WO2021063348A1 - 油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统 - Google Patents

油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统 Download PDF

Info

Publication number
WO2021063348A1
WO2021063348A1 PCT/CN2020/118776 CN2020118776W WO2021063348A1 WO 2021063348 A1 WO2021063348 A1 WO 2021063348A1 CN 2020118776 W CN2020118776 W CN 2020118776W WO 2021063348 A1 WO2021063348 A1 WO 2021063348A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil separation
outlet
condenser
compressor
diversion channel
Prior art date
Application number
PCT/CN2020/118776
Other languages
English (en)
French (fr)
Inventor
季士才
苏秀平
杨胜梅
杨荣华
陈静
Original Assignee
约克(无锡)空调冷冻设备有限公司
江森自控科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克(无锡)空调冷冻设备有限公司, 江森自控科技公司 filed Critical 约克(无锡)空调冷冻设备有限公司
Priority to KR1020227013989A priority Critical patent/KR20220061264A/ko
Priority to US17/764,945 priority patent/US20220349634A1/en
Priority to JP2022519711A priority patent/JP2022550397A/ja
Priority to EP20870899.0A priority patent/EP4040087A4/en
Publication of WO2021063348A1 publication Critical patent/WO2021063348A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Definitions

  • the present application relates to an oil separation device, a condenser, and a refrigeration system using the oil separation device or condenser, and more specifically to a refrigeration system including two compressors.
  • the lubricating substance such as lubricating oil
  • gaseous refrigerant and lubricating oil generally need to pass through an oil separation device or a condenser with oil separation function to complete the separation of oil and gas.
  • the separated lubricating oil is transported back to the compressor, and the separated gaseous refrigerant is then used to be condensed into liquid refrigeration.
  • the oil separation device or the condenser with oil separation function includes an oil separation cavity, and a filter screen is provided in the oil separation cavity. In the oil separation chamber, the gaseous refrigerant and lubricating oil pass through the filter screen to separate the lubricating oil and the gaseous refrigerant.
  • the size of the oil separation chamber will affect the size of the oil separation device or the condenser with oil separation function, and the size of the oil separation chamber is also related to the compressor displacement.
  • the greater the displacement of the compressor the greater the flow rate of the mixture of lubricating oil and gaseous refrigerant discharged into the oil separation cavity per unit time.
  • the oil The separation cavity needs to have a sufficiently large size.
  • an oil separation device in a first aspect of the present application, includes: a housing including an oil separation cavity; a first refrigerant inlet and a second refrigerant inlet, the first refrigerant The inlet and the second refrigerant inlet are provided on the housing; a first guide passage, the first guide passage is provided in the oil separation cavity, and the first guide passage has an inlet and an outlet , The inlet of the first flow guiding channel is in fluid communication with the first refrigerant inlet, so as to remove at least a part of the refrigerant gas entering the first refrigerant inlet from the first flow guiding channel The inlet is guided to the outlet of the first guiding channel; and a second guiding channel, the second guiding channel is disposed in the oil separation cavity, and the second guiding channel has an inlet And an outlet, the inlet of the second guide passage is in fluid communication with the second refrigerant inlet to divert at least a part of the refrigerant gas entering the second ref
  • the outlet of the first flow guiding channel and the outlet of the second flow guiding channel are close to each other.
  • the oil separation device further includes: at least one communication port for fluid communication with the condensing device; at least one filter screen, the at least one filter screen is transverse to the housing The length direction is set in the oil separation chamber; wherein, the at least one filter is set at the at least one communication port and the outlet of the first diversion channel and the second diversion channel that are close to each other Between the outlets of the channels, so that the mixed refrigerant gas can flow through the at least one filter screen to the at least one communication port.
  • the at least one communication port includes two communication ports, and the two communication ports are respectively provided at opposite ends of the housing in the length direction;
  • the at least one filter includes a first filter Mesh and a second filter mesh; wherein the first filter mesh is arranged between the outlet of the first diversion channel and one of the two communication ports; the second filter mesh is arranged Between the outlet of the second flow guide channel and the other of the two communication ports.
  • the first guide passage and the second guide passage are directed from opposite ends in the length direction of the casing to the casing along the length direction of the casing.
  • the middle portion extends; wherein, the outlet of the first diversion channel and the outlet of the second diversion channel are arranged to be separated by a distance in the length direction of the housing, or perpendicular to the The length of the shell is staggered by a certain distance.
  • the outlet of the first guide passage is disposed between the outlet of the second guide passage and the inlet of the first guide passage; and the second guide passage
  • the outlet of the guide channel is arranged between the outlet of the first guide channel and the inlet of the second guide channel.
  • the outlet of the first flow guiding channel is disposed between the outlet of the second flow guiding channel and the inlet of the second flow guiding channel; and the second The outlet of the guide channel is arranged between the outlet of the first guide channel and the inlet of the first guide channel.
  • the oil separation device further includes a blocking member provided between the outlet of the first flow guiding channel and the outlet of the second flow guiding channel.
  • the blocking member is a blocking plate or a filter screen.
  • the position and size of the blocking member are set such that in the length direction of the housing, the blocking member can at least partially block the outlet and the outlet of the first flow guiding channel.
  • the outlet of the second diversion channel is set such that in the length direction of the housing, the blocking member can at least partially block the outlet and the outlet of the first flow guiding channel.
  • the first flow guiding channel is formed by a first flow guiding baffle and the housing
  • the second flow guiding channel is formed by a second flow guiding baffle and the housing.
  • the middle of the first and/or second baffle is bent to form an upper plate and a lower plate with a certain included angle.
  • the first diversion channel is formed by a first diversion tube
  • the second diversion channel is formed by a second diversion tube
  • the second diversion channel has an additional outlet, and the additional outlet is disposed away from the outlet of the first diversion channel;
  • the at least one communication port includes a communication port, and the communication port Located between the outlet and the additional outlet of the second diversion channel;
  • the at least one filter includes a filter, and the filter is arranged between the outlet and the second diversion channel of the second diversion channel.
  • the oil separation device further includes an additional filter screen disposed between the additional outlet of the second diversion channel and the communication port.
  • the first diversion passage extends longitudinally from one end of the casing in the longitudinal direction into the oil separation cavity of the casing, and the second diversion passage extends from the casing The other end in the length direction of the body extends toward the direction of the first guide channel.
  • the first flow guiding channel is formed by a straight flow guiding pipe
  • the second flow guiding channel is formed by a flow guiding baffle and the housing.
  • the first guide passage and the second guide passage extend side by side from the middle of the housing into the oil separation cavity of the housing, and the first guide Both the flow channel and the second flow guide channel are formed by a straight flow guide tube; wherein, the first flow guide channel is arranged close to the second flow guide channel.
  • the at least one communication port is provided on the housing, and the at least one communication port is used for fluid communication with the condensing device in the condenser.
  • At least one object of the first aspect of the present application is to provide a condenser, the condenser comprising: a shell with a cavity in the shell; an oil separation baffle, the oil separation baffle is arranged on the shell In the body and extending along the length direction of the housing, the oil separation baffle divides the cavity into an oil separation cavity and a condensing cavity, the oil separation baffle includes at least one communication port, and the at least one communication port Communicating the oil separation cavity and the condensing cavity; a first refrigerant inlet and a second refrigerant inlet, the first refrigerant inlet and the second refrigerant inlet are provided on the housing; a first guide Flow passage, the first guide passage is arranged in the oil separation cavity, the first guide passage has an inlet and an outlet, the inlet of the first guide passage and the first refrigerant inlet Fluid communication to divert at least a part of the refrigerant gas entering the first refrigerant inlet from the inlet of the first
  • the outlet of the first flow guiding channel and the outlet of the second flow guiding channel are close to each other.
  • the condenser further includes: at least one communication port for fluid communication with the condensing device; at least one filter screen, the at least one filter screen being perpendicular to the housing The length direction is arranged in the oil separation cavity; wherein the at least one filter is arranged on the at least one communication port and the outlet of the first diversion channel and the second diversion channel that are close to each other Between the outlets, so that the mixed refrigerant gas can flow through the at least one filter to the at least one communication port.
  • the at least one communication port includes two communication ports, and the two communication ports are respectively provided at opposite ends of the housing in the longitudinal direction;
  • the at least one filter includes a first filter Mesh and a second filter mesh; wherein the first filter mesh is arranged between the outlet of the first diversion channel and one of the two communication ports; the second filter mesh is arranged Between the outlet of the second flow guide channel and the other of the two communication ports.
  • the first guide passage and the second guide passage extend from opposite ends in the length direction of the casing toward the end of the casing along the length direction of the casing.
  • the middle portion extends; wherein, the outlet of the first diversion channel and the outlet of the second diversion channel are arranged to be separated by a distance in the length direction of the housing, or perpendicular to the The length of the shell is staggered by a certain distance.
  • the outlet of the first flow guiding channel is disposed between the outlet of the second flow guiding channel and the inlet of the first flow guiding channel; and the second The outlet of the guide channel is arranged between the outlet of the first guide channel and the inlet of the second guide channel.
  • the outlet of the first flow guiding channel is disposed between the outlet of the second flow guiding channel and the inlet of the second flow guiding channel; and the second The outlet of the guide channel is arranged between the outlet of the first guide channel and the inlet of the first guide channel.
  • the condenser further includes a blocking member provided between the outlet of the first flow guiding channel and the outlet of the second flow guiding channel.
  • the blocking member is a blocking plate or a filter screen.
  • the position and size of the blocking member are set such that in the length direction of the housing, the blocking member can at least partially block the outlet of the first diversion channel and the The outlet of the second diversion channel.
  • the first flow guiding channel is formed by a first flow guiding baffle and the housing
  • the second flow guiding channel is formed by a second flow guiding baffle and the housing.
  • the first diversion channel is formed by a first diversion tube
  • the second diversion channel is formed by a second diversion tube
  • the second diversion channel has an additional outlet, and the additional outlet is located away from the outlet of the first diversion channel;
  • the at least one communication port includes a communication port, and the communication port Located between the outlet and the additional outlet of the second diversion channel;
  • the at least one filter includes a filter, and the filter is arranged between the outlet and the second diversion channel of the second diversion channel.
  • the condenser further includes an additional filter screen disposed between the additional outlet of the second diversion channel and the communicating port.
  • the first guide channel extends longitudinally from one end of the housing in the longitudinal direction into the oil separation cavity of the housing, and the second guide channel extends from the housing The other end in the length direction of the body extends toward the direction of the first guide channel.
  • the first flow guiding channel is formed by a straight flow guiding pipe
  • the second flow guiding channel is formed by a flow guiding baffle and the housing.
  • the first guide passage and the second guide passage extend side by side from the middle of the housing into the oil separation cavity of the housing, and the first guide Both the flow channel and the second flow guide channel are formed by a straight flow guide tube; wherein, the first flow guide channel is arranged close to the second flow guide channel.
  • At least one object of the third aspect of the present application is to provide a refrigeration system, the refrigeration system comprising: a compressor unit; an oil separation device, wherein the oil separation device is the oil separation device according to the first aspect; condensation A throttling device; and an evaporator; wherein the compressor unit, the oil separation device, the condenser, the throttling device, and the evaporator are sequentially connected to form a refrigerant circulation circuit; wherein, the The compressor unit includes: a first compressor and a second compressor, the first compressor and the second compressor are connected in parallel between the oil separation device and the evaporator; wherein, the first compressor The suction port and the suction port of the second compressor are connected to the evaporator; and wherein the discharge port of the first compressor is connected to the first refrigerant inlet of the oil separation device, The discharge port of the second compressor is connected to the second refrigerant inlet of the oil separation device.
  • the displacement of the first compressor is smaller than the displacement of the second compressor.
  • At least one object of the fourth aspect of the present application is to provide a refrigeration system, the refrigeration system comprising: a compressor unit; a condenser, wherein the condenser is the condenser according to the above second aspect; a throttling device; And an evaporator; wherein the compressor unit, the condenser, the throttling device and the evaporator are sequentially connected to form a refrigerant circulation circuit; wherein, the compressor unit includes: a first compressor and a second compressor The first compressor and the second compressor are connected in parallel between the condenser and the evaporator; wherein the suction port of the first compressor and the suction port of the second compressor Port is connected to the evaporator; and wherein the discharge port of the first compressor is connected to the first refrigerant inlet of the condenser, and the discharge port of the second compressor is connected to the condenser The second refrigerant inlet of the device is connected.
  • the displacement of the first compressor is smaller than the displacement of the second compressor.
  • Fig. 1 is a structural block diagram of an embodiment of the refrigeration system of the application
  • Fig. 2 is a three-dimensional structure diagram of the condenser in Fig. 1;
  • Figure 3 is a diagram of the positional relationship between the oil separation chamber and the condensing chamber of the condenser in Figure 1;
  • FIG. 4A is an axial sectional view of the first embodiment of the condenser in FIG. 1;
  • Fig. 4B is a three-dimensional structural view of the internal structure of the condenser in Fig. 4A viewed from the front side;
  • FIG. 4C is a three-dimensional structural diagram of the internal structure of the condenser in FIG. 4A viewed from the rear side;
  • Figure 4D is a radial cross-sectional view of the condenser in Figure 4A;
  • Fig. 5 is an axial sectional view of the second embodiment of the condenser in Fig. 1;
  • Fig. 6 is an axial sectional view of a third embodiment of the condenser in Fig. 1;
  • Fig. 7 is an axial sectional view of the fourth embodiment of the condenser in Fig. 1;
  • Fig. 8 is an axial sectional view of the fifth embodiment of the condenser in Fig. 1;
  • Fig. 9 is an axial sectional view of the sixth embodiment of the condenser in Fig. 1;
  • Fig. 10 is an axial sectional view of the seventh embodiment of the condenser in Fig. 1;
  • Fig. 11 is an axial sectional view of the eighth embodiment of the condenser in Fig. 1;
  • FIG. 12 is a structural block diagram of another embodiment of the refrigeration system of this application.
  • Figure 13 is a three-dimensional structural view of an embodiment of the oil separation device in Figure 12;
  • Figure 14 is an axial cross-sectional view of the oil separation device in Figure 13;
  • Figure 15 is an axial cross-sectional view of the second embodiment of the oil separation device in Figure 12;
  • Figure 16 is an axial cross-sectional view of the third embodiment of the oil separation device in Figure 12;
  • Figure 17 is an axial cross-sectional view of the fourth embodiment of the oil separation device in Figure 12;
  • Figure 18 is an axial cross-sectional view of the fifth embodiment of the oil separation device in Figure 12;
  • Figure 19 is an axial cross-sectional view of the sixth embodiment of the oil separation device in Figure 12;
  • Figure 20 is an axial cross-sectional view of the seventh embodiment of the oil separation device in Figure 12;
  • Fig. 21 is an axial cross-sectional view of the eighth embodiment of the oil separation device in Fig. 12.
  • FIG. 1 is a structural block diagram of an embodiment of a refrigeration system 100 of this application, which is used to show the connection relationship of various components in a refrigeration system including two compressors connected in parallel.
  • the condenser 130 has an oil separation function, and a specific structure for realizing this function will be described in detail below.
  • the refrigeration system 100 includes a compressor unit, a condenser 130, a throttling device 140, and an evaporator 110 that are sequentially connected by pipes to form a refrigerant circulation circuit.
  • the compressor group includes a first compressor 108 and a second compressor 109. Among them, the displacement of the first compressor 108 (ie, the refrigerant gas flow rate) is smaller than the displacement of the second compressor 109.
  • the first compressor 108 and the second compressor 109 are connected in parallel between the condenser 130 and the evaporator 110.
  • the first compressor 108 is provided with an intake port 141, an exhaust port 151, and an oil return port 161.
  • the second compressor 109 is provided with a suction port 142, an exhaust port 152 and an oil return port 162.
  • the condenser 130 is provided with a first refrigerant inlet 121, a second refrigerant inlet 122, a refrigerant outlet 124 and an oil outlet 123.
  • the suction port 141 of the first compressor 108 and the suction port 142 of the second compressor 109 are both connected to the outlet of the evaporator 110.
  • the exhaust port 151 of the first compressor 108 is connected to the first refrigerant inlet 121 of the condenser 130.
  • the oil return port 161 of the first compressor 108 is connected to the oil outlet 123 of the condenser 130.
  • the discharge port 152 of the second compressor 109 is connected to the second refrigerant inlet 122 of the condenser 130.
  • the oil return port 162 of the second compressor 109 is also connected to the oil outlet 123 of the condenser 130.
  • the refrigerant outlet 124 of the condenser 130 is connected to the throttling device 140.
  • the refrigeration system 100 is filled with refrigerant and lubricating substances (for example, lubricating oil). The following briefly describes the operation process of the refrigeration system 100:
  • a low-temperature and low-pressure gaseous refrigerant is compressed into a high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant flows into the condenser 130 through the first refrigerant inlet 121 and the second refrigerant inlet 122 on the condenser 130, respectively.
  • the high-temperature and high-pressure gaseous refrigerant first passes through the oil separation chamber 315 (not shown in Figures 1 and 2, see Figure 3), and then in the condensing chamber 316 in the condenser 130 ( Figures 1, 2 Not shown in Figure 3), the exothermic condensed into high-pressure liquid refrigerant (may include a part of gaseous refrigerant).
  • the high-pressure liquid refrigerant After the high-pressure liquid refrigerant is discharged from the refrigerant outlet 124 on the condenser 130, it flows through the throttling device 140 and is throttled into a low-pressure liquid refrigerant.
  • the low-pressure liquid refrigerant absorbs heat in the evaporator 110 and evaporates into a low-temperature and low-pressure gaseous refrigerant, and then returns to the first compressor 108 and the second compressor 109. This cycle repeats itself to complete a continuous refrigeration cycle.
  • the lubricating oil is used to lubricate the first compressor 108 and the second compressor 109, and then the lubricating oil will be discharged from the first compressor 108 along with the gaseous refrigerant. And the second compressor 109.
  • the discharged high-pressure gaseous refrigerant and lubricating oil mixture enters the condenser 130.
  • the high-pressure gaseous refrigerant is separated from the lubricating oil.
  • the separated high-pressure gas refrigerant enters the condensation chamber 316 in the condenser 130 as described above, and the separated lubricating oil flows back to the first compressor 108 and the second compressor 109 through the oil outlet 123 of the condenser 130.
  • the condenser 130 in this application is described by taking a shell and tube condenser as an example.
  • the condenser 130 may not only be a shell and tube condenser, but the condenser 130 may also be a condenser of other different forms.
  • the condenser 130 may also be a double-pipe condenser or the like.
  • FIG. 2 is a three-dimensional structure diagram of some embodiments of the condenser 130 in FIG. 1 to show the external structure of the condenser 130 in these embodiments.
  • the condenser 130 includes a housing 201, the housing 201 is approximately cylindrical, and its left and right ends in the length direction are closed by an end plate 202 and an end plate 204.
  • the housing 201 is provided with a first refrigerant inlet 121, a second refrigerant inlet 122, an oil outlet 123 and a refrigerant outlet 124.
  • the first refrigerant inlet 121 and the second refrigerant inlet 122 are located in the upper part of the housing 201 and are respectively arranged near the left and right ends of the housing 201.
  • the oil outlet 123 and the refrigerant outlet 124 are located in the middle of the lower part of the housing 201.
  • the condenser 130 also includes a water supply pipe 206 and a water return pipe 207.
  • the water supply pipe 206 and the water return pipe 207 are arranged on the end plate 202 and can be in fluid communication with the condensing device 313 in the condenser 130 (see FIG. 3 for details), so that the cooling medium (for example, water) can flow into and out of the condenser 130 .
  • the condenser 130 further includes a pipe 181, a pipe 182, a pipe 183, and a pipe 184.
  • the pipe 181 communicates with the first refrigerant inlet 121 so that the first refrigerant inlet 121 is connected with the exhaust port 151 of the first compressor 108.
  • the pipe 182 communicates with the second refrigerant inlet 122 so that the second refrigerant inlet 122 is connected with the exhaust port 152 of the second compressor 109. Since the displacement of the first compressor 108 is smaller than the displacement of the second compressor 109, the size of the first refrigerant inlet 121 is smaller than the size of the second refrigerant inlet 122.
  • the pipe diameter of the pipe 181 is smaller than the pipe diameter of the pipe 182.
  • the pipe 183 communicates with the oil outlet 123 so that the oil outlet 123 is connected to the oil return port 161 and the oil return port 162.
  • the pipe 184 communicates with the refrigerant outlet 124 so that the refrigerant outlet 124 is connected with the throttling device 140.
  • the first refrigerant inlet 121, the second refrigerant inlet 122, the oil outlet 123 and the refrigerant outlet 124 of the condenser may be arranged in different positions, for example, In the embodiment shown in FIG. 11, the first refrigerant inlet 121 and the second refrigerant inlet 122 are provided in the middle of the housing 201.
  • FIG. 3 is a diagram of the positional relationship between the oil separation cavity and the condensation cavity in some embodiments of the condenser 130, which is generally a cross-sectional view along the line AA in FIG. 2, in which some parts are omitted, and only the oil separation cavity is shown And condensing cavity.
  • the housing 201 of the condenser 130 has a cavity 311.
  • the condenser 130 includes an oil separation partition 337.
  • the oil separation partition 337 is obliquely disposed in the housing 201 and extends along the length direction of the housing 201 to be connected with the inner wall of the housing 201.
  • the oil separation partition 337 separates the cavity 311 into an oil separation chamber 315 and a condensation chamber 316.
  • components (not shown) contained in the oil separation cavity 315 can separate the lubricating oil from the gaseous refrigerant.
  • the condensing device 313 contained in the condensing cavity 316 can cause the gaseous refrigerant to be condensed into a liquid refrigerant.
  • the upper part of the oil separation partition 337 is provided with at least one communication port 341, at least one communication port 341 is used to communicate the oil separation cavity 315 and the condensation cavity 316, so that the gaseous refrigerant separated from the lubricating oil flows into the condensation cavity from the oil separation cavity 315 316.
  • the first refrigerant inlet 121, the second refrigerant inlet 122 and the oil outlet 123 are in fluid communication with the oil separation chamber 315.
  • the water supply pipe 206, the water return pipe 207 and the refrigerant outlet 124 are in fluid communication with the condensation chamber 316.
  • a condensing device 313 is provided in the condensing cavity 316.
  • the condensing device 313 in this application is a heat exchange tube bundle.
  • the heat exchange tube bundle extends along the length of the housing 201 and is in fluid communication with the water supply pipe 206 and the water return pipe 207.
  • 4A-4D show the first embodiment of the condenser of the present application.
  • the external structure of the condenser is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensing cavity is shown in FIG. 3.
  • 4A is a cross-sectional view of the first embodiment of the condenser according to the present application along the axial direction of the housing (ie, the direction of the CC line in FIG. 2) to show the various components in the oil separation chamber 315, which saves The water supply pipe 206 and the water return pipe 207 are removed;
  • FIG. 4B is a three-dimensional structural view of the oil separation partition 337, the pipe 181, the pipe 182, and the oil separation chamber 315 in the condenser 430 shown in FIG.
  • Fig. 4A as viewed from the front side
  • Fig. 4C is a three-dimensional structural view of the components shown in Fig. 4B viewed from the rear side
  • Fig. 4D is a cross-sectional view of the condenser 430 shown in Fig. 4A along the radial direction of the housing (ie, the direction of line BB in Fig. 2), wherein The end plate 202 is omitted.
  • the condenser 430 includes a left sealing plate 471 and a right sealing plate 472.
  • the left sealing plate 471 and the right sealing plate 472 are symmetrically arranged at the left and right ends of the oil separation chamber 315, and are in sealing connection with the housing 201 and the oil separation partition 337.
  • the condenser 430 also includes a first baffle 431.
  • the left end of the first baffle 431 is connected to the left sealing plate 471, and the first baffle 431 extends from the left sealing plate 471 to the middle of the housing 201 along the length direction of the condenser 430 (ie, the left and right direction).
  • the first baffle 431 is obliquely arranged at the upper part of the oil separation chamber 315 and connected to the inner wall of the housing 201.
  • the middle part of the first baffle 431 is bent in a direction toward the condensation cavity 316.
  • a first diversion channel 445 is formed between the first diversion baffle 431, the left sealing plate 471 and the housing 201.
  • the radial cross section of the first diversion channel 445 formed by the first diversion baffle 431 and the housing 201 is generally arcuate.
  • the first guide passage 445 has an inlet 445a and an outlet 445b.
  • the inlet 445a is located at the left end of the first guide channel 445 and is in fluid communication with the first refrigerant inlet 121.
  • the outlet 445b is located at the right end of the first diversion channel 445.
  • the cavity located below the first guide channel 445 is designed to be large enough to sufficiently separate the lubricating oil and the gaseous refrigerant.
  • the middle of the first baffle 431 is bent toward the inside of the housing 201 to form an upper plate 426 and a lower plate 427 that are connected to each other, which form a certain angle Angle.
  • setting the first baffle 431 in a shape that the middle part is bent toward the condensation cavity 316 can increase the radial direction of the first diversion channel 445.
  • Cross-sectional area As shown in FIG. 4D, in the radial section of the housing 201, the middle of the first baffle 431 is bent toward the inside of the housing 201 to form an upper plate 426 and a lower plate 427 that are connected to each other, which form a certain angle Angle.
  • the condenser 430 further includes a second baffle 432.
  • the right end of the second baffle 432 is connected to the right sealing plate 472, and the second baffle 432 extends from the right sealing plate 472 to the middle of the housing 201 along the length direction of the condenser 430 (ie, the left-right direction).
  • the second baffle 432 is obliquely disposed at the upper part of the oil separation chamber 315 and connected to the inner wall of the housing 201.
  • the middle part of the second baffle 432 is also bent in a direction toward the condensation chamber 316, and the shape of the second baffle 432 is the same as that of the first baffle 431.
  • a second diversion channel 446 is formed between the second baffle 432, the right sealing plate 472 and the housing 201.
  • the radial cross section of the second diversion channel 446 formed by the second diversion baffle 432 and the housing 201 is generally arcuate.
  • the second guide passage 446 has an inlet 446a and an outlet 446b.
  • the inlet 446a is located at the right end of the second guide passage 446 and is in fluid communication with the second refrigerant inlet 122.
  • the outlet 446b is located at the left end of the second diversion channel 446.
  • the cavity located below the second guide channel 446 is designed to be large enough to sufficiently separate the lubricating oil and the gaseous refrigerant.
  • the condenser 430 further includes a blocking member 434.
  • the blocking member 434 is disposed between the outlet 445b of the first flow guiding channel 445 and the outlet 446b of the second flow guiding channel 446, and is used to separate the outlet 445b and the outlet 446b.
  • the blocking member 434 is a blocking plate and is substantially fan-shaped, and the arc shape at the top thereof matches the circular arc shape of the housing 201 so that the blocking member 434 can be connected to the housing 201.
  • the radial cross-sectional area of the stopper 434 is set to be approximately the same as the area of the outlet 445b and the outlet 446b, so that the outlet 445b and the outlet 446b can be at least partially blocked in the length direction of the housing 201.
  • Such an arrangement can prevent the outlet 445b and the outlet 446b from being arranged directly opposite to each other, thereby preventing the mixture flowing out of one of the diversion channels from fleeing into the other diversion channel due to its high velocity.
  • the mixture flowing in from the first guide passage 445 will not immediately contact the mixture flowing in from the second guide passage 446, but After being blocked by the blocking member 434, the flow direction is changed, and the mixing is approximately at the mixing area 450 (shown with dotted shading in FIG. 4A).
  • outlet 445b of the first flow guiding channel 445, the outlet 446b of the second flow guiding channel 446, and the blocking member 434 are jointly arranged so that the mixture flowing out from the outlet 445b and the outlet 446b can be mixed approximately in the vicinity of the mixing area 450 .
  • the above-mentioned mixing area 450 only schematically represents a rough gas mixing position, and does not indicate a physical division.
  • the position and size of the mixing area 450 may be different, but according to the mixture flowing out of the outlet Since it will diffuse immediately afterwards, the mixing area 450, the outlet 445b of the first diversion channel 445, and the outlet 446b of the second diversion channel 446 should be close to each other.
  • the outlet of the first diversion channel and the outlet of the second diversion channel may not be set to be completely opposite, but set to be rotated and staggered by a certain angle in the circumferential direction of the housing. Or spaced a certain distance in the front and back, up and down directions, it is only necessary to ensure that the two outlets are close to each other, so that the refrigerant flowing out of the outlets can be mixed.
  • the blocking member 434 since the outlet of the first diversion channel and the outlet of the second diversion channel are not arranged directly opposite to each other, the blocking member 434 may be of any shape, or the blocking member may not be provided, as shown in FIGS. 8-11. Examples are shown.
  • the at least one communication port 341 includes a left communication port 441 and a right communication port 442, which are respectively provided on the upper part of the left and right ends of the oil separation partition 337 to communicate the oil on both sides of the oil separation partition 337.
  • Both the left communication port 441 and the right communication port 442 are square openings, and the sizes of the openings are the same.
  • the condenser 430 further includes a first filter screen 475 and a second filter screen 476 which are arranged in the oil separation chamber 315.
  • the first filter 475 is disposed under the first flow guide partition 431, between the left communication port 441 and the outlet 445b, and is disposed near the left communication port 441.
  • the second filter screen 476 is disposed under the second flow guide partition 432, located between the right communication port 442 and the outlet 446b, and is close to the right communication port 442.
  • the first filter screen 475 and the second filter screen 476 both extend in the oil separation chamber 315 along the radial direction of the condenser 430 (that is, the filter screen needs to be connected to the guide baffle, the oil separation baffle, and the housing), thereby Before the mixture flows from the outlet 445b or the outlet 446b to the left communication port 441 or the right communication port 442, it needs to pass through the first filter 475 or the second filter 476 to filter out the lubricating oil, thereby preventing the lubricating oil in the mixture from flowing from The left communication port 441 or the right communication port 442 is discharged to the condensation chamber 316.
  • FIG. 4A The working principle of each component in the oil separation chamber 315 will be described in detail below with reference to FIG. 4A.
  • the arrows in FIG. 4A indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the mixture of high-pressure gas refrigerant and lubricating oil discharged from the first compressor 108 enters the oil separation chamber 315 through the first refrigerant inlet 121.
  • the first mixture flows along the first diversion channel 445 defined by the first diversion partition 431 to the outlet 445b in a substantially horizontal direction.
  • the mixture of high-pressure gas refrigerant and lubricating oil discharged from the second compressor 109 enters the oil separation chamber 315 through the second refrigerant inlet 122.
  • the second mixture flows along the second diversion channel 446 defined by the second diversion partition 432 to the outlet 446b substantially in a horizontal direction.
  • the first mixture and the second mixture hit the blocking member 434 from the left and the right, respectively, and then change the flow direction to flow downward. Since there is no longer blocking by the blocking member 434, the first mixture and the second mixture are mixed with each other approximately at the mixing area 450 while flowing downward.
  • the pressure in the condensing chamber 316 is lower than the pressure in the oil separation chamber 315, so the mixture in the oil separation chamber 315 will flow toward the condensing chamber 316.
  • both the left communication port 441 and the right communication port 442 communicate with the condensing chamber 316, the pressure at the left communication port 441 and the right communication port 442 are approximately the same, and the sizes of the left communication port 441 and the right communication port 442 are also Roughly the same. Therefore, when the first mixture and the second mixture are mixed with each other approximately at the mixing area 450, they will be divided into two mixtures with approximately the same flow rate under pressure and flow toward the left communication port 441 and the right communication port 442, respectively.
  • the flow directions of the two mixtures are also similar.
  • this application takes a stream of mixture flowing to the left after mixing as an example to illustrate the flow of the mixture.
  • the mixture flows toward the left side and passes through the first filter mesh 475.
  • the first filter 475 has fine pores, and the lubricating oil in the mixture will adhere to the first filter 475, thereby separating the lubricating oil from the gaseous refrigerant.
  • the pressure in the condensing chamber 316 is lower than the pressure in the oil separation chamber 315, the gaseous refrigerant continues to flow to the left communication port 441.
  • the lubricating oil attached to the first filter screen 475 is deposited on the bottom of the oil separation chamber 315 by gravity, and is discharged from the oil separation chamber 315 through the oil outlet 123 at the bottom of the oil separation chamber 315.
  • the flow baffle 432 is respectively provided with an anti-scourge member 438 and an anti-scourge member 439.
  • the anti-scourge member 438 and the anti-scourge member 439 may be respectively disposed on the first and second flow guide plates 431 and 432 that are opposite to the first refrigerant inlet 121 and the second refrigerant inlet 122.
  • the anti-flushing member may be a filter.
  • a baffle (not shown) may also be provided in the oil separation chamber 315 Out).
  • the baffle plate is connected to the oil separation partition 337 between the first filter screen 475 and the second filter screen 476 and the housing 201, and is configured to be disposed substantially horizontally above the liquid level of the lubricating oil, so that the lubricating oil It can flow down the filter and be deposited at the bottom of the oil separation chamber 315, and the flow of the mixture does not impact the liquid surface of the lubricating oil.
  • the condenser 430 when the displacement of the first compressor 108 is less than the displacement of the second compressor 109, the condenser 430 can make the mixture of gaseous refrigerant and lubricating oil discharged from the first compressor 108 and the second compressor 109 It is mixed in the oil separation chamber 315, and then divided into two uniform strands for filtration. Therefore, the condenser 430 does not need to design the size of the oil separation chamber 315 according to the displacement of the large displacement compressor (that is, the second compressor 109), and can meet the requirements of sufficient filtration and separation of gaseous refrigerant and lubricating oil. This can make the size of the oil separation chamber 315 smaller, so that the overall size of the condenser 430 is smaller.
  • the size of the oil separation chamber 315 may be designed according to the average displacement of the large displacement compressor (ie, the second compressor 109) and the small displacement compressor (ie, the first compressor 108).
  • FIG. 5 is a cross-sectional view of the second embodiment of the condenser according to the present application along the axial direction of the housing (ie, along the direction of line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the second embodiment is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensation cavity inside the condenser is shown in FIG. 3.
  • the arrows in FIG. 5 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the structure of the condenser 530 is roughly the same as the structure of the condenser 430 shown in FIGS. 4A-4C, and the difference between the condenser 530 and the condenser 430 is: in the embodiment shown in FIG. 5,
  • the blocking member is a filter 534 instead of a blocking plate.
  • the filter screen 534 has fine pores, but it can still prevent the second mixture discharged from the second compressor 109 from entering the second diversion channel 446.
  • the first mixture and the second mixture can still be mixed in the mixing zone 550 near the filter screen 534, and then divided into two equally, and pass through the first filter screen 475 and the second filter screen 476 to separate the lubricating oil and then flow into the condensation chamber.
  • the filter 534 also has the function of adsorbing and separating the lubricating oil in the mixture.
  • FIG. 6 is a cross-sectional view of the third embodiment of the condenser of the present application along the axial direction of the housing (ie, along the direction of line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the third embodiment is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensing cavity inside the condenser is shown in FIG. 3.
  • the arrows in Fig. 6 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the structure of the condenser 630 is substantially the same as the structure of the condenser 430 shown in FIGS. 4A-4C.
  • the difference between the condenser 630 and the condenser 430 lies in: the first baffle 631 and the second baffle 631
  • the specific structure of the baffle 632 at the entrance is different.
  • the first baffle 631 near the first refrigerant inlet 121 and the second baffle 632 near the second refrigerant inlet 122 are designed as top openings.
  • the shape of the box is designed as top openings.
  • the first flow guiding channel 645 is formed by the first flow guiding partition 631 and the housing 201
  • the second flow guiding channel 646 is formed by the second flow guiding partition 632 and the housing 201.
  • the diversion channel can be formed only by the diversion baffle and the casing, and the left and right sealing plates are not required to define the first diversion channel 645 and the second diversion channel 646, respectively, so that the condenser can be simplified. 630 assembly steps.
  • the left end of the first baffle 631 has a box shape with an open top.
  • the right side of the box body extends toward the middle of the casing 201 along the length direction of the casing 201 to form a first diversion channel 645.
  • the bottom of the first diversion partition 631 at the box at the left end extends downward to a position lower than the bottom of the first diversion partition 631 at other positions, so that the first diversion channel is guided at the box.
  • the radial area of the flow channel is larger than the radial area of the guide channel at other positions.
  • the right end of the second baffle 632 is in the shape of a box with an open top.
  • the left side of the box body extends toward the middle of the casing 201 along the length direction of the casing 201 to form a second diversion channel 646.
  • the bottom of the second diversion partition 632 at the box at the right end extends downward to a position lower than the bottom of the second diversion partition 632 at other positions, so that the second diversion channel is guided at the box.
  • the radial area of the flow channel is larger than the radial area of the guide channel at other positions.
  • the left end of the first baffle 631 and the right end of the second baffle 632 are designed as a box shape with an open top, which can be close to the diversion channel diameters at the first refrigerant inlet 121 and the second refrigerant inlet 122
  • the direction area is increased to reduce the speed of the mixture after entering the condenser 630, so as to reduce the impact of the mixture on the baffle. Therefore, in this embodiment, the anti-flushing member may not be provided.
  • FIG. 7 is a cross-sectional view of the fourth embodiment of the condenser of the application along the axial direction of the housing (ie, the direction of the line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the fourth embodiment is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensation cavity inside the condenser is shown in FIG. 3.
  • the arrows in Fig. 7 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the structure of the condenser 730 is substantially the same as the structure of the condenser 430 shown in FIGS. 4A-4C, and the difference between the condenser 730 and the condenser 430 is: in the embodiment shown in FIG. 7 ,
  • the first diversion channel 745 and the second diversion channel 746 are respectively formed by pipes.
  • the first diversion channel 745 is formed by the first diversion tube 735
  • the second diversion channel 746 is formed by the second diversion tube 736.
  • the first guide tube 735 extends upward through the first refrigerant inlet 121 arranged on the casing 201 to be connected with the exhaust port 151 of the first compressor 108.
  • the second guide tube 736 extends upward through the second refrigerant inlet 122 arranged on the casing 201 to be connected to the exhaust port 152 of the second compressor 109.
  • the diversion channel is directly formed by the diversion tube to restrict the flow path of the mixture after entering the diversion channel, and there is no need to additionally provide the left sealing plate 471 and/or the right sealing plate 472 as shown in FIGS. 4A-4C .
  • the diversion channel is formed by a diversion tube
  • the first filter screen 775 and the second filter screen 776 need to be connected to the diversion tube, the oil separation partition and the housing, so that the mixture can pass through the first filter screen. 775 or the second filter screen 776 flows into the condensing cavity 316.
  • FIG. 8 is a cross-sectional view of the fifth embodiment of the condenser of the application along the axial direction of the housing (ie, the direction of the line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the fifth embodiment is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensing cavity in the condenser is shown in FIG. 3.
  • the arrows in FIG. 8 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the first diversion channel 845 and the second diversion channel 846 in the condenser 830 are respectively formed by pipes.
  • the first guide passage 845 is formed by a guide straight pipe 864, which extends upward through the first refrigerant inlet 121 arranged on the housing 201 to communicate with the exhaust port of the first compressor 108. 151 is connected.
  • the outlet 845b of the first diversion channel 845 is arranged at the lower end of the first diversion channel 845.
  • the second diversion channel 846 is formed by the diversion partition 863 and the housing 201.
  • the baffle 863 is at a certain distance from the top of the casing 201 and extends horizontally along the length of the casing 201.
  • the second guide passage 846 is in fluid communication with the second refrigerant inlet 122.
  • the second diversion channel 846 has an outlet 846b arranged at its left end and an additional outlet 843 arranged at its right end.
  • the outlet 846b is disposed close to the outlet 845b of the first diversion channel 845.
  • the additional outlet 843 is located away from the outlet 845 b of the first diversion channel 845.
  • the condenser 830 only includes one communication port 841, which is disposed in the middle of the oil separation partition 337.
  • the condenser 830 also includes a first filter 875 and an additional filter 877.
  • the first filter 875 is disposed between the outlet 846 b of the second diversion channel 846 and the communication port 841, and the additional filter 877 is disposed between the additional outlet 843 of the second diversion channel 846 and the communication port 841.
  • the mixed mixture at the mixing area 850 flows through the first filter 875 from left to right.
  • the gaseous refrigerant is separated from the lubricating oil.
  • the gaseous refrigerant separated from the lubricating oil enters the condensing cavity from the communication port 841.
  • the lubricating oil is deposited on the bottom of the oil separation chamber 315 due to gravity.
  • the mixture flowing out from the additional outlet 843 hits the right end plate 204 on the right side of the housing 201 and then flows through the additional filter 877 from right to left.
  • the gaseous refrigerant is separated from the lubricating oil.
  • the gaseous refrigerant separated from the lubricating oil enters the condensing cavity from the communication port 841.
  • the lubricating oil is deposited on the bottom of the oil separation chamber 315 due to gravity.
  • the mixture discharged from the large-displacement compressor ie, the second compressor 109 is divided into two parts, one of which flows directly through the additional filter 877, and the other part is connected to the small-displacement compressor (ie, the second compressor 109).
  • the gaseous refrigerant discharged from the first compressor 108) is mixed and then flows through the first filter 875.
  • the size of the additional outlet 843 the flow rate of the mixture flowing through the additional filter screen 877 and the first filter screen 875 can be approximately equal, and therefore the flow rate of the mixture can be automatically divided into two uniform strands for filtering. This can also make the size of the oil separation chamber 315 smaller, so that the overall size of the condenser 430 is smaller.
  • FIG. 9 is a cross-sectional view of the sixth embodiment of the condenser of the application along the axial direction of the housing (ie, the direction of the line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the sixth embodiment is shown in Fig. 2, and the positional relationship between the oil separation cavity and the condensing cavity in the condenser is shown in Fig. 3.
  • the arrows in FIG. 9 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the structure of the condenser 930 is substantially the same as the structure of the condenser 730 as shown in FIG. 7.
  • the difference between the condenser 930 and the condenser 730 lies in: the first diversion channel 945 and the second diversion channel
  • the specific settings of 946 in the height direction are different.
  • the outlet 945b of the first guide channel 945 of the condenser 930 is opposite to the outlet 946b of the second guide channel 946, and is staggered in the height direction, so that in the height direction, the outlet 946b It is below exit 945b. Therefore, in this embodiment, no blocking member is provided to prevent the mixture flowing out of one of the diversion channels from escaping into the other diversion channel due to its high velocity.
  • the first diversion channel and the second diversion channel may not be tubular, as long as the outlet of the first diversion channel and the outlet of the second diversion channel are arranged at Staggering a certain distance in other directions perpendicular to the length of the shell can prevent the mixture flowing out of one of the diversion channels from escaping into the other diversion channel due to high speed.
  • FIG. 10 is a cross-sectional view of the seventh embodiment of the condenser of the application along the axial direction of the housing (ie, the direction of the line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the seventh embodiment is shown in FIG. 2, and the positional relationship between the oil separation cavity and the condensing cavity in the condenser is shown in FIG. 3.
  • the arrows in FIG. 10 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the structure of the condenser 1030 is substantially the same as that of the condenser 930 as shown in FIG. 9.
  • the difference between the condenser 1030 and the condenser 930 lies in: the outlet 1045b of the first guide channel 1045 and the second The location of the outlet 1046b of the guide channel 1046 is different.
  • the first diversion passage 1045 and the second diversion passage 1046 of the condenser 1030 each extend from the two ends of the housing 201 to the middle to cross each other, that is, the outlet 1045b of the first diversion passage 1045 is in the first position.
  • the outlet 1045b of the first diversion channel 1045 is located between the outlet 1046b of the second diversion channel 1046 and the inlet 1046a of the second diversion channel 1046, while the outlet 1046b of the second diversion channel 1046 is in the first diversion channel 1046.
  • the absence of a barrier can also prevent the mixture flowing out of one of the diversion channels from escaping into the other diversion channel due to its high velocity.
  • FIG. 11 is a cross-sectional view of the eighth embodiment of the condenser of the application along the axial direction of the housing (ie, the direction of the line C-C in FIG. 2) to show the components in the oil separation chamber 315.
  • the external structure of the condenser according to the eighth embodiment is slightly different from that shown in FIG. 2 in that the first refrigerant inlet 121 and the second refrigerant inlet 122 are close to the middle of the housing in the axial direction.
  • the positional relationship between the oil separation cavity and the condensation cavity inside the condenser according to the eighth embodiment is shown in FIG. 3.
  • the arrows in FIG. 11 indicate the flow path of the mixture of gaseous refrigerant and lubricating oil in the oil separation chamber 315.
  • the first diversion channel 1145 and the second diversion channel 1146 of the condenser 1130 are vertical channels formed by a straight flow guiding tube 1164 and a straight flow guiding tube 1169 respectively.
  • the straight flow guide tube 1164 and the straight flow guide tube 1169 are arranged side by side in the middle of the housing 201.
  • the straight flow guiding pipe 1164 extends upward through the first refrigerant inlet 121 arranged on the casing 201 to be connected with the exhaust port 151 of the first compressor 108.
  • the straight flow guiding pipe 1169 extends upward through the second refrigerant inlet 122 arranged on the casing 201 to be connected with the exhaust port 152 of the second compressor 109.
  • the outlet 1145b of the first flow guiding channel 1145 is arranged at the lower end of the first flow guiding channel 1145.
  • the outlet 1146b of the second flow guiding channel 1146 is arranged at the lower end of the second flow guiding channel 1146.
  • the outlet of the first diversion channel 1145 and the outlet of the second diversion channel 1146 are arranged opposite to each other.
  • the condenser 1130 further includes a first filter screen 1175, a second filter screen 1176, a left communication port 441 and a right communication port 442, wherein the left communication port 441 and the right communication port 442 is provided at the left and right ends of the oil separation partition 337.
  • the mixed mixture is equally divided into two parts, and one part flows through the first filter 1175 to separate the lubricating oil.
  • the gaseous refrigerant separated from the lubricating oil then flows from the left communication port 441 into the condensation chamber.
  • the other part flows through the second filter screen 1176 to separate the lubricating oil.
  • the gaseous refrigerant separated from the lubricating oil then flows into the condensation chamber from the right communication port 442.
  • the flow path of the mixture can be controlled so that at least a part of the mixture from the large displacement compressor can be combined with the mixture from the small displacement compressor before filtering. Mix and distribute uniformly first, so that the size of the oil separation chamber does not need to be designed according to the displacement of a large displacement compressor, and it can meet the requirements of sufficient filtration and separation of lubricating oil.
  • the condenser of the present application can reduce the size requirement of the oil separation cavity, thereby reducing the size requirement of the condenser.
  • FIG. 12 is a structural block diagram of another embodiment of the refrigeration system of the application, which is used to show the connection relationship of various components in the refrigeration system including an independent oil separation device. In this embodiment, there is no oil separation in the condenser.
  • the refrigeration system 1200 includes a compressor unit, a condenser 1230, a throttling device 140, and an evaporator 110 that are sequentially connected by pipelines to form a refrigerant circulation circuit, wherein oil is also provided between the compressor unit and the condenser 1230.
  • the compressor unit includes a first compressor 1208 and a second compressor 1209. In this embodiment, the displacement of the first compressor 1208 (ie, the refrigerant gas flow rate) is smaller than the displacement of the second compressor 1209. 1208 and the second compressor 1209 are connected in parallel between the oil separation device 1283 and the evaporator 110.
  • the first compressor 1208 is provided with an intake port 1291, an exhaust port 1251, and an oil return port 1261.
  • the second compressor 1209 is provided with a suction port 1242, an exhaust port 1252 and an oil return port 1262.
  • the oil separation device 1283 is provided with a first refrigerant inlet 1221, a second refrigerant inlet 1222, an oil outlet 1223, and at least one communication port (ie, a refrigerant gas outlet of the oil separation device).
  • the at least one communication port includes two communication ports (ie, the refrigerant gas outlet of the oil separation device) 1241 and 1242.
  • the suction port 1291 of the first compressor 1208 and the suction port 1242 of the second compressor 1209 are both connected to the outlet of the evaporator 110.
  • the exhaust port 151 of the first compressor 108 is connected to the first refrigerant inlet 121 of the condenser 130.
  • the oil return port 1261 of the first compressor 1208 is connected to the oil outlet 1223 of the oil separation device 1283.
  • the exhaust port 1252 of the second compressor 1209 is connected to the second refrigerant inlet 1222 of the oil separation device 1283.
  • the oil return port 1262 of the second compressor 1209 is also connected to the oil outlet 1223 of the oil separation device 1283.
  • the inlet of the condenser 1230 is connected to the communication ports 1241 and 1242, and the refrigerant outlet 124 of the condenser 1230 is connected to the throttling device 140.
  • the refrigeration system 100 is filled with refrigerant and lubricating substances (for example, lubricating oil).
  • refrigerant and lubricating substances for example, lubricating oil.
  • a low-temperature and low-pressure gas refrigerant is compressed into a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant respectively passes through the first refrigerant inlet 1221 and the second refrigerant inlet 1222 on the oil separator 1283, first passes through the oil separator 1283, and then flows into the condenser 1230 to release heat and be condensed into high-pressure liquid refrigerant. (May contain part of gaseous refrigerant).
  • the high-pressure liquid refrigerant After the high-pressure liquid refrigerant is discharged from the refrigerant outlet 124 on the condenser 1230, it flows through the throttling device 140 and is throttled into a low-pressure liquid refrigerant. Subsequently, the low-pressure liquid refrigerant absorbs heat in the evaporator 110, is evaporated into a low-pressure gaseous refrigerant, and then returns to the first compressor 1208 and the second compressor 1209. This cycle repeats itself to complete a continuous refrigeration cycle.
  • the lubricating oil is used to lubricate the first compressor 1208 and the second compressor 1209, and then the lubricating oil will be discharged from the first compressor 1208 along with the gaseous refrigerant And the second compressor 1209.
  • the discharged high-pressure gaseous refrigerant and lubricating oil mixture enters the oil separation device 1283.
  • the oil separation chamber 1315 (not shown, see FIG. 13) of the oil separation device 1283, the high-pressure gaseous refrigerant is separated from the lubricating oil.
  • the separated high-pressure gas refrigerant enters the condenser 1230 as described above, and the separated lubricating oil flows back to the first compressor 1208 and the second compressor 1209 through the oil outlet 1223 on the oil separation device 1283.
  • FIG. 13 is a perspective structural view of some embodiments of the oil separation device 1283 shown in FIG. 12.
  • the oil separation device 1283 includes a housing 1301, and the housing 1301 includes an oil separation cavity 1315.
  • the housing 1301 is provided with a first refrigerant inlet 1221, a second refrigerant inlet 1222, an oil outlet 1223, and communication ports 1241 and 1242.
  • the first refrigerant inlet 1221 and the second refrigerant inlet 1222 are located at the upper part of the housing 1301 and are respectively arranged near the left and right ends of the housing 1301.
  • the oil outlet 1223 is provided at the lower part of the housing 1301, and the communication port is 1241 and 1242 are respectively arranged at the left and right ends of the housing 1301.
  • the oil separation device 1283 also includes a pipe 1281, a pipe 1282, a pipe 1284, a pipe 1285, and a pipe 1286.
  • the pipe 1281 is connected to the first refrigerant inlet 1221, so that the first refrigerant inlet 1221 is connected to the exhaust port 1251 of the first compressor 1208.
  • the pipe 1282 communicates with the second refrigerant inlet 1222 so that the second refrigerant inlet 1222 is connected with the exhaust port 1252 of the second compressor 109.
  • the pipeline 1284 communicates with the oil outlet 1223 so that the oil outlet 1223 is connected to the oil return port 1261 and the oil return port 1262.
  • the pipe 1285 and the pipe 1286 communicate with the communication ports 1241 and 1242, respectively, so that the communication ports 1241 and 1242 are connected to the condenser 1230.
  • the first refrigerant inlet 1221, the second refrigerant inlet 1222, the oil outlet 1223 and the communication ports 1241, 1242 of the oil separation device can be arranged in different positions.
  • the first refrigerant inlet 1221 and the second refrigerant inlet 1222 are provided in the middle of the housing 201.
  • at least one communication port may not include two communication ports.
  • only one communication port is included.
  • the oil separation chamber 1315 of the oil separation device 1283 is further provided with a first diversion diaphragm 1331, a second diversion diaphragm 1332, a blocking member 1334, a first filter screen 1375 and a second filter screen 1376.
  • first diversion partition 1331 and the housing 1301 form a first diversion channel 1345
  • second diversion partition 1332 and the housing 1301 form a second diversion channel 1346.
  • FIG. 14 is a cross-sectional view of the oil separation device 1283 in FIG. 13 along the axial direction of the housing (that is, in the direction of the line D-D in FIG. 13 ), and is used to show the specific structure in the oil separation chamber 1315.
  • the internal structure of the oil separation chamber 1315 is substantially the same as the internal structure of the oil separation chamber 315 of the condenser 430 in Figures 4A-4C, except that the oil separation device 1283 does not include an oil separation baffle, and
  • the communication port originally provided on the oil separator plate is directly set on the housing 1301. At this time, the communication port is used for fluid communication with the condensing device in the condenser 1230, so that the gaseous refrigerant flowing out of the communication port can pass through the condensing device And be condensed.
  • the mixture of high-pressure gaseous refrigerant and lubricating oil discharged from the first compressor 1208 enters the oil separation chamber 1315 and then flows along the first guide passage 1345 to the outlet in a substantially horizontal direction. 1345b.
  • the mixture of high-pressure gaseous refrigerant and lubricating oil discharged from the second compressor 1209 enters the oil separation chamber 1315 and flows along the second diversion channel 1346 to the outlet 1346b in a substantially horizontal direction.
  • the first mixture and the second mixture hit the blocking member 1334 from the left and the right, respectively, and then change the flow direction to flow downwards.
  • the second filter screen 1376 filters and separates the lubricating oil and flows into the condenser through the communication ports 1241 and 1242 for condensation.
  • Fig. 15 is a cross-sectional view of the second embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of the line D-D in Fig. 13).
  • the external structure of the oil separation device according to the second embodiment is the same as the embodiment shown in FIG. 13.
  • the internal structure of the oil separation chamber of the oil separation device according to the second embodiment is substantially the same as that of the condenser shown in FIG. 5, and is substantially the same as the embodiment shown in FIG. 14, except that :
  • the blocking member is a filter screen 1534 instead of a blocking plate, and the mixing area 1550 of the gaseous refrigerant is approximately near the filter screen 1534.
  • Fig. 16 is a cross-sectional view of the third embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of the line D-D in Fig. 13).
  • the external structure of the oil separation device according to the third embodiment is the same as that of the embodiment shown in FIG.
  • the internal structure of the oil separation chamber of the oil separation device according to the third embodiment is substantially the same as that of the condenser shown in FIG. 6, and is substantially the same as the embodiment shown in FIG. 14, except that :
  • the left end of the first diversion partition 1631 and the right end of the second diversion partition 1632 are designed in the shape of a box with an open top.
  • Fig. 17 is a cross-sectional view of the fourth embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of line D-D in Fig. 13).
  • the external structure of the oil separation device according to the fourth embodiment is the same as that of the embodiment shown in FIG.
  • the internal structure of the oil separation chamber of the oil separation device according to the fourth embodiment is substantially the same as that of the condenser shown in FIG. 7, and is substantially the same as the embodiment shown in FIG. 14, except that :The first diversion channel 1745 and the second diversion channel 1746 are respectively formed by a diversion tube.
  • Fig. 18 is a cross-sectional view of the fifth embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of the line D-D in Fig. 13).
  • the external structure of the oil separation device according to the fifth embodiment is slightly different from the embodiment shown in FIG. 13, which only includes one communication port 1841, which is provided in the middle of the housing of the oil separation device.
  • the internal structure of the oil separation chamber of the oil separation device according to the fifth embodiment is substantially the same as the internal structure of the oil separation chamber of the condenser shown in FIG. 8, and is substantially the same as the embodiment shown in FIG.
  • the first diversion channel 1845 is formed by the diversion straight pipe 1864, and the outlet 1845b of the first diversion channel 1845 is arranged at the lower end of the first diversion channel 1845.
  • the second diversion channel 1846 is formed by the diversion partition 1863 and the housing 1301, and the second diversion channel 1846 has an outlet 1846b provided at its left end and an additional outlet 1843 provided at its right end.
  • the outlet 1846b of the second flow guiding channel 1846 is close to the outlet 1845b of the first flow guiding channel 1845, and the additional outlet 1843 of the second flow guiding channel 1846 is far away from the outlet 1845b of the first flow guiding channel 1845.
  • the first filter screen 1875 is disposed between the outlet 1846b of the second diversion channel 1846 and the communication port 1841, and the additional filter screen 1877 is disposed at the additional outlet of the second diversion channel 1846. Between 1843 and the communication port 1841.
  • Fig. 19 is a cross-sectional view of the sixth embodiment of the oil separation device of the application along the axial direction of the housing (that is, along the direction of line D-D in Fig. 13).
  • the external structure of the oil separation device according to the sixth embodiment is the same as that of the embodiment shown in FIG.
  • the internal structure of the oil separation chamber of the oil separation device according to the sixth embodiment is substantially the same as the internal structure of the oil separation chamber of the condenser shown in FIG. 9, and is substantially the same as the embodiment shown in FIG. 14, except that :
  • the outlet of the first diversion channel 1945 and the outlet of the second diversion channel 1946 are arranged oppositely, and are staggered by a certain distance in the height direction.
  • Fig. 20 is a cross-sectional view of the seventh embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of the line D-D in Fig. 13).
  • the external structure of the oil separation device according to the seventh embodiment is the same as that of the embodiment shown in FIG.
  • the internal structure of the oil separation chamber of the oil separation device according to the seventh embodiment is substantially the same as the internal structure of the oil separation chamber of the condenser shown in FIG. 10, and is substantially the same as the embodiment shown in FIG. 14, except that :The first guide passage 2045 and the second guide passage 2046 each extend from the two ends of the housing of the oil separation device to the middle to cross each other.
  • Fig. 21 is a cross-sectional view of the eighth embodiment of the oil separation device of the present application along the axial direction of the housing (that is, along the direction of the line D-D in Fig. 13).
  • the external structure of the oil separation device according to the eighth embodiment is slightly different from that of the embodiment shown in FIG. 13, and the first refrigerant inlet and the second refrigerant inlet are close to the middle of the casing in the axial direction.
  • the internal structure of the oil separation chamber of the oil separation device according to the eighth embodiment is substantially the same as the internal structure of the oil separation chamber of the condenser shown in FIG. 11, and is substantially the same as the embodiment shown in FIG.
  • the first guide channel 2145 and the second guide channel 2146 are vertical channels formed by the guide straight pipe 2164 and the guide straight pipe 2169 respectively, and they are arranged side by side from the middle of the housing of the oil separation device to the oil separation cavity 1315 Longitudinal extension inside.
  • the oil separation device 1283 when the displacement of the first compressor 1208 is less than the displacement of the second compressor 1209, the oil separation device 1283 can make the first compressor 1208 and The gaseous refrigerant and lubricating oil mixture discharged from the second compressor 1209 are mixed in the oil separation chamber 1315, and then divided into two uniform strands for filtering. Therefore, the oil separation device 1283 does not need to design the size of the oil separation chamber 1315 according to the displacement of the large displacement compressor (ie, the second compressor 1209), and can meet the requirements of sufficient filtration and separation of gaseous refrigerant and lubricating oil. This can make the size of the oil separation chamber 1315 smaller, thereby making the overall size of the oil separation device 1283 smaller.
  • the condenser of the present application can be set smaller in size than the existing condenser with built-in oil separation components. ; And compared with the existing oil separation device, the oil separation device of the present application can also be set smaller in size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种油分离装置(1283)和一种具有油分离功能的冷凝器(130-1130),以及使用其的制冷系统(100,1200),其中油分离装置(1283)或冷凝器(130-1130)包括:壳体(201,1301),包括油分离腔(315,1315);第一制冷剂入口(221,1221)和第二制冷剂入口(222,1222);第一导流通道(445-2145)和第二导流通道(446-2146),流经两个导流通道的制冷剂气体能够混合。当制冷系统(100,1200)包括两个排量不等的压缩机(108,1208,109,1209)时,无需按照大排量压缩机(109,1209)设计油分离腔(315,1315)尺寸,就能满足气态制冷剂和润滑油过滤分离的要求,使尺寸较小。

Description

油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统 技术领域
本申请涉及一种油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统,更具体地涉及包含两个压缩机的制冷系统。
背景技术
现有的制冷系统中,用于润滑压缩机的润滑物质(如润滑油)与经压缩机压缩的气态制冷剂会一同排出压缩机。气态制冷剂与润滑油一般需要经过油分离装置或者具有油分离功能的冷凝器完成油气分离,分离后的润滑油被输送回压缩机,而分离后的气态制冷剂用于随后被冷凝为液态制冷剂。具体来说,油分离装置或具有油分离功能的冷凝器中均包括油分离腔,油分离腔中设有过滤网。在油分离腔中,气态制冷剂与润滑油经过过滤网,将润滑油与气态制冷剂分离。
一般来说,油分离腔的尺寸大小会影响油分离装置或者具有油分离功能的冷凝器的尺寸大小,并且油分离腔的尺寸大小还与压缩机排量相关。压缩机的排量越大,单位时间内排出的进入油分离腔内的润滑油和气态制冷剂的混合物的流量越大,为了得到合理的流速,保证润滑油和气态制冷剂的分离效果,油分离腔需要具有足够大的尺寸。
发明内容
本申请在第一方面提供一种油分离装置,所述油分离装置包括:壳体,所述壳体内包括油分离腔;第一制冷剂入口和第二制冷剂入口,所述第一制冷剂入口和所述第二制冷剂入口设置在所述壳体上;第一导流通道,所述第一导流通道设置在所述油分离腔中,所述第一导流通道具有入口和出口,所述第一导流通道的所述入口与所述第一制冷剂入口流体连通,以将进入所述第一制冷剂入口的制冷剂气体中的至少一部分 从所述第一导流通道的所述入口导流至所述第一导流通道的所述出口;以及第二导流通道,所述第二导流通道设置在所述油分离腔中,所述第二导流通道具有入口和出口,所述第二导流通道的所述入口与所述第二制冷剂入口流体连通,以将进入所述第二制冷剂入口的制冷剂气体中的至少一部分从所述第二导流通道的所述入口导流至所述第二导流通道的所述出口;其中,所述第一导流通道和所述第二导流通道被配置为:使得从所述第一导流通道的所述出口流出的制冷剂气体与从所述第二导流通道的所述出口流出的制冷剂气体能够混合。
根据上述第一方面,所述第一导流通道的所述出口和所述第二导流通道的所述出口彼此靠近。
根据上述第一方面,所述油分离装置还包括:至少一个连通口,所述至少一个连通口用于与冷凝装置流体连通;至少一个过滤网,所述至少一个过滤网横向于所述壳体的长度方向设置在所述油分离腔内;其中,所述至少一个过滤网设置在所述至少一个连通口与彼此靠近的所述第一导流通道的所述出口及所述第二导流通道的所述出口之间,以使得所述混合后的制冷剂气体能够流经所述至少一个过滤网到达所述至少一个连通口。
根据上述第一方面,所述至少一个连通口包括两个连通口,所述两个连通口分别设置在所述壳体的长度方向上相对的两端;所述至少一个过滤网包括第一过滤网和第二过滤网;其中,所述第一过滤网设置在所述第一导流通道的所述出口与所述两个连通口的其中一个连通口之间;所述第二过滤网设置在所述第二导流通道的所述出口与所述两个连通口的另一个连通口之间。
根据上述第一方面,所述第一导流通道和所述第二导流通道从所述壳体的长度方向上的相对的两端沿着所述壳体的长度方向朝向所述壳体的中部延伸;其中,所述第一导流通道的所述出口和所述第二导流通道的所述出口被设置为:在所述壳体的长度 方向上间隔一段距离,或者在垂直于所述壳体的长度方向上错开一段距离。
根据上述第一方面,所述第一导流通道的所述出口设置在所述第二导流通道的所述出口和所述第一导流通道的所述入口之间;并且所述第二导流通道的所述出口设置在所述第一导流通道的所述出口和所述第二导流通道的所述入口之间。
根据上述第一方面,所述第一导流通道的所述出口设置在所述第二导流通道的所述出口和所述第二导流通道的所述入口之间;并且所述第二导流通道的所述出口设置在所述第一导流通道的所述出口和所述第一导流通道的所述入口之间。
根据上述第一方面,所述油分离装置还包括:阻挡件,所述阻挡件设置在所述第一导流通道的所述出口和所述第二导流通道的所述出口之间。
根据上述第一方面,所述阻挡件为阻挡板或过滤网。
根据上述第一方面,所述阻挡件的位置和尺寸被设置为:在所述壳体的长度方向上,所述阻挡件能够至少部分地遮挡所述第一导流通道的所述出口和所述第二导流通道的所述出口。
根据上述第一方面,所述第一导流通道由第一导流隔板与所述壳体形成,所述第二导流通道由第二导流隔板与所述壳体形成。
根据上述第一方面,所述第一导流隔板和/或所述第二导流隔板的中部弯折以形成一定夹角的上板和下板。
根据上述第一方面,所述第一导流通道由第一导流管形成,所述第二导流通道由第二导流管形成。
根据上述第一方面,所述第二导流通道具有附加出口,所述附加出口远离所述第一导流通道的所述出口设置;所述至少一个连通口包括一个连通口,所述连通口位于 所述第二导流通道的所述出口与所述附加出口之间;所述至少一个过滤网包括一个过滤网,所述过滤网设置在所述第二导流通道的所述出口与所述连通口之间;所述油分离装置还包括附加过滤网,所述附加过滤网设置在所述第二导流通道的所述附加出口与所述连通口之间。
根据上述第一方面,所述第一导流通道从所述壳体的长度方向上的一端向所述壳体的所述油分离腔内纵向延伸,所述第二导流通道从所述壳体的长度方向上的另一端朝向所述第一导流通道的方向延伸。
根据上述第一方面,所述第一导流通道由导流直管形成,所述第二导流通道由导流隔板与所述壳体形成。
根据上述第一方面,所述第一导流通道和所述第二导流通道并排从所述壳体的中部向所述壳体的所述油分离腔内纵向延伸,并且所述第一导流通道和所述第二导流通道均通过导流直管形成;其中,所述第一导流通道靠近所述第二导流通道设置。
根据上述第一方面,所述至少一个连通口设置在所述壳体上,所述至少一个连通口用于与冷凝器中的所述冷凝装置流体连通。
本申请在第一方面的至少一个目的是提供一种冷凝器,所述冷凝器包括:壳体,所述壳体内具有容腔;油分离隔板,所述油分离隔板设置在所述壳体内并沿所述壳体的长度方向延伸,所述油分离隔板将所述容腔分隔为油分离腔和冷凝腔,所述油分离隔板包括至少一个连通口,所述至少一个连通口连通所述油分离腔和所述冷凝腔;第一制冷剂入口和第二制冷剂入口,所述第一制冷剂入口和所述第二制冷剂入口设置在所述壳体上;第一导流通道,所述第一导流通道设置在所述油分离腔中,所述第一导流通道具有入口和出口,所述第一导流通道的所述入口与所述第一制冷剂入口流体连通,以将进入所述第一制冷剂入口的制冷剂气体中的至少一部分从所述第一导流通道 的所述入口导流至所述第一导流通道的所述出口;以及第二导流通道,所述第二导流通道设置在所述油分离腔中,所述第二导流通道具有入口和出口,所述第二导流通道的所述入口与所述第二制冷剂入口流体连通,以将进入所述第二制冷剂入口的制冷剂气体中的至少一部分从所述第二导流通道的所述入口导流至所述第二导流通道的所述出口;其中,所述第一导流通道和所述第二导流通道被配置为:使得从所述第一导流通道的所述出口流出的制冷剂气体与从所述第二导流通道的所述出口流出的制冷剂气体能够混合。
根据上述第二方面,所述第一导流通道的所述出口和所述第二导流通道的所述出口彼此靠近。
根据上述第二方面,所述冷凝器还包括:至少一个连通口,所述至少一个连通口用于与冷凝装置流体连通;至少一个过滤网,所述至少一个过滤网垂直于所述壳体的长度方向设置在所述油分离腔内;其中,所述至少一个过滤网设置在所述至少一个连通口与彼此靠近的所述第一导流通道的所述出口及所述第二导流通道的所述出口之间,以使得所述混合后的制冷剂气体能够流经所述至少一个过滤网到达所述至少一个连通口。
根据上述第二方面,所述至少一个连通口包括两个连通口,所述两个连通口分别设置在所述壳体的长度方向上相对的两端;所述至少一个过滤网包括第一过滤网和第二过滤网;其中,所述第一过滤网设置在所述第一导流通道的所述出口与所述两个连通口的其中一个连通口之间;所述第二过滤网设置在所述第二导流通道的所述出口与所述两个连通口的另一个连通口之间。
根据上述第二方面,所述第一导流通道和所述第二导流通道从所述壳体的长度方向上的相对的两端沿着所述壳体的长度方向朝向所述壳体的中部延伸;其中,所述第一导流通道的所述出口和所述第二导流通道的所述出口被设置为:在所述壳体的长度 方向上间隔一段距离,或者在垂直于所述壳体的长度方向上错开一段距离。
根据上述第二方面,所述第一导流通道的所述出口设置在所述第二导流通道的所述出口和所述第一导流通道的所述入口之间;并且所述第二导流通道的所述出口设置在所述第一导流通道的所述出口和所述第二导流通道的所述入口之间。
根据上述第二方面,所述第一导流通道的所述出口设置在所述第二导流通道的所述出口和所述第二导流通道的所述入口之间;并且所述第二导流通道的所述出口设置在所述第一导流通道的所述出口和所述第一导流通道的所述入口之间。
根据上述第二方面,所述冷凝器还包括:阻挡件,所述阻挡件设置在所述第一导流通道的所述出口和所述第二导流通道的所述出口之间。
根据上述第二方面,所述阻挡件为阻挡板或过滤网。
根据上述第二方面,所述阻挡件的位置和尺寸被设置为:在所述壳体的长度方向上,所述阻挡件能够至少部分地遮挡所述第一导流通道的所述出口和所述第二导流通道的所述出口。
根据上述第二方面,所述第一导流通道由第一导流隔板与所述壳体形成,所述第二导流通道由第二导流隔板与所述壳体形成。
根据上述第二方面,所述第一导流通道由第一导流管形成,所述第二导流通道由第二导流管形成。
根据上述第二方面,所述第二导流通道具有附加出口,所述附加出口远离所述第一导流通道的所述出口设置;所述至少一个连通口包括一个连通口,所述连通口位于所述第二导流通道的所述出口与所述附加出口之间;所述至少一个过滤网包括一个过滤网,所述过滤网设置在所述第二导流通道的所述出口与所述连通口之间;所述冷凝 器还包括附加过滤网,所述附加过滤网设置在所述第二导流通道的所述附加出口与所述连通口之间。
根据上述第二方面,所述第一导流通道从所述壳体的长度方向上的一端向所述壳体的所述油分离腔内纵向延伸,所述第二导流通道从所述壳体的长度方向上的另一端朝向所述第一导流通道的方向延伸。
根据上述第二方面,所述第一导流通道由导流直管形成,所述第二导流通道由导流隔板与所述壳体形成。
根据上述第二方面,所述第一导流通道和所述第二导流通道并排从所述壳体的中部向所述壳体的所述油分离腔内纵向延伸,并且所述第一导流通道和所述第二导流通道均通过导流直管形成;其中,所述第一导流通道靠近所述第二导流通道设置。
本申请在第三方面的至少一个目的是提供一种制冷系统,所述制冷系统包括:压缩机组;油分离装置,其中所述油分离装置为根据上述第一方面所述的油分离装置;冷凝器;节流装置;和蒸发器;其中,所述压缩机组、所述油分离装置、所述冷凝器、所述节流装置和所述蒸发器依次连接形成制冷剂循环回路;其中,所述压缩机组包括:第一压缩机和第二压缩机,所述第一压缩机和第二压缩机并联连接在所述油分离装置和所述蒸发器之间;其中,所述第一压缩机的吸气口和所述第二压缩机的吸气口与所述蒸发器相连;并且其中,所述第一压缩机的排气口与所述油分离装置的所述第一制冷剂入口相连,所述第二压缩机的排气口与所述油分离装置的所述第二制冷剂入口相连。
根据上述第三方面,所述第一压缩机的排量小于第二压缩机的排量。
本申请在第四方面的至少一个目的是提供一种制冷系统,所述制冷系统包括:压缩机组;冷凝器,其中所述冷凝器为根据上述第二方面所述的冷凝器;节流装置;和 蒸发器;其中,所述压缩机组、所述冷凝器、所述节流装置和所述蒸发器依次连接形成制冷剂循环回路;其中,所述压缩机组包括:第一压缩机和第二压缩机,所述第一压缩机和第二压缩机并联连接在所述冷凝器和所述蒸发器之间;其中,所述第一压缩机的吸气口和所述第二压缩机的吸气口与所述蒸发器相连;并且其中,所述第一压缩机的排气口与所述冷凝器的所述第一制冷剂入口相连,所述第二压缩机的排气口与所述冷凝器的所述第二制冷剂入口相连。
根据上述第四方面,所述第一压缩机的排量小于第二压缩机的排量。
附图说明
图1为本申请的制冷系统的一个实施例的结构框图;
图2为图1中的冷凝器的立体结构图;
图3为图1中的冷凝器的油分离腔和冷凝腔的位置关系图;
图4A为图1中的冷凝器的第一个实施例的轴向剖视图;
图4B为图4A中的冷凝器的从前侧角度看的内部结构的立体结构图;
图4C为图4A中的冷凝器的从后侧角度看的内部结构的立体结构图;
图4D为图4A中的冷凝器的径向剖视图;
图5为图1中的冷凝器的第二个实施例的轴向剖视图;
图6为图1中的冷凝器的第三个实施例的轴向剖视图;
图7为图1中的冷凝器的第四个实施例的轴向剖视图;
图8为图1中的冷凝器的第五个实施例的轴向剖视图;
图9为图1中的冷凝器的第六个实施例的轴向剖视图;
图10为图1中的冷凝器的第七个实施例的轴向剖视图;
图11为图1中的冷凝器的第八个实施例的轴向剖视图;
图12为本申请的制冷系统的另一个实施例的结构框图;
图13为图12中的油分离装置的一个实施例的立体结构图;
图14为图13中的油分离装置的轴向剖视图;
图15为图12中的油分离装置的第二个实施例的轴向剖视图;
图16为图12中的油分离装置的第三个实施例的轴向剖视图;
图17为图12中的油分离装置的第四个实施例的轴向剖视图;
图18为图12中的油分离装置的第五个实施例的轴向剖视图;
图19为图12中的油分离装置的第六个实施例的轴向剖视图;
图20为图12中的油分离装置的第七个实施例的轴向剖视图;
图21为图12中的油分离装置的第八个实施例的轴向剖视图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“顶”、“底”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
图1为本申请的制冷系统100的一个实施例的结构框图,用于示出包含两个并联的压缩机的制冷系统中的各部件的连接关系。在本申请的实施例中,冷凝器130具有油分离功能,实现该功能的具体结构将在下文中具体描述。
如图1所示,制冷系统100包括通过管道依次连接以形成制冷剂循环回路的压缩机组、冷凝器130、节流装置140和蒸发器110。其中压缩机组包括第一压缩机108和第二压缩机109。其中,第一压缩机108的排量(即,制冷剂气体流量)小于第二压缩机109的排量。第一压缩机108和第二压缩机109并联连接在冷凝器130和蒸发器110之间。
具体来说,第一压缩机108上设有吸气口141、排气口151和回油口161。第二压缩机109上设有吸气口142、排气口152和回油口162。冷凝器130上设有第一制冷剂入口121、第二制冷剂入口122、制冷剂出口124和油出口123。第一压缩机108的吸气口141和第二压缩机109的吸气口142均与蒸发器110的出口相连。第一压缩机108的排气口151与冷凝器130的第一制冷剂入口121相连。第一压缩机108的回油口161与冷凝器130的油出口123相连。第二压缩机109的排气口152与冷凝器130的第二制冷剂入口122相连。第二压缩机109的回油口162也与冷凝器130的油出口123相连。冷凝器130的制冷剂出口124与节流装置140相连。
制冷系统100中灌注有制冷剂和润滑物质(例如,润滑油)。下面简述制冷系统100的运行过程:
在第一压缩机108和第二压缩机109中,低温低压的气态制冷剂被压缩为高温高压气态制冷剂。高温高压的气态制冷剂分别通过冷凝器130上的第一制冷剂入口121和第二制冷剂入口122流入冷凝器130中。在冷凝器130中,高温高压的气态制冷剂先通过油分离腔315(图1、图2中未示出,参见图3),随后在冷凝器130中的冷凝腔316(图1、图2中未示出,参见图3)中放热冷凝为高压液体制冷剂(可能包含一部分气态制冷剂)。高压液体制冷剂从冷凝器130上的制冷剂出口124排出后,流经节流装置140被节流为低压液体制冷剂。随后,低压液体制冷剂在蒸发器110中吸热蒸发为低温低压气态制冷剂后再回到第一压缩机108和第二压缩机109。如此周而复始,完成连续的制冷循环。
在第一压缩机108和第二压缩机109中,润滑油用于对第一压缩机108和第二压缩机109起润滑作用,随后润滑油会随着气态制冷剂一同排出第一压缩机108和第二压缩机109。排出的高压气态制冷剂和润滑油混合物(下称“混合物”)进入冷凝器130。在冷凝器130的油分离腔315中,高压气态制冷剂与润滑油相分离。被分离的高压气态制冷剂如上所述进入冷凝器130中的冷凝腔316,而被分离的润滑油经过冷凝器130的油出口123流回第一压缩机108和第二压缩机109。
为了便于描述,本申请中的冷凝器130以壳管式冷凝器为例进行描述。然而,本领域的技术人员可以理解,根据本申请的精神,冷凝器130不仅可以是壳管式冷凝器,冷凝器130还可以是其他不同形式的冷凝器。例如,冷凝器130也可以是套管式冷凝器等。
图2为图1中冷凝器130的一些实施例的立体结构图,用于示出在这些实施例中冷凝器130的外部结构。如图2所示,冷凝器130包括壳体201,壳体201大致为圆筒状,其在长度方向上的左右两端由端板202和端板204封闭。壳体201上设有第一制冷剂入口121、第二制冷剂入口122、油出口123和制冷剂出口124。第一制冷剂入口121和第二制冷剂入口122位于壳体201上部并且分别靠近壳体201的左右两端设置。油出口123和制冷剂出口124位于壳体201下部的中部位置。冷凝器130还包括供水管206和回水管207。供水管206和回水管207设置在端板202上,并且能够与冷凝器130内的冷凝装置313(详见图3)流体连通,从而使得冷却介质(例如,水)能够流入和流出冷凝器130。
冷凝器130还包括管道181、管道182、管道183和管道184。其中,管道181与第一制冷剂入口121相连通,以便于第一制冷剂入口121与第一压缩机108的排气口151相连。管道182与第二制冷剂入口122相连通,以便于第二制冷剂入口122与第二压缩机109的排气口152相连。由于第一压缩机108的排量小于第二压缩机109的排量,因此第一制冷剂入口121的尺寸小于第二制冷剂入口122的尺寸。相应地,管道181的管径小于管道182的管径。管道183与油出口123相连通,以便于油出口123与回油口161以及回油口162相连。管道184与制冷剂出口124相连通,以便于制冷剂出口124与节流装置140相连。
应该说明的是,根据不同的冷凝器的具体设置,冷凝器的第一制冷剂入口121、第二制冷剂入口122、油出口123和制冷剂出口124可以被布置在不同的位置,例如在如图11所示的实施例中,第一制冷剂入口121和第二制冷剂入口122就设置在壳体201的中部。
图3为冷凝器130的一些实施例中的油分离腔和冷凝腔的位置关系图,其大体为如沿图2中A-A线方向的剖视图,其中省去了一些部件,仅示出油分离腔和冷凝腔。如图3所示,冷凝器130的壳体201内具有容腔311。冷凝器130包括油分离隔板337。油分离隔板337倾斜地设置在壳体201内,并且沿壳体201的长度方向延伸,以与壳体201的内壁相连接。油分离隔板337将容腔311分隔为油分离腔315和冷凝腔316。其中,油分离腔315中容纳的部件(未示出)能够使得润滑油与气态制冷剂分离。冷凝腔316中容纳的冷凝装置313能够使得气态制冷剂被冷凝为液体制冷剂。油分离隔板337的上部设有至少一个连通口341,至少一个连通口341用于连通油分离腔315和冷凝腔316,从而使得与润滑油分离的气态制冷剂从油分离腔315流入冷凝腔316。
结合图2,第一制冷剂入口121、第二制冷剂入口122和油出口123与油分离腔315流体连通。供水管206、回水管207和制冷剂出口124与冷凝腔316流体连通。冷凝腔316中设有冷凝装置313。作为一个示例,本申请中的冷凝装置313为换热管束。换热管束沿壳体201的长度方向延伸,并与供水管206和回水管207流体连通。
图4A-4D示出了本申请的冷凝器的第一个实施例,其外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。其中,图4A为根据本申请的冷凝器的第一个实施例沿壳体轴向(即如图2中的C-C线方向)的剖视图,以示出油分离腔315中的各部件,其中省去了供水管206和回水管207;图4B为图4A所示的冷凝器430中的油分离隔板337、管道181、管道182以及油分离腔315中的各部件从前侧看的立体结构图;图4C为图4B所示的各部件从后侧看的立体结构图;图4D为图4A所示的冷凝器430沿壳体径向(即如图2中B-B线方向)的剖视图,其中省去了端板202。
如图4A-4D所示,冷凝器430包括左封板471和右封板472。左封板471和右封板472对称地设置在油分离腔315的左右两端,并且与壳体201和油分离隔板337密封连接。
冷凝器430还包括第一导流隔板431。第一导流隔板431的左端连接至左封板471, 并且第一导流隔板431沿冷凝器430的长度方向(即左右方向)从左封板471向壳体201的中部延伸。第一导流隔板431倾斜地设置在油分离腔315的上部,并且与壳体201的内壁连接。在壳体201的径向截面上,第一导流隔板431的中部向朝向冷凝腔316的方向弯折。第一导流隔板431、左封板471与壳体201之间形成第一导流通道445。第一导流隔板431与壳体201形成的第一导流通道445的径向截面大致呈弓形。第一导流通道445具有入口445a和出口445b。入口445a位于第一导流通道445的左端,并与第一制冷剂入口121流体连通。出口445b位于第一导流通道445的右端。在油分离腔315中,位于第一导流通道445的下方的容腔被设计为足够大,以将润滑油和气态制冷剂充分分离。
如图4D所示,在壳体201的径向截面上,第一导流隔板431的中部向壳体201内部弯折以形成相互连接的上板426和下板427,它们形成一定角度的夹角。在第一导流隔板431与壳体201的连接位置一定的情况下,将第一导流隔板431设置为中部向冷凝腔316弯折的形状能够增加第一导流通道445的径向截面积。
相似地,冷凝器430还包括第二导流隔板432。第二导流隔板432的右端连接至右封板472,并且第二导流隔板432沿冷凝器430的长度方向(即左右方向)从右封板472向壳体201的中部延伸。第二导流隔板432倾斜地设置在油分离腔315的上部,并且与壳体201的内壁连接。在壳体201的径向截面上,第二导流隔板432的中部也向朝向冷凝腔316的方向弯折,第二导流隔板432形状与第一导流隔板431相同。第二导流隔板432、右封板472与壳体201之间形成第二导流通道446。第二导流隔板432与壳体201形成的第二导流通道446的径向截面大致呈弓形。第二导流通道446具有入口446a和出口446b。入口446a位于第二导流通道446的右端,并与第二制冷剂入口122流体连通。出口446b位于第二导流通道446的左端。在油分离腔315中,位于第二导流通道446的下方的容腔被设计为足够大,以将润滑油和气态制冷剂充分分离。
如图4A-图4C所示,冷凝器430还包括阻挡件434。阻挡件434设置在第一导流 通道445的出口445b与第二导流通道446的出口446b之间,用于将出口445b和出口446b隔开。具体来说,阻挡件434为阻挡板且大致上为扇形形状,其顶部的圆弧形状与壳体201的圆弧形状相配,以使得阻挡件434能够连接在壳体201上。阻挡件434的径向截面面积被设置为大致与出口445b和出口446b的面积相同,从而使得在壳体201的长度方向上,至少能够部分地遮挡住出口445b和出口446b。这样的设置可以防止出口445b和出口446b直接相对设置,从而避免其中一个导流通道中流出的混合物因速度较大而窜入另一个导流通道中。
混合物分别通过第一导流通道445和第二导流通道446流入冷凝器430后,从第一导流通道445流入的混合物不会与从第二导流通道446流入的混合物马上接触,而是经过阻挡件434阻挡后改变流向,并且大致在混合区域450(在图4A中以点状阴影示出)处混合。
需要说明的是,第一导流通道445的出口445b、第二导流通道446的出口446b和阻挡件434共同设置以使得从出口445b和出口446b流出的混合物能够大致在混合区域450的附近混合。
以上所说的混合区域450仅示意性地表示大致的气体混合部位,而并不表示实体性的划分,在不同的实施例中,混合区域450的位置和大小可能不同,但是根据混合物从出口流出后会立即扩散的性质,混合区域450、第一导流通道445的出口445b和第二导流通道446的出口446b应当彼此靠近。
本领域技术人员应当可以理解的是,第一导流通道的出口和第二导流通道的出口也可以不设置为完全正对,而是被设置为沿壳体的周向旋转错开一定角度,或者在前后、上下方向上间隔一段距离,只需保证这两个出口彼此靠近,以使得从出口流出的制冷剂能够混合即可。在一些实施例中,由于第一导流通道的出口和第二导流通道的出口不正对设置,阻挡件434可以为任何形状,也可以不设置阻挡件,如图8-图11所示的实施例所示。
如图4B-4C所示,至少一个连通口341包括左连通口441和右连通口442,其分 别设置在油分离隔板337的左右两端的上部,以连通油分离隔板337两侧的油分离腔315和冷凝腔316。左连通口441和右连通口442都为方形开口,并且开口的大小相同。
冷凝器430还包括第一过滤网475和第二过滤网476,其设置在油分离腔315中。具体地说,第一过滤网475设置在第一导流隔板431下方,位于左连通口441和出口445b之间,并且靠近左连通口441设置。第二过滤网476设置在第二导流隔板432下方,位于右连通口442和出口446b之间,并且靠近右连通口442。第一过滤网475和第二过滤网476均在油分离腔315中沿冷凝器430的径向方向延伸(即,过滤网需要连接至导流隔板、油分离隔板和壳体),从而使得混合物从出口445b或出口446b流向左连通口441或右连通口442之前需经过第一过滤网475或第二过滤网476,以过滤掉其中的润滑油,进而使得混合物中的润滑油不能从该左连通口441或该右连通口442排放至冷凝腔316。
下面结合图4A详细描述油分离腔315中各部件的工作原理。图4A中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。
具体地说,第一压缩机108排出的高压气态制冷剂和润滑油混合物(下称“第一混合物”)通过第一制冷剂入口121进入油分离腔315。第一混合物沿第一导流隔板431限定的第一导流通道445,大致以水平方向流动至出口445b。第二压缩机109排出的高压气态制冷剂和润滑油混合物(下称“第二混合物”)通过第二制冷剂入口122进入油分离腔315。第二混合物沿第二导流隔板432限定的第二导流通道446,大致以水平方向流动至出口446b。第一混合物和第二混合物分别从左侧与右侧撞击阻挡件434后改变流向为向下流动。由于不再有阻挡件434的阻挡,因此第一混合物和第二混合物在向下流动的同时大致在混合区域450处互相混合。
在冷凝器430中,一方面,冷凝腔316中的压力小于油分离腔315中的压力,因此油分离腔315中的混合物会朝向冷凝腔316流动。另一方面,由于左连通口441和右连通口442都与冷凝腔316连通,因而左连通口441和右连通口442处的压力大致相同,并且左连通口441和右连通口442的大小也大致相同。因此当第一混合物和第 二混合物大致在混合区域450处互相混合后,会在压力作用下分为大致流量相同的两股混合物分别朝向左连通口441和右连通口442流动。
由于冷凝器430中的部件大致以左右对称方式布置,因此两股混合物的流动方向也相似。为了使表述简洁,本申请以混合后向左侧流动的一股混合物为例,来阐述该股混合物的流动。具体来说,该股混合物朝向左侧流动,并流经第一过滤网475。第一过滤网475具有细小的孔隙,混合物中的润滑油将附着在第一过滤网475上,从而将润滑油与气态制冷剂分离开。一方面,由于冷凝腔316中的压力小于油分离腔315中的压力,气态制冷剂继续流向左连通口441。另一方面,附着在第一过滤网475上的润滑油依靠重力作用沉积在油分离腔315的底部,经由位于油分离腔315底部的油出口123排出油分离腔315。
需要说明的是,为了避免混合物在进入油分离腔315时流动速度过大直接冲击第一导流隔板431和第二导流隔板432,可以在第一导流隔板431和第二导流隔板432上分别设置防冲件438和防冲件439。具体来说,防冲件438和防冲件439可以分别设置在第一制冷剂入口121和第二制冷剂入口122正对着的第一导流隔板431和第二导流隔板432的相应位置。作为一个示例,防冲件可以为过滤网。
还需要说明的是,为了防止混合物在油分离腔315中的流动速度过大而对油分离腔315中沉积的润滑油的液面造成扰动,油分离腔315中还可以设置挡板(未示出)。挡板连接在第一过滤网475和第二过滤网476之间的油分离隔板337和壳体201上,并且被配置为大致水平地设置在润滑油的液面的上方,从而使得润滑油可以沿过滤网流下而沉积在油分离腔315的底部,而混合物的流动不冲击润滑油的液面。
在传统的带有油分离功能的冷凝器中,对于包含多个压缩机的制冷系统来说,当各个压缩机并联使用在同一制冷系统中,并且共用油分离装置或者具有油分离功能的冷凝器时,通常会从油分离装置或冷凝器的长度方向(或轴向)上的两端进气,并分别经由一个过滤网过滤之后流动至位于油分离装置或冷凝器的长度方向(或轴向)上的中部的排气口而排出。上述设置使得当各个压缩机的排量不同时,需要根据排量最 大的压缩机来设计油分离腔的尺寸(或径向横截面积)。然而对于该制冷系统中的排量较小的压缩机来说,这种大尺寸的油分离腔是不需要的,对应的油分横截面积就会被动放大而过设计,造成浪费。
在本申请中,当第一压缩机108的排量小于第二压缩机109的排量时,冷凝器430能够使得第一压缩机108和第二压缩机109排出的气态制冷剂和润滑油混合物在油分离腔315中混合,随后分成均匀的两股进行过滤。因此冷凝器430无需按照大排量压缩机(即第二压缩机109)的排量设计油分离腔315的尺寸,就能满足气态制冷剂和润滑油充分过滤分离的要求。这能够使油分离腔315的尺寸较小,从而使得冷凝器430的整体尺寸较小。
作为一个示例,油分离腔315的尺寸根据大排量压缩机(即第二压缩机109)和小排量压缩机(即第一压缩机108)的平均排量设计即可。
图5为根据本申请的冷凝器的第二个实施例沿壳体轴向(即沿图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第二实施例的冷凝器的外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图5中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。
具体来说,冷凝器530的结构大致与如图4A-4C所示的冷凝器430的结构相同,冷凝器530与冷凝器430的不同之处在于:在如图5所示的实施例中,阻挡件为过滤网534而不是阻挡板。过滤网534具有细小的孔隙,但其依然能够防止第二压缩机109排出的第二混合物窜入第二导流通道446。此外,第一混合物和第二混合物也依然能够在过滤网534附近的混合区域550进行混合,然后平均分成两股,分别经过第一过滤网475和第二过滤网476分离润滑油后流入冷凝腔316中进行冷凝。在这一实施例中,过滤网534也有吸附分离混合物中的润滑油的作用。
图6为本申请的冷凝器的第三个实施例沿壳体轴向(即沿图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第三实施例的冷凝器的外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图6中的箭头表示气态 制冷剂和润滑油混合物在油分离腔315中的流动路线。
具体来说,冷凝器630的结构大致上与如图4A-4C所示的冷凝器430的结构相同,冷凝器630与冷凝器430的不同之处在于:第一导流隔板631和第二导流隔板632在入口处的具体结构不同。如图6所示,在冷凝器630中,靠近第一制冷剂入口121处的第一导流隔板631和靠近第二制冷剂入口122处的第二导流隔板632被设计为顶部开口的盒体形状。第一导流通道645由第一导流隔板631和壳体201形成,第二导流通道646由第二导流隔板632和壳体201形成。这样,仅靠导流隔板和壳体即可形成导流通道,而不需要左封板和右封板来分别限定第一导流通道645和第二导流通道646,从而可以简化冷凝器630的组装步骤。
具体来说,第一导流隔板631的左端为顶部开口的盒体形状。盒体的右侧沿壳体201的长度方向朝向壳体201的中部延伸以形成第一导流通道645。第一导流隔板631在左端的盒体处的底部向下延伸至比第一导流隔板631在其他位置的底部更低的位置,以使得第一导流通道在盒体处的导流通道径向面积大于在其它位置的导流通道径向面积。第二导流隔板632的右端为顶部开口的盒体形状。盒体的左侧沿壳体201的长度方向朝向壳体201的中部延伸以形成第二导流通道646。第二导流隔板632在右端的盒体处的底部向下延伸至比第二导流隔板632在其他位置的底部更低的位置,以使得第二导流通道在盒体处的导流通道径向面积大于在其它位置的导流通道径向面积。
第一导流隔板631的左端和第二导流隔板632的右端被设计为顶部开口的盒体形状可以使靠近第一制冷剂入口121和第二制冷剂入口122处的导流通道径向面积增大,从而降低混合物进入冷凝器630后的速度,以减少混合物对导流隔板的冲击。由此,在该实施例中,可以不设置防冲件。
图7为本申请的冷凝器的第四个实施例沿壳体轴向(即图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第四实施例的冷凝器的外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图7中的箭头表示气态制 冷剂和润滑油混合物在油分离腔315中的流动路线。
具体来说,冷凝器730的结构大致上与如图4A-4C所示的冷凝器430的结构相同,冷凝器730与冷凝器430的不同之处在于:在如图7所示的实施例中,第一导流通道745和第二导流通道746分别由管道形成。如图7所示,第一导流通道745由第一导流管735形成,第二导流通道746由第二导流管736形成。作为一个示例,第一导流管735穿过布置在壳体201上的第一制冷剂入口121向上延伸而出,以与第一压缩机108的排气口151相连接。第二导流管736穿过布置在壳体201上的第二制冷剂入口122向上延伸而出,以与第二压缩机109的排气口152相连接。
在本实施例中,通过导流管直接形成导流通道来限制混合物进入导流通道后的流动路径,无需另外设置如图4A-4C中示出的左封板471和/或右封板472。
需要说明的是,由于导流通道由导流管形成,因此第一过滤网775和第二过滤网776需要连接至导流管、油分离隔板和壳体,以使得混合物通过第一过滤网775或第二过滤网776后流入冷凝腔316。
图8为本申请的冷凝器的第五个实施例沿壳体轴向(即如图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第五实施例的冷凝器的外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图8中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。如图8所示,冷凝器830中的第一导流通道845和第二导流通道846分别由管道形成。
具体来说,第一导流通道845由导流直管864形成,其穿过布置在壳体201上的第一制冷剂入口121向上延伸而出,以与第一压缩机108的排气口151相连接。第一导流通道845的出口845b设置在第一导流通道845的下端。
第二导流通道846是由导流隔板863和壳体201形成的。导流隔板863距离壳体201的顶部一定距离,并且沿壳体201的长度方向水平延伸而成。第二导流通道846与第二制冷剂入口122流体连通。其中,第二导流通道846具有设置在其左端的出口846b和设置在其右端的附加出口843。出口846b靠近第一导流通道845的出口845b 设置。附加出口843远离第一导流通道845的出口845b设置。混合物从第二制冷剂入口122流入第二导流通道846后,一部分混合物通过附加出口843流出,另一部分混合物从右向左流动并从出口846b流出。从第一导流通道845的出口845b流出的混合物与从出口846b流出的混合物在混合区域850附近混合。
在如图8所示的实施例中,冷凝器830仅包括一个连通口841,其设置在油分离隔板337的中部。冷凝器830还包括第一过滤网875和附加过滤网877。第一过滤网875设置在第二导流通道846的出口846b和连通口841之间,附加过滤网877设置在第二导流通道846的附加出口843和连通口841之间。
在混合区域850处混合的混合物从左至右流过第一过滤网875。在经过第一过滤网875时,气态制冷剂与润滑油分离。与润滑油分离后的气态制冷剂从连通口841进入冷凝腔中。润滑油由于重力作用沉积在油分离腔315的底部。而从附加出口843流出的混合物撞击壳体201右侧的右端板204后从右至左地流过附加过滤网877。在经过附加过滤网877时,气态制冷剂与润滑油分离。与润滑油分离后的气态制冷剂从连通口841进入冷凝腔中。润滑油由于重力作用沉积在油分离腔315的底部。
在本实施例中,将从大排量压缩机(即第二压缩机109)排出的混合物分成两部分,其中的一部分直接流经附加过滤网877,而另一部分与小排量压缩机(即第一压缩机108)排出的气态制冷剂混合后再流经第一过滤网875。通过设计附加出口843的尺寸,能够使流经附加过滤网877和第一过滤网875的混合物的流量大致相等,因此也能够使得混合物的流量自动分配成均匀的两股进行过滤。这也能够使油分离腔315的尺寸较小,从而使得冷凝器430的整体尺寸较小。
需要说明的是,在本实施例中,由于第一导流通道845和第二导流通道846的出口没有正对设置,因此不设置阻挡件也能够避免其中一个导流通道中流出的混合物因速度较大而窜入另一个导流通道内。
图9为本申请的冷凝器的第六个实施例沿壳体轴向(即如图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第六实施例的冷凝器的外部结构如图 2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图9中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。
具体来说,冷凝器930的结构大致上与如图7所示的冷凝器730的结构相同,冷凝器930与冷凝器730的不同之处在于:第一导流通道945和第二导流通道946在高度方向的具体设置不同。如图9所示,冷凝器930的第一导流通道945的出口945b与第二导流通道946的出口946b相对设置,并且在高度方向上错开一段距离,以使得在高度方向上,出口946b处于出口945b的下方。因此,在本实施例中,不设置阻挡件就能避免其中一个导流通道中流出的混合物因速度较大而窜入另一个导流通道内。
本领域技术人员应当知晓的是,在其他实施例中,第一导流通道和第二导流通道可以不是管状,只要将第一导流通道的出口与第二导流通道的出口设置为在垂直于壳体长度方向的其它方向上错开一段距离,就能够避免其中一个导流通道中流出的混合物因速度较大而窜入另一个导流通道内。
图10为本申请的冷凝器的第七个实施例沿壳体轴向(即如图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第七实施例的冷凝器的外部结构如图2所示,其内部的油分离腔和冷凝腔的位置关系如图3所示。图10中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。
具体来说,冷凝器1030的结构大致上与如图9所示的冷凝器930的结构相同,冷凝器1030与冷凝器930的不同之处在于:第一导流通道1045的出口1045b和第二导流通道1046的出口1046b的设置位置不同。如图10所示,冷凝器1030的第一导流通道1045和第二导流通道1046各自从壳体201的两端向中部延伸至越过彼此,即第一导流通道1045的出口1045b处于第二导流通道1046的出口1046b的右侧。换句话说,第一导流通道1045的出口1045b处于第二导流通道1046的出口1046b和第二导流通道1046的入口1046a之间,而第二导流通道1046的出口1046b处于第一导流通道1045的出口1045b和第一导流通道1045的入口1045a之间。此时,不设置阻挡件也能避免其中一个导流通道中流出的混合物因速度较大而窜入另一个导流通道内。
图11为本申请的冷凝器的第八个实施例沿壳体轴向(即如图2中C-C线方向)的剖面图,以示出油分离腔315中的各部件。根据第八实施例的冷凝器的外部结构与图2所示略有不同,其第一制冷剂入口121和第二制冷剂入口122靠近壳体轴向方向的中部。根据第八实施例的冷凝器内部的油分离腔和冷凝腔的位置关系如图3所示。图11中的箭头表示气态制冷剂和润滑油混合物在油分离腔315中的流动路线。
如图11所示,冷凝器1130的第一导流通道1145和第二导流通道1146是分别由导流直管1164和导流直管1169形成的竖直通道。导流直管1164和导流直管1169并排设置在壳体201的中部。导流直管1164穿过布置在壳体201上的第一制冷剂入口121向上延伸而出,以与第一压缩机108的排气口151相连接。导流直管1169穿过布置在壳体201上的第二制冷剂入口122向上延伸而出,以与第二压缩机109的排气口152相连接。第一导流通道1145的出口1145b设置在第一导流通道1145的下端处。第二导流通道1146的出口1146b设置在第二导流通道1146的下端处。作为一个示例,第一导流通道1145的出口和第二导流通道1146的出口背对设置。由此,混合物分别从第一制冷剂入口1121和第二制冷剂入口1122流入第一导流通道1145和第二导流通道1146后,能够向下流入油分离腔315中,到达各自出口下方的混合区域1150处进行混合。
与如图4A-4C所示实施例相似的是,冷凝器1130还包括第一过滤网1175、第二过滤网1176、左连通口441和右连通口442,其中左连通口441和右连通口442设置在油分离隔板337的左右两端处。混合后的混合物平均分成两部分,一部分流过第一过滤网1175以分离润滑油。随后与润滑油分离的气态制冷剂从左连通口441流入冷凝腔中。另一部分流过第二过滤网1176以分离润滑油。随后与润滑油分离的气态制冷剂从右连通口442流入冷凝腔中。
由于第一导流通道1145和第二导流通道1146的出口背靠背设置(没有正对设置),因此也不需要设置阻挡件。
以上各实施例中虽然设计了不同结构的导流通道,但是均能够通过控制混合物的 流动路径,使来自大排量压缩机的混合物的至少一部分能够与来自小排量压缩机的混合物在过滤前先混合并均匀分配,以使得油分离腔的尺寸无需按照大排量压缩机的排量进行设计,就能满足润滑油被充分过滤分离的要求。本申请的冷凝器可以减小油分离腔的尺寸要求,进而减小冷凝器的尺寸要求。
图12为本申请的制冷系统的另一个实施例的结构框图,用于示出包括独立油分离装置的制冷系统中的各个部件的连接关系,在该实施例中,冷凝器内不具有油分离功能。如图12所示,制冷系统1200包括通过管道依次连接以形成制冷剂循环回路的压缩机组、冷凝器1230、节流装置140和蒸发器110,其中压缩机组和冷凝器1230之间还设有油分离装置1283。压缩机组包括第一压缩机1208和第二压缩机1209,在本实施例中第一压缩机1208的排量(即,制冷剂气体流量)小于第二压缩机1209的排量,第一压缩机1208和第二压缩机1209并联连接在油分离装置1283和蒸发器110之间。
具体来说,第一压缩机1208上设有吸气口1291、排气口1251和回油口1261。第二压缩机1209上设有吸气口1242、排气口1252和回油口1262。油分离装置1283上设有第一制冷剂入口1221、第二制冷剂入口1222、油出口1223以及至少一个连通口(即油分离装置制冷剂气体出口)。作为一个示例,至少一个连通口包括两个连通口(即油分离装置制冷剂气体出口)1241和1242。第一压缩机1208的吸气口1291和第二压缩机1209的吸气口1242均与蒸发器110的出口相连。第一压缩机108的排气口151与冷凝器130的第一制冷剂入口121相连。第一压缩机1208的回油口1261与油分离装置1283的油出口1223相连。第二压缩机1209的排气口1252与油分离装置1283的第二制冷剂入口1222相连。第二压缩机1209的回油口1262也与油分离装置1283的油出口1223相连。冷凝器1230的入口与连通口1241和1242相连,冷凝器1230的制冷剂出口124与节流装置140相连。
制冷系统100中灌注有制冷剂和润滑物质(例如,润滑油)。下面简述制冷系统1200的运行过程:
在第一压缩机1208和第二压缩机1209中,低温低压的气态制冷剂被压缩为高温高压气态制冷剂。高温高压的气态制冷剂分别通过油分离装置1283上的第一制冷剂入口1221和第二制冷剂入口1222先通过油分离装置1283,随后流入冷凝器1230中放热而被冷凝为高压液体制冷剂(可能包含一部分气态制冷剂)。高压液体制冷剂从冷凝器1230上的制冷剂出口124排出后,流经节流装置140而被节流为低压液体制冷剂。随后,低压液体制冷剂在蒸发器110中吸热而被蒸发为低压气态制冷剂后再回到第一压缩机1208和第二压缩机1209。如此周而复始,完成连续的制冷循环。
在第一压缩机1208和第二压缩机1209中,润滑油用于对第一压缩机1208和第二压缩机1209起润滑作用,随后润滑油会随着气态制冷剂一同排出第一压缩机1208和第二压缩机1209。排出的高压气态制冷剂和润滑油混合物(下称“混合物”)进入油分离装置1283。在油分离装置1283的油分离腔1315(未示出,参见图13)中,高压气态制冷剂与润滑油相分离。被分离的高压气态制冷剂如上所述进入冷凝器1230,而被分离的润滑油经过油分离装置1283上的油出口1223流回第一压缩机1208和第二压缩机1209。
图13为根据图12所示的油分离装置1283的一些实施例的立体结构图。如图13所示,油分离装置1283包括壳体1301,壳体1301内包括油分离腔1315。壳体1301上设有第一制冷剂入口1221、第二制冷剂入口1222、油出口1223以及连通口1241和1242。作为一个具体的示例,第一制冷剂入口1221、第二制冷剂入口1222位于壳体1301的上部并且分别靠近壳体1301的左右两端设置,油出口1223设置在壳体1301的下部,连通口1241和1242分别设置在壳体1301的左右两端。
油分离装置1283还包括管道1281、管道1282、管道1284、管道1285和管道1286。其中,管道1281与第一制冷剂入口1221相连通,以便于第一制冷剂入口1221与第一压缩机1208的排气口1251相连。管道1282与第二制冷剂入口1222相连通,以便于第二制冷剂入口1222与第二压缩机109的排气口1252相连。管道1284与油出口1223相连通,以便于油出口1223与回油口1261以及回油口1262相连。管道1285和管道 1286分别与连通口1241和1242相连通,以便于连通口1241和1242与冷凝器1230相连。
应该说明的是,根据不同的油分离装置的具体设置,油分离装置的第一制冷剂入口1221、第二制冷剂入口1222、油出口1223和连通口1241、1242可以被布置在不同的位置,例如在如图21所示的实施例中,第一制冷剂入口1221和第二制冷剂入口1222就设置在壳体201的中部。并且至少一个连通口也可以不包括两个连通口,例如在图18所示的实施例中,就仅包括一个连通口。
在油分离装置1283的油分离腔1315内部还设有第一导流隔板1331、第二导流隔板1332、阻挡件1334、第一过滤网1375和第二过滤网1376。其中,第一导流隔板1331和壳体1301形成第一导流通道1345,第二导流隔板1332和壳体1301形成第二导流通道1346。
图14为图13中的油分离装置1283沿壳体轴向(即如图13中的D-D线方向)的剖视图,用于示出油分离腔1315内的具体结构。如图14所示,油分离腔1315的内部结构与图4A-4C中的冷凝器430的油分离腔315的内部结构大致相同,不同之处在于油分离装置1283不包括油分离隔板,并且将原本设置在油分离隔板上的连通口直接设置在壳体1301上,此时连通口用于与冷凝器1230中的冷凝装置流体连通,使得从连通口流出的气态制冷剂能够经过冷凝装置而被冷凝。
具体来说,第一压缩机1208排出的高压气态制冷剂和润滑油混合物(下称“第一混合物”)进入油分离腔1315后沿着第一导流通道1345,大致以水平方向流动至出口1345b。第二压缩机1209排出的高压气态制冷剂和润滑油混合物(下称“第二混合物”)进入油分离腔1315后沿着第二导流通道1346,大致以水平方向流动至出口1346b。第一混合物和第二混合物分别从左侧与右侧撞击阻挡件1334后改变流向为向下流动,大致在混合区域1450处进行混合,然后平均分成两部分,分别经过第一过滤网1375和第二过滤网1376过滤分离润滑油后经过连通口1241和1242流入冷凝器中进行冷凝。
图15为本申请的油分离装置的第二个实施例沿壳体轴向(即沿图13中的D-D线 方向)的剖视图。如图15所示,根据第二实施例的油分离装置的外部结构与图13所示实施例相同。根据第二实施例的油分离装置的油分离腔的内部结构大致与图5所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:在如图15所示的实施例中,阻挡件为过滤网1534而不是阻挡板,气态制冷剂的混合区域1550大致在过滤网1534附近。
图16为本申请的油分离装置的第三个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图16所示,根据第三实施例的油分离装置的外部结构与图13所示实施例相同。根据第三实施例的油分离装置的油分离腔的内部结构大致与图6所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流隔板1631的左端和第二导流隔板1632的右端被设计为顶部开口的盒体形状。
图17为本申请的油分离装置的第四个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图17所示,根据第四实施例的油分离装置的外部结构与图13所示实施例相同。根据第四实施例的油分离装置的油分离腔的内部结构大致与图7所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流通道1745和第二导流通道1746分别由导流管形成。
图18为本申请的油分离装置的第五个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图18所示,根据第五实施例的油分离装置的外部结构与图13所示实施例略有不同,其仅包括一个连通口1841,连通口1841设置在油分离装置的壳体的中部后侧。根据第五实施例的油分离装置的油分离腔的内部结构大致与图8所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流通道1845由导流直管1864形成,第一导流通道1845的出口1845b设置在第一导流通道1845的下端。第二导流通道1846由导流隔板1863和壳体1301形成,第二导流通道1846具有设置在其左端的出口1846b和设置在其右端的附加出口1843。其中第二导流通道1846的出口1846b靠近第一导流通道1845的出口1845b, 第二导流通道1846的附加出口1843远离第一导流通道1845的出口1845b。在如图18所示的实施例中,,第一过滤网1875设置在第二导流通道1846的出口1846b和连通口1841之间,附加过滤网1877设置在第二导流通道1846的附加出口1843和连通口1841之间。
图19为本申请的油分离装置的第六个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图19所示,根据第六实施例的油分离装置的外部结构与图13所示实施例相同。根据第六实施例的油分离装置的油分离腔的内部结构大致与图9所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流通道1945的出口与第二导流通道1946的出口相对设置,并且在高度方向上错开了一段距离。
图20为本申请的油分离装置的第七个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图20所示,根据第七实施例的油分离装置的外部结构与图13所示实施例相同。根据第七实施例的油分离装置的油分离腔的内部结构大致与图10所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流通道2045和第二导流通道2046各自从油分离装置的壳体的两端向中部延伸至越过彼此。
图21为本申请的油分离装置的第八个实施例沿壳体轴向(即沿图13中的D-D线方向)的剖视图。如图21所示,根据第八实施例的油分离装置的外部结构与图13所示实施例略有不同,其第一制冷剂入口和第二制冷剂入口靠近壳体轴向方向的中部。根据第八实施例的油分离装置的油分离腔的内部结构大致与图11所示出的冷凝器的油分离腔的内部结构相同,并且与图14所示实施例大致相同,不同之处在于:第一导流通道2145和第二导流通道2146分别是由导流直管2164和导流直管2169形成的竖直通道,它们并排从油分离装置的壳体的中部向油分离腔1315内纵向延伸。
与前述冷凝器的内容相似,在油分离装置的各个实施例中,当第一压缩机1208的排量小于第二压缩机1209的排量时,油分离装置1283能够使得第一压缩机1208 和第二压缩机1209排出的气态制冷剂和润滑油混合物在油分离腔1315中混合,随后分成均匀的两股进行过滤。因此油分离装置1283无需按照大排量压缩机(即第二压缩机1209)的排量设计油分离腔1315的尺寸,就能满足气态制冷剂和润滑油充分过滤分离的要求。这能够使油分离腔1315的尺寸较小,从而使得油分离装置1283的整体尺寸较小。
由此可见,特别对于包含两个排量不等的压缩机的制冷系统来说,本申请的冷凝器相较于现有的内置油分离部件的冷凝器来说,尺寸可以被设置得更小;并且本申请的油分离装置相较于现有的油分离装置来说,尺寸也可以被设置得更小。
尽管参考附图中出示的具体实施方式将对本申请进行描述,但是应当理解,在不背离本申请教导的精神和范围和背景下,本申请的冷凝器和油分离装置可以有许多变化形式。本领域技术普通技术人员还将意识到有不同的方式来改变本申请所公开的实施例中的结构细节,均落入本申请和权利要求的精神和范围内。

Claims (20)

  1. 一种油分离装置,其特征在于:所述油分离装置包括:
    壳体,所述壳体内包括油分离腔;
    第一制冷剂入口和第二制冷剂入口,所述第一制冷剂入口和所述第二制冷剂入口设置在所述壳体上;
    第一导流通道,所述第一导流通道设置在所述油分离腔中,所述第一导流通道具有入口和出口,所述第一导流通道的所述入口与所述第一制冷剂入口流体连通,以将进入所述第一制冷剂入口的制冷剂气体中的至少一部分从所述第一导流通道的所述入口导流至所述第一导流通道的所述出口;以及
    第二导流通道,所述第二导流通道设置在所述油分离腔中,所述第二导流通道具有入口和出口,所述第二导流通道的所述入口与所述第二制冷剂入口流体连通,以将进入所述第二制冷剂入口的制冷剂气体中的至少一部分从所述第二导流通道的所述入口导流至所述第二导流通道的所述出口;
    其中,所述第一导流通道和所述第二导流通道被配置为:使得从所述第一导流通道的所述出口流出的制冷剂气体与从所述第二导流通道的所述出口流出的制冷剂气体能够混合。
  2. 根据权利要求1所述的油分离装置,其特征在于:
    所述第一导流通道的所述出口和所述第二导流通道的所述出口彼此靠近。
  3. 根据权利要求2所述的油分离装置,其特征在于:所述油分离装置还包括:
    至少一个连通口,所述至少一个连通口用于与冷凝装置流体连通;
    至少一个过滤网,所述至少一个过滤网横向于所述壳体的长度方向设置在所述油分离腔内;
    其中,所述至少一个过滤网设置在所述至少一个连通口与彼此靠近的所述第一导流通道的所述出口及所述第二导流通道的所述出口之间,以使得所述混合后的制冷剂气体能够流经所述至少一个过滤网到达所述至少一个连通口。
  4. 根据权利要求3所述的油分离装置,其特征在于:
    所述至少一个连通口包括两个连通口,所述两个连通口分别设置在所述壳体的长度方向上相对的两端;
    所述至少一个过滤网包括第一过滤网和第二过滤网;
    其中,所述第一过滤网设置在所述第一导流通道的所述出口与所述两个连通口的其中一个连通口之间;
    所述第二过滤网设置在所述第二导流通道的所述出口与所述两个连通口的另一个连通口之间。
  5. 根据权利要求1所述的油分离装置,其特征在于:
    所述第一导流通道和所述第二导流通道从所述壳体的长度方向上的相对的两端沿着所述壳体的长度方向朝向所述壳体的中部延伸;
    其中,所述第一导流通道的所述出口和所述第二导流通道的所述出口被设置为:在所述壳体的长度方向上间隔一段距离,或者在垂直于所述壳体的长度方向上错开一段距离。
  6. 根据权利要求5所述的油分离装置,其特征在于:所述油分离装置还包括:
    阻挡件,所述阻挡件设置在所述第一导流通道的所述出口和所述第二导流通道的所述出口之间;
    所述阻挡件的位置和尺寸被设置为:在所述壳体的长度方向上,所述阻挡件能够至少部分地遮挡所述第一导流通道的所述出口和所述第二导流通道的所述出口。
  7. 根据权利要求6所述的油分离装置,其特征在于:
    所述阻挡件为阻挡板或过滤网。
  8. 根据权利要求5所述的油分离装置,其特征在于:
    所述第一导流通道由第一导流隔板与所述壳体形成,所述第二导流通道由第二导流隔板与所述壳体形成。
  9. 一种冷凝器,其特征在于:所述冷凝器包括:
    壳体,所述壳体内具有容腔;
    油分离隔板,所述油分离隔板设置在所述壳体内并沿所述壳体的长度方向延伸,所述油分离隔板将所述容腔分隔为油分离腔和冷凝腔,所述油分离隔板包括至少一个连通口,所述至少一个连通口连通所述油分离腔和所述冷凝腔;
    第一制冷剂入口和第二制冷剂入口,所述第一制冷剂入口和所述第二制冷剂入口设置在所述壳体上;
    第一导流通道,所述第一导流通道设置在所述油分离腔中,所述第一导流通道具有入口和出口,所述第一导流通道的所述入口与所述第一制冷剂入口流体连通,以将进入所述第一制冷剂入口的制冷剂气体中的至少一部分从所述第一导流通道的所述入口导流至所述第一导流通道的所述出口;以及
    第二导流通道,所述第二导流通道设置在所述油分离腔中,所述第二导流通道具有入口和出口,所述第二导流通道的所述入口与所述第二制冷剂入口流体连通,以将进入所述第二制冷剂入口的制冷剂气体中的至少一部分从所述第二导流通道的所述入口导流至所述第二导流通道的所述出口;
    其中,所述第一导流通道和所述第二导流通道被配置为:使得从所述第一导流通道的所述出口流出的制冷剂气体与从所述第二导流通道的所述出口流出的制冷剂气体能够混合。
  10. 根据权利要求9所述的冷凝器,其特征在于:
    所述第一导流通道的所述出口和所述第二导流通道的所述出口彼此靠近。
  11. 根据权利要求10所述的冷凝器,其特征在于:所述冷凝器还包括:
    至少一个连通口,所述至少一个连通口用于与冷凝装置流体连通;
    至少一个过滤网,所述至少一个过滤网垂直于所述壳体的长度方向设置在所述油分离腔内;
    其中,所述至少一个过滤网设置在所述至少一个连通口与彼此靠近的所述第一导流通道的所述出口及所述第二导流通道的所述出口之间,以使得所述混合后的制冷剂气体能够流经所述至少一个过滤网到达所述至少一个连通口。
  12. 根据权利要求11所述的冷凝器,其特征在于:
    所述至少一个连通口包括两个连通口,所述两个连通口分别设置在所述壳体的长度方向上相对的两端;
    所述至少一个过滤网包括第一过滤网和第二过滤网;
    其中,所述第一过滤网设置在所述第一导流通道的所述出口与所述两个连通口的其中一个连通口之间;
    所述第二过滤网设置在所述第二导流通道的所述出口与所述两个连通口的另一个连通口之间。
  13. 根据权利要求9所述的冷凝器,其特征在于:
    所述第一导流通道和所述第二导流通道从所述壳体的长度方向上的相对的两端沿着所述壳体的长度方向朝向所述壳体的中部延伸;
    其中,所述第一导流通道的所述出口和所述第二导流通道的所述出口被设置为:在所述壳体的长度方向上间隔一段距离,或者在垂直于所述壳体的长度方向上错开一段距离。
  14. 根据权利要求13所述的冷凝器,其特征在于:所述冷凝器还包括:
    阻挡件,所述阻挡件设置在所述第一导流通道的所述出口和所述第二导流通道的所述出口之间;
    所述阻挡件的位置和尺寸被设置为:在所述壳体的长度方向上,所述阻挡件能够至少部分地遮挡所述第一导流通道的所述出口和所述第二导流通道的所述出口。
  15. 根据权利要求14所述的冷凝器,其特征在于:
    所述阻挡件为阻挡板或过滤网。
  16. 根据权利要求13所述的冷凝器,其特征在于:
    所述第一导流通道由第一导流隔板与所述壳体形成,所述第二导流通道由第二导流隔板与所述壳体形成。
  17. 一种制冷系统,其特征在于:所述制冷系统包括:
    压缩机组;
    油分离装置,其中所述油分离装置为根据权利要求1-8中任一项所述的油分离装置;
    冷凝器;
    节流装置;和
    蒸发器;
    其中,所述压缩机组、所述油分离装置、所述冷凝器、所述节流装置和所述蒸发器依次连接形成制冷剂循环回路;
    其中,所述压缩机组包括:第一压缩机和第二压缩机,所述第一压缩机和第二压缩机并联连接在所述油分离装置和所述蒸发器之间;
    其中,所述第一压缩机的吸气口和所述第二压缩机的吸气口与所述蒸发器相连;
    并且其中,所述第一压缩机的排气口与所述油分离装置的所述第一制冷剂入口相连,所述第二压缩机的排气口与所述油分离装置的所述第二制冷剂入口相连。
  18. 根据权利要求17所述的制冷系统,其特征在于:
    所述第一压缩机的排量小于第二压缩机的排量。
  19. 一种制冷系统,其特征在于:所述制冷系统包括:
    压缩机组;
    冷凝器,其中所述冷凝器为根据权利要求9-16中任一项所述的冷凝器;
    节流装置;和
    蒸发器;
    其中,所述压缩机组、所述冷凝器、所述节流装置和所述蒸发器依次连接形成制冷剂循环回路;
    其中,所述压缩机组包括:第一压缩机和第二压缩机,所述第一压缩机和第二压缩机并联连接在所述冷凝器和所述蒸发器之间;
    其中,所述第一压缩机的吸气口和所述第二压缩机的吸气口与所述蒸发器相连;
    并且其中,所述第一压缩机的排气口与所述冷凝器的所述第一制冷剂入口相连,所述第二压缩机的排气口与所述冷凝器的所述第二制冷剂入口相连。
  20. 根据权利要求19所述的制冷系统,其特征在于:
    所述第一压缩机的排量小于第二压缩机的排量。
PCT/CN2020/118776 2019-09-30 2020-09-29 油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统 WO2021063348A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227013989A KR20220061264A (ko) 2019-09-30 2020-09-29 오일 분리 장치, 콘덴서 및 오일 분리 장치나 콘덴서를 이용한 냉동 시스템
US17/764,945 US20220349634A1 (en) 2019-09-30 2020-09-29 Oil Separation Device, Condenser, and Refrigeration System Using Oil Separation Device or Condenser
JP2022519711A JP2022550397A (ja) 2019-09-30 2020-09-29 油分離デバイス、凝縮器、および油分離デバイスまたは凝縮器を使用する冷却システム
EP20870899.0A EP4040087A4 (en) 2019-09-30 2020-09-29 OIL SEPARATION DEVICE, CONDENSER AND REFRIGERATION SYSTEM USING OIL SEPARATION DEVICE OR CONDENSER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910943236.1 2019-09-30
CN201910943236.1A CN112577222A (zh) 2019-09-30 2019-09-30 油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统

Publications (1)

Publication Number Publication Date
WO2021063348A1 true WO2021063348A1 (zh) 2021-04-08

Family

ID=75116480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118776 WO2021063348A1 (zh) 2019-09-30 2020-09-29 油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统

Country Status (6)

Country Link
US (1) US20220349634A1 (zh)
EP (1) EP4040087A4 (zh)
JP (1) JP2022550397A (zh)
KR (1) KR20220061264A (zh)
CN (1) CN112577222A (zh)
WO (1) WO2021063348A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170860A (zh) * 1996-06-28 1998-01-21 运载器有限公司 冷却装置的双入口式分油器
CN102967095A (zh) * 2012-10-29 2013-03-13 合肥通用机械研究院 制冷压缩机试验装置用变容积高效立式油分离器
US20140326008A1 (en) * 2011-10-21 2014-11-06 Lg Electronics Ltd. Air conditioner
CN107367092A (zh) * 2017-08-30 2017-11-21 重庆美的通用制冷设备有限公司 换热器及具有其的冷水机组
CN207379116U (zh) * 2017-09-27 2018-05-18 约克(无锡)空调冷冻设备有限公司 一种冷凝器
EP3650794A1 (en) * 2018-11-07 2020-05-13 Johnson Controls Denmark ApS A shell heat exchanger and use of a shell heat exchanger
CN211345950U (zh) * 2019-09-30 2020-08-25 约克(无锡)空调冷冻设备有限公司 油分离装置、冷凝器以及制冷系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763910A (zh) * 2016-08-17 2018-03-06 约克(无锡)空调冷冻设备有限公司 排气装置、制冷空调机组和不凝性气体的排气方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170860A (zh) * 1996-06-28 1998-01-21 运载器有限公司 冷却装置的双入口式分油器
US20140326008A1 (en) * 2011-10-21 2014-11-06 Lg Electronics Ltd. Air conditioner
CN102967095A (zh) * 2012-10-29 2013-03-13 合肥通用机械研究院 制冷压缩机试验装置用变容积高效立式油分离器
CN107367092A (zh) * 2017-08-30 2017-11-21 重庆美的通用制冷设备有限公司 换热器及具有其的冷水机组
CN207379116U (zh) * 2017-09-27 2018-05-18 约克(无锡)空调冷冻设备有限公司 一种冷凝器
EP3650794A1 (en) * 2018-11-07 2020-05-13 Johnson Controls Denmark ApS A shell heat exchanger and use of a shell heat exchanger
CN211345950U (zh) * 2019-09-30 2020-08-25 约克(无锡)空调冷冻设备有限公司 油分离装置、冷凝器以及制冷系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040087A4 *

Also Published As

Publication number Publication date
KR20220061264A (ko) 2022-05-12
US20220349634A1 (en) 2022-11-03
EP4040087A4 (en) 2023-11-22
CN112577222A (zh) 2021-03-30
EP4040087A1 (en) 2022-08-10
JP2022550397A (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
JP4356214B2 (ja) 油分離器および室外機
CN203068891U (zh) 立式油分离器
CN104729166B (zh) 立式油分离器及空调系统
CN103604258A (zh) 一种排液型气液分离器
CN102914105B (zh) 油分离器
CN105518391B (zh) 用于降膜蒸发器的集成分离器-分配器
WO2023051175A1 (zh) 经济器及包括该经济器的制冷系统
CN103638749A (zh) 一种具有储液和排液功能的气液分离器
CN211345950U (zh) 油分离装置、冷凝器以及制冷系统
CN206146071U (zh) 双回油管油分离器
WO2021063348A1 (zh) 油分离装置、冷凝器以及使用油分离装置或冷凝器的制冷系统
CN113623906A (zh) 油分离装置、冷凝器及空调系统
CN106196733B (zh) 用于热泵的集成装置
WO2024021698A1 (zh) 壳管式换热器及空调机组
CN105937820A (zh) 一种气液分离装置及具有其的蒸汽压缩循环系统
CN206875771U (zh) 空调设备、离心机组及其闪发器
CN209042820U (zh) 冷凝设备和空调系统
CN113405283A (zh) 进气管、壳管式冷凝器、空调器
CN208887042U (zh) 热回收装置及空调器
KR20170004812A (ko) 냉매 회로의 액상 냉매 분리 및 집수 장치
CN100436973C (zh) 在管路中的油分离器
CN113405286A (zh) 油分离器、冷凝器和制冷设备
CN113521888A (zh) 油分离器及压缩机组件
CN109186053A (zh) 热回收装置及空调器
CN215809505U (zh) 油分离装置、冷凝器及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013989

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020870899

Country of ref document: EP

Effective date: 20220502