WO2021063100A1 - 一种数据处理方法、装置及存储介质 - Google Patents

一种数据处理方法、装置及存储介质 Download PDF

Info

Publication number
WO2021063100A1
WO2021063100A1 PCT/CN2020/105753 CN2020105753W WO2021063100A1 WO 2021063100 A1 WO2021063100 A1 WO 2021063100A1 CN 2020105753 W CN2020105753 W CN 2020105753W WO 2021063100 A1 WO2021063100 A1 WO 2021063100A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
target
preamble
configuration
configuration information
Prior art date
Application number
PCT/CN2020/105753
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
徐晨蕾
周建伟
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20872981.4A priority Critical patent/EP4027727A4/en
Publication of WO2021063100A1 publication Critical patent/WO2021063100A1/zh
Priority to US17/707,299 priority patent/US20220225424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a data processing method, device and storage medium.
  • Wireless communication provides users with unlimited convenience, including voice communication and data transmission.
  • LTE long term evolution
  • NR new radio
  • UE user equipment
  • the terminal device In the NR standard, if terminal equipment wants to access the network, it needs to perform cell search and obtain cell system information, so as to obtain downlink synchronization with the network side (base station/satellite, etc.). After that, the terminal device needs to obtain system information (system information) of the cell, and establish a connection with the cell through a random access procedure (random access procedure) and obtain uplink synchronization. Specifically, the terminal device sends a random access preamble (preamble) on a resource of a random access occasion (physical random access occasion, RO) configured on the network side to initiate random access.
  • the preamble is composed of a cyclic prefix (CP), a Zadoff-chu sequence, and a guard time (GT).
  • the role of CP is to compensate the timing error caused by the round-trip delay or the round-trip delay difference and the multipath delay extension.
  • the length of Zadoff-chu sequence and GT is not less than the length of CP. Therefore, when the round-trip delay or the round-trip delay difference between the terminal device and the network side is larger, the required preamble length is longer.
  • the 3rd generation partnership project (3GPP) organization is studying the adaptation of the 5th generation (5G) NR standard to non-terrestrial networks (NTN).
  • 5G 5th generation
  • NTN non-terrestrial networks
  • the base station and the terminal equipment served by each beam are basically at the same altitude, and the maximum transmission delay difference (max differential delay) between the terminal equipment in each beam is the same, in the same cell
  • the different beams of the use the same random access timing configuration.
  • the network side and the terminal equipment served by each beam are not at the same altitude and far away. Therefore, the diameter of the non-terrestrial communication cell is larger, which causes The round-trip delay difference of users in different geographical locations in the same cell is relatively large.
  • the maximum round-trip delay difference of a terminal device can reach 1.6 ms.
  • the minimum length of the preamble is required to be 4.8 ms.
  • the maximum round-trip delay difference of data transmission of terminal equipment in the same cell supported by NR is less than 0.7ms, and the preamble length is far less than the demand in non-terrestrial communications. Therefore, if the NR random access timing configuration is still used to transmit a longer preamble in a non-terrestrial communication scenario, interference problems such as overlapping preamble detection windows will occur, which affects the probability of detecting the preamble on the network side.
  • the maximum transmission delay difference between terminal devices in different beams of the same cell is different, so that the required preamble lengths in different beams of the same cell are different.
  • the embodiment of the present application provides a data processing method, which can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • the first aspect of the present application provides a data processing method, including: a network device obtains target information in a target beam or a target cell, and the network device may perform random access timing in the cell at the cell level.
  • the network device can correspond to one or more cells
  • the target cell can refer to any one of the one or more cells corresponding to the network device
  • the network device can also directly configure the intra-beam random access timing at the beam level
  • the network device corresponds to one or more beams
  • the target beam can refer to any one of the one or more beams corresponding to the network device
  • the target information includes the transmission delay difference
  • the target information can also include the orbit height of the network device
  • transmission The delay difference is the difference in the communication round-trip delay corresponding to the first position and the second position respectively.
  • the first position is the target beam or the position corresponding to the reference point in the coverage area of the target cell
  • the second position is the target beam or target.
  • the transmission delay difference refers to the maximum round-trip delay difference in the target beam or the target cell.
  • the target beam or the reference point in the target cell can be the target beam or target
  • the cell’s ground coverage area is the closest point to the network equipment. It can also be the geometric center point of the target beam or the target cell’s ground coverage.
  • the reference point can also be located at a certain height from the ground, for example, the reference point and
  • the target beam or target cell has the same latitude and longitude at the point or geometric center point closest to the network equipment in the coverage area on the ground, but the vertical distance between the reference point and the ground is 20-30 kilometers, and the communication round-trip delay corresponding to the second location
  • the communication round-trip delay within the coverage of the target beam or target cell is the largest; the network equipment determines the first preamble format required for the random access preamble corresponding to the target beam or target cell according to the transmission delay difference in the target information, and random access
  • the preamble consists of a cyclic prefix CP, a Zadoff-chu sequence, and a guard time GT.
  • the network device determines the first configuration information of the random access timing from one or more types of configuration information according to the first preamble format.
  • the first configuration information is used to indicate the first preamble format and the random access timing included in the random access period.
  • the interval between random access occasions included in the first set is greater than or equal to the preamble length corresponding to the first preamble format, and the random access period refers to the period of random access occasions, for example, it may refer to the random access timing defined by the standard. Time period of access timing.
  • the network device generates a corresponding first configuration index according to the first configuration information.
  • the first configuration information is one of one or more types of configuration information, and the first configuration index corresponding to the first configuration information may also be one of the one or more configuration indexes. There is a one-to-one correspondence between one or more configuration indexes and one or more kinds of configuration information.
  • the network equipment can determine the first preamble format required for random access preamble according to the target beam or the transmission delay difference in the target cell, and determine the target beam or target cell according to the required first preamble format.
  • the first configuration information of the internal random access occasions so that the random access period configured for the target beam or the target cell contains the interval between random access occasions greater than or equal to the random access preamble required by the target beam or the target cell.
  • the preamble length corresponding to the first preamble format can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • the method further includes: the network device sends downlink information to the target beam or the target cell,
  • the downlink information includes a first configuration index, and the downlink information is used by the terminal equipment in the target area or target cell to determine the random access preamble format and the random access used to transmit the random access preamble according to the first configuration information corresponding to the first configuration index opportunity.
  • the target information also includes the reference multipath delay corresponding to the target beam or the target cell.
  • the multipath delay refers to the signal components passing through different paths to the receiver.
  • the difference between the shortest time and the longest time at the end, the reference multipath delay can refer to the maximum multipath delay among the multipath delays corresponding to different positions in the target beam or the coverage area of the target cell.
  • the reference multipath delay does not need to be measured in real time, and the worst empirical value of the multipath delay can be directly used.
  • the length of the preamble CP in the terrestrial communication process is fixed, and the fixed CP length is determined by the maximum value of the multipath delay of the communication channel in the city obtained by measuring the channel.
  • the network device obtains the target information, it further includes: the network device determines the second preamble format required by the random access preamble corresponding to the target beam or the target cell according to the reference multipath delay; The second configuration information that determines the random access timing in the configuration information, the second configuration information is used to indicate the second preamble format and the second set of random access opportunities included in the random access period, and the random access included in the second set
  • the interval between the occasions is greater than or equal to the preamble length corresponding to the second preamble format; the network device generates the corresponding second configuration index according to the second configuration information.
  • the network equipment determines the first preamble format and the second preamble required for the random access preamble according to the transmission delay difference in the target beam or the target cell and the reference multipath signal.
  • Format, and according to the required first preamble format and second preamble format to determine the target beam or the two configuration information of random access occasions in the target cell the intervals between the random access occasions indicated by the two kinds of configuration information are both It is greater than or equal to the preamble length corresponding to the corresponding preamble format.
  • the two configuration information are used to determine the random access preamble format and to transmit the random access preamble format for terminal equipment with and without positioning function in the target beam or target cell, respectively.
  • the random access timing of the preamble can not only avoid mutual interference problems such as overlapping of the preamble detection window in non-terrestrial communication scenarios, but also configure the random access timing for different terminal devices, which can save the random access preamble. Time-frequency resources.
  • the method further includes: the network device beams toward the target beam Or the target cell sends downlink information, and the downlink information includes a first configuration index and a second configuration index.
  • the downlink information is used for terminal devices in the target area to determine according to the first configuration information corresponding to the first configuration index after judging that they do not have the positioning function. Random access preamble format and random access timing used to transmit the random access preamble. When determining that it has the positioning function, the random access preamble format and the random access timing used to transmit the random access are determined according to the second configuration information corresponding to the second configuration index. Random access timing of the preamble.
  • the target beam or terminal equipment in the target cell can select the corresponding random access timing configuration according to whether it has the positioning function, so that the time occupied by the random access preamble can be saved. Frequency resources, and make the configuration of random access opportunities diversified.
  • the configuration information includes the target parameter set and random access timing information.
  • the starting time slot number, the target parameter set includes the random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the random The subframe where the access timing is located, the starting OFDM symbol position of the random access timing, the number of random access timings in the subframe or time slot where the random access timing is located, the random access timing in the subframe or time slot where the random access timing is located The duration of the access opportunity.
  • the first configuration index or the second configuration index is the physical random access channel PRACH Configuration index.
  • the PRACH configuration index includes n bits.
  • the size of the configuration index can correspond to one or more types of configuration information. If multiple types of configuration information are less than or equal to 2 n pieces of configuration information, the size of the configuration index can be n bits. .
  • the m bits in the n bits are used to indicate the starting time slot number of the random access occasion, and the size of m may correspond to the number of starting time slot numbers. n is greater than m, and m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes the first index and the second configuration index.
  • Index the first index is used to indicate the target parameter set
  • the second index is used to indicate the starting time slot number of the random access occasion.
  • the network device may use 4 bits representing the high-level parameter of the cyclic shift signaling to represent the second index.
  • the network device may also indicate the second index by adding a bit in the high-level signaling (for example, SIB1) and send it.
  • a second aspect of the present application provides a data processing method, including: a terminal device receives downlink information sent by a network device, the downlink information includes a first configuration index, and the first configuration information corresponding to the first configuration index is the network device according to the target beam or target
  • the first preamble format required for the random access preamble corresponding to the cell is determined from one or more kinds of configuration information.
  • the network equipment can configure the random access timing in the cell at the cell level, and the network equipment can Corresponding to one or more cells, the target cell can refer to any one of the one or more cells corresponding to the network device, and the network device can also directly configure the random access timing within the beam at the beam level, and the network device corresponds to one Or multiple beams, the target beam may refer to any one of the one or more beams corresponding to the network device.
  • the first configuration information is used to indicate the first preamble format and the first set of random access occasions included in the random access period, and the interval between the random access occasions included in the first set is greater than or equal to that corresponding to the first preamble format Preamble length.
  • the first preamble format is determined by the network device according to the transmission delay difference contained in the acquired target information.
  • the target information may also include the orbit height of the network device.
  • the transmission delay difference is the first position and the second position respectively The corresponding communication round-trip delay difference.
  • the transmission delay difference refers to the maximum round-trip delay difference in the target beam or target cell.
  • the first position is the position corresponding to the reference point in the coverage area of the target beam.
  • the target beam or target The reference point in a small area can be the point closest to the network equipment in the coverage area of the target beam or target cell on the ground, or the geometric center point of the coverage area of the target beam or target cell on the ground. It can be located at a certain height from the ground.
  • the reference point and the target beam or the point or geometric center point closest to the network device in the coverage area of the target cell on the ground have the same latitude and longitude, but the vertical distance between the reference point and the ground is 20-30 kilometers, the second location is the location farthest from the network equipment in the coverage area of the target beam, and the communication round-trip delay corresponding to the second location is the largest within the coverage of the target beam or target cell; terminal equipment
  • the format of the random access preamble and the random access timing for transmitting the random access preamble are determined according to the downlink information.
  • the network equipment can determine the first preamble format required for random access preamble according to the transmission delay difference in the target beam or target cell, and determine the target beam or target cell according to the required first preamble format
  • the first configuration information of the internal random access occasions so that the random access period configured for the target beam or the target cell contains the interval between random access occasions greater than or equal to the random access preamble required by the target beam or the target cell
  • the preamble length corresponding to the first preamble format can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • the terminal device determines the random access preamble format and the random access timing for transmitting the random access preamble according to the downlink information, including: the terminal device determines the random access preamble format according to the downlink information.
  • the first configuration index in the information determines the first configuration information; the terminal device determines the random access preamble format and the random access timing for transmitting the random access preamble according to the first configuration information.
  • the downlink information further includes a second configuration index
  • the second configuration information corresponding to the second configuration index is a random number corresponding to the network device according to the target beam or the target cell.
  • the second preamble format required for the access preamble is determined from one or more kinds of configuration information.
  • the second configuration information is used to indicate the second preamble format and the second set of random access opportunities included in the random access period.
  • the interval between random access occasions included in the second set is greater than or equal to the preamble length corresponding to the second preamble format.
  • the second preamble format is determined by the network device according to the reference multipath delay contained in the acquired target information.
  • the delay refers to the difference between the shortest time and the longest time for signal components passing through different paths to reach the receiving end.
  • the reference multipath delay can refer to the multipath delay corresponding to the target beam or different positions within the coverage of the target cell.
  • the reference multipath delay may not need real-time measurement, and the empirical value of the worst multipath delay can be directly used.
  • the length of the preamble CP in the terrestrial communication process is fixed, and the fixed CP length is determined by the maximum value of the multipath delay of the communication channel in the city obtained by measuring the channel.
  • the terminal device determines the format of the random access preamble and the random access timing for transmitting the random access preamble according to the downlink information, including: the terminal device determines whether it has a positioning function; if not, the terminal device determines the format according to the first configuration index First configuration information; the terminal device determines the random access preamble format and the random access timing for transmitting the random access preamble according to the first configuration information; if so, the terminal device determines the second configuration information according to the second configuration index; terminal The device determines a random access preamble format and a random access opportunity for transmitting the random access preamble according to the second configuration information.
  • the configuration information includes the target parameter set and random access timing information.
  • the starting time slot number, the target parameter set includes the random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the random The subframe where the access timing is located, the starting OFDM symbol position of the random access timing, the number of random access timings in the subframe or time slot where the random access timing is located, the random access timing in the subframe or time slot where the random access timing is located The duration of the access opportunity.
  • the first configuration index or the second configuration index is physically random Access channel PRACH configuration index.
  • the PRACH configuration index includes n bits, and m bits of the n bits are used to indicate the starting time slot number of the random access occasion, n is greater than m, and m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes the first Index and second index
  • the first index is used to indicate the target parameter set
  • the second index is used to indicate the starting time slot number of the random access occasion.
  • a third aspect of the present application provides a data processing device, including: an acquisition module for acquiring target information in a target beam or a target cell, the target information includes a transmission delay difference, and the transmission delay difference is a first position and a second position Corresponding to the difference of the communication round-trip delay, the first position is the position corresponding to the reference point in the coverage area of the target beam or the target cell, and the second position is the position farthest from the network device in the coverage area of the target beam or the target cell
  • the determining module is used to determine the first preamble format required by the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference included in the target information acquired by the acquiring module; the determining module is also used to determine the first preamble format required by the random access preamble corresponding to the target beam or the target cell;
  • a preamble format determines first configuration information of random access timing from one or more types of configuration information, where the first configuration information is used to indicate the first preamble format and a
  • the device further includes: a sending module, configured to send downlink information to the target beam or target cell, the downlink information including the first configuration index generated by the generating module
  • the downlink information is used for the terminal equipment in the target area or the target cell to determine the random access preamble format and the random access timing for transmitting the random access preamble according to the first configuration information corresponding to the first configuration index.
  • the target information further includes the reference multipath delay corresponding to the target beam or the target cell
  • the determination module is also used in the target information acquired by the acquisition module. Determine the second preamble format required by the random access preamble corresponding to the target beam or target cell with reference to the multipath delay; determine the second configuration information of the random access timing from one or more configuration information according to the second preamble format , The second configuration information is used to indicate the second preamble format and the second set of random access occasions included in the random access period, and the interval between the random access occasions included in the second set is greater than or equal to that corresponding to the second preamble format
  • the preamble length; the generating module is further configured to generate a corresponding second configuration index according to the second configuration information determined by the determining module.
  • the sending module is also used to send downlink information to the target beam or target cell, and the downlink information includes the first determined by the determining module. A configuration index and a second configuration index.
  • the downlink information is used for the terminal equipment in the target area to determine the random access preamble format and the random access preamble format according to the first configuration information corresponding to the first configuration index after judging that it does not have the positioning function.
  • the random access timing of the incoming preamble is judged to have the positioning function, the random access preamble format and the random access timing for transmitting the random access preamble are determined according to the second configuration information corresponding to the second configuration index.
  • the configuration information includes the target parameter set and random access timing The starting time slot number, the target parameter set includes the random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the random The subframe where the access timing is located, the starting OFDM symbol position of the random access timing, the number of random access timings in the subframe or time slot where the random access timing is located, the random access timing in the subframe or time slot where the random access timing is located The duration of the access opportunity.
  • the first configuration index or the second configuration index is the physical random access channel PRACH Configuration index.
  • the PRACH configuration index includes n bits. The m bits of the n bits are used to indicate the starting time slot number of the random access occasion. n is greater than m, and m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes the first index and the second configuration index. Index, the first index is used to indicate the target parameter set, and the second index is used to indicate the starting time slot number of the random access occasion.
  • a fourth aspect of the present application provides a data processing device, including: a receiving module, configured to receive downlink information sent by a network device, the downlink information includes a first configuration index, and the first configuration information corresponding to the first configuration index is the network device according to the target
  • the first preamble format required for the random access preamble corresponding to the beam or the target cell is determined from one or more configuration information, and the first configuration information is used to indicate the first preamble format and the random access included in the random access period
  • the first set of timings, the interval between random access timings included in the first set is greater than or equal to the preamble length corresponding to the first preamble format, and the first preamble format is the transmission delay included in the acquired target information according to the network device If the difference is determined, the transmission delay difference is the difference in the communication round-trip delay corresponding to the first position and the second position respectively, the first position is the position corresponding to the reference point in the target beam coverage area, and the second position is the target beam The location within the coverage area that
  • the determining module is configured to determine the first configuration information according to the first configuration index in the downlink information; and determine the random access preamble format according to the first configuration information And the random access timing used to transmit the random access preamble.
  • the downlink information further includes a second configuration index
  • the second configuration information corresponding to the second configuration index is a random number corresponding to the target beam or the target cell by the network device.
  • the second preamble format required for the access preamble is determined from one or more kinds of configuration information.
  • the second configuration information is used to indicate the second preamble format and the second set of random access opportunities included in the random access period.
  • the interval between random access opportunities included in the second set is greater than or equal to the preamble length corresponding to the second preamble format, and the determining module is used to determine whether the positioning function is available; if not, the first configuration information is determined according to the first configuration index ; Determine the random access preamble format and random access timing for transmitting the random access preamble according to the first configuration information; if available, determine the second configuration information according to the second configuration index; determine the random access according to the second configuration information The preamble format and the random access timing used to transmit the random access preamble.
  • the configuration information includes the target parameter set and random access timing information.
  • the starting time slot number, the target parameter set includes the random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access opportunity is located, and the random The subframe where the access timing is located, the starting OFDM symbol position of the random access timing, the number of random access timings in the subframe or time slot where the random access timing is located, the random access timing in the subframe or time slot where the random access timing is located The duration of the access opportunity.
  • the first configuration index or the second configuration index is physically random Access channel PRACH configuration index.
  • the PRACH configuration index includes n bits, and m bits of the n bits are used to indicate the starting time slot number of the random access occasion, n is greater than m, and m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes the first configuration index or the second configuration index. Index and second index, the first index is used to indicate the target parameter set, and the second index is used to indicate the starting time slot number of the random access occasion.
  • a fifth aspect of the present application provides a network device, which includes a processor and a memory.
  • the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the foregoing aspects related to the network device and the method provided by any implementation manner thereof.
  • the network device further includes a transceiver for receiving and sending data.
  • a sixth aspect of the present application provides a terminal device, which includes a processor and a memory.
  • the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the aforementioned aspects related to the terminal device and the method provided by any implementation manner thereof.
  • the terminal device also includes a transceiver for receiving and sending data.
  • the seventh aspect of the present application provides a computer storage medium, which may be non-volatile.
  • the computer storage medium stores computer readable instructions, and when the computer readable instructions are executed by a processor, the first aspect or the method in any possible implementation manner of the first aspect is implemented.
  • An eighth aspect of the present application provides a computer storage medium, and the computer storage medium may be non-volatile.
  • the computer storage medium stores computer readable instructions, and when the computer readable instructions are executed by a processor, the second aspect or the method in any possible implementation manner of the second aspect is implemented.
  • the embodiment of the present invention adopts a data processing method.
  • the network device can determine the first preamble format required for random access preamble according to the transmission delay difference in the target beam or the target cell, and determine the target according to the required first preamble format.
  • the first configuration information of random access occasions in the beam or the target cell so that the random access period configured for the target beam or the target cell contains the random access occasions that are greater than or equal to the random access required by the target beam or the target cell.
  • Access to the preamble length corresponding to the first preamble format of the preamble can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an embodiment of a data processing method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another embodiment of a data processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a data processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of a network device provided by an embodiment of the present application.
  • Fig. 6 is an embodiment of a network device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is an embodiment of a terminal device provided by an embodiment of the present application.
  • FIG. 9 is another embodiment of a network device provided by an embodiment of the present application.
  • FIG. 10 is another embodiment of a terminal device provided by an embodiment of the present application.
  • the naming or numbering of steps appearing in this application does not mean that the steps in the method flow must be executed in the time/logical sequence indicated by the naming or numbering.
  • the named or numbered process steps can be implemented according to the The technical purpose changes the execution order, as long as the same or similar technical effects can be achieved.
  • the division of modules presented in this application is a logical division. In actual applications, there may be other divisions. For example, multiple modules can be combined or integrated in another system, or some features can be ignored
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or other similar forms. There are no restrictions in the application.
  • modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs. Module to achieve the purpose of this application program.
  • the network side sends the physical random access signal configuration index (PRACH-configuration index) to the UE through system information block type 1 (SIB1), and the UE checks the configuration of random access timing
  • the table determines the preamble format that needs to be used and the random access timing for sending the preamble, and then guides the network side to initiate random access by sending the preamble on the random access timing.
  • the random access timing is configured according to the period in the time domain, and the frame period of the random access is configured as 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the random access timing configuration table also shows the frame number of the system frame where the random access timing is located, the subframe number where the random access timing is located, the start symbol of the random access timing, and the subframe where the random access timing is located.
  • Configuration parameters such as the number of time slots included in the frame and the number of random access opportunities included in the time slot where the random access opportunity is located.
  • the existing protocol due to the short length of the random access preamble, it can usually be sent in one time slot. Therefore, there is no time slot interval between the configured random access occasions, and it is only applicable to land with a cell radius of less than 100km. Communication scene.
  • the difference in round-trip delay within the cell is larger, and the length of the preamble that needs to be sent is usually greater than one time slot. Therefore, the random access timing configuration method in the existing protocol is not suitable for Non-terrestrial communication scenarios.
  • the maximum round-trip delay difference in different beams in the same cell in NR is the same. Therefore, different beams in the same cell adopt the same random access timing configuration.
  • the maximum round-trip delay difference in different beams in the same cell is different, so the required preamble length is also different, and the same random access timing configuration is obviously not flexible enough.
  • an embodiment of the present application provides a data processing method.
  • the network device can determine the first preamble format required by the random access preamble according to the target beam or the transmission delay difference in the target cell, and according to the required first preamble format.
  • the preamble format determines the first configuration information of the random access timing in the target beam or the target cell, so that the random access period configured for the target beam or the target cell includes the random access timing interval greater than or equal to the target beam or the target cell
  • the required preamble length corresponding to the first preamble format of the random access preamble can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • the embodiment of the application also provides a corresponding data processing device. Detailed descriptions are given below.
  • An embodiment of the present application provides a schematic diagram of a communication system architecture, as shown in FIG. 1.
  • the communication system includes a network device 101 and a terminal device 102.
  • the network device 101 may also be connected to the core network.
  • the network device 101 can also communicate with an Internet protocol (IP) network, for example, the Internet (Internet), a private IP network, or other data networks.
  • IP Internet protocol
  • the network device 101 provides services for terminal devices within the coverage area.
  • the network device 101 provides wireless access to one or more terminal devices 102 within the coverage area of the network device 101.
  • the network device 101 may be a device for communicating with the terminal device 102.
  • it can be a base transceiver station (BTS) in a GSM system or an SDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved node B (eNB) in an LTE system.
  • BTS base transceiver station
  • NodeB, NB base station
  • eNB evolved node B
  • eNodeB or network equipment in a 5G network, such as a satellite base station in a satellite communication system.
  • the satellite base station can be a geostationary earth orbit (GEO) satellite, or a medium earth orbit (MEO) satellite and a low earth orbit (LEO) in a non-geostationary earth orbit (NGEO) Satellites can also be High Altitude Platform Station (HAPS), etc.
  • GEO geostationary earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • NGEO non-geostationary earth orbit
  • the terminal device 102 involved in this application can establish downlink synchronization with the network device 101 through cell search.
  • the terminal device 102 in this application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • the terminal device 102 can access a satellite network through an air interface and initiate calls, surf the Internet and other services, and can be a mobile device that supports a 5G new radio (NR).
  • NR 5G new radio
  • the terminal device 102 can be a mobile phone, a tablet computer, a portable notebook computer, a virtual ⁇ hybrid ⁇ augmented reality device, a navigation device, a ground base station (e.g., eNB and gNB), a ground station (GS), and a session start Protocol (Session Initiation Protocol, SIP) phone, wireless local loop (Wireless Local Loop, WLL) station, personal digital assistant (PDA), handheld device with communication function, computing device or other connected to wireless modem Processing equipment, in-vehicle equipment, wearable equipment, terminal equipment in 5G network, future evolution of public land mobile communication network (Public Land Mobile Network, PLMN) or terminal equipment in other future communication systems, etc.
  • a ground base station e.g., eNB and gNB
  • GS ground station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA personal digital assistant
  • handheld device with communication function computing device or other connected to wireless modem Processing equipment, in-vehicle
  • Fig. 2 is a schematic diagram of an embodiment of a data processing method provided by an embodiment of the application.
  • an embodiment of the data processing method provided in the embodiment of the present application may include:
  • a network device acquires target information in a target beam or a target cell, where the target information includes a transmission delay difference, where the transmission delay difference is the difference between the communication round-trip delays corresponding to the first position and the second position, and the first The location is the location corresponding to the reference point in the coverage area of the target beam or the target cell, and the second location is the location farthest from the network device in the coverage area of the target beam or the target cell.
  • the network device may configure the random access timing in the cell at the cell level, and the network device may correspond to one or more cells.
  • the target cell in the embodiment of the present application may refer to the network device Any one of the corresponding one or more cells.
  • a cell can correspond to one or more beams.
  • the network device may also directly configure the random access timing within the beam at the beam level.
  • the network device corresponds to one or more beams.
  • the target beam in the embodiment of the present application may refer to one or more beams corresponding to the network device. Any one of.
  • the embodiment of the present application does not limit the configuration level of the random access occasion of the network device.
  • the network device when the network device needs to configure the random access timing of the target beam or the target cell, the network device first obtains target information, and the target information includes the transmission delay difference.
  • the target information in the embodiment of the present application may include other information in addition to the transmission delay difference, which is not limited in the embodiment of the present application.
  • the transmission delay difference in the embodiment of the present application refers to the maximum round-trip delay difference in a target beam or a target cell.
  • the transmission delay difference in the embodiment of the present application is the difference between the communication round-trip delays corresponding to the first position and the second position within the coverage of the target beam or the target cell, respectively.
  • the first position is the position corresponding to the reference point in the target beam or the coverage area of the target cell.
  • the communication round-trip delay corresponding to the reference point is the smallest within the coverage of the target beam or the target cell.
  • the reference point in the target beam or the target cell may be the point that is closest to the network equipment in the coverage area of the target beam or the target cell; the reference point in the target beam or the target cell may also be It is the geometric center point of the coverage area of the target beam or target cell on the ground.
  • the coverage area of the target beam or target cell on the ground is a circular area
  • the reference point is the center of the circular area;
  • the reference point can also be located at a certain height from the ground.
  • the reference point and the target beam or the point or geometric center point closest to the network equipment in the coverage area of the target cell on the ground have the same latitude and longitude, but the reference point is the same as the ground
  • the vertical distance is 20-30 kilometers.
  • the reference point may also be located at other positions, and the specific position of the reference point is not limited in the embodiment of the present application.
  • the second position is the position farthest from the network device in the coverage area of the target beam or the target cell.
  • the communication round-trip delay corresponding to the second location has the largest communication round-trip delay in the coverage of the target beam or the target cell.
  • the network device determines the first preamble format required by the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference in the target information.
  • the network device determines the first preamble format required for the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference in the target information.
  • the preamble length of the random access preamble required in the target beam or the target cell is related to the transmission delay difference.
  • the preamble length of the random access preamble in the target beam is at least 3 ms.
  • the greater the transmission delay difference the greater the length of the random access preamble required.
  • the random access preamble is composed of a cyclic prefix CP, a Zadoff-chu sequence, and a guard time GT.
  • the random access preambles corresponding to different preamble formats The leading length of is not the same. According to the transmission delay difference, the preamble length required by the random access preamble corresponding to the target beam or the target cell can be determined. Therefore, the network equipment can determine the first required random access preamble corresponding to the target beam or the target cell according to the transmission delay difference.
  • a preamble format, the preamble length corresponding to the first preamble format is greater than or equal to the required preamble length.
  • the first preamble format of the random access preamble required in the target beam or the target cell may not only be determined based on the transmission delay difference. In some cases, it may also be required. It is determined by combining information such as the target beam covered by the network equipment or the multipath delay of the channel between the terminal equipment and the network equipment in the target cell and the orbit height where the network equipment is located. It is necessary to ensure that the length of the CP in the first preamble format of the access preamble is not less than the sum of the transmission delay difference and the multipath delay.
  • the target information in the embodiment of the present application may also include the orbital height of the network device.
  • the network device may jointly calculate the target beam or target cell based on the transmission delay difference and the orbital height of the network device. Corresponding to the preamble length required for the random access preamble, and then determine the first preamble format of the random access preamble of the target beam or target cell.
  • the target information in the embodiments of the present application may also include other information.
  • the network device jointly calculates the target beam or random access corresponding to the target cell based on the transmission delay difference, the orbit height of the network device, and some other information. The length of the preamble required for the preamble, and then determine the first preamble format of the random access preamble of the target beam or target cell.
  • the network device determines first configuration information of random access timing from one or more types of configuration information according to the first preamble format, where the first configuration information is used to indicate the first preamble format and random access included in the random access period.
  • the interval between random access timings included in the first set is greater than or equal to the preamble length corresponding to the first preamble format.
  • the network device determines the random access from one or more configuration information according to the first preamble format.
  • the first configuration information of the timing is used to indicate the first preamble format and the first set of random access occasions included in the random access period, and the interval between the random access occasions included in the first set is greater than or equal to the preamble corresponding to the first preamble format length.
  • the random access period refers to the period of random access occasions, for example, may refer to the time interval of random access occasions defined by the standard.
  • the first configuration information is one of one or more types of configuration information, and each type of configuration information is used to indicate a random access preamble format and the random access timing included in the random access period.
  • a collection is one of one or more types of configuration information, and each type of configuration information is used to indicate a random access preamble format and the random access timing included in the random access period.
  • the network device generates a corresponding first configuration index according to the first configuration information.
  • the network device after determining the first configuration information of the random access timing from one or more kinds of configuration information according to the first preamble format, the network device generates the corresponding first configuration index according to the first configuration information.
  • the first configuration information is one of one or more types of configuration information
  • the first configuration index corresponding to the first configuration information may also be one of the one or more configuration indexes.
  • both the network device and the terminal device know in advance a one-to-one correspondence between one or more configuration indexes and one or more configuration information.
  • both the terminal device and the network device pre-store the one-to-one correspondence between the one or more configuration indexes and one or more kinds of configuration information.
  • Table 1 shows the correspondence between the configuration index and the configuration information.
  • the network device determines the first configuration information of the random access timing from one or more kinds of configuration information according to the first preamble format
  • the network device determines the first configuration information of the random access timing according to the first configuration information and the one between the configuration index and the configuration information.
  • a corresponding first configuration index is generated in a one-to-one correspondence relationship, so that after receiving the first configuration index, a terminal device in the target beam or target cell can determine the first configuration corresponding to the first configuration index according to the one-to-one correspondence relationship
  • the information can then determine the required random access preamble format and the random access timing for transmitting the random access preamble.
  • the network device can determine the first preamble format required for random access preamble according to the transmission delay difference in the target beam or the target cell, and determine the target beam or the target cell according to the required first preamble format
  • the first configuration information of random access occasions is such that the interval between random access occasions included in the random access period configured for the target beam or target cell is greater than or equal to the first random access preamble required by the target beam or target cell.
  • a preamble length corresponding to a preamble format can solve the problem of mutual interference such as overlapping preamble detection windows in non-terrestrial communication scenarios.
  • FIG. 3 is a schematic diagram of another embodiment of a data processing method provided by an embodiment of the application.
  • another embodiment of the data processing method provided in the embodiment of the present application may include:
  • the network device obtains target information in a target beam or a target cell.
  • the target information includes a transmission delay difference.
  • the transmission delay difference is the difference between the communication round-trip delays corresponding to the first position and the second position respectively, and the first position Is the position corresponding to the reference point in the coverage area of the target beam or the target cell, and the second position is the position farthest from the network device in the coverage area of the target beam or the target cell.
  • the network device determines the first preamble format required by the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference.
  • the network device determines first configuration information of random access timing from one or more types of configuration information according to the first preamble format, where the first configuration information is used to indicate the first preamble format and random access included in the random access period.
  • the interval between random access timings included in the first set is greater than or equal to the preamble length corresponding to the first preamble format.
  • step 203 The embodiment of the present application can be specifically understood by referring to the relevant content of step 203.
  • the configuration information in the embodiment of the present application includes the target parameter set and the starting time slot number of the random access occasion, and the target parameter set includes the random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the subframe where the random access timing is located, the start OFDM symbol position of the random access timing, and the random access The number of random access opportunities in the subframe or time slot where the time is located, and the duration of random access opportunities in the subframe or time slot where the random access time is located.
  • the target parameter set may include other types of information in addition to the above-mentioned parameters, which is not limited in the embodiment of the present application.
  • Table 2 shows the actual configuration information of a random access.
  • Table 2 also shows some examples of the values of the configuration parameters included in the configuration information corresponding to the configuration index.
  • the random access timing can be configured in subframe 0, subframe 4, and subframe 8 of the system frame; or the random access timing can be configured in subframe 1 of the system frame.
  • Subframe 5 and subframe 9; or random access timing can be configured on subframe 2 and subframe 6 of the system frame; random access timing can be configured on subframe 0, subframe 2, and subframe of the system frame On frame 3, subframe 5, subframe 6, or subframe 8.
  • the system frame where the random access is located can satisfy the system frame number modulo x equal to y, where x is any value among 3, 5, 6, 7, 9-15, and y is 1 or 0.
  • the frame period representing the random access opportunity is configured to be 3 subframes in length, that is, 30ms, and the frame number of the system frame meets the requirement of dividing by 3 and remaining 1, for example, the frame period of the system frame
  • the frame number is 4, 7, 10, etc., that is, the random access timing is located on the system frame with the frame number of 4, 7, 10, etc.
  • the random access timing is configured on subframes 0, 4, and 8, or on subframes 1, 5, and 9, on system frames with frame numbers 4, 7, 10, etc., or On subframes 2, 6, and 10, or on subframes 0 or 2 or 3 or 5 or 8.
  • the configuration information in the embodiment of the present application also includes the starting time slot number of the random access occasion.
  • a subframe contains 8 time slots, and the length of each time slot is 0.125ms.
  • the starting time slot number can be configured as one or more values from 0 to 7 as shown in Table 2.
  • a subframe contains 4 time slots, and the length of each time slot is 0.25ms.
  • the starting time slot number can be configured as 0, 1 from 0 to 7 as shown in Table 2.
  • a subframe contains 2 time slots, and the length of each time slot is 0.5ms.
  • the starting time slot number can be configured as 0, 1 in 0 ⁇ 7 as shown in Table 2. One or more of the two values.
  • the subcarrier interval is 15Khz, only one time slot is included in a subframe, and the length of each time slot is 1ms, and the starting time slot number can be configured as shown in Table 2, which is 0 from 0 to 7 value.
  • the starting time slot number when the starting time slot number is configured as 0, it means that time slot 0 on the subframe where the random access opportunity is located is the starting time slot of the random access opportunity, and the sub-carrier There is only one random access opportunity in the frame; when the starting time slot number is configured as 0 and 4, it means that time slot 0 and time slot 4 in the subframe where the random access time is located are the starting time slots of the random access opportunity , And there are 2 random access occasions on this subframe, and the interval between the two random access occasions is 0.5ms.
  • the network device realizes the random access timing in the random access cycle by configuring the system frame where the random access timing is located, the subframe where the random access timing is located, and the starting time slot of the random access timing.
  • the interval between is greater than or equal to the preamble length corresponding to the first preamble format required by the random access preamble of the target beam or the target cell.
  • the network device determines that the preamble length corresponding to the first preamble format required for the random access preamble of the target beam or target cell is 0.5 ms.
  • the network device determines first configuration information according to the first preamble format, and the interval between random access occasions included in the random access period indicated by the first configuration information is equal to the preamble length corresponding to the first preamble format, that is, 0.5 ms, the configuration parameters included in the first configuration information may adopt the values shown in Table 3.
  • the random access timing can be configured on subframe 0, subframe 4, and subframe 8 of the system frame; or the random access timing can be configured on subframe 1, subframe 5, and subframe of the system frame.
  • Frame 9; or random access timing can be configured in subframe 2 and subframe 6 of the system frame; random access timing can be configured in subframe 0, subframe 2, subframe 3, and subframe of the system frame 5.
  • the system frame where the random access opportunity is located can satisfy the system frame number modulo x equal to y, where x is any one of 3, 5, 6, 7, 9-15, and y is 1 or 0, that is, random access
  • the frame period of the timing can be 30ms, 50ms, 60ms, 70ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, or 150ms.
  • the subcarrier interval is 120Khz
  • a subframe contains 8 time slots, and the length of each time slot is 0.125ms.
  • the starting time slot number of the random access opportunity can be configured as 0 and 4, and the random access opportunity is located
  • the interval between the two random access occasions included in the subframe is 0.5 ms.
  • a subframe contains 4 time slots, each time slot is 0.5ms in length, and the starting time slot number can be configured as 0 and 2.
  • the random access time includes the subframe The interval between two random access occasions is 0.5ms.
  • a subframe contains 2 time slots, and the length of each time slot is 0.25ms.
  • the starting time slot number can be configured as 0 and 1.
  • the interval between two random access occasions is 0.5ms.
  • the subcarrier interval is 15Khz
  • a subframe contains only 1 time slot, and the length of each time slot is 1ms. You can configure the random access time in the subframe or the number of random access occasions in the time slot to 2
  • the interval between the two random access occasions included in the subframe where the random access occasion is located is 0.5 ms.
  • the network device generates a corresponding first configuration index according to the first configuration information.
  • the network device sends downlink information to the target beam or the target cell, where the downlink information includes the first configuration index.
  • the network device after generating the corresponding first configuration index according to the first configuration information, the network device sends downlink information to the target beam or the target cell, and the downlink information includes the first configuration index.
  • the first configuration index may be a physical random access channel PRACH configuration index.
  • the PRACH configuration index includes n bits, and m bits of the n bits are used to indicate the start of the random access opportunity. Starting time slot number, n is greater than m, and m is an integer greater than or equal to 1.
  • the first configuration index is one of one or more types of configuration indexes.
  • the configuration index may be a physical random access channel PRACH configuration index (PRACH configuration index).
  • PRACH configuration index PRACH configuration index
  • the (nm) bits of the n bits are used to indicate multiple (for example, less than or equal to 2 nm ) values corresponding to the target parameter set.
  • the first configuration index includes a first index and a second index
  • the first index is used to indicate the target parameter set
  • the second index is used to indicate the starting time slot number of the random access occasion.
  • the first configuration index is one of one or more types of configuration indexes.
  • the configuration index may include a first index and a second index, where the first index is used to indicate the target parameter set, and the second index is used to indicate the starting time slot number of the random access occasion.
  • the network device may use 4 bits representing the high-level parameter of the cyclic shift signaling to represent the second index.
  • the network device may also indicate the second index by adding a bit in the high-level signaling (for example, SIB1) and send it. The embodiments of this application do not limit this.
  • the terminal device determines a random access preamble format and a random access opportunity for transmitting the random access preamble according to the downlink information.
  • the terminal device is located in the coverage area of the target beam or target cell. After receiving the downlink information sent by the network device to the target beam or target cell, the terminal device determines the random access preamble format and usage based on the downlink information. The random access timing for transmitting the random access preamble.
  • the terminal device After receiving the downlink information, the terminal device determines the first configuration information according to the first configuration index in the downlink information, and then determines the random preamble format according to the first preamble format and the first set indicated by the first configuration information It is the first preamble format, and the random access timing for transmitting the random access preamble is determined from the first set.
  • the network device can determine the first preamble format required for random access preamble according to the transmission delay difference in the target beam or the target cell, and determine the target beam or the target cell according to the required first preamble format
  • the first configuration information of random access occasions is such that the interval between random access occasions included in the random access period configured for the target beam or target cell is greater than or equal to the first random access preamble required by the target beam or target cell.
  • a preamble length corresponding to a preamble format, so that the interval between random access occasions when the target beam or terminal equipment in the target cell sends a random access preamble is greater than or equal to the preamble length corresponding to the first preamble format, thereby avoiding non-uniformity.
  • the preamble detection window overlaps and other mutual interference problems.
  • Fig. 4 is a schematic diagram of another embodiment of a data processing method provided by an embodiment of the application.
  • another embodiment of the data processing method provided by the embodiment of the present application includes:
  • the network device obtains target information in a target beam or a target cell, where the target information includes a transmission delay difference and a reference multipath delay, and the transmission delay difference is the communication round trip delay corresponding to the first location and the second location, respectively.
  • the first position is the position corresponding to the reference point in the coverage area of the target beam or the target cell
  • the second position is the position farthest from the network device in the coverage area of the target beam or the target cell.
  • the target information also includes the reference multipath delay.
  • the target beam or target cell may include terminal equipment without positioning function, or terminal equipment with positioning function. Since the terminal equipment with positioning function can determine its own position information through the positioning function, and at the same time, by obtaining the position of the base station such as satellites, it can calculate the timing advance required when sending signals, thereby reducing the CP in the preamble that needs to be compensated due to the round-trip time The timing error caused by delay or round-trip delay difference. That is, the preamble format corresponding to the preamble format required by the terminal device with the positioning function is shorter. In an ideal situation, the preamble format of the random access preamble required by the terminal device with the positioning function does not need to consider the target beam or the transmission delay difference in the target cell.
  • the signal emitted by the network device at the transmitting end can reach the terminal device at the receiving end via a direct path, or it can reach the terminal device at the receiving end via a non-direct path due to reflection and diffraction.
  • the amount of signal reflection is determined by factors such as the angle of incidence of the signal, the carrier frequency, and the polarization of the incident wave.
  • Multipath delay may refer to the difference between the shortest time and the longest time for signal components passing through different paths to reach the receiving end.
  • the reference multipath delay in the embodiment of the present application may refer to the largest multipath delay among the multipath delays corresponding to different positions in the coverage of the target beam or the target cell.
  • the reference multipath delay may not need to be measured in real time, and the worst empirical value of the multipath delay can be directly used.
  • the length of the preamble CP in the terrestrial communication process is fixed, and the fixed CP length is determined by the maximum value of the multipath delay of the communication channel in the city obtained by measuring the channel.
  • the track height of the network device may cause a certain path loss, and the size of the path loss also has a certain influence on the preamble length.
  • the target information in the embodiment of the present application may also include the orbit height of the network device.
  • the network device determines the first preamble format required by the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference.
  • the network device determines the first configuration information of the random access opportunity from multiple configuration information according to the first preamble format, where the first configuration information is used to indicate the first preamble format and the first random access opportunity included in the random access period.
  • the interval between random access occasions included in the first set is greater than or equal to the preamble length corresponding to the first preamble format.
  • the first configuration information is one of the multiple types of configuration information.
  • the network device generates a corresponding first configuration index according to the first configuration information.
  • the network device determines the second preamble format required for the random access preamble corresponding to the target beam or the target cell according to the reference multipath delay.
  • the network device determines the second preamble format required for the random access preamble corresponding to the target beam or the target cell according to the reference multipath delay in the target information, and the second preamble format needs to be guaranteed
  • the CP length in is not less than the length of the reference multipath delay.
  • the second preamble format of the random access preamble required in the target beam or the target cell may not only be obtained based on the reference multipath delay, but in some cases, it may also be It needs to be determined based on information such as the height of the orbit where the network device is located.
  • the target information in the embodiment of the present application may also include the orbital height of the network device.
  • the network device may jointly calculate the target beam or target based on the reference multipath delay and the orbital height of the network device. The second preamble length required for the random access preamble corresponding to the cell.
  • the network device determines the second configuration information of the random access timing from the multiple configuration information according to the second preamble format, where the second configuration information is used to indicate the second preamble format and the first random access timing included in the random access period.
  • the interval between random access occasions included in the second set is greater than or equal to the preamble length corresponding to the second preamble format.
  • the network device determines the first random access opportunity from various configuration information according to the second preamble format.
  • Configuration information is used to indicate the second preamble format and the second set of random access occasions included in the random access period, and the interval between the random access occasions included in the second set is greater than or equal to the preamble corresponding to the second preamble format length.
  • the second configuration information is one of multiple types of configuration information, and each type of configuration information is used to indicate a random access preamble format and a set of random access occasions included in the random access period.
  • the second configuration information and the first configuration information in the embodiment of the present application are two different types of configuration information among multiple types of configuration information.
  • the network device generates a corresponding second configuration index according to the second configuration information.
  • the network device after determining the second configuration information of the random access timing from the multiple configuration information according to the second preamble format, the network device generates the corresponding second configuration index according to the second configuration information.
  • the first configuration information and the second configuration information are two different types of configuration information
  • the second configuration index and the first configuration index corresponding to the second configuration information are also Two different configuration indexes among multiple configuration indexes.
  • step 402 does not specifically limit the sequence of step 402 to step 404, and step 405 to step 407.
  • the network device sends downlink information to the target beam or the target cell, where the downlink information includes a first configuration index and a second configuration index.
  • the network device after generating the first configuration index and the second configuration index, the network device sends downlink information to the target beam or the target cell, and the downlink information includes the first configuration index and the second configuration index.
  • the terminal device receives the downlink information and judges whether it has a positioning function.
  • the terminal device after receiving the downlink information including the first configuration index and the second configuration index, the terminal device first determines whether it has a positioning function.
  • the terminal device determines the first configuration information according to the first configuration index, and determines the random access preamble format and the random access timing for transmitting the random access preamble according to the first configuration information.
  • the terminal device determines the first configuration information according to the first configuration index, and then determines the random configuration information according to the first preamble format and the first set indicated by the first configuration information.
  • the preamble format is the first preamble format, and the random access timing for transmitting the random access preamble is determined from the first set.
  • the terminal device determines second configuration information according to the second configuration index, and determines a random access preamble format and a random access opportunity for transmitting the random access preamble according to the second configuration information.
  • the terminal device determines the second configuration information according to the second configuration index, and then determines the random preamble according to the second preamble format and the second set indicated by the second configuration information
  • the format is the second preamble format, and the random access timing for transmitting the random access preamble is determined from the second set.
  • the network device determines the first preamble format and the second preamble format required for random access preamble according to the transmission delay difference in the target beam or the target cell and the reference multipath signal respectively, and according to the required first preamble format.
  • a preamble format and a second preamble format determine two kinds of configuration information of random access occasions in the target beam or target cell, and the interval between the random access occasions indicated by the two kinds of configuration information is greater than or equal to the corresponding preamble format.
  • the two kinds of configuration information are used to determine the format of the random access preamble and the random access timing for transmitting the random access preamble for terminal devices with and without positioning function in the target beam or target cell, respectively, Not only can avoid mutual interference problems such as overlapping preamble detection windows in non-terrestrial communication scenarios, but also can configure random access timing for different terminal devices, which can save time-frequency resources occupied by random access preambles.
  • FIG. 5 is a schematic structural diagram of a network device 50 provided by an embodiment of this application.
  • the network device 50 provided by the embodiment of the present application may include:
  • the acquiring module 501 is configured to acquire target information in a target beam or a target cell, where the target information includes a transmission delay difference, and the transmission delay difference is the difference between the communication round-trip delays corresponding to the first position and the second position, respectively Value, the first position is the position corresponding to the reference point in the coverage area of the target beam or the target cell, and the second position is the distance from the network within the coverage area of the target beam or the target cell The farthest location of the device.
  • the determining module 502 is configured to determine the first preamble format required by the random access preamble corresponding to the target beam or the target cell according to the transmission delay difference included in the target information acquired by the acquiring module 501 .
  • the determining module 502 is further configured to determine first configuration information of random access timing from one or more types of configuration information according to the first preamble format, where the first configuration information is used to indicate the first preamble The format and a first set of random access occasions included in the random access period, and the interval between random access occasions included in the first set is greater than or equal to the preamble length corresponding to the first preamble format.
  • the generating module 503 is configured to generate a corresponding first configuration index according to the first configuration information determined by the determining module 502.
  • the data processing device 50 further includes: a sending module 504, configured to send downlink information to the target beam or the target cell, where the downlink information includes the second generated by the generating module A configuration index, where the downlink information is used for the terminal equipment in the target area or the target cell to determine a random access preamble format and for transmitting a random access preamble according to the first configuration information corresponding to the first configuration index The timing of random access.
  • a sending module 504 configured to send downlink information to the target beam or the target cell, where the downlink information includes the second generated by the generating module A configuration index, where the downlink information is used for the terminal equipment in the target area or the target cell to determine a random access preamble format and for transmitting a random access preamble according to the first configuration information corresponding to the first configuration index The timing of random access.
  • the target information further includes the reference multipath delay corresponding to the target beam or the target cell
  • the determining module 502 is further configured to be further configured according to all the information acquired by the acquiring module 501.
  • the reference multipath delay in the target information determines the second preamble format required by the random access preamble corresponding to the target beam or the target cell; according to the second preamble format from the one or more Second configuration information for determining random access occasions in the configuration information, where the second configuration information is used to indicate the second preamble format and a second set of random access occasions included in the random access period, the second The interval between random access occasions included in the set is greater than or equal to the preamble length corresponding to the second preamble format; the generating module 503 is further configured to generate corresponding information according to the second configuration information determined by the determining module The second configuration index.
  • the sending module 504 is further configured to send downlink information to the target beam or the target cell, where the downlink information includes the first configuration index determined by the determining module and In the second configuration index, the downlink information is used for the terminal equipment in the target area to determine the random access preamble format and usage according to the first configuration information corresponding to the first configuration index after judging that the terminal device does not have the positioning function.
  • the random access timing for transmitting the random access preamble when it is judged that the positioning function is available, the random access preamble format and the random access used for transmitting the random access preamble are determined according to the second configuration information corresponding to the second configuration index opportunity.
  • the configuration information includes a target parameter set and a starting time slot number of a random access occasion, and the target parameter set includes a random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the subframe where the random access timing is located, and the start of the random access timing The position of the OFDM symbol, the number of random access opportunities in the subframe or time slot where the random access time is located, and the duration of the random access opportunity in the subframe or time slot where the random access time is located.
  • the first configuration index or the second configuration index is a physical random access channel PRACH configuration index
  • the PRACH configuration index includes n bits
  • m of the n bits Bits are used to indicate the starting time slot number of the random access occasion
  • the n is greater than m
  • the m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes a first index and a second index
  • the first index is used to indicate the target parameter set
  • the second index It is used to indicate the starting time slot number of the random access occasion.
  • the acquiring module 501, the determining module 502, and the generating module 503 in the embodiments of the present application may be implemented by a processor or processor-related circuit components, and the sending module 504 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a network device 60.
  • the network device 60 includes a processor 601 and a memory 602.
  • the memory 602 may be independent of the processor or independent of the network device ( Memory#3), it can also be inside the processor or network device (Memory#1 and Memory#2).
  • the memory 602 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
  • the memory 602 is used to store computer readable instructions (or called computer programs),
  • the processor 601 is configured to read the computer-readable instructions to implement the foregoing aspects related to the network device and the method provided in any implementation manner thereof. Specifically, the processor 601 is configured to perform operations performed by the obtaining module 501, the determining module 502, and the generating module 503 in the foregoing embodiment.
  • the memory 602 (Memory #1) is located in the device.
  • the memory 602 (Memory #2) is integrated with the processor.
  • the memory 602 (Memory #3) is located outside the device.
  • the network device 60 further includes a transceiver 603 for receiving and sending data.
  • the transceiver 603 is configured to perform the operations performed by the sending module 504 in the foregoing embodiment.
  • the network device 50 or the network device 60 may correspond to the network device in the data processing method of the embodiment of the present application, and the operation and/or function of each module in the network device 50 or the network device 60 In order to realize the corresponding processes of the respective methods in FIGS. 2 to 4, for the sake of brevity, the details are not repeated here.
  • FIG. 7 is a schematic structural diagram of a terminal device 70 provided by an embodiment of the application.
  • another terminal device 70 provided by an embodiment of the present application may include:
  • the receiving module 701 is configured to receive downlink information sent by a network device, where the downlink information includes a first configuration index, and the first configuration information corresponding to the first configuration index is the random information corresponding to the target beam or the target cell by the network device.
  • the first preamble format required for the access preamble is determined from one or more kinds of configuration information, and the first configuration information is used to indicate the first preamble format and the random access timing included in the random access period.
  • the interval between random access occasions included in the first set is greater than or equal to the preamble length corresponding to the first preamble format
  • the first preamble format is the target information obtained by the network device according to Is determined by the transmission delay difference included in the transmission delay difference
  • the transmission delay difference is the difference between the communication round-trip delays corresponding to the first position and the second position
  • the first position is a reference in the coverage area of the target beam A location corresponding to a point, where the second location is the location farthest from the network device in the target beam coverage area;
  • the determining module 702 is configured to determine a random access preamble format and a random access timing for transmitting the random access preamble according to the downlink information received by the receiving module 701.
  • the determining module 702 is configured to determine the first configuration information according to the first configuration index in the downlink information; determine the random access preamble according to the first configuration information Format and random access timing used to transmit the random access preamble.
  • the downlink information further includes a second configuration index
  • the second configuration information corresponding to the second configuration index is a random number corresponding to the target beam or the target cell by the network device.
  • the second preamble format required for the access preamble is determined from one or more kinds of configuration information, and the second configuration information is used to indicate the second preamble format and the first random access opportunity included in the random access period.
  • the interval between random access occasions included in the second set is greater than or equal to the preamble length corresponding to the second preamble format
  • the determining module 702 is used to determine whether it has a positioning function; if not, Determine the first configuration information according to the first configuration index; determine the random access preamble format and the random access timing for transmitting the random access preamble according to the first configuration information; if so, according to the The second configuration index determines the second configuration information; and determines the random access preamble format and the random access timing for transmitting the random access preamble according to the second configuration information.
  • the configuration information includes a target parameter set and a starting time slot number of a random access occasion, and the target parameter set includes a random access preamble format.
  • the target parameter set further includes one or more of the following parameters: the system frame where the random access timing is located, the subframe where the random access timing is located, and the start of the random access timing The position of the OFDM symbol, the number of random access opportunities in the subframe or time slot where the random access time is located, and the duration of the random access opportunity in the subframe or time slot where the random access time is located.
  • the first configuration index or the second configuration index is a physical random access channel PRACH configuration index
  • the PRACH configuration index includes n bits
  • m of the n bits Bits are used to indicate the starting time slot number of the random access occasion
  • the n is greater than m
  • the m is an integer greater than or equal to 1.
  • the first configuration index or the second configuration index includes a first index and a second index
  • the first index is used to indicate the target parameter set
  • the second index It is used to indicate the starting time slot number of the random access occasion.
  • the determining module 702 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the receiving module 701 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a terminal device 80.
  • the terminal device 80 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores instructions or programs, and the processor 810 is used to execute Instructions or programs stored in the memory 820.
  • the processor 810 is configured to execute the operations performed by the determining module 702 in the foregoing embodiment
  • the transceiver 830 is configured to execute the operations performed by the receiving module 701 in the foregoing embodiment.
  • terminal device 70 or the terminal device 80 may correspond to the terminal device in the data processing method of the embodiment of the present application, and the operation and/or function of each module in the terminal device 70 or the terminal device 80 In order to realize the corresponding processes of the respective methods in FIGS. 2 to 4, for the sake of brevity, the details are not repeated here.
  • the network device in the embodiment of the present application may include one or more radio frequency units as shown in FIG. 9, such as a remote radio unit (RRU) 910 and one or more baseband units (BBU). ) (Also referred to as digital unit, DU) 920.
  • the RRU 910 may be called a transceiver module, which corresponds to the sending module 504 in FIG. 5.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 911 and Radio frequency unit 912.
  • the RRU910 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU910 part is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 910 and the BBU 920 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 920 is the control center of the base station, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing downlink information.
  • the BBU 920 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network with a single access standard (such as an LTE network), or can respectively support wireless access networks with different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 920 further includes a memory 921 and a processor 922.
  • the memory 921 is used to store necessary instructions and data.
  • the processor 922 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 921 and the processor 922 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 10 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • an embodiment of the present application provides a chip system, and the chip system includes a processor for supporting a network device to implement the foregoing data processing method.
  • the chip system also includes memory.
  • the memory is used to store the necessary program instructions and data of the network device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • an embodiment of the present application provides a chip system, and the chip system includes a processor for supporting a terminal device to implement the foregoing data processing method.
  • the chip system also includes memory.
  • the memory is used to store the necessary program instructions and data of the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits (central processing unit, CPU).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种数据处理方法,包括:网络设备获取目标波束或目标小区内包含传输时延差的目标信息,在根据传输时延差确定第一前导格式之后,确定用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合的第一配置信息,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度;根据第一配置信息生成对应的第一配置索引。本申请技术方案能够根据不同波束或小区的传输时延差确定其所需的前导格式,然后进一步确定随机接入时机的配置信息,使得所配置的随机接入时机之间的间隔大于或等于其所需要的前导格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。

Description

一种数据处理方法、装置及存储介质
本申请要求于2019年9月30日提交中国专利局、申请号为201910940643.7、发明名称为“一种数据处理方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体涉及一种数据处理方法、装置及存储介质。
背景技术
无线通信为用户提供了无限便利,包括语音通信、数据传输等。在长期演进(long term evolution,LTE)和新空口(new radio,NR)的设计中,终端设备(user equipment,UE)接入网络的方式都是基于竞争的随机接入方式。
在NR标准中,终端设备要接入网络,需要进行小区搜索和获取小区系统信息,从而与网络侧(基站/卫星等)取得下行同步。之后,终端设备需要获取小区的系统信息(system information),并通过随机接入过程(random access procedure)与小区建立连接并取得上行同步。具体地,终端设备通过在网络侧配置的随机接入时机(physical random access occasion,RO)的资源上发送随机接入前导(preamble)以发起随机接入。前导由循环前缀(cyclic prefix,CP),Zadoff-chu序列,保护时间(guard time,GT)组成。CP的作用是补偿由于往返时延或往返时延差以及多径时延扩展造成的定时误差。一般Zadoff-chu序列和GT的长度不小于CP的长度。因此,当终端设备与网络侧的往返时延或往返时延差越大时,需要的前导长度越长。
目前第三代合作伙伴计划(3rd generation partnership project,3GPP)组织正在研究将第五代移动通信技术(5th generation,5G)NR标准适配到非陆地网络(non-terrestrial networks,NTN)。在NR中,基站与各波束(beam)服务的终端设备基本是在同一个海拔高度上,且各波束中终端设备之间的最大传输时延差(max differential delay)是相同的,同一小区内的不同波束采用相同的随机接入时机配置。
与NR陆地通信场景不同的是,非陆地网络的通信场景中,网络侧与各波束服务的终端设备不在同一海拔高度上,且距离较远,因此非陆地通信的小区直径更大,这就造成同小区内不同地理位置用户的往返时延差较大。例如,地球同步轨道(geostationary earth orbit,GEO)卫星场景的终端设备最大往返时延差可以达到1.6ms,该场景下要求前导最短长度为4.8ms。而NR支持的同小区内终端设备数据传输的最大往返时延差小于0.7ms,前导长度也远远小于非陆地通信中的需求。因此,如果在非陆地通信场景中仍采用NR的随机接入时机的配置来传输较长的前导,那么将会出现前导检测窗重叠等干扰问题,影响网络侧对前导的检测概率。另外,非陆地通信场景中存在同一小区的不同波束中终端设备之间的最大传输时延差不同的情况,使得同一小区的不同波束内所需要的前导长度不同。因此,若非陆地通信场景中仍然采用陆地通信场景中的同小区内的不同波束均采用相同的随 机接入时机的不够灵活的配置方式,可能会产生时域资源浪费的情况。因此,如何实现非陆地场景中不同波束对应的随机接入时机的灵活配置从而避免因前导长度过长而导致的前导检测窗重叠等干扰问题,是一个亟待解决的问题。
发明内容
本申请实施例提供一种数据处理方法,能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。
有鉴于此,本申请第一方面提供一种数据处理方法,包括:网络设备获取目标波束或目标小区内的目标信息,网络设备可以是以小区(cell)为级别进行小区内随机接入时机的配置,网络设备可以对应一个或多个小区,目标小区可以是指网络设备对应的一个或多个小区中的任意一个,网络设备也可以是直接以波束为级别进行波束内随机接入时机的配置,网络设备对应一个或多个波束,目标波束可以是指网络设备对应的一个或多个波束中的任意一个,目标信息包括传输时延差,目标信息中还可以包含网络设备的轨道高度,传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置,传输时延差是指目标波束或目标小区内的最大往返时延差,目标波束或目标小区内的参考点(reference point)可以是目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点,也可以是目标波束或目标小区在地面上覆盖范围的几何中心点,参考点也可以位于距离地面具备一定高度的位置,例如,参考点与目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点或几何中心点具备相同的经纬度,但参考点与地面的垂直距离为20-30公里,第二位置所对应的通信往返时延在目标波束或目标小区覆盖范围内的通信往返时延最大;网络设备根据目标信息中的传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式,随机接入前导由循环前缀CP,Zadoff-chu序列,保护时间GT组成,随机接入前导存在多种前导格式,不同的前导格式所对应的随机接入前导中循环前缀CP,Zadoff-chu序列及保护时间GT的长度不同,不同的前导格式对应的随机接入前导的前导长度不相同,第一前导格式为多种前导格式中的一种。网络设备根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度,随机接入周期是指随机接入时机的周期,例如可以是指标准定义的随机接入时机的时间段。网络设备根据第一配置信息生成对应的第一配置索引。第一配置信息是一个或多种配置信息中的一个,则第一配置信息对应的第一配置索引也可以是一个或多个配置索引中的一个。一个或多个配置索引和一种或多种配置信息存在一一对应的关系。
由以上第一方面可知,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导 格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。
结合上述第一方面,在第一方面第一种可能的实现方式中,网络设备根据第一配置信息生成对应的第一配置索引之后,还包括:网络设备向目标波束或目标小区发送下行信息,下行信息包括第一配置索引,下行信息用于目标区域或目标小区内的终端设备根据第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第一方面,在第一方面第二种可能的实现方式中,目标信息还包括目标波束或目标小区对应的参考多径时延,多径时延是指经过不同路径的信号分量到达接收端的最短时间和最长之间的差值,参考多径时延可以是指目标波束或目标小区覆盖范围内的不同位置所对应的多径时延中最大的多径时延,在实际应用的过程中,参考多径时延可以不需要实时测量,可以直接采用最差的多径时延的经验值。例如,在陆地通信过程中的前导CP的长度都是固定的,该固定的CP长度是通过对信道进行测量所得到的城市里的通信信道的多径时延的最大值来确定的。网络设备获取目标信息之后,还包括:网络设备根据参考多径时延确定目标波束或目标小区对应的随机接入前导所需的第二前导格式;网络设备根据第二前导格式从一种或多种配置信息中确定随机接入时机的第二配置信息,第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度;网络设备根据第二配置信息生成对应的第二配置索引。
由以上第一方面第二种可能的实现方式可知,网络设备分别根据目标波束或目标小区内的传输时延差和参考多径信号确定随机接入前导所需的第一前导格式和第二前导格式,并根据所需的第一前导格式和第二前导格式确定目标波束或目标小区内随机接入时机的两种配置信息,该两种配置信息所指示的随机接入时机之间的间隔都大于或等于对应的前导格式所对应的前导长度,该两种配置信息分别用于目标波束或目标小区内具备定位功能和不具备定位功能的终端设备确定随机接入前导格式和用于传输随机接入前导的随机接入时机,不但能够避免非陆地通信场景中前导检测窗重叠等等相互干扰问题,还能够针对不同的终端设备进行随机接入时机的配置,能够节约随机接入前导所占用的时频资源。
结合上述第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,网络设备根据第二配置信息生成对应的第二配置索引之后,还包括:网络设备向目标波束或目标小区发送下行信息,下行信息包括第一配置索引和第二配置索引,下行信息用于目标区域内的终端设备在判断不具备定位功能后,根据第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,在判断具备定位功能时,根据第二配置索引对应的第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
由以上第一方面第三种可能的实现方式可知,目标波束或目标小区内的终端设备能够根据是否具备定位功能选择相应的随机接入时机的配置,从而可以节约随机接入前导所占用的时频资源,并且使得随机接入时机的配置方式具备多样性。
结合上述第一方面、第一方面第一种至第三种中任意一种可能的实现方式,在第一方 面第四种可能的实现方式中,配置信息包含目标参数集合和随机接入时机的起始时隙号,目标参数集合包括随机接入前导格式。
由以上第一方面第四种可能的实现方式可知,可以通过增加随机接入时机的起始时隙号的方式,增加随机接入时机的机会,避免时域资源的浪费,提高随机接入前导的容量。
结合上述第一方面第四种可能的实现方式,在第一方面第五种可能的实现方式中,目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
结合上述第一方面第二种至第五种中任意一种可能的实现方式,在第一方面第六种可能的实现方式中,第一配置索引或第二配置索引为物理随机接入信道PRACH配置索引,PRACH配置索引包括n个比特,配置索引的大小可以是与一种或多种配置信息对应,多种配置信息为小于或者等于2 n个配置信息,则配置索引的大小可以是n比特。n个比特中的m个比特用于指示随机接入时机的起始时隙号,m的大小可以是与起始时隙号的个数对应。n大于m,m为大于或等于1的整数。
结合上述第一方面第二种至第五种中任意一种可能的实现方式,在第一方面第七种可能的实现方式中,第一配置索引或第二配置索引包含第一索引和第二索引,第一索引用于指示目标参数集合,第二索引用于指示随机接入时机的起始时隙号。网络设备可以使用表示循环移位信令的高层参数的4个比特来表示第二索引。本申请实施例中,网络设备也可以通过在高层信令(例如,SIB1)中增加比特位来指示该第二索引并进行发送。
本申请第二方面提供一种数据处理方法,包括:终端设备接收网络设备发送的下行信息,下行信息包括第一配置索引,第一配置索引对应的第一配置信息是网络设备根据目标波束或目标小区对应的随机接入前导所需的第一前导格式从一种或多种配置信息中确定的,网络设备可以是以小区(cell)为级别进行小区内随机接入时机的配置,网络设备可以对应一个或多个小区,目标小区可以是指网络设备对应的一个或多个小区中的任意一个,网络设备也可以是直接以波束为级别进行波束内随机接入时机的配置,网络设备对应一个或多个波束,目标波束可以是指网络设备对应的一个或多个波束中的任意一个。第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机的之间的间隔大于或等于第一前导格式对应的前导长度,第一前导格式是网络设备根据获取的目标信息中包含的传输时延差确定的,目标信息中还可以包含网络设备的轨道高度,传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,传输时延差是指目标波束或目标小区内的最大往返时延差,第一位置为目标波束覆盖区域内的参考点所对应的位置,目标波束或目标小区内的参考点(reference point)可以是目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点,也可以是目标波束或目标小区在地面上覆盖范围的几何中心点,参考点也可以位于距离地面具备一定高度的位置,例如,参考点与目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点或几何中心点具备相同的经纬度,但参考点与地面的垂直距离为20-30公里,第二位置为目标波束覆盖区域内距离网络设备最远的位置,第二位置所对应的通信往返时延在目标波束或目标小区 覆盖范围内的通信往返时延最大;终端设备根据下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
由以上第二方面可知,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。
结合上述第二方面,在第二方面第一种可能的实现方式中,终端设备根据下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,包括:终端设备根据下行信息中的第一配置索引确定第一配置信息;终端设备根据第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第二方面,在第二方面第二种可能的实现方式中,下行信息还包括第二配置索引,第二配置索引对应的第二配置信息是网络设备根据目标波束或目标小区对应的随机接入前导所需的第二前导格式从一种或多种配置信息中确定的,第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度,第二前导格式是网络设备根据获取的目标信息中包含的参考多径时延确定的,多径时延是指经过不同路径的信号分量到达接收端的最短时间和最长之间的差值,参考多径时延可以是指目标波束或目标小区覆盖范围内的不同位置所对应的多径时延中最大的多径时延,在实际应用的过程中,参考多径时延可以不需要实时测量,可以直接采用最差的多径时延的经验值。例如,在陆地通信过程中的前导CP的长度都是固定的,该固定的CP长度是通过对信道进行测量所得到的城市里的通信信道的多径时延的最大值来确定的。终端设备根据下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,包括:终端设备判断是否具备定位功能;若不具备,则终端设备根据第一配置索引确定所述第一配置信息;终端设备根据第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机;若具备,则终端设备根据第二配置索引确定第二配置信息;终端设备根据第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第二方面、第二方面第一种至第二种中任意一种可能的实现方式,在第二方面第三种可能的实现方式中,配置信息包含目标参数集合和随机接入时机的起始时隙号,目标参数集合包括随机接入前导格式。
结合上述第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
结合上述第二方面、第二方面第一种至第四种中任意一种可能的实现方式,在第二方面第五种可能的实现方式中,第一配置索引或第二配置索引为物理随机接入信道PRACH配置索引,PRACH配置索引包括n个比特,n个比特中的m个比特用于指示随机接入时机的起始时 隙号,n大于m,m为大于或等于1的整数。
结合上述第二方面、第二方面第一种至第四种中任意一种可能的实现方式,在第二方面第六种可能的实现方式中,第一配置索引或第二配置索引包含第一索引和第二索引,第一索引用于指示目标参数集合,第二索引用于指示随机接入时机的起始时隙号。
本申请第三方面提供一种数据处理装置,包括:获取模块,用于获取目标波束或目标小区内的目标信息,目标信息包括传输时延差,传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置;确定模块,用于根据获取模块获取的所述目标信息中包括的传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式;确定模块,还用于根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度;生成模块,用于根据确定模块确定的第一配置信息生成对应的第一配置索引。
结合上述第三方面,在第三方面第一种可能的实现方式中,该装置还包括:发送模块,用于向目标波束或目标小区发送下行信息,下行信息包括生成模块生成的第一配置索引,下行信息用于目标区域或目标小区内的终端设备根据第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第三方面,在第三方面第二种可能的实现方式中,目标信息还包括目标波束或目标小区对应的参考多径时延,确定模块,还用于根据获取模块获取的目标信息中的参考多径时延确定目标波束或目标小区对应的随机接入前导所需的第二前导格式;根据第二前导格式从一种或多种配置信息中确定随机接入时机的第二配置信息,第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度;生成模块,还用于根据确定模块确定的第二配置信息生成对应的第二配置索引。
结合上述第三方面第二种可能的实现方式,在第三方面第三种可能的实现方式中,发送模块,还用于向目标波束或目标小区发送下行信息,下行信息包括确定模块确定的第一配置索引和第二配置索引,下行信息用于目标区域内的终端设备在判断不具备定位功能后,根据第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,在判断具备定位功能时,根据第二配置索引对应的第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第三方面、第三方面第一种至第三种中任意一种可能的实现方式,在第三方面第四种可能的实现方式中,配置信息包含目标参数集合和随机接入时机的起始时隙号,目标参数集合包括随机接入前导格式。
结合上述第三方面第四种可能的实现方式,在第三方面第五种可能的实现方式中,目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机 接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
结合上述第三方面第二种至第五种中任意一种可能的实现方式,在第三方面第六种可能的实现方式中,第一配置索引或第二配置索引为物理随机接入信道PRACH配置索引,PRACH配置索引包括n个比特,n个比特中的m个比特用于指示随机接入时机的起始时隙号,n大于m,m为大于或等于1的整数。
结合上述第三方面第二种至第五种中任意一种可能的实现方式,在第三方面第七种可能的实现方式中,第一配置索引或第二配置索引包含第一索引和第二索引,第一索引用于指示目标参数集合,第二索引用于指示随机接入时机的起始时隙号。
本申请第四方面提供一种数据处理装置,包括:接收模块,用于接收网络设备发送的下行信息,下行信息包括第一配置索引,第一配置索引对应的第一配置信息是网络设备根据目标波束或目标小区对应的随机接入前导所需的第一前导格式从一种或多种配置信息中确定的,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机的之间的间隔大于或等于第一前导格式对应的前导长度,第一前导格式是网络设备根据获取的目标信息中包含的传输时延差确定的,传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束覆盖区域内的参考点所对应的位置,第二位置为目标波束覆盖区域内距离网络设备最远的位置;确定模块,用于根据接收模块接收的下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第四方面,在第四方面第一种可能的实现方式中,确定模块,用于根据下行信息中的第一配置索引确定第一配置信息;根据第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第四方面,在第四方面第二种可能的实现方式中,下行信息还包括第二配置索引,第二配置索引对应的第二配置信息是网络设备根据目标波束或目标小区对应的随机接入前导所需的第二前导格式从一种或多种配置信息中确定的,第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度,确定模块,用于判断是否具备定位功能;若不具备,则根据第一配置索引确定第一配置信息;根据第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机;若具备,则根据第二配置索引确定第二配置信息;根据第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
结合上述第四方面、第四方面第一种至第二种中任意一种可能的实现方式,在第四方面第三种可能的实现方式中,配置信息包含目标参数集合和随机接入时机的起始时隙号,目标参数集合包括随机接入前导格式。
结合上述第四方面第三种可能的实现方式,在第四方面第四种可能的实现方式中,目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
结合上述第四方面、第四方面第一种至第四种中任意一种可能的实现方式,在第四方面第五种可能的实现方式中,第一配置索引或第二配置索引为物理随机接入信道PRACH配置索引,PRACH配置索引包括n个比特,n个比特中的m个比特用于指示随机接入时机的起始时隙号,n大于m,m为大于或等于1的整数。
结合上述第四方面、第四方面第一种至第四种中任意一种可能的实现方式,在第四方面第六种可能的实现方式中,第一配置索引或第二配置索引包含第一索引和第二索引,第一索引用于指示目标参数集合,第二索引用于指示随机接入时机的起始时隙号。
本申请第五方面提供一种网络设备,该网络设备包括处理器和存储器。存储器用于存储计算机可读指令(或者称之为计算机程序),处理器用于读取所述计算机可读指令以实现前述有关网络设备的方面及其任意实现方式提供的方法。
在一些实现方式下,该网络设备还包括收发器,用于接收和发送数据。
本申请第六方面提供一种终端设备,该终端设备包括处理器和存储器。存储器用于存储计算机可读指令(或者称之为计算机程序),处理器用于读取所述计算机可读指令以实现前述有关终端设备的方面及其任意实现方式提供的方法。
在一些实现方式下,该终端设备还包括收发器,用于接收和发送数据。
本申请第七方面提供一种计算机存储介质,该计算机存储介质可以是非易失性的。该计算机存储介质中存储有计算机可读指令,当该计算机可读指令被处理器执行时实现第一方面或第一方面的任一可能的实现方式中的方法。
本申请第八方面提供一种计算机存储介质,该计算机存储介质可以是非易失性的。该计算机存储介质中存储有计算机可读指令,当该计算机可读指令被处理器执行时实现第二方面或第二方面的任一可能的实现方式中的方法。
本发明实施例采用一种数据处理方法,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。
附图说明
图1是本申请实施例提供一种通信系统架构示意图;
图2是本申请实施例提供的数据处理方法的一个实施例示意图;
图3是本申请实施例提供的数据处理方法的另一个实施例示意图;
图4是本申请实施例提供的数据处理方法的另一个实施例示意图;
图5是本申请实施例提供的网络设备的结构示意图;
图6是本申请实施例提供的网络设备的一个实施例;
图7是本申请实施例提供的终端设备的结构示意图;
图8是本申请实施例提供的终端设备的一个实施例;
图9是本申请实施例提供的网络设备的另一个实施例;
图10是本申请实施例提供的终端设备的另一个实施例。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
现有协议中,网络侧通过系统信息信息块类型1(system information block type 1,SIB1)下发物理随机接入信号配置索引(PRACH-configuration index)给UE,UE通过查阅随机接入时机的配置表确定所需要使用的前导格式和发送前导的随机接入时机,然后通过在随机接入时机上发送前导向网络侧发起随机接入。现有协议中随机接入时机在时域上是按照周期配置的,随机接入的帧周期被配置为10ms,20ms,40ms,80ms和160ms。随机接入时机的配置表中还示出了随机接入时机所在的系统帧的帧号、随机接入时机所在的子帧号、随机接入时机的起始符号、随机接入时机所在的子帧内包含的时隙的数目以及随机接入时机所在的时隙内包含的随机接入时机的数量等配置参数。现有协议中,由于随机接入前导的长度较短,通常能够在一个时隙内发送完,因此所配置的随机接入时机之间不存在时隙间隔,仅适用于小区半径小于100km的陆地通信场景。而对于非陆地通信场景中更大的小区,小区内往返时延差更大,所需要发送的前导长度通常都大于一个时隙,因此现有协议中随机接入时机的配置方式并不适用与非陆地通信场景。除此之外,NR中同小区内不同beam内的最大往返时延差是相同的,因此同一个小区的不同beam均采用相同的随机接入时机的配 置,而对于非陆地通信场景而言,同小区内的不同beam内的最大往返时延差存在不相同的情况,因此所需要的前导长度也是不同的,采用相同的随机接入时机配置显然是不够灵活的。
基于上述原因,本申请实施例提供一种数据处理方法,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。本申请实施例还提供相应的数据处理装置。以下分别进行详细说明。
本申请实施例提供一种通信系统架构示意图,如图1所示。
参阅图1,本申请实施例提供的通信系统包括网络设备101和终端设备102。当通信系统包括核心网时,该网络设备101还可以和核心网相连。网络设备101还可以与互联网协议(internet protocol,IP)网络进行通信,例如,因特网(Internet),私有的IP网,或其他数据网络等。网络设备101为覆盖范围内的终端设备提供服务。例如,参见图1所示,网络设备101为网络设备101覆盖范围内的一个或多个终端设备102提供无线接入。
网络设备101可以是用于与终端设备102进行通信的设备。例如,可以是GSM系统或SDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved node B,eNB或eNodeB)或者5G网络中的网络设备,例如卫星通信系统中的卫星基站等。卫星基站可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。
本申请所涉及的终端设备102可以通过小区搜索与网络设备101建立下行同步。终端设备102在本申请中可以指用户设备(UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备102可以通过空口接入卫星网络并发起呼叫,上网等业务,可以是是支持5G新空口(NR,new radio)的移动设备。典型的,终端设备102可以是移动电话、平板电脑、便携式笔记本电脑、虚拟\混合\增强现实设备、导航设备、地面基站(例如:eNB和gNB)和地面站(ground station,GS)、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备、未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)或未来的其他通信系统中的终端设备等。
图2为本申请实施例所提供的数据处理方法的一个实施例示意图。
参阅图2,本申请实施例所提供的数据处理方法的一个实施例,可以包括:
201、网络设备获取目标波束或目标小区内的目标信息,该目标信息包括传输时延差, 该传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置。
本申请实施例中,网络设备可以是以小区(cell)为级别进行小区内随机接入时机的配置,网络设备可以对应一个或多个小区,本申请实施例中的目标小区可以是指网络设备对应的一个或多个小区中的任意一个。一个小区可以对应一个或多个波束(beam),当网络设备是以小区(cell)为级别进行小区内随机接入时机的配置时,一个小区内对应的一个或多个波束采用相同的随机接入时机的配置。网络设备也可以是直接以波束为级别进行波束内随机接入时机的配置,网络设备对应一个或多个波束,本申请实施例中的目标波束可以是指网络设备对应的一个或多个波束中的任意一个。本申请实施例对网络设备进行随机接入时机的配置的级别不做限定。
本申请实施例中,当网络设备需要对目标波束或目标小区进行随机接入时机的配置时,网络设备首先获取目标信息,该目标信息包括传输时延差。需要说明的是,本申请实施例中的目标信息,除了可以包含传输时延差,可以包含其他的信息,本申请实施例对此不做限定。
本申请实施例中的传输时延差是指目标波束或目标小区内的最大往返时延差。本申请实施例中的传输时延差为目标波束或目标小区覆盖范围内的第一位置和第二位置分别对应的通信往返时延的差值。本申请实施例中,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置。参考点所对应的通信往返时延在目标波束或目标小区覆盖范围内的通信往返时延最小。本申请实施例中,目标波束或目标小区内的参考点(reference point)可以是目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点;目标波束或目标小区内的参考点也可以是目标波束或目标小区在地面上覆盖范围的几何中心点,例如,若目标波束或目标小区在地面上覆盖区域为一个圆形区域,则参考点为该圆形区域的圆心;除此之外,参考点也可以位于距离地面具备一定高度的位置,例如,参考点与目标波束或目标小区在地面上覆盖区域内距离网络设备最近的点或几何中心点具备相同的经纬度,但参考点与地面的垂直距离为20-30公里。除此之外,该参考点也可以位于其他的位置,本申请实施例对参考点的具体位置不做限定。本申请实施例中,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置。第二位置所对应的通信往返时延在目标波束或目标小区覆盖范围内的通信往返时延最大。
202、网络设备根据目标信息中的传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式。
本申请实施例中,网络设备在获取目标信息之后,根据目标信息中的传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式。
具体地,本申请实施例中,目标波束或目标小区内所需要的随机接入前导的前导长度与传输时延差有关。例如,当目标传输时延差为1ms时,目标波束内随机接入前导的前导长度至少为3ms。传输时延差越大,则所需要的随机接入前导的长度越大。随机接入前导由循环前缀CP,Zadoff-chu序列,保护时间GT组成。随机接入前导存在多种前导格式,不同的 前导格式所对应的随机接入前导中循环前缀CP,Zadoff-chu序列及保护时间GT的长度不同,因此,不同的前导格式对应的随机接入前导的前导长度不相同。根据传输时延差可以确定目标波束或目标小区对应的随机接入前导所需的前导长度,因此,网络设备可以根据传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式,该第一前导格式所对应的前导长度大于或等于该所需的前导长度。
需要说明的是,本申请实施例中,目标波束或目标小区内所需要的随机接入前导的第一前导格式可以不仅仅是基于传输时延差确定的,在某些情况下,还可能需要结合网络设备覆盖的目标波束或目标小区内终端设备与网络设备间信道的多径时延和网络设备所处的轨道高度等信息进行确定。要保证接入前导的第一前导格式中CP的长度不小于传输时延差与多径时延的和。
可选地,本申请实施例中的目标信息还可以包含网络设备的轨道高度,本申请实施例中,网络设备可以是根据传输时延差和网络设备的轨道高度共同计算出目标波束或目标小区对应的随机接入前导所需的前导长度,然后确定目标波束或目标小区的随机接入前导的第一前导格式。需要说明的是,本申请实施例中的目标信息还可以包含其他的信息,网络设备基于传输时延差、网络设备的轨道高度以及其他的一些信息共同计算目标波束或目标小区对应的随机接入前导所需的前导长度,然后确定目标波束或目标小区的随机接入前导的第一前导格式。
203、网络设备根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度。
本申请实施例中,网络设备在确定目标波束或目标小区对应的随机接入前导所需的第一前导格式之后,网络设备根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息。第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度。本申请实施例中,随机接入周期是指随机接入时机的周期,例如可以是指标准定义的随机接入时机的时间段(time interval)。
本申请实施例中,第一配置信息是一种或多种配置信息中的一个,每一种配置信息都用于指示一种随机接入前导格式和随机接入周期包含的随机接入时机的一个集合。
204、网络设备根据第一配置信息生成对应的第一配置索引。
本申请实施例中,网络设备在根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息之后,根据第一配置信息生成对应的第一配置索引。
可以理解的是,本申请实施例中,第一配置信息是一个或多种配置信息中的一个,则第一配置信息对应的第一配置索引也可以是一个或多个配置索引中的一个。一个或多个配置索引和一种或多种配置信息存在一一对应的关系。
应理解,本申请实施例中,网络设备和终端设备均预先知道一个或多个配置索引和一种或多种配置信息的一一对应关系。换句话说,终端设备和网络设备均预先存储有该一个 或多个配置索引和一种或多种配置信息之间的一一对应关系。
具体地,本申请实施例中,配置索引和配置信息之间可以存在如表1所示的一一对应关系。
表1 配置索引和配置信息的对应关系
配置索引1 配置信息1
配置索引2 配置信息2
配置索引3 配置信息3
由表1可知配置索引和配置信息之间的对应关系。在实际应用过程中,网络设备在根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息之后,根据第一配置信息以及配置索引和配置信息之间的一一对应的关系生成对应的第一配置索引,以使得目标波束或目标小区内的终端设备在接收到第一配置索引后,能够根据该一一对应的关系确定第一配置索引对应的第一配置信息,进而能够确定所需用的随机接入前导格式和用于传输随机接入前导的随机接入时机。
本申请实施例中,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导格式对应的前导长度,从而能够解决非陆地通信场景中前导检测窗重叠等等相互干扰问题。
图3为本申请实施例提供的数据处理方法的另一个实施例示意图。
参阅图3,本申请实施例所提供的数据处理方法的另一个实施例,可以包括:
301、网络设备获取目标波束或目标小区内的目标信息,目标信息包括传输时延差,该传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置。
本申请实施例可以参阅图2中的步骤201进行理解,此处不再赘述。
302、网络设备根据传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式。
本申请实施例可以参阅图2中的步骤202进行理解,此处不再赘述。
303、网络设备根据第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度。
本申请实施例具体可以参阅步骤203的相关内容进行理解。
可选地,本申请实施例中的配置信息包含目标参数集合和随机接入时机的起始时隙号,目标参数集合包括随机接入前导格式。
可选地,目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
需要说明的是,本申请实施例中,目标参数集合除了可以包含上述的参数之外,还可以包含其他类型的信息,本申请实施例对此不做限定。
表2示出了一种随机接入实际的配置信息。
如表2所示的配置信息包含随机接入前导格式、随机接入时机所在的系统帧、随机接入时机的帧周期、随机接入时机所在的子帧和随机接入时机的起始时隙号。其中,n SFNmodx=y即指示了随机接入时机所在的系统帧的帧号,以及随机接入时机的帧周期。
表2 一种随机接入时机的配置信息
Figure PCTCN2020105753-appb-000001
具体地,表2中也示出了配置索引所对应的配置信息所包含的配置参数的取值的一些示例。如表2所示的配置参数的取值,随机接入时机可以是配置于系统帧的子帧0、子帧4和子帧8上;或者随机接入时机可以是配置于系统帧的子帧1、子帧5和子帧9上;或者随机接入时机可以是配置于系统帧的子帧2、和子帧6上;随机接入时机可以是配置于系统帧的子帧0、子帧2、子帧3、子帧5、子帧6或子帧8上。随机接入所在的系统帧可以是满足系统帧号模x等于y,其中,x为3、5、6、7、9-15中的任意一个数值,y为1或0。例如,当x取3,y取1时,代表随机接入时机的帧周期被配置为为3个子帧的长度,即30ms,系统帧的帧号满足除以3余1,例如,系统帧的帧号为4、7、10等等,即随机接入时机位于帧号为4、7、10等等的系统帧上。结合上述的子帧号,即代表随机接入时机被配置在帧号为4、7、10等的系统帧上的子帧0、4和8上,或者子帧1、5和9上,或者子帧2、6和10上,或者子帧0或2或3或5或8上。
本申请实施例中的配置信息还包含随机接入时机的起始时隙号。当子载波间隔为120Khz,一个子帧内包含8个时隙,每个时隙的长度为0.125ms。起始时隙号可以配置为如表2中所示的0~7中的一个或多个取值。当子载波间隔为60Khz,一个子帧内包含4个时隙,每个时隙的长度为0.25ms,起始时隙号可以配置为如表2中所示的0~7中的0、1、2、3四个取值中的一个或多个取值。当子载波间隔为30Khz,一个子帧内包含2个时隙,每个时隙的长度为0.5ms,起始时隙号可以配置为如表2中所示的0~7中的0、1两个取值中的一个或多 个取值。当子载波间隔为15Khz,一个子帧内只包含1个时隙,每个时隙的长度为1ms,起始时隙号可以配置为如表2中所示的0~7中的0这个取值。以子载波间隔为120Khz为例进行说明,当起始时隙号被配置为0时,代表随机接入时机所在子帧上的时隙0为随机接入时机的起始时隙,且该子帧上只有一个随机接入时机;当起始时隙号被配置为0和4时,代表随机接入时机所在子帧上的时隙0和时隙4为随机接入时机的起始时隙,且该子帧上有2个随机接入时机,两个随机接入时机的间隔为0.5ms。
本申请实施例中,网络设备通过对随机接入时机所在的系统帧、随机接入时机所在的子帧以及随机接入时机的起始时隙的配置,实现随机接入周期中随机接入时机之间的间隔大于或等于目标波束或目标小区的随机接入前导所需的第一前导格式对应的前导长度。
例如,假设网络设备确定目标波束或目标小区的随机接入前导所需的第一前导格式对应的前导长度为0.5ms。网络设备根据该第一前导格式确定第一配置信息,该第一配置信息所指示的随机接入周期包含的随机接入时机的之间的间隔等于该第一前导格式对应的前导长度,即0.5ms,则第一配置信息包含的配置参数可以采用如表3中所示的取值。
表3 不同子载波间隔对应的四种配置方式
Figure PCTCN2020105753-appb-000002
如表3中所示,随机接入时机可以是配置于系统帧的子帧0、子帧4和子帧8上;或者随机接入时机可以是配置于系统帧的子帧1、子帧5和子帧9上;或者随机接入时机可以是配置于系统帧的子帧2、和子帧6上;随机接入时机可以是配置于系统帧的子帧0、子帧2、子帧3、子帧5、子帧6或子帧8上。随机接入时机所在的系统帧可以是满足系统帧号模x等于y,其中,x为3、5、6、7、9-15中的任意一个数值,y为1或0,即随机接入时机的帧周期可以是30ms、50ms、60ms、70ms、90ms、100ms、110ms、120ms、130ms、140ms或150ms。当子载波间隔为120Khz,一个子帧内包含8个时隙,每个时隙的长度为0.125ms,随机接入时机的起始时隙号可以配置为0和4,随机接入时机所在的子帧上包含的2个随机接入时机之间的间隔即为0.5ms。当子载波间隔为60Khz,一个子帧内包含4个时隙,每个时隙的长度为0.5ms,起始 时隙号可以配置为0和2,随机接入时机所在的子帧上包含的2个随机接入时机之间的间隔即为0.5ms。当子载波间隔为30Khz,一个子帧内包含2个时隙,每个时隙的长度为0.25ms,起始时隙号可以配置为0和1,随机接入时机所在的子帧上包含的2个随机接入时机之间的间隔即为0.5ms。当子载波间隔为15Khz,一个子帧内只包含1个时隙,每个时隙的长度为1ms,可以通过配置随机接入时机所在子帧或时隙内的随机接入时机的数量为2使得随机接入时机所在的子帧上包含的2个随机接入时机之间的间隔即为0.5ms。
需要说明的是,表3中的配置参数的取值只是举例,配置参数也可以是采用其他的取值,本申请实施例对此不做限定。
304、网络设备根据第一配置信息生成对应的第一配置索引。
本申请实施例可以参阅图2中的步骤204进行理解,此处不再赘述。
305、网络设备向目标波束或目标小区发送下行信息,下行信息包括第一配置索引。
本申请实施例中,网络设备在根据第一配置信息生成对应的第一配置索引之后,向目标波束或目标小区发送下行信息,下行信息包括第一配置索引。
可选地,本申请实施例中,第一配置索引可以是物理随机接入信道PRACH配置索引,PRACH配置索引包括n个比特,n个比特中的m个比特用于指示随机接入时机的起始时隙号,n大于m,m为大于或等于1的整数。
具体地,本申请实施例中,第一配置索引为一种或多种配置索引种的一种。配置索引可以是物理随机接入信道PRACH配置索引(PRACH configuration index)。配置索引的大小可以是与一种或多种配置信息对应。例如,多种配置信息为小于或者等于2 n个配置信息,则配置索引的大小可以是n比特,本申请实施例对此不做限定。以n=8为例,当配置索引的大小是8个比特时,可以对应于多种(例如,小于或等于256)配置信息。该n个比特中的m个比特用于指示随机接入时机的起始时隙号,m的大小可以是与起始时隙号的个数对应。例如,当子载波间隔为120Khz,一个子帧内包含8个时隙,此时对应8个时隙号,0~7,因此需要3个比特指示起始时隙号,即m=3。该n个比特种的(n-m)个比特则用于指示目标参数集合对应的多种(例如,小于或等于2 n-m)取值。
可选地,本申请实施例中,第一配置索引包含第一索引和第二索引,第一索引用于指示目标参数集合,第二索引用于指示随机接入时机的起始时隙号。
具体地,本申请实施例中,第一配置索引为一种或多种配置索引种的一种。配置索引可以包含第一索引和第二索引,其中,第一索引用于指示目标参数集合,而第二索引用于指示随机接入时机的起始时隙号。本申请实施例中,网络设备可以使用表示循环移位信令的高层参数的4个比特来表示第二索引。本申请实施例中,网络设备也可以通过在高层信令(例如,SIB1)中增加比特位来指示该第二索引并进行发送。本申请实施例对此不做限定。
306、终端设备根据下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
本申请实施例中,终端设备位于目标波束或目标小区的覆盖区域内,终端设备在接收到网络设备向目标波束或目标小区内发送的下行信息后,根据下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
具体地,终端设备在接收到下行信息后,根据该下行信息中的第一配置索引确定第一配置信息,然后根据第一配置信息所指示的第一前导格式和第一集合,确定随机前导格式为第一前导格式,并从第一集合中确定用于传输随机接入前导的随机接入时机。
本申请实施例中,网络设备能够根据目标波束或目标小区内的传输时延差确定随机接入前导所需的第一前导格式,并根据所需的第一前导格式确定目标波束或目标小区内随机接入时机的第一配置信息,使得为目标波束或目标小区配置的随机接入周期包含的随机接入时机之间的间隔大于或等于目标波束或目标小区所需要的随机接入前导的第一前导格式对应的前导长度,进而使得目标波束或目标小区内的终端设备发送随机接入前导的随机接入时机之间的间隔都大于或等于第一前导格式对应的前导长度,从而能够避免非陆地通信场景中前导检测窗重叠等等相互干扰问题。
图4为本申请实施例提供的数据处理方法的另一个实施例示意图。
参阅图4,本申请实施例提供的数据处理方法的另一个实施例,包括:
401、网络设备获取目标波束或目标小区内的目标信息,目标信息包括传输时延差和参考多径时延,该传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,第一位置为目标波束或目标小区覆盖区域内的参考点所对应的位置,第二位置为目标波束或目标小区覆盖区域内距离网络设备最远的位置。
本申请实施例中与传输时延差有关的内容可以参阅图3中的步骤301进行理解,此处不再赘述。
本申请实施例中,目标信息中还包括参考多径时延。
目标波束或目标小区内可以包含不具备定位功能的终端设备,也可以包含具备定位功能的终端设备。由于具备定位功能的终端设备可以通过定位功能确定自身的位置信息,同时通过获取卫星等基站位置可以计算出其发送信号时所需要的定时提前量,从而减少前导中的CP需要补偿的由于往返时延或者往返时延差造成的定时误差。即具备定位功能的终端设备所需要的前导格式对应的前导长度更短。在理想情况下,具备定位功能的终端设备所需要的随机接入前导的前导格式中可以不用考虑目标波束或目标小区内的传输时延差。然而,具备定位功能的终端设备还是需要考虑多径效应所带来的时延扩展对接收端的解码信号的影响。需要通过补偿CP来补偿多径时延带来的影响。在通信过程中,发射端的网络设备发射出来的信号可以经过直达路径到达接收端的终端设备,也可以因反射和绕射经由非直达路径到达接收端的终端设备。信号反射的数量决定于信号入射角、载波频率、入射波的极化等因素。由于直达路径和各种非直达反射路径的长度不同,因此经过不同路径的信号分量到达接收端的终端设备的时间不同,这就产生了多径时延。多径时延可以是指经过不同路径的信号分量到达接收端的最短时间和最长之间的差值。
本申请实施例中的参考多径时延,可以是指目标波束或目标小区覆盖范围内的不同位置所对应的多径时延中最大的多径时延。在实际应用的过程中,参考多径时延可以不需要实时测量,可以直接采用最差的多径时延的经验值。例如,在陆地通信过程中的前导CP的长度都是固定的,该固定的CP长度是通过对信道进行测量所得到的城市里的通信信道的多径时延的最大值来确定的。
可选地,本申请实施例中,网络设备的轨道高度可能会导致一定的路径损耗,路径损耗的大小也前导长度具有一定的影响,路径损耗越大,需要的前导长度越长。因此,本申请实施例中的目标信息还可以包含网络设备的轨道高度。
402、网络设备根据传输时延差确定目标波束或目标小区对应的随机接入前导所需的第一前导格式。
本申请实施例可以参阅图3中的步骤302进行理解,此处不再赘述。
403、网络设备根据第一前导格式从多种配置信息中确定随机接入时机的第一配置信息,第一配置信息用于指示第一前导格式和随机接入周期包含的随机接入时机的第一集合,第一集合包含的随机接入时机之间的间隔大于或等于第一前导格式对应的前导长度。
本申请实施例可以参阅图3中的步骤303进行理解,此处不再赘述。
需要说明的是,本申请实施例中存在多种配置信息,第一配置信息为多种配置信息中的一种。
404、网络设备根据第一配置信息生成对应的第一配置索引。
本申请实施例可以参阅图2中的步骤204进行理解,此处不再赘述。
405、网络设备根据参考多径时延确定目标波束或目标小区对应的随机接入前导所需的第二前导格式。
本申请实施例中,网络设备在获取目标信息之后,根据目标信息中的参考多径时延确定目标波束或目标小区对应的随机接入前导所需的第二前导格式,需要保证第二前导格式中的CP长度不小于参考多径时延的长度。
需要说明的是,本申请实施例中,目标波束或目标小区内所需要的随机接入前导的第二前导格式可以不仅仅是基于参考多径时延得到的,在某些情况下,还可能需要结合网络设备所处的轨道高度等信息进行确定。
可选地,本申请实施例中的目标信息还可以包含网络设备的轨道高度,本申请实施例中,网络设备可以是根据参考多径时延和网络设备的轨道高度共同计算出目标波束或目标小区对应的随机接入前导所需的第二前导长度。
406、网络设备根据第二前导格式从多种配置信息中确定随机接入时机的第二配置信息,第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度。
本申请实施例中,网络设备在确定目标波束或目标小区对应的随机接入前导所需的第二前导格式之后,网络设备根据第二前导格式从多种配置信息中确定随机接入时机的第二配置信息。第二配置信息用于指示第二前导格式和随机接入周期包含的随机接入时机的第二集合,第二集合包含的随机接入时机之间的间隔大于或等于第二前导格式对应的前导长度。本申请实施例中,第二配置信息是多种配置信息中的一个,每一种配置信息都用于指示一种随机接入前导格式和随机接入周期包含的随机接入时机的一个集合。
需要说明的是,本申请实施例中的第二配置信息和第一配置信息是多种配置信息中不同的两种配置信息。
407、网络设备根据第二配置信息生成对应的第二配置索引。
本申请实施例中,网络设备在根据第二前导格式从多种配置信息中确定随机接入时机的第二配置信息之后,根据第二配置信息生成对应的第二配置索引。
可以理解的是,本申请实施例中,第一配置信息和第二配置信息是多种配置信息中不同的两种配置信息,则第二配置信息对应的第二配置索引和第一配置索引也是多个配置索引中不同的两个配置索引。
需要说明的是,本申请实施例对步骤402-步骤404,以及步骤405-步骤407的先后顺序不做具体的限定。
408、网络设备向目标波束或目标小区发送下行信息,该下行信息包括第一配置索引和第二配置索引。
本申请实施例中,网络设备在分别生成第一配置索引和第二配置索引之后,向目标波束或目标小区发送下行信息,该下行信息包括第一配置索引和第二配置索引。
本申请实施例中关于配置索引的相关内容也可以参阅图3中的步骤305进行理解,此处不再赘述。
409、终端设备接收下行信息,并判断是否具备定位功能。
本申请实施例中,终端设备在接收到包含第一配置索引和第二配置索引的下行信息之后,首先判断是否具备定位功能。
410、若不具备,则终端设备根据第一配置索引确定第一配置信息,且根据第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
本申请实施例中,若终端设备判断自身不具备定位功能,则终端设备根据第一配置索引确定第一配置信息,然后根据第一配置信息所指示的第一前导格式和第一集合,确定随机前导格式为第一前导格式,并从第一集合中确定用于传输随机接入前导的随机接入时机。
411、若具备,则终端设备根据第二配置索引确定第二配置信息,且根据第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
本申请实施例中,若终端设备判断自身具备定位功能,则终端设备根据第二配置索引确定第二配置信息,然后根据第二配置信息所指示的第二前导格式和第二集合,确定随机前导格式为第二前导格式,并从第二集合中确定用于传输随机接入前导的随机接入时机。
本申请实施例中,网络设备分别根据目标波束或目标小区内的传输时延差和参考多径信号确定随机接入前导所需的第一前导格式和第二前导格式,并根据所需的第一前导格式和第二前导格式确定目标波束或目标小区内随机接入时机的两种配置信息,该两种配置信息所指示的随机接入时机之间的间隔都大于或等于对应的前导格式所对应的前导长度,该两种配置信息分别用于目标波束或目标小区内具备定位功能和不具备定位功能的终端设备确定随机接入前导格式和用于传输随机接入前导的随机接入时机,不但能够避免非陆地通信场景中前导检测窗重叠等等相互干扰问题,还能够针对不同的终端设备进行随机接入时机的配置,能够节约随机接入前导所占用的时频资源。
以上对本申请实施例提供的数据处理方法进行了介绍,接下来将对本申请实施例提供的数据处理装置进行介绍。
图5为本申请实施例提供的网络设备50的结构示意图。
参阅图5,本申请实施例提供的网络设备50,可以包括:
获取模块501,用于获取目标波束或目标小区内的目标信息,所述目标信息包括传输时延差,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束或所述目标小区覆盖区域内的参考点所对应的位置,所述第二位置为所述目标波束或所述目标小区覆盖区域内距离所述网络设备最远的位置。
确定模块502,用于根据所述获取模块501获取的所述目标信息中包括的所述传输时延差确定所述目标波束或所述目标小区对应的随机接入前导所需的第一前导格式。
所述确定模块502,还用于根据所述第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,所述第一配置信息用于指示所述第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机之间的间隔大于或等于所述第一前导格式对应的前导长度。
生成模块503,用于根据所述确定模块502确定的所述第一配置信息生成对应的第一配置索引。
可选地,作为一个实施例,数据处理装置50还包括:发送模块504,用于向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述生成模块生成的所述第一配置索引,所述下行信息用于所述目标区域或所述目标小区内的终端设备根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
可选地,作为一个实施例,所述目标信息还包括所述目标波束或所述目标小区对应的参考多径时延,所述确定模块502,还用于根据所述获取模块501获取的所述目标信息中的所述参考多径时延确定所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式;根据所述第二前导格式从所述一种或多种配置信息中确定随机接入时机的第二配置信息,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度;所述生成模块503,还用于根据所述确定模块确定的所述第二配置信息生成对应的第二配置索引。
可选地,作为一个实施例,所述发送模块504,还用于向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述确定模块确定的所述第一配置索引和所述第二配置索引,所述下行信息用于所述目标区域内的终端设备在判断不具备定位功能后,根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,在判断具备定位功能时,根据所述第二配置索引对应的第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
可选地,作为一个实施例,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
可选地,作为一个实施例,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
可选地,作为一个实施例,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于m,所述m为大于或等于1的整数。
可选地,作为一个实施例,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
应理解,本申请实施例中的获取模块501、确定模块502、生成模块503可以由处理器或处理器相关电路组件实现,发送模块504可以由收发器或收发器相关电路组件实现。
如图6所示,本申请实施例还提供一种网络设备60,该网络设备60包括:处理器601,存储器602,其中,存储器602可以独立于处理器之外或独立于网络设备之外(Memory#3),也可以在处理器或网络设备之内(Memory#1和Memory#2)。存储器602可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
所述存储器602用于存储计算机可读指令(或者称之为计算机程序),
所述处理器601用于读取所述计算机可读指令以实现前述有关网络设备的方面及其任意实现方式提供的方法。具体地,处理器601用于执行上述实施例中获取模块501、确定模块502、生成模块503执行的操作。
可选的,所述存储器602(Memory #1)位于所述装置内。
可选的,所述存储器602(Memory #2)与所述处理器集成在一起。
可选的,所述存储器602(Memory #3)位于所述装置之外。
可选的,该网络设备60还包括收发器603,用于接收和发送数据。具体地,收发器603,用于执行上述实施例中发送模块504执行的操作。
应理解,根据本申请实施例的网络设备50或网络设备60可对应于本申请实施例的数据处理方法中的网络设备,并且网络设备50或网络设备60中的各个模块的操作和/或功能分别为了实现图2至图4中的各个方法的相应流程,为了简洁,在此不再赘述。
图7为本申请实施例提供的终端设备70的结构示意图。
参阅图7,本申请实施例提供的另一个终端设备70,可以包括:
接收模块701,用于接收网络设备发送的下行信息,所述下行信息包括第一配置索引,所述第一配置索引对应的第一配置信息是所述网络设备根据目标波束或目标小区对应的随机接入前导所需的第一前导格式从一种或多种配置信息中确定的,所述第一配置信息用于指示所述的第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机的之间的间隔大于或等于所述第一前导格式对应的前导长度,所述第一前导格式是所述网络设备根据获取的目标信息中包含的传输时延差确定的,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束覆盖区域内的参考点所对应的位置,所述第二位置为所述目标波束覆盖区域内距离所述网络设备最远的位置;
确定模块702,用于根据所述接收模块701接收的所述下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
可选地,作为一个实施例,所述确定模块702,用于根据所述下行信息中的所述第一配置索引确定所述第一配置信息;根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
可选地,作为一个实施例,所述下行信息还包括第二配置索引,所述第二配置索引对应的第二配置信息是所述网络设备根据所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式从一种或多种配置信息中确定的,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度,所述确定模块702,用于判断是否具备定位功能;若不具备,则根据所述第一配置索引确定所述第一配置信息;根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机;若具备,则根据所述第二配置索引确定所述第二配置信息;根据所述第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
可选地,作为一个实施例,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
可选地,作为一个实施例,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
可选地,作为一个实施例,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于m,所述m为大于或等于1的整数。
可选地,作为一个实施例,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
应理解,本申请实施例中的确定模块702可以由处理器或处理器相关电路组件实现,接收模块701可以由收发器或收发器相关电路组件实现。
如图8所示,本申请实施例还提供一种终端设备80,该终端设备80包括处理器810,存储器820与收发器830,其中,存储器820中存储指令或程序,处理器810用于执行存储器820中存储的指令或程序。存储器820中存储的指令或程序被执行时,该处理器810用于执行上述实施例中确定模块702执行的操作,收发器830用于执行上述实施例中接收模块701执行的操作。
应理解,根据本申请实施例的终端设备70或终端设备80可对应于本申请实施例的数据处理方法中的终端设备,并且终端设备70或终端设备80中的各个模块的操作和/或功能分别为了实现图2至图4中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例中的网络设备可以如图9所示网络设备90包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)920。所述RRU910可以称为收发模块,与图 5中的发送模块504对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU910部分主要用于进行基带处理,对基站进行控制等。所述RRU910与BBU920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 920为基站的控制中心,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述下行信息等。
在一个示例中,所述BBU920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU920还包括存储器921和处理器922。所述存储器921用以存储必要的指令和数据。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、 收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述数据处理方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述数据处理方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本申请实施例所提供的数据处理方法、装置及存储介质进行了详细介绍,本文 中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (35)

  1. 一种数据处理方法,其特征在于,包括:
    网络设备获取目标波束或目标小区内的目标信息,所述目标信息包括传输时延差,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束或所述目标小区覆盖区域内的参考点所对应的位置,所述第二位置为所述目标波束或所述目标小区覆盖区域内距离所述网络设备最远的位置;
    所述网络设备根据所述目标信息中的所述传输时延差确定所述目标波束或所述目标小区对应的随机接入前导所需的第一前导格式;
    所述网络设备根据所述第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,所述第一配置信息用于指示所述第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机之间的间隔大于或等于所述第一前导格式对应的前导长度;
    所述网络设备根据所述第一配置信息生成对应的第一配置索引。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据所述第一配置信息生成对应的第一配置索引之后,还包括:
    所述网络设备向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述第一配置索引,所述下行信息用于所述目标区域或所述目标小区内的终端设备根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  3. 根据权利要求1所述的方法,其特征在于,所述目标信息还包括所述目标波束或所述目标小区对应的参考多径时延,所述网络设备获取目标信息之后,所述方法还包括:
    所述网络设备根据所述参考多径时延确定所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式;
    所述网络设备根据所述第二前导格式从所述一种或多种配置信息中确定随机接入时机的第二配置信息,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度;
    所述网络设备根据所述第二配置信息生成对应的第二配置索引。
  4. 根据权利要求3所述的方法,其特征在于,所述网络设备根据所述第二配置信息生成对应的第二配置索引之后,还包括:
    所述网络设备向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述第一配置索引和所述第二配置索引,所述下行信息用于所述目标区域内的终端设备在判断不具备定位功能后,根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,在判断具备定位功能时,根据所述第二配置索引对应的第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
  6. 根据权利要求5所述的方法,其特征在于,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
  7. 根据权利要求3-6任一所述的方法,其特征在于,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于所述m,所述m为大于或等于1的整数。
  8. 根据权利要求3-6任一所述的方法,其特征在于,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
  9. 一种数据处理方法,其特征在于,包括:
    终端设备接收网络设备发送的下行信息,所述下行信息包括第一配置索引,所述第一配置索引对应的第一配置信息是所述网络设备根据目标波束或目标小区对应的随机接入前导所需的第一前导格式从一种或多种配置信息中确定的,所述第一配置信息用于指示所述第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机的之间的间隔大于或等于所述第一前导格式对应的前导长度,所述第一前导格式是所述网络设备根据获取的目标信息中包含的传输时延差确定的,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束覆盖区域内的参考点所对应的位置,所述第二位置为所述目标波束覆盖区域内距离所述网络设备最远的位置;
    所述终端设备根据所述下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,包括:
    所述终端设备根据所述下行信息中的所述第一配置索引确定所述第一配置信息;
    所述终端设备根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  11. 根据权利要求9所述的方法,其特征在于,所述下行信息还包括第二配置索引,所述第二配置索引对应的第二配置信息是所述网络设备根据所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式从一种或多种配置信息中确定的,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度,所述第二前导格式是所述网络设备根据获取的所述目标信息中包含的参考多径时延确定的,所述终端设备根据所述下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,包括:
    所述终端设备判断是否具备定位功能;
    若不具备,则所述终端设备根据所述第一配置索引确定所述第一配置信息;
    所述终端设备根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机;
    若具备,则所述终端设备根据所述第二配置索引确定所述第二配置信息;
    所述终端设备根据所述第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  12. 根据权利要求9-11任一所述的方法,其特征在于,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
  13. 根据权利要求12所述的方法,其特征在于,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
  14. 根据权利要求9-13任一所述的方法,其特征在于,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于所述m,所述m为大于或等于1的整数。
  15. 根据权利要求9-13任一所述的方法,其特征在于,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
  16. 一种数据处理装置,其特征在于,包括:
    获取模块,用于获取目标波束或目标小区内的目标信息,所述目标信息包括传输时延差,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束或所述目标小区覆盖区域内的参考点所对应的位置,所述第二位置为所述目标波束或所述目标小区覆盖区域内距离所述网络设备最远的位置;
    确定模块,用于根据所述获取模块获取的所述目标信息中包括的所述传输时延差确定所述目标波束或所述目标小区对应的随机接入前导所需的第一前导格式;
    所述确定模块,还用于根据所述第一前导格式从一种或多种配置信息中确定随机接入时机的第一配置信息,所述第一配置信息用于指示所述第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机之间的间隔大于或等于所述第一前导格式对应的前导长度;
    生成模块,用于根据所述确定模块确定的所述第一配置信息生成对应的第一配置索引。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述生成模块生成的所述第一配置索引,所述下行信息用于所述目标区域或所述目标小区内的终端设备根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  18. 根据权利要求16所述的装置,其特征在于,所述目标信息还包括所述目标波束或所述目标小区对应的参考多径时延,
    所述确定模块,还用于根据所述获取模块获取的所述目标信息中的所述参考多径时延确定所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式;根据所述第二前导格式从所述一种或多种配置信息中确定随机接入时机的第二配置信息,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度;
    所述生成模块,还用于根据所述确定模块确定的所述第二配置信息生成对应的第二配置索引。
  19. 根据权利要求18所述的装置,其特征在于,
    所述发送模块,还用于向所述目标波束或所述目标小区发送下行信息,所述下行信息包括所述确定模块确定的所述第一配置索引和所述第二配置索引,所述下行信息用于所述目标区域内的终端设备在判断不具备定位功能后,根据所述第一配置索引对应的第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机,在判断具备定位功能时,根据所述第二配置索引对应的第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  20. 根据权利要求16-19任一所述的装置,其特征在于,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
  21. 根据权利要求20所述的装置,其特征在于,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
  22. 根据权利要求18-21任一所述的装置,其特征在于,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于所述m,所述m为大于或等于1的整数。
  23. 根据权利要求18-21任一所述的装置,其特征在于,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
  24. 一种数据处理装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的下行信息,所述下行信息包括第一配置索引,所述第一配置索引对应的第一配置信息是所述网络设备根据目标波束或目标小区对应的随机接入前导所需的第一前导格式从一种或多种配置信息中确定的,所述第一配置信息用于指示所述第一前导格式和随机接入周期包含的随机接入时机的第一集合,所述第一集合包含的随机接入时机的之间的间隔大于或等于所述第一前导格式对应的前导长度,所述第一前导格式是所述网络设备根据获取的目标信息中包含的传输时延差确定的,所述传输时延差为第一位置和第二位置分别对应的通信往返时延的差值,所述第一位置为所述目标波束覆 盖区域内的参考点所对应的位置,所述第二位置为所述目标波束覆盖区域内距离所述网络设备最远的位置;
    确定模块,用于根据所述接收模块接收的所述下行信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  25. 根据权利要求24所述的装置,其特征在于,
    所述确定模块,用于根据所述下行信息中的所述第一配置索引确定所述第一配置信息;根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  26. 根据权利要求24所述的装置,其特征在于,所述下行信息还包括第二配置索引,所述第二配置索引对应的第二配置信息是所述网络设备根据所述目标波束或所述目标小区对应的随机接入前导所需的第二前导格式从一种或多种配置信息中确定的,所述第二配置信息用于指示所述第二前导格式和随机接入周期包含的随机接入时机的第二集合,所述第二集合包含的随机接入时机之间的间隔大于或等于所述第二前导格式对应的前导长度,所述第二前导格式是所述网络设备根据获取的所述目标信息中包含的参考多径时延确定的,
    所述确定模块,用于判断是否具备定位功能;若不具备,则根据所述第一配置索引确定所述第一配置信息;根据所述第一配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机;若具备,则根据所述第二配置索引确定所述第二配置信息;根据所述第二配置信息确定随机接入前导格式和用于传输随机接入前导的随机接入时机。
  27. 根据权利要求24-26任一所述的装置,其特征在于,所述配置信息包含目标参数集合和随机接入时机的起始时隙号,所述目标参数集合包括随机接入前导格式。
  28. 根据权利要求27所述的装置,其特征在于,所述目标参数集合还包括以下参数中的一个或多个:随机接入时机所在的系统帧、随机接入时机所在的子帧、随机接入时机的起始OFDM符号位置、随机接入时机所在子帧或时隙内的随机接入时机的数量、随机接入时机所在子帧或时隙内随机接入时机的持续时间。
  29. 根据权利要求24-28任一所述的装置,其特征在于,所述第一配置索引或所述第二配置索引为物理随机接入信道PRACH配置索引,所述PRACH配置索引包括n个比特,所述n个比特中的m个比特用于指示所述随机接入时机的起始时隙号,所述n大于所述m,所述m为大于或等于1的整数。
  30. 根据权利要求24-28任一所述的装置,其特征在于,所述第一配置索引或所述第二配置索引包含第一索引和第二索引,所述第一索引用于指示所述目标参数集合,所述第二索引用于指示所述随机接入时机的起始时隙号。
  31. 一种网络设备,其特征在于,包括:处理器,存储器;
    所述存储器用于存储计算机可读指令或者计算机程序,所述处理器用于读取所述计算机可读指令以实现如权利要求1-8中任意一项所述的方法。
  32. 一种终端设备,其特征在于,包括:处理器,存储器;
    所述存储器用于存储计算机可读指令或者计算机程序,所述处理器用于读取所述计算机可读指令以实现如权利要求9-15中任意一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-8中任意一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得所述计算机执行如权利要求9-15中任意一项所述的方法。
  35. 一种计算机程序产品,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得
    如权利要求1-8中任意一项所述的方法被执行;或者
    如权利要求9-15中任意一项所述的方法被执行。
PCT/CN2020/105753 2019-09-30 2020-07-30 一种数据处理方法、装置及存储介质 WO2021063100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20872981.4A EP4027727A4 (en) 2019-09-30 2020-07-30 DATA PROCESSING METHOD AND DEVICE AND STORAGE MEDIUM
US17/707,299 US20220225424A1 (en) 2019-09-30 2022-03-29 Data processing method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910940643.7A CN112584507B (zh) 2019-09-30 2019-09-30 一种数据处理方法、装置及存储介质
CN201910940643.7 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,299 Continuation US20220225424A1 (en) 2019-09-30 2022-03-29 Data processing method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2021063100A1 true WO2021063100A1 (zh) 2021-04-08

Family

ID=75116305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105753 WO2021063100A1 (zh) 2019-09-30 2020-07-30 一种数据处理方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220225424A1 (zh)
EP (1) EP4027727A4 (zh)
CN (1) CN112584507B (zh)
WO (1) WO2021063100A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046504A1 (en) * 2020-08-06 2022-02-10 Qualcomm Incorporated Switching satellites in fixed radio cell
US11818738B2 (en) * 2020-12-02 2023-11-14 Qualcomm Incorporated Orthogonal random access channel (RACH) preamble sequence for positioning
US20230029663A1 (en) * 2021-07-30 2023-02-02 Qualcomm Incorporated Full duplex random access channel communication
EP4344514A1 (en) * 2021-08-06 2024-04-03 ZTE Corporation Systems and methods for calculating and configuring random access channel
CN115915188A (zh) * 2021-08-17 2023-04-04 展讯半导体(南京)有限公司 一种数据传输方法及相关装置
CN114095959B (zh) * 2021-11-19 2024-03-22 锐捷网络股份有限公司 一种prach配置索引过滤方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
CN109451585A (zh) * 2018-04-04 2019-03-08 华为技术有限公司 一种通信方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618172B1 (ko) * 2009-04-30 2016-05-04 삼성전자주식회사 이동통신시스템의 rach 채널 정보 전송 방법
CN102711273B (zh) * 2012-04-19 2015-02-04 北京创毅讯联科技股份有限公司 无线网络中的随机接入方法和用户设备
CN103346829B (zh) * 2013-07-01 2016-04-20 北京大学 兼容lte模式卫星通信初始随机接入两步时延测量方法
KR102054357B1 (ko) * 2015-08-19 2019-12-11 후지쯔 가부시끼가이샤 다수의 전송 시간 간격들을 지원하기 위한 랜덤 액세스 방법 및 장치, 및 통신 시스템
WO2017150451A1 (ja) * 2016-02-29 2017-09-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN105915315B (zh) * 2016-04-15 2019-03-29 哈尔滨工业大学 天地一体化系统面向随机接入的lte帧结构改进方法
US10785739B2 (en) * 2017-08-10 2020-09-22 Ofinno, Llc Beam indication in RACH
EP3682707A4 (en) * 2017-09-11 2020-12-16 Apple Inc. CONFIGURATION OF THE FORMAT OF A PHYSICAL RANDOM ACCESS CHANNEL (PRACH)
CN109587780B (zh) * 2018-01-12 2019-11-19 华为技术有限公司 通信方法及装置
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
CN109451585A (zh) * 2018-04-04 2019-03-08 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Uplink timing advance/RACH procedure and Initial Access for NTN", 3GPP TSG RAN WG1 MEETING #98 R1-1908488, 16 August 2019 (2019-08-16), XP051765096 *
See also references of EP4027727A4
ZTE CORPORATION ET AL.: "Ambiguity on preamble reception in NTN", 3GPP TSG RAN WG2 MEETING #106 R2-1906112, 2 May 2019 (2019-05-02), XP051710439 *

Also Published As

Publication number Publication date
EP4027727A1 (en) 2022-07-13
EP4027727A4 (en) 2022-10-26
CN112584507A (zh) 2021-03-30
CN112584507B (zh) 2022-05-17
US20220225424A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2021063100A1 (zh) 一种数据处理方法、装置及存储介质
US20200136708A1 (en) Uplink beam management
CN111727658A (zh) 非地面网络中的随机接入
CN109327884B (zh) 通信方法、网络设备和中继设备
CN111480375A (zh) 用于无线网络中的多往返时间(rtt)估计的系统和方法
US11889563B2 (en) Random access method and apparatus
WO2018202182A1 (zh) 资源配置的方法及装置
CN116195310A (zh) 用于调整无线通信系统的上行链路定时的方法和装置
US20230397144A1 (en) Extending a time gap range for non-terrestrial networks
US20240168153A1 (en) Techniques for intelligent reflecting surface (irs) position determination in irs aided positioning
US20240172160A1 (en) Solutions to timing reference for detection and report of ul rsat asynch nodes or nodes without a time frame structure
US20230224027A1 (en) Method and apparatus for sequence determination in wireless transmission
US20220264636A1 (en) Random access method and apparatus, and device
US20220232504A1 (en) Uplink transmission timing in non-terrestrial networks
CN110830202B (zh) 通信方法、装置和通信系统
EP3456099A1 (en) Apparatus and methods for providing and receiving system information in a wireless communications network
WO2022036686A1 (en) Method and apparatus for delay indication
US11894930B1 (en) Wireless communication method and terminal device
US20230318772A1 (en) Methods and apparatus for sl positioning reference signals signaling structure
WO2024060297A1 (en) Method and apparatus for determining ue's position
US20230156646A1 (en) Extending a time gap range for non-terrestrial networks
WO2022006820A1 (en) Method and apparatus for determining timing advance value
CN116667980A (zh) 通信系统中的接收端、发射端执行的方法及设备
TW202118338A (zh) 通道選擇、配置方法及裝置
WO2021089906A1 (en) Enhancement on provision of timing advance data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872981

Country of ref document: EP

Effective date: 20220407