WO2021064994A1 - Hot-water supply and heating apparatus - Google Patents

Hot-water supply and heating apparatus Download PDF

Info

Publication number
WO2021064994A1
WO2021064994A1 PCT/JP2019/039332 JP2019039332W WO2021064994A1 WO 2021064994 A1 WO2021064994 A1 WO 2021064994A1 JP 2019039332 W JP2019039332 W JP 2019039332W WO 2021064994 A1 WO2021064994 A1 WO 2021064994A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
group
heat storage
general formula
water supply
Prior art date
Application number
PCT/JP2019/039332
Other languages
French (fr)
Japanese (ja)
Inventor
泰光 野村
英治 信時
佐藤 稔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020513947A priority Critical patent/JP6765573B1/en
Priority to PCT/JP2019/039332 priority patent/WO2021064994A1/en
Publication of WO2021064994A1 publication Critical patent/WO2021064994A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a hot water supply / heating device.
  • the present invention relates to a device for supplying hot water by heating water using the heat stored in the heat storage tank.
  • the hot water supply / heating device heats with the heat generated by the heat source machine and can use the generated heat for hot water supply.
  • the hot water supply / heating device has a configuration in which the heat generated by the heat source machine is stored in the heat storage tank in advance. Then, the hot water supply / heating device heats the water supplied to the hot water supply / heating device with the heat stored in the heat storage tank to supply hot water (see, for example, Patent Document 1).
  • the heat generated by the heat source machine is stored in the heat storage tank by heating water, antifreeze, or the like in the heat storage tank.
  • the conventional hot water supply / heating device stores the heat generated by the heat source machine in water or antifreeze in the heat storage tank.
  • the amount of heat stored in the heat storage tank mainly depends on the amount of water or antifreeze filled in the heat storage tank, and the larger the amount of filling, the larger the amount of heat storage. Therefore, in order to increase the amount of heat stored in the heat storage tank, it is necessary to increase the amount of water or antifreeze filled. Therefore, there is a problem that the capacity of the heat storage tank becomes large and large, and the hot water supply / heating device becomes large.
  • An object of the present invention is to obtain a hot water supply / heating device capable of increasing the amount of heat storage and the amount of heat radiation per volume of a heat storage tank in order to solve the above problems.
  • a heat source device that generates heat
  • a pump that applies pressure to the circulating fluid that carries the heat generated by the heat source device
  • a heat storage heat exchanger that dissipates the heat carried by the circulating fluid
  • a hot water supply heat exchanger that stores heat from the heat storage heat exchanger, including a heat storage heat exchanger, a hot water supply heat exchanger through which the supply water related to hot water supply passes, and a polymer and water. It is provided with a heat storage tank for accommodating a heat storage material that dissipates heat to the supply water passing through the water heater, and a water supply pipe serving as a flow path through which the supply water passes.
  • the heat storage tank accommodates a heat storage material containing a polymer and water.
  • the heat storage material 33 has a high heat storage amount corresponding to a change in the hydrogen bonding force of water when the polymer swells or contracts. As a result, it is possible to store the same amount of heat with a small capacity as compared with the case where heat is stored only in water in the heat storage tank. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank can be increased.
  • FIG. 1 It is a schematic diagram which shows the structure of the hot water supply heating apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the structure of the hot water supply heating apparatus which concerns on Embodiment 2.
  • FIG. 1 is a schematic view showing a configuration of a hot water supply / heating device according to a first embodiment.
  • the hot water supply / heating device 100 includes a heat pump unit 200 and a heat storage unit 300.
  • the heat pump unit 200 and the heat storage unit 300 are connected by piping on site. Further, the heat storage unit 300 is locally connected to the heating terminal device 400, the hot water supply terminal device 500, and the water supply source 600 by piping.
  • the hot water supply / heating device 100 which is a combination of the heat pump unit 200 and the heat storage unit 300, is functionally classified into, for example, the equipment of the heat source unit 10, the heating unit 20, the heat storage unit 30, and the hot water supply unit 40.
  • the heat source unit 10 has a device that serves as a heat source device that generates heat when heating and hot water supply.
  • Equipment that serves as a heat source includes, for example, an electric heater, a gas boiler, or a heat pump device.
  • a heat pump device having a heat pump circuit and generating heat will be described.
  • the heat pump device mounted in the heat pump unit 200 connects a compressor 11, a heating heat exchanger 12, a depressurizing device 13, and a heat absorbing heat exchanger 14 in an annular shape via a refrigerant pipe to form a heat pump circuit in which the refrigerant circulates.
  • a natural refrigerant such as carbon dioxide or propane gas, or an HFC-based refrigerant such as R410A or R32 can be used.
  • the compressor 11 sucks and compresses low-temperature and low-pressure refrigerants, and discharges them in high-temperature and high-pressure states.
  • the heat heat exchanger 12 is a heat exchanger that functions as a heat exchanger through which the refrigerant dissipates heat.
  • the heat exchanger 12 of the first embodiment is installed in the heat pump unit 200.
  • the heat heat exchanger 12 heats the circulating fluid by exchanging heat between the circulating fluid, which is a heat medium for transporting heat, and the refrigerant, and dissipating heat to the refrigerant.
  • the type of heat exchanger of the heat heat exchanger 12 is not particularly limited.
  • the circulating fluid is a liquid fluid such as water or antifreeze. Since water is cheaper than antifreeze, it is desirable to use water.
  • the decompression device 13 decompresses the high-pressure refrigerant and adjusts the pressure and flow rate of the refrigerant.
  • the pressure reducing device 13 may be, for example, an electronic expansion valve or a capillary tube.
  • the endothermic heat exchanger 14 is, for example, a fin tube type heat exchanger.
  • the endothermic heat exchanger 14 exchanges heat between the refrigerant flowing out of the decompression device 13 and an external heat source, dissipates heat to the external heat source, and causes the refrigerant to absorb heat.
  • the endothermic heat exchanger 14 is assumed to exchange heat between the outdoor air and the refrigerant.
  • a fan that sends air to the endothermic heat exchanger 14 may be installed in the vicinity of the endothermic heat exchanger 14.
  • the heating unit 20 has equipment that constitutes a fluid circuit that supplies the heat generated in the heat source unit 10.
  • the heating unit 20 has a pump 21 and a switching valve 22.
  • the heating unit 20 is connected to the heat source device, the heat storage unit 30 and the heating terminal device 400, which will be described later, by piping, and constitutes a fluid circuit in which the circulating fluid is circulated.
  • the fluid circuit is a circuit for supplying the heat generated in the heat source unit 10.
  • the pump 21 applies pressure to the circulating fluid in the fluid circuit to circulate the circulating fluid, and supplies the heat generated in the heat source unit 10 to the heat storage unit 30 or the heating terminal device 400.
  • the switching valve 22 is, for example, a three-way valve.
  • the switching valve 22 is a valve that switches whether the circulating fluid flowing out of the heating heat exchanger 12 passes through the heating terminal device 400 side or the heat storage unit 30 side.
  • the heating terminal device 400 is a device that heats the air-conditioned space based on the heat transferred by the circulating fluid flowing through the fluid circuit. Although not particularly limited, here, it is assumed that the heating terminal device 400 is a heating radiator that dissipates heat to heat.
  • the heating terminal device 400 may also be a floor heating device or the like.
  • the heat storage unit 30 stores the heat generated in the heat source unit 10 and transferred by the circulating fluid.
  • the heat storage unit 30 includes a heat storage tank 31, a heat storage heat exchanger 32, and a heat storage material 33.
  • the heat storage tank 31 is, for example, a container made of SUS (stainless steel) and having a substantially rectangular parallelepiped shape.
  • the heat storage tank 31 includes a heat storage heat exchanger 32 and a heat storage material 33 inside.
  • the heat storage heat exchanger 32 heats the heat storage material 33 by exchanging heat between the above-mentioned circulating fluid and the heat storage material 33 and dissipating heat to the circulating fluid.
  • the heat storage heat exchanger 32 is, for example, a fin-tube heat exchanger composed of one tube and a plurality of fins.
  • the tube of the heat storage heat exchanger 32 becomes a part of the fluid circuit, and the circulating fluid passes through the tube.
  • the tube of the heat storage heat exchanger 32 is made of a metal such as SUS or copper.
  • the fins of the heat storage heat exchanger 32 increase the heat transfer area so that the heat of the circulating fluid is transferred to the heat storage material 33.
  • the fin of the heat storage heat exchanger 32 is a plate made of a metal such as SUS or aluminum and processed into a plate shape.
  • the heat storage material 33 stores heat from the circulating fluid by heat exchange with the heat storage heat exchanger 32. Further, as will be described later, the water supplied from the hot water supply terminal device 500 (hereinafter referred to as supply water) is heated.
  • the heat storage material 33 contains at least a polymer and water, and is, for example, a temperature-sensitive polymer gel.
  • a polymer is a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on a specific temperature.
  • the specific temperature is the lower critical solution temperature (LCST) with respect to water, and the polymer exhibits hydrophilicity on the lower temperature side than LCST, hydrophobicity on the higher temperature side than LCST, and borders on LCST. Therefore, hydrophilicity and hydrophobicity change reversibly.
  • LCST lower critical solution temperature
  • polymer in the heat storage material 33 examples include N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N, N.
  • the water in the heat storage material 33 is preferably pure water, but it does not have to be pure water as long as it does not contain components that may deteriorate the polymer.
  • Water is divided into bound water bound to a high-density crosslinked product of a polymer and free water excluding bound water. Since the polymer has a hydrophilic swelling structure at a temperature lower than that of LCST, the water-bonded water forms a stable high-arranged structure and enhances the hydrogen-bonding force. On the other hand, since the polymer has a hydrophobic shrinkage structure at a temperature higher than that of LCST, the water-bonded water forms an unstable low-arranged structure and weakens the hydrogen-bonding force.
  • the heat storage material 33 can improve or reduce the hydrogen bonding force of the bound water before and after LCST.
  • the heat storage material 33 has a high heat storage amount corresponding to the change in the hydrogen bonding force by changing the hydrogen bonding force of the bound water before and after the LCST. That is, the heat storage material 33 has a larger amount of heat storage per filling amount than water, and the filling amount of the heat storage material 33 filled in the heat storage tank 31 can be reduced. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, if the amount of heat storage is the same, the heat storage tank 31 can be made smaller than the case where heat is stored only in water.
  • the polymer of the heat storage material is particularly thermosensitive having one or more functional groups selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the polymer terminal.
  • Polymers are desirable. By adjusting the composition and crosslinked structure of these materials, it has been found that a temperature-sensitive polymer gel having an endothermic peak temperature in the range of 30 ° C. to 90 ° C. and a heat storage density of 300 J / g or more can be realized. ..
  • the hot water supply unit 40 has a device that supplies hot water to the hot water supply terminal device 500 by using the heat stored in the heat storage unit 30.
  • the hot water supply unit 40 has a hot water supply heat exchanger 41 and a water supply pipe 42.
  • the water supply pipe 42 is a pipe that serves as a flow path for water used in the hot water supply terminal device 500.
  • a water supply source 600 such as a water supply is connected to a hot water supply terminal device 500 to supply tap water as supply water.
  • a hot water supply heat exchanger 41 is installed in the water supply pipe 42.
  • the hot water supply heat exchanger 41 is installed in the heat storage tank 31 and heats the tap water by heat exchange between the tap water passing through the water supply pipe 42 and the heat storage material 33.
  • the hot water supply heat exchanger 41 is a fin tube type heat exchanger composed of one tube and a plurality of fins, like the heat storage heat exchanger 32, for example.
  • the water heated by the hot water supply heat exchanger 41 is sent to the hot water supply terminal device 500 side.
  • the hot water supply terminal device 500 is a device that uses hot water, such as a shower, a washbasin, or a kitchen.
  • the tap water supplied from the water supply source 600 is allowed to flow through the water supply pipe 42 by opening the hot water supply terminal device 500, but tap water may be allowed to flow by installing a hot water supply pump or the like. ..
  • the heat storage operation in the heat storage material 33 in the hot water supply / heating device 100 is, for example, when the electricity charge is low such as at midnight, when the heating terminal device 400 is stopped, and when the amount of heat storage in the heat storage tank 31 decreases.
  • the heat pump device of the heat source unit 10 generates heat for heating the heat storage material 33.
  • the pump 21 of the heating unit 20 circulates the circulating fluid in the fluid circuit.
  • the heat generated by the heat pump device is transferred to the heat storage unit 30 by heating the circulating fluid in the fluid circuit.
  • the LCST of the polymer is assumed to be about 60 ° C.
  • the heat of the circulating fluid flows through the heat storage heat exchanger 32, the heat of the circulating fluid is transferred to the heat storage material 33 in the heat storage heat exchanger 32, and the temperature of the heat storage material 33 rises.
  • the temperature of the water contained in the heat storage material 33 rises, the density of the water decreases and the volume increases.
  • an air layer (not shown) is formed above the heat storage material 33 inside the heat storage tank 31, and the air in the air layer is compressed by the volume integral in which the water expands. Therefore, the volume of the heat storage tank 31 can be kept substantially constant.
  • a pressure adjusting mechanism may be provided in the heat storage tank 31 so that the pressure in the heat storage tank 31 is adjusted by the pressure adjusting mechanism when water expands.
  • the polymer contained in the heat storage material 33 shrinks when the temperature rises and exceeds LCST. This is called a contraction process.
  • the shrinkage step the water-bonded water is arranged low and the hydrogen-bonding force is reduced.
  • the heat storage material 33 absorbs and stores hydrogen bond energy corresponding to the decrease in hydrogen bond force.
  • the shrinking step the water in the heat storage tank 31 is in a liquid state. The temperature of the circulating fluid that has passed through the heat storage heat exchanger 32 drops, and the circulating fluid flows out of the heat storage tank 31.
  • the circulating fluid circulates in the fluid circuit to heat the heat storage material 33 with the heat generated in the heat source unit 10, and the temperature of the heat storage material 33 is 70 ° C., which is, for example, 10 ° C. higher than the LCST.
  • the heat storage ends.
  • the hot water supply terminal device 500 when the hot water supply terminal device 500 is opened, for example, tap water at 10 ° C. supplied from the water supply source 600 flows through the water supply pipe 42.
  • tap water flows through the hot water supply heat exchanger 41, the heat of the heat storage material 33 is transferred to the tap water in the hot water supply heat exchanger 41, and the temperature of the heat storage material 33 drops.
  • the temperature of the water contained in the heat storage material 33 decreases, the density of the water increases and the volume decreases.
  • the volume of the heat storage tank 31, the volume of the hot water supply heat exchanger 41, the area of the fins, and the heat storage so that the entire hot water supply heat exchanger 41 can come into contact with the heat storage material 33 even when the volume of water is reduced most.
  • the filling amount of the material 33 is designed.
  • the polymer contained in the heat storage material 33 dissipates heat to tap water and swells when the temperature drops below LCST. This is called a swelling process.
  • the bound water of water is arranged in a high arrangement and the hydrogen bonding force is increased.
  • the heat storage material 33 dissipates hydrogen bond energy corresponding to an increase in hydrogen bond force. Since the temperature of the heat storage material 33 at the end of heat storage was about 70 ° C., the tap water was heated and the temperature of the tap water rose to 60 ° C. to 70 ° C. When the temperature of tap water rises to 60 ° C. or higher, it is preferable to eliminate the influence of various germs contained in tap water.
  • the water in the heat storage tank 31 is in a liquid state.
  • the tap water that has passed through the hot water supply heat exchanger 41 rises in temperature, flows out of the heat storage tank 31, and is sent to the hot water supply terminal device 500.
  • the heat storage tank 31 of the heat storage unit 30 accommodates the heat storage heat exchanger 32, the hot water supply heat exchanger 41, and the heat storage material 33.
  • the heat storage material 33 contains at least a polymer and water, and the polymer is a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on a specific temperature.
  • the heat storage material 33 has a high heat storage amount corresponding to a change in the hydrogen bonding force of water when the polymer swells or contracts. As a result, it is possible to store the same amount of heat with a smaller capacity as compared with the case where heat is stored only in water in the heat storage tank 31.
  • the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Therefore, the heat storage tank 31 that occupies a large volume in the hot water supply / heating device 100 can be miniaturized. Then, the entire hot water supply / heating device 100 can be miniaturized.
  • the heat heat exchanger 12 of the heat source unit 10 that generates heat to be stored in the heat storage material 33 is arranged in the heat pump unit 200. Therefore, the heat storage unit 300 can be miniaturized. Since the heat exchanger 12 is located in the heat pump unit 200 in the hot water supply / heating device 100 of the first embodiment, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which a circulating fluid, which is a liquid, circulates. To. Since the heat pump unit 200 has a heat pump circuit, the refrigerant does not flow into the heat storage unit 300, so that the amount of refrigerant to be filled can be reduced. Then, the environment can be improved by reducing the amount of the refrigerant.
  • FIG. 2 is a schematic view showing the configuration of the hot water supply / heating device according to the second embodiment.
  • the heating heat exchanger 12 for heating the circulating fluid is not in the heat pump unit 200 but in the heat storage unit 300 as compared with the hot water supply / heating device 100 of the first embodiment. The difference is that they are arranged in. Therefore, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which the refrigerant passes, not by a pipe through which the circulating fluid passes.
  • the heat pump unit 200 can be miniaturized. Further, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which a refrigerant circulates. Since the refrigerant has a low freezing point, there is no risk of freezing even at the atmospheric temperature in winter. Therefore, there is no possibility that the refrigerant pipe will be damaged by freezing.
  • Embodiment 3 Next, the hot water supply / heating device 100 according to the third embodiment will be described.
  • the equipment configuration of the hot water supply / heating device 100 according to the third embodiment is the same as the configuration described in the first embodiment and the second embodiment.
  • the heat storage material 33 shown below is used.
  • the heat storage material 33 used in the hot water supply / heating device 100 of the third embodiment has the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is determined. It is in the range of 99: 0.5: 0.5 to 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5.
  • the proportion of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) are represented.
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%).
  • the heat storage density is the amount of heat storage per mass.
  • the proportion of the structural unit represented by the general formula (1) is too small (the structural unit represented by the general formula (1), the functional group X, and the general formula (2)
  • the total of the structural units represented is 100 mol%, LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 70 mol%).
  • the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the preparation of raw materials. It is a theoretical value calculated from the quantity.
  • the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) are combined into the molar ratio.
  • the number of repetitions of the structural units represented by the above general formula (1) and the order in which the respective structural units are combined are not particularly limited.
  • the number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
  • the LCST can be set in a wide range of 5 to 80 ° C. , mainly depending on the types of R 1 and R 2 in the general formula (1).
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of a temperature-sensitive polymer.
  • X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. Is. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) and (2) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure.
  • the branch structure is not particularly limited.
  • the heat storage material 33 housed in the heat storage tank 31 contains a temperature-sensitive polymer having a high heat storage density. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, the heat storage tank 31 can be miniaturized, and the entire hot water supply / heating device 100 can be miniaturized.
  • Embodiment 4 Next, the hot water supply / heating device 100 according to the fourth embodiment will be described.
  • the equipment configuration of the hot water supply / heating device 100 according to the third embodiment is the same as the configuration described in the first embodiment and the second embodiment.
  • the heat storage material 33 shown below is used.
  • the heat storage material 33 used in the hot water supply / heating device 100 of the fourth embodiment has the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
  • R 5 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group or a sulfone.
  • * represents a covalent bond
  • p represents an integer of 1 to 3).
  • a temperature-sensitive polymer gel having a crosslinked structure in which a covalent bond of a structural unit represented by the above general formula (4) is bonded.
  • the range of the molar ratio between the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is set. It is 95: 5 to 20:80, preferably in the range of 85:15 to 25:75.
  • the ratio of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1) and the configuration represented by the general formula (3) or the general formula (4).
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 95 mol%).
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group The range of the molar ratio of a certain X to the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 98: 1: 1. The range is 77:18: 5.
  • the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large (the configuration represented by the general formula (1)).
  • the total of the units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the structural units represented by the general formula (2) is 100.
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X are used.
  • the molar ratio with the structural unit represented by the above general formula (2) is a theoretical value calculated from the amount of raw materials charged.
  • the heat storage material 33 of the fourth embodiment is a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), and a functional group. It suffices to include X and the structural unit represented by the general formula (2) within the range of the molar ratio, and the structural unit represented by the general formula (1) and the general formula (3) or The number of repetitions of the structural units represented by the general formula (4) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
  • the LCST is mainly composed of a structural unit represented by the general formula (1) and a structural unit represented by the general formula (3) or the general formula (4).
  • Molar ratio and types of R 1 and R 2 in the general formula (1) Wide range of 5 to 80 ° C. depending on the type of R 4 and R 5 in the general formula (3) or the general formula (4). Can be set to a range.
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) and R 5 in the general formula (3) or the general formula (4) are hydrogen atoms from the viewpoint of facilitating the production of a temperature-sensitive polymer. It is preferable to have.
  • X in the general formulas (1), (3) and (4) is composed of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. It is a functional group selected from the group. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density.
  • P in the general formulas (3) and (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) to (4) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure.
  • the branch structure is not particularly limited.
  • the heat storage material 33 housed in the heat storage tank 31 contains a temperature-sensitive polymer having a high heat storage density. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, the heat storage tank 31 can be miniaturized, and the entire hot water supply / heating device 100 can be miniaturized.
  • Embodiment 5 Although the above-described first and second embodiments have been described as a hot water supply / heating device 100 having a heating unit 20 for heating and to which a heating terminal device 400 can be connected, the present invention is not limited to this. Absent.
  • the hot water supply heating device can be applied as a hot water supply device to which the heating terminal device 400 is not connected or does not have the heating unit 20.
  • heat storage material 33 described in the first to fifth embodiments will be specifically described with reference to Examples 1 to 3.
  • the heat storage material 33 is not limited to this embodiment.
  • Examples 1 to 3 and Comparative Examples 1 to 5 The aqueous raw material solution having the composition shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer. Further, the obtained temperature-sensitive polymer was dried and then equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel. Then, the temperature-sensitive polymer gel was sealed in a closed container made of aluminum, and the endothermic peak temperature and the heat storage density were measured with a differential scanning calorimeter. The measurement results are shown in Table 2.
  • NIPAM N-Isopropylacrylamide
  • HMA 2-Hydroxyethyl Acrylate MBA: N, N'-Methylenebisacrylamide
  • KPS Carium Persulfate TEMED: N, N, N', N'-Tetramethylethylenediamine
  • the temperature-sensitive polymer gels obtained in Examples 1 to 3 have a low endothermic peak temperature of 45 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J. It was as large as / g. Therefore, the temperature-sensitive polymer gels obtained in Examples 1 to 3 can exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of about 45 ° C to 80 ° C. It is a substance that can be produced.
  • the heat storage tank 31 of the hot water supply / heating device 100 having the above configuration using the temperature-sensitive polymer gels obtained in Examples 1 to 3 depends on the heat storage density as compared with the case where heat is stored only with water. As a result, it has become possible to reduce the size by about 10% to 90%.
  • the water temperature was 45 ° C. to 77 ° C., and the gel was in a liquid state.
  • the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to conventional heat storage materials such as paraffin, fatty acid, and sugar alcohol.
  • the heat storage density was extremely low at 31 J / g to 42 J / g.
  • a hot water supply terminal device is used.
  • the temperature of tap water sent to 500 rises to 40 ° C to 70 ° C.
  • the hot water supply temperature when used for a shower or the like is preferably about 40 ° C., so that the heat storage material 33 containing the temperature-sensitive polymer gel having an endothermic peak temperature of 45 ° C. to 80 ° C. is used in the hot water supply heating device 100. convenient.
  • a temperature-sensitive polymer gel which is a substance having an endothermic peak temperature of 60 ° C. or higher and 80 ° C. or lower, such as the temperature-sensitive polymer gels of Examples 2 and 3, is used as the heat storage material 33
  • hot water is supplied.
  • the temperature of tap water sent to the terminal device 500 rises to 60 ° C. to 70 ° C.
  • the heat storage material 33 containing a temperature-sensitive polymer gel having a heat absorption peak temperature of 60 ° C. or higher and 80 ° C. or lower is used. , It is more convenient for the hot water supply / heating device 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This hot-water supply and heating apparatus comprises: a fluid circuit that is constituted by a heat source device, pump, and heat storage heat exchanger connected by piping, the heat source device generating heat, the pump applying pressure to a circulating fluid that transports the heat generated by the heat source device, the heat storage heat exchanger dissipating the heat transported by the circulating fluid; a heat storage tank that houses the heat storage heat exchanger, a hot-water supply heat exchanger through which the supply water for hot water supply passes, and a heat storage material that contains a polymer and water, stores the heat from the heat storage heat exchanger, and dissipates the heat into the supply water passing through the hot-water supply heat exchanger; and a water supply pipe that serves as a flow path through which the supply water passes.

Description

給湯暖房装置Hot water heater
 本発明は、給湯暖房装置に係るものである。特に、蓄熱タンクに蓄えられた熱を利用して水を加熱して、給湯を行う装置に関するものである。 The present invention relates to a hot water supply / heating device. In particular, the present invention relates to a device for supplying hot water by heating water using the heat stored in the heat storage tank.
 熱源機で生成した熱で暖房を行うとともに、生成した熱を給湯に利用できる給湯暖房装置がある。給湯暖房装置は、給湯においては、熱源機で生成した熱を、あらかじめ蓄熱タンクに蓄えておく構成である。そして、給湯暖房装置は、蓄熱タンクに蓄えた熱で、給湯暖房装置に供給された水を加熱して給湯を行う(たとえば、特許文献1参照)。ここで、熱源機で生成した熱は、蓄熱タンク内の水又は不凍液などを加熱することで、蓄熱タンクに蓄えられる。 There is a hot water supply heating device that heats with the heat generated by the heat source machine and can use the generated heat for hot water supply. In hot water supply, the hot water supply / heating device has a configuration in which the heat generated by the heat source machine is stored in the heat storage tank in advance. Then, the hot water supply / heating device heats the water supplied to the hot water supply / heating device with the heat stored in the heat storage tank to supply hot water (see, for example, Patent Document 1). Here, the heat generated by the heat source machine is stored in the heat storage tank by heating water, antifreeze, or the like in the heat storage tank.
特開2013-174408号公報Japanese Unexamined Patent Publication No. 2013-174408
 上述したように、従来の給湯暖房装置は、熱源機で生成した熱を、蓄熱タンク内の水又は不凍液などに蓄熱する。蓄熱タンクの蓄熱量は、主として、蓄熱タンク内に充填される水又は不凍液などの充填量に依存し、充填量が多いほど蓄熱量も多くなる。このため、蓄熱タンクにおける蓄熱量を多くしようとすると、水又は不凍液などの充填量を増やす必要があった。したがって、蓄熱タンクの容量が大きくなって大型化し、給湯暖房装置が大型化するという課題があった。 As described above, the conventional hot water supply / heating device stores the heat generated by the heat source machine in water or antifreeze in the heat storage tank. The amount of heat stored in the heat storage tank mainly depends on the amount of water or antifreeze filled in the heat storage tank, and the larger the amount of filling, the larger the amount of heat storage. Therefore, in order to increase the amount of heat stored in the heat storage tank, it is necessary to increase the amount of water or antifreeze filled. Therefore, there is a problem that the capacity of the heat storage tank becomes large and large, and the hot water supply / heating device becomes large.
 本発明は、上記のような課題を解決するため、蓄熱タンクの容積あたりの蓄熱量及び放熱量を増やすことができる給湯暖房装置を得ることを目的とする。 An object of the present invention is to obtain a hot water supply / heating device capable of increasing the amount of heat storage and the amount of heat radiation per volume of a heat storage tank in order to solve the above problems.
 本発明に係る給湯暖房装置は、熱を生成する熱源装置、熱源装置が生成した熱を搬送する循環流体に圧力を加えるポンプ及び循環流体が搬送した熱を放熱する蓄熱熱交換器とを配管接続して構成する流体回路と、蓄熱熱交換器、給湯に係る供給水が通過する給湯熱交換器、及び、高分子及び水を含み、蓄熱熱交換器からの熱を蓄熱し、給湯熱交換器を通過する供給水に放熱する蓄熱材を収容する蓄熱タンクと、供給水が通過する流路となる給水配管とを備えるものである。 In the hot water supply / heating device according to the present invention, a heat source device that generates heat, a pump that applies pressure to the circulating fluid that carries the heat generated by the heat source device, and a heat storage heat exchanger that dissipates the heat carried by the circulating fluid are connected by piping. A hot water supply heat exchanger that stores heat from the heat storage heat exchanger, including a heat storage heat exchanger, a hot water supply heat exchanger through which the supply water related to hot water supply passes, and a polymer and water. It is provided with a heat storage tank for accommodating a heat storage material that dissipates heat to the supply water passing through the water heater, and a water supply pipe serving as a flow path through which the supply water passes.
 本発明によれば、蓄熱タンクは、高分子及び水を含む蓄熱材を収容する。蓄熱材33は、高分子が膨潤又は収縮する際の、水の水素結合力の変化に相当する高い蓄熱量を有する。これにより、蓄熱タンク内に水だけで蓄熱した場合と比べて、小容量で、同等の熱量を蓄熱することができる。したがって、蓄熱タンクの容積あたりの蓄熱量及び放熱量を増やすことができる。 According to the present invention, the heat storage tank accommodates a heat storage material containing a polymer and water. The heat storage material 33 has a high heat storage amount corresponding to a change in the hydrogen bonding force of water when the polymer swells or contracts. As a result, it is possible to store the same amount of heat with a small capacity as compared with the case where heat is stored only in water in the heat storage tank. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank can be increased.
実施の形態1に係る給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water supply heating apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water supply heating apparatus which concerns on Embodiment 2.
実施の形態1.
 図1は、実施の形態1に係る給湯暖房装置の構成を示す模式図である。図1において、給湯暖房装置100は、ヒートポンプユニット200と蓄熱ユニット300とを有する。ヒートポンプユニット200と蓄熱ユニット300とは、現地で配管接続される。また、蓄熱ユニット300は、現地で暖房端末装置400、給湯端末装置500及び給水源600と配管接続される。
Embodiment 1.
FIG. 1 is a schematic view showing a configuration of a hot water supply / heating device according to a first embodiment. In FIG. 1, the hot water supply / heating device 100 includes a heat pump unit 200 and a heat storage unit 300. The heat pump unit 200 and the heat storage unit 300 are connected by piping on site. Further, the heat storage unit 300 is locally connected to the heating terminal device 400, the hot water supply terminal device 500, and the water supply source 600 by piping.
 ヒートポンプユニット200と蓄熱ユニット300とを組み合わせた給湯暖房装置100は、たとえば、機能的に、熱源部10、暖房部20、蓄熱部30、給湯部40の機器に分類される。 The hot water supply / heating device 100, which is a combination of the heat pump unit 200 and the heat storage unit 300, is functionally classified into, for example, the equipment of the heat source unit 10, the heating unit 20, the heat storage unit 30, and the hot water supply unit 40.
 熱源部10は、暖房及び給湯を行う際の熱を生成する熱源装置となる機器を有する。熱源となる機器としては、たとえば、電気ヒーター、ガスボイラー又はヒートポンプ装置などがある。ここでは、ヒートポンプ回路を有し、熱を生成するヒートポンプ装置について説明する。ヒートポンプユニット200内に搭載されたヒートポンプ装置は、圧縮機11、加熱熱交換器12、減圧装置13及び吸熱熱交換器14を、冷媒配管を介して環状に接続し、冷媒が循環するヒートポンプ回路を構成する。冷媒には、二酸化炭素やプロパンガスなどの自然冷媒、又はR410AやR32などのHFC系冷媒を用いることができる。 The heat source unit 10 has a device that serves as a heat source device that generates heat when heating and hot water supply. Equipment that serves as a heat source includes, for example, an electric heater, a gas boiler, or a heat pump device. Here, a heat pump device having a heat pump circuit and generating heat will be described. The heat pump device mounted in the heat pump unit 200 connects a compressor 11, a heating heat exchanger 12, a depressurizing device 13, and a heat absorbing heat exchanger 14 in an annular shape via a refrigerant pipe to form a heat pump circuit in which the refrigerant circulates. Configure. As the refrigerant, a natural refrigerant such as carbon dioxide or propane gas, or an HFC-based refrigerant such as R410A or R32 can be used.
 圧縮機11は、低温及び低圧の冷媒を吸引して圧縮し、高温及び高圧の状態にして吐出する。加熱熱交換器12は、冷媒が放熱する放熱器として機能する熱交換器である。実施の形態1の加熱熱交換器12は、ヒートポンプユニット200に設置されている。加熱熱交換器12は、熱を搬送する熱媒体となる循環流体と冷媒とを熱交換させ、冷媒に放熱させて、循環流体を加熱する。加熱熱交換器12の熱交換器の種類については特に限定するものではない。たとえば、プレート形状で、冷媒と循環流体とがそれぞれ異なる層流路を流れるプレート熱交換器であってもよい。また、冷媒と循環流体とがそれぞれ外管と内管とを流れる二重管構造の熱交換器であってもよい。ここで、循環流体は、たとえば、水又は不凍液などの液体の流体である。水は、不凍液に比べて安価なため、水を用いることが望ましい。 The compressor 11 sucks and compresses low-temperature and low-pressure refrigerants, and discharges them in high-temperature and high-pressure states. The heat heat exchanger 12 is a heat exchanger that functions as a heat exchanger through which the refrigerant dissipates heat. The heat exchanger 12 of the first embodiment is installed in the heat pump unit 200. The heat heat exchanger 12 heats the circulating fluid by exchanging heat between the circulating fluid, which is a heat medium for transporting heat, and the refrigerant, and dissipating heat to the refrigerant. The type of heat exchanger of the heat heat exchanger 12 is not particularly limited. For example, it may be a plate heat exchanger having a plate shape in which the refrigerant and the circulating fluid flow through different laminar flows. Further, it may be a heat exchanger having a double pipe structure in which the refrigerant and the circulating fluid flow through the outer pipe and the inner pipe, respectively. Here, the circulating fluid is a liquid fluid such as water or antifreeze. Since water is cheaper than antifreeze, it is desirable to use water.
 減圧装置13は、高圧の冷媒を減圧させ、冷媒の圧力及び流量を調整する。減圧装置13は、たとえば、電子膨張弁であってもよいし、キャピラリチューブであってもよい。吸熱熱交換器14は、たとえば、フィンーチューブ型の熱交換器である。吸熱熱交換器14は、減圧装置13から流出した冷媒と外部の熱源とを熱交換させ、外部熱源に放熱させて、冷媒に吸熱させる。ここでは、吸熱熱交換器14は、屋外の空気と冷媒とを熱交換させるものとする。ここで、図1では示していないが、吸熱熱交換器14の近傍に、吸熱熱交換器14に空気を送るファンを設置してもよい。 The decompression device 13 decompresses the high-pressure refrigerant and adjusts the pressure and flow rate of the refrigerant. The pressure reducing device 13 may be, for example, an electronic expansion valve or a capillary tube. The endothermic heat exchanger 14 is, for example, a fin tube type heat exchanger. The endothermic heat exchanger 14 exchanges heat between the refrigerant flowing out of the decompression device 13 and an external heat source, dissipates heat to the external heat source, and causes the refrigerant to absorb heat. Here, the endothermic heat exchanger 14 is assumed to exchange heat between the outdoor air and the refrigerant. Here, although not shown in FIG. 1, a fan that sends air to the endothermic heat exchanger 14 may be installed in the vicinity of the endothermic heat exchanger 14.
 暖房部20は、熱源部10において生成された熱を供給する流体回路を構成する機器を有する。暖房部20は、ポンプ21及び切換弁22を有する。暖房部20は、熱源装置と、後述する蓄熱部30及び暖房端末装置400と配管接続され、循環流体が循環される流体回路を構成する。流体回路は、熱源部10において生成された熱を供給するための回路である。ポンプ21は、流体回路内の循環流体に圧力を加えて、循環流体を循環させ、蓄熱部30又は暖房端末装置400に熱源部10において生成された熱を供給する。また、切換弁22は、たとえば、三方弁である。切換弁22は、加熱熱交換器12から流出した循環流体について、暖房端末装置400側を通過させるか蓄熱部30側を通過させるかを切り換える弁である。暖房端末装置400は、流体回路を流れる循環流体により搬送された熱に基づいて空調対象空間の暖房を行う装置である。特に限定するものではないが、ここでは、暖房端末装置400は、放熱を行って暖房する暖房ラジエーターであるものとする。暖房端末装置400は、他にも床暖房装置などであってもよい。 The heating unit 20 has equipment that constitutes a fluid circuit that supplies the heat generated in the heat source unit 10. The heating unit 20 has a pump 21 and a switching valve 22. The heating unit 20 is connected to the heat source device, the heat storage unit 30 and the heating terminal device 400, which will be described later, by piping, and constitutes a fluid circuit in which the circulating fluid is circulated. The fluid circuit is a circuit for supplying the heat generated in the heat source unit 10. The pump 21 applies pressure to the circulating fluid in the fluid circuit to circulate the circulating fluid, and supplies the heat generated in the heat source unit 10 to the heat storage unit 30 or the heating terminal device 400. Further, the switching valve 22 is, for example, a three-way valve. The switching valve 22 is a valve that switches whether the circulating fluid flowing out of the heating heat exchanger 12 passes through the heating terminal device 400 side or the heat storage unit 30 side. The heating terminal device 400 is a device that heats the air-conditioned space based on the heat transferred by the circulating fluid flowing through the fluid circuit. Although not particularly limited, here, it is assumed that the heating terminal device 400 is a heating radiator that dissipates heat to heat. The heating terminal device 400 may also be a floor heating device or the like.
 蓄熱部30は、熱源部10において生成され、循環流体により搬送された熱を蓄える。蓄熱部30は、蓄熱タンク31、蓄熱熱交換器32、及び蓄熱材33を有する。蓄熱タンク31は、たとえば、材料はSUS(ステンレス鋼材)で、略直方体形状の容器である。蓄熱タンク31は、蓄熱熱交換器32と蓄熱材33とを内部に含む。蓄熱熱交換器32は、前述した循環流体と蓄熱材33とを熱交換させて、循環流体に放熱させて、蓄熱材33を加熱する。蓄熱熱交換器32は、たとえば、1本のチューブと複数枚のフィンで構成されるフィンーチューブ式の熱交換器である。蓄熱熱交換器32のチューブは、流体回路の一部となり、管内を循環流体が通過する。蓄熱熱交換器32のチューブは、SUS又は銅などの金属を材料とする。蓄熱熱交換器32のフィンは、循環流体の熱が蓄熱材33に伝わるように、伝熱面積を広げる。蓄熱熱交換器32のフィンは、たとえば、SUS又はアルミニウムなどの金属を材料とし、板状に加工したプレートである。蓄熱材33は、蓄熱熱交換器32との熱交換により、循環流体からの熱を蓄熱する。また、後述するように、給湯端末装置500から供給する水(以下、供給水という)を加熱する。蓄熱材33は、少なくとも高分子と水とを含み、たとえば、感温性高分子ゲルである。高分子は、特定の温度に依存して親水性と疎水性とを示す感温性高分子である。特定の温度とは、水に対する下限臨界溶液温度(Lower Critical Solution Temperature:LCST)であり、高分子は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示し、LCSTを境にして、親水性と疎水性とが可逆的に変化する。 The heat storage unit 30 stores the heat generated in the heat source unit 10 and transferred by the circulating fluid. The heat storage unit 30 includes a heat storage tank 31, a heat storage heat exchanger 32, and a heat storage material 33. The heat storage tank 31 is, for example, a container made of SUS (stainless steel) and having a substantially rectangular parallelepiped shape. The heat storage tank 31 includes a heat storage heat exchanger 32 and a heat storage material 33 inside. The heat storage heat exchanger 32 heats the heat storage material 33 by exchanging heat between the above-mentioned circulating fluid and the heat storage material 33 and dissipating heat to the circulating fluid. The heat storage heat exchanger 32 is, for example, a fin-tube heat exchanger composed of one tube and a plurality of fins. The tube of the heat storage heat exchanger 32 becomes a part of the fluid circuit, and the circulating fluid passes through the tube. The tube of the heat storage heat exchanger 32 is made of a metal such as SUS or copper. The fins of the heat storage heat exchanger 32 increase the heat transfer area so that the heat of the circulating fluid is transferred to the heat storage material 33. The fin of the heat storage heat exchanger 32 is a plate made of a metal such as SUS or aluminum and processed into a plate shape. The heat storage material 33 stores heat from the circulating fluid by heat exchange with the heat storage heat exchanger 32. Further, as will be described later, the water supplied from the hot water supply terminal device 500 (hereinafter referred to as supply water) is heated. The heat storage material 33 contains at least a polymer and water, and is, for example, a temperature-sensitive polymer gel. A polymer is a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on a specific temperature. The specific temperature is the lower critical solution temperature (LCST) with respect to water, and the polymer exhibits hydrophilicity on the lower temperature side than LCST, hydrophobicity on the higher temperature side than LCST, and borders on LCST. Therefore, hydrophilicity and hydrophobicity change reversibly.
 蓄熱材33における高分子の具体例としては、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-シクロプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル-N-メチル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-イソプロピル-N-メチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-エチル-N-メトキシエチル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-イソプロポキシプロピル(メタ)アクリルアミド、N-メトキシエトキシプロピル(メタ)アクリルアミド、N-1-メチル-2-メトキシエチル(メタ)アクリルアミド、N-1-メトキシメチルプロピル(メタ)アクリルアミド、N-(2,2-ジメトキシエチル)-N-メチル(メタ)アクリルアミド、N,N-ジメトキシエチル(メタ)アクリルアミドなどの重合性モノマーを、架橋剤で架橋した高密度架橋物である。 Specific examples of the polymer in the heat storage material 33 include N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N, N. -Dimethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N-methyl-Nn-propyl (meth) acrylamide, N-isopropyl-N-methyl (meth) acrylamide, N, N-diethyl (Meta) acrylamide, N-ethoxyethyl (meth) acrylamide, N-ethyl-N-methoxyethyl (meth) acrylamide, N-methoxypropyl (meth) acrylamide, N-ethoxypropyl (meth) acrylamide, N-isopropoxypropyl (Meta) acrylamide, N-methoxyethoxypropyl (meth) acrylamide, N-1-methyl-2-methoxyethyl (meth) acrylamide, N-1-methoxymethylpropyl (meth) acrylamide, N- (2,2-dimethoxy) It is a high-density crosslinked product obtained by cross-linking a polymerizable monomer such as ethyl) -N-methyl (meth) acrylamide and N, N-dimethoxyethyl (meth) acrylamide with a cross-linking agent.
 蓄熱材33における水は、純水が好ましいが、高分子を劣化させるおそれのある成分が含まれていない水であれば純水でなくてもよい。水は、高分子の高密度架橋物に結合した結合水と、結合水を除く自由水とに分けられる。高分子は、LCSTより低温で親水性の膨潤構造であるため、水の結合水が安定な高配列構造を形成し、水素結合力を高める。一方、高分子は、LCSTより高温で疎水性の収縮構造であるため、水の結合水が不安定な低配列構造を形成し、水素結合力を弱める。これにより、蓄熱材33は、LCSTの前後において結合水の水素結合力を向上又は低下させることができる。このように、蓄熱材33は、LCSTの前後において結合水の水素結合力を変化させることで、水素結合力の変化に相当する高い蓄熱量を有する。すなわち、蓄熱材33は、水に比べて、充填量あたりの蓄熱量が大きく、蓄熱タンク31内に充填される蓄熱材33の充填量を削減することができる。したがって、蓄熱タンク31の容積あたりの蓄熱量及び放熱量を増やすことができる。そして、同じ蓄熱量であれば、水だけに蓄熱する場合よりも蓄熱タンク31を小型化することができる。蓄熱材の高分子には、特に、高分子末端にヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を有する感温性高分子が望ましい。これらの材料の組成、架橋構造を調整することによって、吸熱ピーク温度が30℃~90℃の範囲にあり、かつ、蓄熱密度が300J/g以上の感温性高分子ゲルが実現できることを見出した。給湯暖房用途には吸熱ピーク温度が45℃以上80℃以下の範囲のものを使用すると好適である。 The water in the heat storage material 33 is preferably pure water, but it does not have to be pure water as long as it does not contain components that may deteriorate the polymer. Water is divided into bound water bound to a high-density crosslinked product of a polymer and free water excluding bound water. Since the polymer has a hydrophilic swelling structure at a temperature lower than that of LCST, the water-bonded water forms a stable high-arranged structure and enhances the hydrogen-bonding force. On the other hand, since the polymer has a hydrophobic shrinkage structure at a temperature higher than that of LCST, the water-bonded water forms an unstable low-arranged structure and weakens the hydrogen-bonding force. As a result, the heat storage material 33 can improve or reduce the hydrogen bonding force of the bound water before and after LCST. As described above, the heat storage material 33 has a high heat storage amount corresponding to the change in the hydrogen bonding force by changing the hydrogen bonding force of the bound water before and after the LCST. That is, the heat storage material 33 has a larger amount of heat storage per filling amount than water, and the filling amount of the heat storage material 33 filled in the heat storage tank 31 can be reduced. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, if the amount of heat storage is the same, the heat storage tank 31 can be made smaller than the case where heat is stored only in water. The polymer of the heat storage material is particularly thermosensitive having one or more functional groups selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the polymer terminal. Polymers are desirable. By adjusting the composition and crosslinked structure of these materials, it has been found that a temperature-sensitive polymer gel having an endothermic peak temperature in the range of 30 ° C. to 90 ° C. and a heat storage density of 300 J / g or more can be realized. .. For hot water supply and heating applications, it is preferable to use one having an endothermic peak temperature in the range of 45 ° C. or higher and 80 ° C. or lower.
 給湯部40は、蓄熱部30が蓄えた熱を利用して給湯端末装置500に給湯する機器を有する。給湯部40は、給湯熱交換器41及び給水配管42を有する。給水配管42は、給湯端末装置500において、利用される水の流路となる配管である。ここでは、たとえば、上水道などの給水源600と給湯端末装置500とを接続し、供給水となる水道水を供給する。給水配管42には、給湯熱交換器41が設置される。給湯熱交換器41は、蓄熱タンク31内に設置され、給水配管42を通過する水道水と蓄熱材33との熱交換により、水道水を加熱する。給湯熱交換器41は、たとえば、蓄熱熱交換器32と同様に、1本のチューブと複数枚のフィンとで構成されるフィンーチューブ式の熱交換器である。給湯熱交換器41で加熱された水は、給湯端末装置500側に送られる。給湯端末装置500は、たとえば、シャワー、洗面又はキッチンなど、温水が用いられる装置である。ここでは、給湯端末装置500の開栓により、給水源600から供給された水道水が給水配管42を流れるようにするが、給湯用のポンプなどを設置して水道水が流れるようにしてもよい。 The hot water supply unit 40 has a device that supplies hot water to the hot water supply terminal device 500 by using the heat stored in the heat storage unit 30. The hot water supply unit 40 has a hot water supply heat exchanger 41 and a water supply pipe 42. The water supply pipe 42 is a pipe that serves as a flow path for water used in the hot water supply terminal device 500. Here, for example, a water supply source 600 such as a water supply is connected to a hot water supply terminal device 500 to supply tap water as supply water. A hot water supply heat exchanger 41 is installed in the water supply pipe 42. The hot water supply heat exchanger 41 is installed in the heat storage tank 31 and heats the tap water by heat exchange between the tap water passing through the water supply pipe 42 and the heat storage material 33. The hot water supply heat exchanger 41 is a fin tube type heat exchanger composed of one tube and a plurality of fins, like the heat storage heat exchanger 32, for example. The water heated by the hot water supply heat exchanger 41 is sent to the hot water supply terminal device 500 side. The hot water supply terminal device 500 is a device that uses hot water, such as a shower, a washbasin, or a kitchen. Here, the tap water supplied from the water supply source 600 is allowed to flow through the water supply pipe 42 by opening the hot water supply terminal device 500, but tap water may be allowed to flow by installing a hot water supply pump or the like. ..
 ここで、蓄熱部30の蓄熱に係る動作について説明する。給湯暖房装置100における蓄熱材33への蓄熱動作は、たとえば、深夜などの電気料金が安価な時間帯、暖房端末装置400が停止している時間及び蓄熱タンク31内の蓄熱量が減少したときなどに実行する。熱源部10のヒートポンプ装置は、蓄熱材33を加熱する熱を生成する。暖房部20のポンプ21が、流体回路内の循環流体を循環させる。ヒートポンプ装置が生成した熱は、流体回路内の循環流体を加熱することで、蓄熱部30に搬送される。本実施の形態では、高分子のLCSTは、約60℃であるものとする。 Here, the operation related to the heat storage of the heat storage unit 30 will be described. The heat storage operation in the heat storage material 33 in the hot water supply / heating device 100 is, for example, when the electricity charge is low such as at midnight, when the heating terminal device 400 is stopped, and when the amount of heat storage in the heat storage tank 31 decreases. To run. The heat pump device of the heat source unit 10 generates heat for heating the heat storage material 33. The pump 21 of the heating unit 20 circulates the circulating fluid in the fluid circuit. The heat generated by the heat pump device is transferred to the heat storage unit 30 by heating the circulating fluid in the fluid circuit. In this embodiment, the LCST of the polymer is assumed to be about 60 ° C.
 蓄熱熱交換器32に循環流体が流れると、蓄熱熱交換器32において、循環流体の熱が蓄熱材33に伝えられ、蓄熱材33の温度が上昇する。蓄熱材33に含まれる水の温度が上昇すると、水は密度が減少して、体積が増加する。ここで、蓄熱タンク31内部において蓄熱材33の上方には、空気層(図示せず)が形成されており、水が膨張した体積分だけ、空気層の空気が圧縮される。このため、蓄熱タンク31の体積を略一定に保つことができる。ここで、蓄熱タンク31に圧力調整機構を設け、水が膨張した際に蓄熱タンク31内の圧力が圧力調整機構によって調整されるように構成してもよい。 When the circulating fluid flows through the heat storage heat exchanger 32, the heat of the circulating fluid is transferred to the heat storage material 33 in the heat storage heat exchanger 32, and the temperature of the heat storage material 33 rises. When the temperature of the water contained in the heat storage material 33 rises, the density of the water decreases and the volume increases. Here, an air layer (not shown) is formed above the heat storage material 33 inside the heat storage tank 31, and the air in the air layer is compressed by the volume integral in which the water expands. Therefore, the volume of the heat storage tank 31 can be kept substantially constant. Here, a pressure adjusting mechanism may be provided in the heat storage tank 31 so that the pressure in the heat storage tank 31 is adjusted by the pressure adjusting mechanism when water expands.
 蓄熱材33に含まれる高分子は、温度が上昇してLCSTを超えると収縮する。これを、収縮工程と呼称する。収縮工程において、水の結合水は低配列化して水素結合力が低下する。これにより、蓄熱材33は、水素結合力の低下分に相当する水素結合エネルギーを吸熱し、蓄熱する。ここで、収縮工程において、蓄熱タンク31内の水は液体状態である。蓄熱熱交換器32を通過した循環流体は、温度が低下して蓄熱タンク31から流出する。 The polymer contained in the heat storage material 33 shrinks when the temperature rises and exceeds LCST. This is called a contraction process. In the shrinkage step, the water-bonded water is arranged low and the hydrogen-bonding force is reduced. As a result, the heat storage material 33 absorbs and stores hydrogen bond energy corresponding to the decrease in hydrogen bond force. Here, in the shrinking step, the water in the heat storage tank 31 is in a liquid state. The temperature of the circulating fluid that has passed through the heat storage heat exchanger 32 drops, and the circulating fluid flows out of the heat storage tank 31.
 蓄熱にかかる動作では、循環流体が流体回路内を循環することで、熱源部10において生成された熱で蓄熱材33を加熱し、蓄熱材33の温度が、LCSTよりもたとえば10℃高い70℃まで上昇すると、蓄熱は終了する。 In the operation related to heat storage, the circulating fluid circulates in the fluid circuit to heat the heat storage material 33 with the heat generated in the heat source unit 10, and the temperature of the heat storage material 33 is 70 ° C., which is, for example, 10 ° C. higher than the LCST. When it rises to, the heat storage ends.
 次に、蓄熱部30の放熱に係る動作について説明する。たとえば、給湯端末装置500が開栓などされると、たとえば、給水源600から供給された10℃の水道水が給水配管42内を流れる。給湯熱交換器41に水道水が流れると、給湯熱交換器41において、蓄熱材33の熱が水道水に伝えられ、蓄熱材33の温度が低下する。蓄熱材33に含まれる水の温度が低下すると、水は密度が増加して体積が減少する。ここで、水の体積が最も減少した場合にも、給湯熱交換器41の全体が蓄熱材33と接触できるように、蓄熱タンク31の容積、給湯熱交換器41の容積、フィンの面積及び蓄熱材33の充填量が設計されている。 Next, the operation related to heat dissipation of the heat storage unit 30 will be described. For example, when the hot water supply terminal device 500 is opened, for example, tap water at 10 ° C. supplied from the water supply source 600 flows through the water supply pipe 42. When tap water flows through the hot water supply heat exchanger 41, the heat of the heat storage material 33 is transferred to the tap water in the hot water supply heat exchanger 41, and the temperature of the heat storage material 33 drops. When the temperature of the water contained in the heat storage material 33 decreases, the density of the water increases and the volume decreases. Here, the volume of the heat storage tank 31, the volume of the hot water supply heat exchanger 41, the area of the fins, and the heat storage so that the entire hot water supply heat exchanger 41 can come into contact with the heat storage material 33 even when the volume of water is reduced most. The filling amount of the material 33 is designed.
 蓄熱材33に含まれる高分子は、水道水に放熱して、温度が低下してLCSTを下回ると、膨潤する。これを、膨潤工程と呼称する。膨潤工程において、水の結合水は、高配列化して水素結合力が上昇する。蓄熱材33は、水素結合力の上昇分に相当する水素結合エネルギーを放熱する。蓄熱終了時の蓄熱材33の温度は約70℃であったため、水道水は加熱され、水道水の温度は60℃~70℃に上昇する。水道水の温度が60℃以上に上昇すると、水道水中に含まれる雑菌などの影響の排除に好ましい。ここで、膨潤工程において、蓄熱タンク31内の水は液体状態である。以上のようにして、給湯熱交換器41を通過した水道水は、温度が上昇して蓄熱タンク31から流出し、給湯端末装置500に送られる。 The polymer contained in the heat storage material 33 dissipates heat to tap water and swells when the temperature drops below LCST. This is called a swelling process. In the swelling step, the bound water of water is arranged in a high arrangement and the hydrogen bonding force is increased. The heat storage material 33 dissipates hydrogen bond energy corresponding to an increase in hydrogen bond force. Since the temperature of the heat storage material 33 at the end of heat storage was about 70 ° C., the tap water was heated and the temperature of the tap water rose to 60 ° C. to 70 ° C. When the temperature of tap water rises to 60 ° C. or higher, it is preferable to eliminate the influence of various germs contained in tap water. Here, in the swelling step, the water in the heat storage tank 31 is in a liquid state. As described above, the tap water that has passed through the hot water supply heat exchanger 41 rises in temperature, flows out of the heat storage tank 31, and is sent to the hot water supply terminal device 500.
 以上のように、実施の形態1の給湯暖房装置100によれば、蓄熱部30の蓄熱タンク31は、蓄熱熱交換器32、給湯熱交換器41及び蓄熱材33を収容する。蓄熱材33は、少なくとも高分子と水とを含み、高分子は、特定の温度に依存して親水性と疎水性とを示す感温性高分子である。そして、蓄熱材33は、高分子が膨潤又は収縮する際の、水の水素結合力の変化に相当する高い蓄熱量を有する。これにより、蓄熱タンク31内に水だけで蓄熱した場合と比べて、小容量で、同等の熱量を蓄熱することができる。このため、蓄熱タンク31の容積あたりの蓄熱量及び放熱量を増やすことができる。したがって、給湯暖房装置100において大きな容積を占める蓄熱タンク31を小型化することができる。そして、給湯暖房装置100全体を小型化することができる。 As described above, according to the hot water supply / heating device 100 of the first embodiment, the heat storage tank 31 of the heat storage unit 30 accommodates the heat storage heat exchanger 32, the hot water supply heat exchanger 41, and the heat storage material 33. The heat storage material 33 contains at least a polymer and water, and the polymer is a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on a specific temperature. The heat storage material 33 has a high heat storage amount corresponding to a change in the hydrogen bonding force of water when the polymer swells or contracts. As a result, it is possible to store the same amount of heat with a smaller capacity as compared with the case where heat is stored only in water in the heat storage tank 31. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Therefore, the heat storage tank 31 that occupies a large volume in the hot water supply / heating device 100 can be miniaturized. Then, the entire hot water supply / heating device 100 can be miniaturized.
 また、実施の形態1の給湯暖房装置100は、蓄熱材33に蓄熱させる熱を生成する熱源部10の加熱熱交換器12が、ヒートポンプユニット200内に配設されている。このため、蓄熱ユニット300を小型化することができる。そして、実施の形態1の給湯暖房装置100は、加熱熱交換器12が、ヒートポンプユニット200内にあるため、ヒートポンプユニット200と蓄熱ユニット300とが、液体である循環流体が循環する配管で接続される。ヒートポンプユニット200がヒートポンプ回路を有することで、冷媒が蓄熱ユニット300に流れないため、充填する冷媒量を削減することができる。そして、冷媒の量が減ることで環境をよくすることができる。 Further, in the hot water supply / heating device 100 of the first embodiment, the heat heat exchanger 12 of the heat source unit 10 that generates heat to be stored in the heat storage material 33 is arranged in the heat pump unit 200. Therefore, the heat storage unit 300 can be miniaturized. Since the heat exchanger 12 is located in the heat pump unit 200 in the hot water supply / heating device 100 of the first embodiment, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which a circulating fluid, which is a liquid, circulates. To. Since the heat pump unit 200 has a heat pump circuit, the refrigerant does not flow into the heat storage unit 300, so that the amount of refrigerant to be filled can be reduced. Then, the environment can be improved by reducing the amount of the refrigerant.
実施の形態2.
 図2は、実施の形態2に係る給湯暖房装置の構成を示す模式図である。図2における実施の形態2の給湯暖房装置100は、実施の形態1の給湯暖房装置100と比較して、循環流体を加熱する加熱熱交換器12が、ヒートポンプユニット200内ではなく蓄熱ユニット300内に配設されている点が異なる。したがって、ヒートポンプユニット200と蓄熱ユニット300とは、循環流体が通過する配管ではなく、冷媒が通過する配管で接続されている。
Embodiment 2.
FIG. 2 is a schematic view showing the configuration of the hot water supply / heating device according to the second embodiment. In the hot water supply / heating device 100 of the second embodiment in FIG. 2, the heating heat exchanger 12 for heating the circulating fluid is not in the heat pump unit 200 but in the heat storage unit 300 as compared with the hot water supply / heating device 100 of the first embodiment. The difference is that they are arranged in. Therefore, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which the refrigerant passes, not by a pipe through which the circulating fluid passes.
 加熱熱交換器12が、蓄熱ユニット300内に配設されているため、ヒートポンプユニット200を小型化することができる。また、ヒートポンプユニット200と蓄熱ユニット300とは、冷媒が循環する配管で接続されている。冷媒は、凝固点が低いため、冬期の大気温度においても凍結する恐れがない。したがって、冷媒配管が凍結により破損する恐れがない。 Since the heat heat exchanger 12 is arranged in the heat storage unit 300, the heat pump unit 200 can be miniaturized. Further, the heat pump unit 200 and the heat storage unit 300 are connected by a pipe through which a refrigerant circulates. Since the refrigerant has a low freezing point, there is no risk of freezing even at the atmospheric temperature in winter. Therefore, there is no possibility that the refrigerant pipe will be damaged by freezing.
実施の形態3.
 次に、実施の形態3に係る給湯暖房装置100について説明する。実施の形態3に係る給湯暖房装置100の機器構成については、実施の形態1及び実施の形態2で説明した構成と同じである。実施の形態3の給湯暖房装置100では、次に示す蓄熱材33を用いる。
Embodiment 3.
Next, the hot water supply / heating device 100 according to the third embodiment will be described. The equipment configuration of the hot water supply / heating device 100 according to the third embodiment is the same as the configuration described in the first embodiment and the second embodiment. In the hot water supply / heating device 100 of the third embodiment, the heat storage material 33 shown below is used.
 実施の形態3の給湯暖房装置100に用いる蓄熱材33は、下記一般式(1) The heat storage material 33 used in the hot water supply / heating device 100 of the third embodiment has the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。 (In the formula, * represents a covalent bond, q represents an integer of 1 to 3), and includes a structural unit represented by the above general formula (1). It is composed of a temperature-sensitive polymer gel having a crosslinked structure in which a hand and a covalent bond of a structural unit represented by the above general formula (2) are bonded.
 本実施の形態の蓄熱材33において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、99:0.5:0.5~70:23:7の範囲であり、好ましくは98:1:1~77:18:5の範囲である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が99モル%を超える場合)、蓄熱密度が小さくなる。ここで、蓄熱密度とは、質量あたりの蓄熱量である。ある熱量を蓄熱する場合、蓄熱密度が大きいほど、給湯暖房装置100の蓄熱タンク31へ充填する充填量を減らすことができ、蓄熱タンク31を小型化することができる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。 In the heat storage material 33 of the present embodiment, the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is determined. It is in the range of 99: 0.5: 0.5 to 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5. When the proportion of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) are represented. When the total of the constituent units is 100 mol%, the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%). Here, the heat storage density is the amount of heat storage per mass. When a certain amount of heat is stored, the larger the heat storage density, the smaller the filling amount to be filled in the heat storage tank 31 of the hot water supply / heating device 100, and the smaller the size of the heat storage tank 31 can be. On the other hand, when the proportion of the structural unit represented by the general formula (1) is too small (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) When the total of the structural units represented is 100 mol%, LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 70 mol%). In the present specification, the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the preparation of raw materials. It is a theoretical value calculated from the quantity.
 本実施の形態の蓄熱材33は、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを、上記モル比の範囲で含んでいればよく、上記一般式(1)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。 In the heat storage material 33 of the present embodiment, the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) are combined into the molar ratio. The number of repetitions of the structural units represented by the above general formula (1) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
 本実施の形態の蓄熱材33において、LCSTは、主に、上記一般式(1)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)中のXは、上記したモル比の範囲を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基である。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。上記一般式(1)及(2)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させるだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されることはない。 In the heat storage material 33 of the present embodiment, the LCST can be set in a wide range of 5 to 80 ° C. , mainly depending on the types of R 1 and R 2 in the general formula (1). R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response. R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness. Further, R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of a temperature-sensitive polymer. X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. Is. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties. The q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density. The covalent bond in the general formulas (1) and (2) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure. The branch structure is not particularly limited.
 以上のように、実施の形態3の給湯暖房装置100によれば、蓄熱タンク31が収容する蓄熱材33は、蓄熱密度が大きい感温性高分子を含む。このため、蓄熱タンク31の容積あたりの蓄熱量及び放熱量を増やすことができる。そして、蓄熱タンク31を小型化することができ、給湯暖房装置100全体を小型化することができる。 As described above, according to the hot water supply / heating device 100 of the third embodiment, the heat storage material 33 housed in the heat storage tank 31 contains a temperature-sensitive polymer having a high heat storage density. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, the heat storage tank 31 can be miniaturized, and the entire hot water supply / heating device 100 can be miniaturized.
実施の形態4.
 次に、実施の形態4に係る給湯暖房装置100について説明する。実施の形態3に係る給湯暖房装置100の機器構成については、実施の形態1及び実施の形態2で説明した構成と同じである。実施の形態4の給湯暖房装置100では、次に示す蓄熱材33を用いる。
Embodiment 4.
Next, the hot water supply / heating device 100 according to the fourth embodiment will be described. The equipment configuration of the hot water supply / heating device 100 according to the third embodiment is the same as the configuration described in the first embodiment and the second embodiment. In the hot water supply / heating device 100 of the fourth embodiment, the heat storage material 33 shown below is used.
 実施の形態4の給湯暖房装置100に用いる蓄熱材33は、下記一般式(1) The heat storage material 33 used in the hot water supply / heating device 100 of the fourth embodiment has the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、下記一般式(3) (In the formula, * represents a covalent bond, q represents an integer from 1 to 3) and the following general formula (3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
若しくは下記一般式(4) Or the following general formula (4)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手と上記一般式(3)若しくは上記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。 (In the formula, R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group, R 5 represents a hydrogen atom or a methyl group, and X represents a covalent bond or a hydroxy group or a sulfone. Represents one or more functional groups selected from the group consisting of an acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group, * represents a covalent bond, and p represents an integer of 1 to 3). The covalent bond of the structural unit represented by the general formula (1), the covalent bond of the structural unit represented by the general formula (2), and the covalent bond of the structural unit represented by the general formula (2) and the general formula (3). ) Or a temperature-sensitive polymer gel having a crosslinked structure in which a covalent bond of a structural unit represented by the above general formula (4) is bonded.
 実施の形態4の蓄熱材33において、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比の範囲は、95:5~20:80であり、好ましくは85:15~25:75の範囲である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が95モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が20モル%未満である場合)、LCSTを示さなくなる。 In the heat storage material 33 of the fourth embodiment, the range of the molar ratio between the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is set. It is 95: 5 to 20:80, preferably in the range of 85:15 to 25:75. When the ratio of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1) and the configuration represented by the general formula (3) or the general formula (4). When the total with the units is 100 mol%, the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 95 mol%). On the other hand, when the ratio of the structural unit represented by the general formula (1) is too small (represented by the structural unit represented by the general formula (1) and the general formula (3) or the general formula (4). When the total of the structural units is 100 mol%, LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 20 mol%).
 実施の形態4の蓄熱材33において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比の範囲は、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5の範囲である。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が99モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。 In the heat storage material 33 of the fourth embodiment, the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group The range of the molar ratio of a certain X to the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 98: 1: 1. The range is 77:18: 5. When the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large (the configuration represented by the general formula (1)). The total of the units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the structural units represented by the general formula (2) is 100. When the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) exceeds 99 mol%) , The heat storage density becomes small. On the other hand, when the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too small (represented by the general formula (1)). The total of the structural units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the total of the structural units represented by the general formula (2). Is 100 mol%, and the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is less than 70 mol%. If there is), it will not show LCST. In the present specification, the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X are used. The molar ratio with the structural unit represented by the above general formula (2) is a theoretical value calculated from the amount of raw materials charged.
 実施の形態4の蓄熱材33は、上記一般式(1)で表される構成単位と、上記一般式(3)若しくは上記一般式(4)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを、上記モル比の範囲で含んでいればよく、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。 The heat storage material 33 of the fourth embodiment is a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), and a functional group. It suffices to include X and the structural unit represented by the general formula (2) within the range of the molar ratio, and the structural unit represented by the general formula (1) and the general formula (3) or The number of repetitions of the structural units represented by the general formula (4) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
 実施の形態4の蓄熱材33において、LCSTは、主に、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比並びに上記一般式(1)中のR及びRの種類上記一般式(3)若しくは上記一般式(4)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のR及び上記一般式(3)若しくは上記一般式(4)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)、(3)及び(4)中のXは、上記したモル比の範囲を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基である。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のRは、蓄熱密度をより高めるという観点から、ヒドロキシ基又はスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のpは、蓄熱密度をより高めるという観点から、1又は2であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。
 上記一般式(1)~(4)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させるだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されることはない。
In the heat storage material 33 of the fourth embodiment, the LCST is mainly composed of a structural unit represented by the general formula (1) and a structural unit represented by the general formula (3) or the general formula (4). Molar ratio and types of R 1 and R 2 in the general formula (1) Wide range of 5 to 80 ° C. depending on the type of R 4 and R 5 in the general formula (3) or the general formula (4). Can be set to a range. R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response. R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness. Further, R 3 in the general formula (1) and R 5 in the general formula (3) or the general formula (4) are hydrogen atoms from the viewpoint of facilitating the production of a temperature-sensitive polymer. It is preferable to have. X in the general formulas (1), (3) and (4) is composed of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. It is a functional group selected from the group. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties. R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density. P in the general formulas (3) and (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density. The q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
The covalent bond in the general formulas (1) to (4) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure. The branch structure is not particularly limited.
 以上のように、実施の形態4の給湯暖房装置100によれば、蓄熱タンク31が収容する蓄熱材33は、蓄熱密度が大きい感温性高分子を含む。このため、蓄熱タンク31の容積あたりの蓄熱量及び放熱量を増やすことができる。そして、蓄熱タンク31を小型化することができ、給湯暖房装置100全体を小型化することができる。 As described above, according to the hot water supply / heating device 100 of the fourth embodiment, the heat storage material 33 housed in the heat storage tank 31 contains a temperature-sensitive polymer having a high heat storage density. Therefore, the amount of heat storage and the amount of heat radiation per volume of the heat storage tank 31 can be increased. Then, the heat storage tank 31 can be miniaturized, and the entire hot water supply / heating device 100 can be miniaturized.
実施の形態5.
 上述した実施の形態1及び実施の形態2では、暖房を行うための暖房部20を有し、暖房端末装置400を接続することができる給湯暖房装置100として説明したが、これに限定するものではない。暖房端末装置400が接続されていないまたは暖房部20を有していない給湯装置として、給湯暖房装置を適用することができる。
Embodiment 5.
Although the above-described first and second embodiments have been described as a hot water supply / heating device 100 having a heating unit 20 for heating and to which a heating terminal device 400 can be connected, the present invention is not limited to this. Absent. The hot water supply heating device can be applied as a hot water supply device to which the heating terminal device 400 is not connected or does not have the heating unit 20.
 次に、実施の形態1~実施の形態5において説明した蓄熱材33について、実施例1~実施例3を示して具体的に説明する。ただし、蓄熱材33は、本実施例に限定されるものではない。 Next, the heat storage material 33 described in the first to fifth embodiments will be specifically described with reference to Examples 1 to 3. However, the heat storage material 33 is not limited to this embodiment.
〔実施例1~3及び比較例1~5〕
 表1に示す配合の原料水溶液を、窒素雰囲気下、室温から50℃まで1時間かけて昇温させ、感温性高分子を得た。また、得られた感温性高分子を乾燥した後、蒸留水で平衡膨潤させて、感温性高分子ゲルを得た。その後、感温性高分子ゲルをアルミニウム製の密閉容器に封入し、示差走査熱量計で吸熱ピーク温度と蓄熱密度とを測定した。測定結果を表2に示す。
[Examples 1 to 3 and Comparative Examples 1 to 5]
The aqueous raw material solution having the composition shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer. Further, the obtained temperature-sensitive polymer was dried and then equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel. Then, the temperature-sensitive polymer gel was sealed in a closed container made of aluminum, and the endothermic peak temperature and the heat storage density were measured with a differential scanning calorimeter. The measurement results are shown in Table 2.
 ここで、表1における略号は以下の通りである。
 NIPAM:N-イソプロピルアクリルアミド
 HMA:アクリル酸2-ヒドロキシエチル
 MBA:N,N’-メチレンビスアクリルアミド
 KPS:過硫酸カリウウム
 TEMED:N,N,N’,N’-テトラメチルエチレンジアミン
Here, the abbreviations in Table 1 are as follows.
NIPAM: N-Isopropylacrylamide HMA: 2-Hydroxyethyl Acrylate MBA: N, N'-Methylenebisacrylamide KPS: Carium Persulfate TEMED: N, N, N', N'-Tetramethylethylenediamine
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2の結果から分かるように、実施例1~実施例3で得られた感温性高分子ゲルは、吸熱ピーク温度が45℃~77℃と低い上に、蓄熱密度が512J/g~844J/gと大きかった。したがって、実施例1~実施例3で得られた感温性高分子ゲルは、約45℃~80℃の低い蓄熱動作温度で、512J/g~844J/gの高い蓄熱密度を発現することができる物質である。そして、実施例1~実施例3で得られた感温性高分子ゲルを用いた上記構成の給湯暖房装置100の蓄熱タンク31は、水だけで蓄熱した場合と比べて、その蓄熱密度に応じて、約10%~90%程度の小型化が可能となった。 As can be seen from the results in Table 2, the temperature-sensitive polymer gels obtained in Examples 1 to 3 have a low endothermic peak temperature of 45 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J. It was as large as / g. Therefore, the temperature-sensitive polymer gels obtained in Examples 1 to 3 can exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of about 45 ° C to 80 ° C. It is a substance that can be produced. Then, the heat storage tank 31 of the hot water supply / heating device 100 having the above configuration using the temperature-sensitive polymer gels obtained in Examples 1 to 3 depends on the heat storage density as compared with the case where heat is stored only with water. As a result, it has become possible to reduce the size by about 10% to 90%.
 また、蓄熱動作温度の発現する感温性高分子ゲルの親水性と疎水性の可逆的変化において、水温が45℃~77℃であり、液体状態であった。これに対し、比較例1~比較例5で得られた感温性高分子ゲルは、パラフィン、脂肪酸、糖アルコールなどの従来の蓄熱材と同様に、吸熱ピーク温度が32℃~68℃と低いものの、蓄熱密度が31J/g~42J/gと著しく小さかった。 Further, in the reversible change in hydrophilicity and hydrophobicity of the temperature-sensitive polymer gel in which the heat storage operating temperature was exhibited, the water temperature was 45 ° C. to 77 ° C., and the gel was in a liquid state. On the other hand, the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to conventional heat storage materials such as paraffin, fatty acid, and sugar alcohol. However, the heat storage density was extremely low at 31 J / g to 42 J / g.
 実施例1~実施例3の感温性高分子ゲルのように、吸熱ピーク温度が45℃以上80℃以下となる物質である感温性高分子ゲルを蓄熱材33として用いると、給湯端末装置500に送られる水道水の温度は40℃~70℃に上昇する。一般的に、シャワーなどに利用する場合の給湯温度は、40℃程度が望ましいため、吸熱ピーク温度が45℃~80℃の感温性高分子ゲルを含む蓄熱材33は、給湯暖房装置100に都合がよい。 When a temperature-sensitive polymer gel, which is a substance having an endothermic peak temperature of 45 ° C. or higher and 80 ° C. or lower, is used as the heat storage material 33, as in the temperature-sensitive polymer gels of Examples 1 to 3, a hot water supply terminal device is used. The temperature of tap water sent to 500 rises to 40 ° C to 70 ° C. Generally, the hot water supply temperature when used for a shower or the like is preferably about 40 ° C., so that the heat storage material 33 containing the temperature-sensitive polymer gel having an endothermic peak temperature of 45 ° C. to 80 ° C. is used in the hot water supply heating device 100. convenient.
 特に、実施例2および実施例3の感温性高分子ゲルのように、吸熱ピーク温度が60℃以上80℃以下となる物質である感温性高分子ゲルを蓄熱材33として用いると、給湯端末装置500に送られる水道水の温度は60℃~70℃に上昇する。水道水の温度が60℃以上に上昇すると、水道水中に含まれる雑菌などの影響の排除に好ましいため、吸熱ピーク温度が60℃以上80℃以下の感温性高分子ゲルを含む蓄熱材33は、給湯暖房装置100にさらに都合がよい。 In particular, when a temperature-sensitive polymer gel, which is a substance having an endothermic peak temperature of 60 ° C. or higher and 80 ° C. or lower, such as the temperature-sensitive polymer gels of Examples 2 and 3, is used as the heat storage material 33, hot water is supplied. The temperature of tap water sent to the terminal device 500 rises to 60 ° C. to 70 ° C. When the temperature of tap water rises to 60 ° C. or higher, it is preferable to eliminate the influence of germs contained in tap water. Therefore, the heat storage material 33 containing a temperature-sensitive polymer gel having a heat absorption peak temperature of 60 ° C. or higher and 80 ° C. or lower is used. , It is more convenient for the hot water supply / heating device 100.
 10 熱源部、11 圧縮機、12 加熱熱交換器、13 減圧装置、14 吸熱熱交換器、20 暖房部、21 ポンプ、22 切換弁、30 蓄熱部、31 蓄熱タンク、32 蓄熱熱交換器、33 蓄熱材、40 給湯部、41 給湯熱交換器、42 給水配管、100 給湯暖房装置、200 ヒートポンプユニット、300 蓄熱ユニット、400 暖房端末装置、500 給湯端末装置、600 給水源。 10 heat source unit, 11 compressor, 12 heat heat exchanger, 13 decompression device, 14 heat absorption heat exchanger, 20 heating unit, 21 pump, 22 switching valve, 30 heat storage unit, 31 heat storage tank, 32 heat storage heat exchanger, 33 Heat storage material, 40 hot water supply unit, 41 hot water supply heat exchanger, 42 water supply pipe, 100 hot water supply heating device, 200 heat pump unit, 300 heat storage unit, 400 heating terminal device, 500 hot water supply terminal device, 600 water supply source.

Claims (10)

  1.  熱を生成する熱源装置、前記熱源装置が生成した熱を搬送する循環流体に圧力を加えるポンプ及び前記循環流体が搬送した熱を放熱する蓄熱熱交換器とを配管接続して構成する流体回路と、
     前記蓄熱熱交換器、給湯に係る供給水が通過する給湯熱交換器、及び、高分子及び水を含み、前記蓄熱熱交換器からの熱を蓄熱し、前記給湯熱交換器を通過する前記供給水に放熱する蓄熱材を収容する蓄熱タンクと、
     前記供給水が通過する流路となる給水配管と
    を備える給湯暖房装置。
    A fluid circuit configured by connecting a heat source device that generates heat, a pump that applies pressure to the circulating fluid that conveys the heat generated by the heat source device, and a heat storage heat exchanger that dissipates the heat transferred by the circulating fluid. ,
    The heat storage heat exchanger, the hot water supply heat exchanger through which the supply water related to the hot water supply passes, and the supply that contains the polymer and water, stores heat from the heat storage heat exchanger, and passes through the hot water supply heat exchanger. A heat storage tank that houses a heat storage material that dissipates heat to water,
    A hot water supply / heating device including a water supply pipe that serves as a flow path through which the supply water passes.
  2.  前記高分子は、特定の温度に依存して親水性と疎水性とを示す感温性高分子である請求項1に記載の給湯暖房装置。 The hot water supply / heating device according to claim 1, wherein the polymer is a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on a specific temperature.
  3.  前記蓄熱材は、
     前記高分子が、架橋構造を有するとともに、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を分子末端に有し、吸熱ピーク温度が45℃~80℃の範囲にあり、かつ、蓄熱密度が300J/g以上とされた感温性高分子ゲルである請求項1に記載の給湯暖房装置。
    The heat storage material is
    The polymer has a crosslinked structure and has one or more functional groups selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the molecular end and absorbs heat. The hot water supply / heating device according to claim 1, which is a temperature-sensitive polymer gel having a peak temperature in the range of 45 ° C. to 80 ° C. and a heat storage density of 300 J / g or more.
  4.  前記蓄熱材は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である感温性高分子ゲルからなる請求項2に記載の給湯暖房装置。
    The heat storage material has the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group and X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. Represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and a structural unit represented by.
    The following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, * represents a covalent bond, q represents an integer of 1 to 3), and includes a structural unit represented by.
    It has a crosslinked structure in which the covalent bond of the structural unit represented by the general formula (1) and the covalent bond of the structural unit represented by the general formula (2) are bonded.
    The molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to The hot water supply / heating device according to claim 2, which comprises a temperature-sensitive polymer gel having a ratio of 70:23: 7.
  5.  前記蓄熱材は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000004
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、
     下記一般式(3)
    Figure JPOXMLDOC01-appb-C000005
    若しくは下記一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手と前記一般式(3)若しくは前記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と前記一般式(3)若しくは前記一般式(4)で表される構成単位とのモル比が、95:5~20:80であり、
     前記一般式(1)で表される構成単位及び前記一般式(3)若しくは前記一般式(4)で表される構成単位の合計と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である感温性高分子ゲルからなる請求項2に記載の給湯暖房装置。
    The heat storage material has the following general formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group and X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. Represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and a structural unit represented by.
    The following general formula (2)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, * represents a covalent bond and q represents an integer of 1 to 3).
    The following general formula (3)
    Figure JPOXMLDOC01-appb-C000005
    Or the following general formula (4)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group, R 5 represents a hydrogen atom or a methyl group, and X represents a covalent bond or a hydroxy group or a sulfone. It represents one or more functional groups selected from the group consisting of an acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group, where * represents a covalent bond and p represents an integer of 1 to 3). Including the structural unit represented by
    The covalent bond of the structural unit represented by the general formula (1) and the covalent bond of the structural unit represented by the general formula (2) are represented by the general formula (3) or the general formula (4). It has a cross-linked structure in which the covalent bonds of the constituent units are bonded.
    The molar ratio of the structural unit represented by the general formula (1) to the structural unit represented by the general formula (3) or the general formula (4) is 95: 5 to 20:80.
    The sum of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the general formula (2). The hot water supply / heating device according to claim 2, further comprising a temperature-sensitive polymer gel having a molar ratio of 99: 0.5: 0.5 to 70: 23: 7 with the structural unit represented by.
  6.  前記蓄熱材は、吸熱ピーク温度が、45℃以上80℃以下の物質を材料とする請求項2、請求項4または請求項5のいずれか一項に記載の給湯暖房装置。 The hot water supply / heating device according to any one of claims 2, 4, or 5, wherein the heat storage material is made of a substance having an endothermic peak temperature of 45 ° C. or higher and 80 ° C. or lower.
  7.  前記熱源装置は、
     冷媒を圧縮する圧縮機と、
     前記循環流体と前記冷媒との熱交換により前記循環流体を加熱する加熱熱交換器と、
     前記冷媒を減圧させる減圧装置と、
     熱交換により、減圧された前記冷媒に吸熱させる吸熱熱交換器とを配管接続して前記冷媒を循環させるヒートポンプ回路を有するヒートポンプ装置である請求項1~請求項6のいずれか一項に記載の給湯暖房装置。
    The heat source device is
    A compressor that compresses the refrigerant and
    A heating heat exchanger that heats the circulating fluid by heat exchange between the circulating fluid and the refrigerant.
    A decompression device that decompresses the refrigerant and
    The invention according to any one of claims 1 to 6, which is a heat pump device having a heat pump circuit for circulating the refrigerant by connecting a heat absorption heat exchanger that absorbs heat to the decompressed refrigerant by heat exchange. Hot water supply and heating system.
  8.  前記ヒートポンプ装置の前記圧縮機、前記加熱熱交換器、前記減圧装置及び前記吸熱熱交換器を有するヒートポンプユニットと、
     前記ポンプ、前記蓄熱タンク及び給水配管を有する蓄熱ユニットとを、液体の前記循環流体が通過する配管で接続する請求項7に記載の給湯暖房装置。
    A heat pump unit having the compressor of the heat pump device, the heating heat exchanger, the depressurizing device, and the endothermic heat exchanger.
    The hot water supply / heating device according to claim 7, wherein the pump, the heat storage tank, and the heat storage unit having the water supply pipe are connected by a pipe through which the circulating fluid of the liquid passes.
  9.  前記ヒートポンプ装置の前記圧縮機、前記減圧装置及び前記吸熱熱交換器を有するヒートポンプユニットと、
     前記ヒートポンプ装置の前記加熱熱交換器、前記ポンプ、前記蓄熱タンク及び給水配管を有する蓄熱ユニットとを、前記冷媒が通過する配管で接続する請求項7に記載の給湯暖房装置。
    A heat pump unit having the compressor of the heat pump device, the decompression device, and the endothermic heat exchanger.
    The hot water supply / heating device according to claim 7, wherein the heating heat exchanger of the heat pump device, the pump, the heat storage tank, and the heat storage unit having the water supply pipe are connected by a pipe through which the refrigerant passes.
  10.  暖房を行う暖房端末装置に前記循環流体を通過させるか前記蓄熱熱交換器に前記循環流体を通過させるかを切り換える切換弁を前記流体回路に備える請求項1~請求項9のいずれか一項に記載の給湯暖房装置。 The invention according to any one of claims 1 to 9, further comprising a switching valve in the fluid circuit for switching between passing the circulating fluid through the heating terminal device for heating and passing the circulating fluid through the heat storage heat exchanger. The hot water supply and heating device described.
PCT/JP2019/039332 2019-10-04 2019-10-04 Hot-water supply and heating apparatus WO2021064994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020513947A JP6765573B1 (en) 2019-10-04 2019-10-04 Hot water heater
PCT/JP2019/039332 WO2021064994A1 (en) 2019-10-04 2019-10-04 Hot-water supply and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039332 WO2021064994A1 (en) 2019-10-04 2019-10-04 Hot-water supply and heating apparatus

Publications (1)

Publication Number Publication Date
WO2021064994A1 true WO2021064994A1 (en) 2021-04-08

Family

ID=72706665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039332 WO2021064994A1 (en) 2019-10-04 2019-10-04 Hot-water supply and heating apparatus

Country Status (2)

Country Link
JP (1) JP6765573B1 (en)
WO (1) WO2021064994A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044305B1 (en) * 1999-01-05 2000-05-22 工業技術院長 Heat storage device
JP2003090548A (en) * 2001-09-14 2003-03-28 Daikin Ind Ltd Heat accumulator
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2005097530A (en) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp Heat storing material
JP2015194317A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 Hot water supply system
WO2018142473A1 (en) * 2017-01-31 2018-08-09 三菱電機株式会社 Heat medium circulation system
JP2018162957A (en) * 2017-03-27 2018-10-18 東邦瓦斯株式会社 Arrangement method of latent heat storage material in heat storage tank, and latent heat storage tank
JP6501990B1 (en) * 2018-06-18 2019-04-17 三菱電機株式会社 Heat storage device, heat storage system and heat storage method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980460B2 (en) * 2017-09-04 2021-12-15 パナソニック株式会社 Heat storage material and heat storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044305B1 (en) * 1999-01-05 2000-05-22 工業技術院長 Heat storage device
JP2003090548A (en) * 2001-09-14 2003-03-28 Daikin Ind Ltd Heat accumulator
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2005097530A (en) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp Heat storing material
JP2015194317A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 Hot water supply system
WO2018142473A1 (en) * 2017-01-31 2018-08-09 三菱電機株式会社 Heat medium circulation system
JP2018162957A (en) * 2017-03-27 2018-10-18 東邦瓦斯株式会社 Arrangement method of latent heat storage material in heat storage tank, and latent heat storage tank
JP6501990B1 (en) * 2018-06-18 2019-04-17 三菱電機株式会社 Heat storage device, heat storage system and heat storage method

Also Published As

Publication number Publication date
JP6765573B1 (en) 2020-10-07
JPWO2021064994A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6501990B1 (en) Heat storage device, heat storage system and heat storage method
JP6704553B1 (en) Heat storage device
JP6765573B1 (en) Hot water heater
CN104482609A (en) Cooling/warming air conditioner
Oh et al. Heat transfer characteristics of R-134a in a capillary tube heat exchanger
JP2001280862A (en) Brine heat exchanger
CN106403073A (en) Cooling device
JP2005326078A (en) Heat pump hot water supply device
JP6729453B2 (en) Base material for heat medium, and heat transport system and heat pump system using the same
WO2021064989A1 (en) Heat pipe and electronic device
JPS62158958A (en) Separation type heat pump system air conditioner
WO2016075851A1 (en) Heat pump apparatus
JP6704559B1 (en) Heat transport container and heat transport system
CN111608891B (en) Compressor unit, heat exchange system and water heater
JP7469583B2 (en) air conditioner
WO2024009504A1 (en) Refrigeration cycle device
WO2023243184A1 (en) Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method
WO2021064992A1 (en) Heat pump device and electrical device
JPH03263592A (en) Operating fluid for heat pipe
CN117968285A (en) Pump-driven two-phase fluid loop system
JPS61107056A (en) Heat pump type hot-water supply device
JPS6127452A (en) Heat pump type hot-water supply device
JPS6073257A (en) Refrigeration cycle
Chien et al. Boiling of enhanced surfaces at high heat fluxes in a small boiler
JPS59180239A (en) Heat-pump hot-water supply machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513947

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947901

Country of ref document: EP

Kind code of ref document: A1