WO2021062828A1 - 一种同步信号块序号的指示方法、装置及系统 - Google Patents

一种同步信号块序号的指示方法、装置及系统 Download PDF

Info

Publication number
WO2021062828A1
WO2021062828A1 PCT/CN2019/109757 CN2019109757W WO2021062828A1 WO 2021062828 A1 WO2021062828 A1 WO 2021062828A1 CN 2019109757 W CN2019109757 W CN 2019109757W WO 2021062828 A1 WO2021062828 A1 WO 2021062828A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
sent
time domain
domain position
Prior art date
Application number
PCT/CN2019/109757
Other languages
English (en)
French (fr)
Inventor
袁璞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109757 priority Critical patent/WO2021062828A1/zh
Priority to CN201980100609.7A priority patent/CN114503483B/zh
Publication of WO2021062828A1 publication Critical patent/WO2021062828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method, device, and system for indicating the sequence number of a synchronization signal block.
  • a base station can send a synchronization signal block (synchronization signal block, SSB) to a user equipment (UE), and the UE can perform cell synchronization according to the SSB.
  • the base station usually repeatedly transmits the SSB in a cycle, and the sequence number of the SSB is determined according to the transmission sequence of the SSB in the cycle.
  • the sequence number of the SSB can also be referred to as the SSB time index (SSB time index).
  • the base station can send the sequence number of the SSB to the UE, so that the UE determines the receiving beam of the SSB according to the sequence number of the SSB, and receives the SSB through the receiving beam.
  • the sender UE can also send synchronization signal blocks to the receiving UE, but there is currently no specific scheme for indicating the SSB time index to the receiver UE, and there is no specific scheme for helping the receiver UE to determine the SSB time index.
  • the embodiment of the application provides a method, device and system for indicating the sequence number of a synchronization signal block.
  • the time domain position of the SSB is indicated to the receiver UE, so that the receiving UE determines the time of the SSB according to the time domain position of the SSB index.
  • a method for indicating the sequence number of a synchronization signal block receives the first synchronization signal block from the first terminal device.
  • the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH
  • the first PSBCH includes the first demodulation reference signal DMRS
  • the first DMRS is received on the first resource; the second terminal device may also be based on The first resource and/or the first DMRS determine the time domain position of the first synchronization signal block, and further determine the sequence number of the first synchronization signal block according to the time domain position of the first synchronization signal block.
  • the first synchronization signal block is transmitted for the i-th time in a synchronization signal block transmission period; i is an integer greater than or equal to 1.
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (that is, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender implicitly indicates the synchronization signal block through the DMRS resource mapping mode and/or the DMRS sequence.
  • the receiver analyzes the DMRS in the synchronization signal block, or recognizes the resource mapping method of the DMRS, can determine the sequence number of the synchronization signal block implicitly indicated by the sender, and determine the receive beam corresponding to the synchronization signal block, through the receive beam Receive sync signal block.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: the first synchronization signal is transmitted in the first wireless frame
  • the jth subframe of the signal block, the kth time slot of the first synchronization signal block is sent in the jth subframe, and j or k is an integer greater than or equal to 1.
  • the embodiment of the present application provides a possibility of the time domain position of the first synchronization signal block in the centralized transmission mode.
  • the second terminal device may determine to transmit the first synchronization signal block according to the first resource or the first DMRS corresponding to the first synchronization signal block A subframe of a synchronization signal block and a time slot for transmitting the first synchronization signal block.
  • determining the sequence number of the first synchronization signal block according to the time domain position of the first synchronization signal block includes:
  • the embodiment of the present application provides a specific solution for determining the sequence number i of the first synchronization signal block according to the subframe in which the first synchronization signal block is transmitted and the time slot in which the first synchronization signal block is transmitted by the second terminal device in the centralized transmission mode.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in at least two wireless frames;
  • the time domain position of the first synchronization signal block includes: the first synchronization signal block is transmitted in at least two wireless frames In the h-th radio frame of a synchronization signal block, the t-th subframe of the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • the embodiment of the present application provides a possibility of the time domain position of the first synchronization signal block in the discrete transmission mode.
  • the second terminal device may determine to transmit the first synchronization signal block according to the first resource or the first DMRS corresponding to the first synchronization signal block.
  • determining the sequence number of the first synchronization signal block according to the time domain position of the first synchronization signal block includes:
  • the embodiment of the present application provides a specific solution in which the second terminal device determines the sequence number i of the first synchronization signal block according to the subframe in which the first synchronization signal block is transmitted and the time slot in which the first synchronization signal block is transmitted in the discrete transmission mode.
  • determining the time domain position of the first synchronization signal block according to the first resource and/or the first DMRS includes: determining the time domain position of the first synchronization signal block according to the i-th mapping mode of the first resource, The i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode is associated with the time domain position of the first synchronization signal block; or,
  • the first DMRS belongs to at least one DMRS, and the first DMRS is associated with the time domain position of the first synchronization signal block; or, according to the i-th mapping pattern of the first resource Determine the time domain position of the first synchronization signal block with the first DMRS, the first DMRS belongs to at least one DMRS, the i-th mapping mode belongs to at least one mapping mode, the i-th mapping mode and the time domain of the first DMRS and the first synchronization signal block Location is associated.
  • the embodiment of the application provides the mapping relationship between DMRS, DMRS resources, and time domain position.
  • the time domain position of the first synchronization signal block can be determined according to the DMRS in the first synchronization signal block, or the first synchronization signal block can be determined according to the DMRS resource mapping mode.
  • the time domain position of the synchronization signal block may also be jointly determined according to the DMRS and the DMRS resource mapping method.
  • a method for indicating the sequence number of a synchronization signal block includes: a first terminal device (or a component in the first terminal device) determines the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block ,
  • the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH, the first PSBCH includes the first demodulation reference signal DMRS, and the sequence number is used to indicate i, i represents the i-th time in the first synchronization signal block transmission period
  • Send the first synchronization signal block determine the first resource and the first demodulation reference signal DMRS according to the time domain position of the first synchronization signal block, the first resource is used to send the first demodulation reference signal DMRS;
  • the second terminal device transmits the first demodulation reference signal DMRS.
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (that is, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender implicitly indicates the synchronization signal block through the DMRS resource mapping mode and/or the DMRS sequence.
  • the receiver analyzes the DMRS in the synchronization signal block, or recognizes the resource mapping method of the DMRS, can determine the sequence number of the synchronization signal block implicitly indicated by the sender, and determine the receive beam corresponding to the synchronization signal block, through the receive beam Receive sync signal block.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: the first synchronization signal is transmitted in the first wireless frame
  • the jth subframe of the signal block, the kth time slot of the first synchronization signal block is sent in the jth subframe, and j or k is an integer greater than or equal to 1.
  • determining the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block includes:
  • offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission cycle and the start time slot of the first wireless frame, space(z) It is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in at least two wireless frames;
  • the time domain position of the first synchronization signal block includes: the first synchronization signal block is transmitted in at least two wireless frames In the h-th radio frame of a synchronization signal block, the t-th subframe of the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • determining the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block includes:
  • L(x) is the number of first synchronization signal blocks sent in the xth wireless frame that sends the first synchronization signal block in at least two wireless frames
  • s is an integer greater than or equal to 1 and less than or equal to h
  • K(t) is the number of the first synchronization signal blocks that are sent until the t-th subframe in the h-th radio frame.
  • determining the first resource and the first demodulation reference signal DMRS according to the time domain position of the first synchronization signal block includes: determining the i-th mapping of the first resource according to the time domain position of the first synchronization signal block Mode, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode is associated with the time domain position of the first synchronization signal block; or, the first DMRS is determined according to the time domain position of the first synchronization signal block, and the first DMRS belongs to At least one DMRS, the first DMRS is associated with the time domain position of the first synchronization signal block; or, the i-th mapping pattern of the first resource and the first DMRS are determined according to the time domain position of the first synchronization signal block, and the first DMRS belongs to At least one DMRS, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode and the first DMRS are associated with the time domain position of the first synchronization signal block
  • a method for indicating the sequence number of a synchronization signal block including: a second terminal device receives first information from a first terminal device, the first information is used to indicate the time domain position of the first synchronization signal block;
  • the synchronization signal block includes the first physical side uplink broadcast channel PSBCH, and the first PSBCH includes the first information;
  • the sequence number of the first synchronization signal block is determined according to the first information;
  • the sequence number is used to indicate i, and i means the first synchronization signal block
  • the first synchronization signal block is sent for the i-th time in the sending period, and i is an integer greater than or equal to 1.
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (that is, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender can directly send specific information to the receiver to indicate the time domain position of the synchronization signal block, and the receiver can determine the sequence number of the synchronization signal block based on this information, thereby determining the receive beam corresponding to the synchronization signal block , The synchronization signal block is received through the receiving beam.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in the first radio frame
  • the time domain position of the first synchronization signal block includes: in the first radio frame, the jth subframe in which the first synchronization signal block is sent, and the kth time slot in which the first synchronization signal block is sent in the jth subframe; j or k Is an integer greater than or equal to 1.
  • the embodiment of the present application provides a possibility of the time domain position of the first synchronization signal block in the centralized transmission mode.
  • the second terminal device may determine to transmit the first synchronization signal block according to the first resource or the first DMRS corresponding to the first synchronization signal block.
  • the sequence number of the first synchronization signal block of the first terminal according to the first information includes:
  • the embodiment of the present application provides a specific solution for determining the sequence number i of the first synchronization signal block according to the subframe in which the first synchronization signal block is transmitted and the time slot in which the first synchronization signal block is transmitted by the second terminal device in the centralized transmission mode.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: The h-th radio frame of the first synchronization signal block, and the t-th subframe in which the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • the embodiment of the present application provides a possibility of the time domain position of the first synchronization signal block in the discrete transmission mode.
  • the second terminal device may determine to transmit the first synchronization signal block according to the first resource or the first DMRS corresponding to the first synchronization signal block.
  • determining the sequence number of the first synchronization signal block according to the first information includes:
  • the embodiment of the present application provides a specific solution in which the second terminal device determines the sequence number i of the first synchronization signal block according to the subframe in which the first synchronization signal block is transmitted and the time slot in which the first synchronization signal block is transmitted in the discrete transmission mode.
  • a method for indicating the sequence number of a synchronization signal block which includes: a first terminal device (or a component in the first terminal device) determines first information according to the sequence number of the first synchronization signal block, and the first information is used for Indicate the time domain position of the first synchronization signal block; the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH, the first PSBCH includes the first information, the sequence number indicates i, and i indicates the transmission period of the first synchronization signal block The first synchronization signal block is sent for the i-th time, i is an integer greater than or equal to 1, and the first information is sent to the second terminal device.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: The jth subframe of the synchronization signal block, and the kth time slot of the first synchronization signal block is sent in the jth subframe.
  • determining the first information according to the sequence number of the first synchronization signal block includes:
  • offset is the interval between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time slot of the first wireless frame
  • the number of time slots, space(z) is the number of time slots between the zth transmission of the first synchronization signal block and the z+1th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: In the h-th radio frame of the first synchronization signal block, in the h-th radio frame, the t-th subframe of the first synchronization signal block is transmitted.
  • determining the first information according to the sequence number of the first synchronization signal block includes:
  • L(x) is the x-th wireless frame sending the first synchronization signal block in at least two wireless frames
  • the number of first synchronization signal blocks in, s is an integer greater than or equal to 1 and less than or equal to h
  • K(t) is the number of first synchronization signal blocks in the hth radio frame that are sent until the tth subframe is sent.
  • a second terminal device including: a transceiving unit, configured to receive a first synchronization signal block from the first terminal device, the first synchronization signal block including the first physical side uplink broadcast channel PSBCH, A PSBCH includes a first demodulation reference signal DMRS, the first DMRS is received on the first resource; a processing unit, configured to determine the time domain position of the first synchronization signal block according to the first resource and/or the first DMRS; processing The unit is further configured to determine the sequence number of the first synchronization signal block according to the time domain position of the first synchronization signal block, the sequence number is used to indicate i, and i indicates that the first synchronization signal block is sent for the i-th time in the first synchronization signal block transmission period ; I is an integer greater than or equal to 1.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: the first synchronization signal is transmitted in the first wireless frame
  • the jth subframe of the signal block, the kth time slot of the first synchronization signal block is sent in the jth subframe, and j or k is an integer greater than or equal to 1.
  • the processing unit is specifically used for,
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in at least two wireless frames;
  • the time domain position of the first synchronization signal block includes: the first synchronization signal block is transmitted in at least two wireless frames In the h-th radio frame of a synchronization signal block, the t-th subframe of the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • the processing unit is specifically used for,
  • the processing unit is specifically configured to determine the time domain position of the first synchronization signal block according to the i-th mapping mode of the first resource, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode is the same as the first mapping mode.
  • the time domain position of the synchronization signal block is associated; or, the time domain position of the first synchronization signal block is determined according to the first DMRS, the first DMRS belongs to at least one DMRS, and the first DMRS is associated with the time domain position of the first synchronization signal block Or, the time domain position of the first synchronization signal block is determined according to the i-th mapping mode of the first resource and the first DMRS, the first DMRS belongs to at least one DMRS, the i-th mapping mode belongs to at least one mapping mode, the i-th mapping mode and The first DMRS is associated with the time domain position of the first synchronization signal block.
  • a first terminal device including:
  • the processing unit is configured to determine the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block, the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH, and the first PSBCH includes the first demodulation reference Signal DMRS, the sequence number is used to indicate i, i means that the first synchronization signal block is sent for the i-th time in the first synchronization signal block transmission period; the processing unit is also used to determine the first resource according to the time domain position of the first synchronization signal block And the first demodulation reference signal DMRS, the first resource is used to send the first demodulation reference signal DMRS; the transceiver unit is used to send the first demodulation reference signal DMRS to the second terminal device on the first resource.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: the first synchronization signal is transmitted in the first wireless frame
  • the jth subframe of the signal block, the kth time slot of the first synchronization signal block is sent in the jth subframe, and j or k is an integer greater than or equal to 1.
  • the processing unit is specifically used for,
  • offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission cycle and the start time slot of the first wireless frame, space(z) It is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the first synchronization signal block transmission period is transmitted in at least two wireless frames;
  • the time domain position of the first synchronization signal block includes: the first synchronization signal block is transmitted in at least two wireless frames In the h-th radio frame of a synchronization signal block, the t-th subframe of the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • the processing unit is specifically used for,
  • L(x) is the number of first synchronization signal blocks sent in the xth wireless frame that sends the first synchronization signal block in at least two wireless frames
  • s is an integer greater than or equal to 1 and less than or equal to h
  • K(t) is the number of the first synchronization signal blocks that are sent until the t-th subframe in the h-th radio frame.
  • the processor is specifically configured to determine the i-th mapping mode of the first resource according to the time domain position of the first synchronization signal block, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode is the same as the first mapping mode.
  • the time domain position of the synchronization signal block is associated; or, the first DMRS is determined according to the time domain position of the first synchronization signal block, the first DMRS belongs to at least one DMRS, and the first DMRS is associated with the time domain position of the first synchronization signal block Or, determine the i-th mapping mode of the first resource and the first DMRS according to the time domain position of the first synchronization signal block, the first DMRS belongs to at least one DMRS, the i-th mapping mode belongs to at least one mapping mode, the i-th mapping mode and The first DMRS is associated with the time domain position of the first synchronization signal block.
  • a second terminal device including: a transceiving unit, configured to receive first information from a first terminal device, the first information being used to indicate a time domain position of a first synchronization signal block; a first synchronization signal The block includes the first physical side uplink broadcast channel PSBCH, and the first PSBCH includes the first information; the processing unit is used to determine the sequence number of the first synchronization signal block according to the first information; the sequence number is used to indicate i, and i means the first The first synchronization signal block is sent for the i-th time in the synchronization signal block sending period, and i is an integer greater than or equal to 1.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: In the jth subframe of the synchronization signal block, the kth time slot of the first synchronization signal block is sent in the jth subframe; j or k is an integer greater than or equal to 1.
  • the processing unit is specifically used for,
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: The h-th radio frame of the first synchronization signal block, and the t-th subframe in which the first synchronization signal block is transmitted in the h-th radio frame; h or t is an integer greater than or equal to 1.
  • s is an integer greater than or equal to 1 and less than or equal to h-1
  • L(s) is the number of first synchronization signal blocks sent in the sth wireless frame in at least two wireless frames
  • K(t) is the hth The number of the first synchronization signal block sent in the t-th subframe within the radio frame.
  • a first terminal device including: a processing unit, configured to determine first information according to the sequence number of the first synchronization signal block, the first information being used to indicate the time domain position of the first synchronization signal block;
  • a synchronization signal block includes the first physical side uplink broadcast channel PSBCH, the first PSBCH includes the first information, and the sequence number indicates i, where i indicates that the first synchronization signal block is sent for the i time in the first synchronization signal block transmission period, i Is an integer greater than or equal to 1; the transceiver unit is used to send the first information to the second terminal device.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in the first wireless frame
  • the time domain position of the first synchronization signal block includes: The jth subframe of the synchronization signal block, and the kth time slot of the first synchronization signal block is sent in the jth subframe.
  • the processing unit is specifically used for,
  • offset is the interval between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time slot of the first wireless frame
  • the number of time slots, space(z) is the number of time slots between the zth transmission of the first synchronization signal block and the z+1th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: In the h-th radio frame of the first synchronization signal block, in the h-th radio frame, the t-th subframe of the first synchronization signal block is transmitted.
  • the processing unit is specifically used to determine h according to i, L(x), and according to i, Determine K(t) and determine t according to K(t); determine the first information according to s and t; where L(x) is the x-th wireless frame sending the first synchronization signal block in at least two wireless frames The number of first synchronization signal blocks in, s is an integer greater than or equal to 1 and less than or equal to h, and K(t) is the number of first synchronization signal blocks in the hth radio frame that are sent until the tth subframe is sent.
  • a communication device including at least one processor and a memory, the at least one processor is coupled to the memory; the memory is used to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to any one of the foregoing first aspect and the first aspect, or the foregoing third aspect, and The method described in any implementation manner of the third aspect.
  • a communication device including at least one processor and a memory, where the at least one processor is coupled to the memory; the memory is configured to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to any one of the foregoing second aspect and the second aspect, or the foregoing fourth aspect And the method described in any one of the implementation manners of the fourth aspect.
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the first aspect and any of the first aspects are implemented.
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the second aspect and any of the second aspects are implemented. The method described in one implementation manner, or the method described in any one of the foregoing fourth aspect and the fourth aspect.
  • a wireless communication device including: instructions stored in the wireless communication device; When running on the second terminal device described in the seventh aspect and any one of the implementation manners of the seventh aspect, the second terminal device is caused to execute the method described in the foregoing first aspect and any one of the implementation manners of the first aspect or the foregoing first aspect
  • the wireless communication device is a chip.
  • a wireless communication device including: instructions stored in the wireless communication device; When running on the first terminal device described in any one of the eighth aspect and the eighth aspect implementation manner, the first terminal device device is caused to execute the method described in any one of the second aspect and the second aspect implementation manner or the above-mentioned first terminal device.
  • the wireless communication device is a chip.
  • a communication system in a fifteenth aspect, includes a network device, a first terminal device, and a second terminal device.
  • the second terminal device may be the first terminal device described in any one of the fifth aspect and the fifth aspect.
  • the first terminal device may be the first terminal device described in any one of the sixth aspect and the sixth aspect.
  • Figure 1 is an NR frame format provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of a communication system provided by an embodiment of the application.
  • Figure 3 is a signal structure diagram of the synchronization signal block in the NR-V2X communication system
  • FIG. 4 is a schematic diagram of a time domain position provided by an embodiment of this application.
  • FIG. 5 is a structural block diagram of a communication device provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a method for indicating a sequence number of a synchronization signal block provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of sending a synchronization signal block according to an embodiment of the application.
  • FIG. 8 is another schematic diagram of sending a synchronization signal block according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of resource mapping provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of sending a synchronization signal block according to an embodiment of the application.
  • 11-14 are another structural block diagrams of the communication device provided by the embodiments of this application.
  • Figure 1 shows the frame format of NR, which is also applicable to NR-V2X.
  • one radio frame includes 10 subframes, and one subframe includes m time slots.
  • m sub-carrier spacing/15kHz.
  • the subcarrier spacing (SCS) can be 15kHz, 30kHz, 60kHz, 120kHz, and so on.
  • the method provided by the embodiment of the present application can be used in the communication system shown in FIG. 2.
  • the communication system may include multiple terminal devices and network equipment.
  • FIG. 2 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include multiple network devices (only network device 100 is shown) and multiple terminal devices (only shown in the figure).
  • FIG. 2 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the communication system supports side-line communication, such as: device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • the network equipment and the terminal device can perform uplink and downlink transmission through the cellular link (Uu link), and the terminal device can communicate through the side link (sidelink link), such as D2D communication, V2X communication, and machine Type communication (machine type communication, MTC), etc.
  • sidelink link such as D2D communication, V2X communication, and machine Type communication (machine type communication, MTC), etc.
  • the network device may be a transmission reception point (TRP), a base station, a relay station, or an access point.
  • the network device can be a network device in a 5G communication system or a network device in a future evolution network; it can also be a wearable device or a vehicle-mounted device.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • the NB (NodeB) in wideband code division multiple access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network, CRAN cloud radio access network
  • the terminal device may be user equipment (UE), access terminal device equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal device equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • the access terminal equipment can be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), Handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices with wireless communication functions, terminal devices in 5G networks, or public land mobile network (PLMN) networks that will evolve in the future In the terminal equipment, etc.
  • UE user equipment
  • PLMN public land mobile network
  • the terminal device of the present application may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit that is built into a vehicle as one or more components or units.
  • On-board components, on-board chips, or on-board units can implement the method of this application.
  • the first terminal device, the second terminal device, and the network device of the present application may all be one or more chips, or may be a system on chip (SOC) or the like.
  • SOC system on chip
  • the communication system shown in FIG. 2 supports V2X communication.
  • the terminal device 201 first sends a synchronization signal block to the terminal device 202, and the terminal device 202 can synchronize and access the serving cell according to the synchronization signal block. After that, the terminal device 201 also sends a physical sidelink control channel (PSCCH) to the terminal device 202, and transmits control information through the PSCCH. In addition, the terminal device 201 also sends a physical sidelink shared channel (PSSCH) to the terminal device 202, and transmits data through the PSSCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the communication system shown in FIG. 2 supports two side link resource configuration modes, one is the base station allocation mode (abbreviated as mode-1), and the other is the user-selected mode (abbreviated as mode-2).
  • mode-1 is mainly suitable for side-line communication in scenarios with base station network coverage. That is, when the terminal is located in the coverage area of the base station network, the base station can allocate the side to the terminal according to the buffer state report (BSR) reported by the terminal Link resources for side-line communication.
  • BSR buffer state report
  • Mode-2 is mainly used for side-line communication in scenarios where there is no base station network coverage. Because there is no unified resource management of the base station, the terminal can only select the side-line link resources for side-line communication by itself.
  • Fig. 3 is a signal structure diagram of the synchronization signal block in the NR-V2X communication system.
  • the SSB in NR-V2X can be called S-SSB (sidelink-SSB).
  • S-SSB sidelink-SSB
  • the signal structure of the synchronization signal block sent by the terminal device 201 to the terminal device 202 is as shown in FIG. 3.
  • S-SSB occupies a time slot in the time domain.
  • S-SSB includes a side-link primary synchronization signal (S-PSS) and a side-link secondary synchronization signal (secondary synchronization signal, S-PSS).
  • S-SSS side-link secondary synchronization signal
  • PSBCH physical sidelink broadcast channel
  • S-PSS and S-SSS are mainly used for the receiver of the side link (for example, the terminal device 202) to identify the cell and to synchronize with the sender.
  • PSBCH includes basic system information, such as system frame number, subframe number, and so on.
  • the terminal device 202 successfully receives the S-SSB to obtain timing synchronization with the sender.
  • the base station may send the same synchronization signal block (SSB) to the UE multiple times within a time window, and this time window may be referred to as a synchronization signal block transmission period.
  • the sender UE may also send the same synchronization signal block (S-SSB) to the receiver UE multiple times, and this time window may also be referred to as a synchronization signal block transmission period.
  • S-SSB synchronization signal block
  • the synchronization signal block transmission period in NR can be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms.
  • the SCS of the communication bandwidth of the sender and receiver is different, and the maximum number of transmissions supported by a synchronization signal block transmission cycle is also different. Specifically, when the SCS is 15KHz, 30kHz, the maximum number of transmissions supported in one synchronization signal block transmission period is 8; when the SCS is 120KHz, 240kHz, the maximum number of transmissions supported in one synchronization signal block transmission period is 64.
  • the configuration of the transmission parameters of the synchronization signal block is consistent, and in different synchronization signal block transmission periods, the configuration of the transmission parameters of the synchronization signal block will be reconfigured.
  • the synchronization signal block transmission period is configured to be 5ms, then in the first synchronization signal block transmission period, the synchronization signal block is periodically transmitted at an interval of 5 ms, and in the first synchronization signal block
  • the transmission period of the synchronization signal block is configured to be 20 ms, and then in the second synchronization signal block transmission period, the synchronization signal block is periodically transmitted at an interval of 20 ms. That is, the synchronization signal block transmission period can also be referred to as the synchronization signal block configuration period, which can define the validity period of the synchronization signal transmission parameter configuration.
  • FR frequency range 1
  • the maximum time occupied by all S-SSBs in a synchronization signal block transmission period The length is 2ms.
  • the length of a wireless frame is 10ms, therefore, all S-SSBs in the sending period of the next synchronization signal block of FR1 can be continuously transmitted in one wireless frame.
  • FR2 when the sub-carrier spacing of the communication bandwidth between terminal devices is 60 kHz and 120 kHz, the maximum time length of all S-SSBs in a synchronization signal block transmission period is 8 ms. Therefore, all S-SSBs in the next synchronization signal block transmission period of FR2 can be continuously transmitted in one radio frame.
  • the frequency range indicated by FR1 in 5G NR is 700MHz to 3GHz
  • the frequency range indicated by FR2 is 24.25GHz to 40GHz.
  • the synchronization signal block can be sent in two ways, including: centralized sending and discrete sending.
  • centralized transmission means that all synchronization signal blocks in a synchronization signal block transmission period are transmitted in one wireless frame, that is, the time to send all synchronization signal blocks in a synchronization signal block transmission period is less than the length of a wireless frame;
  • Sending means that all synchronization signal blocks in a synchronization signal block transmission period are transmitted in multiple wireless frames, that is, the time for sending all synchronization signal blocks in a synchronization signal block transmission period is greater than the length of a wireless frame.
  • the time index of the synchronization signal block may also be referred to as the sequence number of the synchronization signal block, which is used to indicate how many times the synchronization signal block is sent in the synchronization signal block transmission period.
  • the SSBs are numbered sequentially according to the sending order of the SSBs, that is, the sequence numbers of the SSBs are ⁇ 0,1,2,3,4,5,6,7 ⁇ . It is understandable that the time index of SSB is ⁇ 0,1,2,3,4,5,6,7 ⁇ in order.
  • the sequence number of the SSB is represented by a binary sequence. Specifically, you can use Bits to represent N serial numbers, the base station will The bits are carried in a physical broadcast shared channel (PBCH) and sent to the UE.
  • PBCH physical broadcast shared channel
  • the sequence number of the SSB is ⁇ 0,1,2,3,4,5,6,7 ⁇
  • 3 bits can be used to represent the sequence number of the SSB, and these 3 bits are carried in the PBCH.
  • a synchronization signal block occupies a time slot in the time domain, and the time domain position of the synchronization signal block can be the time slot occupied by the synchronization signal block, or the subframe mapped by the time slot, or the subframe mapping
  • the embodiment of the present application does not limit this wireless frame.
  • the synchronization signal block 1 is sent on the time slot 0 of the subframe 4 of the radio frame 1.
  • the time domain position of the synchronization signal block 1 can be "radio frame 1", it can also be “subframe 4", or it can be "time slot 0".
  • the beam selection of the synchronization signal block is to select the transmission beam and the reception beam of the synchronization signal block according to the sequence number of the synchronization signal block.
  • the sequence number of the synchronization signal block is 3, the corresponding transmit beam is TX1, and the receive beam is RX2, that is, the transmit beam used by the sender when sending the fourth synchronization signal block (provided that the sequence number starts from 0) is TX1,
  • the receiving beam used by the receiver when receiving the fourth synchronization signal block is RX2.
  • the sender needs to send the sequence number of the synchronization signal block to the receiver so that the receiver can perform beam selection according to the sequence number of the synchronization signal block.
  • the terminal device 201 that is, the sender UE described in this application
  • the terminal device 202 that is, the receiver UE described in this application
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (ie, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender can directly send specific information to the receiver to indicate the time domain position of the synchronization signal block, and the receiver can determine the sequence number of the synchronization signal block based on this information, thereby determining the receive beam corresponding to the synchronization signal block ,
  • the synchronization signal block is received through the receiving beam.
  • the sender implicitly indicates the synchronization signal block through a DMRS resource mapping manner and/or a DMRS sequence.
  • the receiver analyzes the DMRS in the synchronization signal block, or recognizes the resource mapping method of the DMRS, can determine the sequence number of the synchronization signal block implicitly indicated by the sender, and determine the receive beam corresponding to the synchronization signal block, through the receive beam Receive sync signal block.
  • FIG. 5 shows a schematic diagram of the hardware structure of a communication device 50 provided by an embodiment of the application.
  • the communication device 50 includes a processor 501, a memory 502, and at least one communication interface (in FIG. 5, the communication interface 503 is included as an example for illustration).
  • the processor 501, the memory 502, and the communication interface 503 are connected to each other.
  • the processor 501 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 503 which uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 502 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 502. The memory can also be integrated with the processor.
  • the memory 502 is used to store computer-executed instructions for executing the solution of the present application, and the processor 501 controls the execution.
  • the processor 501 is configured to execute computer-executable instructions stored in the memory 502, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5.
  • the communication device 50 may include multiple processors, such as the processor 501 and the processor 506 in FIG. 5. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 50 may further include an output device 504 and an input device 505.
  • the output device 504 communicates with the processor 501 and can display information in a variety of ways.
  • the output device 504 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 505 communicates with the processor 501, and can receive user input in a variety of ways.
  • the input device 505 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the aforementioned communication device 50 may be a general-purpose device or a special-purpose device.
  • the communication device 50 may be a desktop computer, a portable computer, a network server, a PDA (personal digital assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in FIG. 5 equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 50.
  • the communication device 50 may be a complete terminal device, may also be a functional component or component that implements the terminal device, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 503 may be an input/output interface circuit of the chip, and the input/output interface circuit is used to read in and output baseband signals.
  • the embodiment of the present application provides a method for indicating the sequence number of a synchronization signal block. As shown in FIG. 6, the method includes the following steps:
  • the second terminal device determines the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block.
  • the second terminal device repeatedly transmits the synchronization signal block in a synchronization signal transmission period, for example, repeatedly transmits the first synchronization signal in the first synchronization signal block transmission period, that is, the first synchronization signal block transmission period is the first synchronization signal block transmission period.
  • the sequence number of the first synchronization signal block to be sent each time may also be determined according to the order in which the first synchronization signal block is sent. For example, the sequence number of the first synchronization signal block is i, which means that the first synchronization signal block is sent for the i-th time in the period of the first synchronization signal block.
  • the following describes in detail in combination with different transmission modes of the first synchronization signal block, how the second terminal device determines the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block:
  • all the first synchronization signal blocks in the first synchronization signal block transmission period are transmitted in the first wireless frame.
  • the first synchronization signal block sending period the first synchronization signal block is supported to be sent L times, and the second terminal device may send the first synchronization signal block L times in the first wireless frame.
  • the second terminal device may send the first synchronization signal block in the first synchronization signal block transmission period according to two pre-configured parameters ⁇ offset, space ⁇ .
  • offset refers to the interval between the time domain position of the first synchronization signal block sent first in the first synchronization signal block transmission period and the time domain start position of the first synchronization signal block transmission period Number of time slots
  • space refers to the number of time slots between two adjacent transmissions of the first synchronization signal block in the transmission period of the first synchronization signal block.
  • the number of time slots between the i-th transmission of the first synchronization signal block and the (i+1)th transmission of the first synchronization signal block within the first synchronization signal block period is represented by space.
  • i is an integer greater than or equal to 1.
  • time interval between the first synchronization signal blocks sent twice adjacently may be the same, or the time interval between the first synchronization signal blocks sent twice adjacently may be different.
  • the second terminal device may also determine the time domain position of the first synchronization signal block according to the sequence number, offset, and space of the first synchronization signal block.
  • the number of time slots between the first synchronization signal block sent for the i-th time and the synchronization signal block sent for the first time in the first synchronization signal block sending period is equal to:
  • the time domain position determined by the second terminal device may be: a subframe in the first radio frame in which the first synchronization signal block is sent, for example, the jth subframe in the first radio frame.
  • the time domain position of the first synchronization signal block may also be a time slot in the first radio frame for transmitting the first synchronization signal block, for example, the kth time slot in the jth subframe.
  • the j or k is an integer greater than or equal to 1. In other words, according to the i, offset, Determine the j and k.
  • all the first synchronization signal blocks in the first synchronization signal block transmission period are transmitted in radio frame 3 (that is, the first radio frame described in the embodiment of the present application). Assuming that a subframe includes two time slots, the offset is 1 time slot, and the space between two adjacent transmissions is the same as 3 time slots.
  • the first synchronization signal block is sent for the first time on the second time slot of frame 0), and for the second time on the second time slot of the third subframe of radio frame 3 (subframe 2 shown in Figure 7)
  • the first synchronization signal block is sent for the third time in the second time slot of the fifth subframe of radio frame 3 (subframe 4 shown in FIG. 7), and so on.
  • all the first synchronization signal blocks in the first synchronization signal block transmission period are transmitted in at least two wireless frames.
  • the first synchronization signal block is supported to be transmitted L times, and the second terminal device may transmit the first synchronization signal block L times in the at least two wireless frames.
  • a wireless frame mapping table and H subframe mapping tables are pre-configured in the first terminal device and the second terminal device.
  • the wireless frame mapping table records the number of first synchronization signal blocks sent in each wireless frame in the H wireless frames.
  • the subframe mapping table records that the subframe in which the first synchronization signal block in a certain subframe is sent in a wireless frame in the H wireless frames is the first synchronization signal block sent for the first time in the wireless frame.
  • Table 1 is a possible implementation of the radio frame mapping table
  • Table 2 may be a possible implementation of the subframe mapping table.
  • X 1 is the number (times) of the first synchronization signal block sent in the first wireless frame in H wireless frames
  • X 2 is the first synchronization signal block sent in the second wireless frame in H wireless frames The number (number of times), and so on.
  • the second terminal device may determine, according to Table 1, that all the first synchronization signal blocks are mapped in H wireless frames, and the number (times) of sending the first synchronization signal block in each wireless frame within the H wireless frames.
  • H subframe mapping tables have a one-to-one correspondence with H radio frames.
  • Y 1 refers to the first subframe in a radio frame (for example, subframe 0) is the subframe in which the first synchronization signal block is transmitted for the Y 1st time
  • Y 2 refers to the second subframe in the radio frame (for example, Subframe 1) is the subframe where the first synchronization signal block is transmitted for the Y second time in the radio frame, and so on.
  • Y 1 +Y 2 ....+Y 10 is equal to the total number of first synchronization signal blocks sent in the wireless frame corresponding to Table 2.
  • the second terminal device may complete the transmission of the first synchronization signal block in a certain wireless frame according to Table 2.
  • the second terminal device queries the above-mentioned radio frame mapping table and subframe mapping table according to the sequence number of the first synchronization signal block to determine the time domain position of the first synchronization signal block with the sequence number i.
  • the h is determined according to the i and L(x), and the h is determined according to the i and the Determine K(t), and determine the t according to K(t);
  • K(t) is obtained by subtracting the i, and the subframe number t is determined according to the K(t) look-up table 2.
  • the time domain position of the first synchronization signal block determined by the second terminal device may be a wireless frame in which the first synchronization signal block is transmitted within the at least two wireless frames, for example, the at least two wireless frames The hth radio frame within.
  • the time domain position of the first synchronization signal block may also be a subframe in the hth radio frame in which the first synchronization signal block is sent, for example, the tth subframe in the hth radio frame.
  • h or t is an integer greater than or equal to 1.
  • the t-th subframe refers to the t-th subframe in the h-th radio frame.
  • the sub-frame with sub-frame number 0 in the h-th radio frame is the first sub-frame
  • the h-th radio frame sub-frame The number 1 subframe is the second subframe.
  • the first synchronization signal block is transmitted three times in the first synchronization signal block transmission period, and the transmission is completed in 2 wireless frames (respectively, wireless frame 1 and wireless frame 2).
  • Table 4 is the specific subframe mapping table corresponding to radio frame 1 (the first radio frame mapped to the first synchronization signal block)
  • Table 5 is radio frame 2 ( The second one maps the specific subframe mapping table corresponding to the radio frame of the first synchronization signal block.
  • the first synchronization signal block is sent twice in two radio frames. Querying the sub-table 2 corresponding to the wireless frame 1 shows that the first synchronization signal block is sent for the first time in the third sub-frame of the wireless frame 1 (sub-frame 2 of the wireless frame 1 shown in FIG. 8). Querying the sub-table 2 corresponding to the wireless frame 1 shows that the first synchronization signal block is sent for the second time in the first sub-frame of the wireless frame 2 (sub-frame 0 of the wireless frame 2 shown in FIG. 8). The first synchronization signal block is sent for the third time in the 10th subframe (subframe 9 of the radio frame 2 shown in FIG. 8).
  • the time domain position of the first synchronization signal block with sequence number 3 is "the second wireless frame among the at least two wireless frames in which the first synchronization signal block is sent, and the first synchronization signal block).
  • the second terminal device determines the first resource and/or the first DMRS according to the time domain position of the first synchronization signal block.
  • the second terminal device determines the first resource and/or the first DMRS according to the time domain position of the first synchronization signal block.
  • the first resource is a resource that carries the first DMRS, and may also be referred to as a DMRS resource in the embodiment of the present application.
  • the second terminal device may indicate different time domain positions according to the mapping mode of the first resource and the DMRS.
  • the mapping mode of the first resource refers to the time-frequency position of the first resource, and the time-frequency position occupied by the first resource in different mapping modes is different.
  • the first resource may be 3 resource elements (resource elements, RE) carrying DMRS.
  • FIG. 9 shows four mapping modes of the first resource, which are mapping mode 1, mapping mode 2, and Mapping mode 3 and mapping mode 4.
  • the second terminal device may indicate the time domain position of the first synchronization signal block according to the following three methods.
  • the first type is to implicitly indicate the time domain position of the first synchronization signal block according to the mapping mode of the first resource.
  • the first resource has a total of Y mapping modes, which can indicate Y different time domain locations, and one mapping mode is associated with one time domain location.
  • the i-th mapping mode is associated with the time domain position of the first synchronization signal block with sequence number i, that is, the i-th mapping mode implicitly indicates the time domain position of the first synchronization signal block with sequence number i.
  • the i-th mapping mode is used to map the first resource, implicitly indicating that the time domain position of the first synchronization signal block is the time domain position associated with the i-th mapping mode.
  • the first resource has a total of four mapping modes shown in FIG. 9, the mapping mode 1, the mapping mode 2, the mapping mode 3, and the mapping mode 4 respectively indicate different time domain positions.
  • mapping mode 1 the time domain position indicated by the mapping mode 1 is "the first subframe in the first radio frame, and the second time slot of the first subframe"
  • mapping mode 1 maps the first resource, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 1 is: the first subframe, the first The second time slot of 1 subframe.
  • mapping mode 1 the time domain position indicated by the mapping mode 1 is "the third subframe in the first radio frame, and the second time slot of the third subframe"
  • mapping mode 2 when the second terminal sends the first synchronization signal for the second time Block, use mapping mode 2 to map the first resource, implicitly indicating that "the time domain position of the first synchronization signal block with sequence number 2 is: the third subframe in the first radio frame, and the The second time slot”.
  • the time domain position indicated by the mapping mode 1 is "the first wireless frame among the at least two wireless frames that send the first synchronization signal block, the first The third subframe in the radio frame", when the second terminal transmits the first synchronization signal block for the first time, it uses the mapping mode 1 to map the first resource, which implicitly indicates "the time of the first synchronization signal block with sequence number 1.
  • the domain position is: the first radio frame in at least two radio frames in which the first synchronization signal block is sent, and the third subframe in the first radio frame".
  • mapping mode 2 is used to map the first resource, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 2 is: at least two of the first synchronization signal block are sent The second radio frame in the radio frame, and the first subframe in the second radio frame".
  • the second type is to implicitly indicate the time domain position of the first synchronization signal block according to the DMRS.
  • M different DMRS may indicate M different time domain positions, and one DMRS is associated with one time domain position.
  • the time domain position indicated by DMRS1 is "the first subframe in the first radio frame, and the second time slot of the first subframe".
  • the first synchronization signal block includes DMRS1, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 1 is: the first subframe, the first subframe The second time slot”.
  • the first synchronization signal block includes DMRS2, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 2 is: the third subframe in the first radio frame, the second subframe of the third subframe Time slot".
  • the time domain position indicated by DMRS1 is "the first wireless frame among the at least two wireless frames in which the first synchronization signal block is sent, the first wireless frame
  • the first synchronization signal block includes DMRS1, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 1 is : The first radio frame in at least two radio frames in which the first synchronization signal block is sent, and the third subframe in the first radio frame.
  • the first synchronization signal block includes DMRS2, which implicitly indicates that "the time domain position of the first synchronization signal block with sequence number 2 is: in at least two radio frames in which the first synchronization signal block is sent The second radio frame in the second radio frame, the first subframe in the second radio frame".
  • the third type is that the DMRS implicitly indicates the time domain position of the first synchronization signal block according to the mapping mode of the first resource.
  • the first resource has a total of Y mapping modes and a total of M DMRSs are configured. Mapping mode and DMRS share Y ⁇ M different combinations, which can indicate Y ⁇ M different time domain positions. For example, a total of two sequences of DMRS1 and DMRS2 are configured.
  • the first resource may have the four mapping modes shown in FIG. 9, and according to the mapping mode of the first resource, the DMRS may indicate 8 different time domain positions.
  • the time domain position indicated by DMRS1 and mapping mode 1 is "the first subframe in the first radio frame, and the second time slot of the first subframe. ", when the second terminal sends the first synchronization signal block for the first time, the first synchronization signal block includes DMRS1, and uses mapping mode 1 to map the resources of DMRS1, which implicitly indicates "the first synchronization signal block with sequence number 1
  • the time domain position is: the first subframe, the second time slot of the first subframe".
  • mapping mode 2 both indicate the time domain position: "the third subframe in the first radio frame, the second time slot of the third subframe", when the second terminal sends the first
  • the first synchronization signal block includes DMRS2
  • mapping mode 2 is used to map the resources of DMRS2, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 2 is: the first synchronization signal block in the first radio frame 3 subframes, the second time slot of the 3rd subframe".
  • the DMRS1 and the mapping pattern 1 together indicate the time domain position: "The first radio frame of the at least two radio frames in which the first synchronization signal block is transmitted, the first radio frame The third subframe in a radio frame", when the second terminal sends the first synchronization signal block for the first time, the first synchronization signal block includes DMRS1, and uses mapping mode 1 to map the resources of DMRS1, implicitly indicating " The time domain position of the first synchronization signal block with sequence number 1 is: the first radio frame in the at least two radio frames in which the first synchronization signal block is sent, and the third subframe in the first radio frame".
  • mapping mode 2 both indicate the time domain position: "the second radio frame of at least two radio frames sending the first synchronization signal block, the first subframe within the second radio frame", when the first synchronization signal block is transmitted
  • the first synchronization signal block includes DMRS2
  • the resource of DMRS2 is mapped using mapping mode 2, which implicitly indicates that the time domain position of the first synchronization signal block with sequence number 2 is : The second radio frame in at least two radio frames in which the first synchronization signal block is sent, and the first subframe in the second radio frame”.
  • the second terminal device can select the DMRS in the first synchronization signal block (that is, the first DMRS in the embodiment of the present application) according to the time domain position of the first synchronization signal block, or can also select the DMRS in the first synchronization signal block according to the time domain position of the first synchronization signal block.
  • the time domain position is used to select the DMRS resource mapping mode, and the DMRS in the first synchronization signal block and the DMRS resource mapping mode may also be selected according to the time domain position of the first synchronization signal block.
  • the second terminal device sends the first DMRS to the first terminal device on the first resource.
  • the second terminal device sends the first synchronization signal block at the time domain position indicated by the first resource and/or the first DMRS.
  • the first synchronization signal block includes the first PSBCH, the first PSBCH includes the first DMRS, and the first DMRS is transmitted through the first resource.
  • the first terminal device receives the first DMRS on the first resource, and determines the time domain position of the first synchronization signal block according to the first resource and/or the first DMRS.
  • the time domain position of the first synchronization signal block may be determined according to the first resource and/or the first DMRS. Specifically, the time domain position of the first synchronization signal block can be determined in the following three ways:
  • the mapping mode of the first resource implicitly indicates the time domain position.
  • the first terminal device determines the mapping mode of the first resource in the first synchronization signal block, it can determine the time domain position of the first synchronization signal block.
  • the second terminal device sends the first synchronization signal block with reference to FIG. 7, and the time domain position indicated by the mapping pattern 1 shown in FIG. 9 is "the first subframe in the first radio frame, the first subframe The second time slot of the frame".
  • the first terminal device recognizes that the mapping mode of the first resource is mapping mode 1, it determines that the time domain position of the first synchronization signal block is "the first subframe in the first radio frame, and the second subframe of the first subframe). Time slots”.
  • the second terminal device transmits the first synchronization signal block with reference to FIG. 7, and the time domain position indicated by the mapping pattern 2 shown in FIG. 9 is "the third subframe in the first radio frame, the third subframe
  • the first terminal device recognizes that the mapping mode of the first resource is mapping mode 2
  • the second type is that the DMRS implicitly indicates the time domain position.
  • the first terminal device recognizes the DMRS in the first synchronization signal block, it can determine the time domain position of the first synchronization signal block.
  • the second terminal device sends the first synchronization signal block with reference to FIG. 7 and defines two sequences of DMRS1 and DMRS2, where the time domain position indicated by DMRS1 is "the first subframe in the first radio frame, so The second time slot of the first subframe".
  • the first terminal device parses out DMRS1 in the first synchronization signal block, it determines that the time domain position of the first synchronization signal block is "the first subframe in the first radio frame, and the second subframe of the first subframe). Time slot”.
  • the second terminal device transmits the first synchronization signal block with reference to FIG. 7 and defines two sequences of DMRS1 and DMRS2, where the time domain position indicated by DMRS2 is "the third subframe in the first radio frame, the The second time slot of the third subframe", when the first terminal device parses out DMRS2 in the first synchronization signal block, it is determined that the time domain position of the first synchronization signal block is "the first subframe in the first radio frame”. Frame, the second time slot of the first subframe”.
  • the third type is to implicitly indicate the time domain position by combining the DMRS and the mapping mode of the first resource.
  • the first terminal device parses out the DMRS in the first synchronization signal block and recognizes the mapping mode of the DMRS, the first synchronization signal can be determined The time domain position of the block.
  • the mapping pattern 1 and DMRS1 shown in FIG. 9 jointly indicate the time domain position: the first subframe in the first radio frame, and the second time slot of the first subframe.
  • the first terminal device parses out DMRS1 in the first synchronization signal block and recognizes that the resource of DMRS1 is mapped by the mapping mode 1, it is determined that the time domain position of the first synchronization signal block is "the first in the first wireless frame”. Subframes, the second time slot of the first subframe”.
  • the mapping pattern 2 and DMRS2 shown in FIG. 9 together indicate the time domain position: the third subframe in the first radio frame, the second time slot of the third subframe, when the first terminal device is in the first DMRS2 is parsed from the synchronization signal block, and it is recognized that the resource of DMRS2 is mapped using mapping mode 2, then the time domain position of the first synchronization signal block is determined to be "the first subframe in the first radio frame, the first The second time slot of each subframe".
  • the first terminal device determines the sequence number of the first synchronization signal block according to the time domain position of the first synchronization signal block.
  • the mode of the second terminal device sending the first synchronization signal block is different, the DMRS resource mapping mode, and the time domain position implicitly indicated by the DMRS are also different.
  • the mode of the second terminal device sending the first synchronization signal block is different, the DMRS resource mapping mode, and the time domain position implicitly indicated by the DMRS are also different.
  • the time domain position of the first synchronization signal block determined by the first terminal device according to the first resource and/or the first DMRS in step 404 includes: sending the j-th sub component of the first synchronization signal block in the first radio frame. Frame, the kth time slot of the first synchronization signal block is sent in the jth subframe.
  • the first terminal device may substitute the above j and k into the following formula (1) to determine the sequence number i of the first synchronization signal block:
  • offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time domain position of the first wireless frame
  • space(z) Is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period
  • the second terminal device sends the first synchronization signal block with reference to FIG. 7, and the time domain position determined by the first terminal device according to the first resource and/or the first DMRS is "the third subframe in the first radio frame,
  • the time domain position of the first synchronization signal block determined by the first terminal device according to the first resource and/or the first DMRS in step 404 includes: the h th position of the first synchronization signal block sent within the at least two radio frames A radio frame, and the t-th subframe of the first synchronization signal block is sent in the h-th radio frame.
  • the above h and t can be substituted into the following formula (3) to determine the sequence number i of the first synchronization signal block:
  • s is an integer greater than or equal to 1 and less than or equal to h-1
  • L(s) is the number of the first synchronization signal blocks sent in the sth wireless frame of the at least two wireless frames
  • K(t) Indicates that the tth subframe in the hth radio frame is the K(t)th subframe in the hth radio frame for transmitting the first synchronization signal block, that is, K(t) is the hth radio frame The number (times) of the first synchronization signal block transmitted until the t-th subframe.
  • the first terminal device when the first terminal device is also pre-configured with the radio frame mapping table, ⁇ offset, space ⁇ , subframe mapping table in the discrete transmission mode, the first terminal device can look up the table according to h indicated by the second terminal device Determine the radio frame mapping table shown in 1 to determine L(s), and query the subframe mapping table K(t) shown in Table 2 according to t. That is to say, after the second terminal device determines h and t, it can determine k(1), k(2)...k(h-1), and substitute formula (3) to determine the first synchronization signal block. Serial number i.
  • the second terminal device sends the first synchronization signal block with reference to FIG. 8, and the time domain position determined by the first terminal device according to the first resource and/or the first DMRS is "at least two wireless signals sending the first synchronization signal block.
  • the information carried in the PSBCH of the first synchronization signal block sent by the second terminal device may indicate which subframe in the first radio frame the first synchronization signal block is, for example, the PSBCH carries
  • the information can indicate the above j.
  • the DMRS resource and/or the sequence of the DMRS implicitly indicate which time slot the first synchronization signal block is mapped to, for example, the above k may be implicitly indicated. For specific instructions, please refer to the preceding text, so I won’t repeat them here.
  • the information carried in the PSBCH of the first synchronization signal block sent by the second terminal device may indicate that the first synchronization signal block maps the subframe number of the first synchronization signal block, for example, the PSBCH carries
  • the information can indicate the above t.
  • the DMRS resource and/or the sequence of the DMRS implicitly indicate which of the at least two radio frames in which the first synchronization signal block is mapped to all the first synchronization signal blocks, for example, the above h may be implicitly indicated. For specific instructions, please refer to the preceding text, so I won’t repeat them here.
  • the DMRS resource and/or the sequence of the DMRS implicitly indicate the sequence number of the first synchronization signal block.
  • the second terminal device determines the first resource and/or the first DMRS associated with the sequence number according to the sequence number of the first synchronization signal block, and sends the first DMRS to the first terminal device on the first resource.
  • the first DMRS is included in the first PBSCH
  • the first synchronization signal block includes the first PBSCH.
  • the first terminal device receives the first DMRS on the first resource, and may determine that the sequence number of the first synchronization signal block is the sequence number associated with the first resource and/or the first DMRS.
  • the first resource has a total of Y mapping modes, which can indicate Y different sequence numbers, and one mapping mode is associated with one sequence number.
  • the first terminal device receives the first synchronization signal block from the second terminal device and recognizes that the mapping mode of the DMRS resource in the first PSBCH of the first synchronization signal block is the i-th mapping mode, the first synchronization signal block can be determined
  • the serial number is i.
  • a total of M DMRSs are configured, which can indicate M different sequence numbers, and one DMRS is associated with one sequence number.
  • the first terminal device receives the first synchronization signal block from the second terminal device and recognizes the DMRS in the first PSBCH of the first synchronization signal block, it can be determined that the sequence number of the first synchronization signal block is the sequence number associated with the DMRS.
  • the first resource has a total of Y mapping modes and a total of M DMRSs are configured.
  • Mapping mode and DMRS share Y ⁇ M different combinations, which can indicate Y ⁇ M different sequence numbers, and one of the configuration methods is associated with a combination of DMRS.
  • a total of two sequences of DMRS1 and DMRS2 are configured.
  • the first resource may have the four mapping modes shown in FIG. 9, and the DMRS may indicate 8 different sequence numbers according to the mapping mode of the first resource.
  • DMRS1 and mapping mode 1 jointly indicate sequence number 0, DMRS1 and mapping mode 2 jointly indicate sequence number 1, DMRS1 and mapping mode 3 jointly indicate sequence number 2, DMRS1 and mapping mode 4 jointly indicate sequence number 3, and DMRS2 and mapping mode 1 jointly indicate sequence number 4.
  • DMRS2 and mapping mode 2 jointly indicate sequence number 5
  • DMRS2 and mapping mode 3 jointly indicate sequence number 6
  • DMRS2 and mapping mode 4 jointly indicate sequence number 7.
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (ie, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender implicitly indicates the synchronization signal block through the DMRS resource mapping mode and/or the DMRS sequence.
  • the receiver analyzes the DMRS in the synchronization signal block, or recognizes the resource mapping method of the DMRS, can determine the sequence number of the synchronization signal block implicitly indicated by the sender, and determine the receive beam corresponding to the synchronization signal block, through the receive beam Receive sync signal block.
  • the embodiment of the present application also provides a method for indicating the sequence number of a synchronization signal block. As shown in FIG. 10, the method includes the following steps:
  • the second terminal device determines the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block.
  • step 601 For a specific implementation manner of determining the time domain position of the first synchronization signal block by the second terminal device according to the sequence number of the first synchronization signal block, refer to the related description of step 601 above, and details are not described herein.
  • the second terminal device sends first information to the first terminal device; the first information is used to indicate the time domain position of the first synchronization signal block, the first synchronization signal block includes a first PSBCH, and the first synchronization signal block includes a first PSBCH.
  • the PSBCH includes the first information.
  • the first terminal device may determine the first information according to the time domain position of the first synchronization signal block, and map the first information in the first PSBCH.
  • the time domain position of the first synchronization signal block can be "send the first synchronization signal in the first wireless frame
  • the payload of the first PSBCH of the first synchronization signal block includes two fields: a first field and a second field. The first field is used to indicate "j" and the second field is used to indicate "k”.
  • all the first signal blocks in the first synchronization signal block transmission period are transmitted in at least two wireless frames, and the time domain position of the first synchronization signal block may be "transmitted in the at least two wireless frames.
  • the payload of the first PSBCH of the first synchronization signal block includes two fields: a third field and a fourth field. The third field is used to indicate "h” and the fourth field is used to indicate "t”.
  • the second terminal device transmits the S-SSB to the first terminal device, and the S-SSB includes S-SSS, S-PSS, and PSBCH.
  • the PSBCH may include a demodulation reference signal (demodulation reference signal, DMRS) and a payload (payload).
  • DMRS demodulation reference signal
  • payload payload
  • the payload can also be called broadcast information.
  • the second terminal device may send a first synchronization signal block to the first terminal device, where the first synchronization signal block includes the first PSBCH, and the first PSBCH includes the first information.
  • the first information is included in broadcast information of the first PSBCH.
  • the first terminal device may directly carry the first information in the first synchronization signal block, and display the instruction to the second terminal device.
  • the first terminal device receives the first information from the second terminal device, and determines the time domain position of the first synchronization signal block according to the first information.
  • the first terminal device receives the S-SSB sent by the second terminal device, and the S-SSB includes S-SSS, S-PSS, and the first PSBCH.
  • the payload of the first PSBCH includes the first information.
  • the first terminal device may parse the first field in the payload of the first PSBCH, and determining the time domain position of the first synchronization signal block according to the first field includes: sending the first synchronization signal block in the first wireless frame. j subframes. It is also possible to parse the second field in the payload of the first PSBCH, and to determine the time domain position of the first synchronization signal block according to the first field includes: transmitting the kth time slot of the first synchronization signal block in the jth subframe .
  • the first terminal device may parse the third field in the payload of the first PSBCH, and determining the time domain position of the first synchronization signal block according to the third field includes: sending the first synchronization signal block in the at least two radio frames The hth radio frame. It is also possible to parse the fourth field in the payload of the first PSBCH, and to determine the time domain position of the first synchronization signal block according to the fourth field includes: sending the tth subframe of the first synchronization signal block in the hth radio frame .
  • the first terminal device determines the sequence number of the first synchronization signal block according to the first information; the sequence number is used to indicate i, and i indicates that the first synchronization signal is sent for the i-th time in the first synchronization signal block transmission period. Piece.
  • step 605 For a specific implementation manner for the first terminal device to determine the sequence number of the first synchronization signal block according to the first information, refer to the related description of step 605 above, which is not repeated here.
  • the embodiment of the present application provides a specific solution for indicating the time index of the synchronization signal block (ie, the sequence number of the synchronization signal block) in NR-V2X.
  • the sender can directly send specific information to the receiver to indicate the time domain position of the synchronization signal block, and the receiver can determine the sequence number of the synchronization signal block based on this information, thereby determining the receive beam corresponding to the synchronization signal block , The synchronization signal block is received through the receiving beam.
  • FIG. 11 shows a possible schematic structural diagram of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 11 may be the first terminal device or the second terminal device described in the embodiment of the present application, or may be a component in the first terminal device or the second terminal device that implements the foregoing method.
  • the communication device includes a processing unit 1101 and a transceiver unit 1102.
  • the processing unit may be one or more processors, and the transceiving unit 1102 may be a transceiver.
  • the transceiver unit 1102 is configured to receive a first synchronization signal block from the first terminal device.
  • the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH.
  • the first PSBCH includes a first demodulation reference signal DMRS, and the first DMRS is received on a first resource.
  • the transceiver unit 1102 can also be replaced by a sending unit or a receiving unit. For example, when the transceiving unit 1102 performs a sending action, it can be replaced by a sending unit. When the transceiver unit 1100 performs a receiving action, it can be replaced by a receiving unit.
  • the transceiver unit 1102 may be a transceiver.
  • the transceiver can be replaced by a receiver or transmitter. For example, when the transceiver performs the sending action, it can be replaced by the transmitter. When the transceiver performs the receiving action, it can be replaced by the receiver.
  • the processing unit 1101 is configured to determine the time domain position of the first synchronization signal block according to the first resource and/or the first DMRS; and determine the first synchronization signal block according to the time domain position of the first synchronization signal block.
  • the sequence number of the synchronization signal block where the sequence number is used to indicate i, and i indicates that the first synchronization signal block is sent for the i-th time in the first synchronization signal block transmission period; the i is an integer greater than or equal to 1.
  • the processing unit 1101 may be a processing device or a processor.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in a first wireless frame
  • the time domain position of the first synchronization signal block includes: The jth subframe of the first synchronization signal block is sent in the first radio frame, the kth time slot of the first synchronization signal block is sent in the jth subframe, and the j or k is greater than or equal to An integer of 1.
  • the processing unit 1101 is specifically used for: according to Determine the sequence number i of the first synchronization signal block.
  • offset is the number of time slots between the time slot in which the first synchronization signal block is sent for the first time in the first synchronization signal transmission cycle and the start time slot of the first wireless frame
  • space(z ) Is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period
  • m is a subframe The number of time slots included within.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: The h-th radio frame of the first synchronization signal block is sent in the at least two radio frames, and the t-th subframe of the first synchronization signal block is sent in the h-th radio frame; the h or t is An integer greater than or equal to 1.
  • the processing unit 1101 is specifically used for: according to Determine the sequence number i of the first synchronization signal block.
  • s is an integer greater than or equal to 1 and less than or equal to h-1
  • L(s) is the number of the first synchronization signal blocks sent in the sth wireless frame of the at least two wireless frames
  • K(t) Is the number of first synchronization signal blocks that are cut off to be sent in the t-th subframe in the h-th radio frame.
  • the processing unit 1101 is specifically configured to determine the time domain position of the first synchronization signal block according to the i-th mapping mode of the first resource, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode is the same as The time domain position of the first synchronization signal block is correlated; or,
  • the first DMRS belongs to at least one DMRS, and the first DMRS is associated with the time domain position of the first synchronization signal block; or ,
  • the first DMRS belongs to at least one DMRS
  • the i-th mapping pattern belongs to at least one mapping Mode
  • the i-th mapping mode and the first DMRS are associated with the time domain position of the first synchronization signal block.
  • the processing unit 1101 is configured to determine the time domain position of the first synchronization signal block according to the sequence number of the first synchronization signal block, and the first synchronization signal block includes the first physical side
  • the processing unit 1101 is further configured to determine a first resource and a first demodulation reference signal DMRS according to the time domain position of the first synchronization signal block, and the first resource is used to send the first demodulation reference signal DMRS.
  • the transceiver unit 1102 is configured to send the first demodulation reference signal DMRS to the second terminal device on the first resource.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in a first wireless frame.
  • the time domain position of the first synchronization signal block includes: the jth subframe in which the first synchronization signal block is sent in the first radio frame, and the time domain in which the first synchronization signal block is sent in the jth subframe
  • the j or k is an integer greater than or equal to 1.
  • the processing unit 1101 is specifically configured to, according to the i, offset, Determine said j and said k;
  • the offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time slot of the first wireless frame
  • space(z ) Is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: The h-th radio frame of the first synchronization signal block is sent in the at least two radio frames, and the t-th subframe of the first synchronization signal block is sent in the h-th radio frame; the h or t is An integer greater than or equal to 1.
  • the processing unit 1101 is specifically configured to determine the h according to the i and L(x), and according to the i, the Determine K(t), and determine the t according to K(t).
  • L(x) is the number of the first synchronization signal block sent in the xth wireless frame in which the first synchronization signal block is sent in the at least two wireless frames, and s is greater than or equal to 1 and less than or equal to all
  • K(t) is the number of the first synchronization signal block in the h-th radio frame that is cut off from the t-th sub-frame to be sent.
  • the processing unit 1101 is specifically configured to determine the i-th mapping mode of the first resource according to the time domain position of the first synchronization signal block, the i-th mapping mode belongs to at least one mapping mode, and the i-th mapping mode The mode is associated with the time domain position of the first synchronization signal block; or,
  • the first DMRS belongs to at least one DMRS, and the first DMRS is associated with the time domain position of the first synchronization signal block; or ,
  • the first DMRS belongs to at least one DMRS
  • the i-th mapping pattern belongs to at least one mapping Mode
  • the i-th mapping mode and the first DMRS are associated with the time domain position of the first synchronization signal block.
  • the communication device shown in FIG. 11 may also be a chip applied to a terminal device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • SOC System-On-a-Chip
  • the above transceiver unit 1102 for receiving/sending may be an interface circuit of the device for receiving signals from other devices.
  • the transceiver unit 1102 is an interface circuit of the chip, and the interface circuit is used to read in or output baseband signals.
  • the communication device includes: a processing module 1201 and a communication module 1202.
  • the processing module 1201 is used to control and manage the actions of the communication device, for example, to execute the steps performed by the above-mentioned processing unit 1201, and/or to perform other processes of the technology described herein.
  • the communication module 1202 is configured to perform the steps performed by the above-mentioned transceiver unit 1202, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
  • the communication device may further include a storage module 1203, and the storage module 1203 is used to store the program code and data of the communication device.
  • the processing module 1201 is a processor
  • the communication module 1202 is a transceiver
  • the storage module 1203 is a memory
  • the communication device is the communication device shown in FIG. 5.
  • FIG. 13 it is another communication device provided by an embodiment of the present application, which may be the first terminal device and the second terminal device described in the embodiment of the present application.
  • it includes a processing unit 1301 and a transceiving unit 1302.
  • the processing unit may be one or more processors, and the transceiving unit 1302 may be a transceiver.
  • the transceiver unit 1302 is configured to receive first information from the first terminal device, the first information is used to indicate the time domain position of the first synchronization signal block; the first synchronization signal block includes the first physical side uplink broadcast Channel PSBCH, the first PSBCH includes the first information.
  • the processing unit 1301 is configured to determine the sequence number of the first synchronization signal block according to the first information; the sequence number is used to indicate i, and i indicates that the first synchronization signal block is sent for the i-th time in the first synchronization signal block transmission period.
  • the i is an integer greater than or equal to 1.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in a first wireless frame
  • the time domain position of the first synchronization signal block includes: In the first radio frame, the jth subframe of the first synchronization signal block is sent, and the kth time slot of the first synchronization signal block is sent in the jth subframe; the j or k is greater than or An integer equal to 1.
  • the processing unit 1301 is specifically configured to: the sequence number of the first synchronization signal block according to the first terminal according to the first information includes: according to Determine the sequence number i of the first synchronization signal block.
  • offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time slot of the first wireless frame
  • space(z) is The number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period, where m is the number of time slots included in one subframe The number of time slots.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: In the at least two radio frames, the h-th radio frame of the first synchronization signal block is transmitted, and in the h-th radio frame, the t-th subframe of the first synchronization signal block is transmitted; the h or t is an integer greater than or equal to 1.
  • the processing unit 1301 is specifically configured to: the determining the sequence number of the first synchronization signal block according to the first information includes:
  • s is an integer greater than or equal to 1 and less than or equal to h-1
  • L(s) is the number of transmissions sent in the sth radio frame of the at least two radio frames.
  • the number of the first synchronization signal block, K(t) is the number of the first synchronization signal block in the h-th radio frame that is terminated for transmission in the t-th subframe.
  • the processing unit 1301 is configured to determine first information according to the sequence number of the first synchronization signal block, and the first information is used to indicate the time domain of the first synchronization signal block Position; the first synchronization signal block includes the first physical side uplink broadcast channel PSBCH, the first PSBCH includes the first information, the sequence number indicates i, and the i indicates that the first synchronization signal block is sent The first synchronization signal block is sent for the i-th time in a period, and the i is an integer greater than or equal to 1.
  • the transceiver unit 1302 is configured to send the first information to the second terminal device.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in a first wireless frame
  • the time domain position of the first synchronization signal block includes: In the first radio frame, the jth subframe of the first synchronization signal block is sent, and the kth time slot of the first synchronization signal block is sent in the jth subframe.
  • the processing unit 1301 is specifically configured to, according to the i, offset, The j and the k are determined, and the first information is determined according to the j and the k.
  • the offset is the number of time slots between the time slot mapped by the first synchronization signal block sent in the first synchronization signal transmission period and the start time slot of the first wireless frame
  • space(z ) Is the number of time slots between the z-th transmission of the first synchronization signal block and the z+1-th transmission of the first synchronization signal block in the first synchronization signal block transmission period.
  • the first synchronization signal block in the transmission period of the first synchronization signal block is transmitted in at least two radio frames;
  • the time domain position of the first synchronization signal block includes: In the at least two radio frames, the h-th radio frame of the first synchronization signal block is sent, and in the h-th radio frame, the t-th subframe of the first synchronization signal block is sent.
  • the processing unit 1301 is specifically configured to determine the h according to the i, L(x), and according to the i, the Determine K(t), determine the t according to K(t); determine the first information according to the s and t.
  • L(x) is the number of the first synchronization signal block sent in the xth wireless frame in which the first synchronization signal block is sent in the at least two wireless frames, and s is greater than or equal to 1 and less than or equal to all
  • K(t) is the number of the first synchronization signal block in the h-th radio frame that is cut off from the t-th sub-frame to be sent.
  • the communication device shown in FIG. 13 may also be a chip applied to a terminal device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • SOC System-On-a-Chip
  • the above transceiver unit 1302 for receiving/sending may be an interface circuit of the device for receiving signals from other devices.
  • the transceiver unit 1302 is an interface circuit of the chip, and the interface circuit is used to read in or output baseband signals.
  • the communication device includes: a processing module 1401 and a communication module 1402.
  • the processing module 1401 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1401, and/or to perform other processes of the technology described herein.
  • the communication module 1402 is configured to perform the steps performed by the above-mentioned transceiving unit 1402, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
  • the communication device may further include a storage module 1403, and the storage module 1403 is used to store the program code and data of the communication device.
  • the processing module 1401 is a processor
  • the communication module 1402 is a transceiver
  • the storage module 1403 is a memory
  • the communication device is the communication device shown in FIG. 5.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or
  • the components can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例公开了一种同步信号块序号的指示方法、装置及系统,可应用于车联网,例如V2X、LTE-V、V2V等,或可用于智能驾驶,智能网联车等领域。在侧行通信场景中,向接收方UE指示SSB的时域位置,以便接收UE根据SSB的时域位置确定SSB的时间索引。包括:第二终端装置从第一终端装置接收第一同步信号块。第一同步信号块包括第一PSBCH,第一PSBCH包括第一解调参考信号DMRS,第一DMRS是在第一资源上接收的;第二终端装置还可以根据第一资源和/或第一DMRS确定第一同步信号块的时域位置,进一步根据第一同步信号块的时域位置确定第一同步信号块的序号,序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块;i为大于等于1的整数。

Description

一种同步信号块序号的指示方法、装置及系统 技术领域
本申请实施例涉通信领域,尤其涉及一种同步信号块序号的指示方法、装置及系统。
背景技术
新空口(new radio,NR)通信系统中,基站可以向用户设备(user equipment,UE)发送同步信号块(synchronization signal block,SSB),UE可以根据SSB进行小区同步。基站通常在一个周期内重复发送SSB,根据SSB在周期内的发送顺序来确定SSB的序号。此外,SSB的序号还可以称为SSB时间索引(SSB time index)。
NR通信系统中,基站可以向UE发送SSB的序号,以便UE根据SSB的序号确定SSB的接收波束,通过该接收波束接收SSB。在NR-V2X系统中,发送方UE也可以向接收UE发送同步信号块,但是目前还没有向接收方UE指示SSB时间索引的具体方案,也没有帮助接收方UE确定SSB时间索引的具体方案。
发明内容
本申请实施例提供一种同步信号块序号的指示方法、装置及系统,在侧行通信场景中,向接收方UE指示SSB的时域位置,以便接收UE根据SSB的时域位置确定SSB的时间索引。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供了一种同步信号块序号的指示方法,第二终端装置(或第二终端装置上的部件)从第一终端装置接收第一同步信号块。其中,第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一解调参考信号DMRS,第一DMRS是在第一资源上接收的;第二终端装置还可以根据第一资源和/或第一DMRS确定第一同步信号块的时域位置,进一步根据第一同步信号块的时域位置确定第一同步信号块的序号,序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块;i为大于等于1的整数。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方通过DMRS资源的映射方式和/或DMRS的序列隐式指示同步信号块。接收方解析出同步信号块中的DMRS,或者识别出DMRS的资源的映射方式,就可以确定发送方隐式指示的同步信号块的序号,而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙,j或k为大于或等于1的整数。
本申请实施例提供了集中发送模式下,第一同步信号块的时域位置的一种可能。在第一终端装置以集中发送模式发送第一同步信号块发送周期内的第一同步信号块时, 第二终端装置可以根据第一同步信号块对应的第一资源或第一DMRS,确定发送第一同步信号块的子帧以及发送第一同步信号块的时隙。
一种可能的设计中,根据第一同步信号块的时域位置确定第一同步信号块的序号,包括:
根据
Figure PCTCN2019109757-appb-000001
确定第一同步信号块的序号i;其中,offset为第一同步信号发送周期内第一次发送第一同步信号块的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
本申请实施例提供了集中发送模式下,第二终端装置根据发送第一同步信号块的子帧以及发送第一同步信号块的时隙,确定第一同步信号块的序号i的具体方案。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内发送第一同步信号块的第h个无线帧,第h个无线帧内发送第一同步信号块的第t个子帧;h或t为大于等于1的整数。
本申请实施例提供了离散发送模式下,第一同步信号块的时域位置的一种可能。在第一终端装置以集中发送模式发送第一同步信号块发送周期内的第一同步信号块时,第二终端装置可以根据第一同步信号块对应的第一资源或第一DMRS,确定发送第一同步信号块的无线帧以及发送第一同步信号块的子帧。
一种可能的设计中,根据第一同步信号块的时域位置确定第一同步信号块的序号,包括:
根据
Figure PCTCN2019109757-appb-000002
确定第一同步信号块的序号i;其中,s为大于等于1小于等于h-1的整数,L(s)为至少两个无线帧中第s个无线帧内发送的第一同步信号块的数量,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
本申请实施例提供了离散发送模式下,第二终端装置根据发送第一同步信号块的子帧以及发送第一同步信号块的时隙,确定第一同步信号块的序号i的具体方案。
一种可能的设计中,根据第一资源和/或第一DMRS确定第一同步信号块的时域位置,包括:根据第一资源的第i映射方式确定第一同步信号块的时域位置,第i映射模式属于至少一个映射模式,第i映射模式与第一同步信号块的时域位置相关联;或,
根据第一DMRS确定第一同步信号块的时域位置,第一DMRS属于至少一个DMRS,第一DMRS与第一同步信号块的时域位置相关联;或,根据第一资源的第i映射模式和第一DMRS确定第一同步信号块的时域位置,第一DMRS属于至少一个DMRS,第i映射模式属于至少一个映射模式,第i映射模式和第一DMRS与第一同步信号块的时域位置相关联。
本申请实施例提供了DMRS、DMRS资源和时域位置的映射关系,可以根据第一同步信号块中的DMRS确定第一同步信号块的时域位置,也可以根据DMRS资源的映 射方式确定第一同步信号块的时域位置,也可以根据DMRS以及DMRS资源的映射方式共同确定第一同步信号块的时域位置。
第二方面,提供了一种同步信号块序号的指示方法,包括:第一终端装置(或第一终端装置中的部件)根据第一同步信号块的序号确定第一同步信号块的时域位置,第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一解调参考信号DMRS,序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块;根据第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,第一资源用于发送第一解调参考信号DMRS;在第一资源上向第二终端装置发送第一解调参考信号DMRS。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方通过DMRS资源的映射方式和/或DMRS的序列隐式指示同步信号块。接收方解析出同步信号块中的DMRS,或者识别出DMRS的资源的映射方式,就可以确定发送方隐式指示的同步信号块的序号,而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙,j或k为大于或等于1的整数。
一种可能的设计中,根据第一同步信号块的序号确定第一同步信号块的时域位置,包括:
根据i、offset、
Figure PCTCN2019109757-appb-000003
确定j、k;其中,offset为第一同步信号发送周期内发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内发送第一同步信号块的第h个无线帧,第h个无线帧内发送第一同步信号块的第t个子帧;h或t为大于等于1的整数。
一种可能的设计中,根据第一同步信号块的序号确定第一同步信号块的时域位置,包括:
根据i、L(x)确定h,根据i、
Figure PCTCN2019109757-appb-000004
确定K(t),根据K(t)确定t;其中,L(x)为至少两个无线帧内第x个发送第一同步信号块的无线帧内发送的第一同步信号块的数量,s为大于等于1小于等于h的整数,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
一种可能的设计中,根据第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,包括:根据第一同步信号块的时域位置确定第一资源的第i映射模式,第i映射模式属于至少一个映射模式,第i映射模式与第一同步信号块的时域位置相关 联;或,根据第一同步信号块的时域位置确定第一DMRS,第一DMRS属于至少一个DMRS,第一DMRS与第一同步信号块的时域位置相关联;或,根据第一同步信号块的时域位置确定第一资源的第i映射模式和第一DMRS,第一DMRS属于至少一个DMRS,第i映射模式属于至少一个映射模式,第i映射模式和第一DMRS与第一同步信号块的时域位置相关联。
第三方面,公开了一种同步信号块序号的指示方法,包括:第二终端装置从第一终端装置接收第一信息,第一信息用于指示第一同步信号块的时域位置;第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一信息;根据第一信息确定第一同步信号块的序号;序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块,i为大于等于1的整数。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方可以直接向接收方发送特定的信息,指示同步信号块的时域位置,接收方可以根据该信息确定同步信号块的序号,从而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,
第一同步信号块的时域位置包括:第一无线帧内、发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙;j或k为大于或等于1的整数。
本申请实施例提供了集中发送模式下,第一同步信号块的时域位置的一种可能。在第一终端装置以集中发送模式发送第一同步信号块发送周期内的第一同步信号块时,第二终端装置可以根据第一同步信号块对应的第一资源或第一DMRS,确定发送第一同步信号块的子帧以及发送第一同步信号块的时隙。
一种可能的设计中,第一终端根据第一信息第一同步信号块的序号,包括:
根据
Figure PCTCN2019109757-appb-000005
确定第一同步信号块的序号i;其中,offset为第一同步信号发送周期内发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
本申请实施例提供了集中发送模式下,第二终端装置根据发送第一同步信号块的子帧以及发送第一同步信号块的时隙,确定第一同步信号块的序号i的具体方案。
一种可能的实现中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内、发送第一同步信号块的第h个无线帧,第h个无线帧内、发送第一同步信号块的第t个子帧;h或t为大于或等于1的整数。
本申请实施例提供了离散发送模式下,第一同步信号块的时域位置的一种可能。在第一终端装置以集中发送模式发送第一同步信号块发送周期内的第一同步信号块时,第二终端装置可以根据第一同步信号块对应的第一资源或第一DMRS,确定发送第一同步信号块的无线帧以及发送第一同步信号块的子帧。
一种可能的设计中,根据第一信息确定第一同步信号块的序号,包括:
根据
Figure PCTCN2019109757-appb-000006
确定第一同步信号块的序号i;其中,s为大于等于1小于等于h-1的整数,L(s)为至少两个无线帧中第s个无线帧内发送的第一同步信号块的数量,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
本申请实施例提供了离散发送模式下,第二终端装置根据发送第一同步信号块的子帧以及发送第一同步信号块的时隙,确定第一同步信号块的序号i的具体方案。
第四方面,提供了一种同步信号块序号的指示方法,包括:第一终端装置(或第一终端装置中的部件)根据第一同步信号块的序号确定第一信息,第一信息用于指示第一同步信号块的时域位置;第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一信息,序号指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块,i为大于等于1的整数;向第二终端装置发送第一信息。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内、发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙。
一种可能的设计中,根据第一同步信号块的序号确定第一信息,包括:
根据i、offset、
Figure PCTCN2019109757-appb-000007
确定j、k,根据j、k确定第一信息;其中,offset为第一同步信号发送周期内发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内、发送第一同步信号块的第h个无线帧,第h个无线帧内、发送第一同步信号块的第t个子帧。
一种可能的设计中,根据第一同步信号块的序号确定第一信息,包括:
根据i、L(x)确定h,根据i、
Figure PCTCN2019109757-appb-000008
确定K(t),根据K(t)确定t;根据s、t确定第一信息;其中,L(x)为至少两个无线帧内第x个发送第一同步信号块的无线帧内发送的第一同步信号块的数量,s为大于等于1小于等于h的整数,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
第五方面,提供了一种第二终端装置,包括:收发单元,用于从第一终端装置接收第一同步信号块,第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一解调参考信号DMRS,第一DMRS是在第一资源上接收的;处理单元,用于根据第一资源和/或第一DMRS确定第一同步信号块的时域位置;处理单元,还用于根据第一同步信号块的时域位置确定第一同步信号块的序号,序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块;i为大于等于1的整数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内发送第一同步信号块的 第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙,j或k为大于或等于1的整数。
一种可能的设计中,处理单元具体用于,
根据
Figure PCTCN2019109757-appb-000009
确定第一同步信号块的序号i;其中,offset为第一同步信号发送周期内第一次发送第一同步信号块的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内发送第一同步信号块的第h个无线帧,第h个无线帧内发送第一同步信号块的第t个子帧;h或t为大于等于1的整数。
一种可能的设计中,处理单元具体用于,
根据
Figure PCTCN2019109757-appb-000010
确定第一同步信号块的序号i;其中,s为大于等于1小于等于h-1的整数,L(s)为至少两个无线帧中第s个无线帧内发送的第一同步信号块的数量,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
一种可能的设计中,处理单元具体用于,根据第一资源的第i映射方式确定第一同步信号块的时域位置,第i映射模式属于至少一个映射模式,第i映射模式与第一同步信号块的时域位置相关联;或,根据第一DMRS确定第一同步信号块的时域位置,第一DMRS属于至少一个DMRS,第一DMRS与第一同步信号块的时域位置相关联;或,根据第一资源的第i映射模式和第一DMRS确定第一同步信号块的时域位置,第一DMRS属于至少一个DMRS,第i映射模式属于至少一个映射模式,第i映射模式和第一DMRS与第一同步信号块的时域位置相关联。
第六方面,公开了一种第一终端装置,包括:
处理单元,用于根据第一同步信号块的序号确定第一同步信号块的时域位置,第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一解调参考信号DMRS,序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块;处理单元,还用于根据第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,第一资源用于发送第一解调参考信号DMRS;收发单元,用于在第一资源上向第二终端装置发送第一解调参考信号DMRS。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙,j或k为大于或等于1的整数。
一种可能的设计中,处理单元具体用于,
根据i、offset、
Figure PCTCN2019109757-appb-000011
确定j、k;其中,offset为第一同步信号发送周期内 发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内发送第一同步信号块的第h个无线帧,第h个无线帧内发送第一同步信号块的第t个子帧;h或t为大于等于1的整数。
一种可能的设计中,处理单元具体用于,
根据i、L(x)确定h,根据i、
Figure PCTCN2019109757-appb-000012
确定K(t),根据K(t)确定t;其中,L(x)为至少两个无线帧内第x个发送第一同步信号块的无线帧内发送的第一同步信号块的数量,s为大于等于1小于等于h的整数,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
一种可能的设计中,处理器具体用于,根据第一同步信号块的时域位置确定第一资源的第i映射模式,第i映射模式属于至少一个映射模式,第i映射模式与第一同步信号块的时域位置相关联;或,根据第一同步信号块的时域位置确定第一DMRS,第一DMRS属于至少一个DMRS,第一DMRS与第一同步信号块的时域位置相关联;或,根据第一同步信号块的时域位置确定第一资源的第i映射模式和第一DMRS,第一DMRS属于至少一个DMRS,第i映射模式属于至少一个映射模式,第i映射模式和第一DMRS与第一同步信号块的时域位置相关联。
第七方面,提供了一种第二终端装置,包括:收发单元,用于从第一终端装置接收第一信息,第一信息用于指示第一同步信号块的时域位置;第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一信息;处理单元,用于根据第一信息确定第一同步信号块的序号;序号用于指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块,i为大于等于1的整数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内、发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙;j或k为大于或等于1的整数。
一种可能的设计中,处理单元具体用于,
根据
Figure PCTCN2019109757-appb-000013
确定第一同步信号块的序号i;其中,offset为第一同步信号发送周期内发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内、发送第一同步信号块的第h个无线帧,第h个无线帧内、发送第一同步信号块的第t个子帧;h或t为大于或等于1的整数。
一种可能的设计中,根据
Figure PCTCN2019109757-appb-000014
确定第一同步信号块的序号i;
其中,s为大于等于1小于等于h-1的整数,L(s)为至少两个无线帧中第s个无线帧内发送的第一同步信号块的数量,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
第八方面,提供了一种第一终端装置,包括:处理单元,用于根据第一同步信号块的序号确定第一信息,第一信息用于指示第一同步信号块的时域位置;第一同步信号块包括第一物理侧行链路广播信道PSBCH,第一PSBCH包括第一信息,序号指示i,i表示在第一同步信号块发送周期内第i次发送第一同步信号块,i为大于等于1的整数;收发单元,用于向第二终端装置发送第一信息。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在第一无线帧内完成发送,第一同步信号块的时域位置包括:第一无线帧内、发送第一同步信号块的第j个子帧,第j个子帧内发送第一同步信号块的第k个时隙。
一种可能的设计中,处理单元具体用于,
根据i、offset、
Figure PCTCN2019109757-appb-000015
确定j、k,根据j、k确定第一信息;其中,offset为第一同步信号发送周期内发送的第一个同步信号块映射的时隙与第一无线帧的起始时隙之间间隔的时隙数,space(z)为第一同步信号块发送周期内第z次发送第一同步信号块与第z+1次发送第一同步信号块之间间隔的时隙数。
一种可能的设计中,第一同步信号块发送周期内的第一同步信号块在至少两个无线帧内完成发送;第一同步信号块的时域位置包括:至少两个无线帧内、发送第一同步信号块的第h个无线帧,第h个无线帧内、发送第一同步信号块的第t个子帧。
一种可能的设计中,处理单元具体用于,根据i、L(x)确定h,根据i、
Figure PCTCN2019109757-appb-000016
确定K(t),根据K(t)确定t;根据s、t确定第一信息;其中,L(x)为至少两个无线帧内第x个发送第一同步信号块的无线帧内发送的第一同步信号块的数量,s为大于等于1小于等于h的整数,K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量。
第九方面,提供了一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第一方面以及第一方面任意一种实现方式所述的方法,或上述第三方面以及第三方面任意一种实现方式所述的方法。
第十方面,提供了一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第四方面以及第四方面任意一种实现方式所述的方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有 计算机程序或指令,当所述计算机程序或指令被运行时,实现上述第一方面以及第一方面任意一种实现方式所述的方法,或上述第三方面以及第三方面任意一种实现方式所述的方法。
第十二方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第四方面以及第四方面任意一种实现方式所述的方法。
第十三方面,公开了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第五方面以及第五方面任意一种实现方式所述的第二终端装置或第七方面以及第七方面任意一种实现方式所述的第二终端装置上上运行时,使得第二终端装置执行如上述第一方面以及第一方面任意一种实现方式所述的方法或上述第三方面以及第三方面任意一种实现方式所述的方法,无线通信装置为芯片。
第十四方面,提供了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第六方面以及第六方面任意一种实现方式所述的第一终端装置或上述第八方面以及第八方面任意一种实现方式所述的第一终端装置上运行时,使得第一终端装置装置执行如第二方面以及第二方面任意一种实现方式所述的方法或上述第四方面以及第四方面任意一种实现方式所述的方法,无线通信装置为芯片。
第十五方面,公开了一种通信系统包括网络设备、第一终端装置以及第二终端装置,所述第二终端装置可以是上述第五方面以及第五方面任意一种实现方式所述的第二终端装置或第七方面以及第七方面任意一种实现方式所述的第二终端装置;所述第一终端装置可以是上述第六方面以及第六方面任意一种实现方式所述的第一终端装置或上述第八方面以及第八方面任意一种实现方式所述的第一终端装置。
附图说明
图1为本申请实施例提供的NR帧格式;
图2为本申请实施例提供的通信系统的示意图;
图3为NR-V2X通信系统中的同步信号块的信号结构图;
图4为本申请实施例提供的时域位置的示意图;
图5为本申请实施例提供的通信装置的结构框图;
图6为本申请实施例提供的同步信号块序号的指示方法的流程示意图;
图7为本申请实施例提供的同步信号块的发送示意图;
图8为本申请实施例提供的同步信号块的另一发送示意图;
图9为本申请实施例提供的资源映射示意图;
图10为本申请实施例提供的同步信号块的发送示意图;
图11~图14为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先,对本申请实施例涉及的帧结构进行说明:
图1是NR的帧格式,同样适用于NR-V2X。参考图1,一个无线帧包括10个子帧,一个子帧包括m个时隙,图1中仅以m=2作为示例。m=子载波间隔/15kHz。其 中,子载波间隔(subcarrier spacing,SCS)可以是15kHz、30kHz、60kHz,120kHz等。
本申请实施例提供的方法可用于图2所示的通信系统。参考图2,该通信系统可以包括多个终端装置以及网络设备。
图2给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括多个网络设备(仅示出了网络设备100)以及多个终端装置(图中仅示出了终端装置201和终端装置202)。图2仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。该通信系统支持侧行通信,如:设备到设备(device to device,D2D)通信、车对一切(vehicle to everything,V2X)通信等。
其中,网络设备和终端装置之间可以通过蜂窝链路(Uu链路)进行上下行传输,终端装置之间可以通过侧行链路(sidelink链路)进行通信,例如D2D通信、V2X通信、机器类型通信(machine type communication,MTC)等。
网络装置可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。本申请实施例将以基站为例进行说明。
终端装置可以是用户设备(user equipment,UE)、接入终端装置设备、UE单元、UE站、移动站、移动台、远方站、远程终端装置设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。接入终端装置设备可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端装置设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端装置设备等。本申请的终端装置设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。本申请的第一终端装置、第二终端装置以及网络装置都可以为一个或多个芯片,也可以为片上系统(System on Chip,SOC)等。
图2所示的通信系统支持V2X通信,终端装置201首先向终端装置202发送同步信号块,终端装置202可以根据同步信号块进行同步、接入服务小区。之后,终端装置201还会向终端装置202发送物理侧行控制信道(physical sidelink control channel,PSCCH),通过PSCCH传输控制信息。另外,终端装置201还会向终端装置202发送物理侧行共享信道(physical sidelink shared channel,PSSCH),通过PSSCH传输数据。
此外,图2所示的通信系统支持两种侧行链路资源配置方式,一种是基站分配模式(简称mode-1),一种是用户自选模式(简称mode-2)。其中,mode-1主要适用于有基站网络覆盖场景下的侧行通信,即当终端位于基站网络覆盖区域内,基站可以根据终端上报的缓存状态报告(buffer state report,BSR),为终端分配侧行链路资源以进行侧行通信。mode-2主要应用于没有基站网络覆盖场景下的侧行通信,因为没有基站统一的资源管理,终端只能自己选择侧行链路资源进行侧行通信。
图3是NR-V2X通信系统中的同步信号块的信号结构图,NR-V2X中的SSB可以称为S-SSB(sidelink-SSB)。例如,终端装置201向终端装置202发送的同步信号块的信号结构如图3所示。参考图3,S-SSB在时域上占用一个时隙,S-SSB包括侧行链路主同步信号(primary synchronization signal,S-PSS)、侧行链路辅同步信号(secondary synchronization signal,S-SSS)以及物理侧行链路广播信道(physical sidelink broadcast channel,PSBCH)。其中,S-PSS和S-SSS主要用于侧行链路的接收方(例如,终端装置202)识别小区,以及与发送方进行同步。PSBCH包括基本的系统信息,例如系统帧号、子帧号等。终端装置202成功接收S-SSB,才能与发送方获得定时同步。
首先,对本申请实施例涉及的术语进行解释说明:
(1)同步信号块发送周期
Uu链路上,基站可以在一个时间窗内向UE多次发送同一个同步信号块(SSB),这个时间窗可以称为同步信号块发送周期。同样,侧行链路上,发送方UE也可以向接收方UE多次发送同一个同步信号块(S-SSB),这个时间窗也可以称为同步信号块发送周期。
示例的,NR中同步信号块发送周期可以是5ms、10ms、20ms、40ms、80ms、160ms。此外,收发双方通信带宽的SCS不同,一个同步信号块发送周期支持的最大发送次数也不同。具体地,当SCS为15KHz、30kHz,在一个同步信号块发送周期支持的最大发送次数为8;当SCS为120KHz、240kHz,在一个同步信号块发送周期支持的最大发送次数为64。
可选的,同一个同步信号块发送周期内,同步信号块的发送参数等的配置是一致的,而在不同的同步信号块发送周期内,同步信号块的发送参数的配置会重新配置。例如,在第一同步信号块发送周期内,同步信号块的发送周期配置为5ms,则在第一同步信号块发送周期内,同步信号块以5ms为间隔周期性发送,而在第一同步信号块发送周期后的第二同步信号块发送周期内,同步信号块的发送周期配置为20ms,则在第二同步信号块发送周期内,同步信号块以20ms为间隔周期性发送。即同步信号块发送周期也可以称为同步信号块的配置周期,其可以定义同步信号发送参数配置的有效期。
需要说明的是,频率范围(frequency range,FR)1下,当终端装置之间通信带宽的子载波间隔为15kHz、30kHz、60kHz,一个同步信号块发送周期内的所有S-SSB占用的最大时间长度的为2ms。一个无线帧的长度为10ms,因此,FR1下一个同步信号块发送周期内的所有S-SSB都可以在一个无线帧内连续地完成发送。FR2下,当终端装置之间通信带宽的子载波间隔为60kHz、120kHz,一个同步信号块发送周期内的所有S-SSB的最大时间长度的为8ms。因此,FR2下一个同步信号块发送周期内的所有 S-SSB都可以在一个无线帧内连续地完成发送。
此外,5G NR中的FR1指示的频率范围是700MHz到3GHz,FR2指示的频率范围是24.25GHz到40GHz。
综上,本申请实施例可以通过两种方式发送同步信号块,包括:集中发送和离散发送。其中,集中发送指的是一个同步信号块发送周期内的所有同步信号块在一个无线帧内完成发送,即发送一个同步信号块发送周期内所有同步信号块的时间小于一个无线帧的长度;离散发送指的是一个同步信号块发送周期内的所有同步信号块在多个无线帧内发送完,即发送一个同步信号块发送周期内所有同步信号块的时间大于一个无线帧的长度。
(2)同步信号块的时间索引(SSB time index)
同步信号块的时间索引也可以称为同步信号块的序号,用来指示同步信号块是同步信号块发送周期内第几次发送的。
示例的,当在一个同步信号块发送周期内重复8次发送SSB,根据SSB的发送顺序对SSB依次编号,即SSB的序号依次为{0,1,2,3,4,5,6,7}。可以理解的是,SSB的时间索引依次为{0,1,2,3,4,5,6,7}。
NR中,用二进制序列表示SSB的序号。具体地,可以用
Figure PCTCN2019109757-appb-000017
个比特来表示N个序列号,基站将这
Figure PCTCN2019109757-appb-000018
个比特携带在物理广播信道(physical broadcast shared channel,PBCH)中向UE发送。
示例的,SSB的序号依次为{0,1,2,3,4,5,6,7},可以用3比特来表示SSB的序号,这3比特携带在PBCH中。
(3)同步信号块的时域位置
通常,一个同步信号块在时域上占用一个时隙,同步信号块的时域位置可以是同步信号块占用的时隙,也可以是该时隙映射的子帧,也可以是这个子帧映射的无线帧,本申请实施例对此不做限制。
示例的,参考图4,以一个子帧包括2个时隙为例,在无线帧1的子帧4的时隙0上发送同步信号块1。同步信号块1的时域位置可以是“无线帧1”,也可以是“子帧4”,也可以是“时隙0”。
(4)同步信号块的波束选择(管理)
同步信号块的波束选择,即根据同步信号块的序号选择同步信号块的发射波束、接收波束。例如,同步信号块的序号为3,对应的发射波束为TX1,接收波束为RX2,即发送方在发送第4个(前提是序号从0开始编号)同步信号块时使用的发射波束为TX1,接收方在接收第4个同步信号块时使用的接收波束为RX2。
因此,发送方需要将同步信号块的序号发送给接收方,以便接收方根据同步信号块的序号进行波束选择。图2所示的NR-V2X通信系统中,终端设备201(即本申请所述的发送方UE)也可以向终端设备202(即本申请所述的接收方UE)发送同步信号块,但是目前还没有向终端设备202指示SSB time index的具体方案,也没有帮助接收方UE确定SSB time index的具体方案。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方可以直接向接收方发送特定的信息,指示同步信 号块的时域位置,接收方可以根据该信息确定同步信号块的序号,从而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。或者,发送方通过DMRS资源的映射方式和/或DMRS的序列隐式指示同步信号块。接收方解析出同步信号块中的DMRS,或者识别出DMRS的资源的映射方式,就可以确定发送方隐式指示的同步信号块的序号,而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
本申请实施例所述的通信装置,例如,第一终端装置或第二终端装置,可以通过图5中的通信装置50来实现。图5所示为本申请实施例提供的通信装置50的硬件结构示意图。该通信装置50包括处理器501、存储器502以及至少一个通信接口(图5中仅是示例性的以包括通信接口503为例进行说明)。其中,处理器501、存储器502以及通信接口503之间互相连接。
处理器501可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口503,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路502与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器502用于存储执行本申请方案的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器502中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置50可以包括多个处理器,例如图5中的处理器501和处理器506。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置50还可以包括输出设备504和输入设备505。输出设备504和处理器501通信,可以以多种方式来显示信息。例如,输出设备504可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting  diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备505和处理器501通信,可以以多种方式接收用户的输入。例如,输入设备505可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置50可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置50可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图5中类似结构的设备。本申请实施例不限定通信装置50的类型。
需要说明的是,通信装置50可以是终端装置整机,也可以是实现终端装置上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置50是终端装置整机时,通信接口可以是射频模块。当通信装置50为通信芯片,通信接口503可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
本申请实施例提供一种同步信号块序号的指示方法,如图6所示,所述方法包括以下步骤:
601、第二终端装置根据第一同步信号块的序号,确定第一同步信号块的时域位置。
具体实现中,第二终端设备在一个同步信号发送周期内重复发送同步信号块,例如,在第一同步信号块发送周期内重复发送第一同步信号,即第一同步信号块发送周期是第一同步信号块的发送周期。此外,还可以根据发送第一同步信号块的次序确定每一次发送的第一同步信号块的序号。示例的,第一同步信号块的序号为i,表示在第一同步信号块周期内第i次发送第一同步信号块。
以下结合第一同步信号块的不同发送模式详细介绍,第二终端装置如何根据第一同步信号块的序号确定第一同步信号块的时域位置:
第一、在集中发送模式下,第一同步信号块发送周期内的所有第一同步信号块在第一无线帧内完成发送。示例的,第一同步信号块发送周期内支持发送L次第一同步信号块,第二终端装置可以在第一无线帧内发送L次第一同步信号块。
一种可能的实现方式中,第二终端设备可以根据预配置的两个参数{offset、space}在第一同步信号块发送周期内发送第一同步信号块。其中,offset(偏移)指的是第一同步信号块发送周期内第一个发送的第一同步信号块的时域位置与第一同步信号块发送周期的时域起始位置之间间隔的时隙数;space(间隔)指的是第一同步信号块发送周期内相邻两次发送第一同步信号块之间间隔的时隙数。示例的,在第一同步信号块周期内第i次发送第一同步信号块、第i+1次发送第一同步信号块之间间隔的时隙数用space表示。其中,i是大于等于1的整数。
需要说明的是,相邻两次发送的第一同步信号块之间的时间间隔可以是相同的,或者,相邻两次发送的第一同步信号块之间的时间间隔不同。
具体实现中,第二终端装置还可以根据第一同步信号块的序号、offset、space来确定第一同步信号块的时域位置。具体地,第一同步信号块发送周期内第i次发送的第一同步信号块与第一次发送的同步信号块之间间隔的时隙数等于:
Figure PCTCN2019109757-appb-000019
Figure PCTCN2019109757-appb-000020
其中,w是第一同步信号块占用的时隙数,例如,时隙为时隙,w=1。因此,可以根据offset、space推算出第一同步信号块的时域位置。
在此模式下,第二终端装置确定的时域位置可以是:第一无线帧内发送第一同步 信号块的子帧,例如,所述第一无线帧内的第j个子帧。第一同步信号块的时域位置还可以是第一无线帧内发送第一同步信号块的时隙,例如,所述第j个子帧内的第k个时隙。其中,所述j或k为大于或等于1的整数。也就是说,可以根据所述i、offset、
Figure PCTCN2019109757-appb-000021
确定所述j、所述k。
示例的,参考图7,第一同步信号块发送周期内的所有第一同步信号块在无线帧3(即本申请实施例所述的第一无线帧)内完成发送。假设一个子帧包括两个时隙,offset为1个时隙,相邻两次发送间隔的space相同均为3个时隙,在无线帧3的第一个子帧(图7所示的子帧0)的第二个时隙上第一次发送第一同步信号块,在无线帧3的第三个子帧(图7所示的子帧2)的第二个时隙上第二次发送第一同步信号块,在无线帧3的第五个子帧(图7所示的子帧4)的第二个时隙上第三次发送第一同步信号块,以此类推。
参考图7,序号为1的第一同步信号块(第一次发送的第一同步信号块)的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”,即序号为1的第一同步信号块对应的j=1,k=2。
序号为2的第一同步信号块(第二次发送的第一同步信号块)的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,即序号为2的第一同步信号块对应的j=3,k=2。
序号为3的第一同步信号块(第三次发送的第一同步信号块)的时域位置为“第一无线帧内的第5个子帧、所述第5个子帧的第2个时隙”,即序号为3的第一同步信号块对应的j=5,k=2。
第二、在离散发送模式下,第一同步信号块发送周期内的所有第一同步信号块在至少两个无线帧内完成发送。示例的,第一同步信号块发送周期内支持发送L次第一同步信号块,第二终端装置可以在所述至少两个无线帧内发送L次第一同步信号块。
具体地,假设第一同步信号块发送周期内内发送的所有第一同步信号块映射在H个无线帧中,其中第h个无线帧内发送的第一同步信号块次数记为L(h),某个无线帧内第t个子帧之前发送的第一同步信号块的总数量为K(t)。在第一终端装置、第二终端装置预先配置了一个无线帧映射表、H个子帧映射表,无线帧映射表记录了H个无线帧中每个无线帧内发送的第一同步信号块的数量,子帧映射表记录了所述H个无线帧内一个无线帧内发送某个子帧内第一同步信号块的子帧是该无线帧内第几次发送的第一同步信号块。如下表1是无线帧映射表的一种可能实现,表2可以是子帧映射表的一种可能实现。
表1
h 1 2 H
L(h) X 1 X 2   X H
表2
t 1 2 10
K(t) Y 1 Y 2   Y 10
参考表1,X 1是H个无线帧中第一个无线帧内发送第一同步信号块的数量(次数),X 2是H个无线帧中第二个无线帧内发送第一同步信号块的数量(次数),依次类推。第二终端装置可以根据表1确定所有第一同步信号块映射在H个无线帧中,以及所述H个无线帧内每个无线帧发送第一同步信号块的数量(次数)。
需要说明的是,H个子帧映射表与H个无线帧一一对应。Y 1指的是一个无线帧内第一个子帧(例如,子帧0)是第Y 1次发送第一同步信号块的子帧,Y 2指该无线帧内第2个子帧(例如,子帧1)是该无线帧内第Y 2次发送第一同步信号块的子帧,依次类推。其中Y 1+Y 2….+Y 10等于表2对应的无线帧内发送第一同步信号块的总数量。假设上述表2是H个无线帧中第二个无线帧对应的子帧映射表,则Y 1+Y 2….+Y 10=X 2。第二终端装置可以根据表2完成第一同步信号块在某个无线帧内的发送。
具体地,第二终端装置根据第一同步信号块的序号查询上述无线帧映射表、子帧映射表确定序号为i的第一同步信号块的时域位置。一种可能的实现方式中,根据所述i、L(x)确定所述h,根据所述i、所述
Figure PCTCN2019109757-appb-000022
确定K(t),根据K(t)确定所述t;
查询表1,从x=1开始,依次比较L(x)与所述h的大小,确定序号为i的第一同步信号块映射在所述H个无线帧内哪个无线帧。例如,i=5,L(1)=2,L(2)=4,L(1)小于5且L(1)+L(2)大于5,因此序号5的第一同步信号块映射在所述H个无线帧内第二个无线帧。
Figure PCTCN2019109757-appb-000023
减去所述i得到K(t),根据K(t)查询表2确定子帧号t。
在离散发送模式下,第二终端设备确定的第一同步信号块的时域位置可以是所述至少两个无线帧内发送第一同步信号块的无线帧,例如,所述至少两个无线帧内的第h个无线帧。第一同步信号块的时域位置还可以是所述第h个无线帧内发送第一同步信号块的子帧,例如,所述第h个无线帧内的第t个子帧。其中,h或t为大于等于1的整数。其中,第t个子帧指的是针对第h个无线帧内的第t个子帧,示例的,第h个无线帧内子帧号0的子帧是第1个子帧,第h个无线帧内子帧号1的子帧是第2个子帧。
示例的,参考图8,第一同步信号块发送周期内共发送3次第一同步信号块,且在2个无线帧(分别为无线帧1和无线帧2)完成发送。假设表3为H=2时的无线帧映射表,表4为无线帧1(第一个映射第一同步信号块的无线帧)对应的具体的子帧映射表,表5为无线帧2(第二个映射第一同步信号块的无线帧)对应的具体的子帧映射表。
表3
h 1 2
L(h) 1 2
表4
t 1 2 10
K(t) 1 0   0
表5
t 1 2 10
K(t) 1 0 2
参考表1可知,L(1)=1,L(2)=2,即所述3个无线帧内第一个无线帧内发送1次第一同步信号块,所述3个无线帧内第二个无线帧发送2次第一同步信号块。查询无线帧1对应的子表2可知,在无线帧1的第三个子帧(图8所示无线帧1的子帧2)内第一次发送第一同步信号块。查询无线帧1对应的子表2可知,在无线帧2的第一个子帧(图8所示无线帧2的子帧0)内第二次发送第一同步信号块,在无线帧2的第10个子帧(图8所示无线帧2的子帧9)内第三次发送第一同步信号块。
参考图8,序号为1的第一同步信号块(第一次发送的第一同步信号块)的时域位置为“发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”,即序号为1的第一同步信号块对应的h=1,t=3。
序号为2的第一同步信号块(第二次发送的第一同步信号块)的时域位置为“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”,即序号为2的第一同步信号块对应的h=2,t=1。
序号为3的第一同步信号块(第三次发送的第一同步信号块)的时域位置为“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第二个无线帧内的第10个子帧”,即序号为3的第一同步信号块对应的h=2,t=10。
示例的,当第二终端装置确定第一同步信号块的序号为3,由于L(1)=1小于3,且L(1)+L(2)=3,因此,序号为3的第一同步信号块是第二个无线帧内映射的第一同步信号块,即h=2。此外,3-L(1)=2,即K(t)=2,查询表5可知t=10。
602、所述第二终端装置根据第一同步信号块的时域位置确定第一资源和/或第一DMRS。
602、所述第二终端装置根据第一同步信号块的时域位置确定第一资源和/或第一DMRS。
需要说明的是,第一资源是承载所述第一DMRS的资源,本申请实施例中还可以称为DMRS资源。第二终端装置可以根据第一资源的映射模式、DMRS来指示不同的时域位置。其中,第一资源的映射模式指的是第一资源的时频位置,不同的映射模式中第一资源占用的时频位置不同。示例的,参考图9,第一资源可以是承载DMRS的3个资源元(resource element,RE),图9示出了第一资源的四种映射模式,分别为映射模式1、映射模式2、映射模式3以及映射模式4。
具体实现中,第二终端装置可以根据如下三种方式来指示第一同步信号块的时域位置。
第一种、根据第一资源的映射模式隐式指示第一同步信号块的时域位置。
例如,第一资源共有Y种映射模式,可以指示Y个不同的时域位置,一个映射模式关联一个时域位置。例如,第i映射模式与序号为i的第一同步信号块的时域位置相关联,即第i种映射模式隐含指示序号为i的第一同步信号块的时域位置。当第二终端装置发送第一同步信号块时使用第i种映射模式映射第一资源,隐含指示第一同步信号块的时域位置为第i种映射模式关联的时域位置。
示例的,第一资源共有图9所示的四种映射模式,映射模式1、映射模式2、映射模式3以及映射模式4分别指示不同的时域位置。
假设第二终端装置参考图7发送第一同步信号块,映射模式1指示的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”,当第二终端第1次发送第一同步信号块时,使用映射模式1映射第一资源,隐含指示了“序号为1的第一同步信号块的时域位置为:第1个子帧、第1个子帧的第2个时隙”。
另外,假设映射模式1指示的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,当第二终端第2次发送第一同步信号块时,使用映射模式2映射第一资源,隐含指示了“序号为2的第一同步信号块的时域位置为:第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”。
假设第二终端装置参考图8发送第一同步信号块,映射模式1指示的时域位置为“发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”,当第二终端第1次发送第一同步信号块时,使用映射模式1映射第一资源,隐含指示了“序号为1的第一同步信号块的时域位置为:发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”。
假设映射模式2指示的时域位置为“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”,当第二终端第2次发送第一同步信号块时,使用映射模式2映射第一资源,隐含指示了“序号为2的第一同步信号块的时域位置为:发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”。
第二种、根据DMRS隐式指示第一同步信号块的时域位置。
假设共配置了多个不同的DMRS,隐含指示多个不同的时域位置。示例的,M个不同的DMRS可以指示M个不同的时域位置,一个DMRS关联一个时域位置。
假设第二终端装置参考图7发送第一同步信号块,DMRS1指示的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”,当第二终端第1次发送第一同步信号块时,第一同步信号块包括DMRS1,隐含指示了“序号为1的第一同步信号块的时域位置为:第1个子帧、第1个子帧的第2个时隙”。
另外,假设DMRS2指示的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,当第二终端第2次发送第一同步信号块时,第一同步信号块包括DMRS2,隐含指示了“序号为2的第一同步信号块的时域位置为:第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”。
假设第二终端装置参考图8发送第一同步信号块,DMRS1指示的时域位置为“发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”,当第二终端第1次发送第一同步信号块时,第一同步信号块包括DMRS1,隐含指示了“序号为1的第一同步信号块的时域位置为:发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”。
假设DMRS2指示的时域位置为“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”,当第二终端第2次发送第一同步信号块时,第一同步信号块包括DMRS2,隐含指示了“序号为2的第一同步信号块的时 域位置为:发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”。
第三种、根据第一资源的映射模式、DMRS隐式指示第一同步信号块的时域位置。
例如,第一资源共有Y种映射模式、共配置了M个DMRS。映射模式和DMRS共有Y×M种不同的组合方式,可以指示Y×M种不同的时域位置。示例的,共配置了DMRS1、DMRS2两个序列,第一资源可以有图9所示的四种映射模式,根据第一资源的映射模式、DMRS可以指示8种不同的时域位置。
假设第二终端装置参考图7发送第一同步信号块,DMRS1、映射模式1指示的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”,当第二终端第1次发送第一同步信号块时,第一同步信号块包括DMRS1,且使用映射模式1映射DMRS1的资源,隐含指示了“序号为1的第一同步信号块的时域位置为:第1个子帧、第1个子帧的第2个时隙”。
另外,假设DMRS2、映射模式2共同指示时域位置:“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,当第二终端第2次发送第一同步信号块时,第一同步信号块包括DMRS2,且使用映射模式2映射DMRS2的资源,隐含指示了“序号为2的第一同步信号块的时域位置为:第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”。
假设第二终端装置参考图8发送第一同步信号块,DMRS1、映射模式1共同指示时域位置:“发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”,当第二终端第1次发送第一同步信号块时,第一同步信号块包括DMRS1,且使用映射模式1映射DMRS1的资源,隐含指示了“序号为1的第一同步信号块的时域位置为:发送第一同步信号块的至少两个无线帧中的第1个无线帧、所述第1个无线帧中的第三个子帧”。
假设DMRS2、映射模式2共同指示时域位置:“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”,当第二终端第2次发送第一同步信号块时,第一同步信号块包括DMRS2,且使用映射模式2映射DMRS2的资源,隐含指示了“序号为2的第一同步信号块的时域位置为:发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第1个子帧”。
综上,第二终端装置可以根据第一同步信号块的时域位置来选择第一同步信号块中的DMRS(即本申请实施例中的第一DMRS),也可以根据第一同步信号块的时域位置来选择DMRS资源的映射模式,也可以根据第一同步信号块的时域位置来选择第一同步信号块中的DMRS以及DMRS资源的映射模式。
603、所述第二终端装置在第一资源上向第一终端装置发送第一DMRS。
具体实现中,第二终端装置在第一资源和/或第一DMRS指示的时域位置上发送第一同步信号块。第一同步信号块包括第一PSBCH,第一PSBCH包括第一DMRS,第一DMRS通过第一资源发送。
604、第一终端装置在第一资源上接收第一DMRS,根据第一资源和/或第一DMRS确定第一同步信号块的时域位置。
需要说明的是,由于第一资源的映射模式、DMRS可以隐式指示不同的时域位置, 因此可以根据第一资源和/或第一DMRS确定第一同步信号块的时域位置。具体地,可以通过如下三种方式确定第一同步信号块的时域位置:
第一种、第一资源的映射模式隐式指示时域位置,当第一终端装置确定第一同步信号块中的第一资源的映射模式,就可以确定第一同步信号块的时域位置。
示例的,假设第二终端装置参考图7发送第一同步信号块,且图9所示的映射模式1指示的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。当第一终端装置识别第一资源的映射模式是映射模式1,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
另外,假设第二终端装置参考图7发送第一同步信号块,且图9所示的映射模式2指示的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,当第一终端装置识别第一资源的映射模式是映射模式2,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
第二种、DMRS隐式指示时域位置,当第一终端装置识别出第一同步信号块中的DMRS,就可以确定第一同步信号块的时域位置。
示例的,假设第二终端装置参考图7发送第一同步信号块,且定义了DMRS1、DMRS2两个序列,其中,DMRS1指示的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。当第一终端装置在第一同步信号块中解析出DMRS1,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
另外,假设第二终端装置参考图7发送第一同步信号块,且定义了DMRS1、DMRS2两个序列,其中,DMRS2指示的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,当第一终端装置在第一同步信号块中解析出DMRS2,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
第三种、结合DMRS、第一资源的映射模式来隐式指示时域位置,当第一终端装置解析出第一同步信号块中的DMRS、识别DMRS的映射模式,就可以确定第一同步信号块的时域位置。
示例的,假设第二终端装置参考图7发送第一同步信号块,定义了DMRS1、DMRS2两个序列。其中,图9所示的映射模式1、DMRS1共同指示时域位置:第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙。当第一终端装置在第一同步信号块中解析出DMRS1,且识别出DMRS1的资源是映射模式1映射的,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
另外,示例的,假设第二终端装置参考图7发送第一同步信号块,定义了DMRS1、DMRS2两个序列。其中,图9所示的映射模式2、DMRS2共同指示时域位置:第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙,当第一终端装置在第一同步信号块中解析出DMRS2,且识别出DMRS2的资源是使用映射模式2映射的,则确定第一同步信号块的时域位置为“第一无线帧内的第1个子帧、所述第1个子帧的第2个时隙”。
605、第一终端装置根据第一同步信号块的时域位置确定第一同步信号块的序号。
具体实现中,第二终端装置发送第一同步信号块的模式不同,DMRS资源映射模式、DMRS隐式指示的时域位置也不同,具体参考前文描述,在此不做赘述。
当第二终端装置在集中发送模式下发送第一同步信号块,即第一同步信号块发送周期内的所有第一同步信号块在第一无线帧内完成发送。第一终端装置在步骤404中根据第一资源和/或第一DMRS确定的第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙。
一种可能的实现方式中,第一终端装置可以将上述j、k代入以下公式(1)确定所述第一同步信号块的序号i:
Figure PCTCN2019109757-appb-000024
其中,offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时域位置之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数,m=SCS/15,其中,SCS是第一终端装置和第二终端装置之间的通信带宽的子载波间隔。
需要说明的是,所述第一同步信号块发送周期内相邻两次发送第一同步信号块之间的时间间隔相同,公式(1)可以转化为以下公式(2):
(j-1)·m+k=offset+(i-1)·space+i          (2)。
示例的,假设第二终端装置参考图7发送第一同步信号块,第一终端设备根据第一资源和/或第一DMRS确定的时域位置为“第一无线帧内的第3个子帧、所述第3个子帧的第2个时隙”,即j=3,k=2。以时隙为时隙作为示例,图7所示的方式中,offset=1,space=3,w=1,m=2,将j=3,k=2,offset=1,space=3,w=1,m=2代入上述公式(2),计算得出i=2。即第一终端设备本次接收到的第一同步信号块是第一同步信号块发送周期内第2次发送的第一同步信号块。
当第二终端装置在离散发送模式下发送第一同步信号块,即第一同步信号块发送周期内的所有第一同步信号块在至少两个无线帧内完成发送。第一终端装置在步骤404中根据第一资源和/或第一DMRS确定的第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧。
一种可能的实现方式中,可以将上述h、t代入以下公式(3)确定所述第一同步信号块的序号i:
Figure PCTCN2019109757-appb-000025
其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)指示所述第h个无线帧内第t个子帧是所述第h个无线帧内第K(t)个发送第一同步信号块的子帧,即K(t)为第h个无线帧内截止第t个子帧发送的第一同步信号块的数量(次数)。需要说明的是,当在离散发送模式下第一终端装置也预先配置了无线帧映射表、{offset、space},子帧映射 表,第一终端装置可以根据第二终端设备指示的h查询表1所示的无线帧映射表,确定L(s),根据t查询表2所示的子帧映射表K(t)。也就是说,当第二终端设备确定了h、t之后,可以确定k(1)、k(2)...k(h-1),从而代入公式(3)确定第一同步信号块的序号i。
示例的,假设第二终端装置参考图8发送第一同步信号块,第一终端设备根据第一资源和/或第一DMRS确定的时域位置为“发送第一同步信号块的至少两个无线帧中的第2个无线帧、所述第2个无线帧内的第10个子帧”,即h=2,t=10。第一终端装置查询表3可知,L(1)=1,K(10)=2,因此序号i=3。
可选的,采用上述集中发送模式时,第二终端装置发送的第一同步信号块的PSBCH携带的信息可以指示第一同步信号块是第一无线帧中的第几个子帧,例如,PSBCH携带的信息可以指示上述j。通过DMRS资源和/或DMRS的序列隐式指示第一同步信号块映射在哪个时隙,例如,可以隐式指示上述k。具体指示方式参考前文,在此不做赘述。
可选的,采用上述离散发送模式时,第二终端装置发送的第一同步信号块的PSBCH携带的信息可以指示第一同步信号块是映射该第一同步信号块子帧号,例如,PSBCH携带的信息可以指示上述t。通过DMRS资源和/或DMRS的序列隐式指示该第一同步信号块是映射所有第一同步信号块的至少两个无线帧中的哪个无线帧,例如,可以隐式指示上述h。具体指示方式参考前文,在此不做赘述。
可选的,DMRS资源和/或DMRS的序列隐式指示第一同步信号块的序号。具体地,第二终端装置根据第一同步信号块的序号确定与该序号关联的第一资源和/或第一DMRS,在第一资源上向第一终端装置发送第一DMRS。其中,第一DMRS包含于第一PBSCH,第一同步信号块包括第一PBSCH。第一终端装置在第一资源上接收第一DMRS,可以确定第一同步信号块的序号为第一资源和/或第一DMRS关联的序号。
示例的,第一资源共有Y种映射模式,可以指示Y个不同的序号,一种映射模式关联一个序号。当第一终端装置从第二终端装置接收第一同步信号块,识别出第一同步信号块的第一PSBCH中的DMRS资源的映射模式为第i种映射模式,则可以确定第一同步信号块的序号为i。
或者,共配置了M个DMRS,可以指示M个不同的序号,一个DMRS关联一个序号。当第一终端装置从第二终端装置接收第一同步信号块,识别出第一同步信号块的第一PSBCH中的DMRS,则可以确定第一同步信号块的序号为该DMRS关联的序号。
或者,第一资源共有Y种映射模式、共配置了M个DMRS。映射模式和DMRS共有Y×M种不同的组合方式,可以指示Y×M个不同的序号,其中一种配置方式和一个DMRS的组合关联一个序号。示例的,共配置了DMRS1、DMRS2两个序列,第一资源可以有图9所示的四种映射模式,根据第一资源的映射模式、DMRS可以指示8种不同的序号。假设DMRS1、映射模式1共同指示序号0,DMRS1、映射模式2共同指示序号1,DMRS1、映射模式3共同指示序号2,DMRS1、映射模式4共同指示序号3,DMRS2、映射模式1共同指示序号4,DMRS2、映射模式2共同指示序号5,DMRS2、映射模式3共同指示序号6,DMRS2、映射模式4共同指示序号7。当第一 终端装置从第二终端装置接收第一同步信号块,从第一同步信号块的第一PSBCH中解析出DMRS2,且识别出DMRS2的资源的映射模式为映射模式3,则可以确定第一同步信号块的序号为该DMRS关联的序号。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方通过DMRS资源的映射方式和/或DMRS的序列隐式指示同步信号块。接收方解析出同步信号块中的DMRS,或者识别出DMRS的资源的映射方式,就可以确定发送方隐式指示的同步信号块的序号,而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
本申请实施例还提供一种同步信号块序号的指示方法,如图10所示,所述方法包括以下步骤:
1001、第二终端装置根据第一同步信号块的序号确定第一同步信号块的时域位置。
第二终端装置根据第一同步信号块的序号确定第一同步信号块的时域位置的具体实现方式参考前文步骤601的相关描述,在此不做赘述。
1002、第二终端装置向第一终端装置发送第一信息;所述第一信息用于指示第一同步信号块的时域位置,所述第一同步信号块包括第一PSBCH,所述第一PSBCH包括所述第一信息。
具体地,第一终端装置可以根据第一同步信号块的时域位置确定第一信息,并将第一信息映射在第一PSBCH中。
在集中发送模式下,第一同步信号块发送周期内所有第一信号块在第一无线帧内完成发送,第一同步信号块的时域位置可以是“第一无线帧内发送第一同步信号块的第j个子帧、所述第j个子帧内发送第一同步信号块的第k个时隙”。具体实现中,第一同步信号块的第一PSBCH的payload包括两个字段:第一字段、第二字段,其中第一字段用于指示“j”,第二字段用于指示“k”。
在离散发送模式下,第一同步信号块发送周期内所有第一信号块在至少两个无线帧内完成发送,第一同步信号块的时域位置可以是“所述至少两个无线帧内发送第一同步信号块的第h个无线帧、所述第h个无线帧内发送第一同步信号块的第t个子帧”。具体实现中,第一同步信号块的第一PSBCH的payload包括两个字段:第三字段、第四字段,其中第三字段用于指示“h”,第四字段用于指示“t”。
此外,第二终端装置向第一终端装置发送S-SSB,S-SSB包括S-SSS、S-PSS、PSBCH。其中,PSBCH可以包括解调参考信号(demodulation reference signal,DMRS)和payload(载荷)。payload还可以称为广播信息。
示例的,第二终端装置可以向第一终端装置发送第一同步信号块,所述第一同步信号块包括第一PSBCH,第一PSBCH包括所述第一信息。
一种可能的实现方式中,所述第一信息包含在所述第一PSBCH的广播信息中。也就是说,第一终端装置可以将第一信息直接携带在第一同步信号块中,显示指示给第二终端装置。
1003、第一终端装置从第二终端装置接收第一信息,根据第一信息确定第一同步信号块的时域位置。
具体地,第一终端装置接收第二终端装置发送的S-SSB,S-SSB包括S-SSS、S-PSS、 第一PSBCH。其中,第一PSBCH的payload包括第一信息。
示例的,第一终端装置可以在第一PSBCH的payload中解析出第一字段,根据第一字段确定第一同步信号块的时域位置包括:第一无线帧内发送第一同步信号块的第j个子帧。还可以在第一PSBCH的payload中解析出第二字段,根据第一字段确定第一同步信号块的时域位置包括:所述第j个子帧内发送第一同步信号块的第k个时隙。
或者,第一终端装置可以在第一PSBCH的payload中解析出第三字段,根据第三字段确定第一同步信号块的时域位置包括:所述至少两个无线帧内发送第一同步信号块的第h个无线帧。还可以在第一PSBCH的payload中解析出第四字段,根据第四字段确定第一同步信号块的时域位置包括:所述第h个无线帧内发送第一同步信号块的第t个子帧。
1004、第一终端装置根据第一信息确定所述第一同步信号块的序号;所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块。
第一终端装置根据第一信息确定所述第一同步信号块的序号的具体实现方式参考前文步骤605的相关描述,在此不做赘述。
本申请实施例提供了NR-V2X中指示同步信号块时间索引(即同步信号块的序号)的具体方案。在侧行链路上,发送方可以直接向接收方发送特定的信息,指示同步信号块的时域位置,接收方可以根据该信息确定同步信号块的序号,从而确定同步信号块对应的接收波束,通过该接收波束接收同步信号块。
在采用对应各个功能划分各个功能模块的情况下,图11示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图11所示的通信装置可以是本申请实施例所述的第一终端装置或第二终端装置,也可以是第一终端装置或第二终端装置中实现上述方法的部件。如图11所示,通信装置包括处理单元1101以及收发单元1102。处理单元可以是一个或多个处理器,收发单元1102可以是收发器。
当所述通信装置为第二终端装置,收发单元1102,用于从第一终端装置接收第一同步信号块,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述第一DMRS是在第一资源上接收的。收发单元1102也可以由发送单元或者接收单元替代。例如,收发单元1102在执行发送的动作时,可以由发送单元替代。收发单元1100执行接收的动作时,可以由接收单元替代。收发单元1102可以为收发器。收发器可以由接收器或发射器代替。例如,收发器在执行发送的动作时,可以由发送器替代。收发器执行接收的动作时,可以由接收器替代。
处理单元1101,用于根据所述第一资源和/或所述第一DMRS确定所述第一同步信号块的时域位置;根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;所述i为大于等于1的整数。处理单元1101可以为处理装置或处理器。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
处理单元1101具体用于:根据
Figure PCTCN2019109757-appb-000026
确定所述第一同步信号块的序号i。
其中,offset为所述第一同步信号发送周期内第一次发送所述第一同步信号块的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
处理单元1101具体用于:根据
Figure PCTCN2019109757-appb-000027
确定所述第一同步信号块的序号i。
其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
处理单元1101具体用于:根据所述第一资源的第i映射方式确定所述第一同步信号块的时域位置,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
根据所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
根据所述第一资源的第i映射模式和所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关联。
当所述通信装置为第一终端装置,处理单元1101用于,根据第一同步信号块的序号确定所述第一同步信号块的时域位置,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块。
所述处理单元1101,还用于根据所述第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,所述第一资源用于发送第一解调参考信号DMRS。
收发单元1102,用于在所述第一资源上向第二终端装置发送所述第一解调参考信号DMRS。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送。
所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
所述处理单元1101具体用于,根据所述i、offset、
Figure PCTCN2019109757-appb-000028
确定所述j、所述k;
其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
所述处理单元1101具体用于,根据所述i、L(x)确定所述h,根据所述i、所述
Figure PCTCN2019109757-appb-000029
确定K(t),根据K(t)确定所述t。
其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
所述处理单元1101具体用于,根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
根据所述第一同步信号块的时域位置确定所述第一DMRS,所述第一DMRS属于至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式和所述第一DMRS,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关联。
一种可能的实现方式中,图11所示的通信装置也可以是应用于终端装置中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1102可以是该装置的一种接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该收发单元1102是该芯片的接口电路,该接口电路用于读入或输出基带信号。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图12所示。在图12中,该通信装置包括:处理模块1201和通信模块1202。处理模块1201用于对通信装置的动作进行控制管理,例如,执行上述处理单元1201执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1202用于执行上述收发单元1202执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图12所示,通信装置还可以包括存储模块1203,存储模块1203用于存储通信装置的程序代码和数据。
当处理模块1201为处理器,通信模块1202为收发器,存储模块1203为存储器时,通信装置为图5所示的通信装置。
如图13所示,是本申请实施例提供的另一通信装置,可以是本申请实施例所述的第一终端装置和第二终端装置。参考图13,包括处理单元1301以及收发单元1302。处理单元可以是一个或多个处理器,收发单元1302可以是收发器。
收发单元1302,用于从第一终端装置接收第一信息,所述第一信息用于指示第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息。
处理单元1301,用于根据所述第一信息确定所述第一同步信号块的序号;所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙;所述j或k为大于或等于1的整数。
处理单元1301具体用于:所述第一终端根据所述第一信息所述第一同步信号块的序号,包括:根据
Figure PCTCN2019109757-appb-000030
确定所述第一同步信号块的序号i。
其中,offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧;所述h或t为大于或等于1的整数。
处理单元1301具体用于:所述根据所述第一信息确定所述第一同步信号块的序号,包括:
根据
Figure PCTCN2019109757-appb-000031
确定所述第一同步信号块的序号i;其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
当所述通信装置为第一终端装置,处理单元1301用于,用于根据第一同步信号块的序号确定第一信息,所述第一信息用于指示所述第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息,所述序号指示i,所述i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数。
收发单元1302,用于向第二终端装置发送所述第一信息。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙。
所述处理单元1301具体用于,根据所述i、offset、
Figure PCTCN2019109757-appb-000032
确定所述j、所述k,根据所述j、所述k确定所述第一信息。
其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
一种可能的实现方式中,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧。
所述处理单元1301具体用于,根据所述i、L(x)确定所述h,根据所述i、所述
Figure PCTCN2019109757-appb-000033
确定K(t),根据K(t)确定所述t;根据所述s、所述t确定所述第一信息。
其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
一种可能的实现方式中,图13所示的通信装置也可以是应用于终端装置中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1302可以是该装置的一种接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该收发单元1302是该芯片的接口电路,该接口电路用于读入或输出基带信号。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图14所示。在图14中,该通信装置包括:处理模块1401和通信模块1402。处理模块1401用于对通信装置的动作进行控制管理,例如,执行上述处理单元1401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1402用于执行上述收发单元1402执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图14所示,通信装置还可以包括存储模块1403,存储模块1403用于存储通信装置的程序代码和数据。
当处理模块1401为处理器,通信模块1402为收发器,存储模块1403为存储器时,通信装置为图5所示的通信装置。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种同步信号块序号的指示方法,其特征在于,
    从第一终端装置接收第一同步信号块,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述第一DMRS是在第一资源上接收的;
    根据所述第一资源和/或所述第一DMRS确定所述第一同步信号块的时域位置;
    根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;所述i为大于等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,包括:
    根据
    Figure PCTCN2019109757-appb-100001
    确定所述第一同步信号块的序号i;
    其中,offset为所述第一同步信号发送周期内第一次发送所述第一同步信号块的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
  4. 根据权利要求1所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,包括:
    根据
    Figure PCTCN2019109757-appb-100002
    确定所述第一同步信号块的序号i;
    其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述根据所述第一资源和/或所述第一DMRS确定所述第一同步信号块的时域位置,包括:
    根据所述第一资源的第i映射方式确定所述第一同步信号块的时域位置,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
    根据所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
    根据所述第一资源的第i映射模式和所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关联。
  7. 一种同步信号块序号的指示方法,其特征在于,包括:
    根据第一同步信号块的序号确定所述第一同步信号块的时域位置,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;
    根据所述第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,所述第一资源用于发送第一解调参考信号DMRS;
    在所述第一资源上向第二终端装置发送所述第一解调参考信号DMRS。
  8. 根据权利要求7所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据第一同步信号块的序号确定所述第一同步信号块的时域位置,包括:
    根据所述i、
    Figure PCTCN2019109757-appb-100003
    确定所述j、所述k;
    其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
  10. 根据权利要求7所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
  11. 根据权利要求10所述的方法,其特征在于,所述根据第一同步信号块的序号确定所述第一同步信号块的时域位置,包括:
    根据所述i、L(x)确定所述h,根据所述i、所述
    Figure PCTCN2019109757-appb-100004
    确定K(t),根据K(t)确定所述t;
    其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为 第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  12. 根据权利要求7-11任意一项所述的方法,其特征在于,所述根据所述第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,包括:
    根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
    根据所述第一同步信号块的时域位置确定所述第一DMRS,所述第一DMRS属于至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
    根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式和所述第一DMRS,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关联。
  13. 一种同步信号块序号的指示方法,其特征在于,包括:
    从第一终端装置接收第一信息,所述第一信息用于指示第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息;
    根据所述第一信息确定所述第一同步信号块的序号;所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙;所述j或k为大于或等于1的整数。
  15. 根据权利要求14所述的方法,其特征在于,所述第一终端根据所述第一信息所述第一同步信号块的序号,包括:
    根据
    Figure PCTCN2019109757-appb-100005
    确定所述第一同步信号块的序号i;
    其中,offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
  16. 根据权利要求13所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧;所述h或t为大于或等于1的整数。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述第一信息确定所述第一同步信号块的序号,包括:
    根据
    Figure PCTCN2019109757-appb-100006
    确定所述第一同步信号块的序号i;
    其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  18. 一种同步信号块序号的指示方法,其特征在于,包括:
    根据第一同步信号块的序号确定第一信息,所述第一信息用于指示所述第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息,所述序号指示i,所述i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数;
    向第二终端装置发送所述第一信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙。
  20. 根据权利要求19所述的方法,其特征在于,所述根据第一同步信号块的序号确定第一信息,包括:
    根据所述i、
    Figure PCTCN2019109757-appb-100007
    确定所述j、所述k,根据所述j、所述k确定所述第一信息
    其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
  21. 根据权利要求18所述的方法,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧。
  22. 根据权利要求21所述的方法,其特征在于,所述根据第一同步信号块的序号确定第一信息,包括:
    根据所述i、L(x)确定所述h,根据所述i、所述
    Figure PCTCN2019109757-appb-100008
    确定K(t),根据K(t)确定所述t;根据所述s、所述t确定所述第一信息;
    其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  23. 一种第二终端装置,其特征在于,包括:
    收发单元,用于从第一终端装置接收第一同步信号块,所述第一同步信号块包括 第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述第一DMRS是在第一资源上接收的;
    处理单元,用于根据所述第一资源和/或所述第一DMRS确定所述第一同步信号块的时域位置;
    所述处理单元,还用于根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;所述i为大于等于1的整数。
  24. 根据权利要求23所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元具体用于,
    根据
    Figure PCTCN2019109757-appb-100009
    确定所述第一同步信号块的序号i;
    其中,offset为所述第一同步信号发送周期内第一次发送所述第一同步信号块的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
  26. 根据权利要求23所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于,
    根据
    Figure PCTCN2019109757-appb-100010
    确定所述第一同步信号块的序号i;
    其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,所述处理单元具体用于,根据所述第一资源的第i映射方式确定所述第一同步信号块的时域位置,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
    根据所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
    根据所述第一资源的第i映射模式和所述第一DMRS确定所述第一同步信号块的时域位置,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关 联。
  29. 一种第一终端装置,其特征在于,包括:
    处理单元,用于根据第一同步信号块的序号确定所述第一同步信号块的时域位置,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;
    所述处理单元,还用于根据所述第一同步信号块的时域位置确定第一资源和第一解调参考信号DMRS,所述第一资源用于发送第一解调参考信号DMRS;
    收发单元,用于在所述第一资源上向第二终端装置发送所述第一解调参考信号DMRS。
  30. 根据权利要求29所述的装置,其特征在于,包括:所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙,所述j或k为大于或等于1的整数。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于,根据所述i、offset、
    Figure PCTCN2019109757-appb-100011
    确定所述j、所述k;
    其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
  32. 根据权利要求29所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内发送所述第一同步信号块的第t个子帧;所述h或t为大于等于1的整数。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于,根据所述i、L(x)确定所述h,根据所述i、所述
    Figure PCTCN2019109757-appb-100012
    确定K(t),根据K(t)确定所述t;
    其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  34. [根据细则91更正 30.10.2019]
    根据权利要求29-33任一项所述的装置,其特征在于,所述处理单元具体用于,
    根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式,所述第i映射模式属于至少一个映射模式,所述第i映射模式与所述第一同步信号块的时域位置相关联;或,
    根据所述第一同步信号块的时域位置确定所述第一DMRS,所述第一DMRS属于 至少一个DMRS,所述第一DMRS与所述第一同步信号块的时域位置相关联;或,
    根据所述第一同步信号块的时域位置确定所述第一资源的第i映射模式和所述第一DMRS,所述第一DMRS属于至少一个DMRS,所述第i映射模式属于至少一个映射模式,所述第i映射模式和所述第一DMRS与所述第一同步信号块的时域位置相关联。
  35. 一种第二终端装置,其特征在于,包括:
    收发单元,用于从第一终端装置接收第一信息,所述第一信息用于指示第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息;
    处理单元,用于根据所述第一信息确定所述第一同步信号块的序号;所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数。
  36. 根据权利要求35所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙;所述j或k为大于或等于1的整数。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元具体用于,
    根据
    Figure PCTCN2019109757-appb-100013
    确定所述第一同步信号块的序号i;
    其中,offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数,m为一个子帧内包括的时隙数。
  38. 根据权利要求35所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧;所述h或t为大于或等于1的整数。
  39. 根据权利要求38所述的装置,其特征在于,所述处理单元具体用于,
    根据
    Figure PCTCN2019109757-appb-100014
    确定所述第一同步信号块的序号i;
    其中,s为大于等于1小于等于h-1的整数,L(s)为所述至少两个无线帧中第s个无线帧内发送的所述第一同步信号块的数量,K(t)为所述第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  40. 一种第一终端装置,其特征在于,包括:
    处理单元,用于根据第一同步信号块的序号确定第一信息,所述第一信息用于指示所述第一同步信号块的时域位置;所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括所述第一信息,所述序号指示i,所述i表示在第 一同步信号块发送周期内第i次发送所述第一同步信号块,所述i为大于等于1的整数;
    收发单元,用于向第二终端装置发送所述第一信息。
  41. 根据权利要求40所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在第一无线帧内完成发送,
    所述第一同步信号块的时域位置包括:所述第一无线帧内、发送所述第一同步信号块的第j个子帧,所述第j个子帧内发送所述第一同步信号块的第k个时隙。
  42. 根据权利要求41所述的装置,其特征在于,所述处理单元具体用于,
    根据所述i、
    Figure PCTCN2019109757-appb-100015
    确定所述j、所述k,根据所述j、所述k确定所述第一信息
    其中,所述offset为所述第一同步信号发送周期内发送的第一个同步信号块映射的时隙与所述第一无线帧的起始时隙之间间隔的时隙数,space(z)为所述第一同步信号块发送周期内第z次发送所述第一同步信号块与第z+1次发送所述第一同步信号块之间间隔的时隙数。
  43. 根据权利要求40所述的装置,其特征在于,所述第一同步信号块发送周期内的所述第一同步信号块在至少两个无线帧内完成发送;
    所述第一同步信号块的时域位置包括:所述至少两个无线帧内、发送所述第一同步信号块的第h个无线帧,所述第h个无线帧内、发送所述第一同步信号块的第t个子帧。
  44. 根据权利要求43所述的装置,其特征在于,所述处理单元具体用于,
    根据所述i、L(x)确定所述h,根据所述i、所述
    Figure PCTCN2019109757-appb-100016
    确定K(t),根据K(t)确定所述t;根据所述s、所述t确定所述第一信息;
    其中,L(x)为所述至少两个无线帧内第x个发送所述第一同步信号块的无线帧内发送的所述第一同步信号块的数量,s为大于等于1小于等于所述h的整数,K(t)为第h个无线帧内截止所述第t个子帧发送的第一同步信号块的数量。
  45. 一种通信装置,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;
    所述存储器,用于存储计算机程序;
    所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至6中任一项所述的方法,或,以使得所述装置执行如权利要求13至17中任一项所述的方法。
  46. 一种通信装置,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;
    所述存储器,用于存储计算机程序;
    所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求7至12中任一项所述的方法,或,以使得所述装置执行如权利要求18至22中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计 算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至6中任一项所述的方法,或,以使得所述装置执行如权利要求13至17中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求7至12中任一项所述的方法,或,以使得所述装置执行如权利要求18至22中任一项所述的方法。
  49. 一种系统,其特征在于,包括:第一终端装置、第二终端装置;
    第一终端装置,用于向第二终端装置发送第一同步信号块,所述第一同步信号块包括第一物理侧行链路广播信道PSBCH,所述第一PSBCH包括第一解调参考信号DMRS,所述第一DMRS是在第一资源上接收的;
    第二终端装置,用于从所述第一终端装置接收所述第一同步信号块,根据所述第一资源和/或所述第一DMRS确定所述第一同步信号块的时域位置;根据所述第一同步信号块的时域位置确定所述第一同步信号块的序号,所述序号用于指示i,i表示在第一同步信号块发送周期内第i次发送所述第一同步信号块;所述i为大于等于1的整数;
    所述第一终端装置还用于,向第二终端装置发送第一信息,所述第一信息用于指示所述第一同步信号块的时域位置;所述第一PSBCH包括所述第一信息;
    第二终端装置还用于,从所述第一种终端接收所述第一信息,根据所述第一信息确定所述第一同步信号块的序号。
PCT/CN2019/109757 2019-09-30 2019-09-30 一种同步信号块序号的指示方法、装置及系统 WO2021062828A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109757 WO2021062828A1 (zh) 2019-09-30 2019-09-30 一种同步信号块序号的指示方法、装置及系统
CN201980100609.7A CN114503483B (zh) 2019-09-30 2019-09-30 一种同步信号块序号的指示方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109757 WO2021062828A1 (zh) 2019-09-30 2019-09-30 一种同步信号块序号的指示方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2021062828A1 true WO2021062828A1 (zh) 2021-04-08

Family

ID=75336734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109757 WO2021062828A1 (zh) 2019-09-30 2019-09-30 一种同步信号块序号的指示方法、装置及系统

Country Status (2)

Country Link
CN (1) CN114503483B (zh)
WO (1) WO2021062828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117812689A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种侧行链路同步信号块传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076478A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
WO2019014106A1 (en) * 2017-07-14 2019-01-17 Qualcomm Incorporated REFERENCE SIGNAL DESIGN
CN109391420A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 同步信号块指示及确定方法、网络设备和终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014106A1 (en) * 2017-07-14 2019-01-17 Qualcomm Incorporated REFERENCE SIGNAL DESIGN
CN109391420A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 同步信号块指示及确定方法、网络设备和终端设备
CN109076478A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Summary of Offline Discussion on NR V2X Synchronization", 3GPP DRAFT; R1-1812068 SUMMARY OF OFFLINE DISCUSSION ON 7 2 4 1 3 SYNCHRONIZATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 12 October 2018 (2018-10-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051519391 *
XIAOMI COMMUNICATIONS: "On synchronization for NR V2X", 3GPP DRAFT; R1-1809177, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516547 *
XIAOMI: "On Synchronization for NR V2X", 3GPP DRAFT; R1-1813289, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 2 November 2018 (2018-11-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051479588 *

Also Published As

Publication number Publication date
CN114503483B (zh) 2024-04-12
CN114503483A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US9801039B2 (en) Apparatus, system and method of communication data between awareness networking devices
US10848929B2 (en) Apparatus, system and method of terminating a neighbor awareness networking (NAN) path
US10069883B2 (en) Apparatus, system and method of communicating in a multicast group
US10999780B2 (en) Bluetooth trigger for NAN
WO2016171859A1 (en) Apparatus, system and method of communicating in a neighbor awareness networking (nan) cluster
US20180027494A1 (en) Apparatus, system and method of neighbor awareness networking (nan) data link (ndl) power save
US10148558B2 (en) Apparatus, system and method of establishing a mesh data path between neighbor awareness networking (NAN) devices
US10750535B2 (en) Apparatus, system and method of neighbor awareness networking (NAN) communication
US20240015564A1 (en) Apparatus, system, and method of multi-link traffic indication map (tim)
WO2020088653A1 (zh) 确定传输资源的方法和装置
EP4209091A1 (en) Apparatus, system, and method of advanced wireless communication
US20220116862A1 (en) Apparatus, system, and method of link disablement of an access point (ap)
US20180110067A1 (en) Apparatus, system and method of dynamic allocation using a grant frame
WO2020063459A1 (zh) 同步方法、通信装置和网络设备
WO2021023068A1 (zh) 一种发送和接收调度请求的方法及通信装置
CN107852740B (zh) 在邻近感知网络(nan)集群中通信的装置、系统和方法
WO2021062828A1 (zh) 一种同步信号块序号的指示方法、装置及系统
US20170127464A1 (en) NAN Further Availability Schedule Indications
WO2019055098A1 (en) APPARATUS, SYSTEM AND METHOD FOR COMMUNICATING DATA ON A NEIGHBORHOOD RANGE (NAN) NETWORK COMPUTING DATA (NAN) PATH
US20180054798A1 (en) Apparatus, system and method of communicating in a data group
US20210120497A1 (en) Apparatus, system, and method of multi-user (mu) transmission
US20230328791A1 (en) Apparatus, system, and method of multi access point (ap) (m-ap) operation over a wide channel bandwidth (bw)
US20230276357A1 (en) Apparatus, system, and method of updating a target wake time (twt) agreement
US20230239844A1 (en) Apparatus, system, and method of a contention-based time period allocation for latency-sensitive traffic
WO2021056147A1 (zh) 随机接入的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948079

Country of ref document: EP

Kind code of ref document: A1