WO2021064992A1 - Heat pump device and electrical device - Google Patents

Heat pump device and electrical device Download PDF

Info

Publication number
WO2021064992A1
WO2021064992A1 PCT/JP2019/039330 JP2019039330W WO2021064992A1 WO 2021064992 A1 WO2021064992 A1 WO 2021064992A1 JP 2019039330 W JP2019039330 W JP 2019039330W WO 2021064992 A1 WO2021064992 A1 WO 2021064992A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
group
general formula
temperature
heat
Prior art date
Application number
PCT/JP2019/039330
Other languages
French (fr)
Japanese (ja)
Inventor
寺井 護
英治 信時
拓海 於保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020504261A priority Critical patent/JP6704549B1/en
Priority to PCT/JP2019/039330 priority patent/WO2021064992A1/en
Publication of WO2021064992A1 publication Critical patent/WO2021064992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/02Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a liquid, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a heat pump device and an electric device. In particular, it relates to the amount of heat storage.
  • a heat storage material which is a substance capable of absorbing and releasing heat by utilizing a chemical reaction, has been widely known.
  • This heat storage material can be used, for example, for building air conditioners, household solar heat utilization (snow melting of solar cell panels in cold regions), automobile exhaust heat utilization (storage battery temperature control, etc.), fuel cell exhaust heat, and exhaust from distributed generators. It is being considered for use in various fields such as heat recovery heat storage and seasonal heat storage.
  • the low-temperature waste heat of about 120 ° C or less is discharged unused from facilities with heat sources such as homes, offices, factories, and waste treatment facilities.
  • a material capable of storing low-temperature exhaust heat at a high density is required.
  • the melting point of the heat storage material is preferably 100 ° C. or lower.
  • the inorganic heat storage material include inorganic hydrated salts such as barium hydroxide octahydrate (melting point 78 ° C.) and magnesium nitrate hexahydrate (melting point 89 ° C.).
  • barium hydroxide octahydrate is a substance designated as a deleterious substance
  • magnesium nitrate hexahydrate is a substance that corrodes metals, so there is a problem and none of them has been put into practical use.
  • Calcium hydroxide (Ca (OH) 2 ) which is an example of a heat storage material using a chemical reaction, absorbs and stores heat with dehydration as described below, and generates heat during hydration to restore it to calcium hydroxide. Has a function to dissipate heat.
  • Ca (OH) 2 + Q (calorific value) CaO + H 2 O
  • a heat storage material using hydrogel has been known.
  • This heat storage material retains non-fluidity even in a temperature range equal to or higher than the phase transition temperature, and can stably maintain non-fluidity even when cooling and heating operations are repeated with the phase transition temperature in between.
  • a heat storage material for example, a first gelling material produced by cross-linking at least one selected from a polyacrylamide derivative, polyvinyl alcohol, sodium polyacrylate or polysodium methacrylate, and a polysaccharide.
  • a heat storage material having a second gelling material which is agar or gelatin and an inorganic or aqueous heat storage material held between the first gelling material and the second gelling material is described (eg, patent). Reference 2).
  • the practical temperature required for the dehydration endothermic reaction of magnesium hydroxide is about 350 ° C. Further, even if magnesium hydroxide undergoes a dehydration endothermic reaction, dehydration from magnesium hydroxide to magnesium oxide does not proceed 100%, and about 10% to about 30% of unreacted hydroxide remains. .. Therefore, the amount of heat stored and dissipated is smaller than the amount of heat storage material.
  • the present invention can operate at a low temperature and can increase the amount of heat storage with respect to the capacity. As a result, a heat pump device and an electric device capable of realizing miniaturization of the device can be obtained.
  • the purpose is.
  • the heat pump device contains a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on temperature, and a solvent selected from the group consisting of water, an organic solvent, and a mixture thereof.
  • a heat pump including a heat storage tank for accommodating a heat storage material having a polymer gel, a heat storage heat source device for heating the heat storage material, a water tank for storing water, and a flow path pipe connecting the heat storage tank and the water tank.
  • the hydrophilicity and hydrophobicity of the heat storage material change reversibly with the lower limit critical solution temperature as the boundary, and in the process of change, the organic solvent contained in the temperature-sensitive polymer gel is a liquid. It maintains the state and separates the thermosensitive polymer that has changed to hydrophobicity from water.
  • the electric device according to the present invention includes the above-mentioned heat pump device.
  • a temperature sensitive polymer containing a temperature-sensitive polymer showing hydrophilicity and hydrophobicity depending on temperature, and a solvent selected from the group consisting of water, an organic solvent and a mixture thereof.
  • a heat storage tank for accommodating a heat storage material having a conductive polymer gel is provided.
  • the hydrophilicity and hydrophobicity of the heat storage material change reversibly with respect to the lower limit critical solution temperature, and in the process of change, the solvent contained in the temperature-sensitive polymer gel maintains a liquid state.
  • the temperature-sensitive polymer that has changed to hydrophobic and water are separated. Therefore, it is possible to provide a heat pump device having a relatively low heat storage operating temperature and a large heat storage density by using a heat storage material having a large amount of heat storage with respect to the capacity.
  • FIG. 1 It is a figure which shows the structure of the system centering on the heat pump device which concerns on Embodiment 1.
  • FIG. 1 shows the structure of the system centering on the heat pump device which concerns on Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of a system centered on the heat pump device according to the first embodiment.
  • the heat pump device 100 of FIG. 1 includes a heat storage tank 10, a water tank 20, a gas flow path pipe 30, a gas pipe valve 31, and a water flow path pipe 40 and a water pipe valve 41.
  • the heat storage tank 10 is a container for accommodating the heat storage material 11 (hereinafter referred to as the heat storage material 11) using the temperature-sensitive polymer.
  • the heat storage tank 10 has a heat storage material 11 and a heat storage side heat exchanger 12.
  • the heat storage material 11 contains, as a heat storage material, a substance that changes to hydrophobic and stores heat by a dehydration reaction, and changes to hydrophilic and generates heat by a water absorption reaction.
  • the heat storage material 11 will be described later.
  • the heat storage side heat exchanger 12 transfers the heat from the heat storage heat source device 200, which will be described later, to the heat storage material 11 to heat the heat storage material 11.
  • the heat storage side heat exchanger 12 transfers the heat generated by the heat storage material 11 due to the water absorption reaction to the heat storage side external load 300.
  • the heat storage tank 10 of the present embodiment is detachable from a part or all of the gas flow path pipe 30, the water flow path pipe 40, the heat storage side heat exchanger 12, the heat storage side external load 300, and the heat storage heat source device 200. Can be separated into. Therefore, for example, the heat storage tank 10 containing the heat storage material 11 in the heat storage state can be transported by itself.
  • the water tank 20 is a container that supplies water to the heat storage tank 10 or stores the water 21 that has flowed from the heat storage tank 10.
  • the water 21 also includes the water in the state of water vapor.
  • the water tank 20 has a water side heat exchanger 22.
  • the water side heat exchanger 22 transfers, for example, the heat generated by the water vapor generated when the heat storage material 11 stores heat to the water side external load 400.
  • the heat utilization in the heat pump device 100 of the present embodiment is mainly due to heat generated by the water absorption reaction of the heat storage material 11.
  • the heat storage operating temperature of the heat storage material 11 is relatively low and the amount of heat is not so large, but heat due to steam is also generated when the heat storage material 11 stores heat.
  • the water side heat exchanger 22 utilizes the heat of water vapor generated in the heat storage in the heat storage material 11.
  • the gas flow path pipe 30 is a pipe that connects the heat storage tank 10 and the water tank 20.
  • Water vapor which is a gas generated by the dehydration reaction, moves between the heat storage tank 10 and the water tank 20 through the gas flow path pipe 30.
  • the gas pipe valve 31 is an on-off valve that controls whether or not water vapor is passed through the gas flow path pipe 30.
  • the gas pipe valve 31 is opened, and water vapor is passed through the gas flow path pipe 30 to escape from the heat storage tank 10. By suppressing the pressure rise in the heat storage tank 10, the change of the temperature-sensitive polymer is not hindered.
  • the gas piping valve 31 is an electromagnetic on-off valve.
  • the water flow path pipe 40 is a pipe that connects the heat storage tank 10 and the water tank 20.
  • the water 21 that causes the heat storage material 11 to absorb water is supplied from the water tank 20 to the heat storage tank 10 via the water flow path pipe 40.
  • the water pipe valve 41 is an on-off valve that controls whether or not water 21 is passed through the water flow path pipe 40.
  • the water piping valve 41 is also an electromagnetic on-off valve like the gas piping valve 31.
  • the heat pump device 100 of FIG. 1 includes a gas flow path pipe 30 and a water flow path pipe 40, but the present invention is not limited to this, and the same flow path pipe may be used.
  • the heat storage heat source device 200 transfers heat to the heat storage side heat exchanger 12 to heat the heat storage material 11.
  • the water side external load 400 is a load in which heat from the water 21 is transferred from the water side heat exchanger 22 and is heated.
  • the heat storage side external load 300 is a load in which the heat generated by the heat storage material 11 is transferred from the heat storage side heat exchanger 12 and heated.
  • the water side external load 400 and the heat storage side external load 300 may be the same load.
  • the heat storage material 11 according to the present embodiment is a temperature-sensitive polymer gel having water or an organic solvent or a mixed solvent of water and an organic solvent and a temperature-sensitive polymer.
  • the temperature-sensitive polymer has a lower critical solution temperature (Lower Critical Solution Temperature: LCST) with respect to water.
  • LCST Lower Critical Solution Temperature
  • the temperature-sensitive polymer exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. Therefore, the temperature-sensitive polymer is a polymer whose hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
  • the temperature-sensitive polymer is not particularly limited as long as the hydrophilicity and the hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
  • polyvinyl alcohol partial vinegar polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polyvinyl methyl oxazolidinone, poly N-ethyl acrylamide, poly N-ethyl methacrylate, poly Nn-propyl acrylamide, poly Nn- Propylmethacrylamide, polyN-isopropylacrylamide, polyN-isopropylmethacrylate, polyN-cyclopropylacrylamide, polyN-cyclopropylmethacrylate, polyN-methyl-N-ethylacrylamide, polyN, N-diethylacrylamide, Poly N-Methyl-N-Isopropylacrylamide, Poly N-Methyl-Nn-Propylacrylamide, Poly N-Acryloylpyrrolidine, Poly
  • the organic solvent is selected from polar organic solvents.
  • the selection from polar organic solvents is preferably alcohols such as methanol, ethanol, propanol, isopropanol, isopentanol and 2-methoxyethanol, acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone and methyl isoamyl ketone and the like.
  • Ketones such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether, methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, chloroform, acetonitrile, glycerol, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, pyridine, It is selected from the group consisting of 1,4-dioxane, dimethylacetamide, N-methylpyrrolidone, propylene carbonate and mixtures thereof.
  • the organic solvent can be selected from non-polar organic solvents.
  • non-polar organic solvents are preferably benzene, chlorobenzene, o-dichlorobenzene, toluene, o-xylene, dichloromethane, 1,1,2-trichlorotrifluoroethane, pentane, cyclopentane, hexane, cyclohexane, It is selected from the group consisting of heptane, isooctane, diethyl ether, petroleum ether, pyridine, carbon tetrachloride, fatty acids, fatty acid esters and mixtures thereof.
  • the organic solvent can be selected from oils.
  • oils are preferably selected from the group consisting of vegetable oils, essential oils, petrochemical oils, synthetic oils and mixtures thereof.
  • the organic solvent is sometimes referred to as a lipophilic solvent.
  • the organic solvent can be a mixture of at least one polar organic solvent or non-polar organic solvent defined above and at least one oil defined above.
  • the organic solvent can maintain a liquid state in the process in which the temperature-sensitive polymer gel reversibly changes between hydrophilicity and hydrophobicity with the lower limit critical solution temperature as a boundary.
  • heat pump device 100 when heat is stored in the heat storage material 11, heat is applied from the heat storage heat source device 200.
  • the heat from the heat storage heat source device 200 is transferred to the heat storage side heat exchanger 12, and the heat storage side heat exchanger 12 heats the heat storage material 11.
  • the heat storage material 11 that has been heated and has a temperature higher than that of the LCST described above undergoes a dehydration reaction, and the temperature-sensitive polymer gel containing the hydrophobic polymer and water are separated. As a result, the temperature-sensitive polymer gel is stored in a liquid state.
  • the gas piping valve 31 is opened, and water vapor, which is a part of water generated by the dehydration reaction, is released from the heat storage tank 10. At this time, the heat generated by the water vapor that has passed through the gas flow path pipe 30 and has flowed into the water tank 20 is supplied to the water side external load 400.
  • the water pipe valve 41 is opened, the water 21 stored in the water tank 20 is passed through the water flow path pipe 40, and is supplied to the heat storage tank 10.
  • the temperature inside the heat storage tank 10 is lowered.
  • a water absorption reaction occurs between the heat storage material 11 having a temperature lower than that of the LCST and the water 21 in the heat storage tank 10.
  • the heat generated by the water absorption reaction is supplied to the heat storage side external load 300 to heat the heat storage side external load 300.
  • the above-mentioned heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer and a solvent showing hydrophilicity and hydrophobicity depending on the temperature. 11 is housed in the heat storage tank 10. Therefore, it is possible to provide the heat pump device 100 which has a relatively low heat storage operating temperature and uses a heat storage material 11 having a large heat storage density and has a large amount of heat storage with respect to the capacity.
  • water is separated and removed from the heat storage material 11 containing the temperature-sensitive polymer gel by the dehydration reaction of the heat storage material 11, so that the amount of the heat storage material 11 in the heat storage state is reduced.
  • the capacity of the tank related to heat storage can be reduced to reduce the size. Then, the size of the entire heat pump device 100 can be reduced.
  • Embodiment 2 Next, the heat pump device 100 according to the second embodiment will be described.
  • the equipment configuration of the heat pump device 100 according to the present embodiment is the same as the configuration described in the first embodiment.
  • the heat storage material 11 shown below is used.
  • the heat storage material 11 used in the heat pump device 100 of the second embodiment has a temperature-sensitive polymer having a crosslinked structure and a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the polymer terminal.
  • the molar ratio of the repeating unit having one or more functional groups selected from the group and constituting the temperature-sensitive crosslinked polymer, the functional group, and the crosslinked structural unit is 99: 0.5: 0.5. It has a thermosensitive polymeric gel in the range of ⁇ 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5.
  • the ratio of repeating units is too large, the heat storage density becomes small. Also, if the proportion of repeating units is too small, LCST will not be shown.
  • the case where the ratio of the repeating unit is too large is the case where the ratio of the repeating unit exceeds 99 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%. Further, the case where the ratio of the repeating unit is too small is the case where the ratio of the repeating unit is less than 70 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%.
  • the crosslinked structural unit is a structural unit introduced by a crosslinking agent used in the production of a temperature-sensitive polymer.
  • a crosslinking agent used in the production of a temperature-sensitive polymer.
  • the cross-linking agent include N, N'-methylenebisacrylamide, N, N'-diallylacrylamide, N, N'-diacryloylimide, N, N'-dimethacryloylimide, triallylformal, and diallylnaphthalate.
  • crosslinkable monomers such as divinyl derivatives such as tetramethacrylate and divinylbenzene, but the present invention is not particularly limited to these crosslinking agents.
  • the above-mentioned heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer and a solvent showing hydrophilicity and hydrophobicity depending on the temperature. 11 is housed in the heat storage tank 10. Therefore, it is possible to provide the heat pump device 100 which has a relatively low heat storage operating temperature and uses a heat storage material 11 having a large heat storage density and has a large amount of heat storage with respect to the capacity.
  • water is separated and removed from the heat storage material 11 containing the temperature-sensitive polymer gel by the dehydration reaction of the heat storage material 11, so that the amount of the heat storage material 11 in the heat storage state is reduced.
  • the capacity of the tank related to heat storage can be reduced to reduce the size. Then, the size of the entire heat pump device 100 can be reduced.
  • Embodiment 3 Next, the heat pump device 100 according to the third embodiment will be described.
  • the equipment configuration of the heat pump device 100 according to the third embodiment is the same as the configuration described in the first embodiment.
  • the heat storage material 11 shown below is used.
  • the heat storage material 11 used in the heat pump device 100 of the third embodiment has the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is determined. It is in the range of 99: 0.5: 0.5 to 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5.
  • the proportion of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) are represented.
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%).
  • the proportion of the structural unit represented by the general formula (1) is too small (the structural unit represented by the general formula (1), the functional group X, and the general formula (2)
  • the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the preparation of raw materials. It is a theoretical value calculated from the quantity.
  • the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) are in the molar ratio.
  • the number of repetitions of the structural units represented by the above general formula (1) and the order in which the respective structural units are combined are not particularly limited.
  • the number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
  • the LCST can be set in a wide range of 5 to 80 ° C. , mainly depending on the types of R 1 and R 2 in the general formula (1).
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of a temperature-sensitive polymer.
  • X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. Can be.
  • an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) and (2) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure.
  • the branch structure is not particularly limited.
  • the temperature-sensitive polymer gel according to the third embodiment has the following general formula (5).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group), which is represented by the following general formula (6).
  • q represents an integer of 1 to 3
  • a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
  • polymerizable monomer represented by the general formula (5) (a polymerizable monomer giving a structural unit represented by the general formula (1)) include, for example, N-ethyl (meth) acrylamide and N-. n-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N-methyl -Nn-propyl (meth) acrylamide, N-isopropyl-N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-ethyl-N-methoxyethyl (Meta) acrylamide, N-methoxypropyl (meth) acrylamide, N-ethoxypropyl (meth
  • N-alkyl (1 to 3 carbon atoms) (meth) acrylamide is preferable, and N-isopropyl (meth) acrylamide is more preferable.
  • (meth) acrylic means methacrylic or acrylic.
  • cross-linking agent represented by the general formula (6) cross-linking agent giving a structural unit represented by the general formula (2)
  • cross-linking agent giving a structural unit represented by the general formula (2) include N, N'-methylenebisacrylamide, N, N'-. Ethylene bisacrylamide and N, N'-(trimethylene) bisacrylamide can be mentioned.
  • the radical polymerization method is not particularly limited, and known methods such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method can be used.
  • a polymerization initiators potassium persulfate and ammonium persulfate are preferable from the viewpoint of good reactivity.
  • a polymerization accelerator such as N, N, N', N'-tetramethylethylenediamine, N, N-dimethylparatoluidine in combination with the above-mentioned polymerization initiator, rapid radical polymerization at low temperature can be performed. It will be possible.
  • the solvent used for radical polymerization is not particularly limited, and water, methanol, ethanol, n-propanol, isopropanol, 1-butanol, isobutanol, hexanol, benzene, toluene, xylene, chlorobenzene, dichloromethane, chloroform, etc.
  • Examples thereof include carbon tetrachloride, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • water is preferable from the viewpoint of further increasing the heat storage density.
  • the radical polymerization reaction is usually carried out at a temperature of 0 ° C. to 100 ° C. for 30 minutes to 24 hours.
  • the total concentration of the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator is 2, 2 mol / L to 3 mol / L is particularly preferable from the viewpoint of further increasing the heat storage density. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 11 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 11 may not exhibit LCST.
  • the reason why the heat storage material 11 of the third embodiment can achieve a relatively low heat storage operating temperature (100 ° C. or lower) and a large heat storage density is not clear, but it is considered as follows.
  • the temperature-sensitive polymer having LCST exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. Since the temperature-sensitive polymer constituting the heat storage material 11 of the third embodiment has a high crosslink density and a highly dense structure in which the ends of the polymer are branched, the water adsorbed on the temperature-sensitive polymer can be removed. It has a high arrangement like the conventional temperature-sensitive polymer, but has a lower arrangement at a higher temperature than LCST.
  • the temperature-sensitive polymer constituting the heat storage material 11 of the third embodiment has a large change in the arrangement, it not only exhibits a low heat storage operating temperature as in the conventional temperature-sensitive polymer, but also has a large heat storage density. Is considered to be able to be achieved.
  • the heat storage material 11 having the above-mentioned temperature-sensitive polymer gel has a relatively low heat storage operating temperature and a high heat storage density.
  • a material 11 and a method for producing the same can be provided.
  • the heat storage material 11 according to the third embodiment has a relatively low heat storage operating temperature and a large heat storage density, and the amount of heat storage can be increased with respect to the capacity of the tank. Therefore, the heat pump device 100 can be miniaturized by downsizing the heat storage tank 10 filled with the heat storage material 11.
  • Embodiment 4 Next, the heat pump device 100 according to the fourth embodiment will be described.
  • the equipment configuration of the heat pump device 100 according to the fourth embodiment is the same as the configuration described in the first embodiment.
  • the heat storage material 11 shown below is used.
  • the heat storage material 11 used in the heat pump device 100 of the fourth embodiment has the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
  • R 5 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group or a sulfone.
  • * represents a covalent bond
  • p represents an integer of 1 to 3).
  • a temperature-sensitive polymer gel having a crosslinked structure in which a covalent bond of a structural unit represented by the above general formula (4) is bonded.
  • the range of the molar ratio between the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is set. It is 95: 5 to 20:80, preferably in the range of 85:15 to 25:75.
  • the ratio of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1) and the configuration represented by the general formula (3) or the general formula (4).
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 95 mol%).
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group The range of the molar ratio of a certain X to the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 98: 1: 1. The range is 77:18: 5.
  • the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large (the configuration represented by the general formula (1)).
  • the total of the units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the structural units represented by the general formula (2) is 100.
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X are used.
  • the molar ratio with the structural unit represented by the above general formula (2) is a theoretical value calculated from the amount of raw materials charged.
  • the heat storage material 11 of the fourth embodiment is a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), and a functional group. It suffices to include X and the structural unit represented by the general formula (2) within the range of the molar ratio, and the structural unit represented by the general formula (1) and the general formula (3) or The number of repetitions of the structural units represented by the general formula (4) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
  • the LCST is mainly composed of a structural unit represented by the general formula (1) and a structural unit represented by the general formula (3) or the general formula (4).
  • Molar ratio and types of R 1 and R 2 in the general formula (1) Wide range of 5 to 80 ° C. depending on the type of R 4 and R 5 in the general formula (3) or the general formula (4). Can be set to a range.
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) and R 5 in the general formula (3) or the general formula (4) are hydrogen atoms from the viewpoint of facilitating the production of a temperature-sensitive polymer. It is preferable to have.
  • X in the general formulas (1), (3) and (4) is composed of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. It can be a functional group selected from the group. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density.
  • P in the general formulas (3) and (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) to (4) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure.
  • the branch structure is not particularly limited.
  • the heat storage material 11 according to the fourth embodiment has the following general formula (5).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group
  • R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
  • R 5 represents a hydrogen atom or a methyl group
  • p represents an integer of 1 to 3
  • the polymerizable monomer is represented by the following general formula (6).
  • q represents an integer of 1 to 3
  • a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
  • the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator are the same as those described in the first embodiment, and thus the description thereof will be omitted. .. Further, the radical polymerization method, the radical polymerization conditions, and the like are the same as those described in the first embodiment, and thus the description thereof will be omitted.
  • polymerizable monomer represented by the general formula (7) examples include, for example, 2-hydroxymethyl acrylate and acrylic acid 2.
  • 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
  • polymerizable monomer represented by the general formula (8) examples include N- (1,1-dimethyl-2). -Hydroxyethyl) acrylamide, N- (1,1-dimethyl-2-hydroxypropyl) acrylamide, N- (1,1-dimethyl-2-hydroxybutyl) acrylamide, 2-acrylamide-2-methylpropanecarboxylic acid, 2 -Acrylamide-2-methylbutanecarboxylic acid, 2-acrylamide-2-methylpentanecarboxylic acid, 2-acrylamide-2-methylpropanesulfonic acid, 2-acrylamide-2-methylbutanesulfonic acid, 2-acrylamide-2-methyl Examples thereof include pentansulfonic acid, 2-acrylamide-2-methylpropanephosphate, 2-acrylamide-2-methylbutanephosphate, 2-acrylamide-2-methylpentanephosphate and the like. Among these, 2-acrylamide-2-methylpropanesulfonic acid, 2-acrylamide-2-methylpropanephosphate, 2-acrylamide-2-methylbut
  • the polymerizable monomer represented by the general formula (5) and the general formula (7) or the general formula (8) are represented.
  • the total concentration of the polymerizable monomer, the cross-linking agent represented by the general formula (6), and the polymerization initiator is preferably 2 mol / L to 3 mol / L. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 11 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 11 may not exhibit LCST.
  • the heat storage material 11 having the above-mentioned temperature-sensitive polymer gel has a relatively low heat storage operating temperature and a high heat storage density.
  • a material 11 and a method for producing the same can be provided.
  • the heat storage material 11 according to the third embodiment has a relatively low heat storage operating temperature and a large heat storage density, and the amount of heat storage can be increased with respect to the capacity of the tank. Therefore, the heat pump device 100 can be miniaturized by downsizing the heat storage tank 10 filled with the heat storage material 11.
  • the water content of the heat storage material 11 has not been particularly described.
  • the water content of the heat storage material 11 is not particularly limited, but is preferably 70% by mass to 99% by mass.
  • the water content after measuring the weight of the heat storage material 11 containing the water 21 at room temperature, the water 21 was placed in a constant temperature bath to evaporate the water 21 at a drying temperature of 60 to 120 ° C., and the water 21 disappeared (the weight decreased).
  • the weight of the heat storage material 11 can be measured, and the weight loss can be determined by assuming that the water 21 is used (dry weight loss method).
  • the heat storage material 11 according to the first to fourth embodiments may be made porous.
  • the heat storage material 11 By making the heat storage material 11 porous, there is an advantage that the temperature responsiveness is further enhanced.
  • a method for making the heat storage material 11 porous a mixed solution containing the above-mentioned polymerizable monomer, cross-linking agent, polymerization initiator and porogen (pore-forming agent) is prepared, a cross-linked structure is formed by a radical polymerization reaction, and then a cross-linked structure is formed. Examples thereof include a method of removing radicals by washing.
  • preferred porogens are water-soluble carbohydrates such as sucrose, maltose, cerbiose, lactose, sorbitol, xylitol, glucose and fructose.
  • a pologene composition containing these water-soluble carbohydrates and polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol or a mixture thereof may be used. Further, as another method for making the heat storage material 11 porous, there is a method of removing water 21 from the temperature-sensitive polymer containing water 21 by freeze-drying.
  • the temperature-sensitive polymer contained in the heat storage material 11 according to the first to fourth embodiments is prepared by applying a mixed solution containing at least the above-mentioned polymerizable monomer, cross-linking agent and polymerization initiator on the surface of the container in the heat pump. It can also be produced by coating and radical polymerization.
  • the mixed solution may contain a metal surface activator, a coupling agent, and the like.
  • the temperature-sensitive polymer contained in the heat storage material 11 according to the first to fourth embodiments can also be produced by irradiating the coating film of the above-mentioned mixed solution with radiation.
  • steam is used to pass through the gas flow path pipe 30 from the heat storage tank 10. I sent it to the water tank 20.
  • a method for separating and removing the temperature-sensitive polymer and water there are other methods using the density difference between the temperature-sensitive polymer and water, gravity, convection of water, and the like.
  • water can be removed from the temperature-sensitive polymer by using an external power such as a pump.
  • heat storage material 11 described in the first to fifth embodiments will be specifically described with reference to Examples 1 to 5.
  • the heat storage material 11 is not limited to this embodiment.
  • Examples 1 to 5 and Comparative Examples 1 to 5 The aqueous raw material solution having the composition shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer. Further, the obtained temperature-sensitive polymer was dried and then equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel. Then, the temperature-sensitive polymer gel was sealed in a closed container made of aluminum, and the endothermic peak temperature and the heat storage density were measured with a differential scanning calorimeter. The measurement results are shown in Table 2.
  • NIPAM N-Isopropylacrylamide
  • HMA 2-Hydroxyethyl Acrylate MBA: N, N'-Methylenebisacrylamide
  • KPS Carium Persulfate TEMED: N, N, N', N'-Tetramethylethylenediamine
  • the temperature-sensitive polymer gels obtained in Examples 1 to 5 have a low endothermic peak temperature of 36 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J. It was as large as / g. That is, the temperature-sensitive polymer gels obtained in Examples 1 to 5 can exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of 36 ° C to 77 ° C. ..
  • the water temperature was 36 ° C. to 77 ° C., and it was in a liquid state.
  • the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to conventional heat storage materials such as paraffin, fatty acid, and sugar alcohol.
  • the heat storage density was extremely low at 31 J / g to 42 J / g.
  • the heat storage tank 10 of the heat pump device 100 having the above configuration using the temperature-sensitive polymer gels obtained in Examples 1 to 5 can be downsized by about 10% to 90% depending on the heat storage density. It has become possible.
  • the temperature-sensitive polymer from which water is separated and removed by the dehydration reaction maintains a heat storage state unless water is supplied and a water absorption reaction occurs. Can be done. Therefore, heat can be stored for a long period of time. Therefore, it is easy to store heat across the seasons.
  • the heat pump device 100 (particularly, the heat storage material 11 in the heat storage state) described in the first to fourth embodiments was able to obtain a high heat storage density at a low operating temperature, unlike the conventional heat storage material.
  • the heat pump device 100 using the temperature-sensitive polymer gels obtained in the first to fourth embodiments can be downsized by about 10 to 90%, respectively, depending on the heat storage density. .. Further, when the heat pump device 100 using the temperature-sensitive polymer gel obtained in the first to fourth embodiments was used in a refrigerator, a freezer, and an air conditioner, it was generally better than a product using the conventional heat pump device. Was also possible to be miniaturized. Further, the heat pump device 100 can convey the heat storage material 11 of the heat storage tank 10.
  • the heat storage material 11 can be used as a heating / cooling device that does not require electric power in a place where there is no or scarce electric power supply source.
  • the heat storage material 11 can heat or cool the inside of a submarine, a spacecraft, electrical equipment of a planetary probe, passengers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A heat pump device equipped with a heat storage tank for storing a heat-storing material having a thermosensitive polymer gel which contains a thermosensitive polymer which exhibits hydrophilic and hydrophobic properties depending on the temperature thereof, and also contains a solvent selected from the group consisting of water, an organic solvent and a mixture thereof, and further equipped with a heat-storing heat source device for heating the heat-storing material, a water tank for storing water, and a passage pipe for connecting the heat storage tank and the water tank to one another, wherein the heat-storing material reversibly changes between hydrophilic and hydrophobic properties at the boundary of the lower-limit critical solution temperature thereof, and during the process of said change, the organic solvent contained in the thermosensitive polymer gel maintains a liquid state, and the water and the thermosensitive polymer which has changed to become hydrophobic separate from one another.

Description

ヒートポンプ装置及び電気機器Heat pump equipment and electrical equipment
 本発明は、ヒートポンプ装置及び電気機器に関するものである。特に、蓄熱量に関するものである。 The present invention relates to a heat pump device and an electric device. In particular, it relates to the amount of heat storage.
 化学反応を利用して、熱の吸収及び放出を行うことのできる物質である蓄熱材は、従来より広く知られている。本蓄熱材は、例えば、ビル用空調機、家庭用太陽熱利用(寒冷地で太陽電池パネルの融雪)、自動車排熱利用(蓄電池の温度管理等)、燃料電池排熱、分散発電機からの排熱回収熱貯蔵、季節間蓄熱等、種々の分野で利用が検討されている。 A heat storage material, which is a substance capable of absorbing and releasing heat by utilizing a chemical reaction, has been widely known. This heat storage material can be used, for example, for building air conditioners, household solar heat utilization (snow melting of solar cell panels in cold regions), automobile exhaust heat utilization (storage battery temperature control, etc.), fuel cell exhaust heat, and exhaust from distributed generators. It is being considered for use in various fields such as heat recovery heat storage and seasonal heat storage.
 家庭、オフィス、工場又は廃棄物処理施設等の熱源を持つ施設からは、120℃程度以下の低温排熱の多くが、未利用で排出されている。この未利用の排熱を有効利用するため、低温排熱を高密度に蓄熱できる材料が求められている。このような蓄熱材を使用する場合、熱媒体として常圧下の水を使うのが便利であり、且つ好ましい。そのため、蓄熱材の融点は、100℃以下であることが好ましい。無機系蓄熱材としては、水酸化バリウム八水塩(融点78℃)又は硝酸マグネシウム六水塩(融点89℃)等の無機水和塩が挙げられる。しかし、水酸化バリウム八水塩は、劇物に指定されている物質であり、硝酸マグネシウム六水塩は金属を腐食させる物質であるため、問題があり、いずれも実用化されていない。 Most of the low-temperature waste heat of about 120 ° C or less is discharged unused from facilities with heat sources such as homes, offices, factories, and waste treatment facilities. In order to effectively utilize this unused exhaust heat, a material capable of storing low-temperature exhaust heat at a high density is required. When such a heat storage material is used, it is convenient and preferable to use water under normal pressure as a heat medium. Therefore, the melting point of the heat storage material is preferably 100 ° C. or lower. Examples of the inorganic heat storage material include inorganic hydrated salts such as barium hydroxide octahydrate (melting point 78 ° C.) and magnesium nitrate hexahydrate (melting point 89 ° C.). However, barium hydroxide octahydrate is a substance designated as a deleterious substance, and magnesium nitrate hexahydrate is a substance that corrodes metals, so there is a problem and none of them has been put into practical use.
 化学反応を利用した蓄熱材の一例である水酸化カルシウム(Ca(OH))は、下記のように脱水を伴なって吸熱して蓄熱し、水酸化カルシウムへ復原する水和時には、発熱して放熱する機能を持つ。
  Ca(OH)+Q(熱量)⇔CaO+H
Calcium hydroxide (Ca (OH) 2 ), which is an example of a heat storage material using a chemical reaction, absorbs and stores heat with dehydration as described below, and generates heat during hydration to restore it to calcium hydroxide. Has a function to dissipate heat.
Ca (OH) 2 + Q (calorific value) ⇔ CaO + H 2 O
 このような蓄熱材に関連する技術として、マグネシウム又はカルシウムの酸化物に、これらの結晶構造を変化させない混合操作(非複合化)によって吸湿性金属塩を添加した組成物による水和発熱反応と、酸化物に対応する水酸化物の脱水吸熱反応とを組み合わせたヒートポンプ装置が開示されている(例えば、特許文献1参照)。 As a technique related to such a heat storage material, a hydration exothermic reaction by a composition in which a hygroscopic metal salt is added to an oxide of magnesium or calcium by a mixing operation (non-composite) that does not change the crystal structure thereof, A heat pump device combined with a dehydration endothermic reaction of a hydroxide corresponding to an oxide is disclosed (see, for example, Patent Document 1).
 また、近年、ハイドロゲルを利用した蓄熱材が知られている。この蓄熱材は、相転移温度以上の温度域においても非流動性を保持し、相転移温度を挟んで、冷却及び加熱操作を繰り返しても、安定的に非流動性を保持することができる。このような蓄熱材として、例えば、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸ナトリウム又はポリメタクリル酸ナトリウムから選択される少なくとも1種類を架橋して生成させた第一のゲル化材料と、多糖類、寒天又はゼラチンである第二のゲル化材料と、第一のゲル化材料と第二のゲル化材料とに保持された無機又は水系蓄熱材料とを有する蓄熱材が記載されている(例えば、特許文献2参照)。 Also, in recent years, a heat storage material using hydrogel has been known. This heat storage material retains non-fluidity even in a temperature range equal to or higher than the phase transition temperature, and can stably maintain non-fluidity even when cooling and heating operations are repeated with the phase transition temperature in between. As such a heat storage material, for example, a first gelling material produced by cross-linking at least one selected from a polyacrylamide derivative, polyvinyl alcohol, sodium polyacrylate or polysodium methacrylate, and a polysaccharide. A heat storage material having a second gelling material which is agar or gelatin and an inorganic or aqueous heat storage material held between the first gelling material and the second gelling material is described (eg, patent). Reference 2).
特開平09-026225号公報Japanese Unexamined Patent Publication No. 09-02625 国際公開第2014/091938号International Publication No. 2014/091938
 しかしながら、特許文献1に記載のヒートポンプ装置は、水酸化マグネシウムの脱水吸熱反応に必要な実用温度が約350℃となる。さらに、水酸化マグネシウムが脱水吸熱反応を起こしたとしても、水酸化マグネシウムから酸化マグネシウムへの脱水が100%進行することはなく、未反応の水酸化物が約10%~約30%残ってしまう。このため、蓄熱材の量に対し、蓄放熱される熱量が少なくなる。 However, in the heat pump device described in Patent Document 1, the practical temperature required for the dehydration endothermic reaction of magnesium hydroxide is about 350 ° C. Further, even if magnesium hydroxide undergoes a dehydration endothermic reaction, dehydration from magnesium hydroxide to magnesium oxide does not proceed 100%, and about 10% to about 30% of unreacted hydroxide remains. .. Therefore, the amount of heat stored and dissipated is smaller than the amount of heat storage material.
 また、特許文献2に記載の蓄熱材をヒートポンプ装置に用いた場合は、比較的低い蓄熱動作温度を有する。しかしながら、蓄熱材における蓄熱密度が小さく、また蓄熱材と水は混在した状態であるため、蓄熱材等を収容するタンクの容量が大きくなり、ヒートポンプ装置のサイズが大きくなるという問題があった。 Further, when the heat storage material described in Patent Document 2 is used in the heat pump device, it has a relatively low heat storage operating temperature. However, since the heat storage density of the heat storage material is low and the heat storage material and water are in a mixed state, there is a problem that the capacity of the tank for accommodating the heat storage material and the like becomes large and the size of the heat pump device becomes large.
 本発明は、上記のような課題を解決するため、低温動作が可能で、容量に対して蓄熱量を増やすことができるため、結果的に装置の小型化を実現できるヒートポンプ装置及び電気機器を得ることを目的とする。 In order to solve the above problems, the present invention can operate at a low temperature and can increase the amount of heat storage with respect to the capacity. As a result, a heat pump device and an electric device capable of realizing miniaturization of the device can be obtained. The purpose is.
 本発明に係るヒートポンプ装置は、温度に依存して親水性と疎水性とを示す感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とを含む感温性高分子ゲルを有する蓄熱材を収容する蓄熱タンクと、蓄熱材を加熱する蓄熱用熱源装置と、水を貯める水用タンクと、蓄熱タンクと水用タンクとを接続する流路配管とを備えるヒートポンプ装置であって、蓄熱材は、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ、変化の過程において、感温性高分子ゲルに含まれる有機溶媒が液体状態を維持し、疎水性に変化した感温性高分子と水とが分離されるものである。 The heat pump device according to the present invention contains a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on temperature, and a solvent selected from the group consisting of water, an organic solvent, and a mixture thereof. A heat pump including a heat storage tank for accommodating a heat storage material having a polymer gel, a heat storage heat source device for heating the heat storage material, a water tank for storing water, and a flow path pipe connecting the heat storage tank and the water tank. In the device, the hydrophilicity and hydrophobicity of the heat storage material change reversibly with the lower limit critical solution temperature as the boundary, and in the process of change, the organic solvent contained in the temperature-sensitive polymer gel is a liquid. It maintains the state and separates the thermosensitive polymer that has changed to hydrophobicity from water.
 また、本発明に係る電気機器は、上記のヒートポンプ装置を備えるものである。 Further, the electric device according to the present invention includes the above-mentioned heat pump device.
 本発明のヒートポンプ装置によれば、温度に依存して親水性と疎水性とを示す感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とを含む感温性高分子ゲルを有する蓄熱材を収容する蓄熱タンクを備える。そして、蓄熱材は、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ、変化の過程において、感温性高分子ゲルに含まれる溶媒が液体状態を維持し、疎水性に変化した感温性高分子と水とが分離される。このため、比較的低い蓄熱動作温度を有し、且つ蓄熱密度が大きい蓄熱材を用い、容量に対して蓄熱量が大きなヒートポンプ装置を提供することができる。 According to the heat pump device of the present invention, a temperature sensitive polymer containing a temperature-sensitive polymer showing hydrophilicity and hydrophobicity depending on temperature, and a solvent selected from the group consisting of water, an organic solvent and a mixture thereof. A heat storage tank for accommodating a heat storage material having a conductive polymer gel is provided. The hydrophilicity and hydrophobicity of the heat storage material change reversibly with respect to the lower limit critical solution temperature, and in the process of change, the solvent contained in the temperature-sensitive polymer gel maintains a liquid state. , The temperature-sensitive polymer that has changed to hydrophobic and water are separated. Therefore, it is possible to provide a heat pump device having a relatively low heat storage operating temperature and a large heat storage density by using a heat storage material having a large amount of heat storage with respect to the capacity.
実施の形態1に係るヒートポンプ装置を中心とするシステムの構成を示す図である。It is a figure which shows the structure of the system centering on the heat pump device which concerns on Embodiment 1. FIG.
実施の形態1.
 図1は、実施の形態1に係るヒートポンプ装置を中心とするシステムの構成を示す図である。図1のヒートポンプ装置100は、蓄熱タンク10、水用タンク20、ガス流路配管30及びガス配管バルブ31並びに水流路配管40及び水配管バルブ41を備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a system centered on the heat pump device according to the first embodiment. The heat pump device 100 of FIG. 1 includes a heat storage tank 10, a water tank 20, a gas flow path pipe 30, a gas pipe valve 31, and a water flow path pipe 40 and a water pipe valve 41.
 蓄熱タンク10は、感温性高分子を利用した蓄熱材11(以下、蓄熱材11という)を収容する容器である。蓄熱タンク10は、蓄熱材11及び蓄熱側熱交換器12を有する。蓄熱材11は、疎水性に変化して脱水反応により蓄熱し、親水性に変化して吸水反応により発熱する物質を、蓄熱材料として含む。蓄熱材11については後述する。また、蓄熱側熱交換器12は、後述する蓄熱用熱源装置200からの熱を蓄熱材11に伝え、加熱する。また、蓄熱側熱交換器12は、蓄熱材11が吸水反応により発した熱を蓄熱側外部負荷300に伝える。ここで、本実施の形態の蓄熱タンク10は、ガス流路配管30、水流路配管40、蓄熱側熱交換器12、蓄熱側外部負荷300及び蓄熱用熱源装置200の一部又は全部と着脱可能に切り離すことができる。このため、例えば、蓄熱状態の蓄熱材11を収容した蓄熱タンク10単体で搬送等を行うことができる。 The heat storage tank 10 is a container for accommodating the heat storage material 11 (hereinafter referred to as the heat storage material 11) using the temperature-sensitive polymer. The heat storage tank 10 has a heat storage material 11 and a heat storage side heat exchanger 12. The heat storage material 11 contains, as a heat storage material, a substance that changes to hydrophobic and stores heat by a dehydration reaction, and changes to hydrophilic and generates heat by a water absorption reaction. The heat storage material 11 will be described later. Further, the heat storage side heat exchanger 12 transfers the heat from the heat storage heat source device 200, which will be described later, to the heat storage material 11 to heat the heat storage material 11. Further, the heat storage side heat exchanger 12 transfers the heat generated by the heat storage material 11 due to the water absorption reaction to the heat storage side external load 300. Here, the heat storage tank 10 of the present embodiment is detachable from a part or all of the gas flow path pipe 30, the water flow path pipe 40, the heat storage side heat exchanger 12, the heat storage side external load 300, and the heat storage heat source device 200. Can be separated into. Therefore, for example, the heat storage tank 10 containing the heat storage material 11 in the heat storage state can be transported by itself.
 水用タンク20は、蓄熱タンク10に供給又は蓄熱タンク10から流れてきた水21を貯める容器である。ここで、水21については、水蒸気の状態の水分も含むものとする。また、水用タンク20は、水側熱交換器22を有する。水側熱交換器22は、例えば、蓄熱材11に蓄熱させる際に生じた水蒸気による熱を水側外部負荷400に伝える。本実施の形態のヒートポンプ装置100における熱利用は、蓄熱材11の吸水反応による発熱によるものが主となる。ただ、後述するように、蓄熱材11の蓄熱動作温度は比較的低く、加熱量はそれほど多くないが、蓄熱材11に蓄熱させる際にも水蒸気による熱が発生する。水側熱交換器22は、蓄熱材11への蓄熱において発生する水蒸気の熱を利用する。 The water tank 20 is a container that supplies water to the heat storage tank 10 or stores the water 21 that has flowed from the heat storage tank 10. Here, it is assumed that the water 21 also includes the water in the state of water vapor. Further, the water tank 20 has a water side heat exchanger 22. The water side heat exchanger 22 transfers, for example, the heat generated by the water vapor generated when the heat storage material 11 stores heat to the water side external load 400. The heat utilization in the heat pump device 100 of the present embodiment is mainly due to heat generated by the water absorption reaction of the heat storage material 11. However, as will be described later, the heat storage operating temperature of the heat storage material 11 is relatively low and the amount of heat is not so large, but heat due to steam is also generated when the heat storage material 11 stores heat. The water side heat exchanger 22 utilizes the heat of water vapor generated in the heat storage in the heat storage material 11.
 ガス流路配管30は、蓄熱タンク10と水用タンク20とを接続する配管である。ガス流路配管30を通じて、蓄熱タンク10と水用タンク20との間で、脱水反応によって生じたガスである水蒸気が移動する。ガス配管バルブ31は、ガス流路配管30に水蒸気を通過させるか否かを制御する開閉弁である。蓄熱材11に蓄熱させるための加熱を行うと、蓄熱タンク10内に水蒸気が発生する等して、蓄熱タンク10内の圧力が上昇する。蓄熱タンク10内の圧力が上昇すると、蓄熱材11の感温性高分子は、親水性と疎水性との変化が難しくなる。そこで、蓄熱材11に蓄熱させるときに、ガス配管バルブ31を開放し、ガス流路配管30に水蒸気を通過させて蓄熱タンク10から逃がす。蓄熱タンク10内の圧力上昇を抑えることで、感温性高分子の変化を妨げないようにする。ここでは、ガス配管バルブ31は、電磁開閉弁であるものとする。 The gas flow path pipe 30 is a pipe that connects the heat storage tank 10 and the water tank 20. Water vapor, which is a gas generated by the dehydration reaction, moves between the heat storage tank 10 and the water tank 20 through the gas flow path pipe 30. The gas pipe valve 31 is an on-off valve that controls whether or not water vapor is passed through the gas flow path pipe 30. When the heat storage material 11 is heated to store heat, water vapor is generated in the heat storage tank 10 and the pressure in the heat storage tank 10 rises. When the pressure in the heat storage tank 10 rises, it becomes difficult for the temperature-sensitive polymer of the heat storage material 11 to change between hydrophilicity and hydrophobicity. Therefore, when the heat storage material 11 stores heat, the gas pipe valve 31 is opened, and water vapor is passed through the gas flow path pipe 30 to escape from the heat storage tank 10. By suppressing the pressure rise in the heat storage tank 10, the change of the temperature-sensitive polymer is not hindered. Here, it is assumed that the gas piping valve 31 is an electromagnetic on-off valve.
 また、水流路配管40は、蓄熱タンク10と水用タンク20とを接続する配管である。水流路配管40を介して、蓄熱材11に吸水反応させる水21を、水用タンク20から蓄熱タンク10に供給する。水配管バルブ41は、水流路配管40に水21を通過させるか否かを制御する開閉弁である。水配管バルブ41も、ガス配管バルブ31と同様に、電磁開閉弁であるものとする。ここで、図1のヒートポンプ装置100は、ガス流路配管30と水流路配管40とを備えているが、これに限定するものではなく、同じ流路配管であってもよい。 The water flow path pipe 40 is a pipe that connects the heat storage tank 10 and the water tank 20. The water 21 that causes the heat storage material 11 to absorb water is supplied from the water tank 20 to the heat storage tank 10 via the water flow path pipe 40. The water pipe valve 41 is an on-off valve that controls whether or not water 21 is passed through the water flow path pipe 40. The water piping valve 41 is also an electromagnetic on-off valve like the gas piping valve 31. Here, the heat pump device 100 of FIG. 1 includes a gas flow path pipe 30 and a water flow path pipe 40, but the present invention is not limited to this, and the same flow path pipe may be used.
 蓄熱用熱源装置200は、蓄熱側熱交換器12に熱を伝えて蓄熱材11を加熱する。また、水側外部負荷400は、水側熱交換器22から水21による熱が伝えられ、加熱される負荷である。そして、蓄熱側外部負荷300は、蓄熱側熱交換器12から蓄熱材11が発した熱が伝えられ、加熱される負荷である。ここで、水側外部負荷400と蓄熱側外部負荷300とが同じ負荷であってもよい。 The heat storage heat source device 200 transfers heat to the heat storage side heat exchanger 12 to heat the heat storage material 11. Further, the water side external load 400 is a load in which heat from the water 21 is transferred from the water side heat exchanger 22 and is heated. The heat storage side external load 300 is a load in which the heat generated by the heat storage material 11 is transferred from the heat storage side heat exchanger 12 and heated. Here, the water side external load 400 and the heat storage side external load 300 may be the same load.
 次に、本実施の形態に係る蓄熱材11について説明する。本実施の形態に係る蓄熱材11は、水もしくは有機溶媒又は水と有機溶媒との混合溶媒と感温性高分子とを有する感温性高分子ゲルである。感温性高分子は、水に対する下限臨界溶液温度(Lower Critical Solution Temperature:LCST)を有する。感温性高分子は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す。したがって、感温性高分子は、下限臨界溶液温度を境にして、親水性と疎水性とが可逆的に変化する高分子である。 Next, the heat storage material 11 according to the present embodiment will be described. The heat storage material 11 according to the present embodiment is a temperature-sensitive polymer gel having water or an organic solvent or a mixed solvent of water and an organic solvent and a temperature-sensitive polymer. The temperature-sensitive polymer has a lower critical solution temperature (Lower Critical Solution Temperature: LCST) with respect to water. The temperature-sensitive polymer exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. Therefore, the temperature-sensitive polymer is a polymer whose hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
 ここで、感温性高分子は、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化するものであれば特に限定されるものでない。例えば、ポリビニルアルコール部分酢化物、ポリビニルメチルエーテル、メチルセルロース、ポリエチレンオキシド、ポリビニルメチルオキサゾリディノン、ポリN-エチルアクリルアミド、ポリN-エチルメタクリルアミド、ポリN-n-プロピルアクリルアミド、ポリN-n-プロピルメタクリルアミド、ポリN-イソプロピルアクリルアミド、ポリN-イソプロピルメタクリルアミド、ポリN-シクロプロピルアクリルアミド、ポリN-シクロプロピルメタクリルアミド、ポリN-メチル-N-エチルアクリルアミド、ポリN、N-ジエチルアクリルアミド、ポリN-メチル-N-イソプロピルアクリルアミド、ポリN-メチル-N-n-プロピルアクリルアミド、ポリN-アクリロイルピロリジン、ポリN-アクリロイルピペリジン、ポリN-2-エトキシエチルアクリルアミド、ポリN-2-エトキシエチルメタクリルアミド、ポリN-3-メトキシプロピルアクリルアミド、ポリN-3-メトキシプロピルメタクリルアミド、ポリN-3-エトキシプロピルアクリルアミド、ポリN-3-エトキシプロピルメタクリルアミド、ポリN-3-イソプロキシプロピルアクリルアミド、ポリN-3-イソプロキシプロピルメタクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルアクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルメタクリルアミド、ポリN-テトラヒドロフルフリルアクリルアミド、ポリN-テトラヒドロフルフリルメタクリルアミド、ポリN-1-メチル-2-メトキシエチルアクリルアミド、ポリN-1-メチル-2-メトキシエチルメタクリルアミド、ポリN-1-メトキシメチルプロピルアクリルアミド、ポリN-1-メトキシメチルプロピルメタクリルアミド、ポリN-(2、2-ジメトキシエチル)-N-メチルアクリルアミド、ポリN-(1、3-ジオキソラン-2-イルメチル)-N-メチルアクリルアミド、ポリN-8-アクリロイル-1、4-ジオキサ-8-アザ-スピロ[4,5]デカン、ポリN-2-メトキシエチル-N-エチルアクリルアミド、ポリN-2-メトキシエチル-N-n-プロピルアクリルアミド、ポリN-2-メトキシエチル-N-イソプロピルアクリルアミド、ポリN又はN-ジ(2-メトキシエチル)アクリルアミドを用いることができる。 Here, the temperature-sensitive polymer is not particularly limited as long as the hydrophilicity and the hydrophobicity change reversibly with respect to the lower limit critical solution temperature. For example, polyvinyl alcohol partial vinegar, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polyvinyl methyl oxazolidinone, poly N-ethyl acrylamide, poly N-ethyl methacrylate, poly Nn-propyl acrylamide, poly Nn- Propylmethacrylamide, polyN-isopropylacrylamide, polyN-isopropylmethacrylate, polyN-cyclopropylacrylamide, polyN-cyclopropylmethacrylate, polyN-methyl-N-ethylacrylamide, polyN, N-diethylacrylamide, Poly N-Methyl-N-Isopropylacrylamide, Poly N-Methyl-Nn-Propylacrylamide, Poly N-Acryloylpyrrolidine, PolyN-Acryloyl Piperidine, Poly N-2-ethoxyethylacrylamide, Poly N-2-ethoxyethyl Methacrylicamide, poly N-3-methoxypropyl acrylamide, poly N-3-methoxypropyl methacrylic amide, poly N-3-ethoxypropyl acrylamide, poly N-3-ethoxypropyl methacrylic amide, poly N-3-isopropyl propyl acrylamide , Poly N-3-isoproxypropyl methacrylamide, poly N-3- (2-methoxyethoxy) propyl acrylamide, poly N-3- (2-methoxyethoxy) propyl methacrylic amide, poly N-tetrahydrofurfuryl acrylamide, poly N-Tetrahydrofurfurylmethacrylamide, polyN-1-methyl-2-methoxyethylacrylamide, polyN-1-methyl-2-methoxyethylmethacrylate, polyN-1-methoxymethylpropylacrylamide, polyN-1- Methoxymethylpropylmethacrylate, polyN- (2,2-dimethoxyethyl) -N-methylacrylamide, polyN- (1,3-dioxolan-2-ylmethyl) -N-methylacrylamide, polyN-8-acryloyl- 1,4-Dioxa-8-aza-spiro [4,5] decan, poly N-2-methoxyethyl-N-ethyl acrylamide, poly N-2-methoxyethyl-Nn-propyl acrylamide, poly N-2 -Methoxyethyl-N-isopropylacrylamide, polyN or N-di (2-methoxyethyl) acrylamide can be used.
 一方、有機溶媒は、極性有機溶媒から選択される。極性有機溶媒からの選択としては、好ましくは、メタノール、エタノール、プロパノール、イソプロパノール、イソペンタノール及び2-メトキシエタノール等のアルコール、アセトン、メチルエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン及びメチルイソアミルケトン等のケトン、エチレングリコールモノブチルエーテル及びプロピレングリコールモノメチルエーテル等のエーテル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n-ブチル、クロロホルム、アセトニトリル、グリセロール、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ピリジン、1,4-ジオキサン、ジメチルアセトアミド、N-メチルピロリドン、炭酸プロピレン及びその混合物からなる群から選択される。また、有機溶媒は、非極性有機溶媒から選択することができる。非極性有機溶媒からの選択としては、好ましくは、ベンゼン、クロロベンゼン、o-ジクロロベンゼン、トルエン、o-キシレン、ジクロロメタン、1,1,2-トリクロロトリフルオロエタン、ペンタン、シクロペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ジエチルエーテル、石油エーテル、ピリジン、四塩化炭素、脂肪酸、脂肪酸エステル及びその混合物からなる群から選択される。さらに、有機溶媒は、油から選択することができる。油からの選択としては、好ましくは、植物油、精油、石油化学油、合成油及びその混合物からなる群から選択される。ここで、油が用いられる場合、有機溶媒は、親油性溶媒と称されることもある。そして、有機溶媒は、上記において定義した少なくとも1種類の極性有機溶媒又は非極性有機溶媒及び上記で定義した少なくとも1種類の油の混合物とすることができる。有機溶媒は、感温性高分子ゲルが下限臨界溶液温度を境にして、親水性と疎水性とが可逆的に変化する過程において、液体状態を維持することができる。 On the other hand, the organic solvent is selected from polar organic solvents. The selection from polar organic solvents is preferably alcohols such as methanol, ethanol, propanol, isopropanol, isopentanol and 2-methoxyethanol, acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone and methyl isoamyl ketone and the like. Ketones, ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether, methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, chloroform, acetonitrile, glycerol, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, pyridine, It is selected from the group consisting of 1,4-dioxane, dimethylacetamide, N-methylpyrrolidone, propylene carbonate and mixtures thereof. Further, the organic solvent can be selected from non-polar organic solvents. The choice from non-polar organic solvents is preferably benzene, chlorobenzene, o-dichlorobenzene, toluene, o-xylene, dichloromethane, 1,1,2-trichlorotrifluoroethane, pentane, cyclopentane, hexane, cyclohexane, It is selected from the group consisting of heptane, isooctane, diethyl ether, petroleum ether, pyridine, carbon tetrachloride, fatty acids, fatty acid esters and mixtures thereof. In addition, the organic solvent can be selected from oils. The selection from oils is preferably selected from the group consisting of vegetable oils, essential oils, petrochemical oils, synthetic oils and mixtures thereof. Here, when oil is used, the organic solvent is sometimes referred to as a lipophilic solvent. The organic solvent can be a mixture of at least one polar organic solvent or non-polar organic solvent defined above and at least one oil defined above. The organic solvent can maintain a liquid state in the process in which the temperature-sensitive polymer gel reversibly changes between hydrophilicity and hydrophobicity with the lower limit critical solution temperature as a boundary.
 次に、ヒートポンプ装置100の動作について説明する。まず、蓄熱材11に蓄熱をするときには、蓄熱用熱源装置200から熱を加える。蓄熱用熱源装置200からの熱が、蓄熱側熱交換器12に伝わり、蓄熱側熱交換器12は、蓄熱材11を加熱する。加熱され、前述したLCSTより高温となった蓄熱材11は、脱水反応を起こし、疎水性の高分子を含む感温性高分子ゲルと水とが分離する。これにより、感温性高分子ゲルは液体状態のまま蓄熱される。ここで、ヒートポンプ装置100では、ガス配管バルブ31を開放し、脱水反応により生じた水の一部である水蒸気を、蓄熱タンク10内から逃がす。このとき、ガス流路配管30を通過して水用タンク20に流入した水蒸気による熱が、水側外部負荷400に供給される。 Next, the operation of the heat pump device 100 will be described. First, when heat is stored in the heat storage material 11, heat is applied from the heat storage heat source device 200. The heat from the heat storage heat source device 200 is transferred to the heat storage side heat exchanger 12, and the heat storage side heat exchanger 12 heats the heat storage material 11. The heat storage material 11 that has been heated and has a temperature higher than that of the LCST described above undergoes a dehydration reaction, and the temperature-sensitive polymer gel containing the hydrophobic polymer and water are separated. As a result, the temperature-sensitive polymer gel is stored in a liquid state. Here, in the heat pump device 100, the gas piping valve 31 is opened, and water vapor, which is a part of water generated by the dehydration reaction, is released from the heat storage tank 10. At this time, the heat generated by the water vapor that has passed through the gas flow path pipe 30 and has flowed into the water tank 20 is supplied to the water side external load 400.
 次に、蓄熱材11から放熱させるときには、水配管バルブ41を開放し、水用タンク20に蓄えられた水21を、水流路配管40を通過させて、蓄熱タンク10に供給する等して、蓄熱タンク10内の温度を下げる。LCSTより低温となった蓄熱材11と蓄熱タンク10内の水21とにおいて、吸水反応が起こる。吸水反応により発生した熱は、蓄熱側外部負荷300に供給され、蓄熱側外部負荷300を加熱する。 Next, when dissipating heat from the heat storage material 11, the water pipe valve 41 is opened, the water 21 stored in the water tank 20 is passed through the water flow path pipe 40, and is supplied to the heat storage tank 10. The temperature inside the heat storage tank 10 is lowered. A water absorption reaction occurs between the heat storage material 11 having a temperature lower than that of the LCST and the water 21 in the heat storage tank 10. The heat generated by the water absorption reaction is supplied to the heat storage side external load 300 to heat the heat storage side external load 300.
 以上のように、実施の形態1のヒートポンプ装置100では、温度に依存して親水性と疎水性とを示す感温性高分子と溶媒とを含む感温性高分子ゲルを有する上記の蓄熱材11を蓄熱タンク10に収容する。このため、比較的低い蓄熱動作温度を有し、且つ蓄熱密度が大きい蓄熱材11を用い、容量に対して蓄熱量が大きなヒートポンプ装置100を提供することができる。特に、蓄熱の際、蓄熱材11の脱水反応により、感温性高分子ゲルを含む蓄熱材11から水が分離され、除かれることで、蓄熱状態における蓄熱材11は量が少なくなることで、蓄熱に係るタンクの容量を少なくし、小型化をはかることができる。そして、ヒートポンプ装置100全体の小型化をはかることができる。 As described above, in the heat pump device 100 of the first embodiment, the above-mentioned heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer and a solvent showing hydrophilicity and hydrophobicity depending on the temperature. 11 is housed in the heat storage tank 10. Therefore, it is possible to provide the heat pump device 100 which has a relatively low heat storage operating temperature and uses a heat storage material 11 having a large heat storage density and has a large amount of heat storage with respect to the capacity. In particular, during heat storage, water is separated and removed from the heat storage material 11 containing the temperature-sensitive polymer gel by the dehydration reaction of the heat storage material 11, so that the amount of the heat storage material 11 in the heat storage state is reduced. The capacity of the tank related to heat storage can be reduced to reduce the size. Then, the size of the entire heat pump device 100 can be reduced.
実施の形態2.
 次に、実施の形態2に係るヒートポンプ装置100について説明する。本実施の形態に係るヒートポンプ装置100の機器構成については、実施の形態1で説明した構成と同じである。実施の形態2に係るヒートポンプ装置100では、次に示す蓄熱材11を用いる。
Embodiment 2.
Next, the heat pump device 100 according to the second embodiment will be described. The equipment configuration of the heat pump device 100 according to the present embodiment is the same as the configuration described in the first embodiment. In the heat pump device 100 according to the second embodiment, the heat storage material 11 shown below is used.
 実施の形態2のヒートポンプ装置100に用いる蓄熱材11は、感温性高分子が架橋構造と、高分子末端にヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基とを有し、感温性架橋高分子を構成する繰り返し単位と、官能基と、架橋構造単位とのモル比が、99:0.5:0.5~70:23:7の範囲であり、好ましくは98:1:1~77:18:5の範囲である感温性高分子ゲルを有する。 The heat storage material 11 used in the heat pump device 100 of the second embodiment has a temperature-sensitive polymer having a crosslinked structure and a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the polymer terminal. The molar ratio of the repeating unit having one or more functional groups selected from the group and constituting the temperature-sensitive crosslinked polymer, the functional group, and the crosslinked structural unit is 99: 0.5: 0.5. It has a thermosensitive polymeric gel in the range of ~ 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5.
 ここで、繰り返し単位の割合が多過ぎる場合、蓄熱密度が小さくなる。また、繰り返し単位の割合が少な過ぎる場合、LCSTを示さなくなる。繰り返し単位の割合が多過ぎる場合とは、繰り返し単位と、官能基と、架橋構造単位との合計を100モル%としたときに、繰り返し単位割合が99モル%を超える場合である。また、繰り返し単位の割合が少な過ぎる場合とは、繰り返し単位と、官能基と、架橋構造単位との合計を100モル%としたときに、繰り返し単位割合が70モル%未満である場合である。 Here, if the ratio of repeating units is too large, the heat storage density becomes small. Also, if the proportion of repeating units is too small, LCST will not be shown. The case where the ratio of the repeating unit is too large is the case where the ratio of the repeating unit exceeds 99 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%. Further, the case where the ratio of the repeating unit is too small is the case where the ratio of the repeating unit is less than 70 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%.
 架橋構造単位は、感温性高分子の製造に使用する架橋剤により導入される構造単位である。この架橋剤としては、例えば、N、N’-メチレンビスアクリルアミド、N、N’-ジアリルアクリルアミド、N、N’-ジアクリロイルイミド、N、N’-ジメタクリロイルイミド、トリアリルホルマール、ジアリルナフタレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、各種ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、各種ポリプロピレングリコールジ(メタ)アクリレート、1、3-ブチレングリコールジアクリレート、1、3-ブチレングリコールジメタクリレート、1、4-ブチレングリコールジメタクリレート、各種ブチレングリコールジ(メタ)アクリレート、グリセロールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジビニルベンゼン等のジビニル誘導体等の架橋性単量体等が挙げられるが、特にこれらの架橋剤に限定されるものではない。 The crosslinked structural unit is a structural unit introduced by a crosslinking agent used in the production of a temperature-sensitive polymer. Examples of the cross-linking agent include N, N'-methylenebisacrylamide, N, N'-diallylacrylamide, N, N'-diacryloylimide, N, N'-dimethacryloylimide, triallylformal, and diallylnaphthalate. , Ethylene glycol diacrylate, ethylene glycol dimethacrylate, various polyethylene glycol di (meth) acrylates, propylene glycol diacrylates, propylene glycol dimethacrylates, various polypropylene glycol di (meth) acrylates, 1,3-butylene glycol diacrylates, 1, 3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, various butylene glycol di (meth) acrylates, glycerol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropanetrimethacrylate, tetramethylolmethane Examples thereof include crosslinkable monomers such as divinyl derivatives such as tetramethacrylate and divinylbenzene, but the present invention is not particularly limited to these crosslinking agents.
 以上のように、実施の形態2のヒートポンプ装置100では、温度に依存して親水性と疎水性とを示す感温性高分子と溶媒とを含む感温性高分子ゲルを有する上記の蓄熱材11を蓄熱タンク10に収容する。このため、比較的低い蓄熱動作温度を有し、且つ蓄熱密度が大きい蓄熱材11を用い、容量に対して蓄熱量が大きなヒートポンプ装置100を提供することができる。特に、蓄熱の際、蓄熱材11の脱水反応により、感温性高分子ゲルを含む蓄熱材11から水が分離され、除かれることで、蓄熱状態における蓄熱材11は量が少なくなることで、蓄熱に係るタンクの容量を少なくし、小型化をはかることができる。そして、ヒートポンプ装置100全体の小型化をはかることができる。 As described above, in the heat pump device 100 of the second embodiment, the above-mentioned heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer and a solvent showing hydrophilicity and hydrophobicity depending on the temperature. 11 is housed in the heat storage tank 10. Therefore, it is possible to provide the heat pump device 100 which has a relatively low heat storage operating temperature and uses a heat storage material 11 having a large heat storage density and has a large amount of heat storage with respect to the capacity. In particular, during heat storage, water is separated and removed from the heat storage material 11 containing the temperature-sensitive polymer gel by the dehydration reaction of the heat storage material 11, so that the amount of the heat storage material 11 in the heat storage state is reduced. The capacity of the tank related to heat storage can be reduced to reduce the size. Then, the size of the entire heat pump device 100 can be reduced.
実施の形態3.
 次に、実施の形態3に係るヒートポンプ装置100について説明する。実施の形態3に係るヒートポンプ装置100の機器構成については、実施の形態1で説明した構成と同じである。実施の形態3に係るヒートポンプ装置100では、次に示す蓄熱材11を用いる。
Embodiment 3.
Next, the heat pump device 100 according to the third embodiment will be described. The equipment configuration of the heat pump device 100 according to the third embodiment is the same as the configuration described in the first embodiment. In the heat pump device 100 according to the third embodiment, the heat storage material 11 shown below is used.
 実施の形態3のヒートポンプ装置100に用いる蓄熱材11は、下記一般式(1) The heat storage material 11 used in the heat pump device 100 of the third embodiment has the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。 (In the formula, * represents a covalent bond, q represents an integer of 1 to 3), and includes a structural unit represented by the above general formula (1). It is composed of a temperature-sensitive polymer gel having a crosslinked structure in which a hand and a covalent bond of a structural unit represented by the above general formula (2) are bonded.
 本実施の形態の蓄熱材11において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、99:0.5:0.5~70:23:7の範囲であり、好ましくは98:1:1~77:18:5の範囲である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が99モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。 In the heat storage material 11 of the present embodiment, the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is determined. It is in the range of 99: 0.5: 0.5 to 70: 23: 7, preferably in the range of 98: 1: 1 to 77: 18: 5. When the proportion of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) are represented. When the total of the constituent units is 100 mol%, the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%). On the other hand, when the proportion of the structural unit represented by the general formula (1) is too small (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) When the total of the structural units represented is 100 mol%, LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 70 mol%). In the present specification, the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the preparation of raw materials. It is a theoretical value calculated from the quantity.
 本実施の形態の蓄熱材11は、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを、上記モル比の範囲で含んでいればよく、上記一般式(1)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。 In the heat storage material 11 of the present embodiment, the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) are in the molar ratio. The number of repetitions of the structural units represented by the above general formula (1) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
 本実施の形態の蓄熱材11において、LCSTは、主に、上記一般式(1)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)中のXは、上記したモル比の範囲を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基であることができる。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。上記一般式(1)及(2)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させるだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されることはない。 In the heat storage material 11 of the present embodiment, the LCST can be set in a wide range of 5 to 80 ° C. , mainly depending on the types of R 1 and R 2 in the general formula (1). R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response. R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness. Further, R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of a temperature-sensitive polymer. X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. Can be. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties. The q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density. The covalent bond in the general formulas (1) and (2) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure. The branch structure is not particularly limited.
 次に、実施の形態3の蓄熱材11が有する感温性高分子ゲルの製造について説明する。実施の形態3に係る感温性高分子ゲルは、下記一般式(5) Next, the production of the temperature-sensitive polymer gel contained in the heat storage material 11 of the third embodiment will be described. The temperature-sensitive polymer gel according to the third embodiment has the following general formula (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表す)で表される重合性モノマーを、下記一般式(6) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, and R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group), which is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造することができる。 (In the formula, q represents an integer of 1 to 3), and a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
 上記一般式(5)で表される重合性モノマー(上記一般式(1)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-シクロプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル-N-メチル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-イソプロピル-N-メチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-エチル-N-メトキシエチル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-イソプロポキシプロピル(メタ)アクリルアミド、N-メトキシエトキシプロピル(メタ)アクリルアミド、N-1-メチル-2-メトキシエチル(メタ)アクリルアミド、N-1-メトキシメチルプロピル(メタ)アクリルアミド、N-(2,2-ジメトキシエチル)-N-メチル(メタ)アクリルアミド、N,N-ジメトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、N-アルキル(炭素原子数1~3)(メタ)アクリルアミドが好ましく、N-イソプロピル(メタ)アクリルアミドが更に好ましい。なお、本明細書において、「(メタ)アクリル」は、メタクリル又はアクリルを意味する。 Specific examples of the polymerizable monomer represented by the general formula (5) (a polymerizable monomer giving a structural unit represented by the general formula (1)) include, for example, N-ethyl (meth) acrylamide and N-. n-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N-methyl -Nn-propyl (meth) acrylamide, N-isopropyl-N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-ethyl-N-methoxyethyl (Meta) acrylamide, N-methoxypropyl (meth) acrylamide, N-ethoxypropyl (meth) acrylamide, N-isopropoxypropyl (meth) acrylamide, N-methoxyethoxypropyl (meth) acrylamide, N-1-methyl-2 -Methoxyethyl (meth) acrylamide, N-1-methoxymethylpropyl (meth) acrylamide, N- (2,2-dimethoxyethyl) -N-methyl (meth) acrylamide, N, N-dimethoxyethyl (meth) acrylamide, etc. Can be mentioned. Among these, N-alkyl (1 to 3 carbon atoms) (meth) acrylamide is preferable, and N-isopropyl (meth) acrylamide is more preferable. In addition, in this specification, "(meth) acrylic" means methacrylic or acrylic.
 上記一般式(6)で表される架橋剤(上記一般式(2)で表される構成単位を与える架橋剤)の具体例としては、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド及びN,N’-(トリメチレン)ビスアクリルアミドが挙げられる。 Specific examples of the cross-linking agent represented by the general formula (6) (cross-linking agent giving a structural unit represented by the general formula (2)) include N, N'-methylenebisacrylamide, N, N'-. Ethylene bisacrylamide and N, N'-(trimethylene) bisacrylamide can be mentioned.
 ラジカル重合法としては、特に限定されるものではなく、バルク重合法、溶液重合法、乳化重合法等の公知の方法を用いることができる。上記した重合開始剤の中でも、反応性が良好であるという観点から、過硫酸カリウム及び過硫酸アンモニウムが好ましい。また、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルパラトルイジン等の重合促進剤を、上記した重合開始剤と組み合わせて用いることにより、低温での迅速なラジカル重合が可能となる。 The radical polymerization method is not particularly limited, and known methods such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method can be used. Among the above-mentioned polymerization initiators, potassium persulfate and ammonium persulfate are preferable from the viewpoint of good reactivity. Further, by using a polymerization accelerator such as N, N, N', N'-tetramethylethylenediamine, N, N-dimethylparatoluidine in combination with the above-mentioned polymerization initiator, rapid radical polymerization at low temperature can be performed. It will be possible.
 ラジカル重合に用いられる溶媒としては、特に限定されるものではなく、水、メタノール、エタノール、n-プロパノール、イソプロパノール、1-ブタノール、イソブタノール、ヘキサノール、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロメタン、クロロホルム、四塩化炭素、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。これらの溶媒の中でも、蓄熱密度をより高めるという観点から、水が好ましい。ラジカル重合反応は、通常、0℃~100℃の温度で30分~24時間行われる。 The solvent used for radical polymerization is not particularly limited, and water, methanol, ethanol, n-propanol, isopropanol, 1-butanol, isobutanol, hexanol, benzene, toluene, xylene, chlorobenzene, dichloromethane, chloroform, etc. Examples thereof include carbon tetrachloride, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and the like. Among these solvents, water is preferable from the viewpoint of further increasing the heat storage density. The radical polymerization reaction is usually carried out at a temperature of 0 ° C. to 100 ° C. for 30 minutes to 24 hours.
 また、溶媒として水を用いてラジカル重合を行う場合、上記一般式(5)で表される重合性モノマーと上記一般式(6)で表される架橋剤と上記重合開始剤との合計濃度は、2モル/L~3モル/Lとすることが蓄熱密度をより高めるという観点から特に好ましい。合計濃度が2モル/L未満であると、得られる蓄熱材11の蓄熱密度が小さくなる場合がある。一方、合計濃度が3モル/Lを超えると、得られる蓄熱材11がLCSTを示さなくなる場合がある。 When radical polymerization is carried out using water as a solvent, the total concentration of the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator is 2, 2 mol / L to 3 mol / L is particularly preferable from the viewpoint of further increasing the heat storage density. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 11 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 11 may not exhibit LCST.
 実施の形態3の蓄熱材11が、比較的低い蓄熱動作温度(100℃以下)と大きい蓄熱密度とを達成できる理由は定かでないが、次のように考えられる。LCSTを有する感温性高分子は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す。実施の形態3の蓄熱材11を構成する感温性高分子は、架橋密度が高く、且つ高分子の末端が分岐した高度の密集構造を有するため、感温性高分子への吸着水は、従来の感温性高分子と同様に高配列しているが、LCSTより高温時に低配列化する。実施の形態3の蓄熱材11を構成する感温性高分子では、この配列性の変化が大きいため、従来の感温性高分子と同様に低い蓄熱動作温度を示すだけでなく、大きい蓄熱密度を達成できると考えられる。 The reason why the heat storage material 11 of the third embodiment can achieve a relatively low heat storage operating temperature (100 ° C. or lower) and a large heat storage density is not clear, but it is considered as follows. The temperature-sensitive polymer having LCST exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. Since the temperature-sensitive polymer constituting the heat storage material 11 of the third embodiment has a high crosslink density and a highly dense structure in which the ends of the polymer are branched, the water adsorbed on the temperature-sensitive polymer can be removed. It has a high arrangement like the conventional temperature-sensitive polymer, but has a lower arrangement at a higher temperature than LCST. Since the temperature-sensitive polymer constituting the heat storage material 11 of the third embodiment has a large change in the arrangement, it not only exhibits a low heat storage operating temperature as in the conventional temperature-sensitive polymer, but also has a large heat storage density. Is considered to be able to be achieved.
 以上のように、実施の形態3のヒートポンプ装置100においては、上記の感温性高分子ゲルを有する蓄熱材11とすることで、比較的低い蓄熱動作温度を有し、且つ蓄熱密度が大きい蓄熱材11及びその製造方法を提供することができる。実施の形態3による蓄熱材11は、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きく、タンクの容量に対して蓄熱量を増やすことができる。このため、蓄熱材11が充填された蓄熱タンク10を小型化することで、ヒートポンプ装置100を小型化することができる。 As described above, in the heat pump device 100 of the third embodiment, the heat storage material 11 having the above-mentioned temperature-sensitive polymer gel has a relatively low heat storage operating temperature and a high heat storage density. A material 11 and a method for producing the same can be provided. The heat storage material 11 according to the third embodiment has a relatively low heat storage operating temperature and a large heat storage density, and the amount of heat storage can be increased with respect to the capacity of the tank. Therefore, the heat pump device 100 can be miniaturized by downsizing the heat storage tank 10 filled with the heat storage material 11.
 実施の形態4.
 次に、実施の形態4に係るヒートポンプ装置100について説明する。実施の形態4に係るヒートポンプ装置100の機器構成については、実施の形態1で説明した構成と同じである。実施の形態4に係るヒートポンプ装置100では、次に示す蓄熱材11を用いる。
Embodiment 4.
Next, the heat pump device 100 according to the fourth embodiment will be described. The equipment configuration of the heat pump device 100 according to the fourth embodiment is the same as the configuration described in the first embodiment. In the heat pump device 100 according to the fourth embodiment, the heat storage material 11 shown below is used.
 実施の形態4のヒートポンプ装置100に用いる蓄熱材11は、下記一般式(1) The heat storage material 11 used in the heat pump device 100 of the fourth embodiment has the following general formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、下記一般式(3) (In the formula, * represents a covalent bond, q represents an integer from 1 to 3) and the following general formula (3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
若しくは下記一般式(4) Or the following general formula (4)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手と上記一般式(3)若しくは上記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。 (In the formula, R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group, R 5 represents a hydrogen atom or a methyl group, and X represents a covalent bond or a hydroxy group or a sulfone. Represents one or more functional groups selected from the group consisting of an acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group, * represents a covalent bond, and p represents an integer of 1 to 3). The covalent bond of the structural unit represented by the general formula (1), the covalent bond of the structural unit represented by the general formula (2), and the covalent bond of the structural unit represented by the general formula (2) and the general formula (3). ) Or a temperature-sensitive polymer gel having a crosslinked structure in which a covalent bond of a structural unit represented by the above general formula (4) is bonded.
 実施の形態4の蓄熱材11において、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比の範囲は、95:5~20:80であり、好ましくは85:15~25:75の範囲である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が95モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が20モル%未満である場合)、LCSTを示さなくなる。 In the heat storage material 11 of the fourth embodiment, the range of the molar ratio between the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is set. It is 95: 5 to 20:80, preferably in the range of 85:15 to 25:75. When the ratio of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1) and the configuration represented by the general formula (3) or the general formula (4). When the total with the units is 100 mol%, the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 95 mol%). On the other hand, when the ratio of the structural unit represented by the general formula (1) is too small (represented by the structural unit represented by the general formula (1) and the general formula (3) or the general formula (4). When the total of the structural units is 100 mol%, LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 20 mol%).
 実施の形態4の蓄熱材11において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比の範囲は、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5の範囲である。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が99モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。 In the heat storage material 11 of the fourth embodiment, the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group The range of the molar ratio of a certain X to the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 98: 1: 1. The range is 77:18: 5. When the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large (the configuration represented by the general formula (1)). The total of the units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the structural units represented by the general formula (2) is 100. When the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) exceeds 99 mol%) , The heat storage density becomes small. On the other hand, when the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too small (represented by the general formula (1)). The total of the structural units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the total of the structural units represented by the general formula (2). Is 100 mol%, and the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is less than 70 mol%. If there is), it will not show LCST. In the present specification, the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X are used. The molar ratio with the structural unit represented by the above general formula (2) is a theoretical value calculated from the amount of raw materials charged.
 実施の形態4の蓄熱材11は、上記一般式(1)で表される構成単位と、上記一般式(3)若しくは上記一般式(4)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを、上記モル比の範囲で含んでいればよく、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。 The heat storage material 11 of the fourth embodiment is a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), and a functional group. It suffices to include X and the structural unit represented by the general formula (2) within the range of the molar ratio, and the structural unit represented by the general formula (1) and the general formula (3) or The number of repetitions of the structural units represented by the general formula (4) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
 実施の形態4の蓄熱材11において、LCSTは、主に、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比並びに上記一般式(1)中のR及びRの種類上記一般式(3)若しくは上記一般式(4)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のR及び上記一般式(3)若しくは上記一般式(4)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)、(3)及び(4)中のXは、上記したモル比の範囲を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基であることができる。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のRは、蓄熱密度をより高めるという観点から、ヒドロキシ基又はスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のpは、蓄熱密度をより高めるという観点から、1又は2であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。
 上記一般式(1)~(4)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させるだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されることはない。
In the heat storage material 11 of the fourth embodiment, the LCST is mainly composed of a structural unit represented by the general formula (1) and a structural unit represented by the general formula (3) or the general formula (4). Molar ratio and types of R 1 and R 2 in the general formula (1) Wide range of 5 to 80 ° C. depending on the type of R 4 and R 5 in the general formula (3) or the general formula (4). Can be set to a range. R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response. R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness. Further, R 3 in the general formula (1) and R 5 in the general formula (3) or the general formula (4) are hydrogen atoms from the viewpoint of facilitating the production of a temperature-sensitive polymer. It is preferable to have. X in the general formulas (1), (3) and (4) is composed of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio range. It can be a functional group selected from the group. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties. R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density. P in the general formulas (3) and (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density. The q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
The covalent bond in the general formulas (1) to (4) may not only combine the same structural units or different types of structural units, but may also partially form a branched structure. The branch structure is not particularly limited.
 次に、実施の形態4の蓄熱材11が有する感温性高分子ゲルの製造について説明する。実施の形態4に係る蓄熱材11は、下記一般式(5) Next, the production of the temperature-sensitive polymer gel contained in the heat storage material 11 of the fourth embodiment will be described. The heat storage material 11 according to the fourth embodiment has the following general formula (5).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表す)で表される重合性モノマーと、下記一般式(7) (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, and R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group) and the following general formula (7).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
若しくは下記一般式(8) Or the following general formula (8)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、pは、1~3の整数を表す)で表される重合性モノマーとを、下記一般式(6) (In the formula, R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group, R 5 represents a hydrogen atom or a methyl group, and p represents an integer of 1 to 3). The polymerizable monomer is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造することができる。 (In the formula, q represents an integer of 1 to 3), and a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
 上記一般式(5)で表される重合性モノマー、上記一般式(6)で表される架橋剤及び上記重合開始剤は、実施の形態1で説明したのと同様であるので説明を省略する。更に、ラジカル重合方法、ラジカル重合条件等は、実施の形態1で説明したのと同様であるので説明を省略する。 The polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator are the same as those described in the first embodiment, and thus the description thereof will be omitted. .. Further, the radical polymerization method, the radical polymerization conditions, and the like are the same as those described in the first embodiment, and thus the description thereof will be omitted.
 上記一般式(7)で表される重合性モノマー(上記一般式(3)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸2-カルボキシメチル、アクリル酸2-カルボキシエチル、アクリル酸2-カルボキシプロピル、アクリル酸2-スルホメチル、アクリル酸2-スルホエチル、アクリル酸2-スルホプロピル、アクリル酸2-ホスホメチル、アクリル酸2-ホスホエチル、アクリル酸2-ホスホプロピル等が挙げられる。これらの中でも、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル及びアクリル酸2-ヒドロキシプロピルが好ましい。 Specific examples of the polymerizable monomer represented by the general formula (7) (the polymerizable monomer giving the structural unit represented by the general formula (3)) include, for example, 2-hydroxymethyl acrylate and acrylic acid 2. -Hydroxyethyl, 2-hydroxypropyl acrylate, 2-carboxymethyl acrylate, 2-carboxyethyl acrylate, 2-carboxypropyl acrylate, 2-sulfomethyl acrylate, 2-sulfoethyl acrylate, 2-sulfopropyl acrylate , 2-phosphomethyl acrylate, 2-phosphoethyl acrylate, 2-phosphopropyl acrylate and the like. Among these, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
 上記一般式(8)で表される重合性モノマー(上記一般式(4)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、N-(1,1-ジメチル-2-ヒドロキシエチル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシプロピル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシブチル)アクリルアミド、2-アクリルアミド-2-メチルプロパンカルボン酸、2-アクリルアミド-2-メチルブタンカルボン酸、2-アクリルアミド-2-メチルペンタンカルボン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸、2-アクリルアミド-2-メチルペンタンスルホン酸、2-アクリルアミド-2-メチルプロパンリン酸、2-アクリルアミド-2-メチルブタンリン酸、2-アクリルアミド-2-メチルペンタンリン酸等が挙げられる。これらの中でも、2-アクリルアミド-2-メチルプロパンスルホン酸及び2-アクリルアミド-2-メチルペンタンスルホン酸が好ましい。 Specific examples of the polymerizable monomer represented by the general formula (8) (a polymerizable monomer giving a structural unit represented by the general formula (4)) include N- (1,1-dimethyl-2). -Hydroxyethyl) acrylamide, N- (1,1-dimethyl-2-hydroxypropyl) acrylamide, N- (1,1-dimethyl-2-hydroxybutyl) acrylamide, 2-acrylamide-2-methylpropanecarboxylic acid, 2 -Acrylamide-2-methylbutanecarboxylic acid, 2-acrylamide-2-methylpentanecarboxylic acid, 2-acrylamide-2-methylpropanesulfonic acid, 2-acrylamide-2-methylbutanesulfonic acid, 2-acrylamide-2-methyl Examples thereof include pentansulfonic acid, 2-acrylamide-2-methylpropanephosphate, 2-acrylamide-2-methylbutanephosphate, 2-acrylamide-2-methylpentanephosphate and the like. Among these, 2-acrylamide-2-methylpropanesulfonic acid and 2-acrylamide-2-methylpentanesulfonic acid are preferable.
 実施の形態3と同様に、溶媒として水を用いてラジカル重合を行う場合、上記一般式(5)で表される重合性モノマーと上記一般式(7)若しくは上記一般式(8)で表される重合性モノマーと上記一般式(6)で表される架橋剤と上記重合開始剤との合計濃度は、2モル/L~3モル/Lとすることが好ましい。合計濃度が2モル/L未満であると、得られる蓄熱材11の蓄熱密度が小さくなる場合がある。一方、合計濃度が3モル/Lを超えると、得られる蓄熱材11がLCSTを示さなくなる場合がある。 Similar to the third embodiment, when radical polymerization is carried out using water as a solvent, the polymerizable monomer represented by the general formula (5) and the general formula (7) or the general formula (8) are represented. The total concentration of the polymerizable monomer, the cross-linking agent represented by the general formula (6), and the polymerization initiator is preferably 2 mol / L to 3 mol / L. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 11 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 11 may not exhibit LCST.
 以上のように、実施の形態4のヒートポンプ装置100においては、上記の感温性高分子ゲルを有する蓄熱材11とすることで、比較的低い蓄熱動作温度を有し、且つ蓄熱密度が大きい蓄熱材11及びその製造方法を提供することができる。実施の形態3による蓄熱材11は、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きく、タンクの容量に対して蓄熱量を増やすことができる。このため、蓄熱材11が充填された蓄熱タンク10を小型化することで、ヒートポンプ装置100を小型化することができる。 As described above, in the heat pump device 100 of the fourth embodiment, the heat storage material 11 having the above-mentioned temperature-sensitive polymer gel has a relatively low heat storage operating temperature and a high heat storage density. A material 11 and a method for producing the same can be provided. The heat storage material 11 according to the third embodiment has a relatively low heat storage operating temperature and a large heat storage density, and the amount of heat storage can be increased with respect to the capacity of the tank. Therefore, the heat pump device 100 can be miniaturized by downsizing the heat storage tank 10 filled with the heat storage material 11.
実施の形態5.
 実施の形態1~実施の形態4では、蓄熱材11の含水率について、特に説明しなかった。蓄熱材11の含水率は、特に限定しないが、70質量%~99質量%であることが好ましい。含水率は、水21を含む蓄熱材11の重量を室温で測定した後、恒温槽内に入れて60~120℃の乾燥温度で水21を蒸発させ、水21が無くなった(重量が減少しなくなった)ところで、蓄熱材11の重量を測定し、重量の減少分を水21と仮定して求めることができる(乾燥減量法)。また、実施の形態1~実施の形態4に係る蓄熱材11を多孔化してもよい。蓄熱材11を多孔化することにより、温度応答性をより高めるという利点がある。蓄熱材11を多孔化する方法としては、上記した重合性モノマー、架橋剤、重合開始剤及びポロゲン(細孔形成剤)を含む混合溶液を調製し、ラジカル重合反応によって架橋構造を形成し、次いで洗浄によりポロゲンを除去する方法が挙げられる。溶媒として水を用いてラジカル重合反応を行う場合、好ましいポロゲンは、水溶性の炭水化物、例えば、スクロース、マルトース、セルビオース、ラクトース、ソルビトール、キシリトール、グルコース、フルクトース等である。これらの水溶性の炭水化物と、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール又はこれらの混合物とを含むポロゲン組成物としてもよい。また、蓄熱材11を多孔化する別の方法としては、水21を含む感温性高分子から凍結乾燥により水21を除去する方法が挙げられる。
Embodiment 5.
In the first to fourth embodiments, the water content of the heat storage material 11 has not been particularly described. The water content of the heat storage material 11 is not particularly limited, but is preferably 70% by mass to 99% by mass. As for the water content, after measuring the weight of the heat storage material 11 containing the water 21 at room temperature, the water 21 was placed in a constant temperature bath to evaporate the water 21 at a drying temperature of 60 to 120 ° C., and the water 21 disappeared (the weight decreased). By the way, the weight of the heat storage material 11 can be measured, and the weight loss can be determined by assuming that the water 21 is used (dry weight loss method). Further, the heat storage material 11 according to the first to fourth embodiments may be made porous. By making the heat storage material 11 porous, there is an advantage that the temperature responsiveness is further enhanced. As a method for making the heat storage material 11 porous, a mixed solution containing the above-mentioned polymerizable monomer, cross-linking agent, polymerization initiator and porogen (pore-forming agent) is prepared, a cross-linked structure is formed by a radical polymerization reaction, and then a cross-linked structure is formed. Examples thereof include a method of removing radicals by washing. When the radical polymerization reaction is carried out using water as a solvent, preferred porogens are water-soluble carbohydrates such as sucrose, maltose, cerbiose, lactose, sorbitol, xylitol, glucose and fructose. A pologene composition containing these water-soluble carbohydrates and polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol or a mixture thereof may be used. Further, as another method for making the heat storage material 11 porous, there is a method of removing water 21 from the temperature-sensitive polymer containing water 21 by freeze-drying.
 また、実施の形態1~実施の形態4に係る蓄熱材11が有する感温性高分子は、上記した重合性モノマー、架橋剤及び重合開始剤を少なくとも含む混合溶液を、ヒートポンプ内の容器表面に塗布し、ラジカル重合することにより製造することもできる。混合溶液は、金属表面の活性化剤、カップリング剤等を含んでもよい。また、実施の形態1~実施の形態4に係る蓄熱材11が有する感温性高分子は、上記した混合溶液の塗膜へ放射線を照射することにより製造することもできる。 Further, the temperature-sensitive polymer contained in the heat storage material 11 according to the first to fourth embodiments is prepared by applying a mixed solution containing at least the above-mentioned polymerizable monomer, cross-linking agent and polymerization initiator on the surface of the container in the heat pump. It can also be produced by coating and radical polymerization. The mixed solution may contain a metal surface activator, a coupling agent, and the like. Further, the temperature-sensitive polymer contained in the heat storage material 11 according to the first to fourth embodiments can also be produced by irradiating the coating film of the above-mentioned mixed solution with radiation.
 また、実施の形態1等のヒートポンプ装置100では、蓄熱状態の感温性高分子に脱水反応による水を残さないようにするため、水蒸気にして、蓄熱タンク10からガス流路配管30を通過させて水用タンク20に送るようにした。感温性高分子と水との分離及び除去方法としては、他にも感温性高分子と水との密度差、重力、水の対流等を用いた方法がある。また、ポンプ等の外的動力を用いて、感温性高分子から水を除去することができる。 Further, in the heat pump device 100 of the first embodiment or the like, in order to prevent water due to the dehydration reaction from being left in the heat-sensitive polymer in the heat storage state, steam is used to pass through the gas flow path pipe 30 from the heat storage tank 10. I sent it to the water tank 20. As a method for separating and removing the temperature-sensitive polymer and water, there are other methods using the density difference between the temperature-sensitive polymer and water, gravity, convection of water, and the like. In addition, water can be removed from the temperature-sensitive polymer by using an external power such as a pump.
 次に、実施の形態1~実施の形態5において説明した蓄熱材11について、実施例1~実施例5を示して具体的に説明する。ただし、蓄熱材11は、本実施例に限定されるものではない。 Next, the heat storage material 11 described in the first to fifth embodiments will be specifically described with reference to Examples 1 to 5. However, the heat storage material 11 is not limited to this embodiment.
〔実施例1~5及び比較例1~5〕
 表1に示す配合の原料水溶液を、窒素雰囲気下、室温から50℃まで1時間かけて昇温させ、感温性高分子を得た。また、得られた感温性高分子を乾燥した後、蒸留水で平衡膨潤させて、感温性高分子ゲルを得た。その後、感温性高分子ゲルをアルミニウム製の密閉容器に封入し、示差走査熱量計で吸熱ピーク温度と蓄熱密度とを測定した。測定結果を表2に示す。
[Examples 1 to 5 and Comparative Examples 1 to 5]
The aqueous raw material solution having the composition shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer. Further, the obtained temperature-sensitive polymer was dried and then equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel. Then, the temperature-sensitive polymer gel was sealed in a closed container made of aluminum, and the endothermic peak temperature and the heat storage density were measured with a differential scanning calorimeter. The measurement results are shown in Table 2.
 ここで、表1における略号は以下の通りである。
 NIPAM:N-イソプロピルアクリルアミド
 HMA:アクリル酸2-ヒドロキシエチル
 MBA:N,N’-メチレンビスアクリルアミド
 KPS:過硫酸カリウウム
 TEMED:N,N,N’,N’-テトラメチルエチレンジアミン
Here, the abbreviations in Table 1 are as follows.
NIPAM: N-Isopropylacrylamide HMA: 2-Hydroxyethyl Acrylate MBA: N, N'-Methylenebisacrylamide KPS: Carium Persulfate TEMED: N, N, N', N'-Tetramethylethylenediamine
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表2の結果から分かるように、実施例1~実施例5で得られた感温性高分子ゲルは、吸熱ピーク温度が36℃~77℃と低い上に、蓄熱密度が512J/g~844J/gと大きかった。すなわち、実施例1~実施例5で得られた感温性高分子ゲルは、36℃~77℃の低い蓄熱動作温度で、512J/g~844J/gの高い蓄熱密度を発現することができる。 As can be seen from the results in Table 2, the temperature-sensitive polymer gels obtained in Examples 1 to 5 have a low endothermic peak temperature of 36 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J. It was as large as / g. That is, the temperature-sensitive polymer gels obtained in Examples 1 to 5 can exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of 36 ° C to 77 ° C. ..
 また、蓄熱動作温度の発現する感温性高分子ゲルの親水性と疎水性の可逆的変化において、水温が36℃~77℃であり、液体状態であった。これに対し、比較例1~実施例5で得られた感温性高分子ゲルは、パラフィン、脂肪酸、糖アルコール等の従来の蓄熱材と同様に、吸熱ピーク温度が32℃~68℃と低いものの、蓄熱密度が31J/g~42J/gと著しく小さかった。 Further, in the reversible change in hydrophilicity and hydrophobicity of the temperature-sensitive polymer gel in which the heat storage operating temperature was expressed, the water temperature was 36 ° C. to 77 ° C., and it was in a liquid state. On the other hand, the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to conventional heat storage materials such as paraffin, fatty acid, and sugar alcohol. However, the heat storage density was extremely low at 31 J / g to 42 J / g.
 実施例1~実施例5で得られた感温性高分子ゲルを用いた上記構成のヒートポンプ装置100の蓄熱タンク10は、その蓄熱密度に応じて、約10%~90%程度の小型化が可能となった。 The heat storage tank 10 of the heat pump device 100 having the above configuration using the temperature-sensitive polymer gels obtained in Examples 1 to 5 can be downsized by about 10% to 90% depending on the heat storage density. It has become possible.
 また、上述した実施の形態及び実施例のように、脱水反応により水が分離されて除去された感温性高分子は、水が供給されて吸水反応が生じなければ、蓄熱状態を維持することができる。このため、長期間の蓄熱ができる。このため、季節を跨いだ蓄熱も容易となる。 Further, as in the above-described embodiments and examples, the temperature-sensitive polymer from which water is separated and removed by the dehydration reaction maintains a heat storage state unless water is supplied and a water absorption reaction occurs. Can be done. Therefore, heat can be stored for a long period of time. Therefore, it is easy to store heat across the seasons.
 実施の形態1~実施の形態4で説明したヒートポンプ装置100(特に、蓄熱状態の蓄熱材11)は、従来の蓄熱材とは異なり、低い動作温度で高い蓄熱密度を得ることができた。そして、実施の形態1~実施の形態4で得られた感温性高分子ゲルを用いたヒートポンプ装置100は、蓄熱密度に応じて、それぞれ約10~90%程度の小型化が可能であった。また、実施の形態1~実施の形態4で得られた感温性高分子ゲルを用いたヒートポンプ装置100を、冷蔵庫、冷凍庫、エアコンに使用したところ、総じて、従来のヒートポンプ装置を用いた製品よりも小型化が可能であった。また、ヒートポンプ装置100は、蓄熱タンク10の蓄熱材11を搬送等することができる。このため、蓄熱材11は、電力供給源がないまたは乏しい場所において、電力を不要とした冷暖房機器として利用することができる。例えば、蓄熱材11は、潜水艦内や宇宙船、惑星探査機の電気機器類及び搭乗者等の加熱または冷却を行うことができる。 The heat pump device 100 (particularly, the heat storage material 11 in the heat storage state) described in the first to fourth embodiments was able to obtain a high heat storage density at a low operating temperature, unlike the conventional heat storage material. The heat pump device 100 using the temperature-sensitive polymer gels obtained in the first to fourth embodiments can be downsized by about 10 to 90%, respectively, depending on the heat storage density. .. Further, when the heat pump device 100 using the temperature-sensitive polymer gel obtained in the first to fourth embodiments was used in a refrigerator, a freezer, and an air conditioner, it was generally better than a product using the conventional heat pump device. Was also possible to be miniaturized. Further, the heat pump device 100 can convey the heat storage material 11 of the heat storage tank 10. Therefore, the heat storage material 11 can be used as a heating / cooling device that does not require electric power in a place where there is no or scarce electric power supply source. For example, the heat storage material 11 can heat or cool the inside of a submarine, a spacecraft, electrical equipment of a planetary probe, passengers, and the like.
 10 蓄熱タンク、11 蓄熱材、12 蓄熱側熱交換器、20 水用タンク、21 水、22 水側熱交換器、30 ガス流路配管、31 ガス配管バルブ、40 水流路配管、41 水配管バルブ、100 ヒートポンプ装置、200 蓄熱用熱源装置、300 蓄熱側外部負荷、400 水側外部負荷。 10 heat storage tank, 11 heat storage material, 12 heat storage side heat exchanger, 20 water tank, 21 water, 22 water side heat exchanger, 30 gas flow path piping, 31 gas piping valve, 40 water flow path piping, 41 water piping valve , 100 heat pump device, 200 heat storage heat source device, 300 heat storage side external load, 400 water side external load.

Claims (8)

  1.  温度に依存して親水性と疎水性とを示す感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とを含む感温性高分子ゲルを有する蓄熱材を収容する蓄熱タンクと、
     前記蓄熱材を加熱する蓄熱用熱源装置と、
     水を貯める水用タンクと、
     前記蓄熱タンクと前記水用タンクとを接続する流路配管と
    を備えるヒートポンプ装置であって、
     前記蓄熱材は、下限臨界溶液温度を境にして前記親水性と前記疎水性とが可逆的に変化し、且つ、前記変化の過程において、前記感温性高分子ゲルに含まれる前記溶媒が液体状態を維持し、前記疎水性に前記変化した感温性高分子と水とが分離されるヒートポンプ装置。
    A heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on temperature and a solvent selected from the group consisting of water, an organic solvent, and a mixture thereof. A heat storage tank to store and
    A heat storage device for heating the heat storage material and
    A water tank for storing water and
    A heat pump device including a flow path pipe connecting the heat storage tank and the water tank.
    In the heat storage material, the hydrophilicity and the hydrophobicity change reversibly with respect to the lower limit critical solution temperature, and in the process of the change, the solvent contained in the temperature-sensitive polymer gel is a liquid. A heat pump device that maintains a state and separates water from a temperature-sensitive polymer whose hydrophobicity has changed.
  2.  前記感温性高分子は、架橋構造を有すると共に、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を分子末端に有し、前記感温性高分子を構成する繰り返し単位と、前記官能基と、前記架橋構造単位とのモル比が、99:0.5:0.5~70:20:10の範囲にある請求項1に記載のヒートポンプ装置。 The temperature-sensitive polymer has a crosslinked structure and has one or more functional groups selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the molecular terminal. The molar ratio of the repeating unit constituting the temperature-sensitive polymer, the functional group, and the crosslinked structural unit is in the range of 99: 0.5: 0.5 to 70:20:10. Item 1. The heat pump device according to item 1.
  3.  温度に依存して親水性と疎水性とを示す感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とを含む感温性高分子ゲルを有する蓄熱材を収容する蓄熱タンクと、
     前記蓄熱材を加熱する蓄熱用熱源装置と、
     水を貯める水用タンクと、
     前記蓄熱タンクと前記水用タンクとを接続する流路配管と
    を備えるヒートポンプ装置であって、
     前記蓄熱材は、下限臨界溶液温度を境にして前記親水性と前記疎水性とが可逆的に変化し、且つ、前記変化の過程において、前記感温性高分子ゲルに含まれる前記溶媒が液体状態を維持し、
     前記感温性高分子は、架橋構造を有すると共に、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を分子末端に有し、前記感温性高分子を構成する繰り返し単位と、前記官能基と、前記架橋構造単位とのモル比が、99:0.5:0.5~70:20:10の範囲にあるヒートポンプ装置。
    A heat storage material having a temperature-sensitive polymer gel containing a temperature-sensitive polymer that exhibits hydrophilicity and hydrophobicity depending on temperature and a solvent selected from the group consisting of water, an organic solvent, and a mixture thereof. A heat storage tank to store and
    A heat storage device for heating the heat storage material and
    A water tank for storing water and
    A heat pump device including a flow path pipe connecting the heat storage tank and the water tank.
    In the heat storage material, the hydrophilicity and the hydrophobicity change reversibly with respect to the lower limit critical solution temperature, and in the process of the change, the solvent contained in the temperature-sensitive polymer gel is a liquid. Maintain state,
    The temperature-sensitive polymer has a crosslinked structure and has one or more functional groups selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the molecular terminal. A heat pump in which the molar ratio of the repeating unit constituting the temperature-sensitive polymer, the functional group, and the crosslinked structural unit is in the range of 99: 0.5: 0.5 to 70:20:10. apparatus.
  4.  蓄熱材を収容する蓄熱タンクと、
     前記蓄熱材を加熱する蓄熱用熱源装置と、
     水を貯める水用タンクと、
     前記蓄熱タンクと前記水用タンクとを接続する流路配管と
    を備えるヒートポンプ装置であって、
     前記蓄熱材は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である感温性高分子ゲルを有し、
     前記感温性高分子ゲルは、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化するヒートポンプ装置。
    A heat storage tank that houses the heat storage material and
    A heat storage device for heating the heat storage material and
    A water tank for storing water and
    A heat pump device including a flow path pipe connecting the heat storage tank and the water tank.
    The heat storage material has the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, * represents a covalent bond, q represents an integer of 1 to 3), and includes a structural unit represented by.
    It has a crosslinked structure in which the covalent bond of the structural unit represented by the general formula (1) and the covalent bond of the structural unit represented by the general formula (2) are bonded.
    The molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to It has a temperature sensitive polymeric gel that is 70:23: 7.
    The temperature-sensitive polymer gel is a heat pump device in which hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
  5.  蓄熱材を収容する蓄熱タンクと、
     前記蓄熱材を加熱する蓄熱用熱源装置と、
     水を貯める水用タンクと、
     前記蓄熱タンクと前記水用タンクとを接続する流路配管と
    を備えるヒートポンプ装置であって、
     前記蓄熱材は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000004
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000005
    若しくは下記一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手と前記一般式(3)若しくは前記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と前記一般式(3)若しくは前記一般式(4)で表される構成単位とのモル比が、95:5~20:80であり、
     前記一般式(1)で表される構成単位及び前記一般式(3)若しくは前記一般式(4)で表される構成単位の合計と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である感温性高分子ゲルを有し、
     前記感温性高分子ゲルは、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化するヒートポンプ装置。
    A heat storage tank that houses the heat storage material and
    A heat storage device for heating the heat storage material and
    A water tank for storing water and
    A heat pump device including a flow path pipe connecting the heat storage tank and the water tank.
    The heat storage material has the following general formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and R 1 and R 2 may be the same or different, R 3 represents a hydrogen atom or a methyl group, X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond) and the following general formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, * represents a covalent bond, q represents an integer of 1 to 3) and the following general formula (3).
    Figure JPOXMLDOC01-appb-C000005
    Or the following general formula (4)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group, R 5 represents a hydrogen atom or a methyl group, and X represents a covalent bond or a hydroxy group or a sulfone. It represents one or more functional groups selected from the group consisting of an acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group, where * represents a covalent bond and p represents an integer of 1 to 3). Including the structural unit represented by
    The covalent bond of the structural unit represented by the general formula (1) and the covalent bond of the structural unit represented by the general formula (2) are represented by the general formula (3) or the general formula (4). It has a cross-linked structure in which the covalent bonds of the constituent units are bonded.
    The molar ratio of the structural unit represented by the general formula (1) to the structural unit represented by the general formula (3) or the general formula (4) is 95: 5 to 20:80.
    The total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the general formula (2). It has a temperature-sensitive polymer gel having a molar ratio of 99: 0.5: 0.5 to 70: 23: 7 with the structural unit represented by.
    The temperature-sensitive polymer gel is a heat pump device in which hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
  6.  前記蓄熱タンクは、着脱可能である請求項1~請求項5のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 5, wherein the heat storage tank is removable.
  7.  前記流路配管は、
     前記蓄熱材の脱水反応により生じた水蒸気が通過するガス流路配管と、
     前記蓄熱材に吸水反応させる水が通過する水流路配管と
    を有する請求項1~請求項6のいずれか一項に記載のヒートポンプ装置。
    The flow path piping
    A gas flow path pipe through which water vapor generated by the dehydration reaction of the heat storage material passes, and
    The heat pump device according to any one of claims 1 to 6, further comprising a water flow path pipe through which water to be reacted by absorbing water with the heat storage material passes.
  8.  請求項1~請求項7のいずれか一項に記載のヒートポンプ装置を備える電気機器。 An electric device including the heat pump device according to any one of claims 1 to 7.
PCT/JP2019/039330 2019-10-04 2019-10-04 Heat pump device and electrical device WO2021064992A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020504261A JP6704549B1 (en) 2019-10-04 2019-10-04 Heat pump device and electric equipment
PCT/JP2019/039330 WO2021064992A1 (en) 2019-10-04 2019-10-04 Heat pump device and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039330 WO2021064992A1 (en) 2019-10-04 2019-10-04 Heat pump device and electrical device

Publications (1)

Publication Number Publication Date
WO2021064992A1 true WO2021064992A1 (en) 2021-04-08

Family

ID=70858280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039330 WO2021064992A1 (en) 2019-10-04 2019-10-04 Heat pump device and electrical device

Country Status (2)

Country Link
JP (1) JP6704549B1 (en)
WO (1) WO2021064992A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232940A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Thermal storage medium and solar cell panel using the same
JP2007044673A (en) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd Water vapor adsorbent for adsorption type heat pump and adsorption type heat pump apparatus using the adsorbent
CN101117572A (en) * 2007-07-25 2008-02-06 中南大学 Composite phase-change heat-storing material using gel as carrier and method for making same
JP2017222742A (en) * 2016-06-13 2017-12-21 白元アース株式会社 Gelatinous heat storage agent and heat insulation tool encapsulating the same
JP6501990B1 (en) * 2018-06-18 2019-04-17 三菱電機株式会社 Heat storage device, heat storage system and heat storage method
WO2019159514A1 (en) * 2018-02-16 2019-08-22 矢崎エナジーシステム株式会社 Latent heat storage body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201739A (en) * 2016-05-02 2017-11-09 富士通株式会社 Electronic device
US10159165B2 (en) * 2017-02-02 2018-12-18 Qualcomm Incorporated Evaporative cooling solution for handheld electronic devices
US10995250B2 (en) * 2017-11-21 2021-05-04 Worcester Polytechnic Institute Thermal storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232940A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Thermal storage medium and solar cell panel using the same
JP2007044673A (en) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd Water vapor adsorbent for adsorption type heat pump and adsorption type heat pump apparatus using the adsorbent
CN101117572A (en) * 2007-07-25 2008-02-06 中南大学 Composite phase-change heat-storing material using gel as carrier and method for making same
JP2017222742A (en) * 2016-06-13 2017-12-21 白元アース株式会社 Gelatinous heat storage agent and heat insulation tool encapsulating the same
WO2019159514A1 (en) * 2018-02-16 2019-08-22 矢崎エナジーシステム株式会社 Latent heat storage body
JP6501990B1 (en) * 2018-06-18 2019-04-17 三菱電機株式会社 Heat storage device, heat storage system and heat storage method

Also Published As

Publication number Publication date
JP6704549B1 (en) 2020-06-03
JPWO2021064992A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Gaeini et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage
Yu et al. Development and characterization of silica gel–LiCl composite sorbents for thermal energy storage
Liu et al. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system
JP4697413B2 (en) Water vapor adsorbent for adsorption heat pump and adsorption heat pump apparatus using the adsorbent
CN109504351B (en) Polyether-based composite phase change energy storage material and preparation method thereof
JP2005009703A (en) Adsorber/desorber and cold/hot heat system using the same
US20220062858A1 (en) Super-adsorbing porous thermo-responsive desiccants
CN104629692B (en) A kind of preparation method of Inorganic whisker phase-changing energy storage material for building
CN111138689A (en) Preparation method of temperature-sensitive phase-change hydrogel
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
WO2021064990A1 (en) Thermal storage device
Liu et al. Experimental study on salt–metal organic framework composites for water absorption
WO2021064992A1 (en) Heat pump device and electrical device
WO2021064989A1 (en) Heat pipe and electronic device
CN111978922B (en) Hydrated salt-based medium-low temperature chemical heat storage material and preparation method thereof
CN111936597B (en) Heat storage material, method for producing same, and heat storage tank
JP6704547B1 (en) Heat storage device, method of using heat storage device, and internal combustion engine warm-up system including heat storage device
Strelova et al. Dynamics of water vapour sorption on composite LiCl/(silica gel): An innovative configuration of the adsorbent bed
CN114450377B (en) Heat storage device
JP6704559B1 (en) Heat transport container and heat transport system
KR20180085898A (en) Organic polimer absorbent, composition of organic polimer absorbent and method of manufacturing thereof
Bakass et al. Adsorption–desorption phenomena of water vapor on a superabsorbent polymer partially crosslinked with potassium
Liu et al. Experimental investigation of low-temperature fluidised bed thermochemical energy storage with salt-mesoporous silica composite materials
Liu et al. Characterization of Water Vapor Sorption Performance and Heat Storage of MIL-101 (Cr) Complex MgCl2, LiCl/LaCl3 System for Adsorptive Thermal Conversion
Clark et al. Salt hydrate-based composite materials for thermochemical energy storage

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504261

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948131

Country of ref document: EP

Kind code of ref document: A1