WO2021063135A1 - 饱和度增强方法、装置及计算机可读存储介质 - Google Patents

饱和度增强方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021063135A1
WO2021063135A1 PCT/CN2020/111630 CN2020111630W WO2021063135A1 WO 2021063135 A1 WO2021063135 A1 WO 2021063135A1 CN 2020111630 W CN2020111630 W CN 2020111630W WO 2021063135 A1 WO2021063135 A1 WO 2021063135A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
saturation
color
space
input image
Prior art date
Application number
PCT/CN2020/111630
Other languages
English (en)
French (fr)
Inventor
张晓东
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Priority to US17/754,256 priority Critical patent/US20220358623A1/en
Priority to EP20872656.2A priority patent/EP4040786A4/en
Publication of WO2021063135A1 publication Critical patent/WO2021063135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • H04N9/69Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits for modifying the colour signals by gamma correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • This application relates to the field of image processing technology, and in particular, to a saturation enhancement method, device, and computer-readable storage medium.
  • the transmission color gamut of the broadcasting and television system includes BT601 (standard definition) and BT709 (high definition).
  • BT601 standard definition
  • BT709 high definition
  • the display color gamut continues to expand.
  • the display color gamut of the display is different, and its color reproduction ability is also different.
  • the color saturation of the high color gamut display is higher, and the displayed image often looks more vivid, which is more in line with the aesthetics of ordinary people. .
  • the main purpose of this application is to provide a saturation enhancement method, device, and computer-readable storage medium, which aim to enhance the color saturation of a displayed image.
  • the saturation enhancement method includes:
  • Gamma preprocessing is performed on the expanded color data to obtain processed color data.
  • the step of performing color space conversion on the input image to obtain color data of the color conversion includes:
  • the linear RGB data of the input image is converted into LCH data in the LCH space.
  • the step of normalizing the RGB data and performing gamma correction on the normalized data to obtain linear RGB data of the input image includes:
  • Gamma correction is performed on the normalized RGB data according to a preset gamma value to obtain linear RGB data of the input image.
  • the step of converting the linear RGB data of the input image into LCH data in LCH space includes:
  • the Luv data is converted into LCH data in the LCH space.
  • the step of performing saturation expansion on the color data of the color conversion to obtain expanded color data includes:
  • the saturation in the expanded LCH data of the color saturation is obtained by the following calculation formula:
  • the method before the step of performing gamma preprocessing on the expanded color data to obtain processed color data, the method includes:
  • the XYZ data corresponding to the expanded color saturation is converted into linear RGB data corresponding to the RGB space.
  • the step of performing gamma preprocessing on the expanded color data to obtain processed color data includes:
  • the non-linear RGB data corresponding to the obtained color saturation expansion is displayed on the display.
  • the present application also provides a saturation enhancement device, the saturation enhancement device comprising: a memory, a processor, and a saturation enhancement stored in the memory and capable of running on the processor A program, when the saturation enhancement program is executed by the processor, the steps of any one of the above saturation enhancement methods are implemented.
  • the present application also provides a computer-readable storage medium on which a saturation enhancement program is stored, and when the saturation enhancement program is executed by a processor, it implements any of the foregoing saturation enhancement methods. step.
  • the color space of the input image is converted to obtain the color data of the color conversion; the saturation of the color data of the color conversion is expanded to obtain the expanded color data; the expanded color data is pre-gamma Process to get processed color data.
  • the input image is converted into color space, and the color data is expanded in the converted color space, so that the color saturation of the input image is basically unchanged under the condition that the hue and brightness of the input image are basically unchanged. It looks more vivid, which improves the user’s viewing experience.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the application;
  • FIG. 2 is a schematic flowchart of the first embodiment of the saturation enhancement method of this application.
  • Figure 3 is a schematic diagram of the correspondence between c in before expansion and c out after expansion in the LCH space
  • FIG. 4 is a detailed flowchart of the steps of performing color space conversion on the input image to obtain color data of the color conversion in FIG. 2;
  • FIG. 5 is a schematic flowchart of a second embodiment of the saturation enhancement method of this application.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the device in the embodiment of this application may be a smart TV, or a smart phone, a tablet computer, a PC, an MP3 (Moving Picture Experts Group Audio Layer III, dynamic image expert compression standard audio layer 3) player, MP4 (Moving Picture Experts Group Audio) Layer IV, the dynamic image expert compresses standard audio layer 4) Players, portable computers and other devices with display functions.
  • MP3 Moving Picture Experts Group Audio Layer III, dynamic image expert compression standard audio layer 3
  • MP4 Moving Picture Experts Group Audio
  • the dynamic image expert compresses standard audio layer 4 the dynamic image expert compresses standard audio layer
  • the device may include: a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display (Display) and an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as a magnetic disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the device may also include a camera, an RF (Radio Frequency) circuit, a sensor, an audio circuit, a WiFi module, and so on.
  • sensors such as light sensors, motion sensors and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, where the ambient light sensor can adjust the brightness of the display according to the brightness of the ambient light, and the proximity sensor can turn off the display and/or the backlight when the mobile device is moved to the ear.
  • the gravity acceleration sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • mobile devices can be used for applications that recognize the posture of mobile devices (such as horizontal and vertical screen switching, Related games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; of course, mobile devices can also be equipped with other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. No longer.
  • sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. No longer.
  • FIG. 1 does not constitute a limitation on the device, and may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • a memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a saturation enhancement program.
  • the network interface 1004 is mainly used to connect to a back-end server and perform data communication with the back-end server;
  • the user interface 1003 is mainly used to connect to a client (user side) and perform data communication with the client;
  • the processor 1001 can be used to call the saturation enhancement program stored in the memory 1005 and perform the following operations:
  • Gamma preprocessing is performed on the expanded color data to obtain processed color data.
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • the linear RGB data of the input image is converted into LCH data in the LCH space.
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • Gamma correction is performed on the normalized RGB data according to a preset gamma value to obtain linear RGB data of the input image.
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • the Luv data is converted into LCH data in the LCH space.
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • the XYZ data corresponding to the expanded color saturation is converted into linear RGB data corresponding to the RGB space.
  • processor 1001 may call the saturation enhancement program stored in the memory 1005, and also perform the following operations:
  • the non-linear RGB data corresponding to the obtained color saturation expansion is displayed on the display.
  • FIG. 2 is a schematic flowchart of a first embodiment of a saturation enhancement method of the present application, and the saturation enhancement method includes:
  • Step S10 Perform color space conversion on the input image to obtain color data of the color conversion.
  • the device in the embodiment of this application may be a smart TV, or a smart phone, a tablet computer, a PC, an MP3 (Moving Picture Experts Group Audio Layer III, dynamic image expert compression standard audio layer 3) player, MP4 (Moving Picture Experts Group Audio) Layer IV, the dynamic image expert compresses standard audio layer 4) Players, portable computers and other devices with display functions.
  • the subsequent embodiments all take smart TVs as examples. After the smart TV is turned on, the input image needs to be acquired, and the channel corresponding to the image information currently displayed on the display needs to be confirmed, the source signal in the channel is acquired, and the image information in the video information is extracted from the source signal.
  • the image information can also be obtained through the image processing circuit in the smart TV.
  • the RGB data of the input image can be non-linear RGB data or linear RGB data.
  • the non-linear RGB data needs to be normalized and processed after the normalization.
  • Gamma correction is performed on the input image to obtain the linear RGB data of the input image, and then the linear RGB data of the input image is converted into LCH data in the LCH space; if the obtained directly is linear RGB data, the linear RGB data of the input image is directly RGB data is converted into LCH data in LCH space without the need for normalization and gamma correction steps.
  • Step S20 Perform saturation expansion on the color data of the color conversion to obtain expanded color data.
  • the saturation of each pixel By converting the linear RGB data of the input image into LCH data in the LCH space, the saturation of each pixel can be obtained.
  • the saturation of each pixel By comparing the saturation of each pixel with a preset threshold, if the saturation of the pixel is not If the saturation of the pixel exceeds the preset threshold, the saturation of the pixel is linearly expanded, and if the saturation of the pixel exceeds the preset threshold, the saturation of the pixel is expanded nonlinearly.
  • the saturation of the input image that does not exceed the preset threshold is linearly expanded by the following calculation formula in the LCH space, and the saturation that exceeds the preset threshold is nonlinearly expanded to obtain the input after the saturation is expanded image:
  • the preset threshold kc in may be 0.3, 0.4, or 0.5, or set according to actual conditions, which is not specifically limited in this embodiment.
  • the correspondence between c in before expansion and c out after expansion in the LCH space is shown in FIG. 3.
  • the saturation of a pixel does not exceed the threshold kc in , it means that the saturation of the pixel is low, and linear expansion is required.
  • the k value is greater than 1, it means that the saturation is linearly expanded; if the k value is equal to 1, it means that the saturation remains unchanged.
  • the saturation of a certain pixel exceeds the threshold kc in , the non-linearly expanded value of the saturation of the pixel is calculated according to the Bezier curve B N.
  • the saturation of each pixel in the input image is divided into different levels according to different gradients, and each level is defined as a node P i in the Bezier curve in the Bezier curve.
  • the preset threshold is When 0.4, all pixels in the range of saturation from 0.4 to 0.5 are regarded as P 1 , and all pixels in the range of saturation from 0.5 to 0.6 are regarded as P 2, etc., and by analogy, the node P of the entire input image is obtained i , and calculate its Bezier curve B N.
  • Step S30 Perform gamma preprocessing on the expanded color data to obtain processed color data.
  • the input image after the saturation expansion needs to be converted from the LCH space to the RGB space for display by the display.
  • the saturation since there is no direct conversion formula between the LCH data and the RGB data, it must use the channel XYZ space as the intermediate layer, so the saturation
  • the saturation To convert the expanded input image from LCH space to RGB space, it is necessary to first convert the expanded input image from LCH space to XYZ space, and then from XYZ space to RGB space, and obtain the RGB data after saturation expansion.
  • the expanded linear RGB data needs to be converted into expanded nonlinear RGB data through gamma presets, where the R value represents red, the G value represents green, and the B value represents blue. If the RGB data is non-linear RGB data, the non-linear RGB data is directly displayed.
  • the color space of the input image is converted, and the saturation of the color data of the color conversion is expanded to obtain the expanded color data, so that the input image is enhanced while the hue and brightness are basically unchanged.
  • Color saturation makes the image look more vivid, thereby improving the user's viewing experience.
  • FIG. 4 is a detailed flow diagram of the step of performing color space conversion on the input image in FIG. 2 to obtain color data of the color conversion. Based on the embodiment shown in FIG. 2, the input image
  • the steps of performing color space conversion to obtain color data for color conversion include:
  • Step S101 Obtain RGB data of each pixel of the input image in the RGB space.
  • the channel corresponding to the image information currently displayed on the display is confirmed, the source signal in the channel is obtained, and the image information in the video information is extracted from the source signal, and then the RGB data in the image information is extracted.
  • the image information can also be obtained through the image processing circuit in the smart TV, and then the RGB data in the image information can be extracted.
  • the RGB data is non-linear RGB data or linear RGB data. If the acquired is the nonlinear RGB data corresponding to the input image, then steps S102 and S103 are executed; if the acquired is the linear RGB data corresponding to the input image, then directly jump to step S103.
  • Step S102 Perform normalization processing on the RGB data, and perform gamma correction on the normalized data to obtain linear RGB data of the input image.
  • the acquired RGB data is non-linear RGB data
  • step S102 includes:
  • Step S201 Perform normalization processing on the RGB data according to the number of bits of the RGB data.
  • the RGB data can be normalized by the following calculation formula:
  • n is the number of RGB data bits
  • R, G, and B are respectively the RGB data of the input image in the RGB space
  • R 1 , G 1 , and B 1 are the normalized values of R, G, and B respectively .
  • the number of bits n of the RGB data may be 8, or other values other than 8, such as 9, 10, etc., which is not specifically limited in this embodiment.
  • Step S202 Perform gamma correction on the normalized RGB data according to a preset gamma value to obtain linear RGB data of the input image.
  • the normalized RGB data can be gamma corrected by the following calculation formula:
  • R' (R 1 ) ⁇ ;
  • G' (G 1 ) ⁇ ;
  • n is the number of RGB data bits
  • is the preset gamma value
  • R 1 , G 1 , and B 1 are the normalized values of R, G, and B, respectively
  • R', G', and B' respectively Is the linearized value of R, G, and B.
  • the preset gamma value ⁇ may be 2.2 or 2.4.
  • Step S103 Convert the linear RGB data of the input image into LCH data in the LCH space.
  • step S103 includes:
  • Step S203 Convert the linear RGB data of the input image into XYZ data in the XYZ space.
  • the linear RGB data of the input image can be converted into XYZ data in XYZ space by the following calculation formula:
  • Luv space After converting to XYZ space, you need to first convert XYZ space to Luv space, and then convert Luv space to LCH space.
  • L stands for brightness
  • c stands for saturation
  • h stands for hue.
  • Step S204 Convert the XYZ data into Luv data in Luv space.
  • u′ 0 4X 0 /(X 0 +15Y 0 +3Z 0 );
  • v′ 0 9Y 0 /(X 0 +15Y 0 +3Z 0 );
  • R', G', B' are the linear RGB data of the input image in RGB space
  • X, Y, Z are the XYZ data of the input image in XYZ space
  • Z 0 108.89
  • L 1 is the luminance in the Luv space
  • u and v are the chromaticities in the Luv space.
  • Step S205 Convert the Luv data into LCH data in the LCH space.
  • the Luv data can be converted into LCH data in the LCH space by the following calculation formula to obtain the saturation c in of each pixel:
  • L 1 is the brightness in the Luv space
  • L is the brightness in the LCH space
  • h is the hue in the LCH space
  • c in is the LCH space The color saturation in.
  • the saturation expansion of the color data in the LCH space can be facilitated to obtain the color data after the saturation expansion of the input image.
  • the step of performing saturation expansion on the color data of the color conversion to obtain the expanded color data includes:
  • Step S206 Determine whether the saturation in the LCH data is greater than a preset threshold.
  • step S207 is executed; if the saturation of the pixel is less than or equal to the preset threshold, step S208 is executed.
  • Step S207 Perform nonlinear expansion on the color saturation of the input image according to the Bezier curve.
  • Step S208 linearly expanding the color saturation of the input image.
  • Step S209 Acquire the saturation in the LCH data after the color saturation is expanded.
  • the saturation in the expanded LCH data of the color saturation is obtained by the following calculation formula:
  • the preset threshold kc in may be 0.3, 0.4, or 0.5, or set according to actual conditions, which is not specifically limited in this embodiment.
  • the correspondence between c in before expansion and c out after expansion in the LCH space is shown in FIG. 3.
  • the saturation of a pixel does not exceed the threshold kc in , it means that the saturation of the pixel is low, and linear expansion is required.
  • the k value is greater than 1, it means that the saturation is linearly expanded; if the k value is equal to 1, it means that the saturation remains unchanged.
  • the saturation of a certain pixel exceeds the threshold kc in , the non-linearly expanded value of the saturation of the pixel is calculated according to the Bezier curve B N.
  • the saturation of each pixel in the input image is divided into different levels according to different gradients, and each level is defined as a node P i in the Bezier curve in the Bezier curve.
  • the preset threshold is When 0.4, all pixels in the range of saturation from 0.4 to 0.5 are regarded as P 1 , and all pixels in the range of saturation from 0.5 to 0.6 are regarded as P 2, etc., and by analogy, the node P of the entire input image is obtained i , and calculate its Bezier curve B N.
  • the saturation of the input image is greatly increased, so that the processed image looks More vivid.
  • FIG. 5 is a schematic flowchart of the second embodiment of the saturation enhancement method of the present application. Based on the embodiment shown in FIG. 2 above, the expanded color data is preprocessed by gamma to obtain Before processing the color data, the steps include:
  • Step S301 Convert the expanded LCH data into Luv data corresponding to the Luv space.
  • the input image after the saturation expansion needs to be converted from the LCH space to the RGB space for display by the display.
  • the saturation-expanded input image from LCH space to RGB space since there is no direct conversion formula between LCH data and RGB data, it must use the channel XYZ space as the intermediate layer, so the saturation
  • the saturation To convert the expanded input image from LCH space to RGB space, it is necessary to first convert the saturated input image from LCH space to XYZ space, and then from XYZ space to RGB space, and obtain the RGB data after saturation expansion.
  • the LCH data with expanded color saturation can be converted into Luv data corresponding to Luv space by the following calculation formula:
  • h is the hue in the LCH space
  • c out is the saturation after the expansion of the LCH space
  • L 2 is the brightness after the expansion of the color saturation in the Luv space
  • the value of the brightness L 2 is the same as the value of the brightness L 1 in the Luv space , That is, in different color spaces, the brightness is unchanged
  • u 2 and v 2 are the chromaticity after the color saturation in the Luv space is expanded.
  • Step S302 Convert the Luv data corresponding to the expanded color saturation into XYZ data corresponding to the XYZ space.
  • the Luv data corresponding to the expanded color saturation can be converted into XYZ data corresponding to the XYZ space by the following calculation formula:
  • u′ 0 4X 0 /(X 0 +15Y 0 +3Z 0 );
  • v′ 0 9Y 0 /(X 0 +15Y 0 +3Z 0 );
  • u 2 and v 2 are the chromaticity after the expansion of the color saturation in the Luv space
  • Step S303 Convert the XYZ data corresponding to the expanded color saturation into linear RGB data corresponding to the RGB space.
  • the XYZ data corresponding to the expanded color saturation can be converted into linear RGB data corresponding to the RGB space by the following calculation formula:
  • X', Y', Z' are the corresponding XYZ data in XYZ space of the input image after saturation expansion
  • Ro ', G o ', B o' are the linearity of the input image after saturation expansion in RGB space RGB data.
  • the step of performing gamma preprocessing on the expanded color data to obtain processed color data includes:
  • Step S304 Convert the corresponding linear RGB data after the color saturation expansion into corresponding nonlinear RGB data through gamma preset;
  • the expanded linear RGB data needs to be converted into expanded nonlinear RGB data through gamma presets, where the R value represents red, the G value represents green, and the B value represents blue. If the RGB data is non-linear RGB data, skip this step and directly display the non-linear RGB data.
  • the linear RGB data corresponding to the expanded color saturation can be converted into the corresponding nonlinear RGB data through the gamma preset by the following calculation formula:
  • n is the number of RGB data bits
  • is the preset gamma value
  • Ro ', Go ', B o' are the linearized RGB data of the input image after saturation expansion in the RGB space
  • Ro , G o and B o are the non-linearized RGB data of the input image after saturation expansion in the RGB space.
  • the number of bits n of the RGB data may be 8, or other values other than 8, such as 9, 10, etc., which is not specifically limited in this embodiment.
  • the preset gamma value ⁇ may be 2.2 or 2.4. According to the above formula, linear data in RGB space can be converted into nonlinear data.
  • step S305 the non-linear RGB data corresponding to the obtained color saturation expansion is displayed on the display.
  • the input image corresponding to the non-linear RGB data can be displayed on the display for the user to watch.
  • the input image after the saturation expansion is converted from the LCH space to the RGB space, and the nonlinear RGB data after the saturation expansion is obtained, thereby displaying the input image after the saturation expansion, so that the user can display on the smart TV Vivid images are seen on the monitor of your computer.
  • an embodiment of the present application also proposes a computer-readable storage medium having a saturation enhancement program stored on the computer-readable storage medium, and the following operations are implemented when the saturation enhancement program is executed by a processor:
  • Gamma preprocessing is performed on the expanded color data to obtain processed color data.
  • the linear RGB data of the input image is converted into LCH data in the LCH space.
  • Gamma correction is performed on the normalized RGB data according to a preset gamma value to obtain linear RGB data of the input image.
  • the Luv data is converted into LCH data in the LCH space.
  • the XYZ data corresponding to the expanded color saturation is converted into linear RGB data corresponding to the RGB space.
  • the non-linear RGB data corresponding to the obtained color saturation expansion is displayed on the display.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , Magnetic disks, optical disks), including several instructions to make a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present application.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Of Color Television Signals (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

本申请公开了一种饱和度增强方法,该方法包括:对输入图像进行色彩空间转换,得到色彩转换的色彩数据;对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。本申请还公开了一种饱和度增强装置和计算机可读存储介质。

Description

饱和度增强方法、装置及计算机可读存储介质
优先权信息
本申请要求于2019年9月30日申请的、申请号为201910948636.1、名称为“饱和度增强方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理技术领域,尤其涉及一种饱和度增强方法、装置及计算机可读存储介质。
背景技术
目前广播电视系统的传输色域有BT601(标清)和BT709(高清)等。而随着显示器技术的发展,显示色域范围不断扩大。显示器的显示色域不同,其色彩还原能力也就不同,与低色域显示器相比,高色域显示器的色彩饱和度更高,显示的图像看起来往往更鲜艳,更能符合普通人的审美。
因此,为了提升用户的观看体验,在图像色调与亮度基本不变的前提下,增强图像的色彩饱和度成为亟待解决的技术问题。
发明内容
本申请的主要目的在于提供一种饱和度增强方法、装置及计算机可读存储介质,旨在增强显示图像的色彩饱和度。
为实现上述目的,本申请提供一种饱和度增强方法,所述饱和度增强方法包括:
对输入图像进行色彩空间转换,得到色彩转换的色彩数据;
对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;
对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。
在一实施例中,所述对输入图像进行色彩空间转换,得到色彩转换的色彩数据的步骤,包括:
获取输入图像在RGB空间中每个像素的RGB数据;
对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据;
将所述输入图像的线性RGB数据转化成LCH空间的LCH数据。
在一实施例中,所述对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据的步骤,包括:
根据所述RGB数据的比特数对所述RGB数据进行归一化处理;
根据预设的伽马值对归一化处理后的RGB数据进行伽马校正,获取所述输入图像的线性RGB数据。
在一实施例中,所述将所述输入图像的线性RGB数据转化成LCH空间的LCH数据的步骤,包括:
将所述输入图像的线性RGB数据转化成XYZ空间的XYZ数据;
将所述XYZ数据转化为Luv空间的Luv数据;
将所述Luv数据转化为LCH空间的LCH数据。
在一实施例中,所述对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据的步骤,包括:
判断所述LCH数据中的饱和度是否大于预设阈值;
若是,则根据贝塞尔曲线对所述输入图像的色饱和度进行非线性扩展;
若否,则对所述输入图像的色饱和度进行线性扩展;
获取色饱和度扩展后的LCH数据中的饱和度。
在一实施例中,通过如下计算公式获取色饱和度扩展后的LCH数据中的饱和度:
Figure PCTCN2020111630-appb-000001
Figure PCTCN2020111630-appb-000002
其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
在一实施例中,在所述对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤之前,包括:
将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据;
将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据;
将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据。
在一实施例中,所述对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤,包括:
通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据;
将得到的色饱和度扩展后对应的非线性RGB数据通过显示器进行显示。
此外,为实现上述目的,本申请还提供一种饱和度增强装置,所述饱和度增强装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的饱和度增强程序,所述饱和度增强程序被所述处理器执行时实现如上任一所述饱和度增强方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,其上存储有饱和度增强程序,所述饱和度增强程序被处理器执行时实现如上任一所述饱和度增强方法的步骤。
本申请通过对输入图像进行色彩空间转换,得到色彩转换的色彩数据;对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。通过上述方式,将输入图像进行色彩空间转换,在转换后的色彩空间中对色彩数据进行饱和度扩展,使得输入图像在色调和亮度基本不变的情况下,增强了色彩饱和度,使图像看起来更加鲜艳,从而提高了用户的观看体验。
附图说明
图1为本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请饱和度增强方法的第一实施例的流程示意图;
图3为在LCH空间中扩展前的c in与扩展后的c out的对应关系示意图;
图4为图2中对输入图像进行色彩空间转换,得到色彩转换的色彩数据的步骤的细化流程示意图;
图5为本申请饱和度增强方法的第二实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图。
本申请实施例装置可以是智能电视,也可以是智能手机、平板电脑、PC、MP3(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)播放器、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、便携计算机等具有显示功能的设备。
如图1所示,该装置可以包括:处理器1001,例如CPU,通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,装置还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示器的亮度,接近传感器可在移动装置移动到耳边时,关闭显示器和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动装置姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;当然,移动装置还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的装置结构并不构成对装置的限 定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及饱和度增强程序。
在图1所示的装置中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的饱和度增强程序,并执行以下操作:
对输入图像进行色彩空间转换,得到色彩转换的色彩数据;
对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;
对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
获取输入图像在RGB空间中每个像素的RGB数据;
对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据;
将所述输入图像的线性RGB数据转化成LCH空间的LCH数据。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
根据所述RGB数据的比特数对所述RGB数据进行归一化处理;
根据预设的伽马值对归一化处理后的RGB数据进行伽马校正,获取所述输入图像的线性RGB数据。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
将所述输入图像的线性RGB数据转化成XYZ空间的XYZ数据;
将所述XYZ数据转化为Luv空间的Luv数据;
将所述Luv数据转化为LCH空间的LCH数据。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
判断所述LCH数据中的饱和度是否大于预设阈值;
若是,则根据贝塞尔曲线对所述输入图像的色饱和度进行非线性扩展;
若否,则对所述输入图像的色饱和度进行线性扩展;
获取色饱和度扩展后的LCH数据中的饱和度。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
通过如下计算公式获取色饱和度扩展后的LCH数据中的饱和度:
Figure PCTCN2020111630-appb-000003
Figure PCTCN2020111630-appb-000004
其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据;
将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据;
将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据。
进一步地,处理器1001可以调用存储器1005中存储的饱和度增强程序,还执行以下操作:
通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据;
将得到的色饱和度扩展后对应的非线性RGB数据通过显示器进行显示。
本申请饱和度增强装置的具体实施例与下述饱和度增强方法各实施例基本相同,在此不作赘述。
参照图2,图2为本申请饱和度增强方法的第一实施例的流程示意图,所述饱和度增强方法包括:
步骤S10,对输入图像进行色彩空间转换,得到色彩转换的色彩数据。
本申请实施例装置可以是智能电视,也可以是智能手机、平板电脑、PC、MP3(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)播放器、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、便携计算机等具有显示功能的设备。为方便说明,后续实施例均以智能电视为例。该智能电视开机后需要获取输入图像,需要先确认显示器当前显示的图像信息对应通道,获取该通道内的源信号,并从源信号中提取视频信息中的图像信息。当然,作为另一种实施方式,也可以通过智能电视内的图像处理电路中获取图像信息。需要说明的是,该输入图像的RGB数据可以为非线性RGB数据或者线性RGB数据,当为非线性RGB数据时,需要对该非线性RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到该输入图像的线性RGB数据,进而将该输入图像的线性RGB数据转化成LCH空间的LCH数据;若获取到的直接为线性RGB数据,则直接将该输入图像的线性RGB数据转化成LCH空间的LCH数据,无需进行归一化处理和伽马校正的步骤。
由于RGB数据和LCH数据之间没有直接的转换公式,其必须用通道XYZ空间作为中间层,故将该输入图像的线性RGB数据转化成LCH空间的LCH数据的过程,需要先将线性RGB数据转化到XYZ空间,再由XYZ空间转换到LCH空间,获取对应的LCH数据,其中L值表示明度,C值表示彩度,H值表示色相角度。
步骤S20,对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据。
通过将输入图像的线性RGB数据转化成LCH空间的LCH数据,可得每个像素点的饱和度,通过将每个像素点的饱和度与预设阈值进行比较,若该像素点的饱和度未超出预设阈值,则将该像素点的饱和度进行线性扩展,若该像素点的饱和度超出预设阈值,则将该像素点的饱和度进行非线性扩展。具体地,通过如下计算公式在LCH空间中将所述输入图像中未超出预设阈值的饱和度进行线性扩展,并对超出预设阈值的饱和度进行非线性扩展,获取饱和度扩展后的输入图像:
Figure PCTCN2020111630-appb-000005
Figure PCTCN2020111630-appb-000006
其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
需要说明的是,该预设阈值kc in可以为0.3、0.4或者0.5,或者根据实际情况进行设定,本实施例不做具体限制。
根据上述公式,在LCH空间中扩展前的c in与扩展后的c out的对应关系如图3所示。若某像素点的饱和度未超出阈值kc in,则表示该像素点的饱和度较低,需要进行线性扩展,此处,若k值大于1,则表示饱和度进行线性扩展;若k值等于1,则表示饱和度保持不变。若某像素点的饱和度超出阈值kc in,则根据贝塞尔曲线B N计算该像素点饱和度非线性扩展后的值。具体地,将输入图像中各个像素点的饱和度根据不同梯度划分成不同等级,每个等级在贝塞尔曲线中被定义为贝塞尔曲线中的节点P i,例如,在预设阈值为0.4时,将饱和度为0.4至0.5范围内的所有像数点作为P 1,将饱和度为0.5至0.6范围内的所有像素点作为P 2等,由此类推,得到整个输入图像的节点P i,并计算其贝塞尔曲线B N
步骤S30,对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。
在LCH空间对饱和度进行扩展后,需要将饱和度扩展后的输入图像从LCH空间转化到RGB空间,以便显示器进行显示。具体地,在将饱和度扩展后的输入图像从LCH空间转化到RGB空间过程中,由于LCH数据和RGB数据之间没有直接的转换公式,其必须用通道XYZ空间作为中间层,故将饱和度扩展后的输入图像从LCH空间转化到RGB空间,需要先将饱和度扩展后的输入图像从LCH空间转化到XYZ空间,再由XYZ空间转换到RGB空间,并获取饱和度扩展后的RGB数据。若该RGB数据为线性RGB数据,则需要通过伽马预置将扩展后的线性RGB数据转化为扩展后的非线性RGB数 据,其中R值表示红色,G值表示绿色,B值表示蓝色。若该RGB数据为非线性RGB数据,则直接对该非线性RGB数据进行显示。
在本实施例中通过将输入图像进行色彩空间转换,对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据,使得输入图像在色调和亮度基本不变的情况下,增强了色彩饱和度,使图像看起来更加鲜艳,从而提高了用户的观看体验。
进一步的,参照图4,图4为图2中对输入图像进行色彩空间转换,得到色彩转换的色彩数据的步骤的细化流程示意图,基于上述图2所示的实施例,所述对输入图像进行色彩空间转换,得到色彩转换的色彩数据的步骤,包括:
步骤S101,获取输入图像在RGB空间中每个像素的RGB数据。
该智能电视开机后,确认显示器当前显示的图像信息对应通道,获取该通道内的源信号,并从源信号中提取视频信息中的图像信息,再提取该图像信息中的RGB数据。当然,作为另一种实施方式,也可以通过智能电视内的图像处理电路中获取图像信息,再提取该图像信息中的RGB数据。需要说明的是,该RGB数据为非线性RGB数据或者线性RGB数据。若获取的为输入图像对应的非线性RGB数据,则执行步骤S102和S103;若获取的为输入图像对应的线性RGB数据,则直接跳转至步骤S103。
步骤S102,对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据。
当获取的RGB数据为非线性RGB数据时,需要对该非线性RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到该输入图像的线性RGB数据。若获取到的直接为线性RGB数据,则跳过该步骤,直接执行下一步骤S103。
进一步地,所述步骤S102包括:
步骤S201,根据所述RGB数据的比特数对所述RGB数据进行归一化处理。
具体地,可以通过如下计算公式对所述RGB数据进行归一化处理:
Figure PCTCN2020111630-appb-000007
Figure PCTCN2020111630-appb-000008
Figure PCTCN2020111630-appb-000009
其中,n为RGB数据的比特数,R、G、B分别为所述输入图像在RGB空间中的RGB数据,R 1、G 1、B 1分别为R、G、B归一化后的值。需要说明的是,该RGB数据的比特数n可以为8,也可以为除8以外的其他数值如9、10等,本实施例不作具体限定。
步骤S202,根据预设的伽马值对归一化处理后的RGB数据进行伽马校正,获取所述输入图像的线性RGB数据。
具体地,可以通过如下计算公式对归一化处理后的RGB数据进行伽马校正:
R'=(R 1) γ
G'=(G 1) γ
B'=(B 1) γ
其中,n为RGB数据的比特数,γ为预设的伽马值,R 1、G 1、B 1分别为R、G、B归一化后的值,R'、G'、B'分别为R、G、B的线性化值。需要说明的是,该RGB数据的比特数n可以为8,也可以为除8以外的其他数值如9、10等,本实施例不作具体限定。该预设的伽马值γ可以为2.2或者2.4。
步骤S103,将所述输入图像的线性RGB数据转化成LCH空间的LCH数据。
由于RGB数据和LCH数据之间没有直接的转换公式,其必须用通道XYZ空间作为中间层,故将该输入图像的线性RGB数据转化成LCH空间的LCH数据的过程,需要先将线性RGB数据转化到XYZ空间,再由XYZ空间转换到LCH空间,获取对应的LCH数据,其中L值表示明度,C值表示彩度,H值表示色相角度。
进一步地,上述步骤S103包括:
步骤S203,将所述输入图像的线性RGB数据转化成XYZ空间的XYZ数据。
由于BT709信源的R、G、B顶点(x,y)色坐标分别为(0.640,0.330)、(0.300,0.600)、(0.150,0.060),白点(x,y)坐标为(0.3127,0.3290)。则可以通过如下计算公式将所述输入图像的线性RGB数据转化成XYZ空间 的XYZ数据:
Figure PCTCN2020111630-appb-000010
转换到XYZ空间后,需要先将XYZ空间转换到Luv空间,再将Luv空间转换到LCH空间。这里的L代表亮度,c代表饱和度,h代表色调。
步骤S204,将所述XYZ数据转化为Luv空间的Luv数据。
L 1=116(Y/Y 0) 1/3-16;
u=13L(u′-u′ 0);
v=13L(v′-v′ 0);
u′=4X/(X+15Y+3Z);
v′=9Y/(X+15Y+3Z);
u′ 0=4X 0/(X 0+15Y 0+3Z 0);
v′ 0=9Y 0/(X 0+15Y 0+3Z 0);
其中,R'、G'、B'分别为所述输入图像在RGB空间的线性RGB数据,X、Y、Z分别为将所述输入图像在XYZ空间的XYZ数据,X 0=95.04,Y 0=100,Z 0=108.89,L 1为Luv空间中的亮度,u和v为Luv空间中的色度。
步骤S205,将所述Luv数据转化为LCH空间的LCH数据。
具体地,可以通过如下计算公式将所述Luv数据转化为LCH空间的LCH数据,得到每个像素点的饱和度c in
L=L 1
c in=(u+v) 1/2
h=actan(v/u);
其中,L 1为Luv空间中的亮度,L为LCH空间中的亮度,且该亮度L与Luv空间中的L 1亮度的数值保持不变,h为LCH空间中的色调,c in为LCH空间中的色彩饱和度。
在本实施例中通过将输入图像从RGB空间转换到LCH空间,由此可以方便在LCH空间中对色彩数据进行饱和度扩展,得到输入图像饱和度扩展后的色彩数据。
进一步地,基于上述图3或图2所示的实施例,所述对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据的步骤,包括:
步骤S206,判断所述LCH数据中的饱和度是否大于预设阈值。
通过将输入图像的线性RGB数据转化成LCH空间的LCH数据后,可得每个像素点的饱和度c in值,通过将每个像素点的饱和度与预设阈值进行比较,若该像素点的饱和度大于预设阈值,则执行步骤S207;若该像素点的饱和度小或等于预设阈值,则执行步骤S208。
步骤S207,根据贝塞尔曲线对所述输入图像的色饱和度进行非线性扩展。
步骤S208,对所述输入图像的色饱和度进行线性扩展。
步骤S209,获取色饱和度扩展后的LCH数据中的饱和度。
具体地,通过如下计算公式获取色饱和度扩展后的LCH数据中的饱和度:
Figure PCTCN2020111630-appb-000011
Figure PCTCN2020111630-appb-000012
其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
需要说明的是,该预设阈值kc in可以为0.3、0.4或者0.5,或者根据实际情况进行设定,本实施例不做具体限制。
根据上述公式,在LCH空间中扩展前的c in与扩展后的c out的对应关系如图3所示。若某像素点的饱和度未超出阈值kc in,则表示该像素点的饱和度较低,需要进行线性扩展,此处,若k值大于1,则表示饱和度进行线性扩展;若k值等于1,则表示饱和度保持不变。若某像素点的饱和度超出阈值kc in,则根据贝塞尔曲线B N计算该像素点饱和度非线性扩展后的值。具体地,将输入图像中各个像素点的饱和度根据不同梯度划分成不同等级,每个等级在贝塞尔曲线中被定义为贝塞尔曲线中的节点P i,例如,在预设阈值为0.4时,将饱和度为0.4至0.5范围内的所有像数点作为P 1,将饱和度为0.5至0.6范围内的所有像素点作为P 2等,由此类推,得到整个输入图像的节点P i,并计算 其贝塞尔曲线B N
在本实施例中通过对大于预设阈值的饱和度进行非线性扩展和对小于或等于预设阈值的饱和度进行线性扩展,使得输入图像的饱和度大大提升,从而使得处理后的图像看上去更加鲜艳。
参照图5,图5为本申请饱和度增强方法的第二实施例的流程示意图,基于上述图2所示的实施例,在所述对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤之前,包括:
步骤S301,将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据。
在LCH空间对饱和度进行扩展后,需要将饱和度扩展后的输入图像从LCH空间转化到RGB空间,以便显示器进行显示。具体地,在将饱和度扩展后的输入图像从LCH空间转化到RGB空间过程中,由于LCH数据和RGB数据之间没有直接的转换公式,其必须用通道XYZ空间作为中间层,故将饱和度扩展后的输入图像从LCH空间转化到RGB空间,需要先将饱和度扩展后的输入图像从LCH空间转化到XYZ空间,再由XYZ空间转换到RGB空间,并获取饱和度扩展后的RGB数据。
具体地,可以通过如下计算公式将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据:
L 2=L;
u 2=c outcosh;
v 2=c outsinh;
其中,h为LCH空间中的色调,c out为LCH空间扩展后的饱和度,L 2为Luv空间中色饱和度扩展后的亮度,且该亮度L 2与Luv空间中亮度L 1的数值一致,即在不同色彩空间,亮度不变,u 2、v 2为Luv空间中色饱和度扩展后的色度。
步骤S302,将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据。
具体地,可以通过如下计算公式将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据:
u′ 0=4X 0/(X 0+15Y 0+3Z 0);
v′ 0=9Y 0/(X 0+15Y 0+3Z 0);
Y'=Y 0[(L+16)/116] 3
X'=9Y'[(u 2/13L)+u' 0]/4[(v 2/13L)+V' 0];
Z'=[52L/3(u 2+13Lu' 0)-1]X'-5Y';
其中,u 2、v 2为Luv空间中色饱和度扩展后的色度,X'、Y'、Z'为饱和度扩展后的输入图像在XYZ空间对应的XYZ数据,X 0=95.04,Y 0=100,Z 0=108.89。
步骤S303,将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据。
具体地,可以通过如下计算公式将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据:
Figure PCTCN2020111630-appb-000013
其中,X'、Y'、Z'为饱和度扩展后的输入图像在XYZ空间对应的XYZ数据,R o',G o',B o'为饱和度扩展后的输入图像在RGB空间的线性化RGB数据。
进一步地,所述对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤,包括:
步骤S304,通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据;
若该RGB数据为线性RGB数据,则需要通过伽马预置将扩展后的线性RGB数据转化为扩展后的非线性RGB数据,其中R值表示红色,G值表示绿色,B值表示蓝色。若该RGB数据为非线性RGB数据,则跳过该步骤,直接对该非线性RGB数据进行显示。
具体地,可以通过如下计算公式通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据:
Figure PCTCN2020111630-appb-000014
Figure PCTCN2020111630-appb-000015
Figure PCTCN2020111630-appb-000016
其中,n为RGB数据的比特数,γ为预设的伽马值,R o',G o',B o'为饱和度扩展后的输入图像在RGB空间的线性化RGB数据,R o,G o,B o为饱和度扩展后的输入图像在RGB空间的非线性化RGB数据。
需要说明的是,该RGB数据的比特数n可以为8,也可以为除8以外的其他数值如9、10等,本实施例不作具体限定。该预设的伽马值γ可以为2.2或者2.4。根据上述公式,即可将RGB空间的线性数据转为非线性数据。
步骤S305,将得到的色饱和度扩展后对应的非线性RGB数据通过显示器进行显示。
在获得饱和度扩展后的非线性RGB数据后,可以通过显示器对该非线性RGB数据对应的输入图像进行显示,以供用户观看。
本实施例将饱和度扩展后的输入图像从LCH空间转化到RGB空间,并得到饱和度扩展后的非线性RGB数据,由此对饱和度扩展后的输入图像进行显示,使得用户能够在智能电视的显示器上看到鲜艳的图像画面。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有饱和度增强程序,所述饱和度增强程序被处理器执行时实现如下操作:
对输入图像进行色彩空间转换,得到色彩转换的色彩数据;
对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;
对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
获取输入图像在RGB空间中每个像素的RGB数据;
对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据;
将所述输入图像的线性RGB数据转化成LCH空间的LCH数据。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
根据所述RGB数据的比特数对所述RGB数据进行归一化处理;
根据预设的伽马值对归一化处理后的RGB数据进行伽马校正,获取所述输入图像的线性RGB数据。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
将所述输入图像的线性RGB数据转化成XYZ空间的XYZ数据;
将所述XYZ数据转化为Luv空间的Luv数据;
将所述Luv数据转化为LCH空间的LCH数据。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
判断所述LCH数据中的饱和度是否大于预设阈值;
若是,则根据贝塞尔曲线对所述输入图像的色饱和度进行非线性扩展;
若否,则对所述输入图像的色饱和度进行线性扩展;
获取色饱和度扩展后的LCH数据中的饱和度。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
通过如下计算公式获取色饱和度扩展后的LCH数据中的饱和度:
Figure PCTCN2020111630-appb-000017
Figure PCTCN2020111630-appb-000018
其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据;
将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据;
将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据。
进一步地,所述饱和度增强程序被处理器执行时还实现如下操作:
通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据;
将得到的色饱和度扩展后对应的非线性RGB数据通过显示器进行显示。
本申请计算机可读存储介质的具体实施例与上述饱和度增强方法各实施例基本相同,在此不作赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系 统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种饱和度增强方法,其中,所述饱和度增强方法包括:
    对输入图像进行色彩空间转换,得到色彩转换的色彩数据;
    对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据;
    对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据。
  2. 如权利要求1所述的饱和度增强方法,其中,所述对输入图像进行色彩空间转换,得到色彩转换的色彩数据的步骤,包括:
    获取输入图像在RGB空间中每个像素的RGB数据;
    对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据;
    将所述输入图像的线性RGB数据转化成LCH空间的LCH数据。
  3. 如权利要求2所述的饱和度增强方法,其中,所述对所述RGB数据进行归一化处理,并对归一化处理后的数据进行伽马校正得到所述输入图像的线性RGB数据的步骤,包括:
    根据所述RGB数据的比特数对所述RGB数据进行归一化处理;
    根据预设的伽马值对归一化处理后的RGB数据进行伽马校正,获取所述输入图像的线性RGB数据。
  4. 如权利要求2所述的饱和度增强方法,其中,通过如下计算公式对所述RGB数据进行归一化处理:
    Figure PCTCN2020111630-appb-100001
    Figure PCTCN2020111630-appb-100002
    Figure PCTCN2020111630-appb-100003
    其中,n为RGB数据的比特数,R、G、B分别为所述输入图像在RGB空间中的RGB数据,R 1、G 1、B 1分别为R、G、B归一化后的值。
  5. 如权利要求2所述的饱和度增强方法,其中,通过如下计算公式对所述归一化处理后的RGB数据进行伽马校正:
    R'=(R 1) γ
    G'=(G 1) γ
    B'=(B 1) γ
    其中,n为RGB数据的比特数,γ为预设的伽马值,R 1、G 1、B 1分别为R、G、B归一化后的值,R'、G'、B'分别为R、G、B的线性化值。
  6. 如权利要求2所述的饱和度增强方法,其中,所述将所述输入图像的线性RGB数据转化成LCH空间的LCH数据的步骤,包括:
    将所述输入图像的线性RGB数据转化成XYZ空间的XYZ数据;
    将所述XYZ数据转化为Luv空间的Luv数据;
    将所述Luv数据转化为LCH空间的LCH数据。
  7. 如权利要求6所述的饱和度增强方法,其中,所述对所述色彩转换的色彩数据进行饱和度扩展,得到扩展后的色彩数据的步骤,包括:
    判断所述LCH数据中的饱和度是否大于预设阈值;
    若是,则根据贝塞尔曲线对所述输入图像的色饱和度进行非线性扩展;
    若否,则对所述输入图像的色饱和度进行线性扩展;
    获取色饱和度扩展后的LCH数据中的饱和度。
  8. 如权利要求7所述的饱和度增强方法,其中,通过如下计算公式获取色饱和度扩展后的LCH数据中的饱和度:
    Figure PCTCN2020111630-appb-100004
    Figure PCTCN2020111630-appb-100005
    其中,kc in为预设阈值,k为线性扩展系数,k≥1,B N为贝塞尔曲线,P i为贝塞尔曲线的节点,P i=(P 0,P 1,P 2,…,P N),i为贝塞尔曲线的阶数,i为自然数,P 0,P 1,P 2,…,P N由画面的色饱和度分布情况决定。
  9. 如权利要求1所述的饱和度增强方法,其中,在对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤之前,所述方法还包括:
    将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据;
    将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据;
    将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据。
  10. 如权利要求9所述的饱和度增强方法,其中,所述对所述扩展后的色彩数据进行伽马预处理,得到处理的色彩数据的步骤,包括:
    通过伽马预置将所述色饱和度扩展后对应的线性RGB数据转化为对应的非线性RGB数据;
    将得到的色饱和度扩展后对应的非线性RGB数据通过显示器进行显示。
  11. 如权利要求9所述的饱和度增强方法,其中,通过如下计算公式将色饱和度扩展后的LCH数据转化成Luv空间对应的Luv数据:
    L 2=L;
    u 2=c outcosh;
    v 2=c outsinh;
    其中,h为LCH空间中的色调,c out为LCH空间扩展后的饱和度,L 2为Luv空间中色饱和度扩展后的亮度。
  12. 如权利要求9所述的饱和度增强方法,其中,通过如下计算公式将所述色饱和度扩展后对应的Luv数据转化成XYZ空间对应的XYZ数据:
    u′ 0=4X 0/(X 0+15Y 0+3Z 0);
    v′ 0=9Y 0/(X 0+15Y 0+3Z 0);
    Y'=Y 0[(L+16)/116] 3
    X'=9Y'[(u 2/13L)+u' 0]/4[(v 2/13L)+V′ 0];
    Z'=[52L/3(u 2+13Lu' 0)-1]X'-5Y';
    其中,u 2、v 2为Luv空间中色饱和度扩展后的色度,X'、Y'、Z'为饱和度扩展后的输入图像在XYZ空间对应的XYZ数据。
  13. 如权利要求9所述的饱和度增强方法,其中,通过如下计算公式将所述色饱和度扩展后对应的XYZ数据转化为RGB空间对应的线性RGB数据:
    Figure PCTCN2020111630-appb-100006
    其中,X'、Y'、Z'为饱和度扩展后的输入图像在XYZ空间对应的XYZ数据,R o',G o',B o'为饱和度扩展后的输入图像在RGB空间的线性化RGB 数据。
  14. 一种饱和度增强装置,其中,所述饱和度增强装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的饱和度增强程序,所述饱和度增强程序被所述处理器执行时实现如权利要求1至13中任一项所述饱和度增强方法的步骤。
  15. 一种计算机可读存储介质,其上存储有饱和度增强程序,其中,所述饱和度增强程序被处理器执行时实现如权利要求1至13中任一项所述饱和度增强方法的步骤。
PCT/CN2020/111630 2019-09-30 2020-08-27 饱和度增强方法、装置及计算机可读存储介质 WO2021063135A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/754,256 US20220358623A1 (en) 2019-09-30 2020-08-27 Saturation enhancement method and device, and computer readable storage medium
EP20872656.2A EP4040786A4 (en) 2019-09-30 2020-08-27 SATURATION ENHANCEMENT METHOD AND DEVICE AND COMPUTER READABLE RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910948636.1 2019-09-30
CN201910948636.1A CN111147837B (zh) 2019-09-30 2019-09-30 饱和度增强方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021063135A1 true WO2021063135A1 (zh) 2021-04-08

Family

ID=70516824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111630 WO2021063135A1 (zh) 2019-09-30 2020-08-27 饱和度增强方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220358623A1 (zh)
EP (1) EP4040786A4 (zh)
CN (1) CN111147837B (zh)
WO (1) WO2021063135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147837B (zh) * 2019-09-30 2022-03-01 深圳Tcl新技术有限公司 饱和度增强方法、装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115211A (zh) * 2007-08-30 2008-01-30 四川长虹电器股份有限公司 色彩独立增强处理方法
CN101794565A (zh) * 2010-03-31 2010-08-04 青岛海信电器股份有限公司 一种图像显示方法、装置及系统
CN102611897A (zh) * 2012-03-04 2012-07-25 北京佳泰信业技术有限公司 对彩色数字图像进行视觉感知高保真变换的方法及系统
US20150228090A1 (en) * 2014-02-10 2015-08-13 Synaptics Display Devices Kk Image processing apparatus, image processing method, display panel driver and display apparatus
CN111147837A (zh) * 2019-09-30 2020-05-12 深圳Tcl新技术有限公司 饱和度增强方法、装置及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209402B2 (ja) * 1996-11-01 2001-09-17 富士ゼロックス株式会社 画像処理装置
CN101009851B (zh) * 2007-01-19 2010-07-07 北京中星微电子有限公司 一种图像处理方法及其装置
KR20080092624A (ko) * 2007-04-12 2008-10-16 삼성전자주식회사 영상 획득 장치의 와이드 색 영역 신호 생성 방법 및 장치
US8537177B2 (en) * 2009-06-15 2013-09-17 Marvell World Trade Ltd. System and methods for gamut bounded saturation adaptive color enhancement
JP6833415B2 (ja) * 2016-09-09 2021-02-24 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN108961192B (zh) * 2018-07-19 2021-06-29 Tcl华星光电技术有限公司 图像色彩饱和度的增强方法、计算机存储介质和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115211A (zh) * 2007-08-30 2008-01-30 四川长虹电器股份有限公司 色彩独立增强处理方法
CN101794565A (zh) * 2010-03-31 2010-08-04 青岛海信电器股份有限公司 一种图像显示方法、装置及系统
CN102611897A (zh) * 2012-03-04 2012-07-25 北京佳泰信业技术有限公司 对彩色数字图像进行视觉感知高保真变换的方法及系统
US20150228090A1 (en) * 2014-02-10 2015-08-13 Synaptics Display Devices Kk Image processing apparatus, image processing method, display panel driver and display apparatus
CN111147837A (zh) * 2019-09-30 2020-05-12 深圳Tcl新技术有限公司 饱和度增强方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040786A4 *

Also Published As

Publication number Publication date
CN111147837B (zh) 2022-03-01
EP4040786A4 (en) 2023-09-06
EP4040786A1 (en) 2022-08-10
US20220358623A1 (en) 2022-11-10
CN111147837A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
KR102478606B1 (ko) 영상 표시 장치 및 영상 표시 방법
US10269129B2 (en) Color adjustment method and device
TWI399100B (zh) 影像處理方法
US20170301275A1 (en) Display devices capable of adjusting the display color gamut and methods of adjusting the color gamut thereof
US20130128073A1 (en) Apparatus and method for adjusting white balance
CN107786864B (zh) 电视画面显示方法、设备及可读存储介质
WO2020083221A1 (zh) 色域匹配方法、装置、显示终端及可读存储介质
CN107846554B (zh) 一种图像处理方法、终端和计算机可读存储介质
WO2019029294A1 (zh) 图像显示方法、终端及计算机可读存储介质
WO2021114684A1 (zh) 图像处理方法、装置、计算设备和存储介质
US10650784B2 (en) Display device, television receiver, display method, and recording medium
US8248432B2 (en) Display apparatus and method of image enhancement thereof
WO2021082542A1 (zh) 区域背光控制方法、显示器及存储介质
US11062435B2 (en) Rendering information into images
US20220044369A1 (en) Image processing method, terminal and non-transitory computer-readable storage medium
WO2022110687A1 (zh) 图像处理方法、装置、电子设备以及可读存储介质
WO2023082859A1 (zh) 图像处理方法、图像处理器、电子设备及存储介质
KR102070322B1 (ko) 디스플레이 장치 및 그 디스플레이 패널 구동 방법
WO2021063135A1 (zh) 饱和度增强方法、装置及计算机可读存储介质
WO2019020112A1 (zh) 终端显示方法、终端及计算机可读存储介质
JP5664261B2 (ja) 画像処理装置、および画像処理プログラム
TWI424426B (zh) 影像的色彩調整方法
US11094286B2 (en) Image processing apparatus and image processing method
JP2010109794A (ja) 映像信号処理装置、映像信号処理方法、プログラム、および表示装置
US11962950B2 (en) HDR film source playing method, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872656

Country of ref document: EP

Effective date: 20220502