WO2021065600A1 - Method for supplying heat medium to heat medium utilization device, and heat medium utilization equipment - Google Patents

Method for supplying heat medium to heat medium utilization device, and heat medium utilization equipment Download PDF

Info

Publication number
WO2021065600A1
WO2021065600A1 PCT/JP2020/035731 JP2020035731W WO2021065600A1 WO 2021065600 A1 WO2021065600 A1 WO 2021065600A1 JP 2020035731 W JP2020035731 W JP 2020035731W WO 2021065600 A1 WO2021065600 A1 WO 2021065600A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
circulation system
distribution section
supplied
Prior art date
Application number
PCT/JP2020/035731
Other languages
French (fr)
Japanese (ja)
Inventor
石井 究
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to KR1020227003873A priority Critical patent/KR20220068981A/en
Publication of WO2021065600A1 publication Critical patent/WO2021065600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a heat medium supply method to a heat medium utilization device and a heat medium utilization facility.
  • a refrigerant is also supplied to the jacket or element of the crystallizer, and the internal liquid is passed through the cooling surface.
  • the crystal is precipitated by cooling.
  • the liquid refrigerant is supplied from the refrigerant hold tank 4 to the jacket 2 and the element 3 of the crystallization apparatus 1 through the supply path 6 by the refrigerant supply pump 5.
  • the returned refrigerant is returned to the refrigerant hold tank 4 through the return path 7, then supplied to the refrigerator 9 by the refrigerator supply pump 8, cooled by the refrigerator 9, and returned to the refrigerant hold tank 4 through the return path 9A. ..
  • the refrigerant supply sources such as the refrigerator 9 and the refrigerant hold tank 4 are crystallized. It is difficult to install it in the vicinity of the device 1 from the viewpoint of equipment layout in the factory, and since the flow velocity to the cooling surface must be high in order to suppress scaling, a large capacity refrigerant is supplied. It is necessary to make the refrigerant circulation line large in diameter and lay it over a long distance (for example, 50 to 100 m).
  • a main object of the present invention is to provide a heat medium supply method and a heat medium utilization facility for a heat medium utilization device capable of suppressing equipment cost and operation cost.
  • the present invention relates to a method of circulating a heat medium between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device, and is locally located in the vicinity of the distribution unit.
  • the first circulatory system is formed, the second circulatory system of the heat medium that flows out from the heat medium supply means and then returns is formed, and the first circulatory system and the second circulatory system are connected to form the first circulatory system. This is an attempt to reduce the load on each of the circulatory system and the second circulatory system.
  • the first aspect of the present invention is a method of circulating a heat medium between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
  • the heat medium constitutes a first circulatory system that flows into the distribution section and flows out of the distribution section.
  • a second circulation system is configured in which the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section.
  • This is a method of supplying a heat medium to a device using a heat medium.
  • a second aspect of the present invention is equipment in which a heat medium circulates between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
  • a first circulatory system in which the heat medium flows into the distribution section and flows out of the distribution section.
  • the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section.
  • It is a heat medium utilization equipment characterized by having.
  • the heat medium utilization device and the heat medium of the present invention have the meaning of including both the heating medium and the refrigerant (cooling medium).
  • the equipment to be used is not limited as long as it uses a heat medium, and in the sense that it includes various chemical equipment including, for example, a reaction device, a crystallization device, an evaporation device, a drying device, and a heat device. is there. Further, the equipment to be used is not limited to a single equipment, and includes a mode in which the heat is used by a plurality of equipments.
  • the refrigerant is supplied from the refrigerant hold tank 14 to the jacket 2 and the element 3 of the indirect cooling type crystallization device 1 through the supply path 16 by the refrigerant supply pump 15.
  • the refrigerant to be returned is returned to the refrigerant hold tank 14 through the return path 17, and then supplied to the refrigerator 19 by the refrigerator supply pump 18, and the one cooled by the refrigerator 19 is returned to the refrigerant hold tank 14 through the return path 19A.
  • the refrigerant is circulated to the crystallization apparatus 1 provided with the distribution unit.
  • at least the refrigerant is supplied to the cooling jacket 2, and the element 3 may not be installed and may not be supplied to the element 3.
  • a circulation pump 21 is provided for circulating the refrigerant.
  • the refrigerant flows from the circulation pump 21 into the cooling jacket 2 and the element 3 as a flow unit via the outward path 22, flows out from the cooling jacket 2 and the element 3, and returns to the circulation pump 21 via the return path 23.
  • Circulation system 20 is configured.
  • a refrigerant supply means including a refrigerant hold tank 14 and a refrigerator 19 is provided, and liquid refrigerant is supplied from the refrigerant hold tank 14 to the first circulation system 20 through the supply path 16 by the refrigerant supply pump 15.
  • a second circulatory system 30 is configured in which the surplus of the first circulatory system 20 is returned to the refrigerant hold tank 14 through the return passage 17.
  • a vertical vent 24 for siphon break is provided in the first circulatory system 20 as necessary, and is pulled out from the upper part to the second circulatory system 30 by overflow. According to this form, it is possible to stably extract the surplus without an incidental control mechanism.
  • the refrigerant supplied to the distribution section It is necessary to remove the heat of cooling and crystallization by the refrigerant supplied to the distribution section, which can be achieved by circulating the refrigerant in the first circulation system 20 according to the above aspect. Then, it is sufficient to supply the refrigerant from the second circulatory system 30 mainly only for the temperature fluctuation. Since the components of the first circulation system 20 are mainly the circulation pump 21 and the circulation pipeline, the first circulation system 20 can be configured in the immediate vicinity surrounding the crystallization apparatus 1.
  • the length of the first circulatory system 20 excluding the height of the distribution section is, for example, about 10 to 20 m, which is sufficient with respect to the length of the conventional example of 50 to 100 m.
  • the circulation flow velocity in the first circulation system 20 may be maintained at the required speed, and the liquid refrigerant may be discharged from the second circulation system 30 in a small flow rate so as to compensate mainly for the temperature fluctuation.
  • the path of the second circulatory system 30 may be small in diameter because it may be supplied by.
  • the circulation equipment for example, a pump having a large capacity and a high lift
  • the refrigerator-related equipment, and the like can be miniaturized, and the equipment cost can be reduced.
  • energy loss is reduced and operating costs are also reduced.
  • the required flow velocity is secured by the first circulatory system, and the second circulatory system mainly needs to compensate only for the temperature fluctuation in the first circulatory system. Good operation is possible with the circulation amount in the circulatory system being 1/5 to 1/20 of the circulation amount in the first circulation system.
  • a constant amount of the refrigerant may be supplied to the distribution section at a predetermined valve opening degree, or the supply amount may be controlled by controlling the flow rate or the like.
  • a method is adopted in which the supply amount of the refrigerant is controlled by the temperature of the refrigerant locally circulating in the first circulation system 20 with respect to the jacket 2 or the element 3 of the crystallizer.
  • a temperature detector 25 shown in the form of an indicator controller
  • the temperature by the temperature detector 25 is provided.
  • the flow rate adjusting valve (not shown) provided in the first circulation system 20, or more preferably, the inlet side of the circulation pump 21, and the supply amount of the refrigerant in the second circulation system 30.
  • the temperature is controlled by the flow rate adjusting valve 31 to be adjusted.
  • the flow rate is adjusted in the first circulation system 20, or the supply is supplied from the second circulation system 30 to the first circulation system 20. Since the temperature can be compensated by adjusting the flow rate of the liquid refrigerant, highly accurate temperature control is possible.
  • the refrigerant supply point from the second circulation system 30 to the first circulation system 20 may be supplied to either the suction side or the discharge side of the circulation pump 21, but the mixing with the circulating refrigerant and the supply pressure may be applied. Considering this, the suction side is preferable. On the suction side, mixing can be performed well in the circulation pump 21.
  • a fixed amount may be extracted at a predetermined valve opening degree, or the extraction amount may be controlled by flow rate control or the like. good.
  • Crystallized material may adhere to the cooling surface of the crystallization apparatus 1, reduce the heat transfer effect, and grow scaling.
  • the prior art Japanese Patent Laid-Open No. 2010-131522 discloses a form in which a heated medium is supplied to a jacket to melt the crystallized product. It should be noted that this prior art does not constitute the first circulatory system and the second circulatory system in the present invention.
  • melting can be achieved by the following forms. That is, for example, at a stage where crystallized crystals adhere to the inner surface of the crystallization device 1 and continuous operation becomes difficult, the heat exchanger 40 is installed in the first circulation system 20 as shown in FIG. Then, in the melting and cleaning work of the crystallization apparatus 1, the temperature can be raised for the melting and cleaning work by heating only the refrigerant inside the first circulation system 20. Further, it is also possible to use a part of the circulation line as a heating jacket pipe instead of or in combination with the heat exchanger 40. As the heat exchanger, an appropriate type such as a shell and tube, a plate, and a double tube can be used.
  • Whether or not the crystal needs to be melted is determined by, for example, the operating time of the crystallization apparatus 1, an image or moving image inside the crystallization apparatus 1, the temperature of the refrigerant discharged from the jacket 2 of the crystallization apparatus 1, or the like. be able to.
  • a refrigerant system constituting a circulation line is constructed between the refrigerant supply means and the crystallization device 1 as in the conventional example, heating is performed with respect to the hold amount of the entire refrigerant system. Since the operation needs to be performed, the melting (melting) operation takes time and requires a lot of energy for heating.
  • a refrigerant heating means for example, a heat exchanger 40
  • the refrigerant is heated by the heating means to heat the flow unit. In the form of melting the crystal through the medium, the melting (melting) operation does not require a long time, and a small amount of energy for heating is sufficient.
  • the refrigerant whose temperature is adjusted in the second circulation system 30 can be supplied to the first circulation system 20.
  • the refrigerant is cooled particularly in a system using a low temperature refrigerant. Since it is necessary to change the temperature of the entire refrigerant system including the refrigerator for cooling, there is a problem that the followability of the temperature control is deteriorated.
  • the temperature is adjusted by adjusting the flow rate in the first circulation system 20 or adjusting the flow rate of the liquid refrigerant supplied from the second circulation system 30 to the first circulation system 20. Since it can be compensated, highly accurate temperature control is possible, and the flow rate of the liquid refrigerant supplied mainly to the first circulation system 20 is adjusted without changing the temperature of the entire refrigerant system including the refrigerator, or the refrigerant. The temperature can be adjusted while suppressing the temperature change of the entire system.
  • a vertical vent 24 for siphon break is provided.
  • a large amount of refrigerant contained in the jacket 2 of the crystallization apparatus 1 returns to the refrigerator 19 side as it is on the return line, and no vent is used.
  • the control of the return amount in the conventional form is performed by controlling the rotation speed of the pump that supplies the refrigerant to the crystallization apparatus 1.
  • a large amount of refrigerant contained in the jacket 2 of the crystallization apparatus 1 returns to the refrigerator 19 side as it is on the return line.
  • the refrigerant circulation system according to the present invention since the amount of return from the first circulation system 20 to the refrigerator 19 side is small, a vent 24 is installed and the surplus in the first circulation system 20 is overflowed to the refrigerator.
  • the refrigerant hold tank 14 is provided.
  • a weir plate 14a is provided in the refrigerant hold tank 14.
  • the return amount of the refrigerant returned from the first circulation system 20 is sent to one side of the weir plate 14a, and the refrigerant cooled by the refrigerator 19 is sent to the other side of the weir plate 14a of the refrigerant hold tank 14 through the return path 19A. Returned.
  • it is desirable that the distribution of the supply to the refrigerant hold tank 14 is performed as follows.
  • the amount of supply from the refrigerator 19 side to the refrigerant hold tank 14 through the return path 19A is increased, the inside of the refrigerant hold tank 14 is partitioned by the weir plate 14a, and as shown in FIG. 2, from the other side of the weir plate 14a.
  • Overflow to the supply side to the refrigerator 19 by the refrigerator supply pump 18 that is, to one side of the weir plate 14a where the return portion of the refrigerant is returned from the first crystallization circulation system 20 through the return path 17). The form to make it is desirable.
  • the heat medium utilization device and the heat medium have the meaning of including both the heating medium and the refrigerant (cooling medium), and are not limited to the above-mentioned crystallization device and the refrigerant. ..

Abstract

[Problem] To minimize equipment costs and operating costs. [Solution] A method in which a heat medium is made to circulate between flow sections for the heat medium and a heat medium supply means in a heat medium utilization device 1, a first circulation system 20 is configured so that the heat medium flows into the flow sections 2, 3 and flows out from the flow sections 2, 3, and a second circulation system is configured so that the heat medium from the heat medium supply means is supplied to the entry side of the flow sections 2, 3 in the first circulation system 20 and returned to the heat medium supply means from the exit side of the flow sections 2, 3.

Description

熱媒体利用機器への熱媒体供給方法及び熱媒体利用設備Heat medium supply method and heat medium utilization equipment for heat medium utilization equipment
 本発明は、熱媒体利用機器への熱媒体供給方法及び熱媒体利用設備に関するものである。 The present invention relates to a heat medium supply method to a heat medium utilization device and a heat medium utilization facility.
 熱媒体を利用する機器、例えば、化学機器、さらに間接冷却式の晶出機を具体例とした場合、その晶出機のジャケット、あるいはエレメントにも冷媒を供給し、冷却面を介して内部液を冷却し結晶を析出させる態様がある。 When a device using a heat medium, for example, a chemical device, or an indirect cooling type crystallizer is taken as a specific example, a refrigerant is also supplied to the jacket or element of the crystallizer, and the internal liquid is passed through the cooling surface. There is an embodiment in which the crystal is precipitated by cooling.
 しかしながら、この種の晶析操作においては、冷媒としての供給液の冷却及び結晶化熱を除熱する必要があり、またスケーリングを抑止するため冷却面との温度差をあまり大きく取れないため、ジャケット、あるいはエレメントに大量の冷媒を供給する必要がある。 However, in this type of crystallization operation, it is necessary to cool the supply liquid as a refrigerant and remove the heat of crystallization, and since scaling is suppressed, the temperature difference from the cooling surface cannot be made very large. Or, it is necessary to supply a large amount of refrigerant to the element.
 このための形態例としては、例えば図1に示す形態がある。すなわち、冷媒ホールドタンク4から液体冷媒を、冷媒供給ポンプ5により、供給路6を通して、晶析装置1のジャケット2及びエレメント3に対して供給する。
 返送冷媒は、返送路7を通して冷媒ホールドタンク4に返送した後、冷凍機供給ポンプ8により冷凍機9に供給し、冷凍機9で冷却したものを復路9Aを通して冷媒ホールドタンク4に戻す態様である。
As a form example for this purpose, for example, there is a form shown in FIG. That is, the liquid refrigerant is supplied from the refrigerant hold tank 4 to the jacket 2 and the element 3 of the crystallization apparatus 1 through the supply path 6 by the refrigerant supply pump 5.
The returned refrigerant is returned to the refrigerant hold tank 4 through the return path 7, then supplied to the refrigerator 9 by the refrigerator supply pump 8, cooled by the refrigerator 9, and returned to the refrigerant hold tank 4 through the return path 9A. ..
特開2010-131522号公報JP-A-2010-131522
 前掲の従来の形態例においては、大量の液体冷媒を晶析装置1のジャケット2あるいはエレメント3に対して供給するために、冷媒の供給源、例えば冷凍機9及び冷媒ホールドタンク4を、晶析装置1に近傍に設置することは、工場の設備配置などの観点から困難であり、しかも、スケーリングを抑止するために、冷却面に対する流速が速くなくてはならないために、大容量の冷媒を供給する冷媒循環ラインを大口径とし、かつ、長距離(例えば50~100m)で敷設する必要がある。 In the above-mentioned conventional embodiment, in order to supply a large amount of liquid refrigerant to the jacket 2 or element 3 of the crystallization apparatus 1, the refrigerant supply sources such as the refrigerator 9 and the refrigerant hold tank 4 are crystallized. It is difficult to install it in the vicinity of the device 1 from the viewpoint of equipment layout in the factory, and since the flow velocity to the cooling surface must be high in order to suppress scaling, a large capacity refrigerant is supplied. It is necessary to make the refrigerant circulation line large in diameter and lay it over a long distance (for example, 50 to 100 m).
 これでは設備費が嵩むばかりでなく、循環過程での大量の冷却循環動力や冷媒循環ラインにおける入熱などによるエネルギーロスも大きなものとなり、その結果、運転コストが嵩むものとなる。 This not only increases the equipment cost, but also increases the energy loss due to a large amount of cooling circulation power in the circulation process and heat input in the refrigerant circulation line, and as a result, the operating cost increases.
 そこで、本発明の主たる課題は、設備コスト及び運転コストを抑制できる熱媒体利用機器への熱媒体供給方法及び熱媒体利用設備を提供することにある。 Therefore, a main object of the present invention is to provide a heat medium supply method and a heat medium utilization facility for a heat medium utilization device capable of suppressing equipment cost and operation cost.
 上記課題を解決するため、本発明は、熱媒体利用機器における熱媒体の流通部と、熱媒体供給手段との間で熱媒体を循環させる方法にあって、前記前記流通部の近傍に局所的な
第1の循環系を構成し、熱媒体供給手段から流出しその後戻る熱媒体の第2の循環系とを構成し、第1の循環系と第2の循環系とを繋いで、第1の循環系及び第2の循環系それぞれの負荷を軽減しようとするものである。
In order to solve the above problems, the present invention relates to a method of circulating a heat medium between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device, and is locally located in the vicinity of the distribution unit. The first circulatory system is formed, the second circulatory system of the heat medium that flows out from the heat medium supply means and then returns is formed, and the first circulatory system and the second circulatory system are connected to form the first circulatory system. This is an attempt to reduce the load on each of the circulatory system and the second circulatory system.
 本発明の第1の態様は、熱媒体利用機器における熱媒体の流通部と、熱媒体供給手段との間で熱媒体を循環させる方法であって、
 前記熱媒体が、前記流通部に流入し、前記流通部から流出する第1の循環系を構成し、
 前記熱媒体供給手段からの熱媒体を、前記第1の循環系における前記流通部の入側に供給し、前記流通部の出側から前記熱媒体供給手段に返送する第2の循環系を構成する、
 ことを特徴とする熱媒体利用機器への熱媒体供給方法である。
The first aspect of the present invention is a method of circulating a heat medium between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
The heat medium constitutes a first circulatory system that flows into the distribution section and flows out of the distribution section.
A second circulation system is configured in which the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section. To do,
This is a method of supplying a heat medium to a device using a heat medium.
 本発明の第2の態様は、熱媒体利用機器における熱媒体の流通部と、熱媒体供給手段との間で熱媒体が循環する設備であって、
 前記熱媒体が、前記流通部に流入し、前記流通部から流出する第1の循環系と、
 前記熱媒体供給手段からの熱媒体が、前記第1の循環系における前記流通部の入側に供給され、前記流通部の出側から前記熱媒体供給手段に返送される第2の循環系と、
 を有することを特徴とする熱媒体利用設備である。
A second aspect of the present invention is equipment in which a heat medium circulates between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
A first circulatory system in which the heat medium flows into the distribution section and flows out of the distribution section.
With the second circulation system, the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section. ,
It is a heat medium utilization equipment characterized by having.
 本発明によれば、設備コスト及び運転コストを抑制できる熱媒体利用機器への熱媒体供給方法及びその装置を提供することにある。 According to the present invention, it is an object of the present invention to provide a method for supplying a heat medium to a device using a heat medium and the device thereof, which can suppress equipment costs and operating costs.
従来の形態例の概要を示すフローシートである。It is a flow sheet which shows the outline of the conventional form example. 本発明の態様の概要を示すフローシートである。It is a flow sheet which shows the outline of the aspect of this invention. 他の態様の概要を示す要部のフローシートである。It is a flow sheet of a main part which shows the outline of another aspect. 別の態様の概要を示す要部のフローシートである。It is a flow sheet of a main part which shows the outline of another aspect.
 本発明の熱媒体利用機器及び熱媒体については、加熱媒体及び冷媒(冷却媒体)の両者を含む意義である。
 また、利用機器は、熱媒体を利用するものであれば限定はされず、例えば反応装置、晶析装置、蒸発装置、乾燥装置などを含む各種の化学機器のほか、熱機器なども含む意義である。また、利用機器は、単一の機器に限定されず、複数の機器で当該熱を利用する態様も含む。
The heat medium utilization device and the heat medium of the present invention have the meaning of including both the heating medium and the refrigerant (cooling medium).
Further, the equipment to be used is not limited as long as it uses a heat medium, and in the sense that it includes various chemical equipment including, for example, a reaction device, a crystallization device, an evaporation device, a drying device, and a heat device. is there. Further, the equipment to be used is not limited to a single equipment, and includes a mode in which the heat is used by a plurality of equipments.
 以下においては、熱媒体として冷媒を、利用機器として晶析装置(晶出機)の一例について添付図面を参照しつつ説明する。この説明の過程で、適宜、他の例についても言及することとする。 In the following, an example of a refrigerant as a heat medium and a crystallization device (crystallizer) as a utilization device will be described with reference to the attached drawings. In the course of this description, other examples will be mentioned as appropriate.
 例えば図2に示す態様において、冷媒ホールドタンク14から冷媒を、冷媒供給ポンプ15により、供給路16を通して、間接冷却式晶析装置1のジャケット2及びエレメント3に対して供給する。
 返送する冷媒は、返送路17を通して冷媒ホールドタンク14に返送した後、冷凍機供給ポンプ18により冷凍機19に供給し、冷凍機19で冷却したものを復路19Aを通して冷媒ホールドタンク14に戻すようにしてある。
For example, in the embodiment shown in FIG. 2, the refrigerant is supplied from the refrigerant hold tank 14 to the jacket 2 and the element 3 of the indirect cooling type crystallization device 1 through the supply path 16 by the refrigerant supply pump 15.
The refrigerant to be returned is returned to the refrigerant hold tank 14 through the return path 17, and then supplied to the refrigerator 19 by the refrigerator supply pump 18, and the one cooled by the refrigerator 19 is returned to the refrigerant hold tank 14 through the return path 19A. There is.
 この態様において、流通部を備えた晶析装置1に対して冷媒を流通させる。この場合、少なくとも冷却ジャケット2に対して冷媒を供給するもので、エレメント3を設置せず、これへの供給を行わないものでもよい。 In this embodiment, the refrigerant is circulated to the crystallization apparatus 1 provided with the distribution unit. In this case, at least the refrigerant is supplied to the cooling jacket 2, and the element 3 may not be installed and may not be supplied to the element 3.
 この態様において、冷媒の循環のために、循環ポンプ21が設けられている。冷媒が、循環ポンプ21から往路22を介して、流通部としての冷却ジャケット2及びエレメント3に流入され、冷却ジャケット2及びエレメント3から流出され、返路23を介して循環ポンプ21に戻る第1の循環系20が構成されている。 In this embodiment, a circulation pump 21 is provided for circulating the refrigerant. The refrigerant flows from the circulation pump 21 into the cooling jacket 2 and the element 3 as a flow unit via the outward path 22, flows out from the cooling jacket 2 and the element 3, and returns to the circulation pump 21 via the return path 23. Circulation system 20 is configured.
 他方で、冷媒ホールドタンク14、冷凍機19を含む冷媒供給手段が設けられており、冷媒ホールドタンク14から液体冷媒を、冷媒供給ポンプ15により、供給路16を通して、第1の循環系20に供給し、第1の循環系20の余剰分を返送路17を通して冷媒ホールドタンク14に返送する第2の循環系30が構成されている。 On the other hand, a refrigerant supply means including a refrigerant hold tank 14 and a refrigerator 19 is provided, and liquid refrigerant is supplied from the refrigerant hold tank 14 to the first circulation system 20 through the supply path 16 by the refrigerant supply pump 15. A second circulatory system 30 is configured in which the surplus of the first circulatory system 20 is returned to the refrigerant hold tank 14 through the return passage 17.
 さらに図示の態様においては、サイフォンブレイクのための竪向きのベント24が必要により第1の循環系20に設けられ、その上部よりオーバーフローで第2の循環系30に抜き出すようになっている。
 この形態によれば、付帯の制御機構無しに安定的な余剰分の抜出しが可能となる。
Further, in the illustrated embodiment, a vertical vent 24 for siphon break is provided in the first circulatory system 20 as necessary, and is pulled out from the upper part to the second circulatory system 30 by overflow.
According to this form, it is possible to stably extract the surplus without an incidental control mechanism.
 流通部への供給冷媒による冷却及び結晶化熱を除熱する必要があるところ、上記の態様によれば、第1の循環系20において、冷媒を循環させることで達成できる。
 そして、主に温度変動分のみについて、第2の循環系30から冷媒を供給すれば足りる。
 第1の循環系20の構成要素は、主に循環ポンプ21及び循環用管路であるから、晶析装置1を取り囲むごく近傍に第1の循環系20を構成できる。流通部高さを除く第1の循環系20の長さは、例えば、従来例の長さ50~100mに対して、例えば10~20m程度で足りる。
It is necessary to remove the heat of cooling and crystallization by the refrigerant supplied to the distribution section, which can be achieved by circulating the refrigerant in the first circulation system 20 according to the above aspect.
Then, it is sufficient to supply the refrigerant from the second circulatory system 30 mainly only for the temperature fluctuation.
Since the components of the first circulation system 20 are mainly the circulation pump 21 and the circulation pipeline, the first circulation system 20 can be configured in the immediate vicinity surrounding the crystallization apparatus 1. The length of the first circulatory system 20 excluding the height of the distribution section is, for example, about 10 to 20 m, which is sufficient with respect to the length of the conventional example of 50 to 100 m.
 例えば、間接冷却式晶析装置1においては、スケーリングを抑止するため冷却面との温度差もあまり大きく取れないため、従来例においては、ジャケット2、あるいはエレメント3に大量の冷媒を供給する必要がある。
 しかし、上記態様においては、第1の循環系20における循環流速を必要速度に保持すればよく、第2の循環系30からは主に温度変動分のみについて補償するように、液体冷媒を少流量で供給すればよいので、第2の循環系30の経路は小口径のもので足りる。
 その結果、第2の循環系30の流路のみならず、循環用機器(例えば大容量で高揚程のポンプ)、冷凍機関連機器などを小型化でき、設備コストを低減することができる。また、エネルギーロスも少なくなり、運転コストも低減する。
For example, in the indirect cooling type crystallization apparatus 1, since the temperature difference from the cooling surface cannot be made very large in order to suppress scaling, in the conventional example, it is necessary to supply a large amount of refrigerant to the jacket 2 or the element 3. is there.
However, in the above embodiment, the circulation flow velocity in the first circulation system 20 may be maintained at the required speed, and the liquid refrigerant may be discharged from the second circulation system 30 in a small flow rate so as to compensate mainly for the temperature fluctuation. The path of the second circulatory system 30 may be small in diameter because it may be supplied by.
As a result, not only the flow path of the second circulation system 30, but also the circulation equipment (for example, a pump having a large capacity and a high lift), the refrigerator-related equipment, and the like can be miniaturized, and the equipment cost can be reduced. In addition, energy loss is reduced and operating costs are also reduced.
 この点についてさらに説明すると、ジャケット2に対しては、例えば0.5~4.0m/秒程度の流速をもって冷媒を流通させる必要がある。本発明の態様に従えば、第1の循環系により必要な流速を確保し、第2の循環系では主に第1の循環系での温度変動分のみについて補償すればよいので、第2の循環系での循環量は、第1の循環系での循環量の1/5~1/20として良好な運転が可能である。 To further explain this point, it is necessary to distribute the refrigerant to the jacket 2 at a flow rate of, for example, about 0.5 to 4.0 m / sec. According to the aspect of the present invention, the required flow velocity is secured by the first circulatory system, and the second circulatory system mainly needs to compensate only for the temperature fluctuation in the first circulatory system. Good operation is possible with the circulation amount in the circulatory system being 1/5 to 1/20 of the circulation amount in the first circulation system.
 流通部への冷媒は所定のバルブ開度で一定量を供給しても良く、また流量制御などにより供給量制御を行なっても良い。
 好ましくは、晶出機のジャケット2あるいはエレメント3に対して、第1の循環系20を局所循環する冷媒の温度により冷媒の供給量を制御する方式を採用する。
 この具体例としては、例えば図4に示すように、望ましくは、循環ポンプ21の出側に温度検出器25(指示調節計の形態で図示してある)を設け、この温度検出器25による温度信号に基づき、第1の循環系20内に設けた流量調整弁(図示せず)、あるいはより望ましくは、循環ポンプ21の入側であって、第2の循環系30における冷媒の供給量を調整する流量調整弁31によって温度制御する。
 このように、間接冷却式晶析装置1側が要求する温度変動に対して、例えば、第1の循環系20での流量調整、あるいは第2の循環系30から第1の循環系20へ供給する液体冷媒の流量調整によって温度補償できるので、精度の高い温度制御が可能である。
A constant amount of the refrigerant may be supplied to the distribution section at a predetermined valve opening degree, or the supply amount may be controlled by controlling the flow rate or the like.
Preferably, a method is adopted in which the supply amount of the refrigerant is controlled by the temperature of the refrigerant locally circulating in the first circulation system 20 with respect to the jacket 2 or the element 3 of the crystallizer.
As a specific example of this, for example, as shown in FIG. 4, preferably, a temperature detector 25 (shown in the form of an indicator controller) is provided on the outlet side of the circulation pump 21, and the temperature by the temperature detector 25 is provided. Based on the signal, the flow rate adjusting valve (not shown) provided in the first circulation system 20, or more preferably, the inlet side of the circulation pump 21, and the supply amount of the refrigerant in the second circulation system 30. The temperature is controlled by the flow rate adjusting valve 31 to be adjusted.
In this way, in response to the temperature fluctuation required by the indirect cooling type crystallization apparatus 1, for example, the flow rate is adjusted in the first circulation system 20, or the supply is supplied from the second circulation system 30 to the first circulation system 20. Since the temperature can be compensated by adjusting the flow rate of the liquid refrigerant, highly accurate temperature control is possible.
 第2の循環系30から第1の循環系20への冷媒の供給個所は、循環ポンプ21のサクション側あるいは吐出側のどちらに供給しても良いが、循環する冷媒との混合と供給圧力を考慮するとサクション側が好ましい。サクション側であると、循環ポンプ21内で良好に混合できる。 The refrigerant supply point from the second circulation system 30 to the first circulation system 20 may be supplied to either the suction side or the discharge side of the circulation pump 21, but the mixing with the circulating refrigerant and the supply pressure may be applied. Considering this, the suction side is preferable. On the suction side, mixing can be performed well in the circulation pump 21.
 冷媒の供給により発生した第1の循環系20を局所循環する冷媒の余剰分については、所定のバルブ開度で一定量を抜出しても良く、また流量制御などにより抜出量制御を行なっても良い。 With respect to the surplus amount of the refrigerant that locally circulates in the first circulation system 20 generated by the supply of the refrigerant, a fixed amount may be extracted at a predetermined valve opening degree, or the extraction amount may be controlled by flow rate control or the like. good.
 晶析装置1の冷却面には晶析物が付着し、伝熱効果を低減させ、スケーリングが生長することがある。
 晶析装置1の安定運転のために、先行技術(特開2010-131522号)は熱媒体を加熱したものをジャケットに供給することで、晶析物を融解させる形態を開示している。
 なお、この先行技術は、本発明における第1の循環系及び第2の循環系を構成するものではない。
Crystallized material may adhere to the cooling surface of the crystallization apparatus 1, reduce the heat transfer effect, and grow scaling.
For stable operation of the crystallization apparatus 1, the prior art (Japanese Patent Laid-Open No. 2010-131522) discloses a form in which a heated medium is supplied to a jacket to melt the crystallized product.
It should be noted that this prior art does not constitute the first circulatory system and the second circulatory system in the present invention.
 前記の融解に際しては、例えば次のような形態によって融解を図ることができる。
 すなわち、例えば晶析装置1内面に晶析した結晶が付着し、継続した運転が困難になるなどの段階において、図3に示すように、第1の循環系20中に熱交換器40を設置し、晶析装置1の融解洗浄作業にあたって、第1の循環系20内部の冷媒のみを加熱することで、融解洗浄作業のための昇温を行なうことができる。
 また、熱交換器40に換えて、又は併用で、循環ラインの一部を加熱ジャケット配管とすることも可能である。
 熱交換器としては、シェルアンドチューブ、プレート、二重管などの適宜の形式のものを使用できる。
 なお、結晶の融解が必要か否かは、たとえば晶析装置1の運転時間、晶析装置1内部の画像、動画、または晶析装置1のジャケット2から排出される冷媒の温度などにより判断することができる。
At the time of the above melting, for example, melting can be achieved by the following forms.
That is, for example, at a stage where crystallized crystals adhere to the inner surface of the crystallization device 1 and continuous operation becomes difficult, the heat exchanger 40 is installed in the first circulation system 20 as shown in FIG. Then, in the melting and cleaning work of the crystallization apparatus 1, the temperature can be raised for the melting and cleaning work by heating only the refrigerant inside the first circulation system 20.
Further, it is also possible to use a part of the circulation line as a heating jacket pipe instead of or in combination with the heat exchanger 40.
As the heat exchanger, an appropriate type such as a shell and tube, a plate, and a double tube can be used.
Whether or not the crystal needs to be melted is determined by, for example, the operating time of the crystallization apparatus 1, an image or moving image inside the crystallization apparatus 1, the temperature of the refrigerant discharged from the jacket 2 of the crystallization apparatus 1, or the like. be able to.
 これとの対比に関し、従来例のように、冷媒供給手段と晶析装置1との間で循環ラインを構成する冷媒システムが構築されている場合には、冷媒システム全体のホールド量に対して加熱操作を行う必要があるため、溶解(融解)操作に時間がかかり、加熱のために多くのエネルギーを要することになる。
 これに対して、例えば、図3のように、第1の循環系20内に冷媒の加熱手段(例えば熱交換器40)が組み込まれ、前記加熱手段により冷媒が加熱されて、前記流通部を介して結晶の融解を行う形態においては、溶解(融解)操作に長時間を要せず、加熱のためのエネルギーは小さいもので足りる。
In contrast to this, when a refrigerant system constituting a circulation line is constructed between the refrigerant supply means and the crystallization device 1 as in the conventional example, heating is performed with respect to the hold amount of the entire refrigerant system. Since the operation needs to be performed, the melting (melting) operation takes time and requires a lot of energy for heating.
On the other hand, for example, as shown in FIG. 3, a refrigerant heating means (for example, a heat exchanger 40) is incorporated in the first circulation system 20, and the refrigerant is heated by the heating means to heat the flow unit. In the form of melting the crystal through the medium, the melting (melting) operation does not require a long time, and a small amount of energy for heating is sufficient.
 一方、冷媒の温度調節を必要とする晶析操作がある。この場合には、例えば、第2の循環系30内で冷媒温度が温度調節された冷媒を、第1循環系20に供給することができる。 On the other hand, there is a crystallization operation that requires temperature control of the refrigerant. In this case, for example, the refrigerant whose temperature is adjusted in the second circulation system 30 can be supplied to the first circulation system 20.
 これまた前述の従来例のように、冷媒供給手段と晶析装置1との間で循環ラインを構成する冷媒システムが構築されている場合には、特に低温冷媒を使用するシステムにおいては冷媒を冷却するための冷凍機などを含めた冷媒システム全体の温度を変化させる必要があるため、温度調節の追従性が悪くなるという問題がある。 Further, when a refrigerant system constituting a circulation line is constructed between the refrigerant supply means and the crystallization apparatus 1 as in the above-mentioned conventional example, the refrigerant is cooled particularly in a system using a low temperature refrigerant. Since it is necessary to change the temperature of the entire refrigerant system including the refrigerator for cooling, there is a problem that the followability of the temperature control is deteriorated.
 これに対して、本発明の前述の態様によれば、第1の循環系20での流量調整、あるいは第2の循環系30から第1の循環系20へ供給する液体冷媒の流量調整によって温度補償できるので、精度の高い温度制御が可能であるほか、冷凍機などを含めた冷媒システム全体の温度変化なしで、主に第1の循環系20へ供給する液体冷媒の流量調整によって、あるいは冷媒システム全体の温度変化を抑制しながら温度調節できる。 On the other hand, according to the above-described aspect of the present invention, the temperature is adjusted by adjusting the flow rate in the first circulation system 20 or adjusting the flow rate of the liquid refrigerant supplied from the second circulation system 30 to the first circulation system 20. Since it can be compensated, highly accurate temperature control is possible, and the flow rate of the liquid refrigerant supplied mainly to the first circulation system 20 is adjusted without changing the temperature of the entire refrigerant system including the refrigerator, or the refrigerant. The temperature can be adjusted while suppressing the temperature change of the entire system.
 上記例においては、サイフォンブレイクのための竪向きのベント24を設けてある。従来の形態においては、晶析装置1のジャケット2に入れた大量の冷媒量がそのままリターンラインで冷凍機19側に戻るもので、ベントは使用されていない。従来の形態における返送量の制御は、晶析装置1へ冷媒を供給するポンプの回転数制御などによる。晶析装置1のジャケット2に入れた大量の冷媒がそのままリターンラインで冷凍機19側に戻る。
 本発明に従う冷媒の循環系では、第1の循環系20から冷凍機19側に戻すべき返送量が少ないため、ベント24を設置して、第1の循環系20における余剰分をオーバーフローで冷凍機19側に返送できるようにしている。
 第1の循環系20における余剰分をオーバーフローで冷凍機19側に返送できることは、晶析装置1へ冷媒を供給するポンプ及びその回転数制御機器などの負担が小さくなり、設備及び運転コストが低減する利点がある。
 上記形態においては、冷凍機19側に戻すべき返送量についての圧力損失分相当の液高さより高い位置に、ベント24の開口部を設けるのが好適である。
In the above example, a vertical vent 24 for siphon break is provided. In the conventional form, a large amount of refrigerant contained in the jacket 2 of the crystallization apparatus 1 returns to the refrigerator 19 side as it is on the return line, and no vent is used. The control of the return amount in the conventional form is performed by controlling the rotation speed of the pump that supplies the refrigerant to the crystallization apparatus 1. A large amount of refrigerant contained in the jacket 2 of the crystallization apparatus 1 returns to the refrigerator 19 side as it is on the return line.
In the refrigerant circulation system according to the present invention, since the amount of return from the first circulation system 20 to the refrigerator 19 side is small, a vent 24 is installed and the surplus in the first circulation system 20 is overflowed to the refrigerator. It can be returned to the 19th side.
Being able to return the surplus in the first circulation system 20 to the refrigerator 19 side by overflow reduces the burden on the pump that supplies the refrigerant to the crystallization device 1 and its rotation speed control equipment, and reduces the equipment and operating costs. There is an advantage to do.
In the above embodiment, it is preferable to provide the opening of the vent 24 at a position higher than the liquid height corresponding to the pressure loss for the amount of return to be returned to the refrigerator 19.
 上記例において冷媒ホールドタンク14を設けてある。冷媒ホールドタンク14内には堰板14aが設けられている。
 第1の循環系20から返送されてきた冷媒のリターン分は、堰板14aの一方側に、冷凍機19で冷却された冷媒は、復路19Aを通して冷媒ホールドタンク14の堰板14aの他方側に戻される。この場合の冷媒ホールドタンク14への供給分の振り分けについては、次のように行われるのが望ましい。
 すなわち、冷凍機19側から復路19Aを通しての冷媒ホールドタンク14への供給量を多くし、冷媒ホールドタンク14内を堰板14aによって仕切り、図2に示すように、堰板14aの他方側から、冷凍機供給ポンプ18による冷凍機19への供給側に(すなわち、第1の晶析循環系20から返送路17を通って冷媒のリターン分が返送される堰板14aの一方側に)、オーバーフローさせる形態が望ましい。
 このオーバーフロー形態であると、上述のように、第2の循環系における冷媒循環量が少なくなることに伴って、オーバーフローする冷媒の循環量も少なくなるので、冷媒ホールドタンク14におけるオーバーフロー形態の利点が顕在化し、設備及び運転コストが低減する利点がある。
In the above example, the refrigerant hold tank 14 is provided. A weir plate 14a is provided in the refrigerant hold tank 14.
The return amount of the refrigerant returned from the first circulation system 20 is sent to one side of the weir plate 14a, and the refrigerant cooled by the refrigerator 19 is sent to the other side of the weir plate 14a of the refrigerant hold tank 14 through the return path 19A. Returned. In this case, it is desirable that the distribution of the supply to the refrigerant hold tank 14 is performed as follows.
That is, the amount of supply from the refrigerator 19 side to the refrigerant hold tank 14 through the return path 19A is increased, the inside of the refrigerant hold tank 14 is partitioned by the weir plate 14a, and as shown in FIG. 2, from the other side of the weir plate 14a. Overflow to the supply side to the refrigerator 19 by the refrigerator supply pump 18 (that is, to one side of the weir plate 14a where the return portion of the refrigerant is returned from the first crystallization circulation system 20 through the return path 17). The form to make it is desirable.
In this overflow mode, as described above, as the refrigerant circulation amount in the second circulation system decreases, the circulation amount of the overflowing refrigerant also decreases, so that the advantage of the overflow form in the refrigerant hold tank 14 is It has the advantage of becoming apparent and reducing equipment and operating costs.
 本発明においいて、前述のように、熱媒体利用機器及び熱媒体については、加熱媒体及び冷媒(冷却媒体)の両者を含む意義であり、前述の晶析装置及び冷媒に限定されるものではない。 In the present invention, as described above, the heat medium utilization device and the heat medium have the meaning of including both the heating medium and the refrigerant (cooling medium), and are not limited to the above-mentioned crystallization device and the refrigerant. ..
1…間接冷却式晶析装置、2…ジャケット、3…エレメント、14…冷媒ホールドタンク、15…冷媒供給ポンプ、16…供給路、17…返送路、19…冷凍機、20…第1の循環系、21…循環ポンプ、22…往路22、23…返路、24…ベント、25…温度検出器、30…第2の循環系、31…流量調整弁、40…熱交換器。 1 ... Indirect cooling crystallizer, 2 ... Jacket, 3 ... Element, 14 ... Refrigerant hold tank, 15 ... Refrigerant supply pump, 16 ... Supply path, 17 ... Return path, 19 ... Refrigerator, 20 ... First circulation System, 21 ... Circulation pump, 22 ... Outward route 22, 23 ... Return route, 24 ... Vent, 25 ... Temperature detector, 30 ... Second circulation system, 31 ... Flow control valve, 40 ... Heat exchanger.

Claims (13)

  1.  熱媒体利用機器における熱媒体の流通部と、熱媒体供給手段との間で熱媒体を循環させる方法であって、
     前記熱媒体が、前記流通部に流入し、前記流通部から流出する第1の循環系を構成し、
     前記熱媒体供給手段からの熱媒体を、前記第1の循環系における前記流通部の入側に供給し、前記流通部の出側から前記熱媒体供給手段に返送する第2の循環系を構成する、
     ことを特徴とする熱媒体利用機器への熱媒体供給方法。
    A method of circulating a heat medium between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
    The heat medium constitutes a first circulatory system that flows into the distribution section and flows out of the distribution section.
    A second circulation system is configured in which the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section. To do,
    A method for supplying a heat medium to a device using a heat medium.
  2.  前記第2の循環系内で熱媒体温度を調節したうえで、温度調節した熱媒体を前記第1循環系に供給する請求項1記載の熱媒体利用機器への熱媒体供給方法。 The method for supplying a heat medium to a heat medium-using device according to claim 1, wherein the temperature of the heat medium is adjusted in the second circulatory system, and then the temperature-controlled heat medium is supplied to the first circulatory system.
  3.  冷媒を流通させる少なくとも冷却ジャケットを有する流通部を備えた晶析装置に冷媒を供給する方法であって、
     前記冷媒が、前記流通部に流入し、前記流通部から流出する第1の循環系を構成し、
     冷媒供給手段からの冷媒を、前記第1の循環系における前記流通部の入側に供給し、前記流通部の出側から前記冷媒供給手段に返送する第2の循環系を構成する、
     ことを特徴とする晶析装置への冷媒供給方法。
    A method of supplying a refrigerant to a crystallization apparatus having a distribution unit having at least a cooling jacket for circulating the refrigerant.
    The refrigerant flows into the distribution section and constitutes a first circulation system that flows out from the distribution section.
    It constitutes a second circulation system in which the refrigerant from the refrigerant supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the refrigerant supply means from the exit side of the distribution section.
    A method for supplying a refrigerant to a crystallization device.
  4.  前記第2の循環系内で冷媒温度を調節したうえで、温度調節した冷媒を前記第1循環系に供給する請求項3記載の晶析装置への冷媒供給方法。 The method for supplying a refrigerant to the crystallization apparatus according to claim 3, wherein the temperature-controlled refrigerant is supplied to the first circulation system after adjusting the refrigerant temperature in the second circulation system.
  5.  前記第1の循環系内に冷媒の加熱手段を組み込み、前記加熱手段により冷媒を加熱して、前記流通部を介して、結晶の融解を図る請求項3記載の晶析装置への冷媒供給方法。 The method for supplying a refrigerant to the crystallization apparatus according to claim 3, wherein a refrigerant heating means is incorporated in the first circulation system, the refrigerant is heated by the heating means, and the crystals are melted through the distribution unit. ..
  6.  熱媒体利用機器における熱媒体の流通部と、熱媒体供給手段との間で熱媒体が循環する設備であって、
     前記熱媒体が、前記流通部に流入し、前記流通部から流出する第1の循環系と、
     前記熱媒体供給手段からの熱媒体が、前記第1の循環系における前記流通部の入側に供給され、前記流通部の出側から前記熱媒体供給手段に返送される第2の循環系と、
     を有することを特徴とする熱媒体利用設備。
    A facility in which a heat medium circulates between a heat medium distribution unit and a heat medium supply means in a heat medium utilization device.
    A first circulatory system in which the heat medium flows into the distribution section and flows out of the distribution section.
    With the second circulation system, the heat medium from the heat medium supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the heat medium supply means from the exit side of the distribution section. ,
    Heat medium utilization equipment characterized by having.
  7.  前記第2の循環系内で熱媒体温度が温度調節された熱媒体が前記第1循環系に供給される請求項6記載の熱媒体利用設備。 The heat medium utilization equipment according to claim 6, wherein a heat medium whose temperature is controlled in the second circulation system is supplied to the first circulation system.
  8.  冷媒を流通させる少なくとも冷却ジャケットを有する流通部を備えた晶析設備であって、
     前記冷媒が、前記流通部に流入され、前記流通部から流出される第1の循環系と、
     冷媒供給手段からの冷媒が、前記第1の循環系における前記流通部の入側に供給され、前記流通部の出側から前記冷媒供給手段に返送される第2の循環系と、
     を有することを特徴とする晶析設備。
    A crystallization facility equipped with a distribution unit having at least a cooling jacket for distributing a refrigerant.
    A first circulatory system in which the refrigerant flows into the distribution section and flows out from the distribution section.
    A second circulation system in which the refrigerant from the refrigerant supply means is supplied to the inlet side of the distribution section in the first circulation system and returned to the refrigerant supply means from the exit side of the distribution section.
    A crystallization facility characterized by having.
  9.  前記第2の循環系内で冷媒温度が温度調節された冷媒が前記第1循環系に供給される請求項8記載の晶析設備。 The crystallization facility according to claim 8, wherein the refrigerant whose temperature is controlled in the second circulation system is supplied to the first circulation system.
  10.  前記第1の循環系内に冷媒の加熱手段が組み込まれ、
     前記加熱手段により冷媒が加熱されて、前記流通部を介して結晶の融解が可能である構成を有する請求項8記載の晶析設備。
    A refrigerant heating means is incorporated in the first circulation system.
    The crystallization facility according to claim 8, wherein the refrigerant is heated by the heating means, and the crystals can be melted through the distribution section.
  11.  前記第1の循環系に温度検出手段が設けられ、
     前記第2の循環系における前記第1の循環系への冷媒供給路に流量調整手段が設けられ、前記温度検出手段による冷媒温度に基づき、前記流量調整手段により冷媒流量が調整される請求項8記載の晶析設備。
    A temperature detecting means is provided in the first circulatory system.
    8. Claim 8 in which a flow rate adjusting means is provided in a refrigerant supply path to the first circulation system in the second circulation system, and the refrigerant flow rate is adjusted by the flow rate adjusting means based on the refrigerant temperature by the temperature detecting means. The crystallization equipment described.
  12.  前記第1の循環系における循環ポンプの出側と前記流通部の入口との間に温度検出手段が設けられ、
     前記第2の循環系における、前記第1の循環系の前記循環ポンプの入側への冷媒供給路に流量調整手段が設けられ、
     前記温度検出手段による冷媒温度に基づき、前記流量調整手段により冷媒流量が調整される請求項8記載の晶析設備。
    A temperature detecting means is provided between the outlet side of the circulation pump in the first circulation system and the inlet of the distribution section.
    In the second circulation system, a flow rate adjusting means is provided in the refrigerant supply path to the inlet side of the circulation pump of the first circulation system.
    The crystallization facility according to claim 8, wherein the refrigerant flow rate is adjusted by the flow rate adjusting means based on the refrigerant temperature by the temperature detecting means.
  13.  前記第1の循環系に竪向きのベントが設けられ、前記ベントの開口部が前記第2の循環系と接続されている、請求項8記載の晶析設備。 The crystallization facility according to claim 8, wherein a vertical vent is provided in the first circulation system, and an opening of the vent is connected to the second circulation system.
PCT/JP2020/035731 2019-09-30 2020-09-23 Method for supplying heat medium to heat medium utilization device, and heat medium utilization equipment WO2021065600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227003873A KR20220068981A (en) 2019-09-30 2020-09-23 A method for supplying a thermal medium to a device using a thermal medium and an equipment for using a thermal medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180908 2019-09-30
JP2019180908A JP6869306B2 (en) 2019-09-30 2019-09-30 Heat medium supply method and heat medium utilization equipment for heat medium utilization equipment

Publications (1)

Publication Number Publication Date
WO2021065600A1 true WO2021065600A1 (en) 2021-04-08

Family

ID=75269429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035731 WO2021065600A1 (en) 2019-09-30 2020-09-23 Method for supplying heat medium to heat medium utilization device, and heat medium utilization equipment

Country Status (3)

Country Link
JP (1) JP6869306B2 (en)
KR (1) KR20220068981A (en)
WO (1) WO2021065600A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318647A (en) * 1997-05-19 1998-12-04 Orion Mach Co Ltd Liquid cooler
JPH1137623A (en) * 1997-07-17 1999-02-12 Nippon Sanso Kk Coolant cooler
JP2009072706A (en) * 2007-09-21 2009-04-09 Taiyo Nippon Sanso Corp Apparatus for heating/cooling heating medium and method for controlling temperature of heating medium
JP2009287822A (en) * 2008-05-28 2009-12-10 Taiyo Nippon Sanso Corp Refrigerant cooling device
JP2010131522A (en) * 2008-12-04 2010-06-17 Mitsubishi Rayon Co Ltd Crystallizer and method of removing crystal
JP2011006354A (en) * 2009-06-25 2011-01-13 Nippon Shokubai Co Ltd Method for producing (meth)acrylic acid
JP2013113509A (en) * 2011-11-29 2013-06-10 Taiyo Nippon Sanso Corp Heating medium cooling device and operation method of heating medium cooling device
JP2015087781A (en) * 2013-10-28 2015-05-07 アズビル株式会社 Control method and control device
JP2017020687A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus
JP2017142026A (en) * 2016-02-10 2017-08-17 野村マイクロ・サイエンス株式会社 Method and system for manufacturing heated water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296075A (en) * 1997-04-23 1998-11-10 Lion Corp Temperature control device and method for batch type reactor, and recording medium having control program recorded
JP4602140B2 (en) * 2005-03-30 2010-12-22 日揮株式会社 Temperature control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318647A (en) * 1997-05-19 1998-12-04 Orion Mach Co Ltd Liquid cooler
JPH1137623A (en) * 1997-07-17 1999-02-12 Nippon Sanso Kk Coolant cooler
JP2009072706A (en) * 2007-09-21 2009-04-09 Taiyo Nippon Sanso Corp Apparatus for heating/cooling heating medium and method for controlling temperature of heating medium
JP2009287822A (en) * 2008-05-28 2009-12-10 Taiyo Nippon Sanso Corp Refrigerant cooling device
JP2010131522A (en) * 2008-12-04 2010-06-17 Mitsubishi Rayon Co Ltd Crystallizer and method of removing crystal
JP2011006354A (en) * 2009-06-25 2011-01-13 Nippon Shokubai Co Ltd Method for producing (meth)acrylic acid
JP2013113509A (en) * 2011-11-29 2013-06-10 Taiyo Nippon Sanso Corp Heating medium cooling device and operation method of heating medium cooling device
JP2015087781A (en) * 2013-10-28 2015-05-07 アズビル株式会社 Control method and control device
JP2017020687A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus
JP2017142026A (en) * 2016-02-10 2017-08-17 野村マイクロ・サイエンス株式会社 Method and system for manufacturing heated water

Also Published As

Publication number Publication date
JP2021053597A (en) 2021-04-08
KR20220068981A (en) 2022-05-26
JP6869306B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
CN102348555B (en) Printing machines having one or more printing units designed as printing towers for double-sided multicolor printing and devices for controlling temperature of components of one or more of printing units
WO2021065600A1 (en) Method for supplying heat medium to heat medium utilization device, and heat medium utilization equipment
EP1598308A1 (en) Liquid filling method and liquid filling device
JP7044919B2 (en) Heat medium supply method and heat medium utilization equipment for heat medium utilization equipment
JP2009192088A (en) Cooling system
JP2008246816A (en) Method and apparatus for adjusting temperature of drum of track agitator for transporting ready-mixed concrete
PL180472B1 (en) Method of and apparatus for isolating a substance from liquid mixtures
JP2011131198A (en) Container water spray treatment apparatus
US20090159257A1 (en) Method and system for regulating a continuous crystallization process
KR100204603B1 (en) Temperature control apparatus for flow coater
JP2008187013A (en) Method for treating substrate and substrate treating apparatus
EP3283674B1 (en) Machine for producing synthetic threads
JP4408243B2 (en) Mold temperature controller
TW201637819A (en) Treatment fluid guidance in a film stretching plant
JP2001228924A (en) Method for high speed change of setting of temperature controlled fluid temperature in heat exchanger and circulator provided with method and device therefor
JP2009028630A (en) Regulation method of temperature of paint, and regulation device of temperature of paint used for the method
JP2017174913A (en) Process liquid cooling apparatus and substrate processing apparatus
JPH102631A (en) Evaporative cooling device
JPH102647A (en) Heating and cooling device
KR100837513B1 (en) Apparatus and method for controlling temperature of batch reactor
IE990118A1 (en) Tempered chocolate delivery system
WO2023228765A1 (en) Circulation device for two-phase cooling system and refrigerant circulation method in circulation device for two-phase cooling system
JP2009135218A (en) Chemical processing tank and chemical processor using it
KR101096587B1 (en) Temperature Control Apparatus for controlling load heating having Three way valve
US1890632A (en) Sugar crystallizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871413

Country of ref document: EP

Kind code of ref document: A1