WO2021063300A1 - 用于轨道列车的时钟同步通信系统及方法 - Google Patents

用于轨道列车的时钟同步通信系统及方法 Download PDF

Info

Publication number
WO2021063300A1
WO2021063300A1 PCT/CN2020/118286 CN2020118286W WO2021063300A1 WO 2021063300 A1 WO2021063300 A1 WO 2021063300A1 CN 2020118286 W CN2020118286 W CN 2020118286W WO 2021063300 A1 WO2021063300 A1 WO 2021063300A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
signal
clock synchronization
time
control center
Prior art date
Application number
PCT/CN2020/118286
Other languages
English (en)
French (fr)
Inventor
彭清
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2021063300A1 publication Critical patent/WO2021063300A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0644External master-clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes

Definitions

  • the present disclosure relates to the technical field of rail train dispatching, and in particular to a clock synchronization communication system and method for rail trains.
  • GPS Global Positioning System, Global Positioning System
  • the embodiments of the present disclosure provide a clock synchronization communication system and method for rail trains, so as to solve one of the problems of the prior art, so that the clocks of the rail trains dispatched by the base station can achieve high precision and are easy to maintain.
  • the present disclosure provides a clock synchronization communication system for rail trains, including a signal receiving unit, a control center, and a signal distributor.
  • the control center is respectively connected to the signal receiving unit and the signal distributor, and the signal distributor Connected to at least one external base station;
  • the signal receiving unit is used to receive a clock time synchronization source, and send the clock time synchronization source to the control center;
  • the control center is used to extract a clock synchronization signal from the clock time synchronization source, and send the clock synchronization signal to the signal distributor;
  • the signal distributor is used to simultaneously send the clock synchronization signal to at least one external base station, so that each external base station performs clock synchronization through the clock synchronization signal.
  • the present disclosure provides a clock synchronization communication method for rail trains, the method including:
  • the clock synchronization signal is sent to at least one external base station through the signal distributor, so that each external base station performs clock synchronization through the clock synchronization signal.
  • the clock synchronization communication system and method for rail trains receive a clock time synchronization source, and then the control center extracts the clock synchronization signal from the clock time synchronization source, and the control center issues the same clock to each base station
  • the synchronization signal enables the rail trains passing through each station to be controlled and dispatched by the same clock synchronization signal issued by the base station, further improving the accuracy of clock synchronization, and the points where the clock synchronization signal is issued to the base station are more concentrated, that is, the control center, when the clock When the signal is faulty, only the control center needs to be maintained, which reduces the difficulty of fault maintenance.
  • Figure 1 is a structural block diagram of a GPS receiver for receiving clock synchronization signals installed at each base station in the prior art
  • FIG. 2 is a structural block diagram of a clock synchronization communication system for rail trains according to an embodiment of the present disclosure
  • Fig. 3 is a structural block diagram of a clock synchronization communication system for rail trains according to another embodiment of the present disclosure
  • FIG. 4 is a flowchart of a clock synchronization communication method for rail trains in an embodiment of the present disclosure
  • Fig. 5 is a flowchart of a clock synchronization communication method for rail trains in another embodiment of the present disclosure
  • Fig. 6 is a flowchart of a clock synchronization communication method for rail trains in another embodiment of the present disclosure.
  • FIG. 2 is a structural block diagram of a clock synchronization communication system for rail trains according to an embodiment of the present disclosure.
  • the clock synchronization communication system 100 for rail trains includes a signal receiving unit 01, a control center 02, and a signal distributor 04.
  • the control center 02 is respectively connected to the signal receiving unit 01 and the signal distributor 04.
  • the signal distributor 04 Connect at least one external base station 06;
  • the signal receiving unit 01 is configured to receive a clock time synchronization source, and send the clock time synchronization source to the control center 02;
  • the control center 02 is used to extract a clock synchronization signal from the clock time synchronization source, and send the clock synchronization signal to the signal distributor 04;
  • the signal distributor 04 is configured to send the clock synchronization signal to at least one external base station 06 at the same time, so that each base station 06 performs clock synchronization through the clock synchronization signal.
  • each base station sends a dispatch control instruction to the rail train through the same clock synchronization signal
  • the dispatch control instruction includes but is not limited to driving, accelerating, decelerating, or stopping, and so on.
  • the dispatch control instruction is generally issued by the station center, and the dispatch control instruction is sent to each track train through different base stations, so that when the same or different track trains run in the area controlled by each base station, the dispatch control instruction is received. There is no error in time, so as to achieve the effect of improving the accuracy of clock synchronization. It can avoid the serious consequences of frequent emergency stops and even crashes of rail trains that are running in different base station control areas and receive dispatch control instructions at different times.
  • the signal receiving unit 01 receives the clock time synchronization source through the satellite antenna 05
  • the above-mentioned control center may be a server
  • the signal distributor 04 includes the switch and routing of the clock synchronization communication system of the rail train
  • each base station is provided with a signal receiver 07
  • the signal receiver 07 includes base station switches and routers.
  • the signal distributor 04 of the clock synchronization communication system is used to send a clock synchronization signal to the switch and route of the signal receiver 07.
  • the switch and route of the signal receiver 07 are used to receive the clock synchronization signal on the one hand, and on the other hand At the same time, it is used to receive the dispatching control instruction sent by the station center.
  • the switch and routing of the signal receiver 07 send both the clock synchronization signal and the dispatching control instruction to the base station, so that the base station can send to the track according to the clock synchronized by the clock synchronization signal
  • the train sends dispatch control instructions.
  • the signal distributor 04 is a core signal distributor, and the core signal distributor is used to simultaneously send the same clock synchronization signal to the signal receiver 07 connected to at least one station, and the signal receiver 07 is used for the clock
  • the synchronization signal is sent to the base station 06 of the corresponding area, and the base station 06 sends a clock synchronization signal to the rail train entering the corresponding area.
  • the signal receiving unit 01 is provided with a satellite antenna 05, and the signal receiving unit 01 receives the clock time synchronization source through the satellite antenna 05.
  • the satellite antenna 05 can receive GPS (Global Positioning System, Global Positioning System) signals or Beidou satellite signals, but is not limited to this.
  • GPS Global Positioning System, Global Positioning System
  • Beidou satellite signals but is not limited to this.
  • FIG 1 is a structural block diagram of a GPS receiver for receiving clock synchronization signals independently installed at each base station in the prior art.
  • the traditional GPS receiver for receiving clock synchronization signals installed at each base station is shown in Figure 1
  • the POE (Power over Ethernet) in Figure 1 means that without any changes to the existing Ethernet cabling infrastructure, while transmitting data signals for some terminals, it can also provide DC power supply for such devices. technology.
  • Each base station receives the clock signal from the clock time synchronization source through an independently installed GPS receiver. Because the equipment receiving the clock time synchronization source is scattered, each base station is affected by factors such as network signal delay, and the accuracy of the clock synchronization is not high and cannot match.
  • the wireless transmission of the signal system requires high security and is prone to many failure points, which is not conducive to maintenance and treatment.
  • the present disclosure receives the same clock time synchronization source, and then the control center 02 extracts the clock synchronization signal from the clock time synchronization source, and the control center 02 issues the same clock synchronization signal to each base station, so that the rail train passing through each station can pass
  • the same clock synchronization signal issued by the base station is used for control and scheduling, which further improves the accuracy of clock synchronization, and the points where the clock synchronization signal is issued to the base station are more concentrated, that is, the control center 02.
  • the clock signal fails, there are fewer fault points that need to be repaired. , Generally only need to maintain the control center 02, which reduces the difficulty of fault maintenance.
  • FIG. 3 is a structural block diagram of a clock synchronization communication system for rail trains according to another embodiment of the present disclosure.
  • the clock synchronization communication system 100 for rail trains further includes a network interface box 03, The network interface box 03 is connected to the control center 02;
  • the control center 02 is also used to extract a time synchronization signal from the clock time synchronization source, and send the time synchronization signal to an external time receiving unit through the network interface box 03.
  • the clock synchronization function and time synchronization function that the clock synchronization communication system of the rail train can realize are two independent functions.
  • Clock synchronization is used for each base station to send dispatch control instructions to the rail train at the same time
  • time synchronization is used for Different electronic devices that need to display the time display the same time, and the accuracy of clock synchronization is higher than that of time synchronization.
  • the network interface box 03 is connected to an external network management workstation 08;
  • the network interface box 03 is used to receive the management control instruction of the external network management workstation 08, and send the management control instruction to the time receiving unit.
  • the network management workstation 08 may be a personal computer, a server, or a server group or server group.
  • the management control instruction may, for example, calibrate the time displayed by the time receiving unit, or adjust the time displayed by the time receiving unit according to a preset rule and display it. For example, the time in the time synchronization signal may be increased by five minutes and then displayed.
  • the time in the received time synchronization signal is 10:05
  • the time in the time synchronization signal can be increased by five minutes, adjusted to 10:10, and then displayed.
  • the network interface box 03 is connected to an external network management workstation 08, so that the clock synchronization has network management capabilities. Therefore, various problems that may be caused by poor time synchronization can be prevented, and the network management workstation 08 can also be used to Synchronized time is managed.
  • control center 02 sends the time synchronization signal to an external time receiving unit based on the NTP network time protocol through the network interface box 03.
  • the external time receiving unit may be a sub-clock 09 or various communication subsystems 10.
  • the communication subsystems 10 include, but are not limited to, passenger information subsystems, broadcast subsystems, closed-circuit television subsystems, clients, PCs, webcasts, servers, and other communication subsystems that need to display time. 10.
  • the sub-clock 09 can receive the time synchronization signal through the RS422 (electrical characteristics of the balanced voltage digital interface circuit) interface box configured on the sub-clock.
  • the NTP network time protocol is a protocol used to synchronize the time of each computer in the network. Its purpose is to synchronize the computer's clock to UTC (Coordinated Universal Time). Its accuracy can reach 0.1ms in the local area network. The accuracy of most places on the Internet can reach 1-50ms, which can make the computer synchronize the time of its server or clock source (such as quartz clock, GPS, etc., but not limited to this), and can provide high-precision time correction , And you can use encrypted confirmation to prevent virus protocol attacks.
  • UTC Coordinatd Universal Time
  • control center 02 is also used to send the clock synchronization signal to the signal distributor 04 through the IEEE (Institute of Electrical Engineers) 1588V2 protocol.
  • the 1588V2 precise timing protocol uses software, and also uses hardware and software to cooperate to obtain more precise timing synchronization.
  • IEEE 1588v2 is a master-slave synchronization system.
  • the master clock periodically publishes the PTP (Precision Time Protocol) protocol and time information, and receives the time sent by the master clock port from the clock port.
  • Stamp information the purpose of the protocol is also to calculate the master-slave line time delay and master-slave time difference based on this time information and time stamp information, and use the time difference to adjust the local time so that the slave device time keeps the same frequency and the master device time Phase.
  • This embodiment adopts a high-precision clock based on the 1588 V2 protocol.
  • the full name of the IEEE1588 protocol is "the precision clock synchronization protocol standard for network measurement and control systems.” It has strict timing synchronization and is used in industrial automation systems.
  • the basic idea is to synchronize the internal clock of the network device (client) with the master clock of the host computer through hardware and software, and provide the application with a synchronization establishment time of less than 10 ⁇ s. Compared with the Ethernet delay time of 1000 ⁇ s that does not implement the IEEE1588 protocol, The timing synchronization index of the entire network has been significantly improved.
  • control center 02 sets up a set to provide time and clock synchronization services for the communication system and base stations at the same time, integrates satellite reception, phase lock, and frequency synthesis, and provides two synchronization protocols: NTP and 1588 V2.
  • NTP and 1588 V2 Two synchronization protocols: NTP and 1588 V2.
  • a clock synchronization communication method for rail trains is provided.
  • the method can be used in the clock synchronization communication system 100 for rail trains as shown in FIG. 2 or FIG.
  • the clock synchronization communication method for rail trains includes the following steps S101 to S103.
  • S101 Receive a clock time synchronization source issued by GPS or Beidou satellite through a signal receiving unit, and send the clock time synchronization source to a control center.
  • S102 Extract the clock synchronization signal from the clock time synchronization source through the control center, and send the clock synchronization signal to the signal distributor.
  • S103 Send the clock synchronization signal to at least one external base station through the signal distributor, so that each external base station performs clock synchronization through the clock synchronization signal.
  • the signal receiving unit 01 receives the clock time synchronization source through the satellite antenna 05.
  • the signal distributor is a core signal distributor, and the core signal distributor is used to simultaneously send the same clock synchronization signal to at least one signal receiver 07 connected to the station, and the signal receiver 07 is used to synchronize the clock
  • the signal is sent to the base station in the corresponding area, and the base station sends a clock synchronization signal to the rail train entering the corresponding area.
  • the signal receiving unit 01 is provided with a satellite antenna 05, and the signal receiving unit 01 receives the clock time synchronization source through the satellite antenna 05.
  • the satellite antenna 05 can receive GPS (Global Positioning System, Global Positioning System) signals and Beidou satellite signals.
  • GPS Global Positioning System, Global Positioning System
  • Beidou satellite signals Beidou satellite signals.
  • a set of high-precision BITS (Background Intelligent Transfer Service, communication building integrated timing supply system) clocks based on the 1588 V2 protocol is set in the control center, and the high-precision BITS clock is connected to the signal distributor 04 through the 1588 V2 port.
  • the clock synchronization signal is sent to the corresponding base station to provide unified timing services for the base stations.
  • a redundant set of synchronization equipment can be installed in the control center.
  • the method includes the following steps S104 and S105 in addition to the above steps S101 to S103:
  • S104 Extract a time synchronization signal from the clock time synchronization source through the control center;
  • S105 Send the time synchronization signal to an external time receiving unit through the network interface box.
  • the time receiving unit includes, but is not limited to, an electronic clock 09, a client, a PC, a webcast, a TV station, a server, and other communication subsystems 10 that need to display time.
  • the high-precision BITS clock based on the 1588 V2 protocol receives dual-mode signals from GPS and Beidou satellites.
  • the built-in NTP service protocol is used for communication through the Ethernet port of the network interface box.
  • Each subsystem provides timing synchronization, and the interface is set for each system to correspond to the same network segment IP (Internet Protocol, the protocol for interconnection between networks).
  • IP Internet Protocol, the protocol for interconnection between networks.
  • the method further includes the following step S106 in addition to the above steps S101 to S105:
  • S106 Receive the management control instruction of the external network management workstation 08 through the network interface box, and send the management control instruction to the time receiving unit.
  • the network management workstation may be a personal computer, a server, or a server group or server group.
  • the network interface box is connected to an external network management workstation, so that the clock synchronization has network management capabilities. Therefore, various problems that may be caused due to poor time synchronization can be prevented, and the network management workstation can also be used to synchronize the time. To manage.
  • the method includes:
  • the control center sends the clock synchronization signal to the signal distributor based on the IEEE 1588V2 protocol;
  • the control center sends the time synchronization signal to an external time receiving unit based on the NTP network time protocol.
  • the order of the step numbers is not used to limit the execution order of the steps, and the step numbers are only used to identify different steps.
  • the above step S104 can be after the above step S103, or it can be in step S103.
  • the step of S102 Before the step of S102, as long as the logical relationship between the steps is not affected, it is within the scope of the present disclosure.
  • This embodiment provides time and clock synchronization services for communication systems and base stations at the same time, integrates satellite reception, phase lock, and frequency synthesis, and provides NTP and 1588 V2 synchronization protocols.
  • the control center by receiving the same clock time synchronization source, the control center extracts the clock synchronization signal from the clock time synchronization source, and the control center issues the same clock synchronization signal to each base station, so that the rail train passing through each station passes through the base station.
  • the same clock synchronization signal is issued for control and scheduling, which further improves the accuracy of clock synchronization, and the point where the clock synchronization signal is issued to the base station is more concentrated, that is, the control center.
  • this embodiment uses 1588 V2
  • the protocol’s high-precision clock replaces the traditional GPS receivers that are separately installed in the base station. The timing accuracy is higher; the installation engineering and maintenance costs are reduced.
  • the original failure requires inspection at each base station, but now only Check in the control center, so the amount of engineering installation is also greatly reduced, and the failure rate is also lower; the communication clock timing function is integrated with the base station synchronization function to provide a converged integrated clock synchronization service with higher integration, lower cost, and More convenient and unified management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Clocks (AREA)

Abstract

一种用于轨道列车的时钟同步通信系统及方法,涉及轨道列车调度领域。其中,系统包括信号接收单元、控制中心和信号分发器,该控制中心分别连接该信号接收单元和该信号分发器,该信号分发器连接至少一个外部基站;该信号接收单元用于接收时钟时间同步源,并将该时钟时间同步源发送至该控制中心;该控制中心用于从该时钟时间同步源中提取时钟同步信号,并将该时钟同步信号发送至该信号分发器;该信号分发器用于将该时钟同步信号同时发送给至少一个外部基站,使得每个该基站均通过该时钟同步信号进行时钟同步。

Description

用于轨道列车的时钟同步通信系统及方法
相关申请的交叉引用
本公开要求于2019年09月30日提交的申请号为201910942294.2,名称为“用于轨道列车的时钟同步通信系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及轨道列车调度技术领域,尤其涉及用于轨道列车的时钟同步通信系统及方法。
背景技术
相关技术中,为达到高精度时钟同步的要求,在通信系统的每个基站均安装GPS(Global Positioning System,全球定位系统)接受器,从而各基站通过其各自获取的时钟信号实现时钟同步。然而,该方式所达到的时钟同步精度仍有限,且由于基站比较分散,使得故障点较多,不便于维护。
发明内容
本公开实施例提供一种用于轨道列车的时钟同步通信系统及方法,以解决现有技术的问题之一,使得基站调度轨道列车的时钟既能够达到高精度,又便于维护。
第一方面,本公开提供了一种用于轨道列车的时钟同步通信系统,包括信号接收单元、控制中心和信号分发器,该控制中心分别连接该信号接收单元和该信号分发器,该信号分发器连接至少一个外部基站;
该信号接收单元用于接收时钟时间同步源,并将该时钟时间同步源发送至该控制中心;
该控制中心用于从该时钟时间同步源中提取时钟同步信号,并将该时钟同步信号发送至该信号分发器;
该信号分发器用于将该时钟同步信号同时发送给至少一个外部基站,使得每个该外部基站均通过该时钟同步信号进行时钟同步。
第二方面,本公开提供了一种用于轨道列车的时钟同步通信方法,该方法包括:
通过信号接收单元接收GPS或北斗卫星发布的时钟时间同步源,并将该时钟时间同步源发送至控制中心;
通过控制中心从该时钟时间同步源中提取时钟同步信号,并将该时钟同步信号发送至 信号分发器;
通过该信号分发器将该时钟同步信号发送给至少一个外部基站,使得每个该外部基站均通过该时钟同步信号进行时钟同步。
本公开提供的用于轨道列车的时钟同步通信系统及方法,通过接收时钟时间同步源,再由控制中心从该时钟时间同步源中提取时钟同步信号,并由控制中心向各个基站发布相同的时钟同步信号,使得经过各个车站的轨道列车通过基站下发的相同时钟同步信号进行控制和调度,进一步提高时钟同步的精度,且向基站发布时钟同步信号的点位比较集中,即控制中心,当时钟信号故障时,只需要维护控制中心即可,降低了故障维护的难度。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中在每个基站处安装的用于接收时钟同步信号的GPS接收器的结构框图;
图2是本公开一实施例用于轨道列车的时钟同步通信系统的结构框图;
图3是本公开另一实施例用于轨道列车的时钟同步通信系统的结构框图;
图4是本公开一实施例中用于轨道列车的时钟同步通信方法的流程图;
图5是本公开另一实施例中用于轨道列车的时钟同步通信方法的流程图;
图6是本公开又一实施例中用于轨道列车的时钟同步通信方法的流程图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
以下结合具体附图对本公开的实现进行详细的描述:
图2是本公开一实施例用于轨道列车的时钟同步通信系统的结构框图,下面结合图2来详细描述根据本公开一实施例提供的用于轨道列车的时钟同步通信系统,如图2所示,该用于轨道列车的时钟同步通信系统100包括信号接收单元01、控制中心02和信号分发器04,该控制中心02分别连接该信号接收单元01和该信号分发器04,该信号分发器04 连接至少一个外部基站06;
该信号接收单元01用于接收时钟时间同步源,并将该时钟时间同步源发送至该控制中心02;
该控制中心02用于从该时钟时间同步源中提取时钟同步信号,并将该时钟同步信号发送至该信号分发器04;
该信号分发器04用于将该时钟同步信号同时发送给至少一个外部基站06,使得每个该基站06均通过该时钟同步信号进行时钟同步。
在该实施例中,每个基站均通过同一时钟同步信号向轨道列车发送调度控制指令,该调度控制指令包括但不限于开车、加速、减速或停车等等。该调度控制指令一般由车站中心发出,并通过不同的基站将该调度控制指令发送至各个有轨列车,使得相同或不同的轨道列车运行在各个基站所管控的区域时,接收到调度控制指令的时刻没有误差,从而达到提高时钟同步精度的效果,可以避免行驶于不同基站管控区域内的轨道列车,在不同的时刻收到调度控制指令导致轨道列车频繁的紧急停车甚至撞车的严重后果。
其中,该信号接收单元01通过卫星天线05接收该时钟时间同步源,上述控制中心可以是服务器,信号分发器04包括轨道列车的时钟同步通信系统的交换机和路由,各基站设有信号接收器07,该信号接收器07包括基站的交换机和路由。进一步地,时钟同步通信系统的信号分发器04用于向信号接收器07的交换机和路由发送时钟同步信号,该信号接收器07的交换机和路由一方面用于接收该时钟同步信号,另一方面同时用于接收车站中心发送的调度控制指令,该信号接收器07的交换机和路由将时钟同步信号及调度控制指令均发送给基站,供所述基站根据所述时钟同步信号同步的时钟向该轨道列车发送调度控制指令。
进一步地,该信号分发器04为核心信号分发器,该核心信号分发器用于将相同的时钟同步信号同时发送给至少一个车站接入的信号接收器07,该信号接收器07用于将该时钟同步信号发送给对应区域的基站06,由该基站06向进入对应区域的轨道列车发送时钟同步信号。
在其中一个实施例中,该信号接收单元01设有卫星天线05,该信号接收单元01通过该卫星天线05接收该时钟时间同步源。
其中,该卫星天线05可以接收GPS(Global Positioning System,全球定位系统)信号或北斗卫星的信号,而不局限于此。
图1是现有技术中在每个基站处独立安装的用于接收时钟同步信号的GPS接收器的结构框图,传统的安装在每个基站的用于接收时钟同步信号的GPS接收器如图1所示,图1中的POE(Power over Ethernet)表示在现有的以太网布线基础架构不作任何改动的情况 下,在为一些终端传输数据信号的同时,还能为此类设备提供直流供电的技术。各基站通过独立安装的GPS接收器接收时钟时间同步源中的时钟信号,由于接收时钟时间同步源的设备比较分散,各个基站受网络信号延迟等因素的影响,其时钟同步的精度不高不能匹配信号系统的无线传输高安全性要求,且容易出现较多的故障点,不利于维修处理。
本公开通过接收同一时钟时间同步源,再由控制中心02从该时钟时间同步源中提取时钟同步信号,并由控制中心02向各个基站发布相同的时钟同步信号,使得经过各个车站的轨道列车通过基站下发的相同时钟同步信号进行控制和调度,进一步提高时钟同步的精度,且向基站发布时钟同步信号的点位比较集中,即控制中心02,当时钟信号故障时,需要维修的故障点少,一般只需要维护控制中心02即可,降低了故障维护的难度。
图3是本公开另一实施例用于轨道列车的时钟同步通信系统的结构框图,作为可选地如图3所示,该用于轨道列车的时钟同步通信系统100还包括网络接口箱03,该网络接口箱03与该控制中心02连接;
该控制中心02还用于从该时钟时间同步源中提取时间同步信号,并通过该网络接口箱03将该时间同步信号发送至外部的时间接收单元。
其中,该轨道列车的时钟同步通信系统能够实现的时钟同步功能与时间同步功能是两个相互独立的功能,时钟同步用于各个基站在相同的时刻向轨道列车发送调度控制指令,时间同步用于需要显示时间的不同电子设备显示同一时间,时钟同步的精度要求高于时间同步的精度要求。
在其中一个实施例中,该网络接口箱03连接外部的网管工作站08;
该网络接口箱03用于接收外部的网管工作站08的管理控制指令,并将该管理控制指令发送至该时间接收单元。
作为可选地,该网管工作站08可以是个人计算机,也可以是服务器,还可以是服务器组或服务器群。该管理控制指令例如对时间接收单元显示的时间进行校准,或对时间接收单元显示的时间按照预先设定的规则调整后显示,例如可以将时间同步信号中的时间增加五分钟后显示。
根据本实施例的一个使用场景例如接收的时间同步信号中的时间为10:05,可以将时间同步信号中的时间增加五分钟,调整为10:10后显示。
该实施例通过将网络接口箱03连接外部的网管工作站08,使得该时钟同步具备网管能力,因此在由于时间同步不良而可能导致的各种问题时,可以预防,也可以通过该网管工作站08对同步的时间进行管理。
在其中一个实施例中,该控制中心02通过该网络接口箱03,并基于NTP网络时间协议将该时间同步信号发送至外部的时间接收单元。
如图3所示,该外部的时间接收单元可以是子钟09,也可以是通信各子系统10。在其中一个实施例中,该通信各子系统10包括但不限于乘客信息子系统、广播子系统、闭路电视子系统、客户端、PC机、网络直播、服务器等需要显示时间的通信各子系统10。
其中,该子钟09可以通过配置在该子钟上的RS422(平衡电压数字接口电路的电气特性)接口箱接收时间同步信号。
其中,NTP网络时间协议是用来同步网络中各个计算机的时间的协议,它的用途是把计算机的时钟同步到世界协调时UTC(Coordinated Universal Time),其精度在局域网内可达0.1ms,在互联网上绝大多数的地方其精度可以达到1-50ms,可以使计算机对其服务器或时钟源(如石英钟,GPS等等,而不局限于此)进行时间同步,可以提供高精准度的时间校正,而且可以使用加密确认的方式来防止病毒的协议攻击。
在其中一个实施例中,该控制中心02还用于通过IEEE(Institute of Electrical and Electronics Engineers)1588V2协议将该时钟同步信号发送至该信号分发器04。
该1588V2精确定时协议既使用软件,亦同时使用硬件和软件配合,获得更精确的定时同步。IEEE 1588v2作为一种主从同步系统,在系统的同步过程中,主时钟周期性发布PTP(Precision Time Protocol,高精度时间同步协议)协议及时间信息,从时钟端口接收主时钟端口发来的时间戳信息,该协议的目的还在于据此时间信息及时间戳信息计算出主从线路时间延迟及主从时间差,并利用该时间差调整本地时间,使从设备时间保持与主设备时间一致的频率与相位。
本实施例采用基于1588 V2协议的高精度时钟,IEEE1588协议的全称是“网络测量和控制系统的精密时钟同步协议标准”,是通用的提升网络系统定时同步能力的规范,使分布式通信网络能够具有严格的定时同步,并且应用于工业自动化系统。基本构思是通过硬件和软件将网络设备(客户机)的内时钟与主控机的主时钟实现同步,提供同步建立时间小于10μs的运用,与未执行IEEE1588协议的以太网延迟时间1000μs相比,整个网络的定时同步指标有显著的改善。
本实施例控制中心02设置一套同时为通信系统及基站提供时间及时钟同步服务,集卫星接收、锁相、频率合成为一体,提供NTP、1588 V2两种同步协议。内置铷原子钟或高稳晶体钟、GPS/北斗双模信号接收单元,保障时钟同步的正常运行。
根据本公开的另一实施例提供了一种用于轨道列车的时钟同步通信方法,该方法可以用于如图2或图3所示的用于轨道列车的时钟同步通信系统100中,该用于轨道列车的时钟同步通信方法包括以下步骤S101至S103。
S101,通过信号接收单元接收GPS或北斗卫星发布的时钟时间同步源,并将该时钟时间同步源发送至控制中心。
S102,通过控制中心从该时钟时间同步源中提取时钟同步信号,并将该时钟同步信号发送至信号分发器。
S103,通过该信号分发器将该时钟同步信号发送给至少一个外部基站,使得每个该外部基站均通过该时钟同步信号进行时钟同步。
其中,该信号接收单元01通过卫星天线05接收该时钟时间同步源。
进一步地,该信号分发器为核心信号分发器,该核心信号分发器用于将相同的时钟同步信号同时发送给至少一个接入车站的信号接收器07,该信号接收器07用于将该时钟同步信号发送给对应区域的基站,由该基站向进入对应区域的轨道列车发送时钟同步信号。
在其中一个实施例中,该信号接收单元01设有卫星天线05,该信号接收单元01通过该卫星天线05接收该时钟时间同步源。
其中,该卫星天线05可以接收GPS(Global Positioning System,全球定位系统)信号及北斗卫星的信号。
本实施例在通过在控制中心设置一套基于1588 V2协议的高精度BITS(Background Intelligent Transfer Service,通信建筑综合定时供给系统)时钟,通过该高精度BITS时钟通过1588 V2端口连接至信号分发器04,通过接入车站并连接至胶轮轨道列车沿线各基站的信号接收器07将该时钟同步信号发送至对应的基站,为基站统一提供授时服务。
为了保证系统的安全性,作为可选地,还可以在控制中心设置冗余的一套同步设备。
在其中一个实施例中,如图5所述,该方法在包括上述步骤S101至S103的基础上,还包括以下步骤S104及S105:
S104,通过控制中心从该时钟时间同步源中提取时间同步信号;
S105,通过该网络接口箱将该时间同步信号发送至外部的时间接收单元。
在其中一个实施例中,该时间接收单元包括但不限于电子时钟09、客户端、PC机、网络直播、电视台、服务器等需要显示时间的通信各子系统10。
本实施例通过对各个基站发送时钟同步信号时,通过该基于1588 V2协议的高精度BITS时钟,接收GPS及北斗卫星的双模信号,内置NTP服务协议,通过网络接口箱的以太网端口为通信各子系统提供授时同步,接口设置各系统对应同网段IP(Internet Protocol,网络之间互连的协议),各子系统主设备接收时钟后,利用主从同步给本系统内其他设备提供授时。
在其中一个实施例中,如图6所述,该方法在包括上述步骤S101至S105的基础上,还包括以下步骤S106:
S106,通过网络接口箱接收外部的网管工作站08的管理控制指令,并将该管理控制指令发送至该时间接收单元。
作为可选地,该网管工作站可以是个人计算机,也可以是服务器,还可以是服务器组或服务器群。
该实施例通过将网络接口箱连接外部的网管工作站,使得该时钟同步具备网管能力,因此在由于时间同步不良而可能导致的各种问题时,可以预防,也可以通过该网管工作站对同步的时间进行管理。
在其中一个实施例中,该方法包括:
该控制中心基于IEEE 1588V2协议将该时钟同步信号发送至该信号分发器;
该控制中心基于NTP网络时间协议将该时间同步信号发送至外部的时间接收单元。
在上述实施例中,各步骤标号的顺序并不用于限定各个步骤的执行顺序,各步骤的标号仅用于标识不同的步骤,例如上述步骤S104可以在上述步骤S103的步骤之后,也可以在步骤S102的步骤之前,只要不影响各步骤之间的逻辑关系均表示在本公开请求保护的范围之内。
本实施例同时为通信系统及基站提供时间及时钟同步服务,集卫星接收、锁相、频率合成为一体,提供NTP、1588 V2两种同步协议。内置铷原子钟或高稳晶体钟、GPS/北斗双模信号接收单元,保障时钟同步的正常运行。
本实施例通过接收同一时钟时间同步源,再由控制中心从该时钟时间同步源中提取时钟同步信号,并由控制中心向各个基站发布相同的时钟同步信号,使得经过各个车站的轨道列车通过基站下发的相同时钟同步信号进行控制和调度,进一步提高时钟同步的精度,且向基站发布时钟同步信号的点位比较集中,即控制中心,相比于现有技术,本实施例采用基于1588 V2协议的高精度时钟代替了传统技术同在在基站各处单独设置的GPS接收器,授时精度更高;减少了安装工程和维护成本,原来出故障需要到每一处基站检查,而现在只需在控制中心排查,因此工程安装量也大幅度减少,故障率也更低;将通信时钟授时功能与基站同步功能融合,提供融合化一体式时钟同步服务,集成度更高,成本更低,也更方便统一管理。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含 在本公开的保护范围之内。

Claims (10)

  1. 一种用于轨道列车的时钟同步通信系统,包括信号接收单元、控制中心和信号分发器,所述控制中心分别连接所述信号接收单元和所述信号分发器,所述信号分发器连接至少一个外部基站;
    所述信号接收单元用于接收时钟时间同步源,并将所述时钟时间同步源发送至所述控制中心;
    所述控制中心用于从所述时钟时间同步源中提取时钟同步信号,并将所述时钟同步信号发送至所述信号分发器;
    所述信号分发器用于将所述时钟同步信号同时发送给至少一个外部基站,使得每个所述外部基站均通过所述时钟同步信号进行时钟同步。
  2. 根据权利要求1所述的用于轨道列车的时钟同步通信系统,其中,所述信号接收单元设有卫星天线,所述信号接收单元通过所述卫星天线接收所述时钟时间同步源。
  3. 根据权利要求1或2所述的用于轨道列车的时钟同步通信系统,其中,所述系统还包括网络接口箱,所述网络接口箱与所述控制中心连接;
    所述控制中心还用于从所述时钟时间同步源中提取时间同步信号,并通过所述以网络接口箱将所述时间同步信号发送至外部的时间接收单元。
  4. 根据权利要求3所述的用于轨道列车的时钟同步通信系统,其中,所述网络接口箱连接外部的网管工作站;
    所述网络接口箱用于接收外部的网管工作站的管理控制指令,并将所述管理控制指令发送至所述时间接收单元。
  5. 根据权利要求3或4所述的用于轨道列车的时钟同步通信系统,其中,所述控制中心通过所述网络接口箱,并基于NTP网络时间协议将所述时间同步信号发送至外部的时间接收单元。
  6. 根据权利要求1至5任一项所述的用于轨道列车的时钟同步通信系统,其中,所述控制中心还用于通过IEEE 1588V2协议将所述时钟同步信号发送至所述信号分发器。
  7. 一种用于轨道列车的时钟同步通信方法,所述方法包括:
    通过信号接收单元接收GPS或北斗卫星发布的时钟时间同步源,并将所述时钟时间同步源发送至控制中心;
    通过所述控制中心从所述时钟时间同步源中提取时钟同步信号,并将所述时钟同步信号发送至信号分发器;
    通过所述信号分发器将所述时钟同步信号发送给至少一个外部基站,使得每个所述外 部基站均通过所述时钟同步信号进行时钟同步。
  8. 根据权利要求7所述的用于轨道列车的时钟同步通信方法,其中,所述方法包括:
    通过所述控制中心从所述时钟时间同步源中提取时间同步信号;
    通过网络接口箱将所述时间同步信号发送至外部的时间接收单元。
  9. 根据权利要求8所述的用于轨道列车的时钟同步通信方法,其中,所述方法包括:
    通过所述网络接口箱接收外部的网管工作站的管理控制指令,并将所述管理控制指令发送至所述时间接收单元。
  10. 根据权利要求8或9所述的用于轨道列车的时钟同步通信方法,其中,所述方法包括:
    所述控制中心基于IEEE 1588V2协议将所述时钟同步信号发送至所述信号分发器;
    所述控制中心基于NTP网络时间协议将所述时间同步信号发送至外部的时间接收单元。
PCT/CN2020/118286 2019-09-30 2020-09-28 用于轨道列车的时钟同步通信系统及方法 WO2021063300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910942294.2 2019-09-30
CN201910942294.2A CN112583508B (zh) 2019-09-30 2019-09-30 用于轨道列车的时钟同步通信系统及方法

Publications (1)

Publication Number Publication Date
WO2021063300A1 true WO2021063300A1 (zh) 2021-04-08

Family

ID=75116813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118286 WO2021063300A1 (zh) 2019-09-30 2020-09-28 用于轨道列车的时钟同步通信系统及方法

Country Status (2)

Country Link
CN (1) CN112583508B (zh)
WO (1) WO2021063300A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384790A (zh) * 2022-01-18 2022-04-22 中车长春轨道客车股份有限公司 一种动车组时间校准方法
CN115622652A (zh) * 2022-10-08 2023-01-17 江苏必得科技股份有限公司 一种高速铁路数据采集的时间同步方法及对应的系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124280B (zh) * 2021-11-04 2023-12-15 北京航天发射技术研究所 一种基于cpt原子钟的多系统间时间同步及对时方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057826A1 (en) * 1998-05-04 1999-11-11 Nokia Networks Oy Method of synchronisation of a base station network
CN101615948A (zh) * 2008-06-25 2009-12-30 鼎桥通信技术有限公司 一种实现时间同步的方法及系统
CN101881938A (zh) * 2009-05-08 2010-11-10 上海汉鼎电力科技有限公司 卫星同步主时钟装置
CN104363530A (zh) * 2014-10-29 2015-02-18 烽火通信科技股份有限公司 一种同步状态信息提取的装置和方法
CN109257133A (zh) * 2018-09-14 2019-01-22 武汉虹信通信技术有限责任公司 一种应用于lte轨道交通网的全网时钟同步方法及装置
CN109343331A (zh) * 2018-11-16 2019-02-15 中国铁路总公司 一种北斗+gps双信号同步时钟的铁路移动通信授时系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112612B2 (en) * 2010-12-27 2015-08-18 Mitsubishi Electric Corporation Relay device, station-side optical communication device, communication system, and bandwidth allocation method
CN104168104B (zh) * 2014-08-22 2017-12-15 华为技术有限公司 一种用于时间和频率同步的装置和方法
CN104734769B (zh) * 2015-03-31 2017-12-29 中铁工程设计咨询集团有限公司 基于北斗卫星授时信号的地面设备系统
CN205657701U (zh) * 2016-06-02 2016-10-19 尔智机器人(上海)有限公司 一种工厂时间同步系统
CN108737005B (zh) * 2018-05-17 2020-07-28 陕西师范大学 面向数字化校园的多功能电子时钟系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057826A1 (en) * 1998-05-04 1999-11-11 Nokia Networks Oy Method of synchronisation of a base station network
CN101615948A (zh) * 2008-06-25 2009-12-30 鼎桥通信技术有限公司 一种实现时间同步的方法及系统
CN101881938A (zh) * 2009-05-08 2010-11-10 上海汉鼎电力科技有限公司 卫星同步主时钟装置
CN104363530A (zh) * 2014-10-29 2015-02-18 烽火通信科技股份有限公司 一种同步状态信息提取的装置和方法
CN109257133A (zh) * 2018-09-14 2019-01-22 武汉虹信通信技术有限责任公司 一种应用于lte轨道交通网的全网时钟同步方法及装置
CN109343331A (zh) * 2018-11-16 2019-02-15 中国铁路总公司 一种北斗+gps双信号同步时钟的铁路移动通信授时系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG LIANG, DING CHENGFA: "Clock Synchronization between Base Stations in Rail Transit", RAILWAY SIGNALLING & COMMUNICATION, vol. 55, no. 1, 1 January 2019 (2019-01-01), pages 79 - 81, XP055798481, DOI: 10.13879/j.issn1000-7458.2019-01.18489 *
WANG YANG: "Research and Implementation of Method for Clock Synchronization Control in Wireless Communication Testing Systems", CHINESE MASTER’S THESES FULL-TEXT DATABASE, INFORMATION SCIENCE AND TECHNOLOGY, 1 August 2013 (2013-08-01), XP055798484 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384790A (zh) * 2022-01-18 2022-04-22 中车长春轨道客车股份有限公司 一种动车组时间校准方法
CN114384790B (zh) * 2022-01-18 2023-08-18 中车长春轨道客车股份有限公司 一种动车组时间校准方法
CN115622652A (zh) * 2022-10-08 2023-01-17 江苏必得科技股份有限公司 一种高速铁路数据采集的时间同步方法及对应的系统

Also Published As

Publication number Publication date
CN112583508A (zh) 2021-03-30
CN112583508B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021063300A1 (zh) 用于轨道列车的时钟同步通信系统及方法
US8095615B2 (en) System for synchronizing signals including a slave signal generator generating elapsed time data with respect to an initial time point and related methods
US8767778B2 (en) Method, system and apparatus for synchronizing signals
EP1256197B1 (en) Reference time distribution over a network
US7778283B2 (en) Timing bridge device
CN107896134A (zh) 一种高精度模块化时间同步设备
CN207650573U (zh) 一种基于多源授时的高精度时间同步系统
US11683150B2 (en) Methods, apparatus and computer-readable media for synchronization over an optical network
CN102830612B (zh) 一种播出控制机高精度授时与守时系统和方法
CN102342051B (zh) 用于通过经由至少一个时间分发协议分开传输第一和第二数据来同步时钟的方法和相关的系统及模块
CN105281885A (zh) 用于网络设备的时间同步方法、装置及时间同步服务器
CN111698052A (zh) 一种跨越电力安全区的同源对时系统
CN109367586B (zh) 一种城市轨道交通信号系统时钟同步系统及方法
CN111092687B (zh) 一种fc交换网络系统日历时钟同步系统
CN112073229A (zh) 与标准TTE网络系统直通的uTTE网络系统
US10694482B2 (en) System for broadcasting a temporal reference in an aircraft
JP2002094490A (ja) 時刻供給システム及び時刻供給装置
US11658758B2 (en) Time transfer system and method for satellite-independent, phase and frequency synchronization over traditional IP core network without full or partial timing support
Atiq et al. Time synchronization for deterministic communication
CN117579211A (zh) 一种轨道交通高精度对时系统及其实现方法
Xiao et al. Analysis and implementation of IEEE 1588 time synchronizing design of bay level in digital substation
CN109379157A (zh) 基于时钟抖动消除的高精度变电站时钟同步装置
MacLaren et al. Evolving Time Synchronization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870519

Country of ref document: EP

Kind code of ref document: A1