WO2021065534A1 - 通信装置、基地局装置、及び通信方法 - Google Patents

通信装置、基地局装置、及び通信方法 Download PDF

Info

Publication number
WO2021065534A1
WO2021065534A1 PCT/JP2020/035199 JP2020035199W WO2021065534A1 WO 2021065534 A1 WO2021065534 A1 WO 2021065534A1 JP 2020035199 W JP2020035199 W JP 2020035199W WO 2021065534 A1 WO2021065534 A1 WO 2021065534A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
handover
information
control unit
terminal device
Prior art date
Application number
PCT/JP2020/035199
Other languages
English (en)
French (fr)
Inventor
大輝 松田
直紀 草島
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2021550600A priority Critical patent/JPWO2021065534A1/ja
Priority to EP20872139.9A priority patent/EP4040852A4/en
Priority to CN202080067519.5A priority patent/CN114521340A/zh
Priority to US17/639,583 priority patent/US20220303000A1/en
Publication of WO2021065534A1 publication Critical patent/WO2021065534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/026Multicasting of data during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • H04B7/18534Arrangements for managing transmission, i.e. for transporting data or a signalling message for enhancing link reliablility, e.g. satellites diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This disclosure relates to a communication device, a base station device, and a communication method.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • NRAT New Radio Access Technology
  • EUTRA Evolved Universal Terrestrial Radio Access
  • LTE includes LTE-A, LTE-A Pro and EUTRA
  • NR includes NLAT and FEUTRA.
  • the wireless communication base station may be called eNodeB (evolved NodeB), in NR, the wireless communication base station may be called gNodeB, and in LTE and NR, the wireless communication terminal may be called UE (User Equipment). Further, a wireless communication terminal in cellular mobile communication is sometimes called a mobile station.
  • LTE and NR are cellular communication systems in which a plurality of areas covered by a wireless communication base station are arranged in a cell shape. A single wireless communication base station may manage multiple cells.
  • NR is a next-generation wireless access system for LTE, and is a RAT (Radio Access Technology) different from LTE.
  • NTN Non-Terrestrial Network
  • a wireless network is provided to a wireless communication terminal via an artificial satellite used as a wireless communication base station (hereinafter, may be referred to as a "satellite base station" or simply a "base station”). Will be done.
  • a wireless communication base station hereinafter, may be referred to as a "satellite base station” or simply a "base station”
  • base station an artificial satellite used as a wireless communication base station
  • the wireless communication terminal since the propagation distance of radio waves between the wireless communication terminal and the satellite base station is long, the propagation loss of the signal transmitted from the wireless communication terminal becomes large and the reception level at the satellite base station. Decreases. Therefore, the wireless communication terminal repeatedly transmits the same data to the satellite base station, and the satellite base station enhances the reception quality by synthesizing a plurality of the same data received from the wireless communication terminal. Usually, by synthesizing hundreds to thousands of the same data, the reception quality at the satellite base station reaches the desired reception quality that can be decoded.
  • wireless transmission in which the same data is repeatedly transmitted may be referred to as "repetition transmission".
  • Satellite base stations such as low earth orbit satellites in non-terrestrial networks are moving at high speed over the sky.
  • the cells formed on the ground by the satellite base station also move in accordance with the movement of the satellite base station. Therefore, in a non-terrestrial network, even if the terrestrial wireless communication terminal is stationary, the cell to which the wireless communication terminal belongs may be frequently switched (that is, handover).
  • handover the synthesis of the same data in the repeated transmission is performed individually for each satellite base station. Therefore, if handover occurs frequently, it is desirable that the reception quality after the data synthesis can be decoded forever. There is a risk that the reception quality of the data will not be reached.
  • the wireless communication unit receives continuation information that is information regarding the continuation of repeated transmission before and after the handover, and the control unit is based on the continuation information. Then, the repeated transmission is performed after the handover.
  • the control unit in a base station device that communicates with a terminal that performs repeated transmission in which predetermined data is repeatedly transmitted, the control unit generates continuation information that is information regarding continuation of repeated transmission before and after handover, and wirelessly.
  • the communication unit transmits continuous information to the wireless communication terminal.
  • a plurality of components having substantially the same functional configuration may be distinguished by adding different numbers or alphabets after the same reference numerals.
  • a plurality of configurations having substantially the same functional configuration are distinguished as needed, such as base stations 20T and 20S.
  • base stations 20T and 20S if it is not necessary to distinguish each of the plurality of components having substantially the same functional configuration, only the same reference numerals are given.
  • the base station 20 when it is not necessary to distinguish between the base stations 20T and 20S, it is simply referred to as the base station 20.
  • FIG. 1 is a diagram showing an outline of a communication system according to an embodiment of the present disclosure.
  • the communication system 1 has a terminal device 50, a base station 20S, and a base station 20T.
  • the terminal device 50 is a communication device located on the ground.
  • the base stations 20S and 20T are communication devices (for example, satellite base stations) located in outer space.
  • the terminal device 50 can communicate with the base stations 20S and 20T. Further, the base station 20S and the base station 20T can communicate with each other.
  • the base stations 20S and 20T are located in the sky between an altitude of 100 km and 2000 km, for example, and when they are located in the sky at an altitude of 600 km, they move in orbit at a speed of 7.6 km per second. Further, the base station 20S forms the cell C1 on the ground, and the base station 20T forms the cell C2 on the ground.
  • the terminal device 50 can communicate with the base station 20S when it belongs to the cell C1, and can communicate with the base station 20T when it belongs to the cell C2.
  • the radii of cells C1 and C2 are, for example, in the range of several tens of kilometers to several hundreds of kilometers. The cell is sometimes called a "beam".
  • the base station 20S and the base station 20T move in the sky while maintaining a certain interval, even if the terminal device 50 does not move, the cell to which the terminal device 50 belongs (hereinafter, may be referred to as a "affiliated cell”). Is) may hand over from cell C1 to cell C2. For example, when the diameters of the cells C1 and C2 are 50 km and the terminal device 50 is stationary, the handover to the cell C2 is performed about 6 to 7 seconds after the belonging cell becomes the cell C1. appear.
  • the base stations 20S and 20T may be collectively referred to as "base station 20".
  • the communication system 1 includes a non-ground station and provides a terminal device with wireless communication using a non-terrestrial network. Further, the communication system 1 may provide wireless communication using a terrestrial network.
  • the non-terrestrial network and the terrestrial network included in the communication system 1 are not limited to the wireless network using the wireless access method defined by NR.
  • the non-terrestrial network included in the communication system 1 may be a wireless network of a wireless access system other than NR, such as LTE, W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000).
  • the ground station (also referred to as a ground base station) means a base station (including a relay station) installed on the ground.
  • “Ground” is not only the ground (land) but also the ground in a broad sense including underground, water, and water.
  • an example of application to NTN will be described as one of the use cases of NR.
  • the application destination of these embodiments is not limited to NTN, and may be applied to other technologies and use cases (e.g., URLLC).
  • a base station hereinafter, also referred to as a base station device
  • a relay station hereinafter, also referred to as a relay node
  • a wireless interface May include a donor base station.
  • the concept of a base station includes not only a structure having a function of a base station but also a device installed in the structure.
  • the structure is, for example, a building such as a high-rise building, a house, a steel tower, a station facility, an airport facility, a port facility, or a stadium.
  • the concept of structure includes not only buildings but also non-building structures such as tunnels, bridges, dams, walls, and iron pillars, and equipment such as cranes, gates, and windmills.
  • the concept of structures includes not only structures on the ground (land) or underground, but also structures on the water such as piers and megafloats, and underwater structures such as marine observation facilities.
  • the base station may be composed of a set of a plurality of physical or logical devices. For example, in the embodiment of the present disclosure, a base station is classified into a plurality of devices of BBU (Baseband Unit) and RU (Radio Unit), and may be interpreted as an aggregate of these plurality of devices.
  • BBU Baseband Unit
  • RU Radio Unit
  • the base station may be either or both of BBU and RU.
  • BBU and RU may be connected by a predetermined interface (e.g., eCPRI).
  • RU may be referred to as Remote Radio Unit (RRU) or Radio DoT (RD).
  • RRU Remote Radio Unit
  • RD Radio DoT
  • RU may be compatible with gNB-DU, which will be described later.
  • BBU may be compatible with gNB-CU, which will be described later.
  • the RU may be a device integrally formed with the antenna.
  • the antenna of the base station (the antenna formed integrally with e.g., RU) may adopt the Advanced Antenna System and support MIMO (e.g. FD-MIMO) and beamforming.
  • the antenna (antenna formed integrally with e.g., RU) of the base station may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
  • the base station may be a base station configured to be movable.
  • the base station may be a device installed on the mobile body or the mobile body itself.
  • the moving body may be a mobile terminal such as a smartphone, a moving body moving on the ground (land) (for example, a vehicle such as a car, a bus, a truck, a train, or a linear motor car), or in the ground (for example, a vehicle such as a linear motor car). It may be a moving body (for example, a subway) that moves (in a tunnel).
  • the moving body may be a moving body moving on the water (for example, a ship such as a passenger ship, a cargo ship, a hovercraft, etc.), or a moving body moving underwater (for example, a submersible, a submarine, an unmanned submarine, etc.). Submersible). Further, the moving body may be a moving body moving in the atmosphere (for example, an aircraft such as an airplane, an airship, or a drone), or a space moving body moving outside the atmosphere (for example, an artificial satellite, a spaceship, or space). It may be an artificial celestial body such as a station or a spacecraft).
  • a plurality of base stations may be connected to each other.
  • One or more base stations may be included in a radio access network (RAN). That is, the base station may be simply referred to as a RAN, a RAN node, an AN (Access Network), or an AN node.
  • RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN).
  • RAN in NR is called NGRAN.
  • RAN in W-CDMA (UMTS) is called UTRAN.
  • LTE base stations are called eNodeB (Evolved Node B) or eNB. That is, EUTRAN includes one or more eNodeBs (eNBs).
  • the NR base station is also referred to as gNodeB or gNB.
  • NGRAN contains one or more gNBs.
  • EUTRAN may include gNB (en-gNB) connected to the core network (EPC) in the LTE communication system (EPS).
  • NGRAN may include an ng-eNB connected to the core network 5GC in a 5G communication system (5GS).
  • the base station may be called 3GPP Access. Further, when the base station is a wireless access point (Access Point), it may be referred to as Non-3GPP Access. Further or instead, the base station may be an optical overhanging device called RRH (Remote Radio Head).
  • RRH Remote Radio Head
  • the base station may be referred to as a combination of the above-mentioned gNB CU (Central Unit) and gNB DU (Distributed Unit), or any of these.
  • the gNB CU (Central Unit) hosts multiple upper layers (e.g. RRC, SDAP, PDCP) of the Access Stratum for communication with the UE.
  • gNB-DU hosts a plurality of lower layers (e.g. RLC, MAC, PHY) of Access Stratum. That is, among the messages and information described later, RRC signaling (quasi-static notification) may be generated by gNB CU, while DCI (dynamic notification) may be generated by gNB-DU. In addition, among RRC configurations (quasi-static notifications), some configurations such as IE: cellGroupConfig may be generated by gNB-DU, and the remaining configurations may be generated by gNB-CU. These configurations may be transmitted and received by the F1 interface described later.
  • the base station may be configured to be able to communicate with other base stations.
  • the base stations may be connected by an X2 interface.
  • the devices may be connected by an Xn interface.
  • the devices may be connected by the F1 interface described above.
  • the message information (RRC signaling or DCI information) described later may be communicated between a plurality of base stations (for example, via the X2, Xn, and F1 interfaces).
  • a terminal device (also referred to as a mobile station, mobile station device, or terminal) may be referred to as a UE (User Equipment). Instead of this, the terminal device may be called an MS (Mobile Station) or a WTRU (Wireless Transmission Reception Unit).
  • the terminal device is a kind of wireless communication device, and is also referred to as a mobile station, a mobile station device, or a terminal.
  • the concept of a terminal device includes not only a portable terminal device such as a mobile terminal, but also a device installed in a structure or a moving body, for example.
  • FIG. 2 is a diagram showing a configuration example of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a management device 10, a non-ground base station (hereinafter, simply referred to as a base station) 20, a ground base station (hereinafter, simply referred to as a base station) 30, and a relay device (hereinafter, simply referred to as a base station). 40 and a terminal device 50.
  • the communication system 1 provides a user with a wireless network capable of mobile communication by operating the wireless communication devices constituting the communication system 1 in cooperation with each other.
  • the wireless communication device is a device having a wireless communication function, and in the example of FIG. 2, the base stations 20, 30, 40, and the terminal device 50 correspond to each other.
  • the communication system 1 may include a plurality of management devices 10, base stations 20, 30, 40, and terminal devices 50, respectively.
  • the communication system 1 includes management devices 10 1 , 10 2 and the like as the management device 10.
  • the communication system 1 includes a base station 20 1, 20 2, etc. as the base station 20, and a base station 30 1, 30 2, etc. as the base station 30.
  • the communication system 1 includes a base station 40 1, 40 2, etc. as a base station 40, a terminal apparatus 50 1, 50 2, 50 3, etc. as a terminal device 50.
  • NTN non-terrestrial communication
  • the communication system does not have to include a non-ground station.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that functions as an MME (Mobility Management Entity) or an AMF (Access and Mobility Management Function).
  • MME is connected to EUTRAN by S1 interface, and controls NAS (Non-Access Stratum) signaling between UE and manages UE mobility.
  • AMF is connected to NGRAN by an NG interface, and controls NAS (Non-Access Stratum) signaling between the UE and manages the mobility of the UE.
  • the management device 10 may be included in the core network CN.
  • the core network CN is, for example, EPC (Evolved Packet Core) or 5GC (5G Core network).
  • the management device 10 is connected to each of the plurality of base stations 20 and the plurality of base stations 30.
  • the management device 10 manages the communication between the base station 20 and the base station 30.
  • the core network transfers user data between a packet data network (PDN) or data network (DN) and a RAN, in addition to a control plane (C-Plane) node such as management device 10.
  • PDN packet data network
  • DN data network
  • C-Plane control plane
  • It may include a user plane (U-Plane) node.
  • the U-Plane node in the EPC may include a Serving Gateway (S-GW) or a PDN-Gateway (P-GW).
  • the U-Plane node in 5GC may include a U-Plane Function (UPF).
  • UPF U-Plane Function
  • the management device 10 determines the position of the terminal device 50 (UE) in the communication system 1 for each terminal device 50 in an area unit (eg Tracking Area, RAN Notification Area) composed of a plurality of cells. to manage.
  • the management device 10 determines for each terminal device 50 which base station (or which cell) the terminal device 50 is connected to, which base station (or which cell) the terminal device 50 is in the communication area of, and the like. It may be grasped and managed on a cell-by-cell basis.
  • the base station 20 is a base station that wirelessly communicates with the terminal device 50.
  • the base station 20 1 is connected to the base station 40 1, it is also possible to wireless communication and the terminal device 50 via the base station 40 1.
  • the base station 20 is a base station capable of floating in the air or in space.
  • the base station 20 is a non-ground station device such as an aircraft station or a satellite station.
  • the aircraft station is a wireless communication device that can float in the atmosphere, such as an aircraft.
  • the aircraft station may be, for example, a device mounted on an aircraft or the like, or may be an aircraft itself.
  • the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavy aircraft and light aircraft, but also rotary-wing aircraft such as helicopters and autogyros.
  • the aircraft station (or the aircraft on which the aircraft station is mounted) may be an unmanned aerial vehicle such as a drone (Aerial Vehicle).
  • the concept of an unmanned aerial vehicle also includes an unmanned aerial vehicle system (UAS: Unmanned Aircraft Systems) and a tethered unmanned aerial vehicle system (tethered UAS).
  • UAS Unmanned Aircraft Systems
  • unmanned aerial vehicle includes a light unmanned aerial vehicle system (LTA: Lighter than Air UAS) and a heavy unmanned aerial vehicle system (HTA: Heavier than Air UAS).
  • LTA Lighter than Air UAS
  • HTA Heavy unmanned aerial vehicle system
  • unmanned aerial vehicle also includes High Altitude UAS Platforms (HAPs).
  • HAPs High Altitude UAS Platforms
  • the aircraft station may be an Aerial UE.
  • a satellite station is a wireless communication device that can float outside the atmosphere.
  • the satellite station may be a device mounted on a space mobile body such as an artificial satellite, or may be a space mobile body itself.
  • the satellites that serve as satellite stations are low earth orbit (LEO: Low Earth Orbiting) satellites, medium earth orbit (MEO: Medium Earth Orbiting) satellites, geostationary (GEO: Geostationary Earth Orbiting) satellites, and high elliptical orbit (HEO: Highly Elliptical Orbiting) satellites. It may be any of.
  • the satellite station may be a device mounted on a low earth orbit satellite, a medium earth orbit satellite, a geostationary satellite, or a high elliptical orbit satellite.
  • the base station 30 is a base station that wirelessly communicates with the terminal device 50.
  • the base station 30 1 is connected to the base station 40 2, it is also possible to wireless communication and the terminal device 50 via the base station 40 2.
  • the base station 30 may be a base station arranged on a structure on the ground, or may be a base station installed on a mobile body moving on the ground.
  • the base station 30 is an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
  • the base station 30 may be a structure or a moving body itself.
  • the base station 40 is a device that serves as a relay station for the base station.
  • the base station 40 is a kind of base station.
  • the base station 40 relays communication between the base station 20 and the terminal device 50, or communication between the base station 30 and the terminal device 50.
  • the base station 40 may be a ground station or a non-ground station.
  • the base station 40 may form a radio access network RAN together with the base station 20 and the base station 30.
  • the terminal device 50 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer. Further, the terminal device 50 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device (for example, it may be called MTC UE, NB-IoT UE, Cat.M UE). .. Further, the terminal device 50 may be a wireless communication device installed on the mobile body, or may be the mobile body itself. The terminal device 50 may be a relay station that relays satellite communications, or may be a base station that receives satellite communications. The terminal device 50 supports both terrestrial networks and non-terrestrial networks. Therefore, the terminal device 50 can communicate not only with the ground station device such as the base station 30 but also with the non-ground station device such as the base station 20.
  • M2M Machine to Machine
  • IoT Internet of Things
  • the terminal device 50 may be a wireless communication device installed on the mobile body, or may be the mobile
  • FIG. 3 is a diagram showing an example of a wireless network provided by the communication system 1.
  • the base station 20 and the base station 30 each constitute a cell.
  • a cell is an area covered by a base station for wireless communication.
  • the cell composed of the base station 20 and the base station 30 may be any of a macro cell, a micro cell, a femto cell, and a small cell.
  • the communication system 1 may be configured to manage a plurality of cells by a single base station, or may be configured to manage one cell by a plurality of base stations.
  • the cell provided by the base station is called a Serving cell. Serving cells include PCell (Primary Cell) and SCell (Secondary Cell).
  • Dual Connectivity eg EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity
  • UE eg terminal device 50
  • PCell and zero or more SCell (s) provided by MN (Master Node) are called Master Cell Group.
  • the Serving cell may include a PS Cell (Primary Secondary Cell or Primary SCG Cell). That is, when Dual Connectivity is provided to UE, PSCell provided by SN (Secondary Node) and zero or more SCell (s) are called Secondary Cell Group (SCG).
  • PS Cell Primary Secondary Cell or Primary SCG Cell
  • the physical uplink control channel (PUCCH) is transmitted by PCell and PSCell, but not by SCell. Radio Link Failure is also detected by PCell and PSCell, but not by SCell (it is not necessary to detect it). Since PCell and PSCell have a special role in Serving Cell (s) in this way, they are also called Special Cell (SpCell).
  • PUCCH Physical Uplink Control Channel
  • One Downlink Component Carrier and one Uplink Component Carrier may be associated with one cell. Further, the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (Bandwidth Part).
  • one or more Bandwidth Parts may be set in the UE, and one Bandwidth Part may be used as the Active BWP in the UE.
  • the radio resources for example, frequency band, numerology (subcarrier spacing), and slot configuration
  • the terminal device 50 may differ for each cell, each component carrier, or each BWP.
  • the base station 30 1, 30 2 constitutes a terrestrial network TN1
  • the base station 30 3, 30 4, 30 5 constitute a terrestrial network TN 2.
  • the terrestrial network TN1 and the terrestrial network TN2 are terrestrial networks operated by, for example, a mobile network operator (MNO) such as a telephone company.
  • MNO mobile network operator
  • the terrestrial network TN1 and the terrestrial network TN2 may be operated by different wireless communication carriers (MNOs with different ie and PLMN), or may be operated by the same wireless communication carrier. It is also possible to regard the terrestrial network TN1 and the terrestrial network TN2 as one terrestrial network.
  • the terrestrial network TN1 and the terrestrial network TN2 are each connected to the core network.
  • the base station 30 constituting the terrestrial network TN2 is connected to the composed core network CN by the management apparatus 10 1 and the like.
  • the core network CN is EPC.
  • the core network CN is 5GC.
  • the core network CN is not limited to EPC and 5GC, and may be a core network of another wireless access method.
  • the terrestrial network TN1 is not connected to the core network, but the terrestrial network TN1 may be connected to the core network CN. Further, the terrestrial network TN1 may be connected to a core network (not shown) different from the core network CN.
  • the core network CN is equipped with a gateway device, a barrier switch, etc., and is connected to the public network PN via the gateway device.
  • the public network PN is, for example, a public data network such as the Internet, a regional IP network, a telephone network (mobile phone network, fixed telephone network, etc.).
  • the gateway device is, for example, a server device connected to the Internet, a regional IP network, or the like.
  • the barrier exchange is, for example, an exchange connected to the telephone network of a telephone company.
  • the management device 10 1 may have a function as a gateway device or gateway exchange.
  • the base station 20 and the base station 40 shown in FIG. 3 are both non-ground station devices such as satellite stations and aircraft stations.
  • a group of satellite stations (or a single satellite station) that make up a non-terrestrial network is called a Spaceborne Platform.
  • a group of aircraft stations (or a single aircraft station) that make up a non-terrestrial network is called an Airborne Platform.
  • the base station 20 2, the base station 40 1, and base station 40 2 constitute a space bones platform SBP1
  • the base station 20 1 constitutes a space bones platform SBP2.
  • the base station 20 3 constitutes the airborne platform ABP1.
  • the terminal device 50 can communicate with both the base station 30 and the base station 20.
  • the terminal device 50 1 can communicate with the base station 30 constituting the terrestrial network TN1.
  • the terminal device 50 1 can communicate with the base station 20 constituting the spaces bones platform SBP1, SBP2.
  • the terminal device 50 1 is the base station 20 both communicate constituting the airborne platform ABP1.
  • the terminal device 50 1 in the example of FIG. 3 the terminal apparatus 50 2) other terminals 50 may be capable of communicating directly with.
  • the base station 20 connects to the terrestrial network or the core network via the relay station 60.
  • Base station 20 constituting the spaces bones platform SBP1, SBP2 is connected to the terrestrial network TN1 through the relay station 60 1. Further, the base station 20 constituting the spaces bones platform SBP1, SBP2, and airborne platforms ABP1 is connected to a core network CN through the relay station 60 2.
  • the base station 20 can directly communicate with each other without going through the relay station 60.
  • the relay station 60 is, for example, an aviation station or an earth station.
  • the Civil Aviation Bureau is a radio station installed on the ground or on a mobile body moving on the ground in order to communicate with the aircraft station.
  • the earth station is a radio station located on the earth (including the air) in order to communicate with the satellite station (space station).
  • the earth station may be a large earth station or a small earth station such as VSAT (Very Small Aperture Terminal).
  • the earth station may be a VSAT controlled earth station (also referred to as a master station or a HUB station) or a VSAT earth station (also referred to as a slave station).
  • the earth station may be a radio station installed in a mobile body moving on the ground.
  • an onboard earth station (ESV: Earth Stations on board Vessels) can be mentioned.
  • the earth station may include an aircraft earth station installed on an aircraft (including a helicopter) and communicating with a satellite station.
  • the earth station may include an aviation earth station which is installed on a mobile body moving on the ground and communicates with an aircraft earth station via a satellite station.
  • the relay station 60 may be a mobile mobile radio station that communicates with a satellite station or an aircraft station.
  • the relay station 60 can be regarded as a part of the communication system 1.
  • Satellite communication is wireless communication between a satellite station and a terminal device 50.
  • FIG. 4 is a diagram showing an outline of satellite communication provided by the communication system 1. Satellite stations are mainly divided into geostationary satellite stations and low earth orbit satellite stations.
  • the geostationary satellite station is located at an altitude of about 35786 km and revolves around the earth at the same speed as the rotation speed of the earth.
  • the base station 20 1 which constitutes the space bones platform SBP2 is geostationary satellite station.
  • the geostationary satellite station has a relative velocity of almost 0 with the terminal device 50 on the ground, and is observed from the terminal device 50 on the ground as if it were stationary.
  • the base station 20 1 performs the terminal apparatus 50 1, 50 3, 50 4, etc. and satellite communications located on the earth.
  • a low earth orbit satellite station is a satellite station that orbits at a lower altitude than a geostationary satellite station or a medium earth orbit satellite station.
  • a low earth orbit satellite station is, for example, a satellite station located between an altitude of 500 km and an altitude of 2000 km.
  • the base station 20 2, 20 3 of the space bones platform SBP1 is LEOS station.
  • the base station 20 2 and the base station 20 3 in two only as satellite stations constituting spaces bones platform SBP1.
  • the satellite stations constituting the space bone platform SBP1 have a low earth orbit satellite constellation formed by two or more (for example, tens to thousands) of base stations 20.
  • the low earth orbit satellite station has a relative velocity with the terminal device 50 on the ground, and is observed as if it is moving from the terminal device 50 on the ground.
  • Base station 20 2, 20 3 constitutes a cell, respectively, performs the terminal apparatus 50 1, 50 2, 50 3 etc. and satellite communications located on the earth.
  • FIG. 5 is a diagram showing an example of cells configured by the satellite station.
  • FIG. 5 is the cell C2 of the base station 20 3 which is a low orbit satellite station forms are shown.
  • the satellite station orbiting in low earth orbit communicates with the terminal device 50 on the ground with a predetermined directivity on the ground.
  • the angle R1 shown in FIG. 5 is 40 °.
  • the radius D1 of the cell C2 to the base station 20 3 is formed, for example, 1000km.
  • Low earth orbit satellite stations move at a constant speed. If it becomes difficult for the low earth orbit satellite station to provide satellite communication to the terminal device 50 on the ground, the subsequent low earth orbit satellite station will provide satellite communication.
  • the base station 20 3 When it becomes difficult to provide a satellite communication earth terminal unit 50, the subsequent base station 20 4 to provide a satellite communications.
  • the values of the angle R1 and the radius D1 described above are merely examples and are not limited to the above.
  • the terminal device 50 is capable of wireless communication using a non-terrestrial network.
  • the base station 20 and the base station 40 of the communication system 1 form a non-terrestrial network.
  • the communication system 1 can extend the service to the terminal device 50 located in an area that cannot be covered by the terrestrial network.
  • the communication system 1 can provide public safety communication and critical communication to a terminal device 50 such as an IoT (Internet of Things) device and an MTC (Machine Type Communications) device.
  • IoT Internet of Things
  • MTC Machine Type Communications
  • the communication system 1 can realize a service connection to an aircraft terminal device such as an airplane passenger or a drone, or a service connection to a mobile terminal device such as a ship or a train.
  • the communication system 1 can provide A / V content, group communication, IoT broadcast service, software download service, high-efficiency multicast service such as emergency message, high-efficiency broadcast service, and the like.
  • the communication system 1 can also realize traffic offload between a terrestrial network and a non-terrestrial network. In order to realize these, it is desirable that the non-terrestrial network provided by the communication system 1 is integrated with the terrestrial network provided by the communication system 1 in the upper layer, but the operation is not limited to this. Further, the non-terrestrial network provided by the communication system 1 preferably has the same wireless access method as the terrestrial network provided by the communication system 1, but is not limited to this.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that manages communication between the base station 20 and the base station 30.
  • the core network is an EPC
  • the management device 10 is, for example, a device having a function as an MME (Mobility Management Entity).
  • the core network is 5GC
  • the management device 10 is, for example, a device having a function as an AMF (Access and Mobility Management Function).
  • the management device 10 may have a gateway function.
  • the management device 10 may have a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
  • the management device 10 may have a function as a UPF (User Plane Function).
  • the management device 10 does not necessarily have to be a device that constitutes the core network.
  • the management device 10 may be a device that functions as an RNC (Radio Network Controller).
  • FIG. 6 is a diagram showing a configuration example of the management device 10 according to the embodiment of the present disclosure.
  • the management device 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
  • the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the management device 10 may be distributed and implemented in a plurality of physically separated configurations. For example, the management device 10 may be composed of a plurality of server devices.
  • the communication unit 11 is a communication interface for communicating with other devices.
  • the communication unit 11 may be a network interface or a device connection interface.
  • the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, and the like. May be good.
  • the communication unit 11 may be a wired interface or a wireless interface.
  • the communication unit 11 functions as a communication means of the management device 10.
  • the communication unit 11 communicates with the base station 30 and the relay station 60 under the control of the control unit 13.
  • the storage unit 12 is a storage device capable of reading and writing data such as DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), flash memory, and hard disk.
  • the storage unit 12 functions as a storage means for the management device 10.
  • the storage unit 12 stores, for example, the connection state of the terminal device 50.
  • the storage unit 12 stores the state of RRC (Radio Resource Control) and the state of ECM (EPS Connection Management) of the terminal device 50.
  • the storage unit 12 may function as a home memory for storing the position information of the terminal device 50.
  • the control unit 13 is a controller that controls each unit of the management device 10.
  • the control unit 13 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in the storage device inside the management device 10 using RAM (Random Access Memory) or the like as a work area.
  • the control unit 13 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
  • the communication system 1 includes a base station 20, a base station 30, and a base station 40 as base stations. Any of the base stations 20 to 40 may be movable.
  • the configuration of the base station 20 will be described as the configuration of the base station.
  • the configuration of the base station 30 and the base station 40 may be the same as the configuration of the base station 20 shown below.
  • FIG. 7 is a diagram showing a configuration example of the base station 20 according to the embodiment of the present disclosure.
  • the base station 20 includes a wireless communication unit 21, a storage unit 22, and a control unit 23.
  • the configuration shown in FIG. 7 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station 20 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 21 is a wireless communication interface that wirelessly communicates with another wireless terminal device (for example, a terminal device 50 or a relay station 60).
  • the wireless communication unit 21 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 21 supports both NR and LTE.
  • the wireless communication unit 21 may support W-CDMA or cdma2000 in addition to NR and LTE.
  • the wireless communication unit 21 includes a reception processing unit 211, a transmission processing unit 212, and an antenna 213.
  • the wireless communication unit 21 may include a plurality of reception processing units 211, transmission processing units 212, and antennas 213, respectively.
  • each unit of the wireless communication unit 21 may be individually configured for each wireless access method.
  • the reception processing unit 211 and the transmission processing unit 212 may be individually configured by LTE and NR.
  • the reception processing unit 211 processes the uplink signal received via the antenna 213.
  • the reception processing unit 211 includes a wireless reception unit 211a, a multiple separation unit 211b, a demodulation unit 211c, and a decoding unit 211d.
  • the radio receiver 211a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signal, removal of guard interval, and fast Fourier transform of the frequency domain signal for the uplink signal. Extract, etc.
  • the multiplex separation unit 211b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the wireless reception unit 211a.
  • the demodulation unit 211c demodulates the received signal with respect to the modulation symbol of the uplink channel by using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase shift Keying).
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase shift Keying
  • the modulation method used by the demodulation unit 211c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, 256QAM, or the like.
  • the decoding unit 211d performs decoding processing on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 23.
  • the transmission processing unit 212 performs the transmission processing of the downlink control information and the downlink data.
  • the transmission processing unit 212 includes a coding unit 212a, a modulation unit 212b, a multiplexing unit 212c, and a wireless transmission unit 212d.
  • the coding unit 212a encodes the downlink control information and the downlink data input from the control unit 23 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the modulation unit 212b modulates the coding bits output from the coding unit 212a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM or the like.
  • the multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 212d performs various signal processing on the signal from the multiplexing unit 212c.
  • the radio transmitter 212d converts to the time domain by fast Fourier transform, adds a guard interval, generates a baseband digital signal, converts to an analog signal, quadrature modulation, up-conversion, removes an extra frequency component, and so on. Performs processing such as power amplification.
  • the signal generated by the transmission processing unit 212 is transmitted from the antenna 213.
  • the storage unit 22 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 22 functions as a storage means for the base station 20.
  • the storage unit 22 stores the switching information.
  • the switching information is information used by the terminal device 50 to switch the base station.
  • the switching information includes, for example, information such as resource information, trigger information, and timing advance information.
  • the resource information is information on the wireless resource used by the connected terminal device 50 to wirelessly communicate with the movablely configured switching destination candidate base station.
  • the trigger information is information used for determining whether or not the terminal device 50 switches the connection destination base station.
  • the timing advance information is information related to the timing advance for the terminal device 50 to connect to the switching destination candidate base station. Resource information, trigger information, and timing advance information will be described in detail later.
  • the control unit 23 is a controller that controls each unit of the base station 20.
  • the control unit 23 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 23 is realized by the processor executing various programs stored in the storage device inside the base station 20 using RAM (Random Access Memory) or the like as a work area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the base station 20 can also be configured as shown in FIGS. 8 and 9.
  • FIG. 8 is a configuration example of the base station 20S shown in FIG. 1
  • FIG. 9 is a configuration example of the base station 20T shown in FIG. Both the base station 20S and the base station 20T are examples of the base station 20.
  • the base station 20S shown in FIG. 8 has a wireless communication unit 21S, a storage unit 22S, and a control unit 23S.
  • the wireless communication unit 21S receives a signal including the same data repeatedly transmitted from the terminal device 50, and performs a predetermined wireless reception process on the received signal. Then, the symbol after the wireless reception process is output to the control unit 23S.
  • the control unit 23S synthesizes the symbol after the wireless reception process between the same data, and obtains the received data by demodulating and decoding the combined symbol.
  • control unit 23S generates continuation information, encodes and modulates the generated continuation information, and outputs the modulated symbol to the wireless communication unit 21S.
  • the wireless communication unit 21S performs a predetermined wireless transmission process on the modulated symbol, and transmits the signal after the wireless transmission process to the terminal device 50.
  • the base station 20T shown in FIG. 9 has a wireless communication unit 21T, a storage unit 22T, and a control unit 23T.
  • the wireless communication unit 21T receives a signal including the same data repeatedly transmitted from the terminal device 50, and performs a predetermined wireless reception process on the received signal. Then, the symbol after the wireless reception process is output to the control unit 23T.
  • the control unit 23T obtains the received data by synthesizing the symbols after the wireless reception process between the same data and demodulating and decoding the combined symbols.
  • control unit 23T generates continuation information, encodes and modulates the generated continuation information, and outputs the modulated symbol to the wireless communication unit 21T.
  • the wireless communication unit 21T performs a predetermined wireless transmission process on the modulated symbol, and transmits the signal after the wireless transmission process to the terminal device 50.
  • FIG. 10 is a diagram showing a configuration example of the terminal device 50 according to the embodiment of the present disclosure.
  • the terminal device 50 includes a wireless communication unit 51, a storage unit 52, a network communication unit 53, an input / output unit 54, and a control unit 55.
  • the configuration shown in FIG. 10 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 50 may be distributed and implemented in a plurality of physically separated configurations. Further, the configuration shown in FIG. 10 is an example, and the wireless communication unit 51, the storage unit 52, the network communication unit 53, the input / output unit 54, and the control unit 55 are not all essential components. For example, from the viewpoint of the embodiment of the present disclosure, at least the network communication unit 53 and the input / output unit 54 do not have to be essential field components.
  • the wireless communication unit 51 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, base stations 20, 30, 40).
  • the wireless communication unit 51 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 51 supports both NR and LTE.
  • the wireless communication unit 51 may support W-CDMA or cdma2000 in addition to NR and LTE.
  • the wireless communication unit 51 includes a reception processing unit 511, a transmission processing unit 512, and an antenna 513.
  • the wireless communication unit 51 may include a plurality of reception processing units 511, transmission processing units 512, and antennas 513, respectively.
  • each unit of the wireless communication unit 51 may be individually configured for each wireless access method.
  • the reception processing unit 511 and the transmission processing unit 512 may be individually configured by LTE and NR.
  • the wireless communication unit 51 is a signal including information (hereinafter, may be referred to as "continuation information") regarding the continuation of the repeated transmission before the handover and the repeated transmission after the handover (that is, the continuation of the repeated transmission before and after the handover). Is received from the base station 20.
  • the wireless communication unit 51 performs a predetermined wireless reception process on the received signal, and outputs the symbol after the wireless reception process to the control unit 55.
  • the control unit 55 may acquire the continuation information by demodulating and decoding the symbol after the radio reception processing.
  • the reception processing unit 511 processes the downlink signal received via the antenna 513.
  • the reception processing unit 511 includes a wireless reception unit 511a, a multiple separation unit 511b, a demodulation unit 511c, and a decoding unit 511d.
  • the radio receiver 511a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signal, removal of guard interval, and fast Fourier transform of the frequency domain signal for the downlink signal. Extract, etc.
  • the multiplex separation unit 511b separates the downlink channel, the downlink synchronization signal, and the downlink reference signal from the signal output from the radio reception unit 511a.
  • the downlink channel is, for example, a channel such as PBCH (Physical Broadcast Channel), PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel).
  • the demodulation unit 211c demodulates the received signal with respect to the modulation symbol of the downlink channel by using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the decoding unit 511d performs decoding processing on the coded bits of the demodulated downlink channel.
  • the decoded downlink data and downlink control information are output to the control unit 23.
  • the transmission processing unit 512 performs the transmission processing of the uplink control information and the uplink data.
  • the transmission processing unit 512 includes a coding unit 512a, a modulation unit 512b, a multiplexing unit 512c, and a wireless transmission unit 512d.
  • the coding unit 512a encodes the uplink control information and the uplink data input from the control unit 55 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the modulation unit 512b modulates the coding bits output from the coding unit 512a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM or the like.
  • the multiplexing unit 512c multiplexes the modulation symbol of each channel and the uplink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 512d performs various signal processing on the signal from the multiplexing unit 512c.
  • the radio transmitter 512d converts to the time domain by inverse fast Fourier transform, adds a guard interval, generates a baseband digital signal, converts to an analog signal, orthogonal modulation, up-converts, and removes extra frequency components. , Power amplification, etc.
  • the signal generated by the transmission processing unit 512 is transmitted from the antenna 513.
  • the storage unit 52 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 52 functions as a storage means for the terminal device 50.
  • the storage unit 52 stores the switching information.
  • the switching information is information acquired from the base stations 20, 30, or 40, and is used by the terminal device 50 for switching the base stations.
  • the switching information includes, for example, information such as resource information, trigger information, and timing advance information. Resource information, trigger information, and timing advance information will be described in detail later.
  • the network communication unit 53 is a communication interface for communicating with other devices.
  • the network communication unit 53 is a LAN interface such as a NIC.
  • the network communication unit 53 may be a wired interface or a wireless interface.
  • the network communication unit 53 functions as a network communication means of the terminal device 50.
  • the network communication unit 53 communicates with other devices according to the control of the control unit 55.
  • the input / output unit 54 is a user interface for exchanging information with the user.
  • the input / output unit 54 is an operation device for the user to perform various operations such as a keyboard, a mouse, operation keys, and a touch panel.
  • the input / output unit 54 is a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input / output unit 54 may be an audio device such as a speaker or a buzzer.
  • the input / output unit 54 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input / output unit 54 functions as an input / output means (input means, output means, operation means, or notification means) of the terminal device 50.
  • the control unit 55 is a controller that controls each unit of the terminal device 50.
  • the control unit 55 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 55 is realized by the processor executing various programs stored in the storage device inside the terminal device 50 using RAM or the like as a work area.
  • the control unit 55 may be realized by an integrated circuit such as an ASIC or FPGA. CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
  • transmission data When data to be transmitted to the base station 20 (hereinafter, may be referred to as “transmission data”) is generated, the control unit 55 temporarily transmits the transmission data to the storage unit 52 in order to repeatedly transmit the transmission data. You may memorize it in.
  • the control unit 55 may repeatedly read the same transmission data from the storage unit 52, encode and modulate the read transmission data, and output the modulated symbol to the wireless communication unit 51.
  • the wireless communication unit 51 may perform a predetermined wireless transmission process on the modulated symbol and transmit the signal after the wireless transmission process to the base station 20.
  • processing in communication system> a case where the base station 20S is the wireless communication base station of the handover source and the base station 20T is the wireless communication base station of the handover destination will be described as an example.
  • the control unit 23S of the base station 20S of the handover source provides information on information regarding a candidate base station of the handover destination including the base station 20T (hereinafter, may be referred to as a “candidate base station”) (hereinafter, “candidate”).
  • a candidate base station of the handover destination including the base station 20T hereinafter, “candidate”.
  • information is dynamically or quasi-statically notified to the terminal device 50 before the handover.
  • Dynamic notifications include DCI notifications
  • quasi-static notifications include System information and RRC signaling notifications.
  • the control unit 55 of the terminal device 50 repeatedly transmits based on the notified candidate information. Since a plurality of satellite base stations move in a predetermined orbit at regular intervals, the terminal device 50 that receives the candidate information estimates the satellite base station that the terminal device 50 may connect to in the future. It becomes possible to do.
  • control unit 23S may notify the terminal device 50 of information about the plurality of candidate base stations as candidate information.
  • control unit 23S may include information on the connection order in the candidate information.
  • control unit 23S may include information regarding the association between the candidate base station and the transmission timing on the uplink in the candidate information. For example, when the terminal device 50 transmits data after 5 seconds, the control unit 23S has a case where the terminal device 50 is connected to the satellite base station A among the candidate base stations and the terminal device 50 transmits data after 10 seconds. May include in the candidate information that the terminal device 50 is connected to the satellite base station B among the candidate base stations.
  • the candidate information may include, for example, at least one of the following information 1 to 13.
  • Information 1 PRACH transmission resource of the candidate base station Information 2: PRACH transmission Preamble sequence of the candidate base station Information 3: Cell ID of the candidate base station Information 4: Uplink and downlink carrier frequencies of the candidate base station Information 5: Bandwidth of the candidate base station Information 6: Terminal identification ID (C-RNTI) of the terminal device 50 after handover Information 7: Radio Resource Configuration after handover Information 8: Conditions for updating the information set related to handover Information 9: Trigger information for performing handover Information 10: Timing advance information of candidate base station Information 11: SSB index of candidate base station Information 12: Information about transmission weight Information 13: Information about skipping Random access procedure
  • the control unit 23T of the base station 20T of the handover destination requests the terminal device 50 to transmit the same data as the data transmitted to the base station 20S before the handover to the base station 20T after the handover.
  • Information (hereinafter, may be referred to as “same data request information”) is notified to the terminal device 50 as continuous information after handover.
  • the control unit 55 of the terminal device 50 transmits the same data as the data transmitted to the base station 20S before the handover to the base station 20T after the handover and repeats the process. Continue sending.
  • the control unit 23T may quasi-statically notify the terminal device 50 of the same data request information by RRC signaling, System information, or the like. Further, the control unit 23T may quasi-statically notify the terminal device 50 of information as to whether or not the same data as the data transmitted by the terminal device 50 before the handover is transmitted after the handover.
  • control unit 23T may notify the terminal device 50 of the HARQ process number as the same data request information.
  • the control unit 55 notified of the HARQ process number transmits the same data as the data transmitted before the handover only at the notified HARQ process number after the handover.
  • HARQ process number is sometimes called HARQ process ID or HARQ ID.
  • the control unit 23T may notify only one of the HARQ process number before the handover and the HARQ process number after the handover, and notifies both the HARQ process number before the handover and the HARQ process number after the handover. You may.
  • the control unit 23T receives the HARQ process number before the handover from the base station 20S before the handover.
  • control unit 23T may notify the same data request information by DCI.
  • a new notification field may be provided in DCI.
  • the control unit 23T uses the 1-bit notification field to determine whether or not the terminal device 50 transmits the same data as the data transmitted by the terminal device 50 before the handover after the handover. Notify to. For example, when "1" is notified in the notification field, the terminal device 50 is requested to transmit the same data as before the handover after the handover, and when "0" is notified in the notification field, the terminal device 50 is requested to transmit the same data as before the handover. , The terminal device 50 is required to transmit new data different from that before the handover after the handover.
  • the control unit 55 of the terminal device 50 requested to transmit the same data as before the handover after the handover refers to, for example, the HARQ process number notified by the control unit 23T in another field, and the notified HARQ.
  • process number the same data as the data of HARQ process number before handover is transmitted after handover.
  • control unit 23T may use a plurality of bits to notify which HARQ process number before the handover is to be continued. For example, when the control unit 55 is notified of "0001" as the HARQ process number, the control unit 55 continuously uses the HARQ process number "0001" before the handover to continue the repeated transmission.
  • the HARQ process number used after the handover may be different from the HARQ process number used before the handover. For example, when the HARQ process number used before the handover is "0001", the transmission may be continued repeatedly with the HARQ process number of "0010" after the handover.
  • one of the plurality of bits of DCI may be used as a flag as to whether or not to continue transmission of the same data as the transmission data before handover.
  • control unit 23T may notify the same data request information by NDI (New data indicator). For example, the control unit 55 is notified that the transmission of the same data will be continued after the handover, and if the HARQ process number before and after the handover is the same and the NDI represents retransmission, the data that was repeatedly transmitted before the handover. With the same data as the above, repeated transmission after handover is continued.
  • NDI New data indicator
  • the control unit 55 repeats the same data as before the handover after the handover. You may send it.
  • DCI in the area of HARQ process number, it is notified which HARQ process data is transmitted.
  • the control unit 55 is notified by RRC signaling or the like that the same data as the data transmitted before the handover is continuously transmitted after the handover, and is transmitted before the handover by the notified HARQ process number. If the transmission of the data that has been performed is not completed, the same data is repeatedly transmitted after the handover.
  • the control unit 23S of the base station 20S of the handover source notifies the terminal device 50 of the same data request information as continuous information before the handover. Based on the same data request information notified before the handover, the control unit 55 of the terminal device 50 transmits the same data as the data transmitted to the base station 20S before the handover to the base station 20T after the handover. Continue repeated transmission. In this way, by notifying the terminal device 50 of the same data request information in advance before the handover, the control unit 55 stores the transmission data temporarily stored in the storage unit 52 even if the handover occurs. Do not erase from unit 52. Therefore, when the control unit 55 repeatedly transmits the same data before the handover after the handover, the control unit 55 can continue the repeated transmission without generating the same data again. Therefore, the processing load of the terminal device 50 can be reduced.
  • the control unit 23S may quasi-statically notify the terminal device 50 of the same data request information by RRC signaling, System information, or the like. Further, in the control unit 23S, when the transmission of the data being transmitted by the terminal device 50 to the base station 20S is not completed and the handover occurs, the terminal device 50 transmits the data before the handover. Information about whether or not to transmit the same data as the data after the handover may be notified to the terminal device 50 semi-statically.
  • control unit 23S may notify the terminal device 50 of the HARQ process number as the same data request information.
  • the control unit 55 notified of the HARQ process number is handed over only by the notified HARQ process number when the transmission of the data being transmitted to the base station 20S is not completed and the handover occurs.
  • the same data as the previously transmitted data is transmitted after the handover.
  • control unit 23S may notify the same data request information by DCI.
  • a new notification field may be provided in DCI.
  • the control unit 23S uses the 1-bit notification field when the terminal device 50 has not completed the transmission of the data being transmitted to the base station 20S and the handover occurs. Notifies the terminal device 50 whether or not the terminal device 50 transmits the same data as the data transmitted by the terminal device 50 before the handover after the handover. For example, when "1" is notified in the notification field, the terminal device 50 is requested to transmit the same data as before the handover after the handover, and when "0" is notified in the notification field, the terminal device 50 is requested to transmit the same data as before the handover.
  • the terminal device 50 is required to transmit new data different from that before the handover after the handover.
  • the control unit 55 of the terminal device 50 requested to transmit the same data as before the handover after the handover refers to, for example, the HARQ process number notified by the control unit 23S in another field, and the notified HARQ. Using process number, the same data as the data of HARQ process number before handover is transmitted after handover.
  • control unit 23S may notify the same data request information by MAC CE (Control element).
  • control unit 55 of the terminal device 50 transmits the data for repeated transmission based on the configured grant. If the handover occurs during the repeated transmission by the configured grant, the control unit 55 repeats the transmission of the same data as before the handover even after the handover. Further, the control unit 55 takes over the number of times the repeated transmission before the handover has already been transmitted after the handover.
  • the control unit 23S of the base station 20S notifies the terminal device 50 in advance of the configured grant configuration after the handover before the handover. In this way, by notifying the terminal device 50 of the configured grant configuration after the handover from the control unit 23S in advance before the handover, it is not necessary for the control unit 23T to notify the terminal device 50 of the configured grant configuration after the handover. Therefore, the terminal device 50 can continue data transmission immediately after the handover.
  • the configured grant configuration notified to the terminal device 50 before the handover includes the cell ID information of the cell C2 which is the handover destination cell and the Synchronization Signal Block (SSB) index information of the cell C2.
  • SSB Synchronization Signal Block
  • the Random access procedure can be omitted (skip) after handover. Therefore, in the processing example 5, the control unit 55 of the terminal device 50 performs a Random access procedure with the handover source base station 20S, but does not perform a Random access procedure with the handover destination base station 20T. That is, after the handover, the control unit 55 starts data transmission to the base station 20T without performing the Random access procedure.
  • control unit 55 starts data transmission to the base station 20T without performing the Random access procedure, for the timing advance, the value used for communication with the base station 20S before the handover is used even after the handover. Continue to use or use values that are obtained based on pre-notified information. Further, the control unit 55 takes over the transmission power value before the handover after the handover and controls the transmission power after the handover.
  • the control unit 23S of the base station 20S of the handover source may refer to, for example, a request for registration of the candidate base station (hereinafter, may be referred to as a “candidate registration request”) and a request for execution of handover (hereinafter, referred to as a “handover request”). ), Synthesized data before the handover is transmitted to the base station 20T of the handover destination in advance before the handover. Further, the control unit 23S determines the HARQ process number, the number of times the same data has been transmitted before the handover, so that the terminal device 50 can continuously transmit the same data as before the handover to the base station 20T after the handover. Terminal identification ID such as C-RNTI, setting values required for generation of Scrambling sequence (for example, data Scrambling Identity PUSCH and data Scrambling Identity PDSCH), Physical layer cell identity, etc. You may notify the station 20T.
  • Terminal identification ID such as C-RNTI, setting values required for generation of Scrambling sequence (for example, data Scrambling
  • control unit 23T of the base station 20T of the handover destination transmits, for example, ACK or NACK for the candidate registration request and ACK or NACK for the handover request to the base station 20S.
  • the number of times the same data is transmitted in repeated transmission is the antenna gain of the terminal device 50, the antenna gain of the base station 20, the distance between the terminal device 50 and the base station 20, and the amount of interference around the terminal device 50. , Determined by the terminal device 50 or the base station 20 based on the amount of interference around the base station 20 and the like.
  • the control units 23T and 23S determine the number of times the same data is transmitted in the repeated transmission based on the Capability information of the terminal device 50 notified from the terminal device 50, the position information of the terminal device 50, and the like, and the determined transmission. The number of times may be notified to the terminal device 50.
  • control unit 23T may cause the control unit 55 to stop the repeated transmission when the synthesized data is successfully decoded in the repeated transmission continued after the handover.
  • the control unit 23T may notify the terminal device 50 that the synthesized data has been successfully decoded by transmitting an ACK to the terminal device 50 or a Grant of the next transmission data.
  • ⁇ Processing example 8> In the data transmission by the terminal device 50 and the data reception by the base station 20, scrambling and descramble processing are performed using the terminal identification ID (for example, C-RNTI) given to the terminal device 50. If the terminal identification ID given to the terminal device 50 is different between before and after the handover, it becomes difficult to synthesize the data after the handover with the synthesized data before the handover. Therefore, in the processing example 8, the control unit 23S of the base station 20S notifies the base station 20T of the terminal identification ID given to the terminal device 50 in the repeated transmission before the handover.
  • the terminal identification ID for example, C-RNTI
  • the control unit 23T of the base station 20T uses the terminal identification ID notified from the base station 20S, that is, the same terminal identification ID as the terminal identification ID used before the handover, in the repeated transmission after the handover. Perform data synthesis.
  • the control unit 55 of the terminal device 50 scrambles the data for repeated transmission using the same terminal identification ID both before and after the handover. Further, when the transmission of the data transmitted before the handover by the repeated transmission is completed after the handover, the control unit 55 uses the new terminal identification ID given after the handover to transmit the new data.
  • the terminal identification ID For data transmission by the terminal device 50 and data reception by the base station 20, in addition to the terminal identification ID, set values such as data Scrambling Identity PUSCH and data Scrambling Identity PDSCH, and / or Physical layer cell. Parameters such as identity may also be used. Therefore, these parameters may be used in the same manner as the above-mentioned usage of the terminal identification ID. In addition to the terminal identification ID and these parameters, parameters required for data transmission / reception may be used in the same manner as the above-mentioned usage of the terminal identification ID. Further, the processing required for sending and receiving data is not limited to scrambling and descramble.
  • the processing load of the terminal device 50 and the base station 20 at the time of handover can be reduced. It can be mitigated.
  • Processing procedure in communication system> 11 and 12 are diagrams showing an example of a processing procedure in the communication system according to the embodiment of the present disclosure.
  • procedure example 1 and procedure example 2 will be described as an example of the processing procedure in the communication system.
  • step S101 after the control unit 23S of the base station 20S establishes the downlink synchronization with the terminal device 50, the cell ID of the cell C1 is transmitted to the terminal device 50, and the control unit of the terminal device 50. 55 receives the cell ID of cell C1.
  • step S103 Random access procedure is performed between the control unit 23S and the control unit 55.
  • step S105 the control unit 23S transmits the candidate registration request to the base station 20T, and the control unit 23T of the base station 20T receives the candidate registration request.
  • step S107 the control unit 23T transmits an ACK for the candidate registration request received in step S105 to the base station 20S, and the control unit 23S receives the ACK.
  • step S109 the control unit 23S that received the ACK in step S107 transmits the candidate information to the terminal device 50, and the control unit 55 receives the candidate information.
  • step S111 it is assumed that the transmission data A is generated in the control unit 55. Therefore, in step S113, the control unit 55 transmits the scheduling request to the base station 20S, and the control unit 23S receives the scheduling request.
  • step S115 the control unit 23S that received the scheduling request in step S113 transmits the Uplink Grant to the terminal device 50, and the control unit 55 receives the Uplink Grant.
  • the control unit 55 repeatedly transmits the same data A to the base station 20S based on the Uplink Grant received in step S115, and the control unit 23S repeatedly receives the data A. ..
  • the maximum number of transmissions in the repeated transmission performed by the control unit 55 is predetermined to be M times, and when the control unit 55 completes the first to Nth transmissions in the M times in steps S117 to S121, In the control unit 23S, N pieces of data A are synthesized.
  • step S123 it is assumed that the control unit 23S determines that handover is necessary.
  • step S125 the control unit 23S determined in step S123 that a handover is necessary transmits the handover request to the base station 20T, and the control unit 23T receives the handover request.
  • step S127 the control unit 23T that received the handover request in step S125 transmits an ACK for the handover request to the base station 20S, and the control unit 23S receives the ACK.
  • step S129 the control unit 23S that received the ACK in step S127 transmits the synthesized data in which N pieces of data A are synthesized to the base station 20T, and the control unit 23T receives the synthesized data.
  • step S131 the control unit 23T that received the synthesized data in step S129 transmits an ACK for the synthesized data to the base station 20S, and the control unit 23S receives the ACK.
  • step S133 the control unit 23S that received the ACK in step S131 transmits the handover instruction to the base station 20T and the continuation information to the terminal device 50, and the control unit 55 receives the handover instruction and the continuation information.
  • the control unit 55 switches the connection destination of the terminal device 50 from the base station 20S to the base station 20T according to the handover instruction received in step S133.
  • step S135 after the control unit 23T of the base station 20T establishes the downlink synchronization with the terminal device 50, the cell ID of the cell C2 is transmitted to the terminal device 50, and the control unit 55 of the cell C2 Receive the cell ID.
  • step S137 the control unit 55 transmits the scheduling request to the base station 20T, and the control unit 23T receives the scheduling request.
  • step S135 and step S137 Random access procedure is not performed between the control unit 23T and the control unit 55. That is, the control unit 55 executes the Random access procedure with the handover source base station 20S (step S103), but does not execute the Random access procedure with the handover destination base station 20T.
  • step S139 the control unit 23T that received the scheduling request in step S137 transmits the Uplink Grant to the terminal device 50, and the control unit 55 receives the Uplink Grant.
  • the control unit 55 repeatedly transmits the same data A to the base station 20T based on the continuation information received in step S133 and the Uplink Grant received in step S139, and controls the data.
  • the unit 23T repeatedly receives the data A. Since the control unit 55 has completed the transmission of the data A up to the Nth time in the M times in steps S117 to S121, in steps S141 to S145, the N + 1th to Mth data A is transmitted to the base station 20T. Therefore, when the control unit 55 completes the N + 1th to Mth transmissions in the M times in steps S141 to S145, the control unit 23T synthesizes M pieces of data A.
  • step S201 is added as compared with FIG. 11, while the processes of steps S113, S115, S137, and S139 are deleted.
  • step S201 the control unit 23S transmits the configured grant configuration of the base station 20S and the configured grant configuration of the base station 20T to the terminal device 50, following the transmission of the candidate information in step S109.
  • the control unit 55 of the terminal device 50 receives the configured grant configuration of the base station 20S and the configured grant configuration of the base station 20T.
  • control unit 55 repeatedly transmits the same data A to the base station 20S based on the configured grant configuration of the base station 20S received in step S201.
  • control unit 55 outputs the same data A to the base station 20T based on the configured grant configuration of the base station 20T received in step S201 and the continuation information received in step S133. Send repeatedly.
  • the disclosed technology can be applied not only to low earth orbit satellite base stations but also to various wireless communication base stations floating in or outside the atmosphere.
  • an airplane, a drone, a balloon, or the like can be mentioned as an example of a wireless communication base station floating in the atmosphere.
  • a radio communication base station floating outside the atmosphere a low earth orbit (LEO: Low Earth Orbiting) satellite, a medium earth orbit (MEO: Medium Earth Orbiting) satellite, a high elliptical orbit (HEO: Highly Elliptical Orbiting) satellite, etc. Can be mentioned.
  • ground stations wireless communication base stations installed on the ground.
  • handover may occur frequently between a plurality of ground stations.
  • the disclosed technology can be applied not only when the handover between cells is performed, but also when the beam is changed, the component carrier is changed, the Band width part (BWP) is changed, and the like.
  • each process in the above description in the base station 20S may be realized by causing the control unit 23S to execute a program corresponding to each process.
  • the program corresponding to each process in the above description may be stored in the storage unit 22S, and the program may be read from the storage unit 22S by the control unit 23S and executed.
  • the program is stored in a program server connected to the base station 20S via an arbitrary network, downloaded from the program server to the base station 20S and executed, or stored in a recording medium readable by the base station 20S. It may be read from the recording medium and executed.
  • each process in the above description in the base station 20T may be realized by causing the control unit 23T to execute a program corresponding to each process.
  • the program corresponding to each process in the above description may be stored in the storage unit 22T, and the program may be read from the storage unit 22T by the control unit 23T and executed.
  • the program is stored in a program server connected to the base station 20T via an arbitrary network, downloaded from the program server to the base station 20T and executed, or stored in a recording medium readable by the base station 20T. It may be read from the recording medium and executed.
  • All or part of each process in the above description in the terminal device 50 may be realized by causing the control unit 55 to execute a program corresponding to each process.
  • the program corresponding to each process in the above description may be stored in the storage unit 52, and the program may be read from the storage unit 52 by the control unit 55 and executed.
  • the program is stored in a program server connected to the terminal device 50 via an arbitrary network, downloaded from the program server to the terminal device 50 and executed, or stored in a recording medium readable by the terminal device 50. It may be read from the recording medium and executed.
  • Recording media that can be read by the terminal device 50 and the base station 20 include, for example, a memory card, a USB memory, an SD card, a flexible disk, a magneto-optical disk, a CD-ROM, a DVD, and a Blu-ray (registered trademark) disk.
  • Etc. including portable storage media.
  • the program is a data processing method described in an arbitrary language or an arbitrary description method, and may be in any format such as source code or binary code.
  • the program is not necessarily limited to a single program, but is distributed as multiple modules or multiple libraries, or cooperates with a separate program represented by the OS to achieve its function. Including things.
  • the information processing device (control device) that controls the management device 10, the base stations 20 to 40, and the terminal device 50 of the present embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above operation is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk.
  • the information processing apparatus is configured by installing the program on a computer and executing the above-mentioned processing.
  • the information processing device may be an external device (for example, a personal computer) of the management device 10, the base stations 20 to 40, and the terminal device 50.
  • the information processing device may be a device inside the management device 10, the base stations 20 to 40, and the terminal device 50 (for example, a processor inside the control units 13, 23, 34, 44, 55).
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer or the like.
  • the above-mentioned functions may be realized by collaboration between the OS (Operating System) and the application software.
  • the part other than the OS may be stored in a medium and distributed, or the part other than the OS may be stored in the server device so that it can be downloaded to a computer or the like.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the present embodiment includes a device or any configuration constituting the system, for example, a processor as a system LSI (Large Scale Integration) or the like, a module using a plurality of processors, a unit using a plurality of modules, or a unit. It can also be implemented as a set or the like (that is, a part of the configuration of the device) to which other functions are added.
  • a processor as a system LSI (Large Scale Integration) or the like, a module using a plurality of processors, a unit using a plurality of modules, or a unit. It can also be implemented as a set or the like (that is, a part of the configuration of the device) to which other functions are added.
  • LSI Large Scale Integration
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • the present embodiment can have a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
  • the terminal device includes a wireless communication unit (wireless communication unit 51 in the embodiment) and a control unit (control unit 55 in the embodiment).
  • the wireless communication module receives the continuation information, and the control unit repeatedly transmits after the handover based on the received continuation information.
  • the wireless communication terminal can repeatedly transmit the same data as the data that was repeatedly transmitted before the handover to the wireless communication base station (base station 20T in the embodiment) of the handover destination after the handover. Therefore, the wireless communication base station of the handover destination can continuously synthesize the same data as the data synthesized by the base station of the handover source (base station 20S in the embodiment). Therefore, according to the disclosed technology, high quality wireless communication can be realized.
  • a communication device that repeatedly transmits predetermined data.
  • a wireless communication unit that receives continuation information that is information related to the continuation of the repeated transmission before and after the handover. Based on the continuation information, the control unit that performs the repeated transmission after the handover and A communication device comprising.
  • the predetermined data is the same data before error correction coding.
  • the data before error correction coding is the same data, and the Redundancy Version is the same value.
  • (4) The predetermined data are the same data before error correction coding and have different Redundancy Version values.
  • the wireless communication unit continues the request information requesting that the same data as the predetermined data transmitted to the handover source base station device before the handover be transmitted to the handover destination wireless communication base station after the handover. Receive as information, The communication device according to any one of (1) to (4) above. (6) The wireless communication unit receives the request information transmitted from the base station device of the handover source. The communication device according to (5) above. (7) The wireless communication unit receives the request information transmitted from the handover destination base station device. The communication device according to (5) above. (8) The wireless communication unit receives candidate information regarding the candidate base station device of the handover destination from the base station device of the handover source, and receives the candidate information. The control unit performs the repeated transmission after the handover based on the candidate information.
  • the communication device according to any one of (1) to (7) above.
  • the wireless communication unit receives the configured grant configuration after the handover from the base station device of the handover source before the handover, and receives the configured grant configuration after the handover.
  • the control unit performs the repeated transmission after the handover based on the Configured grant configuration.
  • the communication device according to any one of (1) to (8) above.
  • the control unit performs a Random access procedure with the handover source base station device, but does not perform a Random access procedure with the handover destination wireless communication base station.
  • the communication device according to any one of (1) to (9) above.
  • the control unit scrambles the data of the repeated transmission using the same predetermined ID both before and after the handover.
  • the communication device according to any one of (1) to (10) above.
  • the predetermined ID is a terminal identification ID.
  • the predetermined ID is a value different from the terminal identification ID given by the base station device after the handover.
  • the predetermined ID is information different from the first terminal identification ID given by the base station device before the handover and the second terminal identification ID given by the base station device after the handover.
  • a base station device that communicates with a terminal device that repeatedly transmits the same data.
  • a wireless communication module that transmits the continuation information to the terminal device, A base station device comprising.
  • Predetermined data is repeatedly transmitted to a computer possessed by a communication device that repeatedly transmits Upon receiving the continuation information, which is the information regarding the continuation of the repeated transmission before and after the handover, Based on the continuation information, the repeated transmission after the handover is performed. A program to execute processing. (19) The same data is repeatedly transmitted to the computer of the base station device that communicates with the terminal device that performs repeated transmission. Generates continuation information, which is information regarding the continuation of the repeated transmission before and after the handover. Sending the continuation information to the wireless communication terminal, A program to execute processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

所定のデータが繰り返し送信される繰り返し送信を行う無線通信端末(50)において、無線通信部(51)は、ハンドオーバ前後における繰り返し送信の継続に関する情報である継続情報を受信し、制御部(55)は、継続情報に基づいて、ハンドオーバ後の繰り返し送信を行う。

Description

通信装置、基地局装置、及び通信方法
 本開示は、通信装置、基地局装置、及び通信方法に関する。
 LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、NR(New Radio)、NRAT(New Radio Access Technology)、EUTRA(Evolved Universal Terrestrial Radio Access)、または、FEUTRA(Further EUTRA)と呼ばれる無線アクセス方式または無線ネットワークが、3GPP(3rd Generation Partnership Project)において検討されている。以下の説明において、LTEは、LTE-A、LTE-A Pro及びEUTRAを含み、NRは、NRAT及びFEUTRAを含む。LTEでは無線通信基地局はeNodeB(evolved NodeB)と、NRでは無線通信基地局はgNodeBと、LTE及びNRでは無線通信端末はUE(User Equipment)と呼ばれることもある。また、セルラー移動通信における無線通信端末は、移動局と呼ばれることもある。LTE及びNRは、無線通信基地局がカバーするエリアがセル状に複数配置されたセルラー通信システムである。単一の無線通信基地局は複数のセルを管理してもよい。
 NRは、LTEに対する次世代の無線アクセス方式であり、LTEとは異なるRAT(Radio Access Technology)である。NRでは、広域カバレッジ、接続安定性等に対する要求の高まりから、空中や宇宙に浮遊する装置から無線ネットワークが提供される非地上波ネットワーク(NTN:Non-Terrestrial Network)の検討が開始されている。非地上波ネットワークでは、例えば、無線通信基地局として用いられる人工衛星(以下では「衛星基地局」、或いは単に「基地局」と呼ぶことがある。)を介して無線通信端末に無線ネットワークが提供される。また、地上波ネットワークと同一の無線アクセス方式を非地上波ネットワークに用いることで、地上波ネットワークと非地上波ネットワークとの間の統合的な運用が容易となる。
 ここで、非地上波ネットワークでは、無線通信端末と衛星基地局との間の電波の伝搬距離が長いため、無線通信端末から送信される信号の伝搬損失が大きくなって衛星基地局での受信レベルが低下する。そこで、無線通信端末は、同一のデータを衛星基地局へ繰り返し送信し、衛星基地局は、無線通信端末から受信した複数の同一データを合成することで受信品質を高めている。通常、数百個から数千個の同一データが合成されることで、衛星基地局での受信品質が、復号可能な所望の受信品質に達する。以下では、同一のデータが繰り返し送信される無線送信を「繰り返し送信(repetition送信)」と呼ぶことがある。
R2-1910452, Intel Corporation, "Conditional Handover for Non-Terrestrial Networks," 3GPP TSG RAN2 Meeting#107, Prague, Czech Republic, August, 2019.
 非地上波ネットワークにおける低軌道衛星等の衛星基地局は上空を高速で移動している。また、衛星基地局によって地上に形成されるセルも衛星基地局の移動にあわせて移動する。このため、非地上波ネットワークでは、地上の無線通信端末がたとえ静止している場合であっても、無線通信端末が属するセルの切替(つまり、ハンドオーバ)が頻繁に発生する可能性がある。これに対し、従来、繰り返し送信における同一データの合成は各々の衛星基地局毎に個別に行われているため、ハンドオーバが頻繁に発生すると、データ合成後の受信品質がいつまでたっても復号可能な所望の受信品質に達しないという事態が発生してしまうおそれがある。
 そこで、本開示では、品質の高い無線通信を実現できる技術を提案する。
 本開示では、所定のデータが繰り返し送信される繰り返し送信を行う通信装置において、無線通信部は、ハンドオーバ前後における繰り返し送信の継続に関する情報である継続情報を受信し、制御部は、継続情報に基づいて、ハンドオーバ後の繰り返し送信を行う。
 また、本開示では、所定のデータが繰り返し送信される繰り返し送信を行う端末端末と通信する基地局装置において、制御部は、ハンドオーバ前後における繰り返し送信の継続に関する情報である継続情報を生成し、無線通信部は、継続情報を無線通信端末へ送信する。
本開示の実施形態に係る通信システムの概要を示す図である。 本開示の実施形態に係る通信システムの構成例を示す図である。 通信システムが提供する無線ネットワークの一例を示す図である。 通信システムが提供する衛星通信の概要を示す図である。 衛星局が構成するセルの一例を示す図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係る基地局の構成例を示す図である。 本開示の実施形態に係る基地局の他の構成例を示す図である。 本開示の実施形態に係る基地局の他の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 本開示の実施形態に係る通信システムにおける処理手順の一例を示す図である。 本開示の実施形態に係る通信システムにおける処理手順の一例を示す図である。
 以下に、本開示の実施形態について図面に基づいて説明する。なお、以下の実施形態において、同一の部位または同一の処理には同一の符号を付す。
 また、本明細書および図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字又はアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて基地局20T、20Sのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局20T、20Sを特に区別する必要が無い場合には、単に基地局20と称する。
 また、以下に示す項目順序に従って本開示を説明する。
 [実施形態]
  <1.通信システムの概要>
  <2.通信システムの構成>
   2-1.通信システムの全体構成
   2-2.管理装置の構成
   2-3.基地局の構成
   2-4.端末装置の構成
  <3.通信システムにおける処理>
   <処理例1>
   <処理例2>
   <処理例3>
   <処理例4>
   <処理例5>
   <処理例6>
   <処理例7>
   <処理例8>
  <4.通信システムにおける処理手順>
   <手順例1>
   <手順例2>
  <5.変形例>
 [開示の技術の効果]
 [実施形態]
 <1.通信システムの概要>
 図1は、本開示の実施形態に係る通信システムの概要を示す図である。図1において、通信システム1は、端末装置50と、基地局20Sと、基地局20Tとを有する。
 端末装置50は地上に位置する通信装置である。基地局20S、20Tは、宇宙空間に位置する通信装置(例えば、衛星基地局)である。端末装置50は、基地局20S、20Tと通信可能である。また、基地局20Sと基地局20Tとは相互に通信可能である。
 基地局20S、20Tは、例えば高度100kmから2000kmの間の上空に位置し、例えば高度600kmの上空に位置する場合は、秒速7.6kmのスピードで軌道上を移動する。また、基地局20SはセルC1を地上に形成し、基地局20TはセルC2を地上に形成する。端末装置50は、セルC1に属している場合は基地局20Sと通信可能であり、セルC2に属している場合は基地局20Tと通信可能である。セルC1、C2の半径は、例えば数十kmから数百kmの範囲にある。セルは「ビーム」と呼ばれることもある。
 基地局20Sと基地局20Tとは一定の間隔を保ったまま上空を移動するため、端末装置50が移動していなくても、端末装置50が属するセル(以下では「所属セル」と呼ぶことがある)がセルC1からセルC2にハンドオーバすることがある。例えば、セルC1、C2の各々の直径が50kmであり、かつ、端末装置50が静止している場合には、所属セルがセルC1になってから約6~7秒後にセルC2へのハンドオーバが発生する。以下では、基地局20S、20Tを「基地局20」と総称することがある。
 <2.通信システムの構成>
 以下、本実施形態に係る通信システム1を詳細に説明する。通信システム1は、非地上局を備え、端末装置に対して非地上波ネットワークを使用した無線通信を提供する。また、通信システム1は、地上波ネットワークを使用した無線通信を提供していてもよい。なお、通信システム1が備える非地上波ネットワーク、地上波ネットワークは、NRで規定される無線アクセス方式を使用した無線ネットワークに限られない。通信システム1が備える非地上波ネットワークは、LTE、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)等、NR以外の無線アクセス方式の無線ネットワークであってもよい。
 なお、本開示の実施形態において、地上局(地上基地局ともいう。)とは、地上に設置される基地局(中継局を含む。)のことをいう。「地上」は、地上(陸上)のみならず、地中、水上、水中も含む広義の地上である。
 また、いくつかの実施形態では、NRのユースケースの一つとしてNTNへの適用例について説明する。しかしながら、これらの実施形態の適用先はNTNには限定されず、他の技術やユースケース(e.g., URLLC)に適用されてもよい。
 なお、以下の説明では、基地局(以下、基地局装置ともいう。)という概念には、中継局(以下、中継装置(リレーノード)ともいう。)及び当該中継局に対して無線インタフェースを提供するドナー基地局が含まれていてもよい。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。構造物は、例えば、高層ビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、地上(陸上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。さらに、基地局は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本開示の実施形態において基地局は、BBU(Baseband Unit)及びRU(Radio Unit)の複数の装置に区別され、これら複数の装置の集合体として解釈されてもよい。
 また、本実施形態において基地局は、BBU及びRUのうちいずれか又は両方であってもよい。BBUとRUとは所定のインタフェース(e.g., eCPRI)で接続されていてもよい。また、RUはRemote Radio Unit (RRU) 又は Radio DoT (RD)と称されていてもよい。また、RUは後述するgNB-DUに対応していてもよい。また、BBUは、後述するgNB-CUに対応していてもよい。さらに又はこれに代えて、RUはアンテナと一体的に形成された装置であってもよい。基地局が有するアンテナ(e.g., RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(e.g. FD-MIMO)やビームフォーミングをサポートしていてもよい。 Advanced Antenna Systemは、基地局が有するアンテナ(e.g., RUと一体的に形成されたアンテナ)は、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。
 また、基地局は、移動可能に構成された基地局であってもよい。例えば、基地局は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。移動体は、スマートフォンなどのモバイル端末や、地上(陸上)を移動する移動体(例えば、自動車、バス、トラック、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよいし、大気圏外を移動する宇宙移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。
 なお、基地局は、複数が互いに接続されていてもよい。1つ又は複数の基地局は無線アクセスネットワーク(Radio Access Network: RAN)に含まれていてもよい。すなわち、基地局は単にRAN、RANノード、AN(Access Network)、ANノードと称されてもよい。LTEにおけるRANはEUTRAN(Enhanced Universal Terrestrial RAN)と呼ばれる。NRにおけるRANはNGRANと呼ばれる。W-CDMA(UMTS)におけるRANはUTRANと呼ばれる。LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称される。すなわち、EUTRANは1又は複数のeNodeB(eNB)を含む。また、NRの基地局は、gNodeB又はgNBと称される。すなわち、NGRANは1又は複数のgNBを含む。さらに、EUTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNGRANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。
 なお、基地局がeNB、gNBなどである場合、3GPP Accessと称されてもよい。また、基地局が無線アクセスポイント(Access Point)である場合、Non-3GPP Accessと称されてもよい。さらに又はこれに代えて、基地局は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。また、基地局がgNBである場合、基地局は前述したgNB CU(Central Unit)とgNB DU(Distributed Unit)の組み合わせ又はこれらのうちいずれかと称されてもよい。gNB CU(Central Unit)は、UEとの通信のために、Access Stratumのうち、複数の上位レイヤ(e.g. RRC, SDAP, PDCP)をホストする。一方、gNB-DUは、Access Stratumのうち、複数の下位レイヤ(e.g. RLC, MAC, PHY)をホストする。すなわち、後述されるメッセージ・情報のうち、RRC signalling(準静的な通知)はgNB CUで生成され、一方でDCI(動的な通知)はgNB-DUは生成されてもよい。また、RRC configuration(準静的な通知)のうち、例えばIE:cellGroupConfigなど一部のconfigurationについてはgNB-DUで生成され、残りのconfigurationはgNB-CUで生成されてもよい。これらのconfigurationは、後述されるF1インタフェースで送受信されてもよい。基地局は、他の基地局と通信可能に構成されていてもよい。例えば、複数の基地局装置がeNB同士又はeNBとen-gNBの組み合わせである場合、当該基地局間はX2インタフェースで接続されてもよい。また、複数の基地局がgNB同士又はgn-eNBとgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。また、複数の基地局がgNB CU(Central Unit)とgNB DU(Distributed Unit)の組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ・情報(RRC signalling又はDCIの情報)は複数基地局間で(例えばX2、Xn、F1インタフェースを介して)通信されてもよい。
 また、LTEおよびNRでは、端末装置(移動局、移動局装置、又は端末ともいう。)はUE(User Equipment)と称されることがある。これに代えて、端末装置は、MS(Mobile Station)やWTRU(Wireless Transmission Reception Unit)と呼ばれてもよい。なお、端末装置は、無線通信装置の一種であり、移動局、移動局装置、又は端末とも称される。本開示の実施形態において、端末装置という概念には、携帯端末等の持ち運び可能な端末装置のみならず、例えば、構造物や移動体に設置される装置も含まれる。
<2-1.通信システムの全体構成>
 図2は、本開示の実施形態に係る通信システム1の構成例を示す図である。通信システム1は、管理装置10と、非地上基地局(以下、単に基地局と称する)20と、地上基地局(以下、単に基地局と称する)30と、中継装置(以下、単に基地局と称する)40と、端末装置50と、を備える。通信システム1は、通信システム1を構成する各無線通信装置が連携して動作することで、ユーザに対し、移動通信が可能な無線ネットワークを提供する。無線通信装置は、無線通信の機能を有する装置のことであり、図2の例では、基地局20、30、40、および端末装置50が該当する。
 通信システム1は、管理装置10、基地局20、30、40、および端末装置50をそれぞれ複数備えていてもよい。図2の例では、通信システム1は、管理装置10として管理装置10、10等を備えている。また、通信システム1は、基地局20として基地局20、20等を備えており、基地局30として基地局30、30等を備えている。また、通信システム1は、基地局40として基地局40、40等を備えており、端末装置50として端末装置50、50、50等を備えている。なお、上述の通り、本開示の実施形態の適用先は非地上波通信(NTN)に限られない。すなわち、通信システムは、非地上局を含んでいなくてもよい。
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10は、MME(Mobility Management Entity)やAMF(Access and Mobility Management Function)として機能する装置である。MMEは、EUTRANとS1インタフェースで接続され、UEとの間のNAS(Non-Access Stratum)シグナリングの制御やUEのモビリティの管理を行う。AMFは、NGRANとNGインタフェースで接続され、UEとの間のNAS(Non-Access Stratum)シグナリングの制御やUEのモビリティの管理を行う。管理装置10は、コアネットワークCNに含まれていてもよい。コアネットワークCNは、例えば、EPC(Evolved Packet Core)や5GC(5G Core network)である。管理装置10は、複数の基地局20および複数の基地局30それぞれと接続される。管理装置10は、基地局20および基地局30の通信を管理する。コアネットワークは、管理装置10のようなコントロールプレーン(C-Plane)ノードのほかに、パケットデータネットワーク(PDN)又はデータネットワーク(DN)とRANとの間でユーザデータを転送する。ユーザプレーン(U-Plane)ノードを含んでいてもよい。EPCにおけるU-PlaneノードはServing Gateway(S-GW)やPDN-Gateway(P-GW)を含んでもよい。5GCにおけるU-Planeノードは、U-Plane Function(UPF)を含んでいてもよい。例えば、管理装置10は、通信システム1内の端末装置50(UE)が、どの位置に存在するかを、複数のセルからなるエリア単位(e.g. Tracking Area、RAN Notification Area)で端末装置50ごとに管理する。なお、管理装置10は、端末装置50がどの基地局(或いはどのセル)に接続しているか、どの基地局(或いはどのセル)の通信エリア内に存在しているか、等を端末装置50ごとにセル単位で把握して管理してもよい。
 基地局20は、端末装置50と無線通信する基地局である。図2の例では、基地局20は、基地局40と接続されており、基地局40を介して端末装置50と無線通信することも可能である。本実施形態では、基地局20は、空中又は宇宙を浮遊可能な基地局である。例えば、基地局20は、航空機局や衛星局等の非地上局装置である。
 航空機局は、例えば、航空機等、大気圏内を浮遊可能な無線通信装置である。航空機局は、例えば、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局(又は、航空機局が搭載される航空機)は、ドローン(Aerial Vehicle)等の無人航空機であってもよい。なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。さらに、航空機局がUEとして機能する場合、当該航空機局は、Aerial UEであってもよい。
 衛星局は、大気圏外を浮遊可能な無線通信装置である。衛星局は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 基地局30は、端末装置50と無線通信する基地局である。図2の例では、基地局30は、基地局40と接続されており、基地局40を介して端末装置50と無線通信することも可能である。基地局30は、地上の構造物に配置される基地局であってもよいし、地上を移動する移動体に設置される基地局であってもよい。例えば、基地局30は、ビル等の構造物に設置されたアンテナおよびそのアンテナに接続する信号処理装置である。勿論、基地局30は、構造物や移動体そのものであってもよい。
 基地局40は、基地局の中継局となる装置である。基地局40は、基地局の一種である。基地局40は、基地局20と端末装置50との通信、又は基地局30と端末装置50との通信を中継する。基地局40は、地上局であってもよいし、非地上局であってもよい。基地局40は基地局20および基地局30とともに無線アクセスネットワークRANを構成してもよい。
 端末装置50は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。また、端末装置50は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい(例えば、MTC UE、NB-IoT UE、Cat.M UEと呼ばれてもよい)。また、端末装置50は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。なお、端末装置50は、衛星通信を中継する中継局であってもよいし、衛星通信を受信する基地局であってもよい。端末装置50は、地上波ネットワークと非地上波ネットワークの双方に対応する。そのため、端末装置50は、基地局30等の地上局装置のみならず、基地局20等の非地上局装置とも通信可能である。
 図3は、通信システム1が提供する無線ネットワークの一例を示す図である。基地局20および基地局30はそれぞれセルを構成する。セルとは基地局により無線通信がカバーされるエリアである。基地局20および基地局30により構成されるセルは、マクロセル、マイクロセル、フェムトセル、およびスモールセルの何れであってもよい。なお、通信システム1は、単一の基地局で複数のセルを管理するように構成されていてもよいし、複数の基地局で1つのセルを管理するように構成されていてもよい。基地局により提供されるセルはServing cellと呼ばれる。Serving cellはPCell(Primary Cell)及びSCell(Secondary Cell)を含む。Dual Connectivity (e.g. EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivity)がUE(e.g. 端末装置50)に提供される場合、MN(Master Node)によって提供されるPCell及びゼロ又は1以上のSCell(s)はMaster Cell Groupと呼ばれる。さらに、Serving cellはPSCell(Primary Secondary Cell又はPrimary SCG Cell)を含んでもよい。すなわち、Dual Connectivity がUEに提供される場合、SN(Secondary Node)によって提供されるPSCell及びゼロ又は1以上のSCell(s)はSecondary Cell Group(SCG)と呼ばれる。特別な設定(e.g., PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、Radio Link FailureもPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、Serving Cell(s)の中で特別な役割を持つため、Special Cell(SpCell)とも呼ばれる。1つのセルには、1つのDownlink Component Carrierと1つのUplink Component Carrier が対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域幅部分(Bandwidth Part)に分割されてもよい。この場合、1又は複数のBandwidth PartがUEに設定され、1つのBandwidth PartがActive BWPとして、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWP毎に、端末装置50が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration)が異なっていてもよい。
 図3の例では、基地局30、30は地上波ネットワークTN1を構成し、基地局30、30、30は地上波ネットワークTN2を構成する。地上波ネットワークTN1および地上波ネットワークTN2は、例えば、電話会社等の無線通信事業者(Mobile Network Operator:MNO)により運営される地上波ネットワークである。地上波ネットワークTN1および地上波ネットワークTN2は、異なる無線通信事業者(i.e., PLMNが異なるMNO)により運営されてもよいし、同じ無線通信事業者により運営されてもよい。地上波ネットワークTN1と地上波ネットワークTN2とを1つの地上波ネットワークとみなすことも可能である。
 地上波ネットワークTN1と地上波ネットワークTN2はそれぞれコアネットワークに接続される。図3の例では、地上波ネットワークTN2を構成する基地局30は、管理装置10等により構成されるコアネットワークCNに接続される。地上波ネットワークTN2の無線アクセス方式がLTEなのであれば、コアネットワークCNはEPCである。また、地上波ネットワークTN2の無線アクセス方式がNRなのであれば、コアネットワークCNは5GCである。勿論、コアネットワークCNは、EPCや5GCに限られず、他の無線アクセス方式のコアネットワークであってもよい。なお、図3の例では、地上波ネットワークTN1はコアネットワークに接続されていないが、地上波ネットワークTN1はコアネットワークCNに接続されてもよい。また、地上波ネットワークTN1は、コアネットワークCNとは異なる不図示のコアネットワークに接続されてもよい。
 コアネットワークCNはゲートウェイ装置や関門交換機等を備え、ゲートウェイ装置を介して公衆ネットワークPNに接続されている。公衆ネットワークPNは、例えば、インターネット、地域IP網、電話網(携帯電話網、固定電話網等)、等の公衆データネットワークである。ゲートウェイ装置は、例えば、インターネットや地域IP網等に繋がるサーバ装置である。関門交換機は、例えば、電話会社の電話網に繋がる交換機である。管理装置10がゲートウェイ装置や関門交換機としての機能を有していてもよい。
 図3に示す基地局20および基地局40は、何れも、衛星局や航空機局等の非地上局装置である。非地上波ネットワークを構成する衛星局群(又は単一の衛星局)はスペースボーンプラットフォーム(Spaceborne Platform)と称される。また、非地上波ネットワークを構成する航空機局群(又は単一の航空機局)はエアボーンプラットフォーム(Airborne Platform)と称される。図3の例では、基地局20、基地局40、および基地局40がスペースボーンプラットフォームSBP1を構成し、基地局20がスペースボーンプラットフォームSBP2を構成する。また、基地局20がエアボーンプラットフォームABP1を構成する。
 端末装置50は、基地局30と基地局20の双方と通信可能である。図3の例では、端末装置50は、地上波ネットワークTN1を構成する基地局30と通信可能である。また、端末装置50は、スペースボーンプラットフォームSBP1、SBP2を構成する基地局20と通信可能である。また、端末装置50は、エアボーンプラットフォームABP1を構成する基地局20とも通信可能である。なお、端末装置50は、他の端末装置50(図3の例では端末装置50)と直接通信可能であってもよい。
 基地局20は、中継局60を介して地上波ネットワーク又はコアネットワークと接続する。スペースボーンプラットフォームSBP1、SBP2を構成する基地局20は、中継局60を介して地上波ネットワークTN1に接続する。また、スペースボーンプラットフォームSBP1、SBP2、およびエアボーンプラットフォームABP1を構成する基地局20は、中継局60を介してコアネットワークCNに接続する。なお、基地局20は中継局60を介さずに基地局20同士で直接通信することも可能である。
 中継局60は、例えば、航空局や地球局である。航空局は、航空機局と通信を行うために、地上又は地上を移動する移動体に設置された無線局である。また、地球局は、衛星局(宇宙局)と通信するために、地球(空中を含む。)に位置する無線局である。地球局は、大型地球局であってもよいし、VSAT(Very Small Aperture Terminal)等の小型地球局であってもよい。なお、地球局は、VSAT制御地球局(親局、HUB局ともいう。)であってもよいし、VSAT地球局(子局ともいう。)であってもよい。また、地球局は、地上を移動する移動体に設置される無線局であってもよい。例えば、船舶に搭載される地球局として、船上地球局(ESV:Earth Stations on board Vessels)が挙げられる。また、地球局には、航空機(ヘリコプターを含む。)に設置され、衛星局と通信する航空機地球局が含まれていてもよい。また、地球局には、地上を移動する移動体に設置され、衛星局を介して航空機地球局と通信する航空地球局が含まれていてもよい。なお、中継局60は、衛星局や航空機局と通信する携帯移動可能な無線局であってもよい。中継局60は通信システム1の一部とみなすことが可能である。
 スペースボーンプラットフォームSBP1、SBP2を構成する各装置は、端末装置50と衛星通信を行う。衛星通信とは、衛星局と端末装置50との無線通信のことである。図4は、通信システム1が提供する衛星通信の概要を示す図である。衛星局は、主に、静止衛星局と低軌道衛星局とに分けられる。
 静止衛星局は、高度およそ35786kmに位置し、地球の自転速度と同じ速度で地球を公転する。図4の例であれば、スペースボーンプラットフォームSBP2を構成する基地局20が静止衛星局である。静止衛星局は地上の端末装置50との相対速度がほぼ0であり、地上の端末装置50からは静止しているかのように観測される。基地局20は、地球上に位置する端末装置50、50、50等と衛星通信を行う。
 低軌道衛星局は、静止衛星局や中軌道衛星局に比べて低い高度で周回する衛星局である。低軌道衛星局は、例えば、高度500kmから2000kmの間に位置する衛星局である。図4の例であれば、スペースボーンプラットフォームSBP1を構成する基地局20、20が低軌道衛星局である。なお、図4には、スペースボーンプラットフォームSBP1を構成する衛星局として基地局20と基地局20の2つしか示されていない。しかしながら、実際には、スペースボーンプラットフォームSBP1を構成する衛星局は、2以上(例えば、数十から数千)の基地局20によって低軌道衛星コンステレーションが形成されている。低軌道衛星局は、静止衛星局とは異なり、地上の端末装置50との相対速度があり、地上の端末装置50からは移動しているかのように観測される。基地局20、20はそれぞれセルを構成し、地球上に位置する端末装置50、50、50等と衛星通信を行う。
 図5は、衛星局が構成するセルの一例を示す図である。図5には、低軌道衛星局である基地局20が形成するセルC2が示されている。低軌道を周回する衛星局は、地上に所定の指向性を持って地上の端末装置50と通信を行う。例えば、図5に示す角度R1は40°である。図5の場合、基地局20が形成するセルC2の半径D1は、例えば、1000kmである。低軌道衛星局は、一定の速度をもって移動する。低軌道衛星局が地上の端末装置50に衛星通信を提供することが困難になった場合には、後続の低軌道衛星局が衛星通信を提供する。図5の例の場合、基地局20が地上の端末装置50に衛星通信を提供することが困難になった場合は、後続の基地局20が衛星通信を提供する。なお、上記した角度R1および半径D1の値はあくまで一例であり上記に限られない。
 上述したように、端末装置50は非地上波ネットワークを使った無線通信が可能である。また、通信システム1の基地局20および基地局40は、非地上波ネットワークを構成する。これにより、通信システム1は、地上波ネットワークがカバーできないエリアに位置する端末装置50へサービスを拡張することが可能になる。例えば、通信システム1は、IoT(Internet of Things)デバイスやMTC(Machine Type Communications)デバイス等の端末装置50に対し、パブリックセーフティ通信やクリティカル通信を提供することが可能になる。また、非地上波ネットワークを使用することによりサービス信頼性や復帰性が向上するので、通信システム1は、物理攻撃又は自然災害に対するサービスの脆弱性を低減することが可能になる。また、通信システム1は、飛行機の乗客やドローンなど航空機端末装置へのサービス接続や船や電車などの移動体端末装置へのサービス接続を実現できる。その他、通信システム1は、A/Vコンテンツ、グループ通信、IoTブロードキャストサービス、ソフトウェアダウンロードサービス、緊急メッセージなどの高効率マルチキャストサービス、高効率ブロードキャストサービス等の提供を実現できる。さらに、通信システム1は、地上波ネットワークと非地上波ネットワーク間のトラフィックオフロードも実現できる。これらの実現のため、通信システム1が提供する非地上波ネットワークは、通信システム1が提供する地上波ネットワークと、上位層で運用統合がなされることが望ましいがこれには限られない。また、通信システム1が提供する非地上波ネットワークは、通信システム1が提供する地上波ネットワークと、無線アクセス方式が共通であることが望ましいがこれには限られない。
 次に、本実施形態に係る通信システム1を構成する各装置の構成を具体的に説明する。
<2-2.管理装置の構成>
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10は基地局20、および基地局30の通信を管理する装置である。コアネットワークがEPCなのであれば、管理装置10は、例えば、MME(Mobility Management Entity)としての機能を有する装置である。また、コアネットワークが5GCなのであれば、管理装置10は、例えば、AMF(Access and Mobility Management Function)としての機能を有する装置である。なお、管理装置10はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、管理装置10は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有していてもよい。また、コアネットワークが5GCなのであれば、管理装置10は、UPF(User Plane Function)としての機能を有していてもよい。なお、管理装置10は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMAやcdma2000のコアネットワークなのであれば、管理装置10はRNC(Radio Network Controller)として機能する装置であってもよい。
 図6は、本開示の実施形態に係る管理装置10の構成例を示す図である。管理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置10の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、管理装置10は、複数のサーバ装置により構成されていてもよい。
 通信部11は、他の装置と通信するための通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、管理装置10の通信手段として機能する。通信部11は、制御部13の制御に従って基地局30や中継局60と通信する。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、管理装置10の記憶手段として機能する。記憶部12は、例えば、端末装置50の接続状態を記憶する。例えば、記憶部12は、端末装置50のRRC(Radio Resource Control)の状態やECM(EPS Connection Management)の状態を記憶する。記憶部12は、端末装置50の位置情報を記憶するホームメモリとして機能してもよい。
 制御部13は、管理装置10の各部を制御するコントローラ(controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、管理装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。
<2-3.基地局の構成>
 次に、基地局の構成を説明する。通信システム1は、基地局として、基地局20と、基地局30と、基地局40と、を備える。基地局20~40は何れも移動可能であってもよい。以下、基地局の構成として基地局20の構成を説明する。なお、基地局30、基地局40の構成は、以下に示す基地局20の構成と同じであってもよい。
 図7は、本開示の実施形態に係る基地局20の構成例を示す図である。基地局20は、無線通信部21と、記憶部22と、制御部23と、を備える。なお、図7に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部21は、他の無線端末装置(例えば、端末装置50や中継局60)と無線通信する無線通信インタフェースである。無線通信部21は1又は複数の無線アクセス方式に対応する。例えば、無線通信部21は、NRおよびLTEの双方に対応する。無線通信部21は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。無線通信部21は、受信処理部211、送信処理部212、アンテナ213を備える。無線通信部21は、受信処理部211、送信処理部212、およびアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部211および送信処理部212は、LTEとNRとで個別に構成されてもよい。
 受信処理部211は、アンテナ213を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dと、を備える。
 無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネルおよび上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAM等であってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータおよび上りリンク制御情報は制御部23へ出力される。
 送信処理部212は、下りリンク制御情報および下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dと、を備える。
 符号化部212aは、制御部23から入力された下りリンク制御情報および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ213から送信される。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局20の記憶手段として機能する。記憶部22は、切替情報を記憶する。切替情報は、端末装置50が基地局の切り替えに使用する情報である。切替情報には、例えば、リソース情報、トリガ情報、タイミングアドバンス情報等の情報が含まれる。
 リソース情報は、接続中の端末装置50が、移動可能に構成された切替先候補の基地局と無線通信するために用いる無線リソースに関する情報である。また、トリガ情報は、端末装置50が接続先の基地局を切り替えるか否かを判定するために用いる情報である。また、タイミングアドバンス情報は、端末装置50が切替先候補の基地局へ接続するためのタイミングアドバンスに関する情報である。リソース情報、トリガ情報、およびタイミングアドバンス情報については後に詳述する。
 制御部23は、基地局20の各部を制御するコントローラ(controller)である。制御部23は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部23は、基地局20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部23は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。
 なお、基地局20は、図8及び図9に示すように構成することも可能である。図8は、図1に示す基地局20Sの構成例であり、図9は、図1に示す基地局20Tの構成例である。基地局20Sも基地局20Tも基地局20の一例である。
 図8に示す基地局20Sは、無線通信部21Sと、記憶部22Sと、制御部23Sと、を有する。
 無線通信部21Sは、端末装置50が図1に示すセルC1に属する場合に、端末装置50から繰り返し送信される同一のデータが含まれる信号を受信し、受信した信号に所定の無線受信処理を施し、無線受信処理後のシンボルを制御部23Sへ出力する。制御部23Sは、無線受信処理後のシンボルを同一データ間で合成し、合成後のシンボルを復調及び復号することにより受信データを得る。
 また、制御部23Sは、継続情報を生成し、生成した継続情報を符号化及び変調し、変調後のシンボルを無線通信部21Sへ出力する。無線通信部21Sは、変調後のシンボルに所定の無線送信処理を施し、無線送信処理後の信号を端末装置50へ送信する。
 図9に示す基地局20Tは、無線通信部21Tと、記憶部22Tと、制御部23Tと、とを有する。
 無線通信部21Tは、端末装置50が図1に示すセルC2に属する場合に、端末装置50から繰り返し送信される同一のデータが含まれる信号を受信し、受信した信号に所定の無線受信処理を施し、無線受信処理後のシンボルを制御部23Tへ出力する。制御部23Tは、無線受信処理後のシンボルを同一データ間で合成し、合成後のシンボルを復調及び復号することにより受信データを得る。
 また、制御部23Tは、継続情報を生成し、生成した継続情報を符号化及び変調し、変調後のシンボルを無線通信部21Tへ出力する。無線通信部21Tは、変調後のシンボルに所定の無線送信処理を施し、無線送信処理後の信号を端末装置50へ送信する。
<2-4.端末装置の構成>
 次に、端末装置50の構成を説明する。図10は、本開示の実施形態に係る端末装置50の構成例を示す図である。端末装置50は、無線通信部51と、記憶部52と、ネットワーク通信部53と、入出力部54と、制御部55と、を備える。なお、図10に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置50の機能は、複数の物理的に分離された構成に分散して実装されてもよい。また、図10に示した構成は例示であり、無線通信部51と、記憶部52と、ネットワーク通信部53と、入出力部54と、制御部55とは全てが必須の構成要素ではない。例えば、本開示の実施形態の観点から、少なくともネットワーク通信部53と、入出力部54は必須野構成要素ではなくてもよい。
 無線通信部51は、他の無線通信装置(例えば、基地局20、30、40)と無線通信する無線通信インタフェースである。無線通信部51は1又は複数の無線アクセス方式に対応する。例えば、無線通信部51は、NRおよびLTEの双方に対応する。無線通信部51は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。無線通信部51は、受信処理部511、送信処理部512、アンテナ513を備える。無線通信部51は、受信処理部511、送信処理部512、およびアンテナ513をそれぞれ複数備えていてもよい。なお、無線通信部51が複数の無線アクセス方式に対応する場合、無線通信部51の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部511および送信処理部512は、LTEとNRとで個別に構成されてもよい。
 無線通信部51は、ハンドオーバ前の繰り返し送信とハンドオーバ後の繰り返し送信との継続(つまり、ハンドオーバ前後における繰り返し送信の継続)に関する情報(以下では「継続情報」と呼ぶことがある)が含まれる信号を基地局20から受信する。無線通信部51は、受信した信号に所定の無線受信処理を施し、無線受信処理後のシンボルを制御部55へ出力する。制御部55は、無線受信処理後のシンボルを復調及び復号することにより継続情報を取得してもよい。
 受信処理部511は、アンテナ513を介して受信された下りリンク信号の処理を行う。受信処理部511は、無線受信部511aと、多重分離部511bと、復調部511cと、復号部511dと、を備える。
 無線受信部511aは、下りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部511bは、無線受信部511aから出力された信号から、下りリンクチャネル、下りリンク同期信号、および下りリンク参照信号を分離する。下りリンクチャネルは、例えば、PBCH(Physical Broadcast Channel)、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)等のチャネルである。復調部211cは、下りリンクチャネルの変調シンボルに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の変調方式を使って受信信号の復調を行う。復号部511dは、復調された下りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された下りリンクデータおよび下りリンク制御情報は制御部23へ出力される。
 送信処理部512は、上りリンク制御情報および上りリンクデータの送信処理を行う。送信処理部512は、符号化部512aと、変調部512bと、多重部512cと、無線送信部512dと、を備える。
 符号化部512aは、制御部55から入力された上りリンク制御情報および上りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部512bは、符号化部512aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部512cは、各チャネルの変調シンボルと上りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部512dは、多重部512cからの信号に対して、各種信号処理を行う。例えば、無線送信部512dは、逆高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部512で生成された信号は、アンテナ513から送信される。
 記憶部52は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部52は、端末装置50の記憶手段として機能する。記憶部52は、切替情報を記憶する。切替情報は、基地局20、30、又は40から取得する情報であり、端末装置50が基地局の切り替えに使用する。切替情報には、例えば、リソース情報、トリガ情報、タイミングアドバンス情報等の情報が含まれる。リソース情報、トリガ情報、およびタイミングアドバンス情報については後に詳述する。
 ネットワーク通信部53は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部53は、NIC等のLANインタフェースである。ネットワーク通信部53は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部53は、端末装置50のネットワーク通信手段として機能する。ネットワーク通信部53は、制御部55の制御に従って、他の装置と通信する。
 入出力部54は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部54は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部54は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部54は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部54は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部54は、端末装置50の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
 制御部55は、端末装置50の各部を制御するコントローラである。制御部55は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部55は、端末装置50内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部55は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。
 なお、制御部55は、基地局20へ送信するデータ(以下では「送信データ」と呼ぶことがある。)が発生すると、送信データを繰り返し送信するために、送信データを記憶部52に一時的に記憶させてもよい。制御部55は、記憶部52から同一の送信データを繰り返し読み出し、読み出した送信データを符号化及び変調し、変調後のシンボルを無線通信部51へ出力してもよい。無線通信部51は、変調後のシンボルに所定の無線送信処理を施し、無線送信処理後の信号を基地局20へ送信してもよい。
 <3.通信システムにおける処理>
 以下、通信システムにおける処理の一例として、処理例1~8について説明する。以下では、基地局20Sがハンドオーバ元の無線通信基地局であり、基地局20Tがハンドオーバ先の無線通信基地局である場合を一例に挙げて説明する。
 <処理例1>
 処理例1では、ハンドオーバ元の基地局20Sの制御部23Sが、基地局20Tを含むハンドオーバ先の候補の基地局(以下では「候補基地局」と呼ぶことがある)に関する情報(以下では「候補情報」と呼ぶことがある)を動的または準静的にハンドオーバ前に端末装置50へ通知する。動的な通知にはDCIによる通知が含まれ、準静的な通知には、System informationやRRC signalingによる通知が含まれる。端末装置50の制御部55は、通知された候補情報に基づいて繰り返し送信を行う。複数の衛星基地局は予め定められた軌道上を一定の間隔を保って移動するため、候補情報を受信した端末装置50は、端末装置50が今後接続をする可能性のある衛星基地局を推測することが可能となる。
 なお、候補基地局が複数存在する場合は、制御部23Sは、複数の候補基地局に関する情報を候補情報として端末装置50へ通知しても良い。
 また、制御部23Sは、候補基地局が複数存在する場合は、接続順に関する情報を候補情報に含めても良い。
 また、制御部23Sは、候補基地局と、上りリンクにおける送信タイミングとの対応付けに関する情報を候補情報に含めても良い。例えば、制御部23Sは、端末装置50が5秒後にデータを送信する場合は、候補基地局のうち衛星基地局Aに端末装置50が接続され、端末装置50が10秒後にデータを送信する場合は、候補基地局のうち衛星基地局Bに端末装置50が接続されるという情報を候補情報に含めても良い。
 また、候補情報には、例えば、以下の情報1~13の少なくとも一つが含まれても良い。
 情報1:候補基地局のPRACH送信リソース
 情報2:候補基地局のPRACH送信Preambleシーケンス
 情報3:候補基地局のセルID
 情報4:候補基地局の上りリンク及び下りリンクのキャリア周波数
 情報5:候補基地局の帯域幅
 情報6:ハンドオーバ後の端末装置50の端末識別ID(C-RNTI)
 情報7:ハンドオーバ後のRadio Resource Configuration
 情報8:ハンドオーバに関する情報セットを更新する条件
 情報9:ハンドオーバを実施するためのトリガ情報
 情報10:候補基地局のタイミングアドバンス情報
 情報11:候補基地局のSSB index
 情報12:送信重みに関する情報
 情報13:Random access procedureのスキップに関する情報
 <処理例2>
 処理例2では、ハンドオーバ先の基地局20Tの制御部23Tが、ハンドオーバ前に基地局20Sへ送信していたデータと同一のデータをハンドオーバ後に基地局20Tへ送信するように端末装置50に要求する情報(以下では「同一データ要求情報」と呼ぶことがある)を継続情報としてハンドオーバ後に端末装置50へ通知する。端末装置50の制御部55は、ハンドオーバ後に通知された同一データ要求情報に基づいて、ハンドオーバ前に基地局20Sへ送信していたデータと同一のデータを、ハンドオーバ後に基地局20Tへ送信して繰り返し送信を継続する。
 制御部23Tは、RRC signalingやSystem information等で準静的に同一データ要求情報を端末装置50へ通知しても良い。また、制御部23Tは、端末装置50がハンドオーバ前に送信していたデータと同一のデータをハンドオーバ後に送信するか否かについての情報を準静的に端末装置50へ通知しても良い。
 また、制御部23Tは、同一データ要求情報として、HARQ process numberを端末装置50へ通知しても良い。HARQ process numberを通知された制御部55は、通知されたHARQ process numberでのみ、ハンドオーバ前に送信していたデータと同一のデータをハンドオーバ後に送信する。HARQ process number は、HARQ process IDまたはHARQ IDと呼ばれることもある。
 なお、制御部23Tは、ハンドオーバ前のHARQ process numberまたはハンドオーバ後のHARQ process numberの何れか一方だけを通知しても良いし、ハンドオーバ前のHARQ process number及びハンドオーバ後のHARQ process numberの双方を通知しても良い。制御部23Tは、ハンドオーバ前のHARQ process numberを、ハンドオーバ前に基地局20Sから受信する。
 また、制御部23Tは、DCIで同一データ要求情報を通知しても良い。制御部23TがDCIで同一データ要求情報を通知する場合、新たな通知用フィールドがDCIに設けられても良い。例えば、制御部23Tは、1ビットの通知用フィールドを使用して、ハンドオーバ前に端末装置50が送信していたデータと同一のデータをハンドオーバ後に端末装置50が送信するか否かを端末装置50へ通知する。例えば、通知用フィールドで“1”が通知された場合は、端末装置50は、ハンドオーバ前と同一のデータをハンドオーバ後に送信するように要求され、通知用フィールドで“0”が通知された場合は、端末装置50は、ハンドオーバ前と異なる新たなデータをハンドオーバ後に送信するように要求される。ハンドオーバ前と同一のデータをハンドオーバ後に送信するように要求された端末装置50の制御部55は、例えば、制御部23Tから別のフィールドで通知されたHARQ process numberを参照し、通知をされたHARQ process numberを用いて、ハンドオーバ前のHARQ process numberのデータと同一のデータをハンドオーバ後に送信する。
 また例えば、制御部23Tは、複数ビットを使用して、ハンドオーバ前のどのHARQ process number を継続するか通知しても良い。例えば、制御部55は、HARQ process number として“0001”が通知された場合、ハンドオーバ前のHARQ process number “0001”を継続して用いて繰り返し送信を継続する。
 また、ハンドオーバ後に用いられるHARQ process number は、ハンドオーバ前に用いられていたHARQ process numberと異なっていても良い。例えば、ハンドオーバ前に用いられていたHARQ process numberが“0001”の場合に、ハンドオーバ後には、“0010”のHARQ process numberで繰り返し送信が継続されても良い。
 また、DCIの複数ビットのうち1ビットが、ハンドオーバ前の送信データと同一のデータの送信を継続するか否かのフラグとして使用されても良い。
 また、制御部23Tは、NDI(New data indicator ) で同一データ要求情報を通知しても良い。例えば、制御部55は、ハンドオーバ後に同一データの送信を継続すると通知され、ハンドオーバ前後のHARQ process numberが同一で、かつ、NDIが再送を表している場合は、ハンドオーバ前に繰り返し送信していたデータと同一のデータでハンドオーバ後の繰り返し送信を継続する。
 また、制御部55は、ハンドオーバ前に繰り返し送信に用いていたHARQ process numberと、ハンドオーバ後に制御部23Tから通知されたHARQ process numberとが同一の場合に、ハンドオーバ前と同一のデータをハンドオーバ後に繰り返し送信しても良い。DCIでは、HARQ process numberの領域で、どのHARQ processのデータが送信されているかが通知される。また例えば、制御部55は、RRC signaling等でハンドオーバ前に送信していたデータと同一のデータをハンドオーバ後に継続して送信することが通知され、かつ、通知されたHARQ process numberでハンドオーバ前に送信していたデータの送信が完了していない場合、ハンドオーバ後に同一のデータの繰り返し送信を継続する。
 <処理例3>
 処理例3では、ハンドオーバ元の基地局20Sの制御部23Sが、同一データ要求情報を継続情報としてハンドオーバ前に端末装置50へ通知する。端末装置50の制御部55は、ハンドオーバ前に通知された同一データ要求情報に基づいて、ハンドオーバ前に基地局20Sへ送信していたデータと同一のデータを、ハンドオーバ後に基地局20Tへ送信して繰り返し送信を継続する。このように、ハンドオーバ前に事前に端末装置50へ同一データ要求情報が通知されることにより、制御部55は、ハンドオーバが発生しても、記憶部52に一時的に記憶された送信データを記憶部52から消去しない。このため、制御部55は、ハンドオーバ前の同一のデータをハンドオーバ後に繰り返し送信するにあたり、同一のデータを改めて生成することなく、繰り返し送信を継続することができる。よって、端末装置50の処理負荷を軽減することができる。
 制御部23Sは、RRC signalingやSystem information等で準静的に同一データ要求情報を端末装置50へ通知しても良い。また、制御部23Sは、端末装置50が基地局20Sに対して送信中のデータの送信が完了しておらず、かつ、ハンドオーバが発生する場合に、端末装置50がハンドオーバ前に送信していたデータと同一のデータをハンドオーバ後に送信するか否かについての情報を準静的に端末装置50へ通知しても良い。
 また、制御部23Sは、同一データ要求情報として、HARQ process numberを端末装置50へ通知しても良い。HARQ process numberを通知された制御部55は、基地局20Sに対して送信中のデータの送信が完了しておらず、かつ、ハンドオーバが発生する場合に、通知されたHARQ process numberでのみ、ハンドオーバ前に送信していたデータと同一のデータをハンドオーバ後に送信する。
 また、制御部23Sは、DCIで同一データ要求情報を通知しても良い。制御部23SがDCIで同一データ要求情報を通知する場合、新たな通知用フィールドがDCIに設けられても良い。例えば、制御部23Sは、端末装置50が基地局20Sに対して送信中のデータの送信が完了しておらず、かつ、ハンドオーバが発生する場合に、1ビットの通知用フィールドを使用して、ハンドオーバ前に端末装置50が送信していたデータと同一のデータをハンドオーバ後に端末装置50が送信するか否かを端末装置50へ通知する。例えば、通知用フィールドで“1”が通知された場合は、端末装置50は、ハンドオーバ前と同一のデータをハンドオーバ後に送信するように要求され、通知用フィールドで“0”が通知された場合は、端末装置50は、ハンドオーバ前と異なる新たなデータをハンドオーバ後に送信するように要求される。ハンドオーバ前と同一のデータをハンドオーバ後に送信するように要求された端末装置50の制御部55は、例えば、制御部23Sから別のフィールドで通知されたHARQ process numberを参照し、通知をされたHARQ process numberを用いて、ハンドオーバ前のHARQ process numberのデータと同一のデータをハンドオーバ後に送信する。
 また、制御部23Sは、MAC CE(Control element)で同一データ要求情報を通知しても良い。
 <処理例4>
 処理例4では、端末装置50の制御部55が、繰り返し送信のデータをConfigured grantに基づいて送信する。制御部55は、Configured grantでの繰り返し送信の最中にハンドオーバが発生した場合は、ハンドオーバ後も、ハンドオーバ前と同一のデータの送信を繰り返す。また、制御部55は、ハンドオーバ前の繰り返し送信の既送信回数をハンドオーバ後に引き継ぐ。
 また、基地局20Sの制御部23Sは、ハンドオーバ後のConfigured grant configurationをハンドオーバ前に事前に端末装置50へ通知する。このように、ハンドオーバ後のConfigured grant configurationをハンドオーバ前に制御部23Sから端末装置50へ事前に通知しておくことで、ハンドオーバ後に制御部23TからのConfigured grant configurationの端末装置50への通知が不要となるため、端末装置50は、ハンドオーバ後にすぐにデータ送信を継続することが可能となる。ハンドオーバ前に端末装置50へ通知されるConfigured grant configurationには、ハンドオーバ先のセルであるセルC2のセルID情報、及び、セルC2のSynchronization Signal Block(SSB)index情報が含まれる。
 <処理例5>
 端末装置50と基地局20との間の距離は、基地局20の移動に伴って変化することなく、ほぼ一定であるか、または、予測可能であるため、上りリンクの同期をとるために行われるRandom access procedureはハンドオーバ後には省略(スキップ)可能である。そこで、処理例5では、端末装置50の制御部55は、ハンドオーバ元の基地局20SとはRandom access procedureを行う一方で、ハンドオーバ先の基地局20TとはRandom access procedureを行わない。つまり、制御部55は、ハンドオーバ後は、Random access procedureを行うことなく、基地局20Tへのデータ送信を開始する。また、制御部55は、Random access procedureを行うことなく基地局20Tへのデータ送信を開始する場合、Timing advanceについては、ハンドオーバ前に基地局20Sとの通信に使用していた値をハンドオーバ後にも継続して使用するか、または、事前に通知された情報に基づいて取得される値を使用すると良い。また、制御部55は、ハンドオーバ前の送信電力値をハンドオーバ後に引き継いでハンドオーバ後の送信電力制御を行う。
 <処理例6>
 ハンドオーバ元の基地局20Sの制御部23Sは、例えば、候補基地局の登録の要求(以下では「候補登録要求」と呼ぶことがある)、ハンドオーバ実行の要求(以下では「ハンドオーバ要求」と呼ぶことがある)、ハンドオーバ前の合成済データ等を、ハンドオーバ前に事前にハンドオーバ先の基地局20Tへ送信する。また、制御部23Sは、ハンドオーバ後に端末装置50がハンドオーバ前と同一のデータを継続して基地局20Tへ送信することができるように、HARQ process number、ハンドオーバ前での同一データの既送信回数、C-RNTI等の端末識別ID、Scrambling シーケンスの生成で必要となる設定値(例えば、data Scrambling Identity PUSCH や data Scrambling Identity PDSCH等)、Physical layer cell identity等を、ハンドオーバ前に事前にハンドオーバ先の基地局20Tへ通知しても良い。
 一方で、ハンドオーバ先の基地局20Tの制御部23Tは、例えば、候補登録要求に対するACKまたはNACK、ハンドオーバ要求に対するACKまたはNACKを基地局20Sへ送信する。
 <処理例7>
 処理例7では、繰り返し送信における同一データの送信回数が、端末装置50のアンテナゲイン、基地局20のアンテナゲイン、端末装置50と基地局20との間の距離、端末装置50の周辺の干渉量、基地局20の周辺の干渉量等に基づいて、端末装置50または基地局20によって決定される。例えば、制御部23T,23Sは、端末装置50から通知された端末装置50のCapability情報や、端末装置50の位置情報等に基づいて、繰り返し送信における同一データの送信回数を決定し、決定した送信回数を端末装置50へ通知しても良い。また、制御部23Tは、ハンドオーバ後に継続された繰り返し送信において合成済データの復号に成功した時点で制御部55に繰り返し送信を中止させても良い。制御部23Tは、端末装置50へACKを送信したり、次の送信データのGrantを送信することにより、合成済データの復号に成功したことを端末装置50へ通知すると良い。
 <処理例8>
 端末装置50でのデータ送信、及び、基地局20でのデータ受信では、端末装置50に与えられる端末識別ID(例えば、C-RNTI等)を使用してスクランブルやデスクランブルの処理が行われる。ハンドオーバ前とハンドオーバ後との間において、端末装置50に与えられる端末識別IDが異なると、ハンドオーバ前の合成済データに、ハンドオーバ後のデータを合成することが困難になる。そこで、処理例8では、基地局20Sの制御部23Sは、ハンドオーバ前の繰り返し送信において端末装置50に与えられていた端末識別IDを基地局20Tへ通知する。そして、基地局20Tの制御部23Tは、基地局20Sから通知された端末識別ID、つまり、ハンドオーバ前に使用されていた端末識別IDと同一の端末識別IDを用いて、ハンドオーバ後の繰り返し送信におけるデータ合成を行う。一方で、端末装置50の制御部55は、ハンドオーバ前とハンドオーバ後との双方で同一の端末識別IDを用いて、繰り返し送信のデータをスクランブルする。また、制御部55は、繰り返し送信でハンドオーバ前に送信していたデータの送信がハンドオーバ後に完了した場合、新たなデータの送信には、ハンドオーバ後に与えられる新たな端末識別IDを使用する。
 なお、端末装置50でのデータ送信、及び、基地局20でのデータ受信には、端末識別IDの他に、data Scrambling Identity PUSCHやdata Scrambling Identity PDSCH等の設定値、及び/または、Physical layer cell identity等のパラメータが使用されることもある。よって、端末識別IDの上記のような使用方法と同様にして、これらのパラメータが使用されても良い。また、端末識別IDやこれらのパラメータ以外にも、データの送受信に必要となるパラメータを、端末識別IDの上記のような使用方法と同様にして使用しても良い。また、データの送受信に必要となる処理は、スクランブルやデスクランブルに限定されない。
 例えば、同一軌道上の複数の衛星基地局を複数のグループに分け、同一のグループ内では同一の専用の端末識別IDを使用することで、ハンドオーバ時の端末装置50及び基地局20の処理負荷を軽減することができる。
 以上、処理例1~8について説明した。
 <4.通信システムにおける処理手順>
 図11及び図12は、本開示の実施形態に係る通信システムにおける処理手順の一例を示す図である。以下、通信システムにおける処理手順の一例として、手順例1及び手順例2について説明する。
 <手順例1(図11)>
 図11において、ステップS101では、基地局20Sの制御部23Sが、端末装置50との下りリンクの同期を確立した後、セルC1のセルIDを端末装置50へ送信し、端末装置50の制御部55が、セルC1のセルIDを受信する。
 次いで、ステップS103では、制御部23Sと制御部55との間でRandom access procedureが行われる。
 次いで、ステップS105では、制御部23Sが、候補登録要求を基地局20Tへ送信し、基地局20Tの制御部23Tが、候補登録要求を受信する。
 次いで、ステップS107では、制御部23Tが、ステップS105で受信した候補登録要求に対するACKを基地局20Sへ送信し、制御部23SがACKを受信する。
 次いで、ステップS109では、ステップS107でACKを受信した制御部23Sが、候補情報を端末装置50へ送信し、制御部55が候補情報を受信する。
 次いで、ステップS111では、制御部55において送信データAが発生したものとする。そこで、ステップS113では、制御部55は、スケジューリング要求を基地局20Sへ送信し、制御部23Sがスケジューリング要求を受信する。
 次いで、ステップS115では、ステップS113でスケジューリング要求を受信した制御部23Sが、Uplink Grantを端末装置50へ送信し、制御部55がUplink Grantを受信する。
 次いで、ステップS117~S121では、制御部55が、ステップS115で受信したUplink Grantに基づいて、基地局20Sに対して同一のデータAを繰り返し送信し、制御部23Sが、データAを繰り返し受信する。ここでは、制御部55が行う繰り返し送信における最大送信回数がM回に予め定められており、制御部55がステップS117~S121においてM回中の1回目~N回目の送信を完了したときに、制御部23Sでは、N個のデータAが合成されている。
 次いで、ステップS123では、制御部23Sがハンドオーバが必要と判定したものとする。
 次いで、ステップS125では、ステップS123でハンドオーバが必要と判定した制御部23Sが、ハンドオーバ要求を基地局20Tへ送信し、制御部23Tがハンドオーバ要求を受信する。
 次いで、ステップS127では、ステップS125でハンドオーバ要求を受信した制御部23Tが、ハンドオーバ要求に対するACKを基地局20Sへ送信し、制御部23SがACKを受信する。
 次いで、ステップS129では、ステップS127でACKを受信した制御部23Sが、N個のデータAが合成されている合成済データを基地局20Tへ送信し、制御部23Tが合成済データを受信する。
 次いで、ステップS131では、ステップS129で合成済データを受信した制御部23Tが、合成済データに対するACKを基地局20Sへ送信し、制御部23SがACKを受信する。
 次いで、ステップS133では、ステップS131でACKを受信した制御部23Sが、基地局20Tへのハンドオーバ指示と継続情報とを端末装置50へ送信し、制御部55がハンドオーバ指示及び継続情報を受信する。制御部55は、ステップS133で受信したハンドオーバ指示に従って、端末装置50の接続先を基地局20Sから基地局20Tへ切り替える。
 次いで、ステップS135では、基地局20Tの制御部23Tが、端末装置50との下りリンクの同期を確立した後、セルC2のセルIDを端末装置50へ送信し、制御部55が、セルC2のセルIDを受信する。
 次いで、ステップS137では、制御部55は、スケジューリング要求を基地局20Tへ送信し、制御部23Tがスケジューリング要求を受信する。
 ここで、ステップS135とステップS137との間において、制御部23Tと制御部55との間でのRandom access procedureは行われない。つまり、制御部55は、ハンドオーバ元の基地局20SとはRandom access procedureを実行する一方で(ステップS103)、ハンドオーバ先の基地局20TとはRandom access procedureを実行しない。
 次いで、ステップS139では、ステップS137でスケジューリング要求を受信した制御部23Tが、Uplink Grantを端末装置50へ送信し、制御部55がUplink Grantを受信する。
 次いで、ステップS141~S145では、制御部55が、ステップS133で受信した継続情報、及び、ステップS139で受信したUplink Grantに基づいて、基地局20Tに対して同一のデータAを繰り返し送信し、制御部23Tが、データAを繰り返し受信する。制御部55は、ステップS117~S121においてM回中のN回目までデータAの送信が完了しているため、ステップS141~S145では、N+1回目~M回目のデータAを基地局20Tへ送信する。よって、制御部55がステップS141~S145においてM回中のN+1回目~M回目の送信を完了したときに、制御部23Tでは、M個のデータAが合成される。
 <手順例2(図12)>
 以下では、手順例1と相違する処理について説明し、手順例1と同一の処理についての説明は省略する。
 図12では、図11に比べ、ステップS201の処理が追加されている一方で、ステップS113、S115、S137、S139の処理が削除されている。
 ステップS201では、制御部23Sが、ステップS109での候補情報の送信に続けて、基地局20SのConfigured grant configuration、及び、基地局20TのConfigured grant configurationを端末装置50へ送信する。端末装置50の制御部55は、基地局20SのConfigured grant configuration、及び、基地局20TのConfigured grant configurationを受信する。
 そして、ステップS117~S121では、制御部55が、ステップS201で受信した基地局20SのConfigured grant configurationに基づいて、基地局20Sに対して同一のデータAを繰り返し送信する。
 また、ステップS141~S145では、制御部55が、ステップS201で受信した基地局20TのConfigured grant configuration、及び、ステップS133で受信した継続情報に基づいて、基地局20Tに対して同一のデータAを繰り返し送信する。
 以上、手順例1、2について説明した。
 なお、開示の技術は、低軌道の衛星基地局だけでなく、大気圏内または大気圏外を浮遊する様々な無線通信基地局に適用可能である。例えば、大気圏内を浮遊する無線通信基地局の一例として、飛行機、ドローン、気球等が挙げられる。また例えば、大気圏外を浮遊する無線通信基地局の一例として、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星等が挙げられる。
 また、開示の技術は、空中や宇宙に浮遊する無線通信基地局だけでなく、地上に設置された無線通信基地局(以下では「地上局」と呼ぶことがある)にも適用可能である。例えば、端末装置50が高速移動する場合には、複数の地上局間において頻繁にハンドオーバが発生する可能性がある。
 また、開示の技術は、セル間のハンドオーバが行われる場合だけでなく、ビームの変更、コンポーネントキャリアの変更、Band width part(BWP)の変更等が行われる場合にも適用可能である。
 <5.変形例>
 また、基地局20Sでの上記説明における各処理の全部または一部は、各処理に対応するプログラムを制御部23Sに実行させることによって実現してもよい。例えば、上記説明における各処理に対応するプログラムが記憶部22Sに記憶され、プログラムが制御部23Sによって記憶部22Sから読み出されて実行されても良い。また、プログラムは、任意のネットワークを介して基地局20Sに接続されたプログラムサーバに記憶され、そのプログラムサーバから基地局20Sにダウンロードされて実行されたり、基地局20Sが読み取り可能な記録媒体に記憶され、その記録媒体から読み出されて実行されても良い。
 また、基地局20Tでの上記説明における各処理の全部または一部は、各処理に対応するプログラムを制御部23Tに実行させることによって実現してもよい。例えば、上記説明における各処理に対応するプログラムが記憶部22Tに記憶され、プログラムが制御部23Tによって記憶部22Tから読み出されて実行されても良い。また、プログラムは、任意のネットワークを介して基地局20Tに接続されたプログラムサーバに記憶され、そのプログラムサーバから基地局20Tにダウンロードされて実行されたり、基地局20Tが読み取り可能な記録媒体に記憶され、その記録媒体から読み出されて実行されても良い。
 端末装置50での上記説明における各処理の全部または一部は、各処理に対応するプログラムを制御部55に実行させることによって実現してもよい。例えば、上記説明における各処理に対応するプログラムが記憶部52に記憶され、プログラムが制御部55によって記憶部52から読み出されて実行されても良い。また、プログラムは、任意のネットワークを介して端末装置50に接続されたプログラムサーバに記憶され、そのプログラムサーバから端末装置50にダウンロードされて実行されたり、端末装置50が読み取り可能な記録媒体に記憶され、その記録媒体から読み出されて実行されても良い。
 端末装置50及び基地局20が読み取り可能な記録媒体には、例えば、メモリーカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、CD-ROM、DVD、及び、Blu-ray(登録商標)ディスク等の可搬の記憶媒体が含まれる。また、プログラムは、任意の言語や任意の記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。また、プログラムは必ずしも単一的に構成されるものに限られず、複数のモジュールや複数のライブラリとして分散構成されるものや、OSに代表される別個のプログラムと協働してその機能を達成するものも含む。
 その他、本実施形態の管理装置10、基地局20~40、端末装置50を制御する情報処理装置(制御装置)は、専用のコンピュータシステム、又は汎用のコンピュータシステムによって実現してもよい。
 例えば、上述の動作を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって情報処理装置を構成する。このとき、情報処理装置は、管理装置10、基地局20~40、端末装置50の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、情報処理装置は、管理装置10、基地局20~40、端末装置50の内部の装置(例えば、制御部13、23、34、44、55内部のプロセッサ)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 また、上述の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャートに示された各ステップは、適宜順序を変更することが可能である。
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 [開示の技術の効果]
 以上のように、本開示に係る端末装置(実施形態における端末装置50)は、無線通信部(実施形態における無線通信部51)と、制御部(実施形態における制御部55)とを有する。無線通信モジュールは継続情報を受信し、制御部は、受信された継続情報に基づいて、ハンドオーバ後の繰り返し送信を行う。
 こうすることで、無線通信端末は、ハンドオーバ前に繰り返し送信していたデータと同一のデータをハンドオーバ後にハンドオーバ先の無線通信基地局(実施形態における基地局20T)へ繰り返し送信することができる。このため、ハンドオーバ先の無線通信基地局は、ハンドオーバ元の基地局(実施形態における基地局20S)で合成されたデータと同一のデータを継続して合成することができる。よって、開示の技術によれば、品質の高い無線通信を実現できる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があっても良い。
 また、本技術は以下のような構成も採ることができる。
(1)
 所定のデータが繰り返し送信される繰り返し送信を行う通信装置であって、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を受信する無線通信部と、
 前記継続情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う制御部と、
 を具備する通信装置。
(2)
 前記所定のデータは、誤り訂正符号化前のデータが同一のデータである、
 前記(1)に記載の通信装置。
(3)
 前記所定のデータは、誤り訂正符号化前のデータが同一のデータであり、かつRedundancy Versionが同一の値である、
 前記(1)に記載の通信装置。
(4)
 前記所定のデータは、誤り訂正符号化前のデータが同一のデータであり、かつRedundancy Versionが異なる値である、
 前記(1)に記載の通信装置。
(5)
 前記無線通信部は、ハンドオーバ前にハンドオーバ元の基地局装置へ送信していた前記所定のデータと同一のデータをハンドオーバ後にハンドオーバ先の無線通信基地局へ送信するように要求する要求情報を前記継続情報として受信する、
 前記(1)~(4)のいずれか1項に記載の通信装置。
(6)
 前記無線通信部は、ハンドオーバ元の基地局装置から送信される前記要求情報を受信する、
 前記(5)に記載の通信装置。
(7)
 前記無線通信部は、ハンドオーバ先の基地局装置から送信される前記要求情報を受信する、
 前記(5)に記載の通信装置。
(8)
 前記無線通信部は、ハンドオーバ先の候補の基地局装置に関する候補情報をハンドオーバ元の基地局装置から受信し、
 前記制御部は、前記候補情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う、
 前記(1)~(7)のいずれか1項に記載の通信装置。
(9)
 前記無線通信部は、ハンドオーバ前にハンドオーバ元の基地局装置からハンドオーバ後のConfigured grant configurationを受信し、
 前記制御部は、前記Configured grant configurationに基づいて、ハンドオーバ後の前記繰り返し送信を行う、
 前記(1)~(8)のいずれか1項に記載の通信装置。
(10)
 前記制御部は、ハンドオーバ元の基地局装置とはRandom access procedureを行う一方で、ハンドオーバ先の無線通信基地局とはRandom access procedureを行わない、
 前記(1)~(9)のいずれか1項に記載の通信装置。
(11)
 前記制御部は、ハンドオーバ前とハンドオーバ後との双方で同一の所定のIDを用いて、前記繰り返し送信のデータをスクランブルする、
 前記(1)~(10)のいずれか1項に記載の通信装置。
(12)
 前記所定のIDは、端末識別IDである、
 前記(11)に記載の通信装置。
(13)
 前記所定のIDは、ハンドオーバ後の基地局装置から付与される端末識別IDと異なる値である、
 前記(11)に記載の通信装置。
(14)
 前記所定のIDは、ハンドオーバ前の基地局装置から付与される第1の端末識別IDと、ハンドオーバ後の基地局装置から付与される第2の端末識別IDとは別の情報である、
 前記(11)に記載の通信装置。
(15)
 同一のデータが繰り返し送信される繰り返し送信を行う端末装置と通信する基地局装置であって、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を生成するプロセッサと、
 前記継続情報を前記端末装置へ送信する無線通信モジュールと、
 を具備する基地局装置。
(16)
 同一のデータが繰り返し送信される繰り返し送信を行う通信装置におけるデータ送信方法であって、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を受信し、
 前記継続情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う、
 通信方法。
(17)
 同一のデータが繰り返し送信される繰り返し送信を行う端末装置と通信する基地局装置における通信方法であって、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を生成し、
 前記継続情報を前記端末装置へ送信する、
 通信方法。
(18)
 所定のデータが繰り返し送信される繰り返し送信を行う通信装置が有するコンピュータに、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を受信し、
 前記継続情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う、
 処理を実行させるためのプログラム。
(19)
 同一のデータが繰り返し送信される繰り返し送信を行う端末装置と通信する基地局装置が有するコンピュータに、
 ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を生成し、
 前記継続情報を前記無線通信端末へ送信する、
 処理を実行させるためのプログラム。
 20、20S、20T 基地局
 50 端末装置
 21、21S、21T、51 無線通信部
 22、22S、22T、52 記憶部
 23、23S、23T、55 制御部

Claims (17)

  1.  所定のデータが繰り返し送信される繰り返し送信を行う通信装置であって、
     ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を受信する無線通信部と、
     前記継続情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う制御部と、
     を具備する通信装置。
  2.  前記所定のデータは、誤り訂正符号化前のデータが同一のデータである、
     請求項1に記載の通信装置。
  3.  前記所定のデータは、誤り訂正符号化前のデータが同一のデータであり、かつRedundancy Versionが同一の値である、
     請求項1に記載の通信装置。
  4.  前記所定のデータは、誤り訂正符号化前のデータが同一のデータであり、かつRedundancy Versionが異なる値である、
     請求項1に記載の通信装置。
  5.  前記無線通信部は、ハンドオーバ前にハンドオーバ元の基地局装置へ送信していた前記所定のデータと同一のデータをハンドオーバ後にハンドオーバ先の無線通信基地局へ送信するように要求する要求情報を前記継続情報として受信する、
     請求項1に記載の通信装置。
  6.  前記無線通信部は、ハンドオーバ元の基地局装置から送信される前記要求情報を受信する、
     請求項5に記載の通信装置。
  7.  前記無線通信部は、ハンドオーバ先の基地局装置から送信される前記要求情報を受信する、
     請求項5に記載の通信装置。
  8.  前記無線通信部は、ハンドオーバ先の候補の基地局装置に関する候補情報をハンドオーバ元の基地局装置から受信し、
     前記制御部は、前記候補情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う、
     請求項1に記載の通信装置。
  9.  前記無線通信部は、ハンドオーバ前にハンドオーバ元の基地局装置からハンドオーバ後のConfigured grant configurationを受信し、
     前記制御部は、前記Configured grant configurationに基づいて、ハンドオーバ後の前記繰り返し送信を行う、
     請求項1に記載の通信装置。
  10.  前記制御部は、ハンドオーバ元の基地局装置とはRandom access procedureを行う一方で、ハンドオーバ先の無線通信基地局とはRandom access procedureを行わない、
     請求項1に記載の通信装置。
  11.  前記制御部は、ハンドオーバ前とハンドオーバ後との双方で同一の所定のIDを用いて、前記繰り返し送信のデータをスクランブルする、
     請求項1に記載の通信装置。
  12.  前記所定のIDは、端末識別IDである、
     請求項11に記載の通信装置。
  13.  前記所定のIDは、ハンドオーバ後の基地局装置から付与される端末識別IDと異なる値である、
     請求項11に記載の通信装置。
  14.  前記所定のIDは、ハンドオーバ前の基地局装置から付与される第1の端末識別IDと、ハンドオーバ後の基地局装置から付与される第2の端末識別IDとは別の情報である、
     請求項11に記載の通信装置。
  15.  同一のデータが繰り返し送信される繰り返し送信を行う端末装置と通信する基地局装置であって、
     ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を生成するプロセッサと、
     前記継続情報を前記端末装置へ送信する無線通信モジュールと、
     を具備する基地局装置。
  16.  同一のデータが繰り返し送信される繰り返し送信を行う通信装置におけるデータ送信方法であって、
     ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を受信し、
     前記継続情報に基づいて、ハンドオーバ後の前記繰り返し送信を行う、
     通信方法。
  17.  同一のデータが繰り返し送信される繰り返し送信を行う端末装置と通信する基地局装置における通信方法であって、
     ハンドオーバ前後における前記繰り返し送信の継続に関する情報である継続情報を生成し、
     前記継続情報を前記端末装置へ送信する、
     通信方法。
PCT/JP2020/035199 2019-10-03 2020-09-17 通信装置、基地局装置、及び通信方法 WO2021065534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021550600A JPWO2021065534A1 (ja) 2019-10-03 2020-09-17
EP20872139.9A EP4040852A4 (en) 2019-10-03 2020-09-17 COMMUNICATION DEVICE, BASE STATION DEVICE AND COMMUNICATION METHOD
CN202080067519.5A CN114521340A (zh) 2019-10-03 2020-09-17 通信设备、基站设备和通信方法
US17/639,583 US20220303000A1 (en) 2019-10-03 2020-09-17 Communication device, base station device, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-183331 2019-10-03
JP2019183331 2019-10-03

Publications (1)

Publication Number Publication Date
WO2021065534A1 true WO2021065534A1 (ja) 2021-04-08

Family

ID=75338022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035199 WO2021065534A1 (ja) 2019-10-03 2020-09-17 通信装置、基地局装置、及び通信方法

Country Status (5)

Country Link
US (1) US20220303000A1 (ja)
EP (1) EP4040852A4 (ja)
JP (1) JPWO2021065534A1 (ja)
CN (1) CN114521340A (ja)
WO (1) WO2021065534A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097855A1 (ja) * 2017-11-16 2019-05-23 ソニー株式会社 基地局装置、端末装置及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560849B1 (ko) * 2003-05-14 2006-03-13 에스케이 텔레콤주식회사 Wcdma 시스템의 서비스 품질을 이용한 핸드 오버설정 방법 및 시스템
CN105210433B (zh) * 2014-03-28 2019-01-18 华为技术有限公司 确定下行控制信道重复次数的方法及装置
US10412758B2 (en) * 2015-08-14 2019-09-10 Sony Corporation Handling number of repetitions in coverage extension mode
JP6405476B2 (ja) * 2016-01-25 2018-10-17 京セラ株式会社 無線端末及び基地局
US10965407B2 (en) * 2017-02-02 2021-03-30 Sharp Kabushiki Kaisha User equipments, base stations and communication methods
GB2565764A (en) * 2017-08-10 2019-02-27 Nec Corp Communication system
KR102542403B1 (ko) * 2017-09-29 2023-06-12 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 자원 설정과 데이터 송수신 방법 및 장치
US10925047B2 (en) * 2018-02-07 2021-02-16 Huawei Technologies Co., Ltd. Systems and methods for scheduling wireless communications
US11503515B2 (en) * 2019-05-01 2022-11-15 Institute For Information Industry User equipment and base station for mobile communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097855A1 (ja) * 2017-11-16 2019-05-23 ソニー株式会社 基地局装置、端末装置及び方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On PDCP interruptions during handover for NTN", 3GPP TSG-RAN WG2 #107 R2-1910805, 15 August 2019 (2019-08-15), XP051768572 *
HUAWEI ET AL.: "Discussion on early data forwarding for CHO", 3GPP TSG-RAN WG2 #107 R2-1910516, 16 August 2019 (2019-08-16), XP051768292 *
HUAWEI ET AL.: "RACH-less handover for NTN", 3GPP TSG-RAN WG2 #107 R2-1910570, 16 August 2019 (2019-08-16), XP051768346 *
INTEL CORPORATION: "Conditional Handover for Non-Terrestrial Networks", 3GPP TSG RAN2 MEETING #107, PRAGUE, CZECH REPUBLIC, August 2019 (2019-08-01)
See also references of EP4040852A4

Also Published As

Publication number Publication date
EP4040852A4 (en) 2022-11-23
EP4040852A1 (en) 2022-08-10
CN114521340A (zh) 2022-05-20
JPWO2021065534A1 (ja) 2021-04-08
US20220303000A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US20230070647A1 (en) Communication apparatus, base station apparatus, communication method, communication program, communication system
US20240022315A1 (en) Communication device, communication method, base station, and method performed by base station
WO2021029296A1 (ja) 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法
WO2021090596A1 (ja) 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法
US11924889B2 (en) Communication device and communication method
US20230189107A1 (en) Communication device, non-geostationary satellite, ground station, and communication method
US20230354236A1 (en) Communication device and communication method
WO2021065534A1 (ja) 通信装置、基地局装置、及び通信方法
WO2023162763A1 (ja) 通信装置、通信方法、及び通信システム
US20240056164A1 (en) Communication device, communication method, and communication system
WO2023204051A1 (en) Electronic device, terminal device, non-terrestrial base station, and method
US20240120990A1 (en) Communication apparatus, communication system, and communication method
US20240121144A1 (en) Communication apparatus and communication method
WO2021241302A1 (ja) 情報処理装置、情報処理システム及び通信方法
WO2021070631A1 (ja) 端末装置、基地局および通信制御方法
WO2023127173A1 (ja) 通信方法、通信装置、及び通信システム
WO2024034351A1 (ja) 通信装置、データセット提供装置、ai/mlモデルをトレーニングする方法およびai/mlモデルの学習のベースとなる情報を提供する方法
WO2023013170A1 (ja) 通信装置及び通信方法
WO2023166969A1 (ja) 通信装置、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872139

Country of ref document: EP

Effective date: 20220503