction part lumen 35. A plurality of the stretchable part lumens 35 are provided in the circumferential direction so as to respectively correspond to the electrode parts 40 provided in the circumferential direction.
 シャフト部21は、ある程度の可撓性を有する材料により形成されるのが好ましい。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリテトラフルオロエチレン等のフッ素樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。 The shaft portion 21 is preferably formed of a material having a certain degree of flexibility. Examples of such a material include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these, soft polyvinyl chloride resin, Examples thereof include fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polytetrafluoroethylene, silicone rubber, and latex rubber.
 バルーン22は、薄膜状のバルーン膜によって形成されており、シャフト部21と同様に、可撓性を有する材料によって形成される。また、電極部40を確実に押し広げる程度の強度も必要とされる。バルーン22の材質には、シャフト部21について上で挙げたものを用いることができ、また、それ以外であってもよい。 The balloon 22 is formed of a thin-film balloon film, and is formed of a flexible material, like the shaft portion 21. Moreover, the intensity | strength of the grade which spreads the electrode part 40 reliably is also required. As the material of the balloon 22, those described above for the shaft portion 21 can be used, and other materials may be used.
 電極部40は、導電性及び可撓性を有する線材で形成されている。本実施形態の電極部40は、ニッケルチタンに代表される超弾性金属で形成されている。ただし、電極部40は、それ以外の導電性を有する材料で形成してもよい。例えば、FPC(フレキシブルプリント回路基板)等でもよい。電極部40の線材で形成されている部分は、長さ方向に伸縮性を有しない。 The electrode part 40 is formed of a wire material having conductivity and flexibility. The electrode part 40 of this embodiment is formed of a superelastic metal typified by nickel titanium. However, you may form the electrode part 40 with the material which has the other electroconductivity. For example, an FPC (flexible printed circuit board) may be used. The part formed with the wire of the electrode part 40 does not have a stretching property in the length direction.
 電極部40は、バルーン22より基端側の第1固定部35aにおいて、シャフト部21に固定されている。また、電極部40は、バルーン22より先端側の第2固定部45aにおいて、シャフト部21に設けられる先端固定部材45に固定されている。先端固定部材45は、シャフト部21の内管部31に固定されている。電極部40は、バルーン22の外周側に位置しており、バルーン22とは固定されていない。 The electrode part 40 is fixed to the shaft part 21 in the first fixing part 35a on the proximal end side from the balloon 22. The electrode portion 40 is fixed to a tip fixing member 45 provided on the shaft portion 21 at a second fixing portion 45 a on the tip side of the balloon 22. The tip fixing member 45 is fixed to the inner tube portion 31 of the shaft portion 21. The electrode part 40 is located on the outer peripheral side of the balloon 22 and is not fixed to the balloon 22.
 電極部40は、バルーン22の周囲に配置される領域に導通部41を有する。導通部41は、表面が絶縁されていない領域であり、生体組織と接触した際に、生体組織に対して電流を印加できる。電極部40の導通部41以外の領域は絶縁部42であり、表面には絶縁コートが施されている。絶縁部42は、生体組織に対し電流を印加しない。 The electrode part 40 has a conduction part 41 in a region arranged around the balloon 22. The conduction | electrical_connection part 41 is an area | region where the surface is not insulated, and can apply an electric current with respect to a biological tissue when it contacts with a biological tissue. A region other than the conductive portion 41 of the electrode portion 40 is an insulating portion 42, and an insulating coat is applied to the surface. The insulating part 42 does not apply a current to the living tissue.
 電極部40の基端部には、長さ方向に伸縮可能な伸縮部43が設けられている。伸縮部43は、図3(a)に示すように、コイル状のバネ部材によって形成される。伸縮部43が伸縮可能であるとは、電極部40の長さ方向において伸び縮みが可能であることを言う。柔軟な材料は、一般的には曲げ方向の可撓性を有し、長さ方向への伸び縮みが可能なこともある。材料の柔軟性を利用して伸縮部43を形成し、長さ方向に伸び縮みさせた場合、伸縮部43は、伸縮により径が変化するため、電気抵抗も変化する。伸縮部43を材料の柔軟性ではなく、その形状の変化により伸縮可能とすることで、電気抵抗を変化させることなく長さ方向に伸び縮みを可能とすることができる。本実施形態において伸縮部43を形成するバネ部材は、電極部40への導電性、伸縮時の耐久性が良好であり、電極部40の線材部分と半田付けにより容易に接合できる。伸縮部43は、導電性を有する材料、例えば金属によって形成される。また、伸縮部43は、伸縮性を有するFPCやカール状被覆電線で形成されていてもよいし、その他の導電性を有する材料で形成されていてもよい。図3(b)に示すように、伸縮部43は、図3(a)の状態から長さ方向に伸長することができる。また、目的部位ではない生体組織に対し電流を印加しないようにするため、伸縮部43の表面には、絶縁コートが施されている。 The base part of the electrode part 40 is provided with a stretchable part 43 that can be stretched in the length direction. As shown in FIG. 3A, the stretchable portion 43 is formed by a coiled spring member. The expansion / contraction part 43 being expandable / contractible means that the electrode part 40 can be expanded and contracted in the length direction. The flexible material generally has flexibility in the bending direction, and may be able to expand and contract in the length direction. When the stretchable portion 43 is formed using the flexibility of the material and is stretched and contracted in the length direction, the diameter of the stretchable portion 43 changes due to expansion and contraction, so that the electrical resistance also changes. By making the stretchable portion 43 stretchable not by the flexibility of the material but by changing its shape, it can be stretched and contracted in the length direction without changing the electrical resistance. In this embodiment, the spring member forming the stretchable portion 43 has good conductivity to the electrode portion 40 and durability during the stretch, and can be easily joined to the wire portion of the electrode portion 40 by soldering. The stretchable part 43 is formed of a conductive material, for example, a metal. Further, the stretchable part 43 may be formed of a stretchable FPC or a curled covered electric wire, or may be formed of other conductive materials. As shown in FIG. 3B, the stretchable portion 43 can extend in the length direction from the state of FIG. In addition, an insulating coat is applied to the surface of the stretchable portion 43 in order to prevent current from being applied to the living tissue that is not the target site.
 伸縮部43は、図4(a)に示すような蛇腹部材であってもよい。この場合、伸縮は、図4(b)に示すように、長さ方向に伸長することができる。蛇腹部材である伸縮部43も、導電性を有する金属またはFPCあるいはその他の材料で形成することができる。 The stretchable portion 43 may be a bellows member as shown in FIG. In this case, the expansion and contraction can be extended in the length direction as shown in FIG. The stretchable portion 43, which is a bellows member, can also be formed of a conductive metal, FPC, or other material.
 伸縮部43は、導電性を有し、長さ方向に伸縮可能な弾性体であれば、バネ部材や蛇腹部材以外であってもよい。例えば、導電性を有する線状のゴム部材などを用いることもできる。導電性を有するゴム部材としては、例えば、カーボンナノチューブを含有したゴム、あるいは、ゴムの表面に導電性インクで導通路が印刷されたものなどを用いることができる。なお、伸縮部43にゴム部材を用いる場合、伸縮部43は伸縮部ルーメン35に収納されていなくてもよい。 The stretchable portion 43 may be other than a spring member or a bellows member as long as it is an elastic body that has conductivity and can be stretched in the length direction. For example, a linear rubber member having conductivity can be used. As the rubber member having conductivity, for example, rubber containing carbon nanotubes, or a material in which a conduction path is printed with a conductive ink on the rubber surface can be used. When a rubber member is used for the stretchable part 43, the stretchable part 43 may not be stored in the stretchable part lumen 35.
 伸縮部43は、シャフト部21の伸縮部ルーメン35内に収納されている。伸縮部43の先端部は、電極部40の線材部分と半田付けにより接合され、電気的に導通する。伸縮部43の基端部は、接続部36に引き込まれた接続線37と半田付けにより接合され、電気的に導通する。伸縮部43は、両端の接合部を含め、表面が絶縁コートあるいは絶縁処理されている。なお、接合方法は、レーザー融着や各種金属ロウを用いた溶着でもよい。 The expansion / contraction part 43 is accommodated in the expansion / contraction part lumen 35 of the shaft part 21. The distal end portion of the stretchable portion 43 is joined to the wire portion of the electrode portion 40 by soldering and is electrically connected. The base end portion of the expansion / contraction part 43 is joined to the connection line 37 drawn into the connection part 36 by soldering, and is electrically connected. The surface of the stretchable part 43 including the joints at both ends is subjected to an insulation coating or insulation treatment. The bonding method may be laser welding or welding using various metal brazing.
 図1等では、簡略化のため、電極部40は2本のみ示されているが、図5に示すように、電極部40は周方向により多数が設けられる。本実施形態では、電極部40は6本が周方向に均等に設けられている。ただし、電極部40の数はこれより多くてもよく、少なくてもよい。また、電極部40は、周方向に不均等に配置されていてもよい。電圧は、隣接する電極部40間に印加されるが、体外に電極を配置し、その体外の電極と電極部40との間に電圧を印加してもよい。電極部40は、生体組織に接触する外周側の面に、導通部41を有する。電極部40の外周側の面以外の面は、絶縁コートされた絶縁部42である。 In FIG. 1 and the like, only two electrode portions 40 are shown for simplification, but a large number of electrode portions 40 are provided in the circumferential direction as shown in FIG. In this embodiment, six electrode portions 40 are equally provided in the circumferential direction. However, the number of electrode portions 40 may be larger or smaller than this. Moreover, the electrode part 40 may be unevenly arrange | positioned in the circumferential direction. The voltage is applied between the adjacent electrode portions 40, but an electrode may be disposed outside the body, and the voltage may be applied between the electrode outside the body and the electrode portion 40. The electrode part 40 has the conduction | electrical_connection part 41 in the surface of the outer peripheral side which contacts a biological tissue. A surface other than the outer peripheral surface of the electrode portion 40 is an insulating portion 42 that is coated with an insulating coating.
 図6に示すように、バルーン22を拡張させると、バルーン22の拡張力により電極部40は径方向に拡張変形する。これによって、電極部40が生体組織に押し付けられる。電極部40が径方向に拡張変形する際には、伸縮部ルーメン35内で伸縮部43が伸長する。周方向に複数の電極部40には、そのそれぞれに伸縮部43が設けられると共に、電極部40と伸縮部43とが、バルーン22とは独立しているので、各電極部40の伸縮部43が、それぞれ異なる長さとなることができる。バルーン22は、挿入された生体内腔の形状によっては、拡張時の形状が周方向に不均一となる。特に、生体内腔の周方向に不均一な形状は、心腔内のような広い空間と血管のような狭い空間との移行部分に多く見られる。例えば、肺静脈の入口部や、左心耳の入口部などが挙げられる。この場合でも、各伸縮部43がそれぞれ独立して伸長可能であることで、電極部40はバルーン22の形状に追従しつつ拡張変形することができる。これにより、電極部40が生体内腔の形状に追従し、目的部位に対して確実に電流を印加できる。 As shown in FIG. 6, when the balloon 22 is expanded, the electrode portion 40 is expanded and deformed in the radial direction by the expansion force of the balloon 22. As a result, the electrode unit 40 is pressed against the living tissue. When the electrode part 40 expands and deforms in the radial direction, the stretchable part 43 extends in the stretchable part lumen 35. Each of the plurality of electrode portions 40 in the circumferential direction is provided with a stretchable portion 43, and the electrode portion 40 and the stretchable portion 43 are independent of the balloon 22, so that the stretchable portion 43 of each electrode portion 40 is provided. Can be of different lengths. The balloon 22 has a non-uniform shape in the circumferential direction depending on the shape of the inserted living body lumen. In particular, a non-uniform shape in the circumferential direction of the living body lumen is often seen in a transition portion between a wide space such as in the heart chamber and a narrow space such as a blood vessel. Examples include the pulmonary vein entrance and the left atrial appendage entrance. Even in this case, each of the stretchable parts 43 can be extended independently, so that the electrode part 40 can be expanded and deformed while following the shape of the balloon 22. Thereby, the electrode part 40 follows the shape of a biological lumen, and can apply an electric current reliably with respect to the target site | part.
 本実施形態において電極部40はバルーン22に固定されていないが、電極部40をバルーン22の表面に固定してもよい。この場合、伸縮部43はバルーン22と固定しないようにする必要がある。これにより、伸縮部43は、電極部40がバルーン22の拡張に追従して変形するように伸長することができる。 In this embodiment, the electrode unit 40 is not fixed to the balloon 22, but the electrode unit 40 may be fixed to the surface of the balloon 22. In this case, it is necessary to prevent the stretchable portion 43 from being fixed to the balloon 22. Thereby, the expansion-contraction part 43 can be extended so that the electrode part 40 may follow the expansion of the balloon 22 and deform | transform.
 次に、医療デバイス10を用いた処置方法について説明する。始めに、セルジンガー法などによりイントロデューサー(図示しない)を経皮的に血管に穿刺する。次に、ガイドワイヤ(図示しない)を挿入した後、ガイディングカテーテル(図示しない)を、イントロデューサーに挿入し、ガイドワイヤを先端側に突出させてから、ガイディングカテーテルの先端部をイントロデューサーの先端部開口から血管内へ挿入する。この後、ガイドワイヤを先行させつつ、ガイディングカテーテルを目的部位まで徐々に押し進める。術者は、右心房側から左心房側に向かって、所定の穿刺デバイスを貫通させることにより、心房中隔に貫通孔を形成する。穿刺デバイスは、例えば、先端が尖ったワイヤ等のデバイスを利用することができる。穿刺デバイスの送達は、ガイディングカテーテルを介して行うことができる。また、穿刺デバイスは、例えば、ガイディングカテーテルからガイドワイヤを抜去した後、ガイドワイヤに代えて心房中隔まで送達することができる。なお、心房中隔の貫通に使用される穿刺デバイスの具体的な構造、貫通孔を形成する際の具体的な手順等は特に限定されない。貫通孔を形成後、ダイレータを使って、貫通孔を押し広げ、貫通孔にガイディングカテーテルを通し、ガイドワイヤを使って目的部位(例えば、肺静脈付近)まで押し進める。ガイディングカテーテルは、ガイディングカテーテルの先端部が可動する機構を有してもよい。 Next, a treatment method using the medical device 10 will be described. First, an introducer (not shown) is percutaneously punctured into a blood vessel by the Seldinger method or the like. Next, after inserting a guide wire (not shown), a guiding catheter (not shown) is inserted into the introducer, the guide wire is protruded toward the distal end side, and the distal end portion of the guiding catheter is inserted into the introducer. Insert into the blood vessel through the tip opening. Thereafter, the guiding catheter is gradually pushed to the target site while the guide wire is advanced. The surgeon forms a through hole in the atrial septum by penetrating a predetermined puncture device from the right atrium side toward the left atrium side. As the puncture device, for example, a device such as a wire with a sharp tip can be used. Delivery of the puncture device can be performed via a guiding catheter. In addition, the puncture device can be delivered to the atrial septum instead of the guide wire after the guide wire is removed from the guiding catheter, for example. In addition, the specific structure of the puncture device used for the penetration of the atrial septum, the specific procedure for forming the through hole, etc. are not particularly limited. After forming the through hole, the dilator is used to expand the through hole, the guiding catheter is passed through the through hole, and the guide wire is used to push the target hole (for example, near the pulmonary vein). The guiding catheter may have a mechanism for moving the distal end portion of the guiding catheter.
 次に、シャフト部21のガイドワイヤルーメン32の先端部開口部に、ガイドワイヤの末端を挿入し、ハブ23からガイドワイヤを出す。次に、血管内に挿入されているガイディングカテーテル内に、医療デバイス10を先端部から挿入し、ガイドワイヤに沿わせて押し進める。 Next, the end of the guide wire is inserted into the opening of the distal end portion of the guide wire lumen 32 of the shaft portion 21, and the guide wire is taken out from the hub 23. Next, the medical device 10 is inserted into the guiding catheter inserted into the blood vessel from the distal end portion and pushed along the guide wire.
 電極部40を目的位置である肺静脈の入口まで挿入したら、拡張ルーメン33を介して拡張用流体をバルーン22内に供給し、バルーン22を拡張させる。これにより、図6に示すように、伸縮部43が伸長し、電極部40がバルーン22によって径方向に拡張した形状となり、電極部40が生体組織に押し付けられる。この状態で、電源部12から電極部40に電圧が印加される。 When the electrode unit 40 is inserted to the entrance of the pulmonary vein, which is the target position, the expansion fluid is supplied into the balloon 22 via the expansion lumen 33, and the balloon 22 is expanded. Thereby, as shown in FIG. 6, the expansion / contraction part 43 expand | extends, it becomes the shape which the electrode part 40 expanded to radial direction with the balloon 22, and the electrode part 40 is pressed on a biological tissue. In this state, a voltage is applied from the power supply unit 12 to the electrode unit 40.
 電源部12からは、まず、周方向に隣接する一対の電極部40,40に対して、パルス状の電圧が印加される。これにより、周方向に隣接する一対の電極部40,40間に電流が流れる。次に、周方向に隣接する他の対の電極部40,40に対して、パルス状の電圧が印加される。電圧の印加は、周方向に隣接する全ての対となる電極部40,40に対して、順次行われる。印加される電圧の一例を以下に挙げる。電源部12が印加する電界強度は、1500V/cmであり、電圧のパルス幅は100μsecである。周方向に隣接する電極部40の全ての対に対する電圧印加は、2秒に1回のサイクルで、心室筋の不応期に合わせて、60~180回繰り返される。これによって、肺静脈の入口の細胞を全周に渡って壊死させる。 First, a pulsed voltage is applied from the power supply unit 12 to a pair of electrode units 40 and 40 adjacent in the circumferential direction. Thereby, an electric current flows between a pair of electrode parts 40 and 40 adjacent to the circumferential direction. Next, a pulsed voltage is applied to the other pair of electrode portions 40, 40 adjacent in the circumferential direction. The application of voltage is sequentially performed on all pairs of electrode portions 40, 40 that are adjacent in the circumferential direction. An example of the applied voltage is given below. The electric field strength applied by the power supply unit 12 is 1500 V / cm, and the voltage pulse width is 100 μsec. The voltage application to all pairs of the electrode portions 40 adjacent in the circumferential direction is repeated 60 to 180 times in a cycle of once every 2 seconds in accordance with the refractory period of the ventricular muscle. As a result, cells at the entrance of the pulmonary vein are necrotized over the entire circumference.
 電圧の印加が完了したら、バルーン22を収縮させる。これにより、電極部40も径方向に収縮する。その後、血管内に挿入された全ての器具を抜出し、処置を完了する。 When the voltage application is completed, the balloon 22 is deflated. Thereby, the electrode part 40 also shrinks in the radial direction. Thereafter, all instruments inserted into the blood vessel are removed to complete the procedure.
 次に、第2の実施形態の医療デバイス50について説明する。第1の実施形態の医療デバイス10と共通の構成については、同じ符号を付し、説明を省略する。図7に示すように、本実施形態の医療デバイス50は、先端固定部材55に先端側伸縮部ルーメン56を有している。電極部51は、基端部に基端側伸縮部52を、先端部に先端側伸縮部53を、それぞれ有している。基端側伸縮部52は、シャフト部21の伸縮部ルーメン35に収納されている。先端側伸縮部53は、先端固定部材55の先端側伸縮部ルーメン56に収納されている。 Next, the medical device 50 according to the second embodiment will be described. About the structure which is common with the medical device 10 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. As shown in FIG. 7, the medical device 50 according to the present embodiment has a distal end side expansion / contraction section lumen 56 on the distal end fixing member 55. The electrode portion 51 has a proximal end side stretchable portion 52 at the proximal end portion and a distal end side stretchable portion 53 at the distal end portion. The base end side expansion / contraction part 52 is accommodated in the expansion / contraction part lumen 35 of the shaft part 21. The distal-side expansion / contraction part 53 is accommodated in the distal-end-side expansion / contraction part lumen 56 of the distal end fixing member 55.
 このように、電極部51の基端部と先端部に、それぞれ基端側伸縮部52と先端側伸縮部53を設けることもできる。これにより、基端側伸縮部52と先端側伸縮部53のそれぞれの伸び量を小さくすることができ、摩擦抵抗を小さくできる。基端側伸縮部52と先端側伸縮部53には、第1の実施形態と同様、バネ部材や蛇腹部材、あるいはゴム部材などを用いることができる。基端側伸縮部52は、電極部51との導通のため、導電性を有している必要がある。先端側伸縮部53は、導電性を有していなくてもよい。 Thus, the base end side stretchable part 52 and the tip end side stretchable part 53 can also be provided at the base end part and the tip end part of the electrode part 51, respectively. Thereby, each elongation amount of the base end side expansion-contraction part 52 and the front end side expansion-contraction part 53 can be made small, and frictional resistance can be made small. As in the first embodiment, a spring member, a bellows member, a rubber member, or the like can be used for the base end side stretchable portion 52 and the distal end side stretchable portion 53. The base end side expansion / contraction part 52 needs to have conductivity for electrical connection with the electrode part 51. The distal end side stretchable part 53 may not have conductivity.
 また、電極部51に先端側伸縮部53を設け、基端側伸縮部52は設けないようにすることもできる。第1の実施形態のように、電極部40の基端側の伸縮部43のみ設けた場合、シャフト部21の先端と電極部40との位置関係が固定されているので、電極部40の拡張変形時の位置を把握しやすく、操作しやすい。一方、電極部51に先端側伸縮部53のみ設けた場合、先端側伸縮部53は導電性を有しない材料で形成することができ、電極部51の基端部を接続線37と直接接続することができる。 Alternatively, the electrode part 51 may be provided with the distal end side stretchable part 53 and the proximal end side stretchable part 52 may not be provided. When only the expansion / contraction part 43 on the proximal end side of the electrode part 40 is provided as in the first embodiment, the positional relationship between the distal end of the shaft part 21 and the electrode part 40 is fixed. Easy to grasp the position at the time of deformation and easy to operate. On the other hand, when only the distal end side stretchable portion 53 is provided on the electrode portion 51, the distal end side stretchable portion 53 can be formed of a material having no conductivity, and the base end portion of the electrode portion 51 is directly connected to the connection line 37. be able to.
 次に、第3の実施形態の医療デバイス60について説明する。第1の実施形態の医療デバイス10と共通の構成については、同じ符号を付し、説明を省略する。図8に示すように、本実施形態の医療デバイス60は、長さ方向の全体が伸縮部である電極部61を有している。電極部61は、弾性的に伸縮可能な材料、例えばゴムで形成されている。ただし、伸縮可能な樹脂などその他の材料で形成されていてもよい。電極部61は、基端部がシャフト部21に、先端部が先端固定部材45に、それぞれ固定されている。 Next, a medical device 60 according to the third embodiment will be described. About the structure which is common with the medical device 10 of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. As shown in FIG. 8, the medical device 60 of the present embodiment has an electrode part 61 whose whole length direction is an expandable part. The electrode portion 61 is formed of a material that can be elastically expanded and contracted, for example, rubber. However, it may be formed of other materials such as a stretchable resin. The electrode portion 61 has a proximal end portion fixed to the shaft portion 21 and a distal end portion fixed to the distal end fixing member 45.
 図9に示すように、電極部61は、ゴムで形成された基部61aの表面に、導電性を有する導通部61bが形成されている。導通部61bの領域は電極部61の表面に露出しているので、導通部61bは、電極部61が拡張変形した際に、生体組織に接触する面に形成される。導通部61bは、導電性インクを基部61aの表面に印刷することにより形成することができる。 As shown in FIG. 9, in the electrode part 61, a conductive part 61b having conductivity is formed on the surface of a base part 61a made of rubber. Since the area | region of the conduction | electrical_connection part 61b is exposed on the surface of the electrode part 61, when the electrode part 61 expands and deforms, the conduction | electrical_connection part 61b is formed in the surface which contacts a biological tissue. The conduction part 61b can be formed by printing conductive ink on the surface of the base part 61a.
 電極部61には、導通部61bの基端から基端側に向かって延びる連続部61cが形成されている。連続部61cも、導電性インクを基部61aの表面に印刷することで、導通部61bと共に形成される。連続部61cの基端部は、接続線37と電気的に接続される。これにより、導通部61bと接続線37とが電気的に接続されている。連続部61cの表面は、電極部61の表面に露出しないように、絶縁コートを施されている。また、例えば、電極部61の導通部61b及び連続部61cは、カーボンナノチューブや銅粒子など導電性部材を含有したゴムで形成されていてもよい。その他の部分は、導電性材料を含有しないゴムで形成されていてもよい。 The electrode portion 61 is formed with a continuous portion 61c extending from the proximal end of the conducting portion 61b toward the proximal end side. The continuous portion 61c is also formed together with the conductive portion 61b by printing conductive ink on the surface of the base portion 61a. A base end portion of the continuous portion 61 c is electrically connected to the connection line 37. Thereby, the conduction | electrical_connection part 61b and the connection line 37 are electrically connected. The surface of the continuous part 61 c is provided with an insulating coat so as not to be exposed on the surface of the electrode part 61. Further, for example, the conducting part 61b and the continuous part 61c of the electrode part 61 may be formed of rubber containing a conductive member such as a carbon nanotube or copper particles. Other portions may be formed of rubber that does not contain a conductive material.
 このように、電極部61の全体を伸縮部で形成することもできる。電極部61は、バルーン22の拡張によって伸長し、バルーン22と共に径方向に拡張変形する。電極部61の全体が伸長部であることにより、線材と伸長部との接続部分をなくし、電極部61を簡易な構造とすることができる。 Thus, the entire electrode part 61 can also be formed of a stretchable part. The electrode portion 61 expands by expansion of the balloon 22 and expands and deforms in the radial direction together with the balloon 22. Since the whole electrode part 61 is an extension part, the connection part of a wire and an extension part can be eliminated, and the electrode part 61 can be made into a simple structure.
 本実施形態では、電極部61はバルーン22に固定されていないが、電極部61をバルーン22の表面に固定してもよい。この場合、バルーン22の拡張により、バルーン22の膜が伸長し、それと共に電極部61も伸長し、径方向に拡張変形する。 In this embodiment, the electrode unit 61 is not fixed to the balloon 22, but the electrode unit 61 may be fixed to the surface of the balloon 22. In this case, expansion of the balloon 22 causes the membrane of the balloon 22 to expand, and the electrode portion 61 also expands and expands and deforms in the radial direction.
 以上のように、本実施形態に係る医療デバイス10は、長尺なシャフト部21と、シャフト部21の先端部に設けられる拡張体22と、拡張体22の周囲に長さ方向に沿って設けられる複数の電極部40とを有する医療デバイス10であって、電極部40は、少なくとも一部が長さ方向に伸縮可能な伸縮部43をそれぞれに有する。これにより、拡張体22が拡張すると、伸縮部43が伸長しながら電極部40が径方向に拡張変形できるので、電極部40が拡張体43の拡張に追従しながら変形できる。また、電極部40自体が伸縮できることから、電極部40の変形に合わせて摺動するシャフトを設ける必要がなく、シャフト間の摺動をなくすことができる。 As described above, the medical device 10 according to the present embodiment is provided along the length direction around the elongated shaft portion 21, the expansion body 22 provided at the distal end portion of the shaft portion 21, and the expansion body 22. In the medical device 10 having a plurality of electrode portions 40, each of the electrode portions 40 has a stretchable portion 43 that is at least partially stretchable in the length direction. Accordingly, when the expansion body 22 is expanded, the electrode portion 40 can be expanded and deformed in the radial direction while the expansion / contraction portion 43 is extended. Therefore, the electrode portion 40 can be deformed while following the expansion of the expansion body 43. Moreover, since the electrode part 40 itself can be expanded and contracted, it is not necessary to provide a shaft that slides in accordance with the deformation of the electrode part 40, and sliding between the shafts can be eliminated.
 また、電極部40は、基端部と先端部とを有し、シャフト部21は、電極部40の基端部が固定される第1の固定部35aと、電極部40の先端部が固定される第2の固定部45aと、を有し、第1の固定部35aは拡張体22より基端側に位置し、第2の固定部45aは拡張体22より先端側に位置し、電極部40は、拡張体22とは独立して変形可能である。これにより、拡張体22が生体内腔の形状に合わせて自在に拡張でき、また、それに追従して電極部40を変形させることができる。 The electrode portion 40 has a base end portion and a tip end portion, and the shaft portion 21 has a first fixing portion 35a to which the base end portion of the electrode portion 40 is fixed and a tip end portion of the electrode portion 40 fixed. The second fixing portion 45a, the first fixing portion 35a is located on the proximal end side of the expansion body 22, the second fixing portion 45a is located on the distal end side of the expansion body 22, and the electrode The part 40 can be deformed independently of the expansion body 22. Thereby, the expansion body 22 can be freely expanded according to the shape of the living body lumen, and the electrode portion 40 can be deformed following the expansion.
 また、伸縮部43は、電極部40の基端側に配置されるようにすれば、電極部40とシャフト部21の先端との位置関係が固定されているので、電極部40を目的部位に位置させやすく、操作性を高くすることができる。 Moreover, if the expansion-contraction part 43 is arrange | positioned at the base end side of the electrode part 40, since the positional relationship of the electrode part 40 and the front-end | tip of the shaft part 21 is fixed, the electrode part 40 is made into the target site | part. It is easy to position and can improve operability.
 また、伸縮部53は、電極部40の先端側に配置されるようにすれば、伸縮部53に導電性を有していない材料を用いることができる。 Further, if the stretchable portion 53 is arranged on the tip side of the electrode portion 40, a material that does not have conductivity can be used for the stretchable portion 53.
 また、伸縮部52,53は、電極部40の基端側と先端側にそれぞれ配置されるようにすれば、各伸縮部52,53の伸び量を小さくでき、摩擦抵抗を低減できる。 Further, if the stretchable parts 52 and 53 are arranged on the proximal end side and the distal end side of the electrode part 40, respectively, the stretch amount of each stretchable part 52 and 53 can be reduced, and the frictional resistance can be reduced.
 また、伸縮部43はバネ部材であるようにすれば、接続線37と接続しやすいので製造が容易であり、また、耐久性を高くすることができる。 Further, if the expansion / contraction part 43 is a spring member, it can be easily connected to the connection line 37 and can be manufactured easily, and the durability can be increased.
 また、シャフト部21は、伸縮部43を収納する伸縮部ルーメン35を有するようにすれば、外部と干渉することなく伸縮部43を伸縮させることができる。 Moreover, if the shaft part 21 has the expansion-contraction part lumen | rumen 35 which accommodates the expansion-contraction part 43, the expansion-contraction part 43 can be expanded-contracted, without interfering with the exterior.
 また、伸縮部43は伸縮性を有するゴム部材であるようにすれば、伸縮部43用のルーメンをシャフト部21に設ける必要がない。 Further, if the stretchable portion 43 is a rubber member having stretchability, it is not necessary to provide a lumen for the stretchable portion 43 in the shaft portion 21.
 また、電極部61は伸縮性を有するゴム部材であり、ゴム部材の表面の少なくとも一部に導通部61bを有するようにすれば、電極部と伸縮部の接続が不要となり、部品の製造を簡易化できる。 Moreover, the electrode part 61 is a rubber member having elasticity, and if the conductive part 61b is provided on at least a part of the surface of the rubber member, the connection between the electrode part and the extension part becomes unnecessary, and the manufacture of the parts is simplified. Can be
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、上述の実施形態の医療デバイス10は、肺静脈の処置に用いるものを示したが、それ以外の部位、例えば、腎動脈、上行大静脈、心室などを処置するものであってもよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, although the medical device 10 according to the above-described embodiment is used for the treatment of the pulmonary vein, it may be used to treat other parts such as the renal artery, the ascending vena cava, and the ventricle.
 なお、本出願は、2018年3月20日に出願された日本特許出願番号2018-052493号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Note that this application is based on Japanese Patent Application No. 2018-052493 filed on Mar. 20, 2018, the disclosures of which are incorporated by reference in their entirety.
 10  医療デバイス
 12  電源部
 21  シャフト部
 22  バルーン
 23  ハブ
 30  外管部
 31  内管部
 32  ガイドワイヤルーメン
 33  拡張ルーメン
 34  拡張用開口部
 35  伸縮部ルーメン
 36  接続部
 37  接続線
 40  電極部
 41  導通部
 42  絶縁部
 43  伸縮部
 45  先端固定部材
DESCRIPTION OF SYMBOLS 10 Medical device 12 Power supply part 21 Shaft part 22 Balloon 23 Hub 30 Outer pipe part 31 Inner pipe part 32 Guide wire lumen 33 Expansion lumen 34 Expansion opening part 35 Telescopic part lumen 36 Connection part 37 Connection line 40 Electrode part 41 Conduction part 42 Insulating part 43 Extendable part 45 Tip fixing member

Claims (9)

  1.  長尺なシャフト部と、該シャフト部の先端部に設けられる拡張体と、該拡張体の周囲に長さ方向に沿って設けられる複数の電極部とを有する医療デバイスであって、
     複数の前記電極部は、少なくとも一部が長さ方向に伸縮可能な伸縮部をそれぞれに有する医療デバイス。
    A medical device having a long shaft portion, an expansion body provided at a tip portion of the shaft portion, and a plurality of electrode portions provided along the length direction around the expansion body,
    Each of the plurality of electrode portions is a medical device having at least a stretchable portion that can be stretched in the length direction.
  2.  前記電極部は、基端部と先端部とを有し、
     前記シャフト部は、前記電極部の基端部が固定される第1の固定部と、前記電極部の先端部が固定される第2の固定部と、を有し、
     前記第1の固定部は前記拡張体より基端側に位置し、
     前記第2の固定部は前記拡張体より先端側に位置し、
     前記電極部は前記拡張体とは独立して変形可能である請求項1に記載の医療デバイス。
    The electrode portion has a proximal end portion and a distal end portion,
    The shaft portion includes a first fixing portion to which a base end portion of the electrode portion is fixed, and a second fixing portion to which a tip portion of the electrode portion is fixed,
    The first fixing portion is located on the proximal side from the expansion body,
    The second fixing portion is located on the distal end side of the expansion body,
    The medical device according to claim 1, wherein the electrode part is deformable independently of the expansion body.
  3.  前記伸縮部は、前記電極部の基端側に配置される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the stretchable part is disposed on a proximal end side of the electrode part.
  4.  前記伸縮部は、前記電極部の先端側に配置される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the stretchable part is disposed on a distal end side of the electrode part.
  5.  前記伸縮部は、前記電極部の基端側と先端側にそれぞれ配置される請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the stretchable part is disposed on a proximal end side and a distal end side of the electrode part, respectively.
  6.  前記伸縮部はバネ部材である請求項1~5のいずれか1項に記載の医療デバイス。 The medical device according to any one of claims 1 to 5, wherein the stretchable portion is a spring member.
  7.  前記シャフト部は、前記伸縮部を収納する伸縮部ルーメンを有する請求項6に記載の医療デバイス。 The medical device according to claim 6, wherein the shaft portion has a stretchable portion lumen that houses the stretchable portion.
  8.  前記伸縮部は伸縮性を有するゴム部材である請求項1~5のいずれか1項に記載の医療デバイス。 The medical device according to any one of claims 1 to 5, wherein the stretchable portion is a rubber member having stretchability.
  9.  前記電極部は伸縮性を有するゴム部材であり、該ゴム部材の表面の少なくとも一部に導通部を有する請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, wherein the electrode part is a rubber member having elasticity, and a conductive part is provided on at least a part of the surface of the rubber member.
PCT/JP2019/009870 2018-03-20 2019-03-12 Medical device WO2019181634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020508238A JP7279018B2 (en) 2018-03-20 2019-03-12 medical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052493 2018-03-20
JP2018052493 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181634A1 true WO2019181634A1 (en) 2019-09-26

Family

ID=67987782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009870 WO2019181634A1 (en) 2018-03-20 2019-03-12 Medical device

Country Status (2)

Country Link
JP (1) JP7279018B2 (en)
WO (1) WO2019181634A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026217A1 (en) * 2018-08-01 2020-02-06 テルモ株式会社 Medical device
JPWO2020196141A1 (en) * 2019-03-26 2020-10-01
WO2021065873A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Medical device
US11786300B2 (en) 2021-04-07 2023-10-17 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
US11896298B2 (en) 2021-07-06 2024-02-13 Btl Medical Development A.S. Pulsed field ablation device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508083A (en) * 2008-11-11 2012-04-05 シファメド・エルエルシー Thin electrode assembly
US20130085493A1 (en) * 2011-09-30 2013-04-04 Salient Surgical Technologies, Inc. Electrosurgical Balloons
WO2014083698A1 (en) * 2012-11-30 2014-06-05 株式会社グツドマン Ablation catheter
US20150018819A1 (en) * 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
JP2015521894A (en) * 2012-07-05 2015-08-03 エムシー10 インコーポレイテッドMc10,Inc. Catheter device including flow sensing
JP2016007334A (en) * 2014-06-24 2016-01-18 株式会社グッドマン Electrode member for ablation and catheter for ablation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508083A (en) * 2008-11-11 2012-04-05 シファメド・エルエルシー Thin electrode assembly
US20130085493A1 (en) * 2011-09-30 2013-04-04 Salient Surgical Technologies, Inc. Electrosurgical Balloons
JP2015521894A (en) * 2012-07-05 2015-08-03 エムシー10 インコーポレイテッドMc10,Inc. Catheter device including flow sensing
WO2014083698A1 (en) * 2012-11-30 2014-06-05 株式会社グツドマン Ablation catheter
US20150018819A1 (en) * 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
JP2016007334A (en) * 2014-06-24 2016-01-18 株式会社グッドマン Electrode member for ablation and catheter for ablation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026217A1 (en) * 2018-08-01 2020-02-06 テルモ株式会社 Medical device
JPWO2020196141A1 (en) * 2019-03-26 2020-10-01
JP7316350B2 (en) 2019-03-26 2023-07-27 テルモ株式会社 medical device
WO2021065873A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Medical device
US11786300B2 (en) 2021-04-07 2023-10-17 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
US11832785B2 (en) 2021-04-07 2023-12-05 Btl Medical Development A.S. Pulsed field ablation device and method
US11896298B2 (en) 2021-07-06 2024-02-13 Btl Medical Development A.S. Pulsed field ablation device and method

Also Published As

Publication number Publication date
JPWO2019181634A1 (en) 2021-03-25
JP7279018B2 (en) 2023-05-22

Similar Documents

Publication Publication Date Title
WO2020026217A1 (en) Medical device
WO2019181634A1 (en) Medical device
WO2019181612A1 (en) Medical device
JP5877162B2 (en) Balloon catheter and energization system
US20210212759A1 (en) Medical device
JP2023123818A (en) medical device
US20190216503A1 (en) Medical device and treatment method
JP2024509644A (en) Pulsed field ablation device and method
CN113995501A (en) System and method for electroporation device incorporating basket and balloon
US20230054269A1 (en) Basket Catheter with Porous Sheath
WO2022191076A1 (en) Medical device
US20220008128A1 (en) Medical device
CN113317866B (en) Ablation assembly, ablation device and method of operation
JP2020025731A (en) Medical device
WO2021187153A1 (en) Catheter and method for fixing electric wire to catheter
WO2024024173A1 (en) Catheter, medical care system and operation method of catheter
WO2020196142A1 (en) Medical device
WO2023281888A1 (en) Medical device
CN216317941U (en) Sacculus-shaped pulse electric field ablation device
EP4193947A1 (en) Basket catheter with electrically-connected spines forming a distributed electrode
US11173280B2 (en) Catheter, medical device for the introduction of a treatment solution
JP2022120368A (en) catheter
JP2021142210A (en) Catheter system and voltage application method for catheter system
JP2022120367A (en) catheter
CN117479899A (en) Systems and methods for isolating leads in electroporation devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771651

Country of ref document: EP

Kind code of ref document: A1