WO2021063141A1 - 显示设备及其供电方法 - Google Patents

显示设备及其供电方法 Download PDF

Info

Publication number
WO2021063141A1
WO2021063141A1 PCT/CN2020/112207 CN2020112207W WO2021063141A1 WO 2021063141 A1 WO2021063141 A1 WO 2021063141A1 CN 2020112207 W CN2020112207 W CN 2020112207W WO 2021063141 A1 WO2021063141 A1 WO 2021063141A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
control signal
mode
touch
Prior art date
Application number
PCT/CN2020/112207
Other languages
English (en)
French (fr)
Inventor
肖聘
陈秀云
何宗泽
徐振国
张叶浩
黄亚东
赵晶
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/279,716 priority Critical patent/US11829553B2/en
Priority to EP20864305.6A priority patent/EP4040273A4/en
Publication of WO2021063141A1 publication Critical patent/WO2021063141A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3218Monitoring of peripheral devices of display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device and a power supply method for the display device.
  • a drive circuit drives the panel to perform operations such as display and touch.
  • touch and display driver integration TDDI, Touch and Display Driver Integration
  • TDDI technology refers to the integration of a driving circuit for touch control and a driving circuit for display.
  • a display device including: a main control circuit configured to provide a first control signal; a touch display drive circuit configured to provide a second control signal; a power supply circuit, and the touch display
  • the drive circuit is connected, and is configured to provide a power supply voltage to the touch display drive circuit; and a logic circuit, which is connected to the main control circuit, the touch display drive circuit, and the power supply circuit, is configured to Under the control of the first control signal and the second control signal, the power supply circuit is continuously enabled in the first mode and the power supply circuit is enabled intermittently in the second mode.
  • the main control circuit is configured to provide a first control signal of a first level in the first mode and a first control signal of a second level in the second mode; and the touch The control display driving circuit is configured to provide a second control signal of a third level in the first mode, and periodically provide a second control signal of a fourth level in the second mode.
  • the logic circuit includes an OR gate, a first input terminal of the OR gate is connected to the main control circuit to receive the first control signal, and a second input terminal of the OR gate is connected to The touch display driving circuit receives the second control signal, and the output terminal of the OR gate is connected to the enable terminal of the power supply circuit.
  • the touch display drive circuit is connected to the main control circuit, and the touch display drive circuit is further configured to use the power supply voltage provided by the power supply circuit for touch detection in the second mode And the main control circuit is also configured to switch the display device from the second mode to the first mode based on the touch detection result of the touch display driving circuit.
  • the touch detection result includes whether a preset touch action has occurred.
  • the display device further includes: an auxiliary circuit connected to the touch display driving circuit, the auxiliary circuit being configured to provide an auxiliary voltage lower than the supply voltage to the touch driving circuit
  • the touch display driving circuit is further configured to use the auxiliary voltage to generate a second control signal.
  • the touch display driving circuit includes a general-purpose input/output GPIO interface, and the touch display driving circuit is connected to the logic circuit via the general-purpose input/output GPIO interface.
  • the touch display drive circuit is an integrated touch and display drive TDDI circuit.
  • the first mode is a working mode
  • the second mode is a standby mode
  • the first level and the fourth level are high levels, and the second level and the third level are low levels.
  • a power supply method for a display device as described above.
  • the power supply method includes: in a first mode, a main control circuit provides a first control signal, and a touch display drive circuit provides a second control signal ,
  • the logic circuit continuously enables the power supply circuit to provide the power supply voltage to the touch display driving circuit based on the first control signal and the second control signal; and in the second mode, the main control circuit provides the first control signal
  • the touch display driving circuit provides a second control signal
  • the logic circuit intermittently enables the power supply circuit to provide the touch display driving circuit based on the first control signal and the second control signal Supply voltage.
  • the logic circuit includes an OR gate, and in the first mode, the main control circuit provides a first control signal of a first level, and the touch display driving circuit provides a third level of a first control signal. Two control signals, enabling the logic circuit to continuously enable the power supply circuit to provide the power supply voltage to the touch display driving circuit; and in the second mode, the main control circuit provides the first control of the second level Signal, the touch display driving circuit periodically provides a second control signal of a fourth level, so that the logic circuit periodically enables the power supply circuit to provide a supply voltage to the touch display driving circuit.
  • the periodically providing the second control signal of the fourth level includes: providing the second control signal of the fourth level in the blanking period of each frame.
  • the power supply method further includes: in the second mode, the touch display driving circuit performs touch detection during the blanking period, and the main control circuit causes the The display device is switched from the second mode to the first mode.
  • the main control circuit switches the display device from the second mode to the first mode based on whether a preset touch action has occurred.
  • Fig. 1 shows a block diagram of a display device according to an embodiment of the present disclosure.
  • Fig. 2 shows a block diagram of a display device according to another embodiment of the present disclosure.
  • Fig. 3 shows a flowchart of a power supply method for a display device according to an embodiment of the present disclosure.
  • Fig. 4 shows a flowchart of a power supply method for a display device according to another embodiment of the present disclosure.
  • FIG. 5 shows a signal timing diagram of a display device according to an embodiment of the present disclosure.
  • the display device can be operated in different modes, such as a working mode and a standby mode.
  • the display device performs display and touch detection.
  • Display and touch detection can be performed in a time-sharing manner, for example, display is performed during a display period in a frame, and touch detection is performed during a blanking period in a frame.
  • the drive circuit of the display device performs display drive, for example, outputting a display scan signal and a display data signal to the display panel of the display device to drive the corresponding pixels on the display panel to emit light, thereby realizing screen display.
  • the driving circuit performs touch driving.
  • a touch scan signal can be applied to the touch panel of the display device, so that the sensing units arranged in an array on the touch panel generate sensing signals. There is a difference between the generated sensing signal and the sensing signal generated when it is not touched, and the touch can be detected by analyzing the difference.
  • the display device may not perform display, but may perform touch detection. Since touch detection does not need to be continuously performed, continuously supplying power to the touch display driving circuit will cause a waste of power.
  • the embodiments of the present disclosure provide a display circuit and a power supply method thereof, which can reduce power waste.
  • Fig. 1 shows a block diagram of a display device according to an embodiment of the present disclosure.
  • the display device 100 includes a main control circuit 110, a touch display driving circuit 120, a power supply circuit 130 and a logic circuit 140.
  • the logic circuit 140 is respectively connected to the main control circuit 110, the touch display driving circuit 120 and the power supply circuit 130, and the power supply circuit 130 is connected to the touch display driving circuit 120.
  • the main control circuit 110 may provide the first control signal.
  • the touch display driving circuit 120 may provide a second control signal.
  • the power supply circuit 130 can provide a power supply voltage to the touch display driving circuit 120.
  • the logic circuit 140 may continuously enable the power supply circuit 130 in the first mode and intermittently enable the power supply circuit 130 in the second mode under the control of the first control signal and the second control signal.
  • the main control circuit 110 can provide a first control signal of a first level in the first mode and a first control signal of a second level in the second mode, and the touch display driving circuit 120 can be in the first mode.
  • the second control signal of the third level is provided in the second mode and the second control signal of the fourth level is periodically provided in the second mode, so that the logic circuit 140 can continuously enable the power supply circuit 130 in the first mode and in the first mode. In the second mode, the power supply circuit 130 is periodically enabled.
  • the first mode may be a working mode, and the second mode may be a standby mode.
  • the first level may be a high level, and the second level may be a low level.
  • the third level may be a low level, and the fourth level may be a high level.
  • the embodiments of the present disclosure are not limited to this, the first level and the second level can be used interchangeably, and the third level and the fourth level can also be used interchangeably.
  • the first level and the fourth level can be the same or different, the second level and the third level can be the same or different, that is, the high level of the first control signal and the high level of the second control signal can have the same or Different level values, the low level of the first control signal and the low level of the second control signal may have the same or different level values.
  • the power supply circuit can be powered when needed, and Power is not always supplied, thus saving power.
  • Fig. 2 shows a block diagram of a display device according to another embodiment of the present disclosure.
  • the display device 200 includes a main control circuit 210, a touch display driving circuit 220, a power supply circuit 230 and a logic circuit 240.
  • a main control circuit 210 controls the display device 200.
  • a touch display driving circuit 220 controls the display device 200.
  • a power supply circuit 230 controls the display device 200.
  • a logic circuit 240 controls the display device 200.
  • the main control circuit 210 may be a main controller in the display device 200, including but not limited to a CPU, a GPU, a micro-control unit MCU, and so on.
  • the main control circuit 210 may provide the first control signal Ctr1 of the first level in the first mode, and provide the first control signal Ctr1 of the second level in the second mode.
  • the main control circuit 210 may provide a high-level first control signal Ctr1 in the working mode, and provide a low-level first control signal Ctr1 in the standby mode.
  • the main control circuit 210 may output the first control signal Ctr1 at its inherent enable signal output terminal, for example.
  • the touch display driving circuit 220 may provide the second control signal Ctr2 of the third level in the first mode, and periodically provide the second control signal Ctr2 of the fourth level in the second mode.
  • the touch display driving circuit 220 may provide the second control signal Ctr2 with a continuous low level in the working mode, and provide the second control signal Ctr2 with a high level in the blanking period of each frame in the standby mode, and the second control signal Ctr2 may be provided at every frame.
  • the display period of one frame provides a low level second control signal Ctr2.
  • the touch display driving circuit 220 may be a TDDI circuit, in which a display driving sub-circuit and a touch driving sub-circuit are integrated.
  • the touch display driving circuit 220 may have an interface for outputting the second control signal Ctr2, for example, a GPIO interface in FIG. 2.
  • the conventional touch display drive circuit is continuously powered under the control of the main control circuit.
  • the touch display drive circuit 220 of the embodiment of the present disclosure can provide a single control signal (ie, the first control signal) through the GPIO interface of the TDDI chip. Two control signals), so that the touch display driving circuit 220 can enable its own power supply when needed, thereby saving power.
  • the touch display driving circuit 220 may also have power supply terminals AVDD and AVEE.
  • the power supply terminal AVDD may receive a first power supply voltage (such as a power supply voltage), and the power supply terminal AVEE may receive a second power supply voltage (such as a reference voltage).
  • the display driving sub-circuit in the touch display driving circuit 220 may use the power supply voltage of the power supply terminal AVDD and the reference voltage of the power supply terminal AVEE for display driving.
  • the touch driving sub-circuit in the touch display driving circuit 220 can use the power supply voltage of the power supply terminal AVDD to perform touch detection.
  • the power supply circuit 230 is connected to the touch display drive circuit 220 and can provide a power supply voltage to the touch display drive circuit 220.
  • the power supply circuit 230 may have an enable signal terminal EN.
  • the enable signal terminal EN is a valid enable signal
  • the power supply circuit 230 generates a power supply voltage, such as a power supply voltage and a reference voltage, and supplies them to the power supply terminals AVDD and AVEE of the touch display driving circuit 220, respectively.
  • the amplitude of the power supply voltage may be in the range of 4.5V to 6.5V, for example, a power supply voltage in the range of -5V to +5V may be provided.
  • the logic circuit 240 may generate an enable signal Enable for the power supply circuit 230 according to the first control signal Ctr1 and the second control signal Ctr2.
  • the logic circuit 240 may include an OR gate OR, wherein the first input terminal of the OR gate OR is connected to the main control circuit 210 to receive the first control signal Ctr1, and the second input terminal of the OR gate OR is connected to
  • the touch display driving circuit 220 (for example, connected to its GPIO interface) receives the second control signal Ctr2, and the output terminal of the OR gate OR is connected to the enable terminal EN of the power supply circuit 230 to provide an enable signal Enable to it.
  • the first control signal Ctr1 and the second control signal Ctr2 cause the OR gate OR to generate a continuously high-level enable signal Enable, so that the power supply circuit 230 continuously provides the power supply voltage to the touch display driving circuit 220.
  • the first control signal Ctr1 and the second control signal Ctr2 cause the OR gate OR to generate a periodic high-level enable signal Enable, so that the power supply circuit 230 periodically provides the power supply voltage to the touch display driving circuit 220 .
  • the logic circuit 240 may include an interface for receiving the second control signal Ctr2, such as a general-purpose input and output GPIO interface, so as to be connected to the general-purpose input and output of the touch display driving circuit 220 via the general-purpose input and output GPIO interface.
  • GPIO interface for receiving the second control signal Ctr2, such as a general-purpose input and output GPIO interface, so as to be connected to the general-purpose input and output of the touch display driving circuit 220 via the general-purpose input and output GPIO interface.
  • the touch display driving circuit 220 may be connected to the main control circuit 210, and the touch display driving circuit 220 may also use the power supply voltage provided by the power supply circuit 230 for touch in the second mode.
  • the main control circuit 210 may also switch the display device 200 from the second mode to the first mode based on the touch detection result of the touch display driving circuit 220. For example, in the standby mode, during the blanking period of each frame, the touch driving sub-circuit in the touch display driving circuit 220 can use the power supply voltage provided by the power supply circuit 230 during the blanking period to perform touch detection to generate a touch. Test results.
  • touch detection results examples include, but are not limited to, touch detection data and analysis results obtained based on the touch detection data.
  • the touch display driving circuit 220 may send touch detection data (for example, data related to a touch on the touch panel) to the main control circuit 210, and the main control circuit 210 determines whether a wake-up event has occurred according to the touch detection data. For example, a touch, a slide or a predetermined gesture, if so, the main control circuit 210 can switch the display device 200 to the working mode, that is, wake up the display device 200.
  • the touch display driving circuit 220 may analyze the touch detection data, and send the analysis result (for example, whether a touch or a specified touch action has occurred) to the main control circuit 210, and the main control circuit 210 may analyze the touch detection data according to the analysis result. Wake up the display device 200.
  • the display circuit 200 may further include a battery 250 for providing the power supply circuit 230 with required power.
  • the display circuit 200 may further include an auxiliary circuit 260, which is used to provide an auxiliary voltage (the auxiliary voltage may be lower than the supply voltage of the power supply circuit 230, for example, about 1.8V) in the second mode.
  • the display driving circuit 220 supplies power, and the touch display driving circuit 220 can use the lower auxiliary voltage to generate the second control signal.
  • the auxiliary voltage can also be used by the touch display driving circuit 220 in touch detection.
  • the auxiliary circuit 260 may be implemented by a power source other than the power supply circuit 230 in the display device 200.
  • the display device 200 can provide three power supplies for the TDDI circuit. When the display device 200 is in standby mode, a lower voltage power supply is provided as the auxiliary circuit 260 to keep working, and a higher voltage power supply (for example, the power supply circuit 230 ) Can work when needed and turn off when not needed.
  • a logic circuit with a simple structure can be used to save power.
  • the embodiments of the present disclosure are not limited to this, and the main control circuit 210 and the touch display driving circuit 220 can be made to provide other forms of first control signals and second control signals as needed, and the logic circuit 240 of other structures can be selected accordingly.
  • the power supply circuit 230 can be continuously enabled in the first mode, and the power supply circuit 230 can be enabled intermittently in the second mode.
  • the main control circuit 210 can output a high-level first control signal in both the first mode and the second mode, and the touch display driving circuit 220 can provide a low-level second control signal in the first mode as described above. Signal and periodically provide a high-level second control signal in the second mode.
  • the logic circuit 240 may include a logic sub-circuit in addition to the OR gate. The logic sub-circuit may be configured to Pulling down the first control signal to a low level, for example, can pull down the first control signal according to the first rising edge of the second control signal. In this way, it is also possible to continuously enable the power supply circuit 230 in the first mode, and intermittently enable the power supply circuit 230 in the second mode.
  • Fig. 3 shows a flowchart of a power supply method for a display device according to an embodiment of the present disclosure.
  • the power supply method may be executed in the display device of any of the foregoing embodiments, for example, executed in the foregoing display device 100 or 200.
  • step S101 in the first mode, the main control circuit provides a first control signal, the touch display drive circuit provides a second control signal, and the logic circuit continuously enables based on the first control signal and the second control signal
  • the power supply circuit provides a power supply voltage to the touch display driving circuit.
  • the main control circuit can provide a first control signal at a first level
  • the touch display drive circuit can provide a second control signal at a third level, so that the logic circuit can be continuously enabled
  • the power supply circuit provides a power supply voltage to the touch display driving circuit.
  • step S102 in the second mode, the main control circuit provides a first control signal, the touch display driving circuit provides a second control signal, and the logic circuit is based on the first control signal and the second control signal
  • the power supply circuit is intermittently enabled to provide the power supply voltage to the touch display driving circuit.
  • the main control circuit can provide the first control signal of the second level, and the touch display driving circuit can periodically provide the fourth level (for example, in the blanking period of each frame).
  • the second control signal of high level is provided, so that the logic circuit can periodically enable the power supply circuit to provide the power supply voltage to the touch display driving circuit.
  • Fig. 4 shows a flowchart of a power supply method for a display device according to another embodiment of the present disclosure.
  • the power supply method can be implemented in the display device of any of the above embodiments, for example, in the above display device 200, where the logic circuit 240 includes an OR gate.
  • step S201 the display device is in working mode, the main control circuit provides a high-level first control signal, and the touch display drive circuit provides a low-level second control signal, so that the logic circuit can continuously enable the power supply circuit to contact the
  • the control display drive circuit provides the supply voltage.
  • step S202 it is determined whether the display device enters the standby mode, if so, step S203 is executed, otherwise, it returns to step S201 to make the display device continue to operate in the working mode.
  • This step can be performed by the main control circuit. For example, when the user presses the standby button of the display device or does not perform any operation on the display device within a predetermined time, the main control circuit can make the display device enter the standby mode, otherwise continue to maintain the working mode .
  • step S203 in the standby mode, the main control circuit provides a low level first control signal, and the touch display driving circuit periodically provides a high level (for example, provides a high level in the blanking period of each frame).
  • the second control signal enables the logic circuit to periodically enable the power supply circuit to provide the power supply voltage to the touch display driving circuit.
  • step S204 it is judged whether a wake-up event is detected, and if so, step S205 is executed, otherwise, it returns to step S203 to continue the operation in the standby mode.
  • the touch display driving circuit can use the supplied power supply voltage to perform touch detection during the period of periodic power supply, such as outputting a touch scan signal and receiving a touch sensing signal.
  • the touch sensing signal carries information about the touch (also called touch detection). Data), the touch can be detected using this information.
  • the touch display driving circuit can convert the touch sensing signal into data recognizable by the main control circuit and provide it to the main control circuit.
  • the main control circuit determines whether a touch or a specific touch action, gesture, etc.
  • the touch display driving circuit may perform further analysis after obtaining the touch sensing signal, and provide the obtained analysis result (for example, whether a touch or a specific touch action or gesture has occurred) to the main control circuit.
  • the control circuit can determine whether a wake-up event occurs according to the analysis result.
  • step S205 switch to the working mode.
  • This step can be performed by the main control circuit.
  • the main control circuit can change the operation mode of the display device from the standby mode to the working mode and notify other circuits in the display device, such as a touch display drive circuit, even in some embodiments
  • the logic circuit can also be notified. In this way, the display device is awakened, thereby returning to step S201 to operate in the working mode.
  • FIG. 5 shows a signal timing diagram of a display device according to an embodiment of the present disclosure. This signal timing diagram is applicable to the display device of any of the above embodiments, such as the display device 200. The timing diagram will be described in detail below in conjunction with the display device 200.
  • each of a plurality of frames F1, F2, F3, F4... includes a blanking period TP and a display period DP.
  • the display device 200 performs touch detection during the blanking period TP and performs display during the display period DP. , So as to minimize the impact between the two.
  • the display device 200 In the first frame F1, the display device 200 is operating in the working mode, the first control signal Ctr1 is at a high level, and the second control signal Ctr2 is at a low level, which makes the output terminal of the OR gate OR output a high level enable Signal Enable.
  • the high-level enable signal Enable is provided to the enable terminal EN of the power supply circuit 230, so that the enable power supply circuit 230 provides a power supply voltage to the touch display driving circuit 220.
  • the figure shows the power supply voltage at the power supply terminal AVDD, that is, the power supply voltage.
  • the reference voltage at the power supply terminal AVEE has a similar but inverted waveform, which will not be repeated here. As shown in FIG. 5, the power supply voltage of the power supply terminal AVDD is always at a high level in the first mode, for example, in the range of 4.5V to 6.5V, for example, it may be about 5V.
  • the display device 200 enters the standby mode.
  • the power supply circuit 230 continues to provide a power supply voltage of, for example, about 5V to the power supply terminal AVDD. During this period, the touch display driving circuit 230 can use the provided power supply voltage of about 5V to perform touch detection. If a wake-up event such as a touch or a specific gesture is detected, the main control circuit 210 wakes up the display device 200 to Back to working mode.
  • the first control signal Ctr1 and the second control signal Ctr2 are both low level, so that the OR gate OR outputs a low level enable signal Enable.
  • the low-level enable signal Enable disables the power supply circuit 230, so that the voltage of the power supply terminal AVDD of the touch display driving circuit 220 gradually decreases, which is also called gradual discharge.
  • the display device 200 does not need to perform display, so the touch display driving circuit 230 may not be powered.
  • the display device 200 is still in the standby mode.
  • the first control signal Ctr1 is at a low level and the second control signal Ctr2 is at a high level, so that the enable signal Enable is at a high level.
  • the high-level enable signal Enable is provided to the enable terminal EN of the power supply circuit 230, so that the power supply circuit 230 provides a power supply voltage (for example, a voltage of about 5V at the power supply terminal AVDD).
  • the first control signal Ctr1 and the second control signal Ctr2 are both low level, so that the enable signal Enable is low level, and the power supply terminal AVDD The supply voltage gradually drops.
  • the operation in the fourth frame F4 is the same as that in the third frame F3, and will not be repeated here.
  • the power supply circuit 230 may be configured to directly jump the power supply voltage from a high level to a low level when it is disabled, for example, from 5V to 0V.
  • the enabling of the power supply circuit can be controlled by both the main control circuit and the touch display driving circuit.
  • the main control circuit can lead the enabling of the power supply circuit, so that the power supply circuit Continuously supply power to the touch display driving circuit
  • the touch display driving circuit itself can lead the enabling of the power supply circuit, so that the power supply circuit can only supply power to itself when needed.
  • the embodiments of the present disclosure can reduce the power consumption of the power supply circuit, thereby reducing battery energy consumption and prolonging the standby time of the display device.
  • the embodiment of the present disclosure enables the power supply to the touch display driving circuit in the blanking period of each frame in the second mode, because the blanking period TP is much shorter than the display period DP, for example Taking a frame length of about 16.7 ms as an example, the length of the blanking period TP is about 4.4 ms, which makes it possible to greatly reduce the power consumption of the power supply circuit. For example, for a display device with a standby power consumption of about 4.3 mW, the power supply method of the embodiment of the present disclosure can reduce its standby power consumption to about 1.07 mW, that is, the power consumption is reduced by 75%. This is extremely advantageous for some display devices that require high power consumption, such as smart wearable products such as watches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Power Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示设备及其供电方法,该显示设备包括,主控电路(110),被配置为提供第一控制信号;触控显示驱动电路(120),被配置提供第二控制信号;供电电路(130),与触控显示驱动电路(120)连接,被配置为向触控显示驱动电路(120)提供供电电压;以及逻辑电路(140),与主控电路(110)、触控显示驱动电路(120)和供电电路(130)连接,被配置为在第一控制信号和第二控制信号的控制下,在第一模式中持续使能该供电电路(130)并且在第二模式中间歇性使能该供电电路(130)。

Description

显示设备及其供电方法
相关申请的交叉引用
本申请要求于2019年9月30日提交的、申请号为201910948773.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种显示设备以及一种显示设备的供电方法。
背景技术
通常,在显示设备中,例如在具有触控功能的显示设备中,由驱动电路来驱动面板进行诸如显示和触控之类的操作。近年来,触控与显示驱动集成(TDDI,Touch and Display Driver Integration)技术由于其高性能和小尺寸而受到越来越多的关注。TDDI技术指的是将用于触控的驱动电路和用于显示的驱动电路集成在一起。
发明内容
在第一方面,提供了一种显示设备,包括:主控电路,被配置为提供第一控制信号;触控显示驱动电路,被配置提供第二控制信号;供电电路,与所述触控显示驱动电路连接,被配置为向所述触控显示驱动电路提供供电电压;以及逻辑电路,与所述主控电路、所述触控显示驱动电路和所述供电电路连接,被配置为在所述第一控制信号和所述第二控制信号的控制下,在第一模式中持续使能所述供电电路并且在第二模式中间歇性使能所述供电电路。
在一些实施例中,所述主控电路被配置为在第一模式下提供第一电平的第一控制信号,在第二模式下提供第二电平的第一控制信号;并且所述触控显示驱动电路被配置为在第一模式下提供第三电平的第二控制信号,在第二模式下周期性提供第四电平的第二控制信号。
在一些实施例中,所述逻辑电路包括或门,所述或门的第一输入端连接至所述主控电路以接收所述第一控制信号,所述或门的第二输入端连接至所述触控显示驱动电路以接收所述第二控制信号,所述或门的输出端连接至所述供电电路的使能端。
在一些实施例中,所述触控显示驱动电路与所述主控电路连接,所述触控显示驱动电路还被配置为在第二模式下使用由所述供电电路提供的供电电压进行触摸检测,并且所述主控电路还被配置为基于所述触控显示驱动电路的触摸检测结果使所述显示设备从第二模式切换到第一模式。
在一些实施例中,所述触摸检测结果包括是否发生了预设的触摸动作。
在一些实施例中,所述显示设备还包括:辅助电路,与所述触控显示驱动电路连接,所述辅助电路被配置为向所述触控驱动电路提供低于所述供电电压的辅助电压,所述触控显示驱动电路还被配置为使用所述辅助电压来产生第二控制信号。
在一些实施例中,所述触控显示驱动电路包括通用输入输出GPIO接口,所述触控显示驱动电路经由所述通用输入输出GPIO接口与所述逻辑电路连接。
在一些实施例中,所述触控显示驱动电路为触控与显示驱动集成TDDI电路。
在一些实施例中,所述第一模式为工作模式,所述第二模式为待机模式。
在一些实施例中,所述第一电平和所述第四电平为高电平,所述第二电平和所述第三电平为低电平。
在第二方面,提供了一种如上所述的显示设备的供电方法,所述供电方法包括:在第一模式下,主控电路提供第一控制信号,触控显示驱动电路提供第二控制信号,逻辑电路基于所述第一控制信号和所述第二控制信号持续地使能供电电路向触控显示驱动电路提供供电电压;以及在第二模式下,所述主控电路提供第一控制信号,所述触控显示驱动电路提供第二控制信号,所述逻辑电路基于所述第一控制信号和所述第二控制信号间歇性地使能所述供电电路向所述触控显示驱动电路提供供电电压。
在一些实施例中,所述逻辑电路包括或门,在第一模式下,所述主控电路提供第一电平的第一控制信号,所述触控显示驱动电路提供第三电平的第二控制信号,使得所述逻辑电路持续地使能所述供电电路向所述触控显示驱动电路提供供电电压;以及在第二模式下,所述主控电路提供第二电平的第一控制信号,所述触控显示驱动电路周期性提供第四电平的第二控制信号,使得所述逻辑电路周期性使能所述供电电路向所述触控显示驱动电路提供供电电压。
在一些实施例中,所述周期性提供第四电平的第二控制信号包括:在每一帧的消隐时段提供第四电平的第二控制信号。
在一些实施例中,所述供电方法还包括:在第二模式下,所述触控显示驱动电路在 所述消隐时段进行触摸检测,所述主控电路基于所述触摸检测结果使所述显示设备从第二模式切换到第一模式。
在一些实施例中,所述主控电路基于是否发生了预设的触摸动作使所述显示设备从第二模式切换到第一模式。
附图说明
图1示出了根据本公开一实施例的显示设备的框图。
图2示出了根据本公开另一实施例的显示设备的框图。
图3示出了根据本公开一实施例的显示设备的供电方法的流程图。
图4示出了根据本公开另一实施例的显示设备的供电方法的流程图。
图5示出了根据本公开实施例的显示设备的信号时序图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下获得的所有其他实施例都属于本公开保护的范围。应注意,贯穿附图,相同的元素由相同或相近的附图标记来表示。在以下描述中,一些实施例用于描述目的,而不应该理解为对本公开有任何限制,而是本公开实施例的示例。在可能导致对本公开的理解造成混淆时,将省略常规结构或配置。应注意,图中各部件的形状和尺寸不反映真实大小和比例,而是示意本公开实施例的内容。
除非另外定义,本公开实施例使用的技术术语或科学术语应当是本领域技术人员所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似词语并不表示任何顺序、数量或重要性,而是用于区分不同的组成部分。
通常,显示设备可以操作于不同的模式,例如工作模式和待机模式。
在工作模式下,显示设备进行显示和触摸检测。显示和触摸检测可以分时进行,例如在一帧当中的显示时段进行显示,在一帧当中的消隐时段进行触摸检测。在进行显示时,显示设备的驱动电路执行显示驱动,例如向显示设备的显示面板输出显示扫 描信号和显示数据信号,以驱动显示面板上相应的像素发光,从而实现画面显示。在执行触摸检测时,驱动电路执行触控驱动,例如可以向显示设备的触控面板施加触控扫描信号,从而使触控面板上布置成阵列的感应单元产生感应信号,感应单元在受到触摸时产生的感应信号与未受到触摸时产生的感应信号之间存在差异,通过分析该差异,能够检测到触摸。
在待机模式下,显示设备可以不进行显示,但是可以进行触摸检测。由于触摸检测可以不必持续进行,因此持续给触控显示驱动电路供电,会造成电力的浪费。
本公开的实施例提供了一种显示电路及其供电方法,可以减少电力浪费。
图1示出了根据本公开一实施例的显示设备的框图。
如图1所示,显示设备100包括主控电路110、触控显示驱动电路120、供电电路130和逻辑电路140。逻辑电路140分别与主控电路110、触控显示驱动电路和120和供电电路130连接,供电电路130与触控显示驱动电路120连接。
主控电路110可以提供第一控制信号。触控显示驱动电路120可以提供第二控制信号。供电电路130可以向触控显示驱动电路120提供供电电压。逻辑电路140可以在第一控制信号和第二控制信号的控制下,在第一模式中持续使能供电电路130并且在第二模式中间歇性使能供电电路130。
例如,主控电路110可以在第一模式下提供第一电平的第一控制信号并且在第二模式下提供第二电平的第一控制信号,触控显示驱动电路120可以在第一模式下提供第三电平的第二控制信号并且在第二模式下周期性提供第四电平的第二控制信号,从而使逻辑电路140可以在第一模式中持续使能供电电路130并且在第二模式中周期性使能供电电路130。
在一些实施例中,第一模式可以为工作模式,第二模式可以为待机模式。在一些实施例中,第一电平可以为高电平,第二电平可以为低电平。在一些实施例中,第三电平可以为低电平,第四电平可以为高电平。然而本公开的实施例不限于此,第一电平和第二电平可以互换使用,第三电平和第四电平也可以互换使用。第一电平和第四电平可以相同或不同,第二电平和第三电平可以相同或不同,也就是说,第一控制信号的高电平和第二控制信号的高电平可以具有相同或不同的电平值,第一控制信号的 低电平和第二控制信号的低电平可以具有相同或不同的电平值。
根据本公开的实施例,通过在不同模式下基于主控电路和触控显示驱动电路二者产生的控制信号来持续性或周期性地使能供电电路,可以使供电电路在需要时供电,而不是始终供电,从而节省了电力。
图2示出了根据本公开另一实施例的显示设备的框图。
如图2所示,类似于图1,显示设备200包括主控电路210、触控显示驱动电路220、供电电路230和逻辑电路240。以上参考图1的描述同样适用于显示设备200。
主控电路210可以为显示设备200中的主控制器,包括但不限于CPU、GPU、微控制单元MCU等等。主控电路210可以在第一模式下提供第一电平的第一控制信号Ctr1,在第二模式下提供第二电平的第一控制信号Ctr1。例如主控电路210可以在工作模式下提供高电平的第一控制信号Ctr1,在待机模式下提供低电平的第一控制信号Ctr1。在一些实施例中,主控电路210可以例如在其固有的使能信号输出端输出第一控制信号Ctr1。
触控显示驱动电路220可以在第一模式下提供第三电平的第二控制信号Ctr2,在第二模式下周期性提供第四电平的第二控制信号Ctr2。例如触控显示驱动电路220可以在工作模式下提供持续低电平的第二控制信号Ctr2,在待机模式下在每一帧的消隐时段提供高电平的第二控制信号Ctr2,而在每一帧的显示时段提供低电平的第二控制信号Ctr2。在一些实施例中,触控显示驱动电路220可以为TDDI电路,其中集成了显示驱动子电路和触控驱动子电路。触控显示驱动电路220可以具有用于输出第二控制信号Ctr2的接口,例如在图2中为GPIO接口。常规触控显示驱动电路在主控电路的控制下被持续地供电,相比之下,本公开实施例的触控显示驱动电路220可以通过TDDI芯片的GPIO接口提供一路单独的控制信号(即第二控制信号),使得触控显示驱动电路220可以在需要时使能对其自身的供电,从而节省了电力。触控显示驱动电路220还可以具有供电端AVDD和AVEE,其中供电端AVDD可以接收第一供电电压(例如电源电压),供电端AVEE可以接收第二供电电压(例如参考电压)。触控显示驱动电路220中的显示驱动子电路可以使用供电端AVDD的电源电压和供电端AVEE的参考电压进行显示驱动。触控显示驱动电路220中的触控驱动子电路可以使用供电端AVDD的电源电压 进行触摸检测。
供电电路230与触控显示驱动电路220连接,可以向触控显示驱动电路220提供供电电压。例如,供电电路230可以具有使能信号端EN。当使能信号端EN处为有效的使能信号时,供电电路230产生供电电压,例如产生电源电压和参考电压并分别提供给触控显示驱动电路220的供电端AVDD和AVEE。在一些实施例中,供电电压的幅值可以在4.5V至6.5V范围内,例如可以提供-5V至+5V范围的供电电压。
逻辑电路240可以根据第一控制信号Ctr1和第二控制信号Ctr2产生针对供电电路230的使能信号Enable。例如,如图2所示,逻辑电路240可以包括或门OR,其中或门OR的第一输入端连接至主控电路210以接收第一控制信号Ctr1,或门OR的第二输入端连接至触控显示驱动电路220(例如连接至其GPIO接口)以接收第二控制信号Ctr2,或门OR的输出端连接至供电电路230的使能端EN以向其提供使能信号Enable。例如在第一模式下,第一控制信号Ctr1和第二控制信号Ctr2使或门OR产生持续高电平的使能信号Enable,从而使供电电路230持续给触控显示驱动电路220提供供电电压。在第二模式下,第一控制信号Ctr1和第二控制信号Ctr2使或门OR产生周期性高电平的使能信号Enable,从而使供电电路230周期性给触控显示驱动电路220提供供电电压。在一些实施例中,逻辑电路240可以包括用于接收第二控制信号Ctr2的接口,例如通用输入输出GPIO接口,以经由所述通用输入输出GPIO接口连接至触控显示驱动电路220的通用输入输出GPIO接口。
在一些实施例中,如图2所示,触控显示驱动电路220可以与主控电路210连接,触控显示驱动电路220还可以在第二模式下使用由供电电路230提供的供电电压进行触摸检测,并且主控电路210还可以基于触控显示驱动电路220的触摸检测结果使显示设备200从第二模式切换到第一模式。例如,在待机模式下,在每一帧的消隐时段,触控显示驱动电路220中的触控驱动子电路可以利用供电电路230在该消隐时段提供的供电电压来进行触摸检测以产生触摸检测结果。这里所谓触摸检测结果的示例包括但不限于触摸检测数据和基于触摸检测数据得到的分析结果。作为一个示例,触控显示驱动电路220可以将触摸检测数据(例如与触摸面板上的触摸有关的数据)发给主控电路210,由主控电路210根据触摸检测数据来判断是否发生了唤醒事件,例如触碰、滑动或预定 的手势,如果是,则主控电路210可以使显示设备200切换到工作模式,即,将显示设备200唤醒。作为另一个示例,触控显示驱动电路220可以对触摸检测数据进行分析,并将分析结果(例如是否发生了触摸或指定的触摸动作)发给主控电路210,主控电路210根据分析结果来唤醒显示设备200。
在一些实施例中,显示电路200还可以包括电池250,用于给供电电路230提供所需的电力。在一些实施例中,显示电路200还可以包括辅助电路260,其用于在第二模式下以辅助电压(辅助电压可以低于供电电路230的供电电压,例如可以为1.8V左右)给触控显示驱动电路220供电,触控显示驱动电路220可以使用该较低的辅助电压产生第二控制信号。该辅助电压也可以被触控显示驱动电路220用在触摸检测中。辅助电路260可以由显示设备200中除了供电电路230以外的其他电源来实现。例如显示设备200中可以为TDDI电路提供三个电源,在显示设备200工作于待机模式时,其中提供较低电压的电源作为辅助电路260保持工作,而提供较高电压的电源(例如供电电路230)可以在需要时工作,在不需要时关闭。
在上述实施例中,通过使用或门OR来基于第一控制信号和第二控制信号产生用于使能供电电路230的使能信号,可以用结构简单的逻辑电路来实现电力的节省。然而本公开的实施例不限于此,可以根据需要使主控电路210和触控显示驱动电路220提供其他形式的第一控制信号和第二控制信号,并且可以相应地选择其他结构的逻辑电路240,能够实现在第一模式下持续使能供电电路230,在第二模式下间歇性使能供电电路230。例如,主控电路210可以在第一模式和第二模式下均输出高电平的第一控制信号,触控显示驱动电路220可以如上所述在第一模式下提供低电平的第二控制信号并且在第二模式下周期性提供高电平的第二控制信号,逻辑电路240可以除了或门OR之外还包括一逻辑子电路,该逻辑子电路可以被配置为在第二模式到来时将第一控制信号下拉至低电平,例如可以根据第二控制信号的第一个到来的上升沿来下拉第一控制信号。通过这种方式,也能够实现在第一模式下持续使能供电电路230,在第二模式下间歇性使能供电电路230。
图3示出了根据本公开一实施例的显示设备的供电方法的流程图。该供电方法可以在上述任意实施例的显示设备中执行,例如在上述显示设备100或200中执行。
在步骤S101,在第一模式下,主控电路提供第一控制信号,触控显示驱动电路提供第二控制信号,逻辑电路基于所述第一控制信号和所述第二控制信号持续地使能所述供电电路向触控显示驱动电路提供供电电压。
例如对于逻辑电路包括或门的情况,主控电路可以提供第一电平的第一控制信号,触控显示驱动电路可以提供第三电平的第二控制信号,使得逻辑电路可以持续地使能供电电路向触控显示驱动电路提供供电电压。
在步骤S102,在第二模式下,主控电路提供第一控制信号,所述触控显示驱动电路提供第二控制信号,所述逻辑电路基于所述第一控制信号和所述第二控制信号间歇性地使能所述供电电路向所述触控显示驱动电路提供供电电压。
例如同样对于上述逻辑电路包括或门的情况,主控电路可以提供第二电平的第一控制信号,触控显示驱动电路可以周期性提供第四电平(例如在每一帧的消隐时段提供高电平)的第二控制信号,使得逻辑电路可以周期性使能供电电路向触控显示驱动电路提供供电电压。
图4示出了根据本公开另一实施例的显示设备的供电方法的流程图。该供电方法可以在上述任意实施例的显示设备中执行,例如在上述显示设备200,其中逻辑电路240包括或门OR。
在步骤S201,显示设备处于工作模式,主控电路提供高电平的第一控制信号,触控显示驱动电路提供低电平的第二控制信号,使得逻辑电路可以持续地使能供电电路向触控显示驱动电路提供供电电压。
在步骤S202,判断显示设备是否进入待机模式,如果是,则执行步骤S203,否则返回步骤S201使显示设备继续在工作模式下操作。该步骤可以由主控电路执行,例如,当用户按下显示设备的待机按钮或者在预定时间内没有对显示设备执行任何操作时,主控电路可以使显示设备进入待机模式,否则继续保持工作模式。
在步骤S203,在待机模式下,主控电路提供低电平的第一控制信号,触控显示驱动电路周期性提供高电平(例如在每一帧的消隐时段提供高电平)的第二控制信号,使得逻辑电路可以周期性使能供电电路向触控显示驱动电路提供供电电压。
在步骤S204,判断是否检测到唤醒事件,如果是,则执行步骤S205,否则返回步 骤S203继续在待机模式下操作。触控显示驱动电路在被周期性供电期间可以使用所提供的供电电压来进行触摸检测,例如输出触摸扫描信号并接收触摸感应信号,触摸感应信号中承载了关于触摸的信息(也称作触摸检测数据),利用该信息可以检测到触摸。在一些实施例中,触控显示驱动电路可以将触摸感应信号转换成主控电路可识别的数据提供给主控电路,由主控电路来判断是否发生触摸或者特定的触摸动作、手势等,并基于此来判断是否发生唤醒事件,例如可以响应于发生触摸而判断发生了唤醒事件,或者响应于发生特定的手势而判断发生了唤醒事件。在另一些实施例中,触控显示驱动电路可以在获得触摸感应信号之后进一步进行分析,并将得到的分析结果(例如是否发生了触摸或特定的触摸动作或手势)提供给主控电路,主控电路可以根据该分析结果来判断是否发生唤醒事件。
在步骤S205,切换到工作模式。该步骤可以由主控电路来执行,例如主控电路可以将显示设备的操作模式从待机模式改变成工作模式并通知显示设备中的其他电路,例如触控显示驱动电路,甚至在一些实施例中还可以通知逻辑电路。通过这种方式,显示设备被唤醒,从而回到步骤S201在工作模式下操作。
图5示出了根据本公开实施例的显示设备的信号时序图。该信号时序图适用于上述任意实施例的显示设备,例如显示设备200。下面将结合显示设备200来对该时序图进行详细说明。
如图5所示,多个帧F1,F2,F3,F4…中的每一帧包括消隐时段TP和显示时段DP,显示设备200在消隐时段TP进行触摸检测,在显示时段DP进行显示,从而尽量减少二者之间的影响。
在第一帧F1中,显示设备200操作于工作模式,第一控制信号Ctr1为高电平,第二控制信号Ctr2为低电平,这使得或门OR的输出端输出高电平的使能信号Enable。高电平的使能信号Enable被提供给供电电路230的使能端EN,从而使能供电电路230向触控显示驱动电路220提供供电电压。图中为了简明起见示出了供电端AVDD处的供电电压,即电源电压,供电端AVEE处的参考电压具有类似但是反相的波形,在此不再赘述。如图5所示,供电端AVDD的供电电压在第一模式下始终为高电平,例如在4.5V至6.5V范围内,例如可以为大约5V。
在第二帧F2中,显示设备200进入待机模式。
在该第二帧F2的消隐时段,第一控制信号Ctr1为低电平,第二控制信号Ctr2为高电平,这使得或门OR输出的使能信号Enable仍然为高电平,从而使能供电电路230继续向供电端AVDD提供例如大约5V的供电电压。在这期间,触控显示驱动电路230可以使用所提供的大约5V的供电电压进行触摸检测,如果检测到诸如触摸或特定手势之类的唤醒事件,则主控电路210将显示设备200唤醒,以回到工作模式。
在第二帧F2的显示时段,第一控制信号Ctr1和第二控制信号Ctr2均为低电平,从而使或门OR输出低电平的使能信号Enable。低电平的使能信号Enable将供电电路230禁用,从而触控显示驱动电路220的供电端AVDD的电压逐渐降低,也称作逐渐放电。在这期间显示设备200不需要进行显示,因此触控显示驱动电路230可以不被供电。
在第三帧F3中,显示设备200仍然处于待机模式。
在第三帧F3的消隐时段,类似于在第二帧F2中,第一控制信号Ctr1为低电平,第二控制信号Ctr2为高电平,从而使能信号Enable为高电平。高电平的使能信号Enable被提供至供电电路230的使能端EN,从而使能供电电路230提供供电电压(例如供电端AVDD处的大约5V的电压)。
在第三帧F3的显示时段,类似于在第二帧F2中,第一控制信号Ctr1和第二控制信号Ctr2均为低电平,从而使能信号Enable为低电平,供电端AVDD处的供电电压逐渐下降。
在第四帧F4中的操作与第三帧F3中相同,在此不再赘述。
虽然在上述实施例中供电端AVDD的供电电压是逐渐放电的,然而本公开的实施例不限于此。在一些实施例中,供电电路230可以被配置为当被禁用时使供电电压直接从高电平跳变到低电平,例如从5V跳变到0V。
本公开的实施例使供电电路的使能可以由主控电路和触控显示驱动电路二者来控制,在第一模式下可以由主控电路来主导对供电电路的使能,从而使供电电路持续给触控显示驱动电路供电,在第二模式下可以由触控显示驱动电路自身来主导供电电路的使能,从而在需要时才使供电电路给自身供电。相比于无论在工作模式还是待机模 式均使供电电路持续供电,本公开的实施例可以降低供电电路的功耗,从而减少对电池能量的消耗,延长显示设备的待机时间。
另外,本公开的实施例在第二模式下在每一帧的消隐时段来使能给触控显示驱动电路的供电,由于与显示时段DP相比,消隐时段TP要短得多,例如以一帧长度为约16.7ms为例,消隐时段TP的长度约为4.4ms,这使得可以极大降低供电电路的功耗。例如对于待机功耗约4.3mW的显示设备,本公开实施例的供电方法可以使其待机功耗降低至约1.07mW,即功耗降低了75%。这对于一些对功耗要求高的显示设备来说,例如对于诸如手表之类的智能穿戴产品来说,是极为有利的。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
在详细说明本公开的较佳实施例之后,熟悉本领域的技术人员可清楚的了解,在不脱离随附权利要求的保护范围与精神下可进行各种变化与改变,且本公开亦不受限于说明书中所举示例性实施例的实施方式。

Claims (15)

  1. 一种显示设备,包括:
    主控电路,被配置为提供第一控制信号;
    触控显示驱动电路,被配置提供第二控制信号;
    供电电路,与所述触控显示驱动电路连接,被配置为向所述触控显示驱动电路提供供电电压;以及
    逻辑电路,与所述主控电路、所述触控显示驱动电路和所述供电电路连接,被配置为在所述第一控制信号和所述第二控制信号的控制下,在第一模式中持续使能所述供电电路并且在第二模式中间歇性使能所述供电电路。
  2. 根据权利要求1所述的显示设备,其中,
    所述主控电路被配置为在第一模式下提供第一电平的第一控制信号,在第二模式下提供第二电平的第一控制信号;并且
    所述触控显示驱动电路被配置为在第一模式下提供第三电平的第二控制信号,在第二模式下周期性提供第四电平的第二控制信号。
  3. 根据权利要求2所述的显示设备,其中,所述逻辑电路包括或门,所述或门的第一输入端连接至所述主控电路以接收所述第一控制信号,所述或门的第二输入端连接至所述触控显示驱动电路以接收所述第二控制信号,所述或门的输出端连接至所述供电电路的使能端。
  4. 根据权利要求1所述的显示设备,其中,所述触控显示驱动电路与所述主控电路连接,所述触控显示驱动电路还被配置为在第二模式下使用由所述供电电路提供的供电电压进行触摸检测,并且所述主控电路还被配置为基于所述触控显示驱动电路的触摸检测结果使所述显示设备从第二模式切换到第一模式。
  5. 根据权利要求4所述的显示设备,其中,所述触摸检测结果包括是否发生了预设的触摸动作。
  6. 根据权利要求4所述的显示设备,还包括:辅助电路,与所述触控显示驱动电路连接,所述辅助电路被配置为向所述触控驱动电路提供低于所述供电电压的辅助电压,所述触控显示驱动电路还被配置为使用所述辅助电压来产生第二控制信号。
  7. 根据权利要求1所述的显示设备,其中,所述触控显示驱动电路包括通用输 入输出GPIO接口,所述触控显示驱动电路经由所述通用输入输出GPIO接口与所述逻辑电路连接。
  8. 根据权利要求1至7任一所述的显示设备,其中,所述触控显示驱动电路为触控与显示驱动集成TDDI电路。
  9. 根据权利要求1至7任一所述的显示设备,其中,所述第一模式为工作模式,所述第二模式为待机模式。
  10. 根据权利要求1至7任一所述的显示设备,其中,所述第一电平和所述第四电平为高电平,所述第二电平和所述第三电平为低电平。
  11. 一种根据权利要求1至10任一所述的显示设备的供电方法,所述供电方法包括:
    在第一模式下,主控电路提供第一控制信号,触控显示驱动电路提供第二控制信号,逻辑电路基于所述第一控制信号和所述第二控制信号持续地使能供电电路向触控显示驱动电路提供供电电压;以及
    在第二模式下,所述主控电路提供第一控制信号,所述触控显示驱动电路提供第二控制信号,所述逻辑电路基于所述第一控制信号和所述第二控制信号间歇性地使能所述供电电路向所述触控显示驱动电路提供供电电压。
  12. 根据权利要求11所述的供电方法,其中,所述逻辑电路包括或门,
    在第一模式下,所述主控电路提供第一电平的第一控制信号,所述触控显示驱动电路提供第三电平的第二控制信号,使得所述逻辑电路持续地使能所述供电电路向所述触控显示驱动电路提供供电电压;以及
    在第二模式下,所述主控电路提供第二电平的第一控制信号,所述触控显示驱动电路周期性提供第四电平的第二控制信号,使得所述逻辑电路周期性使能所述供电电路向所述触控显示驱动电路提供供电电压。
  13. 根据权利要求12所述的供电方法,其中,所述周期性提供第四电平的第二控制信号包括:在每一帧的消隐时段提供第四电平的第二控制信号。
  14. 根据权利要求13所述的供电方法,还包括:在第二模式下,所述触控显示驱动电路在所述消隐时段进行触摸检测,所述主控电路基于所述触摸检测结果使所述显示设备从第二模式切换到第一模式。
  15. 根据权利要求14所述的供电方法,其中,所述主控电路基于是否发生了预设的触摸动作使所述显示设备从第二模式切换到第一模式。
PCT/CN2020/112207 2019-09-30 2020-08-28 显示设备及其供电方法 WO2021063141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/279,716 US11829553B2 (en) 2019-09-30 2020-08-28 Display apparatus and method of powering the same
EP20864305.6A EP4040273A4 (en) 2019-09-30 2020-08-28 DISPLAY DEVICE AND ASSOCIATED POWER SUPPLY METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910948773.5 2019-09-30
CN201910948773.5A CN112581894B (zh) 2019-09-30 2019-09-30 显示设备及其供电方法

Publications (1)

Publication Number Publication Date
WO2021063141A1 true WO2021063141A1 (zh) 2021-04-08

Family

ID=75117234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112207 WO2021063141A1 (zh) 2019-09-30 2020-08-28 显示设备及其供电方法

Country Status (4)

Country Link
US (1) US11829553B2 (zh)
EP (1) EP4040273A4 (zh)
CN (1) CN112581894B (zh)
WO (1) WO2021063141A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806380B (zh) * 2022-01-24 2023-06-21 友達光電股份有限公司 穿戴式電子裝置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914173A (zh) * 2012-12-31 2014-07-09 乐金显示有限公司 具有集成的触摸屏的显示设备及其驱动方法
CN106055156A (zh) * 2016-06-01 2016-10-26 京东方科技集团股份有限公司 触控基板、显示面板及显示装置
CN106201047A (zh) * 2014-12-26 2016-12-07 乐金显示有限公司 触摸屏设备及其驱动方法
CN107122081A (zh) * 2017-05-31 2017-09-01 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法
CN107977107A (zh) * 2016-10-25 2018-05-01 乐金显示有限公司 包括触摸传感器的显示装置及其触摸感测方法
KR20190029029A (ko) * 2017-09-11 2019-03-20 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333872A (ja) * 2001-03-07 2002-11-22 Ricoh Co Ltd Lcd電源制御方法とその制御回路及びこの制御回路を有する画像形成装置
EP2144138B1 (en) * 2008-07-07 2011-09-07 Tyco Electronics Services GmbH Device for changing the operational state of an apparatus
TWI398764B (zh) 2009-07-21 2013-06-11 Richpower Microelectronics 降低顯示器待機時之功率消耗的裝置及方法,以及低待機功率消耗之顯示器
WO2013021846A1 (ja) * 2011-08-05 2013-02-14 シャープ株式会社 表示装置およびその制御方法
US20130176273A1 (en) * 2012-01-09 2013-07-11 Broadcom Corporation Fast touch detection in a mutual capacitive touch system
JP5990134B2 (ja) * 2013-06-11 2016-09-07 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
JP2015176512A (ja) * 2014-03-18 2015-10-05 シナプティクス・ディスプレイ・デバイス合同会社 半導体装置
CN104407466B (zh) * 2014-12-25 2017-12-26 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
KR102285910B1 (ko) * 2014-12-31 2021-08-06 엘지디스플레이 주식회사 터치센서 일체형 표시장치
KR20180010377A (ko) * 2016-07-20 2018-01-31 삼성전자주식회사 터치 디스플레이 구동 집적 회로 및 그것의 동작 방법
US10620689B2 (en) * 2016-10-21 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and operation method thereof
CN106933369B (zh) * 2017-03-30 2023-07-21 北京集创北方科技股份有限公司 一种触摸显示控制装置和触摸显示控制方法
KR102466286B1 (ko) 2017-07-13 2022-11-10 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법
CN107481695B (zh) * 2017-10-09 2021-01-26 京东方科技集团股份有限公司 时序控制器、显示驱动电路及其控制方法、显示装置
JP2019090922A (ja) * 2017-11-14 2019-06-13 シャープ株式会社 表示装置
CN109166546B (zh) * 2018-09-30 2021-04-13 广州小鹏汽车科技有限公司 一种显示屏电路及包括显示屏电路的中控屏幕系统
WO2020171510A1 (ko) * 2019-02-19 2020-08-27 삼성전자 주식회사 터치 회로를 포함하는 전자 장치, 및 그 동작 방법
KR20200101264A (ko) * 2019-02-19 2020-08-27 삼성전자주식회사 터치 회로를 포함하는 전자 장치, 및 그 동작 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914173A (zh) * 2012-12-31 2014-07-09 乐金显示有限公司 具有集成的触摸屏的显示设备及其驱动方法
CN106201047A (zh) * 2014-12-26 2016-12-07 乐金显示有限公司 触摸屏设备及其驱动方法
CN106055156A (zh) * 2016-06-01 2016-10-26 京东方科技集团股份有限公司 触控基板、显示面板及显示装置
CN107977107A (zh) * 2016-10-25 2018-05-01 乐金显示有限公司 包括触摸传感器的显示装置及其触摸感测方法
CN107122081A (zh) * 2017-05-31 2017-09-01 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法
KR20190029029A (ko) * 2017-09-11 2019-03-20 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040273A4 *

Also Published As

Publication number Publication date
EP4040273A1 (en) 2022-08-10
EP4040273A4 (en) 2022-11-30
US11829553B2 (en) 2023-11-28
US20220066612A1 (en) 2022-03-03
CN112581894B (zh) 2022-08-26
CN112581894A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US9261937B2 (en) Information processing apparatus and power supply control circuit
JP6057462B2 (ja) 半導体装置
KR101744927B1 (ko) 슬립 모드에서의 최대 절전형 모니터 제어 방법
KR101953209B1 (ko) 슬립 모드 및 아이들 상태에서의 최대 절전형 모니터의 제어 방법
US10380965B2 (en) Power circuit of displaying device
KR101782409B1 (ko) 비디오 입력 신호를 통한 최대 절전형 디스플레이의 제어 방법
US20130293018A1 (en) Power supply system of electronic device and power supply method thereof
CN110264971B (zh) 防闪屏电路及方法、驱动电路、显示装置
WO2021063141A1 (zh) 显示设备及其供电方法
US20160231848A1 (en) Touch devices and control methods therefor
US8368565B2 (en) Power saving method in sleep mode and keyboard controller using the same
TWI521336B (zh) 顯示裝置
US20190391633A1 (en) Power Saving Method and Display Controller Capable of Optimizing Power Utilization
KR101851218B1 (ko) 모니터 화면의 자가 진단 기능을 갖는 절전형 디스플레이의 제어 방법
US8013644B2 (en) Power supply circuit for south bridge chip
CN101727167B (zh) 电源切换电路
US8860647B2 (en) Liquid crystal display apparatus and source driving circuit thereof
TW201908952A (zh) 電子裝置以及顯示圖像產生方法
US9201483B2 (en) Image processing unit, image processing apparatus and image display system
EP3208683A2 (en) Electronic device, and control method therefor
KR102051949B1 (ko) Sync 신호 제어를 활용한 에너지 절감형 모니터장치의 제어방법
JP2017125920A (ja) 高解析ディスプレイ及びそのドライバーチップ
TWI814367B (zh) 顯示裝置及其控制方法
CN114816030B (zh) 电子装置及其控制方法
US20110025662A1 (en) Timing controller and liquid display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864305

Country of ref document: EP

Effective date: 20220502