WO2021065354A1 - Extension and contraction mechanism and method for manufacturing extension and contraction mechanism - Google Patents

Extension and contraction mechanism and method for manufacturing extension and contraction mechanism Download PDF

Info

Publication number
WO2021065354A1
WO2021065354A1 PCT/JP2020/033670 JP2020033670W WO2021065354A1 WO 2021065354 A1 WO2021065354 A1 WO 2021065354A1 JP 2020033670 W JP2020033670 W JP 2020033670W WO 2021065354 A1 WO2021065354 A1 WO 2021065354A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
shaft
expansion
advancing
contraction mechanism
Prior art date
Application number
PCT/JP2020/033670
Other languages
French (fr)
Japanese (ja)
Inventor
道夫 大橋
Original Assignee
三井金属アクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属アクト株式会社 filed Critical 三井金属アクト株式会社
Priority to CN202090000629.5U priority Critical patent/CN217620681U/en
Publication of WO2021065354A1 publication Critical patent/WO2021065354A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • F16M11/26Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other by telescoping, with or without folding
    • F16M11/28Undercarriages for supports with one single telescoping pillar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles

Definitions

  • the present invention relates to an expansion / contraction mechanism and a method for manufacturing an expansion / contraction mechanism.
  • the telescopic mechanism is used in vehicle tailgate drive devices and robots.
  • the tailgate drive of the vehicle automatically opens and closes the tailgate by expanding and contracting.
  • the telescopic mechanism used as a tailgate drive includes a base end side cover tube oscillatingly connected to the body and a housing tube oscillatingly connected to the tailgate, one on the other.
  • the tailgate is opened and closed by expanding and contracting as a whole.
  • a motor and a spindle are used for advancing and retreating the cover tube and the housing tube (see, for example, Patent Document 1 and Patent Document 2).
  • the rotation of the motor is decelerated by the reduction mechanism and transmitted to the lead screw directly or via an intermediate member.
  • a nut that cannot rotate and can move forward and backward in the axial direction is screwed onto the lead screw.
  • the nut advances and retreats due to the rotation of the lead screw to drive the pipe connected to the nut in the axial direction.
  • an excessive axial external force may be applied when the tailgate is operated by a person, so that a clutch mechanism for cutting the external force may be provided.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an expansion / contraction mechanism and a method for manufacturing an expansion / contraction mechanism that can realize a low cost with a simple mechanism.
  • the expansion / contraction mechanism rotates one of the shaft and the advancing / retreating pipe provided coaxially with the reference axis and the shaft and the advancing / retreating pipe.
  • the drive source to be driven, the base body that holds the other non-rotatably and freely advancing and retreating along the reference axis, a plurality of rollers provided in the lumen portion of the advancing and retreating pipe, and the advancing and retreating pipe are integrally rotated.
  • a roller holder for rotatably holding the plurality of rollers is provided, and the plurality of rollers are in contact with the outer peripheral surface of the shaft, respectively, and the rollers have an inclination angle with respect to the reference axis. It is characterized in that it is held by a holder.
  • At least one of the outer peripheral surface of the roller and the outer peripheral surface of the shaft may be an elastic body.
  • a non-slip treatment may be applied to at least one surface of the outer peripheral surface of the roller and the outer peripheral surface of the shaft.
  • the roller holder may include a pressing means for elastically pressing a plurality of the rollers against the outer peripheral surface of the shaft.
  • the roller may have a shape in which the axial length is larger than the maximum diameter, the central portion is the maximum diameter portion, and the diameter is small toward both sides along the axial direction.
  • the plurality of rollers may be arranged in parallel at equal intervals along the circumferential direction centered on the reference axis, and adjacent rollers may be provided so as to overlap each other in the direction along the reference axis.
  • One end may be provided with a base end end portion that is swingably connected to the tailgate of the vehicle, and the other end may be provided with a tip end portion that is swingably connected to the main body of the vehicle.
  • the inner diameter of the shaft may change along the reference axis.
  • a spring may be provided that elastically biases the shaft and the advancing / retreating pipe in a direction in which the shaft and the advancing / retreating pipe are separated from each other along the reference axis.
  • a support cylinder for supporting the spring from the inner surface may be provided between the advancing / retreating pipe and the spring.
  • the expansion / contraction mechanism manufacturing method is a expansion / contraction mechanism manufacturing method for manufacturing the expansion / contraction mechanism, and is a step of fixing a power transmission unit having a plurality of the rollers mounted on the roller holder to the shaft.
  • a step of covering the transmission unit a step of inserting the spring into the inside from the tip side of the advancing / retreating pipe, and a tip spring receiver that supports the tip of the spring with respect to the tip of the advancing / retreating pipe into which the spring is inserted. It is characterized by having a step of fixing the portion.
  • a plurality of rollers having an inclination angle with respect to the reference axis are in contact with each other so as to generate an appropriate frictional force with respect to the outer peripheral surface of the shaft, and the accuracy is high. It is a simple mechanism that does not need to have the above configuration. That is, dimensional errors such as the shape of the roller, the inclination angle, and the inner diameter of the advancing / retreating pipe are allowed to some extent, and the assembly accuracy is also allowed to some extent, so that low cost can be realized.
  • FIG. 1 is a perspective view showing a telescopic mechanism according to the first embodiment and a vehicle equipped with the telescopic mechanism.
  • 2A and 2B are expansion and contraction mechanisms according to the first embodiment, FIG. 2A is a perspective view showing a stretched state, and FIG. 2B is a perspective view showing a contracted state.
  • FIG. 3 is a partial cross-sectional perspective view of the connection portion between the base end pipe and the tip end pipe.
  • FIG. 4 is a cross-sectional side view of the expansion / contraction mechanism according to the first embodiment.
  • 5A and 5B are perspective views of an internal mechanism in the expansion / contraction mechanism according to the first embodiment, FIG. 5A is a perspective view showing a stretched state, and FIG. 5B is a perspective view showing a contracted state.
  • FIG. 5A and 5B are perspective views of an internal mechanism in the expansion / contraction mechanism according to the first embodiment, FIG. 5A is a perspective view showing a stretched state, and FIG. 5B is a perspective view showing
  • FIG. 6 is a perspective view of the power transmission unit and its periphery in the internal mechanism of the expansion / contraction mechanism according to the first embodiment.
  • 7 is an enlarged perspective view of the periphery of the power transmission unit in the internal mechanism shown in FIG. 6.
  • FIG. 8 is an enlarged side view of the periphery of the power transmission unit in the internal mechanism shown in FIG.
  • FIG. 9 is a partially exploded perspective view of the power transmission unit according to the first embodiment.
  • FIG. 10 is a cross-sectional side view of the power transmission unit and its periphery in the internal mechanism of the expansion / contraction mechanism according to the first embodiment.
  • FIG. 11A and 11B are views of the six rollers and the advancing / retreating pipe in the power transmission unit according to the first embodiment as viewed from the direction of the reference axis
  • FIG. 11A is a diagram showing the first example thereof
  • FIG. 11B is a diagram showing the first example thereof. It is a figure which shows the 2nd example.
  • FIG. 12 is a partially exploded perspective view of the power transmission unit according to the modified example.
  • FIG. 13 is a flowchart of a method of manufacturing the expansion / contraction mechanism according to the first embodiment.
  • FIG. 14 is a schematic side sectional view showing the expansion / contraction mechanism according to the second embodiment.
  • FIG. 15 is a cross-sectional side view of the expansion / contraction mechanism according to the second embodiment.
  • FIG. 16 is an exploded perspective view of the expansion / contraction mechanism according to the second embodiment.
  • FIG. 17 is a perspective view showing a tip end portion of the expansion / contraction mechanism according to the second embodiment.
  • 18A and 18B are perspective views of an internal mechanism in the expansion / contraction mechanism according to the second embodiment, FIG. 18A is a perspective view showing a stretched state, and FIG. 18B is a perspective view showing a contracted state.
  • FIG. 19 is an exploded perspective view showing the power transmission unit and its related members in the second embodiment.
  • FIG. 20 is a cross-sectional view of the power transmission unit and its related members in the second embodiment as viewed from the direction of the reference axis.
  • FIG. 21 is a side view of the shaft, the roller holder, and the rollers according to the second embodiment.
  • FIG. 22 is a side sectional view showing the power transmission unit and its related members in the second embodiment.
  • FIG. 23-1 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the third embodiment.
  • FIG. 23-2 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the fourth embodiment.
  • FIG. 23-3 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the fifth embodiment.
  • FIG. 1 is a perspective view showing an expansion / contraction mechanism 10 according to an embodiment of the present invention and a vehicle 12 equipped with the expansion / contraction mechanism 10.
  • the expansion / contraction mechanism 10 is for automatically opening and closing the tailgate 14 of the vehicle 12.
  • a total of two telescopic mechanisms 10 are provided, one on each side of the tailgate 14.
  • the tailgate 14 can be opened and closed with respect to the main body of the vehicle 12 by the hinge 14a.
  • the two telescopic mechanisms 10 have the same structure and operate synchronously, and open the tailgate 14 by extending (the state shown in FIG. 1) and close the tailgate 14 by contracting. That is, the pair of expansion / contraction mechanisms 10 are tailgate drive devices in the vehicle 12.
  • the expansion / contraction mechanism 10 expands / contracts under the action of the control unit based on, for example, a user's button operation.
  • the door of the vehicle that the telescopic mechanism 10 opens and closes may be a ton rank lid, a bonnet, or the like, in addition to the tailgate 14.
  • the number of telescopic mechanisms 10 for opening and closing the tailgate 14 may be one or three or more.
  • the expansion / contraction mechanism 10 is not limited to the application in the vehicle 12, and can be used in various applications such as a robot arm.
  • the telescopic mechanism 10 has a long shape, and each has a base end end portion 16 that is swingably connected to the tailgate 14 of the vehicle 12 at one end, and swingable to the main body of the vehicle 12 at the other end.
  • the tip end portion (tip spring receiving portion) 18 to be connected is provided.
  • the base end end portion 16 and the tip end end portion 18 are provided with shaft holes so as to be able to swing with respect to the mating member.
  • the expansion / contraction mechanism 10 may be provided in the vehicle 12 in the opposite direction.
  • “base end” and “tip” are names which are distinguished for convenience of explanation.
  • expansion / contraction mechanism 10 shown in FIG. 1 specifically, the expansion / contraction mechanisms 10A to 10D according to the first to fourth embodiments described below can be applied. Hereinafter, they will be described in order.
  • FIG. 2A and 2B are perspective views of the expansion / contraction mechanism 10A according to the first embodiment, FIG. 2A is a perspective view showing a stretched state, and FIG. 2B is a perspective view showing a contracted state.
  • the expansion / contraction mechanism 10A has the base end pipe (base body) 20 and the advancing / retreating pipe 22 arranged coaxially, and the base end side of the base end pipe 20 is the base end end. It is closed by the portion 16, and the tip end side of the advancing / retreating pipe 22 is closed by the tip end portion 18.
  • the base end end portion 16 is fixed to the base end pipe 20, and the tip end end portion 18 is fixed to the advancing / retreating pipe 22.
  • the advancing / retreating pipe 22 has a slightly larger diameter than the base end pipe 20.
  • the vicinity of the base end portion of the advancing / retreating pipe 22 covers the vicinity of the vicinity of the tip end portion of the base end pipe 20.
  • the length ratio of the expansion / contraction mechanism 10A is about 1.5 times between the expanded state and the contracted state.
  • the advancing / retreating pipe 22 has a series structure in which the first pipe 24 on the proximal end side and the second pipe 26 on the distal end side are connected by a joint 27.
  • FIG. 3 is a partial cross-sectional perspective view of the connection portion between the base end pipe 20 and the advancing / retreating pipe 22.
  • a shallow groove 20a is formed on the outer peripheral surface of the base end pipe 20 along the reference axis J.
  • the groove 20a has a rectangular cross section.
  • Four grooves 20a are provided at 90 ° intervals, and two of them are shown in FIG.
  • a protrusion 24a is formed at the base end of the first pipe 24 so as to slightly protrude inward and fit into the groove 20a.
  • the protrusion 24a is formed in a rectangular cross section in accordance with the groove 20a, and is formed by, for example, pressing.
  • Four protrusions 24a are provided at 90 ° intervals in accordance with the grooves 20a. Two of them are shown in FIG.
  • the base end pipe 20 and the first pipe 24 are fitted to each other with almost no gap, and the groove 20a and the protrusion 24a are engaged with each other in the circumferential direction so that they cannot rotate relative to each other and can move back and forth relatively along the reference axis J. It has become.
  • FIG. 4 is a cross-sectional side view of the expansion / contraction mechanism 10A.
  • each element of the base end pipe 20 in the expansion / contraction mechanism 10A and the internal mechanism in the advancing / retreating pipe 22 is arranged coaxially along the reference axis J.
  • a motor (drive source) 28 Inside the base end pipe 20, a motor (drive source) 28, a speed reducer 30, a shaft 32, and a first bearing 34 are provided in this order from the base end side.
  • the motor 28 is arranged on the most proximal side of the proximal pipe 20 and is substantially in contact with the proximal end portion 16.
  • the motor 28 and the speed reducer 30 are fixed to the base end pipe 20 by a caulking portion 20b (see FIG. 2A).
  • the speed reducer 30 is, for example, a planetary gear type.
  • the rotation of the motor 28 is reduced by the speed reducer 30 and transmitted to the shaft 32.
  • the first bearing 34 is provided at substantially the tip of the base end pipe 20, and pivotally supports the shaft 32.
  • the first bearing 34 can prevent the shaft 32 from rotating.
  • the shaft 32 may be pivotally supported by yet another bearing in the vicinity of the speed reducer 30.
  • the outer peripheral surface of the shaft 32 is anti-slip processed (for example, shot peening).
  • the shaft 32 protrudes further toward the tip side than the base end pipe 20, and the power transmission unit 36 is fitted in the protruding portion.
  • the power transmission unit 36 is arranged near the tip end in the first pipe 24 when the expansion / contraction mechanism 10A is extended, and is arranged near the base end in the first pipe 24 when the expansion / contraction mechanism 10A is contracted.
  • the power transmission unit 36 will be described later.
  • a second bearing 38, a spring receiving seat (base end spring receiving portion) 40, and a spring 42 are arranged in order from the base end side.
  • FIG. 5A and 5B are perspective views of the internal mechanism of the telescopic mechanism 10A
  • FIG. 5A is a perspective view showing a stretched state
  • FIG. 5B is a perspective view showing a contracted state.
  • the base end pipe 20 is omitted in FIG. 5, the advancing / retreating pipe 22 is shown by a virtual line.
  • the base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18.
  • the spring 42 has a natural length or a slightly compressed state when the expansion / contraction mechanism 10A is extended, and the expansion / contraction mechanism 10A contracts as shown in FIG. 5B. In the state, it is considerably compressed.
  • the spring 42 is elastically biased in a direction in which the shaft 32 and the advancing / retreating pipe 22 are separated from each other along the reference axis J. Since the second bearing 38 is provided, the rotation of the power transmission unit 36 is not transmitted to the spring receiving seat 40 and the spring 42, and these do not rotate.
  • the second bearing is a thrust bearing.
  • FIG. 6 is a perspective view of the power transmission unit 36 and its surroundings in the internal mechanism of the telescopic mechanism 10A.
  • FIG. 7 is an enlarged perspective view of the periphery of the power transmission unit 36 in the internal mechanism shown in FIG.
  • FIG. 8 is an enlarged side view of the periphery of the power transmission unit 36 in the internal mechanism shown in FIG.
  • the tip end side of the base end pipe 20 is fixed to the outer peripheral portion of the first bearing 34 by a caulking portion 22c.
  • the caulking portion 22c is provided in each groove 22a.
  • annular protrusion 34b having a low tip portion and a support protrusion 34c having a short axial direction are provided.
  • the annular protrusion 34b is regulated by contact with the protrusion 24a (see FIG. 3) to prevent the advancing / retreating pipe 22 from coming off.
  • Four support protrusions 34c are provided at 90 ° intervals, and two of them are shown in FIG.
  • the support protrusions 34c are provided at intermediate positions of the four grooves 22a in the circumferential direction.
  • the annular protrusion 34b and the support protrusion 34c have the same height and are supported by abutting the first pipe 24 from the inner peripheral surface.
  • the shaft 32 protrudes toward the tip end through the inner hole 34a of the first bearing 34, and the power transmission unit 36 is fitted in the protruding portion as described above.
  • FIG. 9 is a partially exploded perspective view of the power transmission unit 36.
  • the power transmission unit 36 includes a roller holder 44, a plurality of rollers 46, and a roller shaft 48 corresponding to the rollers 46.
  • the power transmission unit 36 is provided with six rollers 46, but in FIG. 9, three are shown by solid lines and one is shown by a virtual line for easy understanding. One of the three solid rollers 46 is shown in a disassembled state from the roller holder 44.
  • Each of the six rollers 46 is pivotally supported by the roller shaft 48, but only four are shown in FIG. 9 for easy understanding, and one of them is shown in a state of being disassembled from the roller holder 44.
  • the number of rollers 46 included in the roller holder 44 is not limited to six, and may be, for example, 3 to 12.
  • a plurality of power transmission units 36 may be provided in parallel with respect to the shaft 32 in the axial direction.
  • the roller holder 44 cannot rotate to the advancing / retreating pipe 22 via the protrusion 27b of the joint 27.
  • the roller holder 44 rotatably holds the six rollers 46.
  • the roller holder 44 is composed of two arm projecting disks 50 and 52 separated in the axial direction, and six rollers 46 are provided between them.
  • the roller holder 44 may be composed of one component, and for example, the arm protruding disk 50 and the arm protruding disk 52 may be connected to each other by a tubular body at the outer peripheral portion thereof.
  • the arm protruding disk 50 on the base end side includes a central disk 50a and six arms 50b protruding from the central disk 50a.
  • a hole 50aa through which the shaft 32 passes is formed in the center of the central disk 50a.
  • the arms 50b are L-shaped when viewed from the direction of the reference axis J, and are provided at equal intervals (60 °).
  • the arm 50b includes a portion that protrudes in the radial direction from the central disk 50a and a portion that bends counterclockwise in FIG. 9 at the tip thereof, and a hole 50ba is formed in the vicinity of the tip end.
  • the portion of the arm 50b that is bent counterclockwise is slightly tilted toward the tip side.
  • the arm protruding disk 52 on the tip side includes a central disk 52a and six arms 52b protruding from the central disk 52a.
  • a hole 52aa through which the shaft 32 passes is formed in the center of the central disk 52a. That is, the rotation of the shaft 32 is not directly transmitted to the roller holder 44 including the arm protruding disks 50 and 52.
  • the arms 52b are L-shaped when viewed from the direction of the reference axis J, and are provided at equal intervals (60 °).
  • the arm 52b has a symmetrical shape with the arm 50b. That is, the arm 52b includes a portion that protrudes radially from the central disk 52a and a portion that bends clockwise at the tip thereof, and a hole 52ba is formed in the vicinity of the tip end.
  • the portion of the arm 52b that is bent clockwise is slightly tilted toward the proximal end side.
  • the roller 46 is a cigar type having a larger diameter at the center than both ends. Specifically, the roller 46 has an axial length larger than the maximum diameter at the center, and the center has the maximum diameter and faces both sides along the axial direction. It has a small diameter. The diameter of each part of the roller 46 is set so as to come into contact with the inner peripheral surface of the first pipe 24 in an appropriate area according to the inclination angle ⁇ (see FIG. 8) described later.
  • the axial length of the roller 46 is substantially equal to the distance between the held arm 50b and the arm 52b.
  • a hole 46a is formed in the center of the roller 46.
  • the roller 46 (and the roller 88 described later) is an elastic body and is made of a polymer material such as an elastomer or rubber.
  • the roller 46 may have at least an elastic surface.
  • the roller shaft 48 is a member that is inserted into the hole 46a to rotatably support the roller 46, and press-fitting portions 48a having a slightly smaller diameter are formed at both ends.
  • One of the press-fitting portions 48a is press-fitted into the hole 50ba of the arm 50b, and the other is press-fitted into the hole 52ba of the arm 52b.
  • the central axis of 46 has an inclination angle ⁇ with respect to the reference axis J.
  • the six rollers 46 are arranged in parallel at equal intervals (60 °) along the circumferential direction centered on the reference axis J, and are well-balanced. Further, the rollers 46 are densely arranged so that adjacent ones overlap each other in the direction along the reference axis J, which is space efficient.
  • the joint 27 includes a central hole 27a through which the shaft 32 is inserted, a detent protrusion 27b that fits between a pair of adjacent arms 52b, a central disk 27c, a base end disk 27d, and a tip disk 27e.
  • the shaft 32 passes through the central holes 27a and the holes 52aa and 50aa, and further projects toward the tip end side.
  • FIG. 10 is a cross-sectional side view of the power transmission unit 36 and its periphery in the internal mechanism of the telescopic mechanism 10A.
  • the first pipe 24 is fitted and fixed to the base end disk 27d of the joint 27, and the second pipe 26 is fitted and fixed to the tip disk 27e.
  • These fixing means are, for example, caulking.
  • the outer diameters of the base end disk 27d and the tip end disk 27e are substantially equal to the inner diameters of the first pipe 24 and the second pipe 26, and the outer diameter of the central disk 27c is approximately equal to the outer diameters of the first pipe 24 and the second pipe 26. ..
  • the first pipe 24 and the second pipe 26 are in contact with the central disk 27c and have no gap.
  • FIG. 11A is a view of the six rollers 46 and the first pipe 24 in the power transmission unit 36 as viewed from the direction of the reference axis J. As shown in FIGS. 10 and 11A, the six rollers 46 in the power transmission unit 36 are in contact with the outer peripheral surface of the shaft 32, respectively. Each roller 46 is not in contact with the first pipe 24. Since the outer peripheral surface of the roller 46 is an elastic body and the outer peripheral surface of the shaft 32 is anti-slip processed, a moderately large frictional force is generated between the two.
  • FIG. 11B is a view seen from the direction of the reference axis J when the roller 46 in the power transmission unit 36 is replaced with the roller 46A according to the modified example.
  • the roller 46A has a smaller diameter at the center than both ends, specifically, has an axial length larger than the maximum diameter at both ends, and has a minimum diameter at the center in the axial direction. It has a shape with a large diameter toward both sides along.
  • the arc contour of the roller 46A is set so that the diameter is slightly larger than the outer peripheral circle of the shaft 32.
  • the roller 46A has an appropriate contact area suitable for power transmission because the vicinity of the minimum diameter at the center and the vicinity thereof are in contact with the outer peripheral surface of the shaft 32.
  • the roller 46 in the following description shall include the roller 46A.
  • At least one of them may be an elastic body. Similarly, it is preferable that at least one surface is anti-slip treated. Further, in order to increase the generated frictional force, it is preferable to provide a pressing means for elastically pressing the roller 46 against the outer peripheral surface of the shaft 32.
  • a pressing means for example, as shown in FIG. 12, it is preferable to provide the arm 50bA on the arm protruding disk 50 and the arm 52bA on the arm protruding disk 52.
  • the arms 50bA and 52bA replace the above arms 50b and 52b, and are provided with springs 50bb and 52bb at the connection portions with the central disks 50a and 52a.
  • the springs 50bb and 52bb have elasticity in the radial direction due to the alternating circumferential grooves. According to the springs 50bb and 52bb as such pressing means, the roller 46 can be suitably pressed against the outer peripheral surface of the shaft 32.
  • the expansion / contraction mechanism 10A holds the shaft 32 and the advancing / retreating pipe 22 coaxially provided with respect to the reference axis J and the advancing / retreating pipe 22 so as to be non-rotatable and freely advancing / retreating along the reference axis J.
  • a plurality of rollers 46 provided in the cavity of the advancing / retreating pipe 22 and a roller holder 44 that rotates integrally with the shaft 32 to rotatably hold the plurality of rollers 46 are provided.
  • Each of the plurality of rollers 46 is in contact with the outer peripheral surface of the shaft 32, and is held by the roller holder 44 so that the central axis has an inclination angle ⁇ (see FIG. 8) with respect to the reference axis J.
  • the motor 28 as a drive source rotates the shaft 32 via the speed reducer 30.
  • Each of the plurality of rollers 46 rotates about the reference axis J in a relative and revolving manner with respect to the shaft 32, and rotates around the roller shaft 48. Since each of the rollers 46 is arranged so as to have an inclination angle ⁇ with respect to the reference axis J, the roller 46 rotates (revolves and rotates), so that the advance / retreat pipe 22 has an axial direction according to the inclination angle ⁇ .
  • the thrust of the above is applied, and the advancing / retreating pipe 22 advances / retreats along the reference axis J.
  • the advancing / retreating direction of the advancing / retreating pipe 22 depends on the rotation direction of the motor 28.
  • the advance / retreat of the advance / retreat pipe 22 is stopped. Since a frictional force is generated between the shaft 32 and the roller 46, the position of the advancing / retreating pipe 22 is maintained even if there is no braking mechanism. That is, the power transmission unit 36 can apply a driving force and a holding force to the advancing / retreating pipe 22.
  • the expansion / contraction mechanism 10A by setting the inclination angle ⁇ large, the expansion / contraction speed increases but the driving force decreases, and conversely, by setting the inclination angle ⁇ small, the expansion / contraction speed decreases but the driving force increases.
  • the inclination angle ⁇ in the expansion / contraction mechanism 10A conceptually corresponds to the advance angle of the screw mechanism.
  • the amount of advance / retreat of the expansion / contraction mechanism 10A may be adjusted by controlling the rotation of the motor 28 based on the signal of the position switch or the sensor.
  • the outer peripheral surface of the roller 46 is an elastic body and the outer peripheral surface of the shaft 32 is anti-slip processed, the frictional force between the two is large, and the rotation of the shaft 32 efficiently advances and retreats to the power transmission unit 36. It is transmitted to the pipe 22. On the other hand, even if some slip occurs between the outer peripheral surface of the roller 46 and the inner peripheral surface of the first pipe 24, the advancing / retreating operation of the expansion / contraction mechanism 10A is not affected.
  • the power transmission unit 36 that converts the rotation of the shaft 32 into thrust and transmits it to the advance / retreat pipe 22.
  • the power transmission unit 36 may be in contact with a plurality of rollers 46 in the direction of the inclination angle ⁇ so as to generate an appropriate frictional force with respect to the outer peripheral surface of the shaft 32, as if the lead screw and the nut are engaged. It is a simple mechanism that does not need to have a highly accurate configuration. That is, errors such as the shape of the roller 46, the inclination angle ⁇ , the outer diameter of the shaft 32, and the linearity of the shaft 32 are allowed to some extent, and the assembly accuracy of the power transmission unit 36 and the expansion / contraction mechanism 10A as a whole also has some errors. Is acceptable and low cost can be realized.
  • the spring 42 elastically biases the shaft 32 and the advancing / retreating pipe 22 in the direction away from each other along the reference axis J, the spring 42 complements the force in the extending direction when the expansion / contraction mechanism 10A operates in the extending direction, and the tailgate. Even when 14 is considerably heavy, the door opening operation is possible. Further, in the case of a light load, the spring 42 may be omitted.
  • FIG. 13 is a flowchart of a manufacturing method of the expansion / contraction mechanism 10A.
  • six rollers 46 are attached to the roller holder 44 in step S1 to assemble the power transmission unit 36.
  • step S2 the base end end portion 16, the motor 28, the speed reducer 30, the shaft 32, and the first bearing 34 are assembled with respect to the base end pipe 20.
  • the base end pipe 20 is fixed by the groove 20a of the first bearing 34 and the caulking portion 20c.
  • the power transmission unit 36 is fitted into the shaft 32.
  • the first pipe 24 and the second pipe 26 are connected by a joint 27 to form an advancing / retreating pipe 22.
  • step S4 the spring receiving seat 40 is provided on the first pipe 24 of the advancing / retreating pipe 22.
  • step S5 the power transmission unit 36 is covered with the base end side of the advancing / retreating pipe 22 provided with the spring receiving seat 40. Further, a protrusion 24a is formed on the advancing / retreating pipe 22 so as to enter the groove 20a of the base end pipe 20.
  • step S6 the spring 42 is inserted into the inside through the opening on the tip end side of the advancing / retreating pipe 22. The spring 42 is urged by a spring receiving seat 40 provided in advance inside the advancing / retreating pipe 22.
  • step S7 the tip end portion 18 is fixed to the tip of the advancing / retreating pipe 22 into which the spring 42 is inserted.
  • the advancing / retreating pipe 22 is attached to the base end pipe 20 and the power transmission unit 36, and then the spring 42 is inserted into the inside from the tip side of the advancing / retreating pipe 22. Easy and correct assembly.
  • the expansion / contraction mechanism 10A includes a first portion including a base end pipe 20, a motor 28, a speed reducer 30, and a shaft 32 on the base end side, a power transmission unit 36 on the tip end side, an advancing / retreating pipe 22, a spring receiving seat 40, and a spring 42.
  • a first portion including a base end pipe 20, a motor 28, a speed reducer 30, and a shaft 32 on the base end side, a power transmission unit 36 on the tip end side, an advancing / retreating pipe 22, a spring receiving seat 40, and a spring 42.
  • a second part including the second part, a plurality of types having different lengths are prepared for the second part, and the first part is appropriately selectively selected according to the type of the vehicle 12 and the type of the tailgate 14. It may be attached.
  • FIG. 14A and 14B are perspective views of the expansion / contraction mechanism 10B according to the second embodiment, FIG. 14A is a perspective view showing a stretched state, and FIG. 14B is a perspective view showing a contracted state.
  • the expansion / contraction mechanism 10B is substantially the same as the expansion / contraction mechanism 10A (see FIG. 2) in appearance, and the base end pipe 20 and the tip end pipe 70 are arranged coaxially. It is a configuration that is.
  • the tip pipe 70 has a double structure in which the inner advancing / retreating pipe 72 (see FIG. 15) and the outer outer pipe 74 are fitted and fixed.
  • the tip pipe 70 corresponds to the above-mentioned advancing / retreating pipe 22, but the function of advancing / retreating with respect to the shaft 32 corresponds to the advancing / retreating pipe 72, and the function of the housing corresponds to the outer pipe 74.
  • a ring cover 76 is provided at the base end of the outer pipe 74.
  • FIG. 15 is a cross-sectional side view of the expansion / contraction mechanism 10B.
  • FIG. 16 is an exploded perspective view of the telescopic mechanism 10B. In FIG. 16, some elements such as the outer pipe 74 are omitted.
  • each element of the base end pipe 20 in the telescopic mechanism 10B and the internal mechanism in the tip end pipe 70 is arranged coaxially along the reference axis J.
  • a motor (drive source) 28 Inside the base end pipe 20, a motor (drive source) 28, a speed reducer 30, a shaft 32, a bearing 78, and a spring receiving seat 40 are provided in this order from the base end side.
  • the base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18.
  • the bearing 78 and the spring receiving seat 40 are provided substantially adjacent to the speed reducer 30.
  • the bearing 78 pivotally supports the end of the shaft 32.
  • the shaft 32 projects in the hollow portion of the spring 42 toward the tip side.
  • the power transmission unit 80 is fitted in the shaft 32.
  • the power transmission unit 80 will be described later.
  • Inside the outer pipe 74, an advancing / retreating pipe 72, a spring guide (support cylinder) 82, and a spring 42 are provided coaxially from the center.
  • the advancing / retreating pipe 72, the spring guide 82, and the spring 42 are fitted to each other with almost no gap (see FIG. 22).
  • the advancing / retreating pipe 72 is a member that advances / retreats with respect to the shaft 32, extends from the tip end portion 18 toward the base end side, and its length is, for example, about 70% of the outer pipe 74.
  • the spring guide 82 is a member that supports the spring 42 from the inner surface, extends from the tip end portion 18 toward the base end side, and its length is longer than that of the advancing / retreating pipe 72, for example, 80% of the outer pipe 74. Degree. By being supported by the spring guide 82, the spring 42 does not bend inside the outer pipe 74 and is kept coaxial with the reference axis J.
  • the spring guide 82 advances and retreats integrally with the advancing / retreating pipe 72.
  • the base end portion 82a of the spring guide 82 has a tapered shape so as not to hit the spring 42.
  • the spring guide 82 is provided with a plurality of through holes 82b (see FIG. 20) in the axial direction for weight reduction.
  • the shaft 32 protrudes further to the tip side than the base end pipe 20, and at least a part of the shaft 32 protrudes to the inside of the advancing / retreating pipe 72.
  • the power transmission unit 80 is arranged in the lumen portion of the advancing / retreating pipe 72 in a state of being fitted to the shaft 32.
  • FIG. 17 is a perspective view showing the tip end portion of the expansion / contraction mechanism 10B.
  • the tip end portion 18 includes a swing shaft member 18a, a cap 18b, a joint 18c, and a member 18d.
  • the joint 18c is a member fixed to the outer pipe 74 by the caulking portion 74a, and the tip portion of the advancing / retreating pipe 72 is inserted into the inner hole.
  • the tip end portion of the advancing / retreating pipe 72 is fixed to the base end portion 18ab of the swing shaft member 18a by caulking or the like.
  • a part of the periphery of the swing shaft member 18a forms a flat portion 18aa.
  • a part of the inner peripheral portion of the joint 18c forms a flat portion 18ca.
  • the flat portion 18aa and the flat portion 18ca are in contact with each other, and the so-called D-cut shape engagement has an anti-rotation effect.
  • the cap 18b covers the outer peripheral portion of the joint 18c or the like
  • the swing shaft member 18a is a portion that is swingably connected to the main body of the vehicle 12 (see FIG. 1) and does not rotate around the reference axis J. Therefore, the advancing / retreating pipe 72 also does not rotate around the reference axis J.
  • the motor 28 and the proximal pipe 20 are connected to the tailgate 14 by the proximal end portion 16, they do not rotate around the reference axis J.
  • the tailgate 14 is openably and closably connected to the main body of the vehicle 12 by a hinge 14a (see FIG. 1), the vehicle 12 and the tailgate 14 eventually form a link mechanism and the advancing / retreating pipe 72 with respect to the motor 28.
  • the joint 18c is used to prevent the swing shaft member 18a from rotating, so that the reference axis It does not rotate around J.
  • FIG. 18A and 18B are perspective views of the internal mechanism of the telescopic mechanism 10B
  • FIG. 18A is a perspective view showing a stretched state
  • FIG. 18B is a perspective view showing a contracted state.
  • the base end pipe 20 and the spring guide 82 are omitted in FIG. 18, the outer pipe 74 is shown by a virtual line.
  • the spring 42 is omitted
  • the advancing / retreating pipe 72 is omitted.
  • the base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18.
  • the spring 42 is omitted in FIG. 18A, it has a natural length or a slightly compressed state when the expansion / contraction mechanism 10B is extended, and as shown in FIG. 18B, the expansion / contraction mechanism 10B In the contracted state, it is considerably compressed.
  • the spring 42 is elastically biased in a direction in which the shaft 32 and the advancing / retreating pipe 72 are separated from each other along the reference axis J.
  • FIG. 19 is an exploded perspective view showing the power transmission unit 80 and its related members.
  • FIG. 20 is a cross-sectional view of the power transmission unit 80 and its related members as viewed from the direction of the reference axis J.
  • the power transmission unit 80 includes a case 84, a roller holder 86, and a plurality of rollers 88.
  • the number of rollers 88 is three.
  • the roller 88 is a cylindrical body, it may have a shape like the roller 46 in FIG. 11 (a) or the roller 46A in FIG. 11 (b).
  • the roller holder 86 has a substantially cylindrical shape, and includes a central hole 86a through which the shaft 32 is inserted, three roller storage portions 86b, and flanges 86c provided at both ends in the axial direction.
  • Each of the roller storage portions 86b is a portion in which the rollers 88 are fitted and stored.
  • the inner surface of the roller storage portion 86b is a columnar recess whose inner surface is matched to the outer peripheral shape of the roller 88, and the roller 88 can roll inside the roller storage portion 86b. That is, the roller holder 86 rotatably holds the plurality of rollers 88.
  • the inner surface of the roller housing portion 86b may be provided with a low friction material so that the roller 88 rotates smoothly.
  • the roller storage portion 86b is open to the central hole 86a, and the roller 88 slightly protrudes from this opening into the center hole 86a. The portion of the roller 88 protruding from the center hole 86a comes into contact with the outer peripheral surface of the shaft 32.
  • the rollers 88 and the roller storage portions 86b are provided in the roller holder 86 at equal intervals (120 °) in the circumferential direction.
  • the two flanges 86c have flat sides in the shape of a regular triangle.
  • FIG. 21 is a side view of the shaft 32, the roller holder 86, and the roller 88.
  • the roller storage portion 86b is formed so that the central axis of the stored roller 88 is tilted by an inclination angle ⁇ with respect to the reference axis J.
  • the inclination angle ⁇ of the roller 88 has the same effect as the inclination angle ⁇ of the roller 46 (see FIG. 8).
  • the case 84 is a member in which the roller holder 86 is stored.
  • the case 84 has a substantially cylindrical shape, and includes three flat surfaces 84a formed on the inner peripheral portion and a hexagonal flange 84b provided on the tip portion.
  • the three flat surfaces 84a abut on the flat side of the flange 86c of the roller holder 86 and serve as a detent around the roller holder 86.
  • the case 84 is fixed to the hexagonal cylinder 90 at the base end of the advancing / retreating pipe 72.
  • the hexagonal cylinder 90 is a part where the case 84 is inserted and fixed, and the inner circumference and the outer circumference are hexagonal due to press working or the like. Each side of the hexagonal flange 84b of the case 84 abuts on the hexagonal surface of the inner circumference of the hexagonal cylinder 90 to prevent rotation.
  • FIG. 22 is a side sectional view showing the power transmission unit 80 and its related members.
  • the case 84 is also fixed in the axial direction by the hexagonal cylinder 90.
  • the tip side is displacement-regulated by a diameter-reduced portion 92 formed at the tip of the hexagonal cylinder 90.
  • the tip portion 32a of the shaft 32 projects toward the tip end side of the diameter reduction portion 92.
  • the tip portion 32a is a male screw, and the flange nut 94 is screwed into the tip portion 32a. Displacement of the shaft 32 toward the proximal end side is restricted by the flange nut 94 coming into contact with the reduced diameter portion 92.
  • the outer diameter of the flange nut 94 is slightly smaller than the inner diameter of the advancing / retreating pipe 72, and the flange nut 94 and the shaft 32 can be displaced toward the tip side along the reference axis J.
  • the expansion / contraction mechanism 10B is integrally provided with the shaft 32 and the advancing / retreating pipe 72 coaxially provided with respect to the reference axis J, the rollers 88 provided in the lumen portion of the advancing / retreating pipe 72, and the shaft 32.
  • a roller holder 86 that rotates and holds a plurality of rollers 88 rotatably is provided.
  • Each of the plurality of rollers 88 is in contact with the outer peripheral surface of the shaft 32, and is held by the roller holder 86 so that the central axis has an inclination angle ⁇ with respect to the reference axis J.
  • the motor 28 rotates the shaft 32 via the speed reducer 30 in such a configuration, so that the plurality of rollers 88 are revolving relative to the shaft 32 about the reference axis J, respectively. As it rotates, it rotates in the roller housing portion 86b.
  • rollers 88 are arranged so as to have an inclination angle ⁇ with respect to the reference axis J, the roller 88 rotates (revolves and rotates), so that the advance / retreat pipe 22 has an axial direction according to the inclination angle ⁇ . Is added, and it is possible to move forward and backward along the reference axis J.
  • FIG. 23-1 is a schematic cross-sectional side view of the expansion / contraction mechanism 10C according to the third embodiment.
  • FIG. 23-2 is a schematic cross-sectional side view of the expansion / contraction mechanism 10D according to the fourth embodiment.
  • FIG. 23-3 is a schematic cross-sectional side view of the expansion / contraction mechanism 10E according to the fifth embodiment.
  • the expansion / contraction mechanism 10C according to the third embodiment is provided with a shaft 32A instead of the shaft 32 in the expansion / contraction mechanism 10A.
  • the outer diameter of the shaft 32 is constant along the reference axis J, whereas the outer diameter of the shaft 32A changes along the reference axis J.
  • the outer diameter D1 near the proximal end side is smaller than the outer diameter D2 near the distal end side, and the outer diameter D1 changes in a tapered shape along the reference axis J.
  • the motor 28 rotates the advancing / retreating pipe 22 not through the shaft 32 but through the rotating shaft 60, and the shaft 32 passes through the member 62. It is fixed to the base end pipe 20.
  • a power transmission unit 36 is fitted at the tip of the shaft 32.
  • a protrusion 64a of the base body 64 is fitted in the groove 20a of the base end pipe 20, and the base end pipe 20 is non-rotatable and can move forward and backward.
  • the base body 64 fixes the motor 28 and the speed reducer 30.
  • the shaft 32 and the power transmission unit 36 are relatively relative to each other in order to advance / retreat the advancing / retreating pipe 22 with respect to the base end pipe 20. If it rotates, a propulsive force is generated, and it is sufficient that one is on the rotating side and the other is on the fixed side. Therefore, the motor 28 rotates one of the shaft 32 and the advancing / retreating pipe 22, and the base end pipe 20 or the base body 64 holds the other of the shaft 32 and the advancing / retreating pipe 22 non-rotatably and freely advancing / retreating along the reference axis J. You just have to do it.
  • the expansion / contraction mechanism 10E includes the base end pipe 20 and the advancing / retreating pipe 22 in the above-mentioned expansion / contraction mechanism 10A, but the base end pipe 20 has a groove 20a.
  • the advancing / retreating pipe 22 does not have a protrusion 24a that engages with the groove 20a.
  • Such a telescopic mechanism 10E forms a triangular link mechanism together with the main body and the tailgate 14 of the vehicle 12 in the same manner as the telescopic mechanism 10B described above.
  • the vehicle 12 and the tailgate 14 function as a base body that holds the advancing / retreating pipe 22 with respect to the motor 28 so as to be non-rotatable and advancing / retreating along the reference axis J. Therefore, the advancing / retreating pipe 22 does not rotate around the reference axis J, and can advance / retreat with respect to the base end pipe 20 by receiving the power of the motor 28 from the power transmission unit 36.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be freely changed without departing from the gist of the present invention.
  • Base end end 18 Tip end (tip spring receiving part) 20 Base end pipe (base body) 22,72 Advance / retreat pipe 28 motor (drive source) 32, 32A Shaft 34 1st bearing 36,80 Power transmission unit 38 2nd bearing 40 Spring bearing (base end spring receiving part) 42 Spring 44,86 Roller holder 46,46A, 88 Roller 48 Roller shaft 50bb, 52bb Spring (pressing means) 64 Base body 82 Spring guide (support cylinder) J reference axis ⁇ tilt angle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

Provided is an extension and contraction mechanism that enables cost reduction with a convenient mechanism. An extension and contraction mechanism (10) is provided with: a shaft (32) and a back-and-forth pipe (22) disposed coaxially with respect to a reference axis line (J); a motor (28) that rotates the shaft (32); a base-end pipe (20) that holds the back-and-forth pipe (22) non-rotatably and movably back and forth along the reference axis line (J); a plurality of rollers (46) disposed in an inner cavity of the back-and-forth pipe (22); and a roller holder (44) that rotates integrally with the shaft (32) and holds a plurality of rollers (88) rotatably. Each of the plurality of rollers (46) is brought into contact with an outer peripheral face of the shaft (32), and is held by the roller holder (44) such that a central axis thereof forms an inclined angle θ with respect to the reference axis line (J). At least one of an outer peripheral face of the roller (46) and the outer peripheral face of the shaft (32) is an elastic body, and at least one thereof has been subjected to a non-slip treatment.

Description

伸縮機構および伸縮機構製造方法Telescopic mechanism and telescopic mechanism manufacturing method
 本発明は伸縮機構および伸縮機構製造方法に関する。 The present invention relates to an expansion / contraction mechanism and a method for manufacturing an expansion / contraction mechanism.
 伸縮機構は、車両のテールゲート駆動装置やロボットなどに利用されている。車両のテールゲート駆動装置は伸縮動作によってテールゲートを自動的に開閉する。テールゲート駆動装置として用いられる伸縮機構は、本体に対して搖動可能に接続された基端側のカバー管と、テールゲートに対して搖動可能に接続されたハウジング管とを備え、一方が他方に対して進退することにより全体的には伸縮をしてテールゲートの開閉を行っている。カバー管とハウジング管との進退にはモータおよびスピンドルが用いられている(例えば、特許文献1、特許文献2参照)。 The telescopic mechanism is used in vehicle tailgate drive devices and robots. The tailgate drive of the vehicle automatically opens and closes the tailgate by expanding and contracting. The telescopic mechanism used as a tailgate drive includes a base end side cover tube oscillatingly connected to the body and a housing tube oscillatingly connected to the tailgate, one on the other. On the other hand, by advancing and retreating, the tailgate is opened and closed by expanding and contracting as a whole. A motor and a spindle are used for advancing and retreating the cover tube and the housing tube (see, for example, Patent Document 1 and Patent Document 2).
 モータの回転は減速機構で減速し、直接又は中間部材を介してリードスクリューに伝達される。リードスクリュー上には回転不能かつ軸方向に進退自在なナットが螺合されている。ナットはリードスクリューの回転により進退して該ナットに連結されたパイプを軸方向に駆動する。テールゲート駆動装置では、テールゲートを人が操作した場合などに過大な軸方向外力が加わることがあるため、外力をカットするクラッチ機構が設けられることがある。 The rotation of the motor is decelerated by the reduction mechanism and transmitted to the lead screw directly or via an intermediate member. A nut that cannot rotate and can move forward and backward in the axial direction is screwed onto the lead screw. The nut advances and retreats due to the rotation of the lead screw to drive the pipe connected to the nut in the axial direction. In the tailgate drive device, an excessive axial external force may be applied when the tailgate is operated by a person, so that a clutch mechanism for cutting the external force may be provided.
特許第4430044号公報Japanese Patent No. 4430044 特許第6009094号公報Japanese Patent No. 6009094
 上記のような伸縮機構では、リードスクリューとナットの噛合いの角度のずれや、リードスクリューの直線度によってナットとスクリュー間の抵抗が増えて想定された推進力が得られなくなる懸念があるため、高精度な部品と精密な組み立てとが必要であり、コスト高となっている。 With the expansion and contraction mechanism as described above, there is a concern that the resistance between the nut and the screw will increase due to the deviation of the meshing angle between the lead screw and the nut and the linearity of the lead screw, and the expected propulsive force cannot be obtained. High-precision parts and precise assembly are required, resulting in high costs.
 本発明は、上記の課題に鑑みてなされたものであって、簡便な機構で低コストを実現することのできる伸縮機構および伸縮機構製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an expansion / contraction mechanism and a method for manufacturing an expansion / contraction mechanism that can realize a low cost with a simple mechanism.
 上述した課題を解決し、目的を達成するために、本発明にかかる伸縮機構は、基準軸線に対して同軸上に設けられたシャフトおよび進退パイプと、前記シャフトおよび前記進退パイプのうち一方を回転させる駆動源と、他方を回転不能かつ前記基準軸線に沿って進退自在に保持するベース体と、前記進退パイプの内腔部に複数設けられたローラと、前記進退パイプと一体的に回転し、複数の前記ローラを回転自在に保持するローラホルダと、を備え、複数の前記ローラは、それぞれ前記シャフトの外周面に当接し、中心軸が前記基準軸線に対して傾斜角を有するように前記ローラホルダによって保持されていることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the expansion / contraction mechanism according to the present invention rotates one of the shaft and the advancing / retreating pipe provided coaxially with the reference axis and the shaft and the advancing / retreating pipe. The drive source to be driven, the base body that holds the other non-rotatably and freely advancing and retreating along the reference axis, a plurality of rollers provided in the lumen portion of the advancing and retreating pipe, and the advancing and retreating pipe are integrally rotated. A roller holder for rotatably holding the plurality of rollers is provided, and the plurality of rollers are in contact with the outer peripheral surface of the shaft, respectively, and the rollers have an inclination angle with respect to the reference axis. It is characterized in that it is held by a holder.
 前記ローラの外周面と前記シャフトの外周面のうち少なくとも一方が弾性体であってもよい。 At least one of the outer peripheral surface of the roller and the outer peripheral surface of the shaft may be an elastic body.
 前記ローラの外周面と前記シャフトの外周面のうち少なくとも一方の表面にすべり止め処理がなされていてもよい。 A non-slip treatment may be applied to at least one surface of the outer peripheral surface of the roller and the outer peripheral surface of the shaft.
 前記ローラホルダは、複数の前記ローラを前記シャフトの外周面に対して弾性的に押圧させる押圧手段を備えていてもよい。 The roller holder may include a pressing means for elastically pressing a plurality of the rollers against the outer peripheral surface of the shaft.
 前記ローラは最大直径よりも軸方向長さが大きく、中心部が最大直径部であり軸方向に沿って両側に向かって小径となる形状であってもよい。 The roller may have a shape in which the axial length is larger than the maximum diameter, the central portion is the maximum diameter portion, and the diameter is small toward both sides along the axial direction.
 複数の前記ローラは、前記基準軸線を中心とした周方向に沿って等間隔に並列され、隣接するもの同士が前記基準軸線に沿った方向について互いに重なり合うように設けられていてもよい。 The plurality of rollers may be arranged in parallel at equal intervals along the circumferential direction centered on the reference axis, and adjacent rollers may be provided so as to overlap each other in the direction along the reference axis.
 一端に車両のテールゲートに対して搖動可能に接続される基端エンド部を備え、他端に前記車両の本体に対して搖動可能に接続される先端エンド部を備えていてもよい。 One end may be provided with a base end end portion that is swingably connected to the tailgate of the vehicle, and the other end may be provided with a tip end portion that is swingably connected to the main body of the vehicle.
 前記シャフトは、前記基準軸線に沿って内径が変化していてもよい。 The inner diameter of the shaft may change along the reference axis.
 前記シャフトと前記進退パイプとが前記基準軸線に沿って離間する方向に弾性付勢するスプリングを備えていてもよい。 A spring may be provided that elastically biases the shaft and the advancing / retreating pipe in a direction in which the shaft and the advancing / retreating pipe are separated from each other along the reference axis.
 前記進退パイプと前記スプリングとの間に、前記スプリングを内面から支持する支持筒を備えていてもよい。 A support cylinder for supporting the spring from the inner surface may be provided between the advancing / retreating pipe and the spring.
 また、本発明にかかる伸縮機構製造方法は、上記の伸縮機構を製造する伸縮機構製造方法であって、前記ローラホルダに対して複数の前記ローラを装着した動力伝達ユニットを前記シャフトに固定する工程と、前記進退パイプの基端側に、前記スプリングの基端部を支持する基端バネ受け部を設ける工程と、前記基端バネ受け部が設けられた前記進退パイプの基端側を前記動力伝達ユニットに被せる工程と、前記進退パイプの先端側から前記スプリングを内部に挿入する工程と、前記スプリングが挿入された前記進退パイプの先端に対して、前記スプリングの先端部を支持する先端バネ受け部を固定する工程と、を有することを特徴とする。 Further, the expansion / contraction mechanism manufacturing method according to the present invention is a expansion / contraction mechanism manufacturing method for manufacturing the expansion / contraction mechanism, and is a step of fixing a power transmission unit having a plurality of the rollers mounted on the roller holder to the shaft. A step of providing a proximal spring receiving portion for supporting the proximal end portion of the spring on the proximal end side of the advancing / retreating pipe, and the power of the proximal end side of the advancing / retreating pipe provided with the proximal spring receiving portion. A step of covering the transmission unit, a step of inserting the spring into the inside from the tip side of the advancing / retreating pipe, and a tip spring receiver that supports the tip of the spring with respect to the tip of the advancing / retreating pipe into which the spring is inserted. It is characterized by having a step of fixing the portion.
 本発明にかかる伸縮機構および伸縮機構製造方法では、基準軸線に対して傾斜角を有する複数のローラがシャフトの外周面に対して適度な摩擦力を生じるように接触していればよく、高精度の構成である必要はなく簡便な機構である。つまり、ローラの形状、傾斜角、進退パイプの内径などの寸法誤差はある程度許容されるとともに、組み立て精度もある程度の誤差が許容され、低コストを実現することができる。 In the expansion / contraction mechanism and the expansion / contraction mechanism manufacturing method according to the present invention, it is sufficient that a plurality of rollers having an inclination angle with respect to the reference axis are in contact with each other so as to generate an appropriate frictional force with respect to the outer peripheral surface of the shaft, and the accuracy is high. It is a simple mechanism that does not need to have the above configuration. That is, dimensional errors such as the shape of the roller, the inclination angle, and the inner diameter of the advancing / retreating pipe are allowed to some extent, and the assembly accuracy is also allowed to some extent, so that low cost can be realized.
図1は、第1の実施形態にかかる伸縮機構および該伸縮機構が搭載された車両を示す斜視図である。FIG. 1 is a perspective view showing a telescopic mechanism according to the first embodiment and a vehicle equipped with the telescopic mechanism. 図2は、第1の実施形態にかかる伸縮機構であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。2A and 2B are expansion and contraction mechanisms according to the first embodiment, FIG. 2A is a perspective view showing a stretched state, and FIG. 2B is a perspective view showing a contracted state. 図3は、基端パイプと先端パイプとの接続部分の一部断面斜視図である。FIG. 3 is a partial cross-sectional perspective view of the connection portion between the base end pipe and the tip end pipe. 図4は、第1の実施形態にかかる伸縮機構の断面側面図である。FIG. 4 is a cross-sectional side view of the expansion / contraction mechanism according to the first embodiment. 図5は、第1の実施形態にかかる伸縮機構における内部機構の斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。5A and 5B are perspective views of an internal mechanism in the expansion / contraction mechanism according to the first embodiment, FIG. 5A is a perspective view showing a stretched state, and FIG. 5B is a perspective view showing a contracted state. 図6は、第1の実施形態にかかる伸縮機構の内部機構における動力伝達ユニットおよびその周辺の斜視図である。FIG. 6 is a perspective view of the power transmission unit and its periphery in the internal mechanism of the expansion / contraction mechanism according to the first embodiment. 図7は、図7は、図6に示す内部機構における動力伝達ユニットの周辺を拡大した斜視図である。7 is an enlarged perspective view of the periphery of the power transmission unit in the internal mechanism shown in FIG. 6. FIG. 図8は、図6に示す内部機構における動力伝達ユニットの周辺を拡大した側面図である。FIG. 8 is an enlarged side view of the periphery of the power transmission unit in the internal mechanism shown in FIG. 図9は、第1の実施形態における動力伝達ユニットの一部分解斜視図である。FIG. 9 is a partially exploded perspective view of the power transmission unit according to the first embodiment. 図10は、第1の実施形態にかかる伸縮機構の内部機構における動力伝達ユニットおよびその周辺の断面側面図である。FIG. 10 is a cross-sectional side view of the power transmission unit and its periphery in the internal mechanism of the expansion / contraction mechanism according to the first embodiment. 図11は、第1の実施形態における動力伝達ユニットにおける6つのローラと進退パイプを基準軸線の方向から見た図であり、(a)はその第1例を示す図であり、(b)はその第2例を示す図である。11A and 11B are views of the six rollers and the advancing / retreating pipe in the power transmission unit according to the first embodiment as viewed from the direction of the reference axis, FIG. 11A is a diagram showing the first example thereof, and FIG. 11B is a diagram showing the first example thereof. It is a figure which shows the 2nd example. 図12は、変形例にかかる動力伝達ユニットの一部分解斜視図である。FIG. 12 is a partially exploded perspective view of the power transmission unit according to the modified example. 図13は、第1の実施形態にかかる伸縮機構の製造方法のフローチャートである。FIG. 13 is a flowchart of a method of manufacturing the expansion / contraction mechanism according to the first embodiment. 図14は、第2の実施形態にかかる伸縮機構を示す側面模式断面図である。FIG. 14 is a schematic side sectional view showing the expansion / contraction mechanism according to the second embodiment. 図15は、第2の実施形態にかかる伸縮機構の断面側面図であるFIG. 15 is a cross-sectional side view of the expansion / contraction mechanism according to the second embodiment. 図16は、第2の実施形態にかかる伸縮機構の分解斜視図である。FIG. 16 is an exploded perspective view of the expansion / contraction mechanism according to the second embodiment. 図17は、第2の実施形態にかかる伸縮機構の先端部を示す斜視図である。FIG. 17 is a perspective view showing a tip end portion of the expansion / contraction mechanism according to the second embodiment. 図18は、第2の実施形態にかかる伸縮機構における内部機構の斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。18A and 18B are perspective views of an internal mechanism in the expansion / contraction mechanism according to the second embodiment, FIG. 18A is a perspective view showing a stretched state, and FIG. 18B is a perspective view showing a contracted state. 図19は、第2の実施形態における動力伝達ユニットおよびその関連部材を示す分解斜視図である。FIG. 19 is an exploded perspective view showing the power transmission unit and its related members in the second embodiment. 図20は、第2の実施形態における動力伝達ユニットおよびその関連部材を基準軸線の方向から見た断面図である。FIG. 20 is a cross-sectional view of the power transmission unit and its related members in the second embodiment as viewed from the direction of the reference axis. 図21は、第2の実施形態におけるシャフト、ローラホルダおよびローラの側面図である。FIG. 21 is a side view of the shaft, the roller holder, and the rollers according to the second embodiment. 図22は、第2の実施形態における動力伝達ユニットおよびその関連部材を示す側面断面図である。FIG. 22 is a side sectional view showing the power transmission unit and its related members in the second embodiment. 図23-1は、第3の実施形態にかかる伸縮機構の模式断面側面図である。FIG. 23-1 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the third embodiment. 図23-2は、第4の実施形態にかかる伸縮機構の模式断面側面図である。FIG. 23-2 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the fourth embodiment. 図23-3は、第5の実施形態にかかる伸縮機構の模式断面側面図である。FIG. 23-3 is a schematic cross-sectional side view of the expansion / contraction mechanism according to the fifth embodiment.
 以下に、本発明にかかる伸縮機構および伸縮機構製造方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the expansion / contraction mechanism and the expansion / contraction mechanism manufacturing method according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
 図1は、本発明の実施形態にかかる伸縮機構10および該伸縮機構10が搭載された車両12を示す斜視図である。図1に示すように、伸縮機構10は車両12のテールゲート14の開閉を自動で行うためのものである。伸縮機構10はテールゲート14の左右に1本ずつ、合計2本設けられている。テールゲート14はヒンジ14aによって車両12の本体に対して開閉可能となっている。2本の伸縮機構10は同構造でかつ同期して動作し、伸びることによってテールゲート14を開扉し(図1に示す状態)、縮むことによってテールゲート14を閉扉する。すなわち、一対の伸縮機構10は、車両12においてテールゲート駆動装置となっている。伸縮機構10は、例えばユーザのボタン操作に基づき、制御部の作用下に伸縮を行う。伸縮機構10が開閉する車両のドアは、テールゲート14以外に、トンランクリッドやボンネットなどでもよい。テールゲート14の開閉を行う伸縮機構10は1本または3本以上でもよい。伸縮機構10は車両12における用途に限られず、例えばロボットアームなど様々な用途に用いることができる。 FIG. 1 is a perspective view showing an expansion / contraction mechanism 10 according to an embodiment of the present invention and a vehicle 12 equipped with the expansion / contraction mechanism 10. As shown in FIG. 1, the expansion / contraction mechanism 10 is for automatically opening and closing the tailgate 14 of the vehicle 12. A total of two telescopic mechanisms 10 are provided, one on each side of the tailgate 14. The tailgate 14 can be opened and closed with respect to the main body of the vehicle 12 by the hinge 14a. The two telescopic mechanisms 10 have the same structure and operate synchronously, and open the tailgate 14 by extending (the state shown in FIG. 1) and close the tailgate 14 by contracting. That is, the pair of expansion / contraction mechanisms 10 are tailgate drive devices in the vehicle 12. The expansion / contraction mechanism 10 expands / contracts under the action of the control unit based on, for example, a user's button operation. The door of the vehicle that the telescopic mechanism 10 opens and closes may be a ton rank lid, a bonnet, or the like, in addition to the tailgate 14. The number of telescopic mechanisms 10 for opening and closing the tailgate 14 may be one or three or more. The expansion / contraction mechanism 10 is not limited to the application in the vehicle 12, and can be used in various applications such as a robot arm.
 伸縮機構10は長尺形状であって、それぞれ一端に車両12のテールゲート14に対して搖動可能に接続される基端エンド部16を備え、他端に車両12の本体に対して搖動可能に接続される先端エンド部(先端バネ受け部)18を備える。基端エンド部16および先端エンド部18は、相手部材に対して搖動可能となるように軸孔が設けられている。伸縮機構10は車両12において逆向きに設けられていてもよい。なお、本願で「基端」および「先端」とは説明の便宜上で区別している呼称である。 The telescopic mechanism 10 has a long shape, and each has a base end end portion 16 that is swingably connected to the tailgate 14 of the vehicle 12 at one end, and swingable to the main body of the vehicle 12 at the other end. The tip end portion (tip spring receiving portion) 18 to be connected is provided. The base end end portion 16 and the tip end end portion 18 are provided with shaft holes so as to be able to swing with respect to the mating member. The expansion / contraction mechanism 10 may be provided in the vehicle 12 in the opposite direction. In addition, in this application, "base end" and "tip" are names which are distinguished for convenience of explanation.
 図1に示す伸縮機構10としては、具体的には以下に説明する第1~第4の実施例にかかる伸縮機構10A~10Dが適用可能である。以下、順に説明する。 As the expansion / contraction mechanism 10 shown in FIG. 1, specifically, the expansion / contraction mechanisms 10A to 10D according to the first to fourth embodiments described below can be applied. Hereinafter, they will be described in order.
(第1の実施形態)
 図2は、第1の実施形態にかかる伸縮機構10Aの斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。図2(a)に示すように、伸縮機構10Aは外観上、基端パイプ(ベース体)20と進退パイプ22とが同軸上に配列されており、基端パイプ20の基端側が基端エンド部16で塞がれ、進退パイプ22の先端側が先端エンド部18で塞がれている。基端エンド部16は基端パイプ20と固定され、先端エンド部18は進退パイプ22と固定されている。進退パイプ22は基端パイプ20よりもやや大径である。伸縮機構10Aが伸びた状態では、進退パイプ22の基端部付近が基端パイプ20の先端部付近の周囲を覆っている。図2(b)に示すように、伸縮機構10Aが縮んだ状態では、基端パイプ20のほとんどは進退パイプ22の中に入り込んでいる。伸縮機構10Aは伸びた状態と縮んだ状態とでは、長さ比が約1.5倍程度である。進退パイプ22は、基端側の第1パイプ24と先端側の第2パイプ26とがジョイント27で接続された直列構造となっている。
(First Embodiment)
2A and 2B are perspective views of the expansion / contraction mechanism 10A according to the first embodiment, FIG. 2A is a perspective view showing a stretched state, and FIG. 2B is a perspective view showing a contracted state. As shown in FIG. 2A, in appearance, the expansion / contraction mechanism 10A has the base end pipe (base body) 20 and the advancing / retreating pipe 22 arranged coaxially, and the base end side of the base end pipe 20 is the base end end. It is closed by the portion 16, and the tip end side of the advancing / retreating pipe 22 is closed by the tip end portion 18. The base end end portion 16 is fixed to the base end pipe 20, and the tip end end portion 18 is fixed to the advancing / retreating pipe 22. The advancing / retreating pipe 22 has a slightly larger diameter than the base end pipe 20. In the extended state of the telescopic mechanism 10A, the vicinity of the base end portion of the advancing / retreating pipe 22 covers the vicinity of the vicinity of the tip end portion of the base end pipe 20. As shown in FIG. 2B, when the expansion / contraction mechanism 10A is contracted, most of the base end pipe 20 is inserted into the advancing / retreating pipe 22. The length ratio of the expansion / contraction mechanism 10A is about 1.5 times between the expanded state and the contracted state. The advancing / retreating pipe 22 has a series structure in which the first pipe 24 on the proximal end side and the second pipe 26 on the distal end side are connected by a joint 27.
 図3は、基端パイプ20と進退パイプ22との接続部分の一部断面斜視図である。図3に示すように、基端パイプ20の外周面には、基準軸線Jに沿って浅い溝20aが形成されている。溝20aは矩形断面となっている。溝20aは90°間隔で4つ設けられているが、図3ではそのうち2つが示されている。 FIG. 3 is a partial cross-sectional perspective view of the connection portion between the base end pipe 20 and the advancing / retreating pipe 22. As shown in FIG. 3, a shallow groove 20a is formed on the outer peripheral surface of the base end pipe 20 along the reference axis J. The groove 20a has a rectangular cross section. Four grooves 20a are provided at 90 ° intervals, and two of them are shown in FIG.
 第1パイプ24の基端部には内側にやや突出して溝20aに嵌まり込む突起24aが形成されている。突起24aは溝20aに合わせて矩形断面に形成されており、例えばプレス加工で形成される。突起24aは溝20aに合わせて90°間隔で4つ設けられている。図3ではそのうち2つが示されている。基端パイプ20と第1パイプ24とはほぼ隙間なく嵌合しており、溝20aと突起24aとの周方向の係合により相対回転不能でかつ基準軸線Jに沿って相対的に進退自在となっている。 A protrusion 24a is formed at the base end of the first pipe 24 so as to slightly protrude inward and fit into the groove 20a. The protrusion 24a is formed in a rectangular cross section in accordance with the groove 20a, and is formed by, for example, pressing. Four protrusions 24a are provided at 90 ° intervals in accordance with the grooves 20a. Two of them are shown in FIG. The base end pipe 20 and the first pipe 24 are fitted to each other with almost no gap, and the groove 20a and the protrusion 24a are engaged with each other in the circumferential direction so that they cannot rotate relative to each other and can move back and forth relatively along the reference axis J. It has become.
 図4は、伸縮機構10Aの断面側面図である。図4に示すように、伸縮機構10Aにおける基端パイプ20および進退パイプ22内における内部機構の各要素は、基準軸線Jに沿って同軸上に配置されている。基端パイプ20の内部には基端側から順にモータ(駆動源)28と、減速機30と、シャフト32と、第1ベアリング34とが設けられている。モータ28は基端パイプ20の最も基端側に配置され、基端エンド部16にほぼ接している。モータ28および減速機30はカシメ部20b(図2(a)参照)によって基端パイプ20に固定されている。減速機30は、例えば遊星歯車式である。モータ28の回転は減速機30で減速されてシャフト32に伝達される。第1ベアリング34は、基端パイプ20におけるほぼ先端に設けられており、シャフト32を枢支している。第1ベアリング34によりシャフト32の回転ブレが防止できる。シャフト32は減速機30の近傍においてさらに別のベアリングで枢支されていてもよい。シャフト32の外周面は滑り止め加工(例えばショットピーニング)がなされている。 FIG. 4 is a cross-sectional side view of the expansion / contraction mechanism 10A. As shown in FIG. 4, each element of the base end pipe 20 in the expansion / contraction mechanism 10A and the internal mechanism in the advancing / retreating pipe 22 is arranged coaxially along the reference axis J. Inside the base end pipe 20, a motor (drive source) 28, a speed reducer 30, a shaft 32, and a first bearing 34 are provided in this order from the base end side. The motor 28 is arranged on the most proximal side of the proximal pipe 20 and is substantially in contact with the proximal end portion 16. The motor 28 and the speed reducer 30 are fixed to the base end pipe 20 by a caulking portion 20b (see FIG. 2A). The speed reducer 30 is, for example, a planetary gear type. The rotation of the motor 28 is reduced by the speed reducer 30 and transmitted to the shaft 32. The first bearing 34 is provided at substantially the tip of the base end pipe 20, and pivotally supports the shaft 32. The first bearing 34 can prevent the shaft 32 from rotating. The shaft 32 may be pivotally supported by yet another bearing in the vicinity of the speed reducer 30. The outer peripheral surface of the shaft 32 is anti-slip processed (for example, shot peening).
 シャフト32は基端パイプ20よりもさらに先端側に突出しており、突出した部分には動力伝達ユニット36が嵌まり込んでいる。動力伝達ユニット36は、伸縮機構10Aが伸びた状態では第1パイプ24内の先端近傍に配置され、縮んだ状態では第1パイプ24内の基端近傍に配置される。動力伝達ユニット36については後述する。第2パイプ26の内部には基端側から順に第2ベアリング38と、バネ受座(基端バネ受け部)40と、スプリング42とが配置されている。 The shaft 32 protrudes further toward the tip side than the base end pipe 20, and the power transmission unit 36 is fitted in the protruding portion. The power transmission unit 36 is arranged near the tip end in the first pipe 24 when the expansion / contraction mechanism 10A is extended, and is arranged near the base end in the first pipe 24 when the expansion / contraction mechanism 10A is contracted. The power transmission unit 36 will be described later. Inside the second pipe 26, a second bearing 38, a spring receiving seat (base end spring receiving portion) 40, and a spring 42 are arranged in order from the base end side.
 図5は、伸縮機構10Aにおける内部機構の斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。図5では基端パイプ20を省略しているが、進退パイプ22を仮想線で示している。スプリング42の基端部はバネ受座40で支持されており、先端部は先端エンド部18で支持されている。スプリング42は、図5(a)に示すように、伸縮機構10Aが伸びた状態では自然長またはやや圧縮された状態となっており、図5(b)に示すように、伸縮機構10Aが縮んだ状態では相当に圧縮されている。スプリング42は、シャフト32と進退パイプ22とが基準軸線Jに沿って離間する方向に弾性付勢する。第2ベアリング38が設けられていることから、動力伝達ユニット36の回転はバネ受座40およびスプリング42には伝達されず、これらが回転することはない。第2ベアリングはスラストベアリングである。 5A and 5B are perspective views of the internal mechanism of the telescopic mechanism 10A, FIG. 5A is a perspective view showing a stretched state, and FIG. 5B is a perspective view showing a contracted state. Although the base end pipe 20 is omitted in FIG. 5, the advancing / retreating pipe 22 is shown by a virtual line. The base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18. As shown in FIG. 5A, the spring 42 has a natural length or a slightly compressed state when the expansion / contraction mechanism 10A is extended, and the expansion / contraction mechanism 10A contracts as shown in FIG. 5B. In the state, it is considerably compressed. The spring 42 is elastically biased in a direction in which the shaft 32 and the advancing / retreating pipe 22 are separated from each other along the reference axis J. Since the second bearing 38 is provided, the rotation of the power transmission unit 36 is not transmitted to the spring receiving seat 40 and the spring 42, and these do not rotate. The second bearing is a thrust bearing.
 図6は、伸縮機構10Aの内部機構における動力伝達ユニット36およびその周辺の斜視図である。図7は、図6に示す内部機構における動力伝達ユニット36の周辺を拡大した斜視図である。図8は、図6に示す内部機構における動力伝達ユニット36の周辺を拡大した側面図である。 FIG. 6 is a perspective view of the power transmission unit 36 and its surroundings in the internal mechanism of the telescopic mechanism 10A. FIG. 7 is an enlarged perspective view of the periphery of the power transmission unit 36 in the internal mechanism shown in FIG. FIG. 8 is an enlarged side view of the periphery of the power transmission unit 36 in the internal mechanism shown in FIG.
 基端パイプ20の先端側は第1ベアリング34の外周部に対してカシメ部22cによって固定されている。これにより、第1ベアリング34の内輪、シャフト32は回転可能かつ軸方向に進退不能となっている。カシメ部22cは各溝22aに設けられている。 The tip end side of the base end pipe 20 is fixed to the outer peripheral portion of the first bearing 34 by a caulking portion 22c. As a result, the inner ring and shaft 32 of the first bearing 34 are rotatable and cannot move forward or backward in the axial direction. The caulking portion 22c is provided in each groove 22a.
 第1ベアリング34の外周面には、先端部の低い環状突起34bと、軸方向の短いサポート突起34cとが設けられている。環状突起34bは、進退パイプ22が最も先端側に変位したときに突起24a(図3参照)が当接して規制され、進退パイプ22の抜け止めとなる。サポート突起34cは、90°間隔に4つ設けられているが、図6ではそのうち2つを示している。サポート突起34cは、周方向について4つの溝22aの各中間位置に設けられている。環状突起34bとサポート突起34cとは同じ高さであり、第1パイプ24に対して内周面から当接することにより支持する。シャフト32は第1ベアリング34の内孔34aを通って先端側に突出しており、上記のとおり突出した部分に動力伝達ユニット36が嵌め込まれている。 On the outer peripheral surface of the first bearing 34, an annular protrusion 34b having a low tip portion and a support protrusion 34c having a short axial direction are provided. When the advancing / retreating pipe 22 is displaced to the most distal end side, the annular protrusion 34b is regulated by contact with the protrusion 24a (see FIG. 3) to prevent the advancing / retreating pipe 22 from coming off. Four support protrusions 34c are provided at 90 ° intervals, and two of them are shown in FIG. The support protrusions 34c are provided at intermediate positions of the four grooves 22a in the circumferential direction. The annular protrusion 34b and the support protrusion 34c have the same height and are supported by abutting the first pipe 24 from the inner peripheral surface. The shaft 32 protrudes toward the tip end through the inner hole 34a of the first bearing 34, and the power transmission unit 36 is fitted in the protruding portion as described above.
 図9は、動力伝達ユニット36の一部分解斜視図である。動力伝達ユニット36は、ローラホルダ44と、複数のローラ46と、ローラ46に対応したローラ軸48とを備える。動力伝達ユニット36にはローラ46が6つ設けられているが、図9では理解しやすいように3つを実線で示し、さらに1つを仮想線で示している。3つの実線のローラ46のうち1つをローラホルダ44から分解した状態で示している。6つのローラ46はそれぞれローラ軸48に枢支されるが、図9では理解しやすいように4本だけを示し、そのうちの1つをローラホルダ44から分解した状態で示している。ローラホルダ44が備えるローラ46は6つに限らず、例えば3~12でもよい。動力伝達ユニット36はシャフト32に対して複数が軸方向に並列して設けられていてもよい。 FIG. 9 is a partially exploded perspective view of the power transmission unit 36. The power transmission unit 36 includes a roller holder 44, a plurality of rollers 46, and a roller shaft 48 corresponding to the rollers 46. The power transmission unit 36 is provided with six rollers 46, but in FIG. 9, three are shown by solid lines and one is shown by a virtual line for easy understanding. One of the three solid rollers 46 is shown in a disassembled state from the roller holder 44. Each of the six rollers 46 is pivotally supported by the roller shaft 48, but only four are shown in FIG. 9 for easy understanding, and one of them is shown in a state of being disassembled from the roller holder 44. The number of rollers 46 included in the roller holder 44 is not limited to six, and may be, for example, 3 to 12. A plurality of power transmission units 36 may be provided in parallel with respect to the shaft 32 in the axial direction.
 ローラホルダ44はジョイント27の突起27bを介して進退パイプ22に回転不能となっている。ローラホルダ44は6つのローラ46を回転自在に保持する。ローラホルダ44は軸方向に離間した2つのアーム突出円盤50,52から構成されており、これら間に6つのローラ46が設けられている。ローラホルダ44は1つの部品で構成されていてもよく、例えばアーム突出円盤50とアーム突出円盤52とがそれぞれ外周部が筒体で接続されていてもよい。 The roller holder 44 cannot rotate to the advancing / retreating pipe 22 via the protrusion 27b of the joint 27. The roller holder 44 rotatably holds the six rollers 46. The roller holder 44 is composed of two arm projecting disks 50 and 52 separated in the axial direction, and six rollers 46 are provided between them. The roller holder 44 may be composed of one component, and for example, the arm protruding disk 50 and the arm protruding disk 52 may be connected to each other by a tubular body at the outer peripheral portion thereof.
 基端側のアーム突出円盤50は、中央円盤50aと、該中央円盤50aから突出する6つのアーム50bとを備える。中央円盤50aの中心にはシャフト32が通る孔50aaが形成されている。アーム50bは基準軸線Jの方向から見てL字形状であって、等間隔(60°)に設けられている。アーム50bは、中央円盤50aから径方向に突出する部分と、その先で図9の反時計方向に屈曲する部分とを備え、先端近傍には孔50baが形成されている。アーム50bで反時計方向に屈曲している部分は先端側にやや傾いている。 The arm protruding disk 50 on the base end side includes a central disk 50a and six arms 50b protruding from the central disk 50a. A hole 50aa through which the shaft 32 passes is formed in the center of the central disk 50a. The arms 50b are L-shaped when viewed from the direction of the reference axis J, and are provided at equal intervals (60 °). The arm 50b includes a portion that protrudes in the radial direction from the central disk 50a and a portion that bends counterclockwise in FIG. 9 at the tip thereof, and a hole 50ba is formed in the vicinity of the tip end. The portion of the arm 50b that is bent counterclockwise is slightly tilted toward the tip side.
 先端側のアーム突出円盤52は、中央円盤52aと、該中央円盤52aから突出する6つのアーム52bとを備える。中央円盤52aの中心にはシャフト32通る孔52aaが形成されている。つまり、シャフト32の回転は、アーム突出円盤50,52からなるローラホルダ44に対しては直接的に伝達されることはない。 The arm protruding disk 52 on the tip side includes a central disk 52a and six arms 52b protruding from the central disk 52a. A hole 52aa through which the shaft 32 passes is formed in the center of the central disk 52a. That is, the rotation of the shaft 32 is not directly transmitted to the roller holder 44 including the arm protruding disks 50 and 52.
 アーム52bは基準軸線Jの方向から見てL字形状であって、等間隔(60°)に設けられている。アーム52bはアーム50bと対称形状になっている。すなわち、アーム52bは、中央円盤52aから径方向に突出する部分と、その先で図9の時計方向に屈曲する部分とを備え、先端近傍には孔52baが形成されている。アーム52bで時計方向に屈曲している部分は基端側にやや傾いている。 The arms 52b are L-shaped when viewed from the direction of the reference axis J, and are provided at equal intervals (60 °). The arm 52b has a symmetrical shape with the arm 50b. That is, the arm 52b includes a portion that protrudes radially from the central disk 52a and a portion that bends clockwise at the tip thereof, and a hole 52ba is formed in the vicinity of the tip end. The portion of the arm 52b that is bent clockwise is slightly tilted toward the proximal end side.
 ローラ46は両端部より中央部が大径な葉巻型であり、具体的には中央の最大直径よりも軸方向長さが大きく、中心部が最大直径部であり軸方向に沿って両側に向かって小径となる形状である。ローラ46は後述する傾斜角θ(図8参照)に応じ、第1パイプ24の内周面に対して適度な面積で接触するように各部の径が設定されている。 The roller 46 is a cigar type having a larger diameter at the center than both ends. Specifically, the roller 46 has an axial length larger than the maximum diameter at the center, and the center has the maximum diameter and faces both sides along the axial direction. It has a small diameter. The diameter of each part of the roller 46 is set so as to come into contact with the inner peripheral surface of the first pipe 24 in an appropriate area according to the inclination angle θ (see FIG. 8) described later.
 ローラ46の軸方向長さは、保持されるアーム50bとアーム52bとの距離にほぼ等しい。ローラ46の中心には孔46aが形成されている。ローラ46(および後述するローラ88)は弾性体であり、例えばエラストマーやゴムなどの高分子材で構成されている。ローラ46は少なくとも表面が弾性体であるとよい。 The axial length of the roller 46 is substantially equal to the distance between the held arm 50b and the arm 52b. A hole 46a is formed in the center of the roller 46. The roller 46 (and the roller 88 described later) is an elastic body and is made of a polymer material such as an elastomer or rubber. The roller 46 may have at least an elastic surface.
 ローラ軸48は孔46aに挿入されてローラ46を回転自在に軸支する部材であり、両端にやや小径の圧入部48aが形成されている。圧入部48aの一方はアーム50bの孔50baに圧入され、他方はアーム52bの孔52baに圧入される。 The roller shaft 48 is a member that is inserted into the hole 46a to rotatably support the roller 46, and press-fitting portions 48a having a slightly smaller diameter are formed at both ends. One of the press-fitting portions 48a is press-fitted into the hole 50ba of the arm 50b, and the other is press-fitted into the hole 52ba of the arm 52b.
 アーム突出円盤50のアーム50bは時計方向に屈曲し、アーム突出円盤52のアーム52bは反時計方向に屈曲していることから、対となるアーム50bとアーム52bとの間で軸支されるローラ46は、図8に示すように、その中心軸が基準軸線Jに対して傾斜角θを有する。6つのローラ46は、基準軸線Jを中心とした周方向に沿って等間隔(60°)に並列されており、バランスが良い。また、ローラ46は隣接するもの同士が基準軸線Jに沿った方向について互いに重なり合うように密に配置されており、スペース効率がよい。 Since the arm 50b of the arm protruding disk 50 is bent clockwise and the arm 52b of the arm protruding disk 52 is bent counterclockwise, a roller pivotally supported between the paired arm 50b and the arm 52b. As shown in FIG. 8, the central axis of 46 has an inclination angle θ with respect to the reference axis J. The six rollers 46 are arranged in parallel at equal intervals (60 °) along the circumferential direction centered on the reference axis J, and are well-balanced. Further, the rollers 46 are densely arranged so that adjacent ones overlap each other in the direction along the reference axis J, which is space efficient.
 ジョイント27は、シャフト32が挿通する中心孔27aと、隣接する一対のアーム52bの間に嵌り込む回り止めの突起27bと、中央円盤27cと、基端円盤27dと、先端円盤27eとを備える。シャフト32は中心孔27a、孔52aa,50aaを通り、さらに先端側に突出している。 The joint 27 includes a central hole 27a through which the shaft 32 is inserted, a detent protrusion 27b that fits between a pair of adjacent arms 52b, a central disk 27c, a base end disk 27d, and a tip disk 27e. The shaft 32 passes through the central holes 27a and the holes 52aa and 50aa, and further projects toward the tip end side.
 図10は、伸縮機構10Aの内部機構における動力伝達ユニット36およびその周辺の断面側面図である。図10に示すように、ジョイント27の基端円盤27dには第1パイプ24が嵌め込んで固定されており、先端円盤27eには第2パイプ26が嵌め込んで固定されている。これらの固定手段は、例えばカシメ加工である。基端円盤27d、先端円盤27eの外径は、第1パイプ24、第2パイプ26の内径にほぼ等しく、中央円盤27cの外径は第1パイプ24、第2パイプ26の外径にほぼ等しい。第1パイプ24および第2パイプ26は中央円盤27cに接しており隙間がない。 FIG. 10 is a cross-sectional side view of the power transmission unit 36 and its periphery in the internal mechanism of the telescopic mechanism 10A. As shown in FIG. 10, the first pipe 24 is fitted and fixed to the base end disk 27d of the joint 27, and the second pipe 26 is fitted and fixed to the tip disk 27e. These fixing means are, for example, caulking. The outer diameters of the base end disk 27d and the tip end disk 27e are substantially equal to the inner diameters of the first pipe 24 and the second pipe 26, and the outer diameter of the central disk 27c is approximately equal to the outer diameters of the first pipe 24 and the second pipe 26. .. The first pipe 24 and the second pipe 26 are in contact with the central disk 27c and have no gap.
 図11(a)は、動力伝達ユニット36における6つのローラ46と第1パイプ24を基準軸線Jの方向から見た図である。図10および図11(a)に示すように、動力伝達ユニット36における6つのローラ46は、それぞれシャフト32の外周面に当接している。各ローラ46は第1パイプ24には当接していない。ローラ46の外周面は弾性体であり、シャフト32の外周面は滑り止め加工がなされていることから、両者の間には適度に大きい摩擦力が生じる。 FIG. 11A is a view of the six rollers 46 and the first pipe 24 in the power transmission unit 36 as viewed from the direction of the reference axis J. As shown in FIGS. 10 and 11A, the six rollers 46 in the power transmission unit 36 are in contact with the outer peripheral surface of the shaft 32, respectively. Each roller 46 is not in contact with the first pipe 24. Since the outer peripheral surface of the roller 46 is an elastic body and the outer peripheral surface of the shaft 32 is anti-slip processed, a moderately large frictional force is generated between the two.
 図11(b)は、動力伝達ユニット36におけるローラ46を変形例にかかるローラ46Aで置き換えた場合の基準軸線Jの方向から見た図である。図11(b)に示すように、ローラ46Aは両端部より中央部が小径であり、具体的には両端の最大直径よりも軸方向長さが大きく、中心部が最小直径部であり軸方向に沿って両側に向かって大径となる形状である。基準軸線Jの方向から見て、ローラ46Aの円弧輪郭はシャフト32の外周円よりもわずかに径が大きくなるように設定されている。これにより、ローラ46Aは中央の最小径付近とその近傍がシャフト32の外周面に当接し、動力伝達に適した適度な接触面積となっている。以下の説明におけるローラ46はローラ46Aを含むものとする。 FIG. 11B is a view seen from the direction of the reference axis J when the roller 46 in the power transmission unit 36 is replaced with the roller 46A according to the modified example. As shown in FIG. 11B, the roller 46A has a smaller diameter at the center than both ends, specifically, has an axial length larger than the maximum diameter at both ends, and has a minimum diameter at the center in the axial direction. It has a shape with a large diameter toward both sides along. When viewed from the direction of the reference axis J, the arc contour of the roller 46A is set so that the diameter is slightly larger than the outer peripheral circle of the shaft 32. As a result, the roller 46A has an appropriate contact area suitable for power transmission because the vicinity of the minimum diameter at the center and the vicinity thereof are in contact with the outer peripheral surface of the shaft 32. The roller 46 in the following description shall include the roller 46A.
 なお、ローラ46の外周面とシャフト32の外周面との間に適度に大きい摩擦力を発生させるためには、少なくとも一方を弾性体とすればよい。また、同様に少なくとも一方の表面にすべり止め処理がなされていれるとよい。さらには、発生する摩擦力を大きくするためには、ローラ46をシャフト32の外周面に対して弾性的に押圧させる押圧手段が設けられているとよい。このような押圧手段としては、例えば図12に示すように、アーム突出円盤50にアーム50bAを設け、アーム突出円盤52にアーム52bAを設けるとよい。アーム50bA,52bAは上記のアーム50b、52bに代わるものであり、中央円盤50a,52aとの接続部にバネ50bb,52bbを備える。バネ50bb,52bbは、周方向の溝が交互に形成されていることにより、径方向に弾性を有する。このような押圧手段としてのバネ50bb,52bbによればローラ46をシャフト32の外周面に対して好適に押圧させることができる。 In order to generate an appropriately large frictional force between the outer peripheral surface of the roller 46 and the outer peripheral surface of the shaft 32, at least one of them may be an elastic body. Similarly, it is preferable that at least one surface is anti-slip treated. Further, in order to increase the generated frictional force, it is preferable to provide a pressing means for elastically pressing the roller 46 against the outer peripheral surface of the shaft 32. As such a pressing means, for example, as shown in FIG. 12, it is preferable to provide the arm 50bA on the arm protruding disk 50 and the arm 52bA on the arm protruding disk 52. The arms 50bA and 52bA replace the above arms 50b and 52b, and are provided with springs 50bb and 52bb at the connection portions with the central disks 50a and 52a. The springs 50bb and 52bb have elasticity in the radial direction due to the alternating circumferential grooves. According to the springs 50bb and 52bb as such pressing means, the roller 46 can be suitably pressed against the outer peripheral surface of the shaft 32.
 このように伸縮機構10Aは、基準軸線Jに対して同軸上に設けられたシャフト32および進退パイプ22と、進退パイプ22を回転不能かつ基準軸線Jに沿って進退自在に保持する基端パイプ20と、進退パイプ22の内腔部に複数設けられたローラ46と、シャフト32と一体的に回転して複数のローラ46を回転自在に保持するローラホルダ44とを備える。そして複数のローラ46は、それぞれシャフト32の外周面に当接し、中心軸が基準軸線Jに対して傾斜角θ(図8参照)を有するようにローラホルダ44によって保持されている。 As described above, the expansion / contraction mechanism 10A holds the shaft 32 and the advancing / retreating pipe 22 coaxially provided with respect to the reference axis J and the advancing / retreating pipe 22 so as to be non-rotatable and freely advancing / retreating along the reference axis J. A plurality of rollers 46 provided in the cavity of the advancing / retreating pipe 22 and a roller holder 44 that rotates integrally with the shaft 32 to rotatably hold the plurality of rollers 46 are provided. Each of the plurality of rollers 46 is in contact with the outer peripheral surface of the shaft 32, and is held by the roller holder 44 so that the central axis has an inclination angle θ (see FIG. 8) with respect to the reference axis J.
 ローラ46はシャフト32の外周面に当接しており、しかも進退パイプ22は回転不能に構成されていることから、駆動源としてのモータ28が減速機30を介してシャフト32を回転させることにより、複数のローラ46はそれぞれ基準軸線Jを中心とし、シャフト32に対して相対的かつ公転的に回転するとともに、ローラ軸48を中心に自転する。ローラ46はそれぞれ基準軸線Jに対して傾斜角θを有するように配置されていることから、ローラ46が回転(公転および自転)することにより、進退パイプ22には傾斜角θに応じて軸方向の推力が加わり、該進退パイプ22は基準軸線Jに沿って進退する。進退パイプ22の進退方向はモータ28の回転方向による。モータ28の回転を停止させると進退パイプ22の進退が停止する。シャフト32とローラ46との間には摩擦力が生じていることから、進退パイプ22はブレーキ機構がなくてもその位置が保持される。つまり、動力伝達ユニット36は進退パイプ22に対して駆動力と保持力とを付与することができる。 Since the roller 46 is in contact with the outer peripheral surface of the shaft 32 and the advancing / retreating pipe 22 is configured to be non-rotatable, the motor 28 as a drive source rotates the shaft 32 via the speed reducer 30. Each of the plurality of rollers 46 rotates about the reference axis J in a relative and revolving manner with respect to the shaft 32, and rotates around the roller shaft 48. Since each of the rollers 46 is arranged so as to have an inclination angle θ with respect to the reference axis J, the roller 46 rotates (revolves and rotates), so that the advance / retreat pipe 22 has an axial direction according to the inclination angle θ. The thrust of the above is applied, and the advancing / retreating pipe 22 advances / retreats along the reference axis J. The advancing / retreating direction of the advancing / retreating pipe 22 depends on the rotation direction of the motor 28. When the rotation of the motor 28 is stopped, the advance / retreat of the advance / retreat pipe 22 is stopped. Since a frictional force is generated between the shaft 32 and the roller 46, the position of the advancing / retreating pipe 22 is maintained even if there is no braking mechanism. That is, the power transmission unit 36 can apply a driving force and a holding force to the advancing / retreating pipe 22.
 伸縮機構10Aでは、傾斜角θを大きく設定することにより伸縮速度が大きくなるが駆動力は小さくなり、逆に傾斜角θを小さく設定することにより伸縮速度が小さくなるが駆動力は大きくなる。このように伸縮機構10Aにおける傾斜角θは、概念的にはネジ機構の進み角に相当する。伸縮機構10Aの進退量は、ポジションスイッチやセンサの信号に基づいてモータ28の回転を制御して調整してもよい。 In the expansion / contraction mechanism 10A, by setting the inclination angle θ large, the expansion / contraction speed increases but the driving force decreases, and conversely, by setting the inclination angle θ small, the expansion / contraction speed decreases but the driving force increases. As described above, the inclination angle θ in the expansion / contraction mechanism 10A conceptually corresponds to the advance angle of the screw mechanism. The amount of advance / retreat of the expansion / contraction mechanism 10A may be adjusted by controlling the rotation of the motor 28 based on the signal of the position switch or the sensor.
 ローラ46の外周面は弾性体であり、シャフト32の外周面には滑り止め加工がなされていることから両者の間の摩擦力は大きく、シャフト32の回転が効率的に動力伝達ユニット36および進退パイプ22に伝達される。一方で、ローラ46の外周面と第1パイプ24の内周面との間では多少の滑りが生じても伸縮機構10Aの進退動作に影響はない。 Since the outer peripheral surface of the roller 46 is an elastic body and the outer peripheral surface of the shaft 32 is anti-slip processed, the frictional force between the two is large, and the rotation of the shaft 32 efficiently advances and retreats to the power transmission unit 36. It is transmitted to the pipe 22. On the other hand, even if some slip occurs between the outer peripheral surface of the roller 46 and the inner peripheral surface of the first pipe 24, the advancing / retreating operation of the expansion / contraction mechanism 10A is not affected.
 シャフト32の回転を推力に変換して進退パイプ22に伝達するのは動力伝達ユニット36である。動力伝達ユニット36は、傾斜角θの向きである複数のローラ46がシャフト32の外周面に対して適度な摩擦力を生じるように接触していればよく、リードスクリューとナットの噛合いのような高精度の構成である必要はなく簡便な機構である。つまり、ローラ46の形状、傾斜角θ、シャフト32の外径、シャフト32の直線度などの誤差はある程度許容されるとともに、動力伝達ユニット36や伸縮機構10Aの全体としての組み立て精度もある程度の誤差が許容され、低コストを実現することができる。 It is the power transmission unit 36 that converts the rotation of the shaft 32 into thrust and transmits it to the advance / retreat pipe 22. The power transmission unit 36 may be in contact with a plurality of rollers 46 in the direction of the inclination angle θ so as to generate an appropriate frictional force with respect to the outer peripheral surface of the shaft 32, as if the lead screw and the nut are engaged. It is a simple mechanism that does not need to have a highly accurate configuration. That is, errors such as the shape of the roller 46, the inclination angle θ, the outer diameter of the shaft 32, and the linearity of the shaft 32 are allowed to some extent, and the assembly accuracy of the power transmission unit 36 and the expansion / contraction mechanism 10A as a whole also has some errors. Is acceptable and low cost can be realized.
 また、従来技術にかかるリードスクリューとナットとの噛合いによる機構では、モータ回転が逆転したとき、いわゆるバックラッシュの影響によって金属面同士が衝突して音が生じるが、伸縮機構10Aにおける動力伝達部分では、ローラ46が常時シャフト32の外周面に当接していることから逆転時にも音が生じることがなく、特段の緩衝手段や消音手段を設ける必要がない。バックラッシュがないことから、進退パイプ22は基端パイプ20に対して軸方向のがたつきがない。 Further, in the mechanism by meshing the lead screw and the nut according to the prior art, when the motor rotation is reversed, the metal surfaces collide with each other due to the influence of so-called backlash and a sound is generated. Since the roller 46 is always in contact with the outer peripheral surface of the shaft 32, no sound is generated even during reverse rotation, and it is not necessary to provide a special cushioning means or sound deadening means. Since there is no backlash, the advancing / retreating pipe 22 has no axial rattling with respect to the base end pipe 20.
 伸縮機構10Aに対して過大な軸方向外力が加わった場合(例えば、人手によりテールゲート14を開扉または閉扉させようとした場合)、ローラ46と第1パイプ24の内周面との当接部が摩擦保持の限度を超えて両者の間で滑りが生じる。そうすると、特段のクラッチ機構がなくとも動力伝達ユニット36、シャフト32およびモータ28に外力が伝達されることがない。したがって、動力伝達ユニット36が変形し、シャフト32が座屈しまたはモータ28に逆起電力が生じることがない。 When an excessive axial external force is applied to the expansion / contraction mechanism 10A (for example, when the tailgate 14 is manually opened or closed), the roller 46 comes into contact with the inner peripheral surface of the first pipe 24. The portion exceeds the limit of friction holding and slippage occurs between the two. Then, the external force is not transmitted to the power transmission unit 36, the shaft 32, and the motor 28 even if there is no special clutch mechanism. Therefore, the power transmission unit 36 is not deformed, the shaft 32 does not buckle, or the motor 28 does not generate a counter electromotive force.
 スプリング42はシャフト32と進退パイプ22とを基準軸線Jに沿って離間する方向に弾性付勢することから、伸縮機構10Aが伸びる方向の動作をするときに伸び方向の力を補完し、テールゲート14が相当に重い場合でも開扉動作を可能にする。また、軽負荷の場合にはスプリング42を省略してもよい。 Since the spring 42 elastically biases the shaft 32 and the advancing / retreating pipe 22 in the direction away from each other along the reference axis J, the spring 42 complements the force in the extending direction when the expansion / contraction mechanism 10A operates in the extending direction, and the tailgate. Even when 14 is considerably heavy, the door opening operation is possible. Further, in the case of a light load, the spring 42 may be omitted.
 図13は、伸縮機構10Aの製造方法のフローチャートである。図13に示すように、伸縮機構10を製造するには、ステップS1において、ローラホルダ44に対して6つのローラ46を装着して動力伝達ユニット36を組み立てる。ステップS2において、基端パイプ20に対して基端エンド部16、モータ28、減速機30、シャフト32および第1ベアリング34を組み立てる。基端パイプ20は第1ベアリング34の溝20aとカシメ部20cによって固定する。ステップS3において、動力伝達ユニット36をシャフト32に嵌め込む。第1パイプ24と第2パイプ26はジョイント27で接続して進退パイプ22を構成しておく。ステップS4において、進退パイプ22の第1パイプ24にバネ受座40を設ける。ステップS5において、バネ受座40が設けられた進退パイプ22の基端側を動力伝達ユニット36に被せる。また、進退パイプ22に突起24aを形成して、基端パイプ20の溝20aに入り込むようにする。ステップS6において、進退パイプ22の先端側開口からスプリング42を内部に挿入する。スプリング42は、進退パイプ22の内部に予め設けられたバネ受座40により付勢される。ステップS7において、スプリング42が挿入された進退パイプ22の先端に対して先端エンド部18を固定する。 FIG. 13 is a flowchart of a manufacturing method of the expansion / contraction mechanism 10A. As shown in FIG. 13, in order to manufacture the telescopic mechanism 10, six rollers 46 are attached to the roller holder 44 in step S1 to assemble the power transmission unit 36. In step S2, the base end end portion 16, the motor 28, the speed reducer 30, the shaft 32, and the first bearing 34 are assembled with respect to the base end pipe 20. The base end pipe 20 is fixed by the groove 20a of the first bearing 34 and the caulking portion 20c. In step S3, the power transmission unit 36 is fitted into the shaft 32. The first pipe 24 and the second pipe 26 are connected by a joint 27 to form an advancing / retreating pipe 22. In step S4, the spring receiving seat 40 is provided on the first pipe 24 of the advancing / retreating pipe 22. In step S5, the power transmission unit 36 is covered with the base end side of the advancing / retreating pipe 22 provided with the spring receiving seat 40. Further, a protrusion 24a is formed on the advancing / retreating pipe 22 so as to enter the groove 20a of the base end pipe 20. In step S6, the spring 42 is inserted into the inside through the opening on the tip end side of the advancing / retreating pipe 22. The spring 42 is urged by a spring receiving seat 40 provided in advance inside the advancing / retreating pipe 22. In step S7, the tip end portion 18 is fixed to the tip of the advancing / retreating pipe 22 into which the spring 42 is inserted.
 このような伸縮機構10Aの製造方法では、基端パイプ20および動力伝達ユニット36に対して進退パイプ22を装着してから、該進退パイプ22の先端側からスプリング42を内部に挿入しており、容易かつ正しく組み立てが行われる。 In such a method of manufacturing the expansion / contraction mechanism 10A, the advancing / retreating pipe 22 is attached to the base end pipe 20 and the power transmission unit 36, and then the spring 42 is inserted into the inside from the tip side of the advancing / retreating pipe 22. Easy and correct assembly.
 伸縮機構10Aは、基端側の基端パイプ20、モータ28、減速機30およびシャフト32を含む第1部分と、先端側の動力伝達ユニット36、進退パイプ22、バネ受座40およびスプリング42を含む第2部分とを有しているが、第2部分については異なる長さの複数種類を用意し、第1部分に対して車両12の種類やテールゲート14の種類に応じて適宜選択的に装着してもよい。 The expansion / contraction mechanism 10A includes a first portion including a base end pipe 20, a motor 28, a speed reducer 30, and a shaft 32 on the base end side, a power transmission unit 36 on the tip end side, an advancing / retreating pipe 22, a spring receiving seat 40, and a spring 42. Although it has a second part including the second part, a plurality of types having different lengths are prepared for the second part, and the first part is appropriately selectively selected according to the type of the vehicle 12 and the type of the tailgate 14. It may be attached.
(第2の実施形態)
 次に、第2の実施形態にかかる伸縮機構10Bについて説明する。以下、第2~第4の実施形態にかかる伸縮機構10B~10Dの説明においては、上記の伸縮機構10Aと同様の構成要素については同符号を付してその詳細な説明を省略する。
(Second embodiment)
Next, the expansion / contraction mechanism 10B according to the second embodiment will be described. Hereinafter, in the description of the expansion / contraction mechanisms 10B to 10D according to the second to fourth embodiments, the same components as those of the expansion / contraction mechanism 10A are designated by the same reference numerals, and detailed description thereof will be omitted.
 図14は、第2の実施形態にかかる伸縮機構10Bの斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。図14(a)に示すように、伸縮機構10Bは外観上は、上記の伸縮機構10A(図2参照)とほぼ同様であり、基端パイプ20と先端パイプ70とが同軸上に配列されている構成である。先端パイプ70は、内側の進退パイプ72(図15参照)と外側の外パイプ74とが嵌合して固定された二重構造となっている。先端パイプ70は上記の進退パイプ22に相当するが、シャフト32に対して進退駆動される機能は進退パイプ72に相当し、ハウジングの機能は外パイプ74に相当する。外パイプ74の基端部にはリングカバー76が設けられている。 14A and 14B are perspective views of the expansion / contraction mechanism 10B according to the second embodiment, FIG. 14A is a perspective view showing a stretched state, and FIG. 14B is a perspective view showing a contracted state. As shown in FIG. 14A, the expansion / contraction mechanism 10B is substantially the same as the expansion / contraction mechanism 10A (see FIG. 2) in appearance, and the base end pipe 20 and the tip end pipe 70 are arranged coaxially. It is a configuration that is. The tip pipe 70 has a double structure in which the inner advancing / retreating pipe 72 (see FIG. 15) and the outer outer pipe 74 are fitted and fixed. The tip pipe 70 corresponds to the above-mentioned advancing / retreating pipe 22, but the function of advancing / retreating with respect to the shaft 32 corresponds to the advancing / retreating pipe 72, and the function of the housing corresponds to the outer pipe 74. A ring cover 76 is provided at the base end of the outer pipe 74.
 図15は、伸縮機構10Bの断面側面図である。図16は伸縮機構10Bの分解斜視図である。図16では外パイプ74など一部の要素を省略している。 FIG. 15 is a cross-sectional side view of the expansion / contraction mechanism 10B. FIG. 16 is an exploded perspective view of the telescopic mechanism 10B. In FIG. 16, some elements such as the outer pipe 74 are omitted.
 図15および図16に示すように、伸縮機構10Bにおける基端パイプ20および先端パイプ70内における内部機構の各要素は、基準軸線Jに沿って同軸上に配置されている。基端パイプ20の内部には基端側から順にモータ(駆動源)28と、減速機30と、シャフト32と、ベアリング78、バネ受座40とが設けられている。スプリング42の基端部はバネ受座40で支持されており、先端部は先端エンド部18で支持されている。ベアリング78およびバネ受座40は、減速機30にほぼ隣接して設けられている。ベアリング78はシャフト32の端部を枢支している。 As shown in FIGS. 15 and 16, each element of the base end pipe 20 in the telescopic mechanism 10B and the internal mechanism in the tip end pipe 70 is arranged coaxially along the reference axis J. Inside the base end pipe 20, a motor (drive source) 28, a speed reducer 30, a shaft 32, a bearing 78, and a spring receiving seat 40 are provided in this order from the base end side. The base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18. The bearing 78 and the spring receiving seat 40 are provided substantially adjacent to the speed reducer 30. The bearing 78 pivotally supports the end of the shaft 32.
 シャフト32は、スプリング42の中空部内を先端側に向かって突出している。シャフト32には動力伝達ユニット80が嵌まり込んでいる。動力伝達ユニット80については後述する。外パイプ74の内部には中心から順に進退パイプ72、スプリングガイド(支持筒)82およびスプリング42が同軸上に設けられている。進退パイプ72、スプリングガイド82およびスプリング42は、相互にほぼ隙間なく嵌合している(図22参照)。 The shaft 32 projects in the hollow portion of the spring 42 toward the tip side. The power transmission unit 80 is fitted in the shaft 32. The power transmission unit 80 will be described later. Inside the outer pipe 74, an advancing / retreating pipe 72, a spring guide (support cylinder) 82, and a spring 42 are provided coaxially from the center. The advancing / retreating pipe 72, the spring guide 82, and the spring 42 are fitted to each other with almost no gap (see FIG. 22).
 進退パイプ72はシャフト32に対して進退する部材であって、先端エンド部18から基端側に向かって延在しており、その長さは、例えば外パイプ74の70%程度である。スプリングガイド82はスプリング42を内面から支持する部材であり、先端エンド部18から基端側に向かって延在しており、その長さは進退パイプ72よりも長く、例えば外パイプ74の80%程度である。スプリング42はスプリングガイド82で支持されることにより外パイプ74の内部で曲がることがなく基準軸線Jに対して同軸上に保たれる。スプリングガイド82は進退パイプ72と一体的に進退する。スプリングガイド82の基端部82aは、スプリング42に当たることがないように先細りのテーパ形状となっている。スプリングガイド82には、軽量化のため軸方向に複数の貫通孔82b(図20参照)が設けられている。 The advancing / retreating pipe 72 is a member that advances / retreats with respect to the shaft 32, extends from the tip end portion 18 toward the base end side, and its length is, for example, about 70% of the outer pipe 74. The spring guide 82 is a member that supports the spring 42 from the inner surface, extends from the tip end portion 18 toward the base end side, and its length is longer than that of the advancing / retreating pipe 72, for example, 80% of the outer pipe 74. Degree. By being supported by the spring guide 82, the spring 42 does not bend inside the outer pipe 74 and is kept coaxial with the reference axis J. The spring guide 82 advances and retreats integrally with the advancing / retreating pipe 72. The base end portion 82a of the spring guide 82 has a tapered shape so as not to hit the spring 42. The spring guide 82 is provided with a plurality of through holes 82b (see FIG. 20) in the axial direction for weight reduction.
 シャフト32は基端パイプ20よりもさらに先端側に突出しており、少なくとも一部は進退パイプ72の内部にまで突出している。動力伝達ユニット80はシャフト32に嵌められた状態で進退パイプ72の内腔部に配置される。 The shaft 32 protrudes further to the tip side than the base end pipe 20, and at least a part of the shaft 32 protrudes to the inside of the advancing / retreating pipe 72. The power transmission unit 80 is arranged in the lumen portion of the advancing / retreating pipe 72 in a state of being fitted to the shaft 32.
 図17は、伸縮機構10Bの先端部を示す斜視図である。図17に示すように、先端エンド部18は、搖動軸部材18aと、キャップ18bと、継手18cと、部材18dとからなる。継手18cは外パイプ74に対してカシメ部74aにより固定される部材であり、内孔には進退パイプ72の先端部が挿通する。進退パイプ72の先端部は搖動軸部材18aの基端部18abに対してカシメなどにより固定される。搖動軸部材18aは周囲の一部が平坦部18aaを形成している。継手18cの内周部の一部は平坦部18caを形成している。平坦部18aaと平坦部18caとは当接し合い、いわゆるDカット形状の係合により回り止め効果がある。キャップ18bは継手18cなどの外周部を覆う。 FIG. 17 is a perspective view showing the tip end portion of the expansion / contraction mechanism 10B. As shown in FIG. 17, the tip end portion 18 includes a swing shaft member 18a, a cap 18b, a joint 18c, and a member 18d. The joint 18c is a member fixed to the outer pipe 74 by the caulking portion 74a, and the tip portion of the advancing / retreating pipe 72 is inserted into the inner hole. The tip end portion of the advancing / retreating pipe 72 is fixed to the base end portion 18ab of the swing shaft member 18a by caulking or the like. A part of the periphery of the swing shaft member 18a forms a flat portion 18aa. A part of the inner peripheral portion of the joint 18c forms a flat portion 18ca. The flat portion 18aa and the flat portion 18ca are in contact with each other, and the so-called D-cut shape engagement has an anti-rotation effect. The cap 18b covers the outer peripheral portion of the joint 18c or the like.
 搖動軸部材18aは車両12の本体部に対して搖動自在に接続される部分であり(図1参照)、基準軸線J回りに回転することはない。したがって、進退パイプ72も基準軸線J回りに回転することはない。同様に、モータ28および基端パイプ20は基端エンド部16によってテールゲート14に接続されていることから基準軸線J回りに回転することはない。テールゲート14はヒンジ14a(図1参照)で車両12の本体に開閉自在に接続されていることから、結局、車両12およびテールゲート14はリンク機構を構成し、モータ28に対して進退パイプ72を回転不能かつ基準軸線Jに沿って進退自在に保持するベース体として機能している。また、外パイプ74は上記の伸縮機構10Aの第1パイプ24における突起24a(図3参照)は設けられていないが、継手18cによって搖動軸部材18aに対する回り止めがなされていることから、基準軸線J回りに回転することはない。 The swing shaft member 18a is a portion that is swingably connected to the main body of the vehicle 12 (see FIG. 1) and does not rotate around the reference axis J. Therefore, the advancing / retreating pipe 72 also does not rotate around the reference axis J. Similarly, since the motor 28 and the proximal pipe 20 are connected to the tailgate 14 by the proximal end portion 16, they do not rotate around the reference axis J. Since the tailgate 14 is openably and closably connected to the main body of the vehicle 12 by a hinge 14a (see FIG. 1), the vehicle 12 and the tailgate 14 eventually form a link mechanism and the advancing / retreating pipe 72 with respect to the motor 28. Functions as a base body that is non-rotatable and can move forward and backward along the reference axis J. Further, although the outer pipe 74 is not provided with the protrusion 24a (see FIG. 3) in the first pipe 24 of the expansion / contraction mechanism 10A, the joint 18c is used to prevent the swing shaft member 18a from rotating, so that the reference axis It does not rotate around J.
 図18は、伸縮機構10Bにおける内部機構の斜視図であり、(a)は伸びた状態を示す斜視図であり、(b)は縮んだ状態を示す斜視図である。図18では基端パイプ20およびスプリングガイド82を省略しているが、外パイプ74を仮想線で示している。さらに、図18(a)ではスプリング42を省略し、図18(b)では進退パイプ72を省略している。 18A and 18B are perspective views of the internal mechanism of the telescopic mechanism 10B, FIG. 18A is a perspective view showing a stretched state, and FIG. 18B is a perspective view showing a contracted state. Although the base end pipe 20 and the spring guide 82 are omitted in FIG. 18, the outer pipe 74 is shown by a virtual line. Further, in FIG. 18A, the spring 42 is omitted, and in FIG. 18B, the advancing / retreating pipe 72 is omitted.
 スプリング42の基端部はバネ受座40で支持されており、先端部は先端エンド部18で支持されている。スプリング42は、図18(a)では省略しているが、伸縮機構10Bが伸びた状態では自然長またはやや圧縮された状態となっており、図18(b)に示すように、伸縮機構10Bが縮んだ状態では相当に圧縮されている。スプリング42は、シャフト32と進退パイプ72とが基準軸線Jに沿って離間する方向に弾性付勢する。 The base end portion of the spring 42 is supported by the spring receiving seat 40, and the tip end portion is supported by the tip end portion 18. Although the spring 42 is omitted in FIG. 18A, it has a natural length or a slightly compressed state when the expansion / contraction mechanism 10B is extended, and as shown in FIG. 18B, the expansion / contraction mechanism 10B In the contracted state, it is considerably compressed. The spring 42 is elastically biased in a direction in which the shaft 32 and the advancing / retreating pipe 72 are separated from each other along the reference axis J.
 図19は、動力伝達ユニット80およびその関連部材を示す分解斜視図である。図20は、動力伝達ユニット80およびその関連部材を基準軸線Jの方向から見た断面図である。図19および図20に示すように、動力伝達ユニット80はケース84と、ローラホルダ86と、複数のローラ88とを備える。この場合、ローラ88の数は3本である。このローラ88は円柱体であるが、図11(a)のローラ46や、図11(b)のローラ46Aのような形状でもよい。 FIG. 19 is an exploded perspective view showing the power transmission unit 80 and its related members. FIG. 20 is a cross-sectional view of the power transmission unit 80 and its related members as viewed from the direction of the reference axis J. As shown in FIGS. 19 and 20, the power transmission unit 80 includes a case 84, a roller holder 86, and a plurality of rollers 88. In this case, the number of rollers 88 is three. Although the roller 88 is a cylindrical body, it may have a shape like the roller 46 in FIG. 11 (a) or the roller 46A in FIG. 11 (b).
 ローラホルダ86は略円筒形状であり、シャフト32が挿通する中心孔86aと、3つのローラ格納部86bと、軸方向両端に設けられたフランジ86cとを備える。ローラ格納部86bはそれぞれローラ88が嵌め込まれて格納される部分である。ローラ格納部86bは内面がローラ88の外周形状に合わせられた円柱状の窪みであり、ローラ88はローラ格納部86bの内部で転動可能となっている。つまり、ローラホルダ86は複数のローラ88を回転自在に保持する。ローラ格納部86bの内面はローラ88が滑らかに回転するように低摩擦材が設けられていてもよい。 The roller holder 86 has a substantially cylindrical shape, and includes a central hole 86a through which the shaft 32 is inserted, three roller storage portions 86b, and flanges 86c provided at both ends in the axial direction. Each of the roller storage portions 86b is a portion in which the rollers 88 are fitted and stored. The inner surface of the roller storage portion 86b is a columnar recess whose inner surface is matched to the outer peripheral shape of the roller 88, and the roller 88 can roll inside the roller storage portion 86b. That is, the roller holder 86 rotatably holds the plurality of rollers 88. The inner surface of the roller housing portion 86b may be provided with a low friction material so that the roller 88 rotates smoothly.
 ローラ格納部86bは中心孔86aに開口しており、ローラ88はこの開口部から中心孔86aの内部にわずかに突出する。ローラ88は、中心孔86aに突出した部分がシャフト32の外周面に当接する。ローラ88およびローラ格納部86bは、ローラホルダ86において周方向に等間隔(120°)で設けられている。2つのフランジ86cは正三角形状の平坦辺を有している。 The roller storage portion 86b is open to the central hole 86a, and the roller 88 slightly protrudes from this opening into the center hole 86a. The portion of the roller 88 protruding from the center hole 86a comes into contact with the outer peripheral surface of the shaft 32. The rollers 88 and the roller storage portions 86b are provided in the roller holder 86 at equal intervals (120 °) in the circumferential direction. The two flanges 86c have flat sides in the shape of a regular triangle.
 図21は、シャフト32、ローラホルダ86およびローラ88の側面図である。図21に示すように、ローラ格納部86bは、格納されるローラ88の中心軸が基準軸線Jに対して傾斜角θだけ傾くように形成されている。このローラ88の傾斜角θには、上記のローラ46の傾斜角θ(図8参照)と同様の作用がある。 FIG. 21 is a side view of the shaft 32, the roller holder 86, and the roller 88. As shown in FIG. 21, the roller storage portion 86b is formed so that the central axis of the stored roller 88 is tilted by an inclination angle θ with respect to the reference axis J. The inclination angle θ of the roller 88 has the same effect as the inclination angle θ of the roller 46 (see FIG. 8).
 図19および図20に戻り、ケース84はローラホルダ86が格納される部材である。ケース84は略円筒形状であり、内周部に形成された3つの平坦面84aと、先端部に設けられた六角フランジ84bとを備える。3つの平坦面84aはローラホルダ86におけるフランジ86cの平坦辺に当接し、該ローラホルダ86の周り止めとなる。ケース84は進退パイプ72における基端部の六角筒90に固定される。 Returning to FIGS. 19 and 20, the case 84 is a member in which the roller holder 86 is stored. The case 84 has a substantially cylindrical shape, and includes three flat surfaces 84a formed on the inner peripheral portion and a hexagonal flange 84b provided on the tip portion. The three flat surfaces 84a abut on the flat side of the flange 86c of the roller holder 86 and serve as a detent around the roller holder 86. The case 84 is fixed to the hexagonal cylinder 90 at the base end of the advancing / retreating pipe 72.
 六角筒90はケース84が挿入・固定される部分であり、プレス加工等により内周および外周が六角形状になっている。ケース84の六角フランジ84bは六角筒90の内周の六角形状面に各辺が当接し、回り止めとなる。 The hexagonal cylinder 90 is a part where the case 84 is inserted and fixed, and the inner circumference and the outer circumference are hexagonal due to press working or the like. Each side of the hexagonal flange 84b of the case 84 abuts on the hexagonal surface of the inner circumference of the hexagonal cylinder 90 to prevent rotation.
 図22は、動力伝達ユニット80およびその関連部材を示す側面断面図である。図22に示すように、ケース84は軸方向についても六角筒90によって固定される。このうち先端側については、六角筒90の先端部に形成された縮径部92により変位規制される。シャフト32は先端部32aが縮径部92よりも先端側に突出している。先端部32aは雄ネジであり、フランジナット94が螺合される。シャフト32はフランジナット94が縮径部92に当接することにより、基端側への変位が規制される。フランジナット94の外径は進退パイプ72の内径よりもわずかに小さく、フランジナット94およびシャフト32は、基準軸線Jに沿って先端側に変位可能となっている。 FIG. 22 is a side sectional view showing the power transmission unit 80 and its related members. As shown in FIG. 22, the case 84 is also fixed in the axial direction by the hexagonal cylinder 90. Of these, the tip side is displacement-regulated by a diameter-reduced portion 92 formed at the tip of the hexagonal cylinder 90. The tip portion 32a of the shaft 32 projects toward the tip end side of the diameter reduction portion 92. The tip portion 32a is a male screw, and the flange nut 94 is screwed into the tip portion 32a. Displacement of the shaft 32 toward the proximal end side is restricted by the flange nut 94 coming into contact with the reduced diameter portion 92. The outer diameter of the flange nut 94 is slightly smaller than the inner diameter of the advancing / retreating pipe 72, and the flange nut 94 and the shaft 32 can be displaced toward the tip side along the reference axis J.
 このように伸縮機構10Bは、基準軸線Jに対して同軸上に設けられたシャフト32および進退パイプ72と、進退パイプ72の内腔部に複数設けられたローラ88と、シャフト32と一体的に回転して複数のローラ88を回転自在に保持するローラホルダ86とを備える。そして複数のローラ88は、それぞれシャフト32の外周面に当接し、中心軸が基準軸線Jに対して傾斜角θを有するようにローラホルダ86によって保持されている。また、進退パイプ72は先端エンド部18を介してテールゲート14に接続されていることから回転不能であり、しかもヒンジ14aに基づくリンク機構によって基準軸線Jに沿って進退自在となっている。伸縮機構10Bは、このような構成により、モータ28が減速機30を介してシャフト32を回転させることにより、複数のローラ88はそれぞれ基準軸線Jを中心としてシャフト32に対して相対的かつ公転的に回転するとともに、ローラ格納部86bの中で自転する。ローラ88はそれぞれ基準軸線Jに対して傾斜角θを有するように配置されていることから、ローラ88が回転(公転および自転)することにより、進退パイプ22には傾斜角θに応じて軸方向の推力が加わり、基準軸線Jに沿って進退することができる。 As described above, the expansion / contraction mechanism 10B is integrally provided with the shaft 32 and the advancing / retreating pipe 72 coaxially provided with respect to the reference axis J, the rollers 88 provided in the lumen portion of the advancing / retreating pipe 72, and the shaft 32. A roller holder 86 that rotates and holds a plurality of rollers 88 rotatably is provided. Each of the plurality of rollers 88 is in contact with the outer peripheral surface of the shaft 32, and is held by the roller holder 86 so that the central axis has an inclination angle θ with respect to the reference axis J. Further, since the advancing / retreating pipe 72 is connected to the tailgate 14 via the tip end portion 18, it cannot rotate, and the link mechanism based on the hinge 14a allows the advancing / retreating pipe 72 to freely advance / retreat along the reference axis J. In the expansion / contraction mechanism 10B, the motor 28 rotates the shaft 32 via the speed reducer 30 in such a configuration, so that the plurality of rollers 88 are revolving relative to the shaft 32 about the reference axis J, respectively. As it rotates, it rotates in the roller housing portion 86b. Since the rollers 88 are arranged so as to have an inclination angle θ with respect to the reference axis J, the roller 88 rotates (revolves and rotates), so that the advance / retreat pipe 22 has an axial direction according to the inclination angle θ. Is added, and it is possible to move forward and backward along the reference axis J.
 図23-1は、第3の実施形態にかかる伸縮機構10Cの模式断面側面図である。図23-2は、第4の実施形態にかかる伸縮機構10Dの模式断面側面図である。図23-3は、第5の実施形態にかかる伸縮機構10Eの模式断面側面図である。 FIG. 23-1 is a schematic cross-sectional side view of the expansion / contraction mechanism 10C according to the third embodiment. FIG. 23-2 is a schematic cross-sectional side view of the expansion / contraction mechanism 10D according to the fourth embodiment. FIG. 23-3 is a schematic cross-sectional side view of the expansion / contraction mechanism 10E according to the fifth embodiment.
(第3の実施形態)
 図23-1に示すように、第3の実施形態にかかる伸縮機構10Cは、上記の伸縮機構10Aにおけるシャフト32に代えてシャフト32Aが設けられている。上記のシャフト32は外径が基準軸線Jに沿って一定径であるのに対し、シャフト32Aは基準軸線Jに沿って外径が変化している。この場合では、基端側近傍の外径D1が先端側近傍の外径D2よりも小さく、基準軸線Jに沿ってテーパ状に変化している。これにより、伸縮機構10Cは、縮んだ状態から伸びる動作を行うとき、ローラ46とシャフト32Aの外周面との押圧力が大きくなり、シャフト32の回転が変換された推進力が一層確実に進退パイプ22に伝達されることになる。つまり、シャフト32Aの外径が基準軸線Jに沿って変化していることにより、進退量に応じて伝達トルクを変化させることができる。設計条件によりD1>D2としてもよいし、あるいは基準軸線Jに沿って外径が増減する形状としてもよい。
(Third Embodiment)
As shown in FIG. 23-1, the expansion / contraction mechanism 10C according to the third embodiment is provided with a shaft 32A instead of the shaft 32 in the expansion / contraction mechanism 10A. The outer diameter of the shaft 32 is constant along the reference axis J, whereas the outer diameter of the shaft 32A changes along the reference axis J. In this case, the outer diameter D1 near the proximal end side is smaller than the outer diameter D2 near the distal end side, and the outer diameter D1 changes in a tapered shape along the reference axis J. As a result, when the telescopic mechanism 10C expands from the contracted state, the pressing force between the roller 46 and the outer peripheral surface of the shaft 32A becomes large, and the propulsive force converted from the rotation of the shaft 32 is more reliably advanced and retreated. It will be transmitted to 22. That is, since the outer diameter of the shaft 32A changes along the reference axis J, the transmission torque can be changed according to the amount of advance / retreat. Depending on the design conditions, D1> D2 may be set, or the outer diameter may increase or decrease along the reference axis J.
(第4の実施形態)
 図23-2に示すように、第4の実施形態にかかる伸縮機構10Dでは、モータ28はシャフト32ではなく回転軸60を介して進退パイプ22を回転させており、シャフト32は部材62を介して基端パイプ20に固定されている。シャフト32の先端には動力伝達ユニット36が嵌め込まれている。基端パイプ20の溝20aには、ベース体64の突起64aが嵌まり込んでおり、基端パイプ20は回転不能かつ進退自在となっている。ベース体64はモータ28および減速機30を固定している。
(Fourth Embodiment)
As shown in FIG. 23-2, in the expansion / contraction mechanism 10D according to the fourth embodiment, the motor 28 rotates the advancing / retreating pipe 22 not through the shaft 32 but through the rotating shaft 60, and the shaft 32 passes through the member 62. It is fixed to the base end pipe 20. A power transmission unit 36 is fitted at the tip of the shaft 32. A protrusion 64a of the base body 64 is fitted in the groove 20a of the base end pipe 20, and the base end pipe 20 is non-rotatable and can move forward and backward. The base body 64 fixes the motor 28 and the speed reducer 30.
 このような伸縮機構10Dでは、モータ28の回転によりシャフト32は動力伝達ユニット36に対して相対的に回転し、該動力伝達ユニット36との間で動力が伝達されて推力が発生し、基端パイプ20を進退させることができる。 In such an expansion / contraction mechanism 10D, the shaft 32 rotates relative to the power transmission unit 36 due to the rotation of the motor 28, power is transmitted to and from the power transmission unit 36 to generate thrust, and the base end. The pipe 20 can be moved forward and backward.
 すなわち、伸縮機構10Dと上記の伸縮機構10Aとを比較すれば明らかなように、進退パイプ22を基端パイプ20に対して進退させるためには、シャフト32と動力伝達ユニット36とは相対的に回転すれば推進力が発生するのであって一方が回転側で他方が固定側となっていればよい。したがって、モータ28はシャフト32および進退パイプ22のうち一方を回転させ、基端パイプ20またはベース体64がシャフト32および進退パイプ22のうち他方を回転不能かつ基準軸線Jに沿って進退自在に保持していればよい。 That is, as is clear from comparing the expansion / contraction mechanism 10D and the expansion / contraction mechanism 10A, the shaft 32 and the power transmission unit 36 are relatively relative to each other in order to advance / retreat the advancing / retreating pipe 22 with respect to the base end pipe 20. If it rotates, a propulsive force is generated, and it is sufficient that one is on the rotating side and the other is on the fixed side. Therefore, the motor 28 rotates one of the shaft 32 and the advancing / retreating pipe 22, and the base end pipe 20 or the base body 64 holds the other of the shaft 32 and the advancing / retreating pipe 22 non-rotatably and freely advancing / retreating along the reference axis J. You just have to do it.
(第5の実施形態)
 図23-3に示すように、第5の実施形態にかかる伸縮機構10Eは、上記の伸縮機構10Aにおける基端パイプ20および進退パイプ22を備えているが、基端パイプ20には溝20aがなく、進退パイプ22には溝20aに係合する突起24aがない。このような伸縮機構10Eは、上記の伸縮機構10Bと同様に、車両12の本体およびテールゲート14とともに三角形状のリンク機構を形成する。結局、車両12およびテールゲート14は、モータ28に対して進退パイプ22を回転不能かつ基準軸線Jに沿って進退自在に保持するベース体として機能している。したがって、進退パイプ22は基準軸J回りに回転することはなく、モータ28の動力を動力伝達ユニット36から受けることにより、基端パイプ20に対して進退可能である。
(Fifth Embodiment)
As shown in FIG. 23-3, the expansion / contraction mechanism 10E according to the fifth embodiment includes the base end pipe 20 and the advancing / retreating pipe 22 in the above-mentioned expansion / contraction mechanism 10A, but the base end pipe 20 has a groove 20a. The advancing / retreating pipe 22 does not have a protrusion 24a that engages with the groove 20a. Such a telescopic mechanism 10E forms a triangular link mechanism together with the main body and the tailgate 14 of the vehicle 12 in the same manner as the telescopic mechanism 10B described above. After all, the vehicle 12 and the tailgate 14 function as a base body that holds the advancing / retreating pipe 22 with respect to the motor 28 so as to be non-rotatable and advancing / retreating along the reference axis J. Therefore, the advancing / retreating pipe 22 does not rotate around the reference axis J, and can advance / retreat with respect to the base end pipe 20 by receiving the power of the motor 28 from the power transmission unit 36.
 本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。 The present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be freely changed without departing from the gist of the present invention.
10,10A,10B,10C,10D,10E 伸縮機構
16 基端エンド部
18 先端エンド部(先端バネ受け部)
20 基端パイプ(ベース体)
22,72 進退パイプ
28 モータ(駆動源)
32,32A シャフト
34 第1ベアリング
36,80 動力伝達ユニット
38 第2ベアリング
40 バネ受座(基端バネ受け部)
42 スプリング
44,86 ローラホルダ
46,46A,88 ローラ
48 ローラ軸
50bb,52bb バネ(押圧手段)
64 ベース体
82 スプリングガイド(支持筒)
J 基準軸線
θ 傾斜角
10, 10A, 10B, 10C, 10D, 10E Telescopic mechanism 16 Base end end 18 Tip end (tip spring receiving part)
20 Base end pipe (base body)
22,72 Advance / retreat pipe 28 motor (drive source)
32, 32A Shaft 34 1st bearing 36,80 Power transmission unit 38 2nd bearing 40 Spring bearing (base end spring receiving part)
42 Spring 44,86 Roller holder 46,46A, 88 Roller 48 Roller shaft 50bb, 52bb Spring (pressing means)
64 Base body 82 Spring guide (support cylinder)
J reference axis θ tilt angle

Claims (11)

  1.  基準軸線に対して同軸上に設けられたシャフトおよび進退パイプと、
     前記シャフトおよび前記進退パイプのうち一方を回転させる駆動源と、
     他方を回転不能かつ前記基準軸線に沿って進退自在に保持するベース体と、
     前記進退パイプの内腔部に複数設けられたローラと、
     前記進退パイプと一体的に回転し、複数の前記ローラを回転自在に保持するローラホルダと、
     を備え、
     複数の前記ローラは、それぞれ前記シャフトの外周面に当接し、中心軸が前記基準軸線に対して傾斜角を有するように前記ローラホルダによって保持されていることを特徴とする伸縮機構。
    Shafts and advancing / retreating pipes provided coaxially with the reference axis,
    A drive source that rotates one of the shaft and the advancing / retreating pipe,
    A base body that holds the other non-rotatably and can move forward and backward along the reference axis.
    A plurality of rollers provided in the lumen of the advancing / retreating pipe and
    A roller holder that rotates integrally with the advancing / retreating pipe and rotatably holds a plurality of the rollers.
    With
    The expansion / contraction mechanism, wherein each of the plurality of rollers is in contact with the outer peripheral surface of the shaft and is held by the roller holder so that the central axis has an inclination angle with respect to the reference axis.
  2.  前記ローラの外周面と前記シャフトの外周面のうち少なくとも一方が弾性体であることを特徴とする請求項1に記載の伸縮機構。 The expansion / contraction mechanism according to claim 1, wherein at least one of the outer peripheral surface of the roller and the outer peripheral surface of the shaft is an elastic body.
  3.  前記ローラの外周面と前記シャフトの外周面のうち少なくとも一方の表面にすべり止め処理がなされていることを特徴とする請求項1または2に記載の伸縮機構。 The expansion / contraction mechanism according to claim 1 or 2, wherein at least one surface of the outer peripheral surface of the roller and the outer peripheral surface of the shaft is subjected to a non-slip treatment.
  4.  前記ローラホルダは、複数の前記ローラを前記シャフトの外周面に対して弾性的に押圧させる押圧手段を備えることを特徴とする請求項1~3のいずれか1項に記載の伸縮機構。 The expansion / contraction mechanism according to any one of claims 1 to 3, wherein the roller holder includes a pressing means for elastically pressing a plurality of the rollers against the outer peripheral surface of the shaft.
  5.  前記ローラは最大直径よりも軸方向長さが大きく、中心部が最大直径部であり軸方向に沿って両側に向かって小径となる形状であることを特徴とする請求項1~4のいずれか1項に記載の伸縮機構。 Any of claims 1 to 4, wherein the roller has an axial length larger than the maximum diameter, a central portion having a maximum diameter portion, and a shape having a small diameter toward both sides along the axial direction. The expansion and contraction mechanism according to item 1.
  6.  複数の前記ローラは、前記基準軸線を中心とした周方向に沿って等間隔に並列され、隣接するもの同士が前記基準軸線に沿った方向について互いに重なり合うように設けられていることを特徴とする請求項1~5のいずれか1項に記載の伸縮機構。 The plurality of rollers are arranged in parallel at equal intervals along the circumferential direction about the reference axis, and adjacent rollers are provided so as to overlap each other in the direction along the reference axis. The expansion / contraction mechanism according to any one of claims 1 to 5.
  7.  一端に車両のテールゲートに対して搖動可能に接続される基端エンド部を備え、
     他端に前記車両の本体に対して搖動可能に接続される先端エンド部を備えることを特徴とする請求項1~6のいずれか1項に記載の伸縮機構。
    Equipped with a base end end that is swingably connected to the tailgate of the vehicle at one end
    The expansion / contraction mechanism according to any one of claims 1 to 6, further comprising a tip end portion oscillatingly connected to the main body of the vehicle at the other end.
  8.  前記シャフトは、前記基準軸線に沿って内径が変化することを特徴とする請求項1~7のいずれか1項に記載の伸縮機構。 The expansion / contraction mechanism according to any one of claims 1 to 7, wherein the shaft has an inner diameter that changes along the reference axis.
  9.  前記シャフトと前記進退パイプとが前記基準軸線に沿って離間する方向に弾性付勢するスプリングを備えることを特徴とする請求項1~8のいずれか1項に記載の伸縮機構。 The expansion / contraction mechanism according to any one of claims 1 to 8, further comprising a spring that elastically biases the shaft and the advance / retreat pipe in a direction in which they are separated from each other along the reference axis.
  10.  前記進退パイプと前記スプリングとの間に、前記スプリングを内面から支持する支持筒を備えることを特徴とする請求項9に記載の伸縮機構。 The expansion / contraction mechanism according to claim 9, wherein a support cylinder for supporting the spring from the inner surface is provided between the advancing / retreating pipe and the spring.
  11.  請求項9または10に記載の伸縮機構を製造する伸縮機構製造方法であって、
     前記ローラホルダに対して複数の前記ローラを装着した動力伝達ユニットを前記シャフトに固定する工程と、
     前記進退パイプの基端側に、前記スプリングの基端部を支持する基端バネ受け部を設ける工程と、
     前記基端バネ受け部が設けられた前記進退パイプの基端側を前記動力伝達ユニットに被せる工程と、
     前記進退パイプの先端側から前記スプリングを内部に挿入する工程と、
     前記スプリングが挿入された前記進退パイプの先端に対して、前記スプリングの先端部を支持する先端バネ受け部を固定する工程と、
     を有することを特徴とする伸縮機構製造方法。
    A method for manufacturing a telescopic mechanism according to claim 9 or 10, wherein the telescopic mechanism is manufactured.
    A step of fixing a power transmission unit having a plurality of the rollers mounted on the roller holder to the shaft, and
    A step of providing a base end spring receiving portion for supporting the base end portion of the spring on the base end side of the advancing / retreating pipe, and a step of providing the base end spring receiving portion.
    A step of covering the power transmission unit with the base end side of the advancing / retreating pipe provided with the base end spring receiving portion, and
    The process of inserting the spring into the inside from the tip side of the advancing / retreating pipe, and
    A step of fixing a tip spring receiving portion that supports the tip portion of the spring to the tip of the advancing / retreating pipe into which the spring is inserted, and a step of fixing the tip spring receiving portion.
    A method for manufacturing an expansion / contraction mechanism, which comprises.
PCT/JP2020/033670 2019-10-01 2020-09-04 Extension and contraction mechanism and method for manufacturing extension and contraction mechanism WO2021065354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202090000629.5U CN217620681U (en) 2019-10-01 2020-09-04 Telescopic mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181585 2019-10-01
JP2019181585A JP2021055803A (en) 2019-10-01 2019-10-01 Expansion mechanism, and expansion mechanism manufacturing method

Publications (1)

Publication Number Publication Date
WO2021065354A1 true WO2021065354A1 (en) 2021-04-08

Family

ID=75272469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033670 WO2021065354A1 (en) 2019-10-01 2020-09-04 Extension and contraction mechanism and method for manufacturing extension and contraction mechanism

Country Status (3)

Country Link
JP (1) JP2021055803A (en)
CN (1) CN217620681U (en)
WO (1) WO2021065354A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638238A (en) * 1986-06-25 1988-01-14 Tokai Rika Co Ltd Production of mirror having display part
JPH04203649A (en) * 1990-11-30 1992-07-24 T H K Kk Roller screw
JPH04266314A (en) * 1991-02-19 1992-09-22 Matsushita Electric Ind Co Ltd Pallet for shaft drive type conveyer
JPH05106703A (en) * 1991-10-16 1993-04-27 I N R Kenkyusho:Kk Friction drive feeding device
JPH08184360A (en) * 1994-12-28 1996-07-16 Ntn Corp Frictional forward and backward movement drive device
JP2007010146A (en) * 2005-06-27 2007-01-18 Stabilus Gmbh Drive unit
WO2016185943A1 (en) * 2015-05-21 2016-11-24 シャープ株式会社 Actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638238A (en) * 1986-06-25 1988-01-14 Tokai Rika Co Ltd Production of mirror having display part
JPH04203649A (en) * 1990-11-30 1992-07-24 T H K Kk Roller screw
JPH04266314A (en) * 1991-02-19 1992-09-22 Matsushita Electric Ind Co Ltd Pallet for shaft drive type conveyer
JPH05106703A (en) * 1991-10-16 1993-04-27 I N R Kenkyusho:Kk Friction drive feeding device
JPH08184360A (en) * 1994-12-28 1996-07-16 Ntn Corp Frictional forward and backward movement drive device
JP2007010146A (en) * 2005-06-27 2007-01-18 Stabilus Gmbh Drive unit
WO2016185943A1 (en) * 2015-05-21 2016-11-24 シャープ株式会社 Actuator

Also Published As

Publication number Publication date
JP2021055803A (en) 2021-04-08
CN217620681U (en) 2022-10-21

Similar Documents

Publication Publication Date Title
US6761244B2 (en) Electric power steering apparatus
KR100189281B1 (en) Speed reducer
JP4310347B2 (en) Lead screw mechanism
TW200730310A (en) Parallel link mechanism and industrial robot
US6390264B2 (en) Clutch and motor including such clutch
JP2006349116A (en) Planetary gear type reducer with torque limiter
JP2016216973A (en) Resistance generating device
JP2006138465A5 (en)
WO2021065354A1 (en) Extension and contraction mechanism and method for manufacturing extension and contraction mechanism
JP5217676B2 (en) Rotation drive unit with worm reducer
JP2011106227A (en) Opening/closing device of vehicle door
WO2021065352A1 (en) Extensible mechanism and extensible mechanism manufacturing method
KR101699813B1 (en) Strain wave gear device
JP7225877B2 (en) Worm reducer and electric assist device
JP2012001050A (en) Electric power steering device
US8105201B2 (en) Flexing shift wire for PTO actuation
JP2005247011A (en) Electric power steering gear
WO2023047668A1 (en) Device for supporting vehicle door
JP6120439B2 (en) Telescopic actuator
US8240435B2 (en) Drive mechanism for relative pivotal movements between two operating parts of a device
JPH10169303A (en) Slow closing mechanism of cover body in toilet
JP3566366B2 (en) Transmission
JPH039329B2 (en)
JP2014214800A (en) Telescopic actuator
JP5391502B2 (en) Rotating shaft connection structure and joint member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872126

Country of ref document: EP

Kind code of ref document: A1