WO2021062790A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2021062790A1
WO2021062790A1 PCT/CN2019/109714 CN2019109714W WO2021062790A1 WO 2021062790 A1 WO2021062790 A1 WO 2021062790A1 CN 2019109714 W CN2019109714 W CN 2019109714W WO 2021062790 A1 WO2021062790 A1 WO 2021062790A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
terminal
response information
indicate
dynamic scheduling
Prior art date
Application number
PCT/CN2019/109714
Other languages
English (en)
French (fr)
Inventor
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19947584.9A priority Critical patent/EP4024983A4/en
Priority to PCT/CN2019/109714 priority patent/WO2021062790A1/zh
Priority to CN201980100856.7A priority patent/CN114451037A/zh
Publication of WO2021062790A1 publication Critical patent/WO2021062790A1/zh
Priority to US17/709,113 priority patent/US20220225395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • uplink data transmission methods include data transmission based on dynamic grant (grant-based, GB) or dynamic scheduling, and data transmission without dynamic scheduling.
  • Non-dynamically scheduled data transmission includes semi-persistent scheduling (SPS) or grant-free (GF) data transmission.
  • SPS semi-persistent scheduling
  • GF grant-free
  • the data transmission process based on dynamic grant (grant-based, GB) or dynamic scheduling includes: when the terminal has an uplink data transmission demand, it usually reports a non-empty buffer state report (BSR) to the base station, and the base station sends the terminal to the terminal.
  • BSR non-empty buffer state report
  • DCI downlink control information
  • the DCI carries an uplink grant (UL grant).
  • DCI downlink control information
  • UL grant uplink grant
  • the non-dynamically scheduled data transmission process includes: the base station configures the time-frequency resources and transmission parameters used for uplink data transmission for the terminal in a semi-static manner through high-level signaling and/or physical layer signaling.
  • the terminal When the terminal has uplink data transmission requirements, it does not need to go through the process of sending SR or BSR to the base station, and does not need to wait for the uplink authorization process. Instead, it directly uses the semi-statically configured time-frequency resources and transmission parameters to send data to the base station to achieve data recovery. Come and go, so as to achieve the purpose of reducing transmission delay, signaling overhead and terminal power consumption.
  • This application provides a data transmission method and device for reducing terminal power consumption and ensuring transmission reliability during uplink data transmission.
  • a data transmission method is provided.
  • the method can be implemented by the following steps: a terminal transmits first uplink data to a network device on a non-dynamic scheduling resource, and the terminal receives from the network device the data for the first uplink Data response information, where the response information is used to indicate whether the first uplink data is successfully received.
  • the response information is also used to indicate whether the terminal monitors the physical downlink control channel PDCCH under the set conditions. If it is instructed not to monitor the PDCCH under the set conditions, the response information may be further used to indicate that the PDCCH is under the set conditions.
  • Using the non-dynamic scheduling resource to transmit the second uplink data. Among them, monitoring the PDCCH can be considered that the terminal uses dynamically scheduled uplink transmission.
  • the transmission of the first uplink data on the non-dynamic scheduling resource can be regarded as the terminal using the non-dynamic scheduling method for uplink transmission. Then, based on the use of non-dynamic scheduling for uplink transmission, the response message is used to instruct the terminal to use the next uplink transmission mode, which may instruct the terminal to use non-dynamic scheduling or dynamic scheduling for uplink transmission.
  • the uplink transmission mode of the terminal can be dynamically indicated, for example, the uplink transmission mode of the terminal can be indicated according to the current channel condition of the terminal or the demand of the terminal. Taking into account the better reliability performance of dynamically scheduled uplink transmission and non-dynamically scheduled uplink transmission has lower transmission delay, lower signaling overhead and lower terminal power consumption performance, compatible with the dual purpose of high reliability and low delay .
  • the terminal monitors the PDCCH when it needs to be monitored through the indication of the response information, and does not monitor the PDCCH when it does not need to be monitored, thereby saving The power consumption of the terminal.
  • Non-dynamically scheduled uplink transmission can also be called grant-free (GF) uplink transmission, SPS uplink transmission, scheduling-free uplink transmission, dynamic scheduling-free uplink transmission, dynamic authorization-free uplink transmission, and configuration authorized uplink transmission (uplink transmission) with configured grant) or high-level configuration.
  • GF grant-free
  • SPS scheduling-free uplink transmission
  • dynamic scheduling-free uplink transmission dynamic scheduling-free uplink transmission
  • dynamic authorization-free uplink transmission and configuration authorized uplink transmission (uplink transmission) with configured grant) or high-level configuration.
  • the response information is used to instruct the terminal to monitor the physical downlink control channel PDCCH under a set condition, and the terminal determines to monitor the physical downlink control channel PDCCH under the set condition according to the response information.
  • the PDCCH is used to schedule uplink data transmission.
  • the response information is also used to instruct the terminal to use the non-dynamic scheduling resource to transmit the second uplink data under a set condition.
  • the terminal determines according to the response information to use the non-dynamic scheduling resource to transmit the second uplink data under the set condition.
  • using the non-dynamic scheduling resource to transmit the second uplink data can be understood in this way.
  • the non-dynamic scheduling resource may be periodic. The first uplink data is transmitted in one cycle, and the second uplink data is transmitted in the next cycle. .
  • the response information for the first uplink data may also be feedback information for the first uplink data.
  • the response information may be hybrid automatic repeat request HARQ feedback information.
  • the response information may also include HARQ feedback information and other indication information.
  • the setting condition may refer to within a time window, for example, within a certain period of time.
  • the terminal determines to monitor the physical downlink control channel PDCCH under set conditions according to the response information, which can be understood as: the terminal determines to monitor the PDCCH within a time window according to the response information; the terminal determines to monitor the PDCCH according to the response
  • the information determines that the non-dynamically scheduled resource is used to transmit the second uplink data under the set condition, which can be understood as: the terminal determines according to the response information to use the non-dynamically scheduled resource to transmit the second uplink data within a time window data.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the response information includes indication information of the time window.
  • the indication information of the time window may also be sent separately, for example, the indication information of the time window may be carried in the RRC message, MAC CE, or DCI.
  • the indication information of the time window may be used to indicate the start time, end time, and length (or duration) of the time window.
  • the start moment of the time window includes the last symbol of the received response information.
  • a timer can be used to monitor the time window. For example, the terminal starts or restarts a timer in response to the response information, and the duration of the timer is the length of the time window; if the response information is used to indicate to monitor the PDCCH, the terminal is in the The PDCCH is monitored during the timer operation; or, if the response information is used to indicate that the second uplink data is transmitted in a non-dynamic scheduling mode, the terminal uses the non-dynamic scheduling mode to transmit the second uplink data during the timer operation period. Upstream data.
  • the set condition may refer to within M uplink data transmissions, then the terminal determines according to the response information to monitor the physical downlink control channel PDCCH under the set condition, which can be understood as: The terminal determines, according to the response information, to monitor the physical downlink control channel PDCCH before each uplink data transmission in M uplink data transmissions; the terminal determines, according to the response information, to use the non-transmission control channel under the set condition.
  • the dynamic scheduling of resources to transmit the second uplink data can be understood as: the terminal determines according to the response information to use the non-dynamic scheduling resources to transmit the second uplink data before each uplink data transmission in M uplink data transmissions.
  • the network device can instruct the terminal to monitor the PDCCH before each uplink data transmission in M uplink data or use non-dynamic scheduling resource transmission for M uplink data transmission. For example, when the channel between the terminal and the network device is poor, the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the uplink transmission mode to take effect within M uplink transmissions, fine-grained control is achieved, and the compromise effect of transmission reliability, terminal power consumption, and resource utilization is improved.
  • the response information includes M; or, the terminal receives RRC signaling, MAC CE, or DCI from the network device, and M is carried in the RRC signaling, MAC CE, or DCI.
  • a counter can be used to monitor the number of uplink transmissions. For example, the terminal starts or restarts a counter in response to the response information; if the response information is used to instruct to monitor the PDCCH, the terminal is within the M uplink data transmissions recorded by the counter (or the number of times recorded by the counter) Before M times), monitor the PDCCH; or, if the response information is used to indicate that the second uplink data is transmitted in a non-dynamic scheduling manner, the terminal transmits the second uplink data in a non-dynamic scheduling manner.
  • each of the M uplink data transmissions includes K repeated transmissions of the same data. K repetitions can ensure the reliability of the data packet. By transmitting K repeated data packets in one uplink data transmission, the purpose of retransmission can be achieved without waiting for the feedback of the network equipment, which helps to reduce the time delay.
  • the response information includes first indication information and second indication information, and the first indication information is used to indicate whether the first uplink data is successfully received, for example, the first indication information in the first indication information A value is used to indicate that the first uplink data is successfully received, and the second value in the first indication information is used to indicate that the first uplink data is not successfully received.
  • the first value is ACK
  • the second value is NACK.
  • the second indication information is used to indicate to monitor the PDCCH under the set condition or indicate to use a non-dynamic scheduling mode to transmit the second uplink data under the set condition.
  • an implicit indication can be selected, for example, according to the search space (search space, SS) type (such as public search space, terminal dedicated Search space), control resource set (CORESET) type (such as CORESET0, CORESET1), scrambled radio network temporary identity (RNTI) type, DCI format, etc. implicitly indicate the uplink data transmission mode.
  • search space search space, SS
  • CORESET control resource set
  • RNTI scrambled radio network temporary identity
  • the response information includes a correct response instruction ACK; wherein, the ACK is used to indicate that the first uplink data is successfully received, and that the non-dynamic scheduling mode is used to transmit the first uplink data under the set conditions.
  • the response information includes a negative acknowledgement command NACK; wherein, the NACK is used to indicate that the first uplink data is not successfully received, and to indicate that the PDCCH is monitored under the set condition.
  • the second uplink data is the data to be transmitted after the first uplink data, which may be retransmitted data of the first uplink data, or may be newly transmitted data.
  • the response information is used to indicate that the first uplink data is successfully received, and the second uplink data is newly transmitted data; or, the response information is used to indicate that the first uplink data is not successfully received, so
  • the second uplink data is retransmitted data of the first uplink data.
  • the terminal transmits the second uplink data according to the PDCCH monitored under the set conditions; or, if the PDCCH is not monitored under the set conditions, the terminal uses the The second uplink data is transmitted in a non-dynamic scheduling manner. Because after receiving the response information, the terminal may monitor the PDCCH according to the response information. If the PDCCH is not monitored, it can continue to use the non-dynamic scheduling resource to transmit the second uplink data, without waiting for the PDCCH scheduling, to avoid being unable to monitor the PDCCH for a long time. This leads to an increase in transmission delay.
  • the terminal sends a buffer status report BSR to the network device, and the BSR indicates that the terminal has data buffered.
  • the network device may determine the next uplink data transmission mode for the terminal according to the BSR.
  • a data transmission method which can be implemented by the following steps: a network device receives first uplink data from a terminal; the network device sends response information for the first uplink data to the terminal; wherein The response information is used to indicate whether the first uplink data is successfully received, and to indicate the uplink transmission mode; wherein, the uplink transmission mode may include: uplink transmission based on dynamic scheduling under set conditions, or Using the non-dynamically scheduled resource to transmit the second uplink data under certain conditions.
  • monitoring the PDCCH can be considered that the terminal uses dynamically scheduled uplink transmission.
  • the transmission of the first uplink data on the non-dynamic scheduling resource can be regarded as the terminal using the non-dynamic scheduling method for uplink transmission.
  • the response message is used to instruct the terminal to use the next uplink transmission mode, which may instruct the terminal to use non-dynamic scheduling or dynamic scheduling for uplink transmission.
  • the uplink transmission mode of the terminal can be dynamically indicated, for example, the uplink transmission mode of the terminal can be indicated according to the current channel condition of the terminal or the demand of the terminal. Taking into account the better reliability performance of dynamically scheduled uplink transmission and non-dynamically scheduled uplink transmission has lower transmission delay, lower signaling overhead and lower terminal power consumption performance, compatible with the dual purpose of high reliability and low delay .
  • the terminal monitors the PDCCH when it needs to be monitored through the indication of the response information, and does not monitor the PDCCH when it does not need to be monitored, thereby saving The power consumption of the terminal.
  • Non-dynamic scheduling can also be called grant-free (GF), SPS, scheduling-free, dynamic scheduling-free, dynamic authorization-free, or high-level configuration.
  • GF grant-free
  • SPS scheduling-free
  • dynamic scheduling-free dynamic authorization-free
  • high-level configuration high-level configuration
  • the uplink transmission mode includes uplink transmission based on dynamic scheduling within a time window (or monitoring the physical downlink control channel PDCCH within the time window), or using the non-dynamic scheduling resource within the time window Transmit the second uplink data.
  • the terminal By instructing the terminal to monitor the PDCCH within the time window or use non-dynamic scheduling resources to transmit the second uplink data, an efficient compromise between transmission reliability, terminal power consumption, and resource utilization can be achieved.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the uplink transmission mode includes monitoring the physical downlink control channel PDCCH before each uplink transmission in M uplink data transmissions, or using the non-dynamic scheduling resource to perform M uplink transmissions of the second uplink data.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the uplink transmission mode By instructing the uplink transmission mode to take effect within M uplink transmissions, fine-grained control is achieved, and the compromise effect of transmission reliability, terminal power consumption, and resource utilization is improved.
  • the response information includes first indication information and second indication information, and the first indication information is used to indicate whether the first uplink data is successfully received, for example, the first indication information in the first indication information A value is used to indicate that the first uplink data is successfully received, and the second value in the first indication information is used to indicate that the first uplink data is not successfully received.
  • the first value is ACK
  • the second value is NACK.
  • the second indication information is used to indicate to monitor the PDCCH under the set condition or indicate to use a non-dynamic scheduling mode to transmit the second uplink data under the set condition.
  • an implicit indication can be selected, for example, according to the search space (search space, SS) type (such as public search space, terminal dedicated Search space), control resource set (CORESET) type (such as CORESET0, CORESET1), scrambled radio network temporary identity (RNTI) type, DCI format, etc. implicitly indicate the uplink data transmission mode.
  • search space search space, SS
  • CORESET control resource set
  • RNTI scrambled radio network temporary identity
  • the response information includes a correct response instruction ACK; the ACK is used to indicate that the first uplink data is successfully received, and to indicate that the non-dynamic scheduling mode is used to transmit the second uplink under the set conditions. Data; or, the response information includes a negative acknowledgement command NACK; the NACK is used to indicate that the first uplink data is not successfully received, and to indicate that the PDCCH is monitored under the set condition.
  • the network device sends a buffer status report BSR from the terminal, and the BSR indicates that the terminal has data buffered. In this way, after receiving the BSR, the network device may determine the next uplink data transmission mode for the terminal according to the BSR.
  • a device in a third aspect, may be a terminal device, or a device in a terminal device (for example, a chip, or a chip system, or a circuit), or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the communication module is configured to transmit the first uplink data to the network device on the non-dynamic scheduling resource, and is also configured to receive response information for the first uplink data from the network device, where the response information is used to indicate the first uplink data Whether the upstream data is received successfully.
  • the response information is also used to indicate whether the processing module monitors the physical downlink control channel PDCCH under the set conditions. If it is instructed not to monitor the PDCCH under the set conditions, the response information may be further used to indicate that the PDCCH is not monitored under the set conditions.
  • monitoring the PDCCH can be considered that the terminal uses dynamically scheduled uplink transmission.
  • the transmission of the first uplink data on the non-dynamic scheduling resource can be regarded as the terminal using the non-dynamic scheduling method for uplink transmission. Then, based on the use of non-dynamic scheduling for uplink transmission, the response message is used to instruct the terminal to use the next uplink transmission mode, which may instruct the terminal to use non-dynamic scheduling or dynamic scheduling for uplink transmission.
  • the uplink transmission mode of the terminal can be dynamically indicated, for example, the uplink transmission mode of the terminal can be indicated according to the current channel condition of the terminal or the demand of the terminal. Taking into account the better reliability performance of dynamically scheduled uplink transmission and non-dynamically scheduled uplink transmission has lower transmission delay, lower signaling overhead and lower terminal power consumption performance, compatible with the dual purpose of high reliability and low delay .
  • the terminal monitors the PDCCH when it needs to be monitored through the indication of the response information, and does not monitor the PDCCH when it does not need to be monitored, thereby saving The power consumption of the terminal.
  • Non-dynamic scheduling can also be called grant-free (GF), SPS, scheduling-free, dynamic scheduling-free, dynamic authorization-free, or high-level configuration.
  • GF grant-free
  • SPS scheduling-free
  • dynamic scheduling-free dynamic authorization-free
  • high-level configuration high-level configuration
  • the response information is used to instruct the processing module to monitor the physical downlink control channel PDCCH under a set condition, and the processing module is used to determine, according to the response information, to monitor the physical downlink control channel under the set condition PDCCH.
  • the PDCCH is used to schedule uplink data transmission.
  • the response information is also used to instruct the terminal to use the non-dynamic scheduling resource to transmit the second uplink data under a set condition.
  • the processing module is configured to determine, according to the response information, to use the non-dynamic scheduling resource to transmit the second uplink data under the set condition.
  • using the non-dynamic scheduling resource to transmit the second uplink data can be understood in this way.
  • the non-dynamic scheduling resource may be periodic. The first uplink data is transmitted in one cycle, and the second uplink data is transmitted in the next cycle. .
  • the response information for the first uplink data may also be feedback information for the first uplink data.
  • the response information may be hybrid automatic repeat request HARQ feedback information.
  • the response information may also include HARQ feedback information and other indication information.
  • the setting condition may refer to within a time window, for example, within a certain period of time.
  • the terminal determines to monitor the physical downlink control channel PDCCH under set conditions according to the response information, which can be understood as: the processing module is configured to determine to monitor the PDCCH within a time window according to the response information; the processing module It is used to determine according to the response information to use the non-dynamically scheduled resource to transmit the second uplink data under the set condition, which can be understood as: the processing module is used to determine to use all the data within a time window according to the response information.
  • the non-dynamically scheduled resource transmits the second uplink data.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the response information includes indication information of the time window.
  • the indication information of the time window may also be sent separately, for example, the indication information of the time window may be carried in the RRC message, MAC CE, or DCI.
  • the indication information of the time window may be used to indicate the start time, end time, and length (or duration) of the time window.
  • the start moment of the time window includes the last symbol of the received response information.
  • a timer can be used to monitor the time window.
  • the processing module is configured to start or restart a timer in response to the response information, and the timer duration is the length of the time window; if the response information is used to indicate to monitor the PDCCH, the processing The module is used to monitor the PDCCH during the operation of the timer; or, if the response information is used to indicate the use of non-dynamic scheduling to transmit second uplink data, the processing module is used to use the non-dynamic scheduling mode during the operation of the timer.
  • the second uplink data is transmitted in a dynamic scheduling mode.
  • the set condition may refer to within M uplink data transmissions.
  • the processing module is used to determine, according to the response information, to monitor the physical downlink control channel PDCCH under the set condition. It is understood that: the processing module is used to determine to monitor the physical downlink control channel PDCCH within M uplink data transmissions according to the response information; the processing module is used to determine to use the physical downlink control channel PDCCH under the set conditions according to the response information
  • the non-dynamically scheduled resource to transmit the second uplink data can be understood as: the processing module is configured to determine, according to the response information, to use the non-dynamically scheduled resource to transmit the second uplink data within M uplink data transmissions.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the response information includes M; or, the terminal receives RRC signaling, MAC CE, or DCI from the network device, and M is carried in the RRC signaling, MAC CE, or DCI.
  • the processing module can monitor the number of uplink transmissions through a counter. For example, the processing module is used to start or restart a counter in response to the response information; if the response information is used to instruct to monitor PDCCH, the processing module is used to perform ( Or before the number of times recorded by the counter exceeds M), monitor the PDCCH; or, if the response information is used to indicate that the second uplink data is transmitted in a non-dynamic scheduling mode, the processing module is used to transmit the second uplink data in a non-dynamic scheduling mode Upstream data.
  • each of the M uplink data transmissions includes K repeated transmissions of the same data. K repetitions can ensure the reliability of the data packet. By transmitting K repeated data packets in one uplink data transmission, the purpose of retransmission can be achieved without waiting for the feedback of the network equipment, which helps to reduce the time delay.
  • the response information includes first indication information and second indication information, and the first indication information is used to indicate whether the first uplink data is successfully received, for example, the first indication information in the first indication information A value is used to indicate that the first uplink data is successfully received, and the second value in the first indication information is used to indicate that the first uplink data is not successfully received.
  • the first value is ACK
  • the second value is NACK.
  • the second indication information is used to indicate to monitor the PDCCH under the set condition or indicate to use a non-dynamic scheduling mode to transmit the second uplink data under the set condition.
  • an implicit indication can be selected, for example, according to the search space (search space, SS) type (such as public search space, terminal dedicated Search space), control resource set (CORESET) type (such as CORESET0, CORESET1), scrambled radio network temporary identity (RNTI) type, DCI format, etc. implicitly indicate the uplink data transmission mode.
  • search space search space, SS
  • CORESET control resource set
  • RNTI scrambled radio network temporary identity
  • the response information includes a correct response instruction ACK; wherein, the ACK is used to indicate that the first uplink data is successfully received, and that the non-dynamic scheduling mode is used to transmit the first uplink data under the set conditions.
  • the response information includes a negative acknowledgement command NACK; wherein, the NACK is used to indicate that the first uplink data is not successfully received, and to indicate that the PDCCH is monitored under the set condition.
  • the second uplink data is the data to be transmitted after the first uplink data, which may be retransmitted data of the first uplink data, or may be newly transmitted data.
  • the response information is used to indicate that the first uplink data is successfully received, and the second uplink data is newly transmitted data; or, the response information is used to indicate that the first uplink data is not successfully received, so
  • the second uplink data is retransmitted data of the first uplink data.
  • the processing module is configured to transmit the second uplink data according to the PDCCH monitored under the set condition; or, if the PDCCH is not monitored under the set condition, then Using the non-dynamic scheduling manner to transmit the second uplink data. Because after receiving the response information, the terminal may monitor the PDCCH according to the response information. If the PDCCH is not monitored, it can continue to use the non-dynamic scheduling resource to transmit the second uplink data, without waiting for the PDCCH scheduling, to avoid being unable to monitor the PDCCH for a long time. This leads to an increase in transmission delay.
  • the communication module is configured to send a buffer status report BSR to the network device, and the BSR indicates that the terminal has data buffered.
  • the network device may determine the next uplink data transmission mode for the terminal according to the BSR.
  • a device in a fourth aspect, may be a network device, or a device located in the network device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the communication module is used to receive the first uplink data from the terminal; the communication module is also used to send response information for the first uplink data to the terminal; wherein the response information is used to indicate whether the first uplink data is received Success, and used to indicate the uplink transmission mode; wherein, the uplink transmission mode may include: monitoring the physical downlink control channel PDCCH under a set condition, or using the non-dynamic scheduling resource to transmit a second uplink under the set condition data. Among them, monitoring the PDCCH can be considered that the terminal uses dynamically scheduled uplink transmission.
  • the transmission of the first uplink data on the non-dynamic scheduling resource can be regarded as the terminal using the non-dynamic scheduling method for uplink transmission.
  • the response message is used to instruct the terminal to use the next uplink transmission mode, which may instruct the terminal to use non-dynamic scheduling or dynamic scheduling for uplink transmission.
  • the uplink transmission mode of the terminal can be dynamically indicated, for example, the uplink transmission mode of the terminal can be indicated according to the current channel condition of the terminal or the demand of the terminal. Taking into account the better reliability performance of dynamically scheduled uplink transmission and non-dynamically scheduled uplink transmission has lower transmission delay, lower signaling overhead and lower terminal power consumption performance, compatible with the dual purpose of high reliability and low delay .
  • the terminal monitors the PDCCH when it needs to be monitored through the indication of the response information, and does not monitor the PDCCH when it does not need to be monitored, thereby saving The power consumption of the terminal.
  • Non-dynamic scheduling can also be called grant-free (GF), SPS, scheduling-free, dynamic scheduling-free, dynamic authorization-free, or high-level configuration.
  • GF grant-free
  • SPS scheduling-free
  • dynamic scheduling-free dynamic authorization-free
  • high-level configuration high-level configuration
  • the uplink transmission mode includes monitoring the physical downlink control channel PDCCH in a time window, or using the non-dynamic scheduling resource to transmit the second uplink data in the time window.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the uplink transmission mode includes monitoring the physical downlink control channel PDCCH during M uplink data transmissions, or using the non-dynamic scheduling resource to perform M uplink transmissions of the second uplink data.
  • the network device can instruct the terminal to monitor the PDCCH for uplink transmission in a dynamic scheduling manner to improve transmission reliability; when the channel between the terminal and the network device is good, the network device The terminal can be instructed to perform uplink transmission in a non-dynamic scheduling manner to reduce the power consumption of the terminal and at the same time increase the utilization rate of the pre-configured non-dynamic scheduling resources.
  • the uplink transmission mode By instructing the uplink transmission mode to take effect within M uplink transmissions, fine-grained control is achieved, and the compromise effect of transmission reliability, terminal power consumption, and resource utilization is improved.
  • the response information includes first indication information and second indication information, and the first indication information is used to indicate whether the first uplink data is successfully received, for example, the first indication information in the first indication information A value is used to indicate that the first uplink data is successfully received, and the second value in the first indication information is used to indicate that the first uplink data is not successfully received.
  • the first value is ACK
  • the second value is NACK.
  • the second indication information is used to indicate to monitor the PDCCH under the set condition or indicate to use a non-dynamic scheduling mode to transmit the second uplink data under the set condition.
  • an implicit indication can be selected, for example, according to the search space (search space, SS) type (such as public search space, terminal dedicated Search space), control resource set (CORESET) type (such as CORESET0, CORESET1), scrambled radio network temporary identity (RNTI) type, DCI format, etc. implicitly indicate the uplink data transmission mode.
  • search space search space, SS
  • CORESET control resource set
  • RNTI scrambled radio network temporary identity
  • the response information includes a correct response instruction ACK; the ACK is used to indicate that the first uplink data is successfully received, and to indicate that the non-dynamic scheduling mode is used to transmit the second uplink under the set conditions. Data; or, the response information includes a negative acknowledgement command NACK; the NACK is used to indicate that the first uplink data is not successfully received, and to indicate that the PDCCH is monitored under the set condition.
  • the communication module is further configured to send a buffer status report BSR from the terminal, and the BSR indicates that the terminal has data buffered.
  • the network device may determine the next uplink data transmission mode for the terminal according to the BSR.
  • an embodiment of the present application provides a device, the device includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the first aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes instructions or data stored in the memory, it can implement the first aspect or any one of the possible design and description methods in the first aspect.
  • an embodiment of the present application provides a device.
  • the device includes a communication interface and a processor.
  • the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the second aspect above.
  • the device may also include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, it can implement any one of the possible design methods described in the second aspect or the second aspect.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • the communication device executes the method described in the first aspect, the second aspect, any one of the possible designs of the first aspect, or any one of the second aspects.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a communication device, cause the communication device to execute as described in the first aspect or any one of the possible designs in the first aspect. Or implement the method described in the second aspect or any one of the possible designs of the second aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, which is used to implement any one of the possible designs of the first aspect, the second aspect, and the first aspect. Or the method described in any of the possible designs in the second aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a system that includes the device described in the third aspect or the fifth aspect and the device described in the fourth aspect or the sixth aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the application
  • FIG. 2 is a schematic diagram of a data transmission process of dynamic scheduling in an embodiment of the application
  • FIG. 3 is a schematic diagram of a data transmission process of non-dynamic scheduling in an embodiment of the application
  • Figure 4a is a schematic diagram of a terminal using GF resources to transmit data in an embodiment of the application
  • FIG. 4b is a schematic diagram of a terminal using dynamic resources to transmit data on the basis of non-dynamic scheduling in an embodiment of the application;
  • FIG. 5 is one of the schematic flowcharts of the data transmission method in the embodiment of this application.
  • FIG. 6 is a schematic diagram of a data transmission method in a scenario where the condition is set to be within the first duration in an embodiment of the application;
  • FIG. 7 is a schematic diagram of another data transmission method in a scenario where the condition is set to be within the first duration in an embodiment of the application;
  • FIG. 8 is a schematic diagram of a data transmission method in a scenario where the condition is set to be within M uplink transmissions in an embodiment of the application;
  • FIG. 9 is a schematic diagram of another data transmission method in a scenario where the condition is set to be within M uplink transmissions in an embodiment of the application.
  • FIG. 10 is the second schematic diagram of the data transmission method in the embodiment of this application.
  • FIG. 11 is a schematic diagram of the structure of a device in an embodiment of the application.
  • Figure 12 is a schematic structural diagram of another device in an embodiment of the application.
  • the embodiments of the present application provide a data transmission method and device, which are used to reduce terminal power consumption and ensure transmission reliability during uplink data transmission.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • “and/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist separately. There are three cases of B.
  • the character "/" between Chinese characters generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one involved in the embodiments of the present application refers to one or more; multiple refers to two or more than two.
  • words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor can it be understood as indicating Or imply the order.
  • the data transmission method provided by the embodiments of this application can be applied to a long term evolution (LTE) system, a fifth generation (5G) communication system, or various future communication systems, for example, the sixth generation (6th generation) communication system.
  • LTE long term evolution
  • 5G fifth generation
  • 6G sixth generation
  • 5G can also be called new radio (NR).
  • FIG. 1 shows the architecture of a possible communication system to which the data transmission method provided in the embodiment of the present application is applicable.
  • the communication system 100 may include a network device 110 and a terminal device 101 to a terminal device 106. It should be understood that the communication system 100 may include more or fewer network devices or terminal devices.
  • the network device or terminal device can be hardware, software that is functionally divided, or a combination of the two.
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106.
  • the network device and the terminal device can communicate with other devices or network elements.
  • the network device 110 can perform data transmission with the terminal device 101 to the terminal device 106, for example: the network device 110 can send downlink data to the terminal device 101 to the terminal device 106, and can also receive uplink data sent by the terminal device 101 to the terminal device 106; and /Or, the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110, and may also receive downlink data sent by the network device 110.
  • the network device 110 is a node in a radio access network (RAN), which may also be called a base station, or a RAN node (or device).
  • the network device can also be called the network side device.
  • network equipment 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC) , Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (base band unit, BBU), wireless fidelity (wireless fidelity, Wifi) access point (AP), or 5G communication system or network side equipment in a possible future communication system, etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device for implementing the functions of the network equipment is a network device or a base station as an example to describe the technical solutions provided in the embodiments of the present application.
  • the terminal device 101 to the terminal device 106 may also be referred to as terminals.
  • a terminal can be a user equipment (UE), a mobile station (MS), or a mobile terminal (mobile terminal, MT), etc. It is a device that provides users with voice or data connectivity, or it can be a physical device. Networking equipment.
  • the terminal device 101 to the terminal device 106 include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device 101 to the terminal device 106 can be a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or on the water (such as ships, etc.); Deployed in the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal or a UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • the term “data transmission” can also be described as “communication”, “information transmission” or “transmission”.
  • This technical solution can be used for wireless communication between a scheduling entity and a subordinate entity, and those skilled in the art can use the technical solution provided in the embodiments of this application to perform wireless communication between other scheduling entities and subordinate entities, such as a macro base station and a micro base station. Wireless communication between, for example, the wireless communication between the first terminal and the second terminal.
  • the uplink data transmission of the base station may adopt dynamic scheduling and non-dynamic scheduling data transmission.
  • Dynamic scheduling can also be called GB.
  • Non-dynamic scheduling can also be called grant-free (GF), SPS, scheduling-free, dynamic scheduling-free, dynamic authorization-free, or high-level configuration.
  • the dynamically scheduled data transmission may include the following processes:
  • the terminal When the terminal has a demand for uplink data transmission, it usually sends a scheduling request (SR) to the base station through a physical uplink control channel (PUCCH), or the terminal will use a physical uplink shared channel (physical uplink shared channel) to send a scheduling request (SR) to the base station. channel, PUSCH) to report a non-empty BSR to the base station.
  • SR scheduling request
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • BSR is usually sent through media access control (MAC) layer signaling and carried in the media access layer control element (MAC CE) in the packet header of the data packet
  • MAC media access control
  • the base station After receiving the SR or non-empty BSR sent by the terminal, the base station sends DCI to the terminal through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the DCI carries an uplink grant (UL grant), which is used to authorize the terminal to send uplink data using specified parameters on specified time-frequency resources. For example, a specified modulation and coding scheme (MCS) is used to send uplink data.
  • MCS modulation and coding scheme
  • the terminal uses the specified parameters on the specified time-frequency resources according to the DCI to send uplink data through the PUSCH.
  • dynamic scheduling can efficiently use the real-time channel information between the terminal and the base station, and specify the location, size, and transmission parameters of the appropriate time-frequency resources for each transmission of the terminal, the dynamic scheduling of uplink transmission usually has a higher reliability.
  • the terminal In the uplink data transmission process based on dynamic authorization, the terminal needs to send SR or BSR to the base station before sending data, and the base station will authorize through DCI. This process will introduce delay and PDCCH signaling overhead.
  • CCE Control Channel Element
  • Aggregation Level Aggregation Level
  • Form DCI formats
  • the length, and/or different radio network temporary identifiers perform blind detection, which requires a lot of power consumption. Data transmission using non-dynamic scheduling can reduce time delay, reduce signaling overhead, and reduce terminal power consumption.
  • NR supports two types of non-dynamically scheduled data transmission, namely PUSCH transmission based on type 1 configuration authorization (Type 1 PUSCH transmission with a configured grant, or Type 1 configured grant PUSCH transmission) and type 1 configured grant PUSCH transmission.
  • Type 1 configuration authorization Type 1 PUSCH transmission with a configured grant, or Type 1 configured grant PUSCH transmission
  • type 1 configured grant PUSCH transmission type 1 configured grant PUSCH transmission
  • Configure authorized PUSCH transmission Type 2 PUSCH transmission with a configured grant, or Type 2 configured grant PUSCH transmission.
  • the high-level parameter ConfiguredGrantConfig configures the period of time domain resources, open-loop power control related parameters, waveform, redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, HARQ process Number, demodulation reference symbol (DMRS) related parameters, modulation and coding scheme table, resource block group (RBG) group size, and time domain resources, frequency domain resources, modulation and coding methods (modulation and coding) scheme, MCS) and other transmission resources and transmission parameters.
  • DMRS demodulation reference symbol
  • RBG resource block group
  • MCS modulation and coding methods
  • the high-level parameter ConfiguredGrantConfig configures the period of time domain resources, open-loop power control related parameters, waveforms, redundant version sequence, number of repetitions, Frequency hopping mode, resource allocation type, HARQ process number, demodulation reference signal related parameters, MCS table, resource block RBG group size, etc., including transmission resources and transmission parameters; then the use of CS-cell wireless network temporary identifier ( Radio network temporary identifier (RNTI) scrambled DCI activates the second type of PUSCH transmission based on configuration authorization, and at the same time configures other transmission resources and transmission parameters including time domain resources, frequency domain resources, DMRS, MCS, etc.
  • RNTI Radio network temporary identifier
  • the terminal When the terminal receives the high-level parameter ConfiguredGrantConfig, it cannot immediately use the resources and parameters configured by the high-level parameter to perform PUSCH transmission, but must wait until the corresponding DCI is activated and other resources and parameters are configured before PUSCH transmission can be performed.
  • NR In addition to the PUSCH transmission authorized by the first and second types of configurations, NR also supports another non-dynamically scheduled data transmission, that is, two-step (2-step) random access (RA).
  • RA random access
  • the terminal When the terminal has data to send, it sends a random access preamble (Preamble) sequence to the base station through a physical random access channel (PRACH), and then sends uplink data to the base station through PUSCH.
  • PRACH and PUSCH can be continuous in time , It may also be discontinuous, and the terminal does not monitor the feedback information of the random access preamble sequence sent by the base station for the terminal between sending the random access preamble sequence and sending uplink data.
  • the non-dynamically scheduled time-frequency resources are all configured by the base station in a semi-static manner, which is equivalent to pre-configured or reserved for the terminal, these resources still exist even if the terminal has no uplink data transmission requirements.
  • the uplink GF resource configured by the base station in a semi-static manner recurs in the time domain in a periodic manner, and the GF resource in each period is used to transmit one uplink data package.
  • the terminal arrives on a periodic GF resource, if it is transmitted by uplink data, it will send an uplink data packet on the arriving GF resource.
  • the terminal uses semi-statically configured time-frequency resources and transmission parameters to send data to the base station, which can achieve the purpose of reducing transmission delay, signaling overhead, and terminal power consumption.
  • the dynamically scheduled uplink transmission has better reliability and the time-varying characteristics of the wireless channel between the terminal and the base station, in order to reduce the power consumption of the terminal, it is not necessary to stipulate that the terminal can only use pre-configured unlicensed resources to avoid authorization. In this case, when the channel conditions are not good, it will cause transmission failure, which will cause retransmission and reduce system efficiency.
  • the dynamically scheduled uplink transmission has better reliability
  • the non-dynamically scheduled uplink transmission has the effects of lower transmission delay, lower signaling overhead, and lower terminal power consumption.
  • Dynamic scheduling is combined in the uplink transmission to be compatible with the dual purpose of high reliability and low delay.
  • the base station configures periodic uplink GF resources for the terminal in a semi-static manner.
  • Cycle 1 and Cycle 2 are two consecutive cycles.
  • the terminal sends the PUSCH on the GF resource in cycle 1.
  • the PUSCH carries uplink data (for example, data packet 1), and the BSR is carried in the PUSCH to inform the base station that the terminal is still in the buffer. There is data to send.
  • the terminal has two ways to transmit the next data packet (for example, denoted as data packet 2).
  • the first way is to use the GF resources in period 2 to send data packet 2.
  • Fig. 4b another way is that the base station instructs the terminal to use dynamic authorization through DCI to send data packet 2 on the designated time-frequency resource.
  • the terminal since the terminal does not know whether the base station will issue a DCI to schedule the transmission of its subsequent data packets, the terminal should continuously monitor the possible PDCCH for dynamic scheduling of uplink data transmission. For example, the terminal sends the PUSCH on the GF resource of cycle 1, and the PUSCH carries the data packet 1 and the BSR. After sending the PUSCH on the GF resource of period 1, the terminal will continue to monitor the PDCCH. If the PDCCH used for scheduling data packet 2 is monitored, the terminal will send data packet 2 on the designated time-frequency resource according to the scheduling information.
  • the terminal can use the GF resource to continue to send data packet 2 in an unauthorized transmission mode; or the terminal does not use the GF resource to send data packets 2, but continue to monitor the PDCCH used to schedule data packet 2. That is to say, no matter whether the terminal finally transmits data packet 2 in an authorization-free or dynamic authorization mode, the terminal always monitors the PDCCH used to schedule the data packet 2.
  • the terminal needs to continuously monitor the PDCCH used for scheduling uplink data transmission, and use the pre-configured unlicensed resource to transmit the uplink data in an unlicensed manner unless the PDCCH is monitored.
  • PDCCH monitoring consumes a large amount of power consumption of the terminal, which is unacceptable for terminals with limited battery capacity or lifespan, such as machine type communications (machine type communications) terminals.
  • the embodiment of the present application provides a data transmission method, which can help reduce the power consumption of the terminal to monitor the PDCCH, while taking into account the transmission reliability and the utilization rate of unlicensed resources.
  • the process of the data transmission method provided by the embodiment of the present application is as follows.
  • the execution subject of this method takes terminals and network devices as examples.
  • S501 The terminal transmits first uplink data to the network device on the non-dynamic scheduling resource, and the network device receives the first uplink data from the terminal.
  • Non-dynamic scheduling resources described here can also be referred to as non-dynamic scheduling time-frequency resources.
  • Non-dynamic scheduling resources or non-dynamic scheduling time-frequency resources refer to the scenario where non-dynamic scheduling is used for data transmission, and the network equipment allocates to the terminal Time-frequency resources.
  • non-dynamic scheduling can also be called GF, SPS, scheduling-free, dynamic scheduling-free, dynamic authorization-free, 2-step random access (2-step RACH), or high-level configuration.
  • non-dynamic scheduling resources or non-dynamic scheduling time-frequency resources can also be called GF resources/GF time-frequency resources, SPS resources/SPS time-frequency resources, scheduling-free resources/scheduling-free time-frequency resources, dynamic scheduling-free resources/dynamic-free Scheduling time-frequency resources, dynamic authorization-free resources/dynamic authorization-free time-frequency resources, two-step random access resources/two-step random access time-frequency resources, or high-level configured resources/high-level configured time-frequency resources.
  • the high layer usually refers to the RRC layer
  • the high layer configuration usually refers to the configuration by RRC signaling.
  • the first uplink data is a data packet or data packet sent by the terminal last time on a non-dynamic scheduling resource.
  • non-dynamically scheduled resources generally appear as periodic resources, and the terminal sends the first uplink data on the time-frequency resources in one cycle.
  • the non-dynamic scheduling resource is used to send the first uplink data.
  • the amount of data to be sent may be greater than the first uplink data, and the terminal cannot finish sending the data to be sent in one cycle.
  • the terminal may send a BSR to the network device to inform the base station of the data buffer status of the terminal, that is, whether there is still data to be sent. For example, after the terminal sends the first uplink data, when there is still data to be sent that needs to be sent, the terminal sends a BSR to the network device to inform the network device that there is still data to be sent and needs to be sent. For another example, the terminal may send a BSR to the network device to request the network device to dynamically schedule uplink transmission resources when a large data packet needs to be sent or the terminal determines that the channel condition is poor and requires uplink scheduling, or in other scenarios.
  • the terminal transmits the PUSCH on the non-dynamic scheduling resource, and the first uplink data is carried in the PUSCH.
  • the BSR can also be carried in the PUSCH.
  • the network device receives the PUSCH, obtains the first uplink data, and obtains the BSR.
  • the network device can choose to send the PDCCH for scheduling uplink data transmission to the terminal. You can also choose not to send the PDCCH to the terminal. Whether the terminal monitors the PDCCH is implemented by S502.
  • the network device returns response information of the first uplink data to the terminal, and the terminal receives the response information of the first uplink data from the network device.
  • the response information of the first uplink data can be briefly described as the response information.
  • the response information may include hybrid automatic repeat request (HARQ) feedback information, and may also include other indication information.
  • HARQ hybrid automatic repeat request
  • the response information is used to indicate whether the first uplink data is successfully received.
  • the response information may also be used to instruct the terminal to use the non-dynamic scheduling mode to transmit the second uplink data under the set conditions.
  • transmission using non-dynamic scheduling mode can be understood as “transmission using non-dynamic scheduling resources” or “transmission using non-dynamic scheduling time-frequency resources”.
  • Non-dynamic scheduling mode can also be understood as “non-dynamic scheduling transmission mode”.
  • the response information may also be used to instruct the terminal to monitor the PDCCH under the set conditions.
  • the PDCCH is used to dynamically schedule uplink data transmission, or the PDCCH is used to schedule PDSCH transmission, and the PDSCH transmission carries scheduling information for scheduling uplink data transmission.
  • the response information is used to instruct the terminal to monitor the PDCCH under the set conditions, before the terminal monitors the PDCCH, first send a random access preamble sequence to the network device, and then monitor the PDCCH.
  • the PDCCH is used to schedule PDSCH transmission, and the PDSCH transmission carries scheduling information used to schedule uplink data transmission.
  • the terminal sending the random access preamble sequence to the network device is the first step in 4-step random access (4-step RACH) or the first step in early data transmission (EDT).
  • the terminal monitors the PDCCH and receives the PDSCH according to the monitored PDCCH, which is the second step of the four-step random access or early data transmission process.
  • EDT can also be called 2-step random access (2-step RACH).
  • the response information includes first indication information and second indication information.
  • the first indication information includes a correct acknowledgement instruction (acknowledge, ACK) or a negative acknowledgement (negative acknowledgement, NACK).
  • the first indication information is ACK, which is used to indicate that the first uplink data is successfully received; or, the first indication information is NACK, which is used to indicate that the first uplink data is not successfully received.
  • the second indication information is used to instruct the terminal to monitor the PDCCH under set conditions, the PDCCH is used to dynamically schedule uplink data transmission, or the PDCCH is used to schedule PDSCH transmission, and the PDSCH transmission carries scheduling information used to schedule uplink data transmission.
  • the response information is used to instruct the terminal to use a non-dynamic scheduling mode to transmit the second uplink data under a set condition.
  • the specific second indication information is used to indicate the uplink data transmission mode of the terminal.
  • the response information includes ACK or NACK.
  • the response information carries an ACK, it is used to indicate that the first uplink data is successfully received, and is used to instruct the terminal to use a non-dynamic scheduling mode to transmit the second uplink data under a set condition.
  • the response information carries NACK, it is used to indicate that the first uplink data has not been successfully received, and it is used to indicate that the terminal monitors the PDCCH under the set conditions.
  • ACK/NACK is used to implicitly indicate the uplink data transmission mode of the terminal.
  • ACK/NACK to implicitly indicate the uplink data transmission mode of the terminal can also be implemented in the following way: when the response information carries ACK, it is used to indicate that the first uplink data is successfully received, and it is used to indicate that the terminal is setting Monitor PDCCH under conditions. When the response information carries NACK, it is used to indicate that the first uplink data has not been successfully received, and it is used to instruct the terminal to use a non-dynamic scheduling mode to transmit the second uplink data under a set condition.
  • the network device can return the response information to the terminal through the PDCCH, and the terminal receives the PDCCH from the network device and obtains the response information.
  • the network device may use a UE-specific DCI format or a group common DCI format to return the response information.
  • the network device can indicate ACK or NACK through one bit, for example, 1 represents ACK, and 0 represents NACK.
  • the uplink data transmission mode can be indicated implicitly through ACK and NACK.
  • the network device may explicitly carry the above-mentioned first indication information and the second indication information in the response information.
  • the response information for the uplink data transmission of the terminal is composed of two bits, one bit is used to indicate ACK or NACK, and the other bit is used to indicate the uplink data transmission mode.
  • the network device may also carry the above-mentioned second indication information in an implicit manner, for example, according to different search space (search space, SS) types (such as public search space, terminal-specific search space) of the PDCCH that carries the response information, and/ Or different control resource set (CORESET) types (such as CORESET0, CORESET1), and/or different wireless network temporary identity (RNTI) types used for scrambling, and/or different DCI formats Etc. implicitly indicates different uplink data transmission methods. For example, when the DCI format is the first format, it is used to indicate an uplink transmission mode, and the DCI format is the second format is used to indicate another uplink transmission mode.
  • search space search space
  • SS search space
  • CORESET control resource set
  • RNTI wireless network temporary identity
  • the network device may also send a sequence to the terminal to indicate the response information.
  • the network device may send sequence 1 and sequence 2 to the terminal, sequence 1 represents ACK, and sequence 2 represents NACK.
  • the uplink data transmission mode can be indicated implicitly through ACK and NACK.
  • the network device can send sequence 1, sequence 2, sequence 3, and sequence 4 to the terminal, sequence 1 represents ACK, and sequence 2 represents NACK, sequence 3 indicates that the PDCCH is monitored under the set conditions, and sequence 4 indicates that the uplink data is transmitted in the non-dynamic scheduling mode under the set conditions.
  • sequence 1, sequence 2, sequence 3, and sequence 4 are different from each other.
  • the network device may also return the response information to the terminal through the PDSCH, and the terminal receives the PDSCH from the network device and obtains the response information.
  • the network device may indicate ACK or NACK through one bit, for example, 1 represents ACK, and 0 represents NACK.
  • the uplink data transmission mode can be indicated implicitly through ACK and NACK.
  • the network device may explicitly carry the above-mentioned first indication information and the second indication information in the response information.
  • the response information for the uplink data transmission of the terminal is composed of two bits, one bit is used to indicate ACK or NACK, and the other bit is used to indicate the uplink data transmission mode.
  • the network device may also carry the foregoing second indication information in an implicit manner, for example, implicitly indicate the uplink data transmission mode according to the time-frequency resource location of the PDSCH that sends the response information.
  • the operation performed by the terminal is not limited, and the terminal may or may not monitor the PDCCH.
  • the terminal monitors the PDCCH under a set condition according to the response information; or, according to the response information, the terminal uses a non-dynamic scheduling mode to transmit the second uplink data under the set condition.
  • the second uplink data is data to be sent by the terminal. It can be newly transmitted data. For example, after the terminal sends the first uplink data, the data to be sent has not been sent, and the second uplink data in the data to be sent needs to be sent. It can also be understood that after the terminal sends the first uplink data, there is still new data to be sent, and the second uplink data is the new data to be sent. When the response information is used to indicate that the first uplink data is successfully received, the second uplink data is newly transmitted data.
  • the second uplink data may also be retransmitted data of the first uplink data.
  • the second uplink data is retransmitted data of the first uplink data.
  • the terminal monitors the PDCCH under the set conditions. If the terminal monitors the PDCCH, the terminal transmits the second uplink data packet according to the indication of the monitored PDCCH. If the terminal has not monitored the PDCCH when the non-dynamic scheduling resource of the next cycle arrives, the terminal may choose to use the unlicensed resource to send the second uplink data packet in an unlicensed manner, or may choose to continue to monitor the PDCCH. Regarding how to operate in a scenario where the terminal does not monitor the PDCCH, an agreement or a base station instruction can be used to allow the terminal to use the unlicensed resource to send uplink data in an unlicensed manner when the PDCCH is not monitored and there are available unlicensed resources. Or temporarily stop sending uplink data and continue to monitor PDCCH.
  • the response information instructs the terminal to monitor the PDCCH under set conditions or use a non-dynamic scheduling method to transmit the second uplink data, which avoids the large power consumption of the terminal due to continuous monitoring of the PDCCH. It helps to reduce the power consumption of the terminal to monitor the PDCCH.
  • the above-mentioned setting conditions may include, but are not limited to, the following possibilities.
  • the setting condition is within a certain duration, for example, the duration is recorded as the first duration.
  • the response information is used to indicate to monitor the PDCCH within the first duration, or to indicate that the non-dynamic scheduling mode is used to transmit uplink data within the first duration.
  • the first duration is a certain length in the time domain, for example, it can be a subframe, one or more time slots, it can also be one or more periods of non-dynamic scheduling, and it can also be a certain absolute time, such as 1ms, 2ms , 5ms.
  • the first time length may be indicated by at least two of the start time, the end time, and the first time length.
  • at least two of the start time, the end time, and the first duration may be agreed upon by the terminal and the network device, or may be stipulated by the protocol, or may be delivered to the terminal by the network device through instruction information.
  • the indication information includes radio resource control (radio resource control, RRC), media access layer control element (MAC control element, MAC CE), DCI, or the response information.
  • the foregoing duration may also be referred to as a time window, and the first duration may also be referred to as a first time window.
  • the time window can be indicated by at least two of the starting point, the terminal, or the duration.
  • the starting moment of the first duration is the last symbol of the response information received by the terminal, and the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the end time of the first duration is the last symbol on the non-dynamic scheduling resource of the next cycle.
  • the next cycle refers to the next cycle of the non-dynamic scheduling resource occupied by the terminal for transmitting the first uplink data.
  • the first duration can be timed by a timer.
  • the response information is used to indicate that the PDCCH is monitored within the first duration.
  • the terminal starts a timer according to the response information, and monitors the PDCCH during the timer timing. When the timer expires, the indication of the response message becomes invalid.
  • the response information is used to indicate that the non-dynamic scheduling mode is used to transmit uplink data within the first time period. Then the terminal starts or restarts the timer according to the response information, and uses the non-dynamic scheduling mode to transmit the uplink data during the timer timing. When the timer expires, the indication of the response message becomes invalid.
  • the terminal receives another response message from the network device during the timer counting, the terminal restarts the timer, and during the counting period of the restart timer, determines the uplink data transmission according to the other response message. the way.
  • the response information is used to indicate the timer used when monitoring the PDCCH in the first duration, and the response information is used to indicate the timer used to transmit the uplink data in the non-dynamic scheduling mode within the first duration may be the same or different. If different:
  • the response information is used to indicate to monitor the PDCCH within the first time period.
  • the terminal starts or restarts the first timer according to the response information, and monitors the PDCCH during the timing of the first timer.
  • the first timer expires, and the indication of the response message becomes invalid.
  • the response information is used to indicate that the non-dynamic scheduling mode is used to transmit uplink data within the first time period. Then the terminal starts or restarts the second timer according to the response information, and uses the non-dynamic scheduling mode to transmit the uplink data during the timing of the second timer. The second timer expires, and the indication of the response message becomes invalid.
  • the terminal receives another response message from the network device during the counting of the first timer. If the other response information is used to indicate to monitor the PDCCH within the first duration, the terminal restarts the first timer; if the other response information is used to indicate that the non-dynamic scheduling mode is used to transmit uplink data within the first duration, Then the terminal stops the first timer and starts the second timer.
  • the terminal starts or restarts the timer according to the response information, which may mean that the terminal starts or restarts the timer when the terminal receives the response information.
  • the response information includes the first indication information and the second indication information
  • the terminal starts or restarts the timer when receiving the second indication information.
  • the response information includes ACK/NACK
  • the ACK/NACK is used to implicitly indicate the uplink transmission mode, and the terminal starts or restarts the timer when receiving the ACK/NACK.
  • the terminal receives another response message from the network device. If the other response information is used to indicate to monitor the PDCCH within the first duration, the terminal stops the second timer and starts the first timer; if the other response information is used to indicate the use within the first duration When the uplink data is transmitted in a non-dynamic scheduling manner, the terminal restarts the second timer.
  • the set condition is within M uplink data transmissions.
  • M is a positive integer, and M is greater than or equal to 1.
  • the response information is used to indicate to monitor the PDCCH during M uplink data transmissions, or to indicate to use non-dynamic scheduling to transmit uplink data during M uplink data transmissions.
  • M uplink data transmissions can refer to the initial transmission of M data packets, that is, any transmission of M times is the initial transmission of a new data packet; M uplink data transmissions can also refer to the initial transmission of an existing data packet , There is also retransmission of data packets.
  • any one of M uplink data transmissions refers to: K repetitions that can include one data packet.
  • K> 1, K is a positive integer.
  • K repetitions can ensure the reliability of the data packet.
  • K repetitions means that K repetitive data packets are bound or aggregated together and transmitted to the network device at one time, which is an uplink data transmission.
  • the terminal may pre-appoint the value of M with the network device, or the value of M may also be specified by the protocol, or the network device sends instruction information to the terminal, and the terminal determines the value of M through the instruction information .
  • the indication information can be carried by RRC, MAC CE, or DCI, etc., or can be carried in the response information.
  • M times can be realized by a counter.
  • the response information is used to indicate to monitor the PDCCH during M uplink data transmissions.
  • the terminal starts or restarts the counter according to the response information, and monitors the PDCCH during the period when the count value of the counter is less than or equal to M. If the count value of the counter is greater than M, the indication of the response message is invalid.
  • the response information is used to indicate that a non-dynamic scheduling mode is used to transmit uplink data within M uplink data transmissions. Then the terminal starts or restarts the counter according to the response information, and uses the non-dynamic scheduling mode to transmit uplink data during the period when the count value of the counter is less than or equal to M. If the count value of the counter is greater than M, the indication of the response message is invalid.
  • the terminal receives another response message from the network device during the period when the count value of the counter is less than or equal to M, the terminal restarts the counter, and during the period when the count value of the restart counter is less than or equal to M, according to the other response Information to determine the uplink data transmission mode.
  • the response information is used to indicate the counter used when monitoring the PDCCH in M uplink data transmissions, and the response information is used to indicate the counter used to transmit uplink data in M uplink data transmissions using the non-dynamic scheduling mode.
  • the counter can be the same or can be different. If different:
  • the response information is used to indicate to monitor the PDCCH during M uplink data transmissions.
  • the terminal starts or restarts the first counter according to the response information, and monitors the PDCCH during the period when the count value of the first counter is less than or equal to M.
  • the count value of the first counter is greater than M, and the indication of the response message is invalid.
  • the response information is used to indicate that the non-dynamic scheduling mode is used to transmit the uplink data within M uplink data transmissions. Then the terminal starts or restarts the second counter according to the response information, and uses the non-dynamic scheduling mode to transmit the uplink data during the period when the count value of the second counter is less than or equal to M. The count value of the second counter is greater than M, and the indication of the response message is invalid.
  • the terminal receives another response message from the network device. If the other response information is used to indicate to monitor the PDCCH during M uplink data transmissions, the terminal restarts the first counter; if the other response information is used to indicate to use non-dynamic scheduling to transmit uplink data during M uplink data transmissions , The terminal stops the first counter and starts the second counter.
  • the terminal receives another response message from the network device. If the other response information is used to indicate to monitor the PDCCH during M uplink data transmissions, the terminal stops the second counter and starts the first counter; if the other response information is used to indicate the use of PDCCH during M uplink data transmissions When the uplink data is transmitted in a non-dynamic scheduling manner, the terminal restarts the second counter.
  • the first uplink data is represented by data packet 1.
  • the second uplink data is the retransmitted data of the first uplink data, that is, the retransmitted data of data packet 1.
  • the terminal uses the unlicensed GF resource to send the initially transmitted data packet 1 at time 1.
  • the network device did not correctly receive the data packet 1 sent by the terminal using the unlicensed resource at time 1.
  • the network device sends the response information of the data packet 1 to the terminal.
  • the response information of the data packet 1 is used to indicate that the data packet 1 is not received correctly/successfully, and is also used to instruct the terminal to monitor the PDCCH within the first time period.
  • the response information includes first indication information and second indication information
  • the first indication information is NACK, which is used to indicate that the data packet 1 has not been successfully received.
  • the second indication information is used to instruct the terminal to monitor the PDCCH within the first duration.
  • the response information includes NACK, which is used to indicate that the data packet 1 is not successfully received, and NACK is also used to indicate that the terminal monitors the PDCCH within the first period of time. The terminal receives the response information and monitors the PDCCH within the first time period.
  • the start time of the first duration is the last symbol of the response message received by the terminal
  • the end time of the first duration is the last symbol on the non-dynamic GF scheduling resource of the next period.
  • the terminal monitors the DCI sent by the network device through the PDCCH within the first time period, and obtains the uplink grant (UL grant) carried by the DCI.
  • the terminal sends the PUSCH on the GB time-frequency resource indicated by the DCI, and the PUSCH carries the retransmission data of the data packet 1.
  • the first uplink data is represented by data packet 1, assuming that the second uplink data is newly transmitted data, and the second uplink data is represented by data packet 2.
  • Data packet 2 can represent a data packet transmitted one or more times.
  • the terminal uses the unlicensed GF resource to send the initially transmitted data packet 1 at time 1.
  • the network device correctly receives the data packet 1 sent by the terminal at time 1 using non-dynamic scheduling resources (or unlicensed resources).
  • the network device sends data packet 1 response information to the terminal.
  • the response information is used to indicate the correct/successful reception of data packet 1, and is also used to instruct the terminal to use non-dynamic scheduling to transmit data packet 2 in the first time period, that is, in the first time period PDCCH is not monitored internally.
  • the response information includes first indication information and second indication information
  • the first indication information is ACK, which is used to indicate that the data packet 1 is successfully received.
  • the second indication information is used to instruct the terminal to use the non-dynamic scheduling mode to transmit the data packet 2 within the first time period.
  • the response information includes ACK, the ACK is used to indicate that the data packet 1 is successfully received, and the ACK is also used to instruct the terminal to use the non-dynamic scheduling method to transmit the data packet 2 within the first time period.
  • the terminal receives the response information, and transmits the data packet 2 in the non-dynamic scheduling mode within the first time period.
  • the start moment of the first duration is the last symbol of the response message received by the terminal
  • the end moment of the first duration is the last symbol on the non-dynamic scheduling GF resource of the next period.
  • the terminal transmits data packet 2 on the non-dynamically scheduled GF resource of the next period in the first time period.
  • the second uplink data is the retransmitted data of the data packet 1.
  • the response information received by the terminal from the network device is used to indicate that the data packet 1 is not successfully received, and is used to indicate that the PDCCH is not to be monitored within the first time period, and the retransmission data of the data packet 1 is transmitted in a non-dynamic scheduling manner.
  • data packet 2 is newly transmitted data, and the response information received by the terminal from the network device is used to indicate that the data packet 1 is successfully received, and is used to indicate that the PDCCH should be monitored within the first time period. .
  • the first uplink data is represented by data packet 1
  • the second uplink data is data transmitted after the first uplink data. It can be retransmitted data of data packet 1, or it can be newly transmitted data. It is represented by data packet 2.
  • the terminal uses the unlicensed GF resource to send the initially transmitted data packet 1 at time 1.
  • the network device did not correctly receive the data packet 1 sent by the terminal using the unlicensed resource at time 1.
  • the network device sends the response information of the data packet 1 to the terminal.
  • the response information is used to indicate that the data packet 1 is not received correctly/successfully, and is also used to instruct the terminal to monitor the PDCCH during M (ie, 2) uplink data transmissions.
  • the response information includes first indication information and second indication information, and the first indication information is NACK, which is used to indicate that the data packet 1 has not been successfully received.
  • the second indication information is used to instruct the terminal to monitor the PDCCH during uplink data transmission M times (that is, 2 times).
  • the response information includes NACK, which is used to indicate that data packet 1 is not successfully received, and NACK is also used to indicate that the terminal monitors the PDCCH during M (ie, 2) uplink data transmissions.
  • the terminal receives the response information and monitors the PDCCH during M times (that is, 2 times) uplink data transmissions.
  • the terminal monitors the DCI sent by the network device through the PDCCH in the two uplink data transmissions after time 1, and obtains the uplink grant (UL grant) carried by the DCI.
  • the terminal sends PUSCH on the GB time-frequency resource indicated by DCI during the first uplink data transmission and the second uplink data transmission after time 1 , PUSCH carries newly transmitted or retransmitted data, for example, the retransmitted data of data packet 1 is carried during the first uplink data transmission, and the initial transmission data of data 2 is carried during the second uplink data transmission.
  • the first uplink data is represented by data packet 1
  • the second uplink data is data transmitted after the first uplink data. It can be retransmitted data of data packet 1, or it can be newly transmitted data. It is represented by data packet 2.
  • the terminal uses the unlicensed GF resource to send the initially transmitted data packet 1 at time 1.
  • the network device correctly receives the data packet 1 sent by the terminal using the unlicensed resource at time 1.
  • the network device sends the response information of data packet 1 to the terminal.
  • the response information is used to indicate the correct/successful reception of data packet 1; it is also used to instruct the terminal not to monitor the PDCCH during M times (that is, 2 times) uplink data transmission, and use non-dynamic Uplink data is transmitted in a scheduling mode.
  • the response information includes first indication information and second indication information, and the first indication information is ACK, which is used to indicate that the data packet 1 is successfully received.
  • the second indication information is used to instruct the terminal to use the non-dynamic scheduling mode to transmit the uplink data within M (ie, 2) uplink data transmissions.
  • the response information includes ACK, ACK is used to indicate that data packet 1 is successfully received, and ACK is also used to indicate that the terminal is in M times (ie, 2) uplink data transmissions, using non-dynamic Uplink data is transmitted in a scheduling mode.
  • the terminal receives the response information, and uses the non-dynamic scheduling mode to transmit the uplink data within M times (that is, 2 times) of uplink data transmission.
  • the terminal transmits the uplink data on the non-dynamically scheduled GF resources in the next two cycles within M times (that is, 2 times) of uplink data transmission. For example, the next cycle at time 1 is time 2, and the next cycle at time 2 is time 3.
  • the initial transmission data of data packet 2 is transmitted on the GF resource at time 2, and the data packet 1 is transmitted on the GF resource at time 3. Retransmitted data.
  • Figures 8 and 9 are only two examples. In actual applications, there may be other possible implementations.
  • the response information received by the terminal from the network device is used to indicate that data packet 1 was not successfully received, and used to indicate not to monitor the PDCCH during M uplink data transmissions, and to use non-dynamic The uplink data is transmitted twice in the scheduling mode.
  • the response information received by the terminal from the network device is used to indicate that data packet 1 is successfully received, and is used to indicate that the PDCCH should be monitored during M uplink data transmissions, and the DCI indicates Uplink data is transmitted twice on the uplink resource.
  • an embodiment of the present application also provides a data transmission method, which can determine a suitable random access mode for the terminal.
  • Random access methods include four-step random access and two-step random access.
  • the traditional four-step random access process includes the following four steps:
  • Step 1 The terminal sends a random access preamble sequence to the network device, which is called message 1 (Msg1).
  • Msg1 message 1
  • Step 2 After detecting the Msg1 sent by the terminal, the network device feeds back a random access response (RAR) to the terminal, which is called Msg2.
  • RAR random access response
  • Step 3 The terminal receives Msg2, and sends a random access request to the network device according to the instructions of the scheduling information, which is called Msg3;
  • Step 4 After receiving the Msg3 sent by the terminal, the base station sends the information used to indicate the contention resolution result to the terminal, which is called Msg4.
  • MTC machine type communication
  • NB-IoT narrowband internet of things
  • the characteristics of data transmission are that the amount of data is small and the data arrival time is not determine. If a small data packet with a small amount of data is transmitted after random access is completed according to the above-mentioned traditional four-step random access method, the utilization efficiency of wireless resources will be reduced. A large amount of resources are used for the process of RRC connection establishment, and a small amount of resources are used for data transmission. On the other hand, this method causes excessive power consumption of the terminal and cannot meet the downlink data delay requirement.
  • NR In order to reduce the power consumption of the terminal and the random access delay of the terminal, NR also supports a two-step random access. Two-step random access can also be called EDT. The process of two-step random access is as follows.
  • Step 1 The terminal sends a message A (MsgA) to the network device.
  • MsgA message A
  • the MsgA includes random access preamble sequence and uplink data.
  • the step of the terminal sending the MsgA to the network device may include: the terminal sends a random access preamble sequence to the network device through a physical random access channel (physical random access channel, PRACH), and sends uplink data to the base station through the PUSCH.
  • PRACH and PUSCH can be continuous in time or discontinuous.
  • the terminal does not monitor the feedback information/response information of the random access preamble sequence sent by the terminal by the network equipment between sending the random access preamble sequence and sending uplink data;
  • Step 2 After receiving MsgA, the network device sends feedback information of MsgA to the terminal, which is called MsgB.
  • MsgB may include feedback on whether MsgA is received correctly, and may also include information for indicating the result of the contention resolution.
  • two-step random access can reduce access delay and signaling overhead. But under normal circumstances, two-step random access has higher requirements on the channel environment between the terminal and the network device. If the network equipment configures the terminal to use only four-step random access, the terminal's access delay will be affected. If the network equipment configures the terminal to use only two-step random access, the reliability and success rate of the terminal's random access will be affected in the case of a poor channel environment. In a possible implementation manner, the terminal can measure the channel environment before random access, and determine the random access mode according to the measurement result. However, this implementation mode will bring additional power consumption to the terminal due to the measurement. Terminals with low power consumption requirements are not feasible.
  • the data transmission method provided in the embodiment of the present application can determine a suitable random access method for the terminal, so as to take into account the dual effects of low delay, low power consumption and reliability.
  • the flow of the data transmission method is as follows.
  • the terminal sends a first message to a network device, and the network device receives the first message from the terminal.
  • the network device sends a second message to the terminal according to the first message, and the terminal receives the second message from the network device, where the second message is used to instruct the terminal to use a random access mode under set conditions;
  • the terminal performs random access according to the second message in the random access mode indicated by the second message used under set conditions.
  • the terminal uses four-step random access when sending the first message
  • the first message is Msg1 in the four-step random access.
  • the second message is Msg2 or Msg4 for four-step random access. If Msg2 instructs the terminal to use four-step random access under the set conditions, after receiving the Msg2, the terminal continues to use the four-step random access under the set conditions according to the instructions of Msg2. If Msg4 instructs the terminal to use four-step random access under the set conditions, after receiving the Msg4, the terminal continues to use the four-step random access under the set conditions according to the instructions of Msg4.
  • Msg2 instructs the terminal to use two-step random access under the set conditions, after receiving Msg2, the terminal can set the conditions according to the instructions of Msg2 after completing steps 3 and 4 of this four-step random access Use two-step random access in the next step; you can also use the two-step random access under the set conditions directly according to the instructions of Msg2 without continuing to perform steps 3 and 4 of this four-step random access after receiving Msg2.
  • Msg4 instructs the terminal to use two-step random access under the set conditions, after receiving the Msg4, the terminal uses the two-step random access under the set conditions according to the instructions of Msg4.
  • the terminal uses two-step random access when sending the first message
  • the first message is MsgA in the two-step random access process.
  • the second message is MsgB for two-step random access. If MsgB instructs the terminal to use four-step random access under the set conditions, after receiving the MsgB, the terminal uses the four-step random access under the set conditions according to the instructions of the MsgB. If MsgB instructs the terminal to use two-step random access under the set conditions, after receiving the MsgB, the terminal uses the two-step random access under the set conditions according to the instructions of the MsgB.
  • the setting condition can be within a time window or within a certain period of time. Then, the terminal performs random access according to the second message in the random access mode indicated by the second message used within the time window.
  • the way of indicating the time window and the way of timing the time window by the terminal can refer to the relevant description above, which will not be repeated here.
  • the set condition may be within M random accesses, then the terminal performs random access according to the second message in the random access mode indicated by the second message used in the M random accesses.
  • the terminal performs random access according to the second message in the random access mode indicated by the second message used in the M random accesses.
  • expressions such as “received from a network device” and “sent to a network device” are not limited to the direct reception and transmission of radio frequency signals, but only describe the original source or final destination of the information/message/data. However, it may have been processed by other devices or equipment during the transmission process.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 1100.
  • the apparatus 1100 may be a terminal or a network device, or a terminal or a device in the network device, or may be able to interact with the terminal or Matching device used by network equipment.
  • the device 1100 may include modules that perform one-to-one correspondence of the methods/operations/steps/actions performed by the terminal or network equipment in the foregoing method embodiments.
  • the modules may be hardware circuits, software, or Hardware circuit combined with software implementation.
  • the device may include a processing module 1101 and a communication module 1102. The processing module 1101 is used to call the communication module 1102 to perform receiving and/or sending functions.
  • the communication module 1102 is configured to transmit the first uplink data to the network device on the non-dynamic scheduling resource; and is configured to receive response information for the first uplink data from the network device, the response information is used to indicate whether the first uplink data is successfully received;
  • the processing module 1101 is used to determine according to the response information to monitor the physical downlink control channel PDCCH under set conditions, and the PDCCH is used to schedule uplink data transmission, or the processing module 1101 is used to determine according to the response information to use non-dynamic scheduling resources under set conditions Transmit the second uplink data.
  • the communication module 1102 is used to receive first uplink data from the terminal; and used to send response information for the first uplink data to the terminal; wherein the response information is used to indicate whether the first uplink data is successfully received, and to indicate uplink transmission Mode; wherein, the uplink transmission mode includes uplink transmission based on dynamic scheduling under set conditions, or, under set conditions, using non-dynamic scheduling resources to transmit second uplink data.
  • the processing module 1101 and the communication module 1102 may also be used to perform other corresponding steps or operations performed by the terminal or network device in the foregoing method embodiment, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • an apparatus 1200 provided by an embodiment of the application is used to implement the functions of the terminal or network device in the foregoing method.
  • the device may be a network device, a device in a network device, or a device that can be used in matching with the network device.
  • the device may be a terminal, a device in the terminal, or a device that can be matched and used with the terminal.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1200 includes at least one processor 1220, configured to implement the functions of the terminal or the network device in the method provided in the embodiment of the present application.
  • the apparatus 1200 may further include a communication interface 1210.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1210 is used for the device in the device 1200 to communicate with other devices.
  • the apparatus 1200 is a network device
  • the other device may be a terminal.
  • the other device may be a network device.
  • the processor 1220 uses the communication interface 1210 to send and receive data, and is used to implement the method in the foregoing method embodiment.
  • the processor 1220 is configured to receive the first uplink data from the terminal by using the communication interface, and send response information for the first uplink data to the terminal, where the response information is used to indicate the first uplink data.
  • the uplink transmission mode includes uplink transmission based on dynamic scheduling under set conditions, or using non-dynamic scheduling resources to transmit second uplink data under set conditions.
  • the processor 1220 is configured to use the communication interface 1210 to transmit the first uplink data to the network device on non-dynamic scheduling resources, and to receive response information for the first uplink data from the network device,
  • the response information is used to indicate whether the first uplink data is successfully received;
  • the processor 1220 is used to determine, according to the response information, to monitor the physical downlink control channel PDCCH under set conditions.
  • the PDCCH is used to schedule uplink data transmission, or is used to respond according to the response.
  • the information determines that the non-dynamic scheduling resource is used to transmit the second uplink data under the set condition.
  • the processor 1220 and the communication interface 1210 may also be used to perform other corresponding steps or operations performed by the terminal or network device in the foregoing method embodiment, which will not be repeated here.
  • the apparatus 1200 may further include at least one memory 1230 for storing program instructions and/or data.
  • the memory 1330 and the processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may operate in cooperation with the memory 1230.
  • the processor 1220 may execute program instructions stored in the memory 1230. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1210, the processor 1220, and the memory 1230.
  • the memory 1230, the communication interface 1220, and the communication interface 1210 are connected by a bus 1240.
  • the bus is represented by a thick line in FIG. 12, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 12 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed on an apparatus, the apparatus enables the apparatus to implement the method described in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, which when executed on an apparatus, causes the apparatus to implement the method described in the foregoing method embodiment.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,用以在上行数据传输中降低终端功耗并保证传输可靠性。该方法包括:终端在非动态调度资源上向网络设备传输第一上行数据,所述终端从所述网络设备接收针对所述第一上行数据的响应信息,所述响应信息用于指示所述第一上行数据是否接收成功。所述响应信息还用于指示终端在设定条件下是否监听物理下行控制信道PDCCH,若指示在该设定条件下不监听PDCCH,则该响应信息还可以进一步用于指示在该设定条件下使用所述非动态调度资源传输第二上行数据。

Description

一种数据传输方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
在蜂窝网移动通信系统中,上行数据传输的方式包括基于动态授权(grant based,GB)或动态调度的数据传输,以及非动态调度的数据传输。非动态调度的数据传输包括半持续调度SPS(semi-persistent scheduling)或免授权(grant-free,GF)的数据传输。其中,基于动态授权(grant based,GB)或动态调度的数据传输的过程包括:终端有上行数据传输需求时,通常向基站上报非空的缓存状态报告(buffer state report,BSR),基站向终端发送下行控制信息(downlink control information,DCI),DCI中携带上行授权(UL grant)。由于动态调度可以高效利用终端与基站之间的实时信道信息,为终端的每次传输指定合适的时频资源的位置、大小,以及合适的传输参数等,动态调度的上行传输通常具有更高的可靠性。
而非动态调度的数据传输的过程包括:基站通过高层信令和/或物理层信令以半静态(semi-static)的方式为终端配置上行数据传输所使用的时频资源、以及传输参数等,终端有上行数据传输需求时,不需要经历向基站发送SR或BSR,并且不需要等待上行授权的过程,而是直接使用半静态配置的时频资源和传输参数向基站发送数据,实现数据的即来即走,从而达到降低传输时延、信令开销和终端功耗的目的。
发明内容
本申请提供一种数据传输方法及装置,用以在上行数据传输中降低终端功耗并保证传输可靠性。
第一方面,提供一种数据传输方法,该方法可以通过以下步骤实现:终端在非动态调度资源上向网络设备传输第一上行数据,所述终端从所述网络设备接收针对所述第一上行数据的响应信息,所述响应信息用于指示所述第一上行数据是否接收成功。所述响应信息还用于指示终端在设定条件下是否监听物理下行控制信道PDCCH,若指示在该设定条件下不监听PDCCH,则该响应信息还可以进一步用于指示在该设定条件下使用所述非动态调度资源传输第二上行数据。其中,监听PDCCH可以认为终端使用动态调度的上行传输。在非动态调度资源上传输第一上行数据可以认为终端使用非动态调度的方式进行上行传输。那么在使用非动态调度的方式进行上行传输的基础上,通过响应消息来指示终端在接下来将要使用的上行传输方式,可能指示终端使用非动态调度或动态调度的方式进行上行传输。能够动态指示终端的上行传输方式,例如可以根据终端当前所处的信道条件或终端的需求指示终端的上行传输方式。兼顾动态调度的上行传输的更好的可靠性性能以及非动态调度的上行传输具有较低传输时延较低信令开销并降低终端功耗的性能,兼容高可靠性和低时延的双重目的。避免终端在没有得到响应信息的指示的情况下需要一直监听PDCCH导致功耗的浪费,通过响应信息的指示使得终端在需要监听的时候才去监听PDCCH,不需要监听的时候不去监听,从而节省终端的功耗。
非动态调度上行传输又可以称为免授权(grant-free,GF)上行传输、SPS上行传输、免调度上行传输、免动态调度上行传输、免动态授权上行传输、配置授权的上行传输(uplink transmission with configured grant)或高层配置。
在一个可能的设计中,所述响应信息用于指示终端在设定条件下监听物理下行控制信道PDCCH,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH。所述PDCCH用于调度上行数据传输。
在一个可能的设计中,所述响应信息还用于指示终端在设定条件下使用所述非动态调度资源传输第二上行数据。所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据。其中,使用所述非动态调度资源传输第二上行数据可以这样理解,例如所述非动态调度资源可能是周期性的,在一个周期上传输第一上行数据,在下一个周期上传输第二上行数据。
针对第一上行数据的响应信息也可以是针对第一上行数据的反馈信息,例如该响应信息可以是混合自动重传请求HARQ反馈信息。该响应信息中还可能包括HARQ反馈信息和其他指示信息。
在一个可能的设计中,设定条件可以是指时间窗内,例如在一定的时长内。那么,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,可以理解为:所述终端根据所述响应信息确定在时间窗内监听PDCCH;所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,可以理解为:所述终端根据所述响应信息确定在时间窗内使用所述非动态调度资源传输第二上行数据。通过指示终端在时间窗内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。
在一个可能的设计中,所述响应信息包括所述时间窗的指示信息。可选的,时间窗的指示信息也可以单独发送,例如可以在RRC消息、MAC CE或DCI中携带该时间窗的指示信息。时间窗的指示信息可以用于指示时间窗的起始时刻、结束时刻和时间窗的长度(或时长)。通过指示上行传输方式生效的时间窗,来实现精细粒度的控制,提升传输可靠性、终端功耗以及资源利用率折中效果。
可选的,所述时间窗的起始时刻包括接收到所述响应信息的最后一个符号。
在一个可能的设计中,可以通过定时器来实现时间窗的监控。例如,所述终端响应于所述响应信息,启动或重启定时器,所述定时器的计时时长为所述时间窗的长度;若所述响应信息用于指示监听PDCCH,所述终端在所述定时器运行期间监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述终端在所述定时器运行期间,所述终端使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述设定条件可以是指在M次上行数据传输内,那么,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,可以理解为:所述终端根据所述响应信息确定在M次上行数据传输中的每次上行数据传输前监听物理下行控制信道PDCCH;所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,可以理解为:所述终端根据所述响应信息确定在M次上行数 据传输中的每次上行数据传输前使用所述非动态调度资源传输第二上行数据。通过指示终端在M次上行数据中的每次上行数据传输前监听PDCCH或者使用非动态调度资源传输进行M次上行数据传输,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。通过指示上行传输方式在M次上行传输内生效,来实现精细粒度的控制,提升传输可靠性、终端功耗以及资源利用率折中效果。
可选的,所述响应信息中包括M;或者,终端从网络设备接收RRC信令、MAC CE或DCI,RRC信令、MAC CE或DCI中携带M。
在一个可能的设计中,可以通过计数器来实现上行传输次数的监控。例如,所述终端响应于所述响应信息,启动或重启计数器;若所述响应信息用于指示监听PDCCH,所述终端在所述计数器记录的M次上行数据传输内(或者在计数器记录的次数超过M次之前),监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述终端使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述M次上行数据传输中每一次传输包括同一数据的K次重复传输。K次重复能够保证数据包的可靠性。通过在一次上行数据传输中传输K次重复的数据包,不用等待网络设备的反馈即可达到重传的目的,有助于降低时延。
在一个可能的设计中,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,例如,第一指示信息中的第一值用于指示第一上行数据接收成功,第一指示信息中的第二值用于指示第一上行数据没有接收成功。例如,第一值为ACK,第二值为NACK。所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
可选的,在第二指示信息指示上行数据传输方式时,可以选择隐示指示,例如,根据发送携带该响应信息的PDCCH的搜索空间(search space,SS)类型(如公共搜索空间、终端专用搜索空间)、控制资源集(control resource set,CORESET)类型(如CORESET0、CORESET1)、加扰的无线网络临时标识(radio network temporary identity,RNTI)类型、DCI格式等隐式指示上行数据传输方式。
在一个可能的设计中,所述响应信息包括正确应答指令ACK;其中,所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述响应信息包括否定应答指令NACK;其中,所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
通过ACK和NACK隐示指示上行传输方式,能够节省开销。
在一个可能的设计中,所述第二上行数据时第一上行数据后面待传的数据,可能是第一上行数据的重传数据,也可能是新传的数据。例如,所述响应信息用于指示所述第一上行数据接收成功,所述第二上行数据是新传的数据;或者,所述响应信息用于指示所述第一上行数据没有接收成功,所述第二上行数据是所述第一上行数据的重传数据。
在一个可能的设计中,所述终端根据在所述设定条件下监听到的PDCCH,传输所述第二上行数据;或者,若在所述设定条件下未监听到PDCCH,则使用所述非动态调度方 式传输所述第二上行数据。因为终端在接收到响应信息后,可能根据响应信息来监听PDCCH,如果没有监听到PDCCH,可以继续使用非动态调度资源传输第二上行数据,无需一直等待PDCCH的调度,避免迟久监听不到PDCCH导致传输时延的增大。
在一个可能的设计中,所述终端向所述网络设备发送缓存状态报告BSR,所述BSR指示终端缓存有数据。这样网络设备在接收到BSR后,可能根据BSR确定为终端指示接下来的上行数据传输方式。
第二方面,提供一种数据传输方法,该方法可以通过以下步骤实现:网络设备从终端接收第一上行数据;所述网络设备向终端发送针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式可以包括:在设定条件下基于动态调度的上行传输,或者,在所述设定条件下使用所述非动态调度资源传输第二上行数据。其中,监听PDCCH可以认为终端使用动态调度的上行传输。在非动态调度资源上传输第一上行数据可以认为终端使用非动态调度的方式进行上行传输。那么在使用非动态调度的方式进行上行传输的基础上,通过响应消息来指示终端在接下来将要使用的上行传输方式,可能指示终端使用非动态调度或动态调度的方式进行上行传输。能够动态指示终端的上行传输方式,例如可以根据终端当前所处的信道条件或终端的需求指示终端的上行传输方式。兼顾动态调度的上行传输的更好的可靠性性能以及非动态调度的上行传输具有较低传输时延较低信令开销并降低终端功耗的性能,兼容高可靠性和低时延的双重目的。避免终端在没有得到响应信息的指示的情况下需要一直监听PDCCH导致功耗的浪费,通过响应信息的指示使得终端在需要监听的时候才去监听PDCCH,不需要监听的时候不去监听,从而节省终端的功耗。
非动态调度又可以称为免授权(grant-free,GF)、SPS、免调度、免动态调度、免动态授权或高层配置。
在一个可能的设计中,上行传输方式包括在时间窗内基于动态调度的上行传输(或者在时间窗内监听物理下行控制信道PDCCH),或者,在所述时间窗内使用所述非动态调度资源传输第二上行数据。通过指示终端在时间窗内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。
在一个可能的设计中,上行传输方式包括在M次上行数据传输中的每次上行传输前监听物理下行控制信道PDCCH,或者,使用所述非动态调度资源进行M次上行传输第二上行数据。通过指示终端在M次上行数据内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。通过指示上行传输方式在M次上行传输内生效,来实现精细粒度的控制,提升传输可靠性、终端功耗以及资源利用率折中效果。
在一个可能的设计中,所述响应信息包括第一指示信息和第二指示信息,所述第一指 示信息用于指示所述第一上行数据是否接收成功,例如,第一指示信息中的第一值用于指示第一上行数据接收成功,第一指示信息中的第二值用于指示第一上行数据没有接收成功。例如,第一值为ACK,第二值为NACK。所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
可选的,在第二指示信息指示上行数据传输方式时,可以选择隐示指示,例如,根据发送携带该响应信息的PDCCH的搜索空间(search space,SS)类型(如公共搜索空间、终端专用搜索空间)、控制资源集(control resource set,CORESET)类型(如CORESET0、CORESET1)、加扰的无线网络临时标识(radio network temporary identity,RNTI)类型、DCI格式等隐式指示上行数据传输方式。
在一个可能的设计中,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。通过ACK和NACK隐示指示上行传输方式,能够节省开销。
在一个可能的设计中,所述网络设备从所述终端发送缓存状态报告BSR,所述BSR指示终端缓存有数据。这样网络设备在接收到BSR后,可能根据BSR确定为终端指示接下来的上行数据传输方式。
第三方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
通信模块,用于在非动态调度资源上向网络设备传输第一上行数据,还用于从所述网络设备接收针对所述第一上行数据的响应信息,所述响应信息用于指示所述第一上行数据是否接收成功。所述响应信息还用于指示处理模块在设定条件下是否监听物理下行控制信道PDCCH,若指示在该设定条件下不监听PDCCH,则该响应信息还可以进一步用于指示在该设定条件下使用所述非动态调度资源传输第二上行数据。其中,监听PDCCH可以认为终端使用动态调度的上行传输。在非动态调度资源上传输第一上行数据可以认为终端使用非动态调度的方式进行上行传输。那么在使用非动态调度的方式进行上行传输的基础上,通过响应消息来指示终端在接下来将要使用的上行传输方式,可能指示终端使用非动态调度或动态调度的方式进行上行传输。能够动态指示终端的上行传输方式,例如可以根据终端当前所处的信道条件或终端的需求指示终端的上行传输方式。兼顾动态调度的上行传输的更好的可靠性性能以及非动态调度的上行传输具有较低传输时延较低信令开销并降低终端功耗的性能,兼容高可靠性和低时延的双重目的。避免终端在没有得到响应信息的指示的情况下需要一直监听PDCCH导致功耗的浪费,通过响应信息的指示使得终端在需要监听的时候才去监听PDCCH,不需要监听的时候不去监听,从而节省终端的功耗。
非动态调度又可以称为免授权(grant-free,GF)、SPS、免调度、免动态调度、免动态授权或高层配置。
在一个可能的设计中,所述响应信息用于指示处理模块在设定条件下监听物理下行控 制信道PDCCH,所述处理模块用于根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH。所述PDCCH用于调度上行数据传输。
在一个可能的设计中,所述响应信息还用于指示终端在设定条件下使用所述非动态调度资源传输第二上行数据。所述处理模块用于根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据。其中,使用所述非动态调度资源传输第二上行数据可以这样理解,例如所述非动态调度资源可能是周期性的,在一个周期上传输第一上行数据,在下一个周期上传输第二上行数据。
针对第一上行数据的响应信息也可以是针对第一上行数据的反馈信息,例如该响应信息可以是混合自动重传请求HARQ反馈信息。该响应信息中还可能包括HARQ反馈信息和其他指示信息。
在一个可能的设计中,设定条件可以是指时间窗内,例如在一定的时长内。那么,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,可以理解为:所述处理模块用于根据所述响应信息确定在时间窗内监听PDCCH;所述处理模块用于根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,可以理解为:所述处理模块用于根据所述响应信息确定在时间窗内使用所述非动态调度资源传输第二上行数据。通过指示终端在时间窗内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。
在一个可能的设计中,所述响应信息包括所述时间窗的指示信息。可选的,时间窗的指示信息也可以单独发送,例如可以在RRC消息、MAC CE或DCI中携带该时间窗的指示信息。时间窗的指示信息可以用于指示时间窗的起始时刻、结束时刻和时间窗的长度(或时长)。通过指示上行传输方式生效的时间窗,来实现精细粒度的控制,提升传输可靠性、终端功耗以及资源利用率折中效果。
可选的,所述时间窗的起始时刻包括接收到所述响应信息的最后一个符号。
在一个可能的设计中,可以通过定时器来实现时间窗的监控。例如,所述处理模块用于响应于所述响应信息,启动或重启定时器,所述定时器的计时时长为所述时间窗的长度;若所述响应信息用于指示监听PDCCH,所述处理模块用于在所述定时器运行期间监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述处理模块用于在所述定时器运行期间,使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述设定条件可以是指在M次上行数据传输内,那么,所述处理模块用于根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,可以理解为:所述处理模块用于根据所述响应信息确定在M次上行数据传输内监听物理下行控制信道PDCCH;所述处理模块用于根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,可以理解为:所述处理模块用于根据所述响应信息确定在M次上行数据传输内使用所述非动态调度资源传输第二上行数据。通过指示终端在M次上行数据内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网 络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。通过指示上行传输方式在M次上行传输内生效,来实现精细粒度的控制,提升传输可靠性、终端功耗以及资源利用率折中效果。
可选的,所述响应信息中包括M;或者,终端从网络设备接收RRC信令、MAC CE或DCI,RRC信令、MAC CE或DCI中携带M。
在一个可能的设计中,所述处理模块可以通过计数器来实现上行传输次数的监控。例如,所述处理模块用于响应于所述响应信息,启动或重启计数器;若所述响应信息用于指示监听PDCCH,所述处理模块用于在所述计数器记录的M次上行数据传输内(或者在计数器记录的次数超过M次之前),监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述处理模块用于使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述M次上行数据传输中每一次传输包括同一数据的K次重复传输。K次重复能够保证数据包的可靠性。通过在一次上行数据传输中传输K次重复的数据包,不用等待网络设备的反馈即可达到重传的目的,有助于降低时延。
在一个可能的设计中,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,例如,第一指示信息中的第一值用于指示第一上行数据接收成功,第一指示信息中的第二值用于指示第一上行数据没有接收成功。例如,第一值为ACK,第二值为NACK。所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
可选的,在第二指示信息指示上行数据传输方式时,可以选择隐示指示,例如,根据发送携带该响应信息的PDCCH的搜索空间(search space,SS)类型(如公共搜索空间、终端专用搜索空间)、控制资源集(control resource set,CORESET)类型(如CORESET0、CORESET1)、加扰的无线网络临时标识(radio network temporary identity,RNTI)类型、DCI格式等隐式指示上行数据传输方式。
在一个可能的设计中,所述响应信息包括正确应答指令ACK;其中,所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据。
在一个可能的设计中,所述响应信息包括否定应答指令NACK;其中,所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
通过ACK和NACK隐示指示上行传输方式,能够节省开销。
在一个可能的设计中,所述第二上行数据时第一上行数据后面待传的数据,可能是第一上行数据的重传数据,也可能是新传的数据。例如,所述响应信息用于指示所述第一上行数据接收成功,所述第二上行数据是新传的数据;或者,所述响应信息用于指示所述第一上行数据没有接收成功,所述第二上行数据是所述第一上行数据的重传数据。
在一个可能的设计中,所述处理模块用于根据在所述设定条件下监听到的PDCCH,传输所述第二上行数据;或者,若在所述设定条件下未监听到PDCCH,则使用所述非动态调度方式传输所述第二上行数据。因为终端在接收到响应信息后,可能根据响应信息来监听PDCCH,如果没有监听到PDCCH,可以继续使用非动态调度资源传输第二上行数据,无需一直等待PDCCH的调度,避免迟久监听不到PDCCH导致传输时延的增大。
在一个可能的设计中,所述通信模块用于向所述网络设备发送缓存状态报告BSR,所述BSR指示终端缓存有数据。这样网络设备在接收到BSR后,可能根据BSR确定为终端指示接下来的上行数据传输方式。
第四方面,提供一种装置,该装置可以是网络设备,也可以是位于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
通信模块用于从终端接收第一上行数据;所述通信模块还用于向终端发送针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式可以包括:在设定条件下监听物理下行控制信道PDCCH,或者,在所述设定条件下使用所述非动态调度资源传输第二上行数据。其中,监听PDCCH可以认为终端使用动态调度的上行传输。在非动态调度资源上传输第一上行数据可以认为终端使用非动态调度的方式进行上行传输。那么在使用非动态调度的方式进行上行传输的基础上,通过响应消息来指示终端在接下来将要使用的上行传输方式,可能指示终端使用非动态调度或动态调度的方式进行上行传输。能够动态指示终端的上行传输方式,例如可以根据终端当前所处的信道条件或终端的需求指示终端的上行传输方式。兼顾动态调度的上行传输的更好的可靠性性能以及非动态调度的上行传输具有较低传输时延较低信令开销并降低终端功耗的性能,兼容高可靠性和低时延的双重目的。避免终端在没有得到响应信息的指示的情况下需要一直监听PDCCH导致功耗的浪费,通过响应信息的指示使得终端在需要监听的时候才去监听PDCCH,不需要监听的时候不去监听,从而节省终端的功耗。
非动态调度又可以称为免授权(grant-free,GF)、SPS、免调度、免动态调度、免动态授权或高层配置。
在一个可能的设计中,上行传输方式包括在时间窗内监听物理下行控制信道PDCCH,或者,在所述时间窗内使用所述非动态调度资源传输第二上行数据。通过指示终端在时间窗内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。
在一个可能的设计中,上行传输方式包括在M次上行数据传输内监听物理下行控制信道PDCCH,或者,使用所述非动态调度资源进行M次上行传输第二上行数据。通过指示终端在M次上行数据内监听PDCCH或者使用非动态调度资源传输第二上行数据,能够实现传输可靠性、终端功耗以及资源利用率的高效折中。例如当终端与网络设备之间的信道较差时,网络设备可以指示终端监听PDCCH以动态调度方式进行上行传输,来提高传输可靠性;当终端与网络设备之间的信道较好时,网络设备可以指示终端以非动态调度的方式进行上行传输,来降低终端功耗,同时提高预配置的非动态调度资源的利用率。通过指示上行传输方式在M次上行传输内生效,来实现精细粒度的控制,提升传输可靠性、终端 功耗以及资源利用率折中效果。
在一个可能的设计中,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,例如,第一指示信息中的第一值用于指示第一上行数据接收成功,第一指示信息中的第二值用于指示第一上行数据没有接收成功。例如,第一值为ACK,第二值为NACK。所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
可选的,在第二指示信息指示上行数据传输方式时,可以选择隐示指示,例如,根据发送携带该响应信息的PDCCH的搜索空间(search space,SS)类型(如公共搜索空间、终端专用搜索空间)、控制资源集(control resource set,CORESET)类型(如CORESET0、CORESET1)、加扰的无线网络临时标识(radio network temporary identity,RNTI)类型、DCI格式等隐式指示上行数据传输方式。
在一个可能的设计中,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。通过ACK和NACK隐示指示上行传输方式,能够节省开销。
在一个可能的设计中,所述通信模块还用于从所述终端发送缓存状态报告BSR,所述BSR指示终端缓存有数据。这样网络设备在接收到BSR后,可能根据BSR确定为终端指示接下来的上行数据传输方式。
第五方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面或第一方面中任一种可能的设计描述的方法。
第六方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第二方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面或第二方面中任一种可能的设计描述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行如第一方面、第二方面、第一方面中任一种可能的设计中或第二方面中任一种可能的设计中所述的方法。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在通信装置上运行时,使得通信装置执行如第一方面或第一方面中任一种可能的设计中所述的方法,或者执行如第二方面或第二方面中任一种可能的设计中所述的方法。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第二方面、第一方面中任一种可能的设计中或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种系统,所述系统包括第三方面或者第五方面所述的装置、和第四方面或者第六方面所述的装置。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中动态调度的数据传输过程示意图;
图3为本申请实施例中非动态调度的数据传输过程示意图;
图4a为本申请实施例中终端使用GF资源传输数据的示意图;
图4b为本申请实施例中终端在非动态调度基础上使用动态资源传输数据的示意图;
图5为本申请实施例中数据传输方法的流程示意图之一;
图6为本申请实施例中设定条件为在第一时长内的场景下一种数据传输方法示意图;
图7为本申请实施例中设定条件为在第一时长内的场景下另一种数据传输方法示意图;
图8为本申请实施例中设定条件为在M次上行传输内的场景下一种数据传输方法示意图;
图9为本申请实施例中设定条件为在M次上行传输内的场景下另一种数据传输方法示意图;
图10为本申请实施例中数据传输方法的流程示意图之二;
图11为本申请实施例中一种装置结构示意图;
图12为本申请实施例中另一种装置结构示意图。
具体实施方式
本申请实施例提供一种数据传输方法及装置,用以上行数据传输中降低终端功耗并保证传输可靠性。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。汉字之间的字符“/”一般表示前后关联对象是一种“或”的关系。本申请实施例中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的数据传输方法可以应用于长期演进(long term evolution,LTE)系统,第五代(5th generation,5G)通信系统,或未来的各种通信系统,例如,第六代(6th generation,6G)通信系统。其中,5G还可以称为新无线(new radio,NR)。
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例提供的数据传输方法适用的一种可能的通信系统的架构,该 通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信系统,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以和终端设备101~终端设备106进行数据传输,例如:网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据;和/或,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。网络设备又可以称为网络侧设备。目前,一些网络设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、无线保真(wireless fidelity,Wifi)接入点(access point,AP)、或5G通信系统或者未来可能的通信系统中的网络侧设备等。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备或基站为例,来描述本申请实施例提供的技术方案。
终端设备101~终端设备106,又可以称之为终端。终端可以是用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端或UE为例,来描述本申请实施例提供的技术方案。
其中,在本申请实施例中,术语“数据传输”还可以描述为“通信”、“信息传输”或“传输”。该技术方案可用于进行调度实体和从属实体间的无线通信,本领域技术人员可以将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信,例如宏基 站和微基站之间的无线通信,例如第一终端和第二终端间的无线通信。
本申请实施例中,基站的上行数据传输可以采用动态调度和非动态调度的数据传输。动态调度也可以称为GB。非动态调度又可以称为免授权(grant-free,GF)、SPS、免调度、免动态调度、免动态授权或高层配置。
如图2所示,动态调度的数据传输可以包括以下过程:
S201、当终端有上行数据传输需求时,通常会通过物理上行控制信道(physical uplink control channel,PUCCH)向基站发送调度请求(scheduling request,SR),或者终端会通过物理上行共享信道(physical uplink shared channel,PUSCH)向基站上报非空的BSR。基站接收终端发送的SR/BSR。
BSR通常通过媒体接入控制(medium access control,MAC)层信令发送,携带在数据包包头的媒体接入层控制单元(MAC control element,MAC CE)中
S202、基站收到终端发送的SR或非空的BSR后,通过下行物理控制信道(physical downlink control channel,PDCCH)向终端发送DCI。
DCI中携带上行授权(UL grant),用于授权终端在指定的时频资源上使用指定的参数发送上行数据。例如使用指定的调制编码方案(modulation and coding scheme,MCS)发送上行数据。
S203、终端根据DCI在指定的时频资源上使用指定的参数,通过PUSCH发送上行数据。
由于动态调度可以高效利用终端与基站之间的实时信道信息,为终端的每次传输指定合适的时频资源的位置、大小,以及合适的传输参数等,动态调度的上行传输通常具有更高的可靠性。
基于动态授权的上行数据传输过程中,终端在发送数据之前,需要向基站发送SR或BSR,再由基站通过DCI进行授权,这一过程会引入时延和PDCCH信令开销。同时,由于PDCCH的接收通常需要终端在不同时频资源上按照不同控制信道单元CCE(Control Channel Element)聚合等级(Aggregation Level)、和/或不同的DCI格式(Format)、和/或不同的DCI长度、和/不同的无线网络临时标识(Radio Network Temporary Identifier)进行盲检测,因此需要耗费大量的功耗。采用非动态调度的数据传输能够降低时延、降低信令开销以及降低终端功耗。
以NR为例,NR支持两类非动态调度的数据传输,分别是基于第一类配置授权的PUSCH传输(Type 1 PUSCH transmission with a configured grant,或Type 1 configured grant PUSCH transmission)和基于第二类配置授权的PUSCH传输(Type 2 PUSCH transmission with a configured grant,或Type 2 configured grant PUSCH transmission)。
基于第一类配置授权的PUSCH传输中,由高层参数ConfiguredGrantConfig配置包括时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调用参考信号(demodulation reference symbol,DMRS)相关参数、调制编码方案表格、资源块(resource block group,RBG)组大小、以及时域资源、频域资源、调制编码方式(modulation and coding scheme,MCS)等在内的全部传输资源和传输参数。终端接收到该高层参数后,可立即使用所配置传输参数在配置的时频资源上进行PUSCH传输。
基于第二类配置授权的PUSCH传输中,采用两步的资源配置方式:首先,由高层参数ConfiguredGrantConfig配置包括时域资源的周期、开环功控相关参数、波形、冗余版本序 列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调用参考信号相关参数、MCS表格、资源块RBG组大小等在内的传输资源和传输参数;然后由使用CS-小区无线网络临时标识符(radio network temporary identifier,RNTI)加扰的DCI激活第二类基于配置授权的PUSCH传输,并同时配置包括时域资源、频域资源、DMRS、MCS等在内的其他传输资源和传输参数。终端在接收到高层参数ConfiguredGrantConfig时,不能立即使用该高层参数配置的资源和参数进行PUSCH传输,而必须等到接收到相应的DCI激活并配置其他资源和参数后,才能进行PUSCH传输。
除上述第一类和第二类配置授权的PUSCH传输之外,NR还支持另一种非动态调度的数据传输,即两步(2-step)随机接入(random access,RA)。终端有数据需要发送时,通过物理随机接入信道(physical random access channel,PRACH)向基站发送随机接入前导(Preamble)序列,然后通过PUSCH向基站发送上行数据,PRACH和PUSCH可以在时间上连续,也可以不连续,终端在发送随机接入前导序列和发送上行数据之间,不监听基站针对终端发送的随机接入前导序列的反馈信息。
由于非动态调度的时频资源都是基站通过半静态方式配置的,相当于为终端预配置或预留的,即使终端没有上行数据传输需求,这些资源也是存在的。如图3所示,以非动态调度为GF为例,基站通过半静态方式配置的上行GF资源在时域上以周期性的方式重复出现,每个周期内的GF资源用于传输一个上行数据包。当终端在周期性的GF资源到来时,若由上行数据传输,就会在到来的GF资源上发送上行数据包。
终端使用半静态配置的时频资源和传输参数向基站发送数据,能够达到降低传输时延、信令开销和终端功耗的目的。但是考虑到动态调度的上行传输具有更好的可靠性,以及终端与基站之间的无线信道的时变特性,不能为了降低终端功耗,规定终端只能使用预配置的免授权资源以免授权的方式发送上行数据,而不监听PDCCH,这样情况下,当信道条件不好时,会导致传输失败,从而引发重传,降低系统效率。
考虑到动态调度的上行传输具有更好的可靠性,非动态调度的上行传输具有较低传输时延较低信令开销并降低终端功耗的效果,本申请实施例中,在非动态调度的上行传输中结合动态调度,以兼容高可靠性和低时延的双重目的。
在一个可能的实施方式中,如图4a和图4b所示,基站为终端通过半静态方式配置周期性的上行GF资源。周期1和周期2为连续的两个周期,终端在周期1内的GF资源上发送PUSCH,PUSCH携带上行数据(例如数据包1),并且在PUSCH中携带BSR,告知基站该终端的缓存中仍有数据需要发送。这种情况下,终端有两种方式传输下一个数据包(例如记为数据包2)。如图4a所示,第一种方式是使用周期2内的GF资源发送数据包2。如图4b所示,另一种方式是,基站通过DCI指示终端使用动态授权的方式,在指定的时频资源上发送数据包2。
一种可能的实现方式中,由于终端并不知道基站是否会下发DCI调度其后续数据包的传输,因此,终端要持续监听可能的用于动态调度上行数据传输的PDCCH。例如终端在周期1的GF资源上发送PUSCH,PUSCH中携带数据包1和BSR。终端在周期1的GF资源上发送PUSCH之后,会持续监听PDCCH。如果监听到用于调度数据包2的PDCCH,终端会根据调度信息在指定的时频资源上发送数据包2。如果终端在周期2的GF资源到来之前没有监听到用于调度数据包2的PDCCH,则终端可以使用该GF资源继续以免授权的传输方式发送数据包2;或者终端不使用该GF资源发送数据包2,而是继续监听用于调 度数据包2的PDCCH。也就是说,不管终端最终采用免授权还是动态授权的方式发送数据包2,终端总是要监听用于调度数据包2的PDCCH。在这种实现方式中,终端需要持续监听用于调度上行数据传输的PDCCH,在没有监听到PDCCH的条件下,才会使用预先配置的免授权资源,以免授权的方式发送上行数据。但是PDCCH的监听会耗费终端大量的功耗,这对电池容量或寿命受限的终端,如机器类通信(machine type communications)终端来说,是不可接受的。
本申请实施例提供一种数据传输方法,能够有助于降低终端监听PDCCH的功耗,同时兼顾传输可靠性以及免授权资源利用率。
如图5所示,本申请实施例提供的数据传输方法的流程如下所述。该方法的执行主体以终端和网络设备为例。
S501、终端在非动态调度资源上向网络设备传输第一上行数据,网络设备从终端接收第一上行数据。
这里所述的非动态调度资源也可以称为非动态调度时频资源,非动态调度资源或非动态调度时频资源是指,在采用非动态调度的数据传输的场景中,网络设备向终端分配的时频资源。如上文所述,非动态调度又可以称为GF、SPS、免调度、免动态调度、免动态授权、两步随机接入(2-step RACH)或高层配置。那么,非动态调度资源或非动态调度时频资源又可以称为GF资源/GF时频资源、SPS资源/SPS时频资源、免调度资源/免调度时频资源、免动态调度资源/免动态调度时频资源、免动态授权资源/免动态授权时频资源、两步随机接入资源/两步随机接入时频资源或高层配置的资源/高层配置的时频资源。其中,高层通常是指RRC层,高层配置通常是指由RRC信令配置。
第一上行数据为终端在非动态调度资源上一次发送的数据包或数据报文。例如,非动态调度资源一般以周期性资源出现,终端在一个周期内的时频资源上发送第一上行数据。当终端有待发送数据需要发送时,使用非动态调度资源发送第一上行数据,待发送数据的数据量可能会大于第一上行数据,终端在一个周期内不能发送完该待发送数据。
终端可以向网络设备发送BSR,用于将终端的数据缓存状态、即是否还有数据需要发送告知基站。例如,终端在发送第一上行数据后,还有待发送数据需要发送时,终端向网络设备发送BSR,告知网络设备还有待发送数据需要发送。又例如,终端在有较大数据包需要发送或者终端确定信道条件较差需要上行调度时,或者在其他场景下,均可以向网络设备发送BSR,以请求网络设备动态调度上行传输资源。
可选的,终端在非动态调度资源上发送PUSCH,在PUSCH中携带第一上行数据。还可以在该PUSCH中携带该BSR。
网络设备接收PUSCH,获取第一上行数据,并获取该BSR。网络设备可以选择向该终端发送用于调度上行数据传输的PDCCH。也可以选择不向该终端发送PDCCH。终端是否监听该PDCCH,由S502来实现。
S502、网络设备向终端返回第一上行数据的响应信息,终端从网络设备接收该第一上行数据的响应信息。该第一上行数据的响应信息可以简述为该响应信息。例如,该响应信息可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息,也可以包括其他指示信息。
该响应信息用于指示第一上行数据是否接收成功。
该响应信息还可以用于指示终端在设定条件下使用非动态调度方式传输第二上行数 据。本申请实施例中,“使用非动态调度方式传输”可以理解为“使用非动态调度资源传输”或者“使用非动态调度时频资源传输”。“非动态调度方式”也可以理解为“非动态调度传输方式”。
或者,该响应信息还可以用于指示终端在设定条件下监听PDCCH。PDCCH用于动态调度上行数据传输,或PDCCH用于调度PDSCH传输,该PDSCH传输中携带用于调度上行数据传输的调度信息。
可选的,该响应信息用于指示终端在设定条件下监听PDCCH时,终端在监听PDCCH之前,先向网络设备发送随机接入前导(preamble)序列,然后再监听PDCCH。其中,该PDCCH用于调度PDSCH传输,该PDSCH传输中携带用于调度上行数据传输的调度信息。这一过程中,终端向网络设备发送随机接入前导序列即为四步随机接入(4-step RACH)中的第一步或提早数据传输(early data transmission,EDT)中的第一步,终端监听PDCCH并根据监听到的PDCCH接收PDSCH即为四步随机接入或提早数据传输过程的第二步。EDT也可以称为两步随机接入(2-step RACH)。
在第一种可能的实施方式中,该响应信息包括第一指示信息和第二指示信息。其中,第一指示信息包括正确应答指令(acknowledge,ACK)或否定应答(negative acknowledge,NACK)。其中,第一指示信息为ACK,用于指示第一上行数据接收成功;或者,第一指示信息为NACK,用于指示第一上行数据没有接收成功。第二指示信息用于指示终端在设定条件下监听PDCCH,PDCCH用于动态调度上行数据传输,或PDCCH用于调度PDSCH传输,该PDSCH传输中携带用于调度上行数据传输的调度信息。或者,该响应信息用于指示终端在设定条件下使用非动态调度方式传输第二上行数据。在这种实施方式中,通过专门的第二指示信息来指示终端的上行数据传输方式。
在第二种可能的实施方式中,该响应信息包括ACK或NACK。当该响应信息携带ACK时,用于指示第一上行数据接收成功,并且用于指示终端在设定条件下使用非动态调度方式传输第二上行数据。当该响应信息携带NACK时,用于指示第一上行数据没有接收成功,并且用于指示终端在设定条件下监听PDCCH。在这种实施方式中,通过ACK/NACK来隐示指示终端的上行数据传输方式。当然,通过ACK/NACK来隐示指示终端的上行数据传输方式也可以通过下述方式实现:当该响应信息携带ACK时,用于指示第一上行数据接收成功,并且用于指示终端在设定条件下监听PDCCH。当该响应信息携带NACK时,用于指示第一上行数据没有接收成功,并且用于指示终端在设定条件下使用非动态调度方式传输第二上行数据。
网络设备可以通过PDCCH向终端返回该响应信息,终端从网络设备接收PDCCH,获取该响应信息。例如,网络设备可以使用终端专用(UE-specific)DCI格式或公共(group common)DCI格式来返回该响应信息。这种情况下,在第二种可能的实施方式下,网络设备可以通过一个bit来指示ACK或NACK,例如,1表示ACK,0表示NACK。进一步的,可以通过ACK和NACK隐示指示上行数据传输方式。在第一种可能的实施方式下,若通过第二指示信息来指示上行数据传输方式,网络设备可以通过显式的方式在该响应信息中携带上述第一指示信息和第二指示信息。例如针对终端的上行数据传输的该响应信息由两个bit组成,其中一个bit用于指示ACK或NACK,另一个bit用于指示上行数据传输方式。网络设备也可以通过隐式的方式携带上述第二指示信息,例如根据发送携带该响应信息的PDCCH的不同搜索空间(search space,SS)类型(如公共搜索空间、终端专用搜索空间)、 和/或不同控制资源集(control resource set,CORESET)类型(如CORESET0、CORESET1)、和/或用于加扰的不同无线网络临时标识(radio network temporary identity,RNTI)类型、和/或不同的DCI格式等隐式指示不同的上行数据传输方式。例如,DCI格式为第一格式时用于指示一种上行传输方式,DCI格式为第二格式用于指示另一种上行传输方式。
或者,网络设备也可以向终端发送序列来指示该响应信息。在第二种可能的实施方式下,例如,网络设备可以向终端发送序列1和序列2,序列1表示ACK,序列2表示NACK。进一步的,可以通过ACK和NACK隐示指示上行数据传输方式。在第一种可能的实施方式下,若通过第二指示信息来指示上行数据传输方式,则网络设备可以向终端发送序列1、序列2、序列3和序列4,序列1表示ACK,序列2表示NACK,序列3表示在设定条件下监听PDCCH,序列4表示在设定条件下使用非动态调度方式传输上行数据。其中序列1、序列2、序列3和序列4两两不相同。
或者,网络设备还可以通过PDSCH向终端返回该响应信息,终端从网络设备接收PDSCH,获取该响应信息。例如,在第二种可能的实施方式下,网络设备可以通过一个bit来指示ACK或NACK,例如,1表示ACK,0表示NACK。进一步的,可以通过ACK和NACK隐示指示上行数据传输方式。在第一种可能的实施方式下,若通过第二指示信息来指示上行数据传输方式,网络设备可以通过显式的方式在该响应信息中携带上述第一指示信息和第二指示信息。例如针对终端的上行数据传输的该响应信息由两个bit组成,其中一个bit用于指示ACK或NACK,另一个bit用于指示上行数据传输方式。网络设备也可以通过隐式的方式携带上述第二指示信息,例如根据发送携带该响应信息的PDSCH的时频资源位置隐式指示上行数据传输方式。
本申请实施例中,终端在向网络设备发送第一上行数据之后,从网络设备接收该响应信息之前,终端执行的操作不作限定,终端可以监听PDCCH,也可以不监听PDCCH。
S503、终端根据该响应信息,在设定条件下监听PDCCH;或者,终端根据该响应信息,在设定条件下使用非动态调度方式传输第二上行数据。
第二上行数据为终端待发送数据。可以是新传的数据。例如,终端在发送第一上行数据后,待发送数据并没有发送完,还需要发送待发送数据中的第二上行数据。也可以理解为,终端在发送第一上行数据后,还有新的待发送数据要发送,第二上行数据即为新的待发送数据。当该响应信息用于指示第一上行数据接收成功时,第二上行数据为新传的数据。
还有一种情况是,第二上行数据也可以是第一上行数据的重传数据。例如,当该响应信息用于指示第一上行数据没有接收成功时,第二上行数据为第一上行数据的重传数据。
终端在设定条件下监听PDCCH,如果终端监听到PDCCH,则终端根据监听到的PDCCH的指示传输第二上行数据包。如果在下一个周期的非动态调度资源到来时终端还没有监听到PDCCH,则终端可以选择使用免授权资源以免授权的方式发送第二上行数据包,也可以选择继续监听PDCCH。对于终端没有监听到PDCCH的场景下如何操作,可以采用约定或基站指示的方式,允许终端在没有监听到PDCCH,且有可用的免授权资源时,使用免授权资源以免授权的方式发送上行数据,或暂不发送上行数据并继续监听PDCCH。
本申请实施例提供的数据传输方法,通过该响应信息指示终端在设定条件下监听PDCCH或者采用非动态调度方式传输第二上行数据,避免了终端因持续监听PDCCH带来大量功耗的耗费,有助于降低终端监听PDCCH的功耗。通过在非动态调度资源上进行上行传输的过程中采用动态调度的上行传输,能够同时兼顾传输可靠性以及免授权资源利用 率。
本申请实施例中,上述设定条件可以但不限于包括以下几种可能性。
1、第一种可能:
设定条件为在一定的时长内,例如该时长记为第一时长。在这种情况下,该响应信息用于指示在第一时长内监听PDCCH,或者指示在第一时长内使用非动态调度方式传输上行数据。
第一时长为时域上的一定长度,例如可以为一个子帧,一个或多个时隙,还可以为非动态调度的一个或多个周期,还可以为一定的绝对时间,例如1ms、2ms、5ms。
第一时长可以通过起始时刻、结束时刻和该第一时长中的至少两种来指示。例如,起始时刻、结束时刻和该第一时长中的至少两种可以是终端和网络设备约定的,也可以是协议规定的,也可以是网络设备通过指示信息下发给终端的。该指示信息包括无线资源控制(radio resource control,RRC)、媒体接入层控制单元(MAC control element,MAC CE)、DCI或该响应信息。
上述时长也可以称为时间窗,第一时长也可以称为第一时间窗。时间窗可以通过起点、终端或时长中的至少两种来指示。
可选的,第一时长的起始时刻为终端接收该响应信息的最后一个符号,符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
可选的,第一时长的结束时刻为下一个周期的非动态调度资源上的最后一个符号。其中,下一个周期是指,终端传输第一上行数据占用的非动态调度资源的周期的下一个周期。
第一时长可以通过定时器来计时。
例如,该响应信息用于指示在第一时长内监听PDCCH。终端根据该响应信息启动定时器,在定时器计时期间监听PDCCH。定时器超时,该响应信息的指示失效。
又例如,该响应信息用于指示在第一时长内使用非动态调度方式传输上行数据。则终端根据该响应信息启动或重启定时器,在定时器计时期间使用非动态调度方式传输上行数据。定时器超时,该响应信息的指示失效。
有一种可能,若在定时器计时期间,终端从网络设备接收到另一个该响应信息,则终端重启定时器,并在重启定时器的计时期间,根据该另一个该响应信息来确定上行数据传输方式。
该响应信息用于指示在第一时长内监听PDCCH时采用的定时器,和该响应信息用于指示在第一时长内使用非动态调度方式传输上行数据采用的定时器可以相同,也可以不同。若不同:
比如,该响应信息用于指示在第一时长内监听PDCCH。终端根据该响应信息启动或重启第一定时器,在第一定时器计时期间监听PDCCH。第一定时器超时,该响应信息的指示失效。
该响应信息用于指示在第一时长内使用非动态调度方式传输上行数据。则终端根据该响应信息启动或重启第二定时器,在第二定时器计时期间使用非动态调度方式传输上行数据。第二定时器超时,该响应信息的指示失效。
有一种可能,若在第一定时器计时期间,终端从网络设备接收到另一个该响应信息。若该另一个该响应信息用于指示在第一时长内监听PDCCH,则终端重启第一定时器;若该另一个该响应信息用于指示在第一时长内使用非动态调度方式传输上行数据,则终端停止 该第一定时器,并启动第二定时器。
需要说明的是,终端根据该响应信息启动或重启定时器,可以是指终端接收到该响应信息时启动或重启定时器。当该响应信息中包括第一指示信息和第二指示信息的情况下,终端在接收到第二指示信息时启动或重启定时器。当该响应信息中包括ACK/NACK,通过ACK/NACK来隐示指示上行传输方式,终端在接收到ACK/NACK时启动或重启定时器。
类似的,若在第二定时器计时期间,终端从网络设备接收到另一个该响应信息。若该另一个该响应信息用于指示在第一时长内监听PDCCH,则终端停止该第二定时器,并启动第一定时器;若该另一个该响应信息用于指示在第一时长内使用非动态调度方式传输上行数据,则终端重启第二定时器。
2、第二种可能:
设定条件为在M次上行数据传输内。M为正整数,M大于或等于1。在这种情况下,该响应信息用于指示在M次上行数据传输内监听PDCCH,或者指示在M次上行数据传输内使用非动态调度方式传输上行数据。
其中,M次上行数据传输可以指M个数据包的初始传输,即M次中的任何一次传输都是一个新数据包的初始传输;M次上行数据传输也可以指既有数据包的初始传输,也有数据包的重传。
M次上行数据传输中的任意一次传输(初始传输或重传)是指:可以包含一个数据包的K次重复(repetition)。K>=1,K为正整数。K次重复能够保证数据包的可靠性。K次重复是指将K个重复的数据包绑定或聚合在一起,一次性传输给网络设备,即为一次上行数据传输。通过在一次上行数据传输中传输K次重复的数据包,不用等待网络设备的反馈即可达到重传的目的,有助于降低时延。
本申请实施例中,终端可以跟网络设备预先约定好M的取值,或者,M的取值也可以由协议规定,或者,网络设备向终端发送指示信息,终端通过指示信息确定M的取值。指示信息可以通过RRC、MAC CE或DCI等携带,也可以携带在该响应信息中。
与第一时长的场景类似,M次可以通过计数器来实现。
例如,该响应信息用于指示在M次上行数据传输内监听PDCCH。终端根据该响应信息启动或重启计数器,在计数器的计数值小于或等于M期间监听PDCCH。计数器的计数值大于M,该响应信息的指示失效。
又例如,该响应信息用于指示在M次上行数据传输内使用非动态调度方式传输上行数据。则终端根据该响应信息启动或重启计数器,在计数器的计数值小于或等于M期间使用非动态调度方式传输上行数据。计数器的计数值大于M,该响应信息的指示失效。
有一种可能,若在计数器的计数值小于或等于M期间,终端从网络设备接收到另一个响应信息,则终端重启计数器,并在重启计数器的计数值小于或等于M期间,根据该另一个响应信息来确定上行数据传输方式。
该响应信息用于指示在M次上行数据传输内监听PDCCH时采用的计数器,和该响应信息用于指示在M次上行数据传输内使用非动态调度方式传输上行数据采用的计数器可以相同,也可以不同。若不同:
比如,该响应信息用于指示在M次上行数据传输内监听PDCCH。终端根据该响应信息启动或重启第一计数器,在第一计数器的计数值小于或等于M期间监听PDCCH。第一计数器的计数值大于M,该响应信息的指示失效。
该响应信息用于指示在M次上行数据传输内使用非动态调度方式传输上行数据。则终端根据该响应信息启动或重启第二计数器,在第二计数器的计数值小于或等于M期间使用非动态调度方式传输上行数据。第二计数器的计数值大于M,该响应信息的指示失效。
有一种可能,若在第一计数器的计数值小于或等于M期间,终端从网络设备接收到另一个响应信息。若该另一个响应信息用于指示在M次上行数据传输内监听PDCCH,则终端重启第一计数器;若该另一个响应信息用于指示在M次上行数据传输内使用非动态调度方式传输上行数据,则终端停止该第一计数器,并启动第二计数器。
类似的,若在第二计数器的计数值小于或等于M期间,终端从网络设备接收到另一个响应信息。若该另一个响应信息用于指示在M次上行数据传输内监听PDCCH,则终端停止该第二计数器,并启动第一计数器;若该另一个响应信息用于指示在M次上行数据传输内使用非动态调度方式传输上行数据,则终端重启第二计数器。
下面通过举例来介绍“设定条件为在第一时长内”的这种可能的场景下数据传输方法。
如图6所示,第一上行数据用数据包1表示,假设第二上行数据为第一上行数据的重传数据,即数据包1的重传数据。终端在时刻1使用免授权GF资源发送初始传输的数据包1。网络设备没有正确接收终端在时刻1使用免授权资源发送的数据包1。网络设备向终端发送数据包1的响应信息,数据包1的响应信息用于指示没有正确/成功接收数据包1,还用于指示终端在第一时长内监听PDCCH。例如,若采用上述第一种可能的实施方式,该响应信息包括第一指示信息和第二指示信息,第一指示信息为NACK,用于指示数据包1没有接收成功。第二指示信息用于指示终端在第一时长内监听PDCCH。若采用上述第二种可能的实施方式,该响应信息包括NACK,NACK用于指示数据包1没有接收成功,并且NACK还用于指示终端在第一时长内监听PDCCH。终端接收到该响应信息,在第一时长内监听PDCCH。例如,第一时长的起始时刻在终端接收该响应信息的最后一个符号,第一时长的结束时刻为下一个周期的非动态GF调度资源上的最后一个符号。终端在第一时长内监听到网络设备通过PDCCH发送的DCI,获取DCI携带的上行授权(UL grant)。终端在DCI指示的GB时频资源上发送PUSCH,PUSCH中携带数据包1的重传数据。
如图7所示,第一上行数据用数据包1表示,假设第二上行数据为新传数据,第二上行数据用数据包2表示。数据包2可以表示一次或多次传输的数据包。终端在时刻1使用免授权GF资源发送初始传输的数据包1。网络设备正确接收终端在时刻1使用非动态调度资源(或免授权资源)发送的数据包1。网络设备向终端发送数据包1响应信息,该响应信息用于指示正确/成功接收数据包1,还用于指示终端在第一时长内使用非动态调度方式传输数据包2,即在第一时长内不监听PDCCH。例如,若采用上述第一种可能的实施方式,该响应信息包括第一指示信息和第二指示信息,第一指示信息为ACK,用于指示数据包1接收成功。第二指示信息用于指示终端在第一时长内使用非动态调度方式传输数据包2。若采用上述第二种可能的实施方式,该响应信息包括ACK,ACK用于指示数据包1接收成功,并且ACK还用于指示终端在第一时长内使用非动态调度方式传输数据包2。终端接收到该响应信息,在第一时长内使用非动态调度方式传输数据包2。例如,第一时长的起始时刻在终端接收该响应信息的最后一个符号,第一时长的结束时刻为下一个周期的非动态调度GF资源上的最后一个符号。终端在第一时长内在下一个周期的非动态调度GF资源上传输数据包2。
图6和图7仅仅为两种举例,实际应用中,还可能具有其他可能的实现方式。例如,在 图6所示例子的基础上,第二上行数据为数据包1的重传数据。终端从网络设备接收到的响应信息用于指示数据包1没有接收成功,并且用于指示在第一时长内不监听PDCCH,并使用非动态调度方式传输数据包1的重传数据。又例如,在图7所示例子的基础上,数据包2为新传数据,终端从网络设备接收到的响应信息用于指示数据包1接收成功,并且用于指示在第一时长内监听PDCCH。
下面通过举例来介绍“设定条件为在M次上行传输内”的这种可能的场景下数据传输方法。以M=2为例,M=2次上行数据传输用第一次上行数据传输和第二次上行数据传输为例。
如图8所示,第一上行数据用数据包1表示,第二上行数据为第一上行数据之后传输的数据,可以为数据包1的重传数据,也可以为新传数据,新传数据用数据包2表示。
终端在时刻1使用免授权GF资源发送初始传输的数据包1。网络设备没有正确接收终端在时刻1使用免授权资源发送的数据包1。网络设备向终端发送数据包1的响应信息,该响应信息用于指示没有正确/成功接收数据包1,还用于指示终端在M次(即2次)上行数据传输内监听PDCCH。例如,若采用上述第一种可能的实施方式,该响应信息包括第一指示信息和第二指示信息,第一指示信息为NACK,用于指示数据包1没有接收成功。第二指示信息用于指示终端M次(即2次)上行数据传输内监听PDCCH。若采用上述第二种可能的实施方式,该响应信息包括NACK,NACK用于指示数据包1没有接收成功,并且NACK还用于指示终端在M次(即2次)上行数据传输内监听PDCCH。终端接收到该响应信息,在M次(即2次)上行数据传输内监听PDCCH。终端在时刻1之后的2次上行数据传输内监听到网络设备通过PDCCH发送的DCI,获取DCI携带的上行授权(UL grant)。假设终端在时刻1之后在下一次GF资源到来之前,监听到DCI,则终端在时刻1之后的第一次上行数据传输和第二次上行数据传输中,在DCI指示的GB时频资源上发送PUSCH,PUSCH中携带新传或重传数据,比如在第一次上行数据传输时携带数据包1的重传数据、在第二次上行数据传输时携带数据2的初始传输数据。
如图9所示,第一上行数据用数据包1表示,第二上行数据为第一上行数据之后传输的数据,可以为数据包1的重传数据,也可以为新传数据,新传数据用数据包2表示。
终端在时刻1使用免授权GF资源发送初始传输的数据包1。网络设备正确接收终端在时刻1使用免授权资源发送的数据包1。网络设备向终端发送数据包1的响应信息,该响应信息用于指示正确/成功接收数据包1;还用于指示终端在M次(即2次)上行数据传输内不监听PDCCH,使用非动态调度方式传输上行数据。例如,若采用上述第一种可能的实施方式,该响应信息包括第一指示信息和第二指示信息,第一指示信息为ACK,用于指示数据包1接收成功。第二指示信息用于指示终端在M次(即2次)上行数据传输内,使用非动态调度方式传输上行数据。若采用上述第二种可能的实施方式,该响应信息包括ACK,ACK用于指示数据包1接收成功,并且ACK还用于指示终端在M次(即2次)上行数据传输内,使用非动态调度方式传输上行数据。终端接收到该响应信息,在M次(即2次)上行数据传输内使用非动态调度方式传输上行数据。终端在M次(即2次)上行数据传输内,在接下来的两个周期的非动态调度GF资源上传输上行数据。比如,在时刻1的下一个周期为时刻2,时刻2的下一个周期为时刻3,在时刻2的GF资源上传输数据包2的初始传输数据,在时刻3的GF资源上传输数据包1的重传数据。
图8和图9仅仅为两种举例,实际应用中,还可能具有其他可能的实现方式。例如,在 图8所示例子的基础上,终端从网络设备接收到的响应信息用于指示数据包1没有接收成功,并且用于指示在M次上行数据传输内不监听PDCCH,并使用非动态调度方式传输两次上行数据。又例如,在图9所示例子的基础上,终端从网络设备接收到的响应信息用于指示数据包1接收成功,并且用于指示在M次上行数据传输内监听PDCCH,并在DCI指示的上行资源上传输两次上行数据。
基于同一技术构思,本申请实施例中还提供一种数据传输方法,能够为终端确定合适的随机接入方式。随机接入方式包括四步随机接入和两步随机接入。
传统的四步随机接入过程包含如下四个步骤:
步骤一:终端向网络设备发送随机接入前导序列,称之为消息1(Msg1)。
步骤二:网络设备检测到终端发送的Msg1之后,向终端反馈随机接入响应(random access response,RAR),称之为Msg2,RAR中携带用于调度终端上行数据传输的调度信息;
步骤三:终端接收到Msg2,根据调度信息的指示,向网络设备发送随机接入请求,称之为Msg3;
步骤四:基站接收到终端发送的Msg3后,向终端发送用于指示竞争解决结果的信息,称为Msg4。
对类似于机器类型通信(machine type communication,MTC)和窄带物联网(narrow band internet of thing,NB-IoT)等一些通信场景,其数据传输的特点是,数据量较小,且数据到达时间不确定。若按照上述传统的四步随机接入方法完成随机接入后,来传输数据量小的小数据包,会使得无线资源的利用效率降低,大量资源用于RRC连接建立的流程,少量资源用于数据传输。另一方面,该方法使得终端的功耗过大,并且无法满足下行数据时延要求。
为降低终端的功耗以及降低终端的随机接入时延,NR还支持一种基于两步的随机接入。两步随机接入也可以称为EDT。两步随机接入的过程如下所述。
步骤1:终端向网络设备发送消息A(MsgA)。
MsgA中包括随机接入前导序列和上行数据。终端向网络设备发送MsgA的步骤可以包括:终端通过物理随机接入信道(physical random access chanel,PRACH)向网络设备发送随机接入前导序列,并通过PUSCH向基站发送上行数据。PRACH和PUSCH可以在时间上连续,也可以不连续。终端在发送随机接入前导序列和发送上行数据之间,不监听网络设备针对终端发送的随机接入前导序列的反馈信息/响应信息;
步骤2:网络设备接收到MsgA之后,向终端发送MsgA的反馈信息,称之为MsgB。
MsgB中可以包含对MsgA是否接收正确的反馈,还可以包含用于指示竞争解决结果的信息。
相比四步随机接入,两步随机接入可以降低接入时延以及信令开销。但是通常情况下,两步随机接入对终端与网络设备之间的信道环境要求较高。如果网络设备配置终端仅使用四步随机接入,终端的接入时延将会受到影响。如果网络设备配置终端仅使用两步随机接入,则在信道环境差的情形下,终端随机接入的可靠性和成功率将会受到影响。在一种可能的实现方式中,终端可以在随机接入之前,测量信道环境,根据测量结果确定随机接入方式,但是这种实现方式会由于测量而给终端带来额外的功耗,这对具有低功耗需求的终端是不可行的。
本申请实施例中提供的数据传输方法,能够为终端确定合适的随机接入方式,以期兼顾低时延低功耗和可靠性的双重效果。如图10所示,该数据传输方法的流程如下所述。
S1001、终端向网络设备发送第一消息,网络设备从终端接收第一消息。
S1002、网络设备根据第一消息向终端发送第二消息,终端从网络设备接收第二消息,该第二消息用于指示终端在设定条件下使用随机接入方式;
S1003、终端根据第二消息,在设定条件下使用的所述第二消息指示的随机接入方式进行随机接入。
在一种场景下,若终端发送第一消息时采用四步随机接入,则第一消息为四步随机接入中的Msg1。第二消息为四步随机接入的Msg2或Msg4。若Msg2指示终端在设定条件下使用四步随机接入,则终端在接收到Msg2后,根据Msg2的指示在设定条件下继续使用四步随机接入。若Msg4指示终端在设定条件下使用四步随机接入,则终端在接收到Msg4后,根据Msg4的指示在设定条件下继续使用四步随机接入。若Msg2指示终端在设定条件下使用两步随机接入,则终端在接收到Msg2后,可以在完成本次四步随机接入的步骤三和步骤四之后,根据Msg2的指示在设定条件下使用两步随机接入;也可以在接收到Msg2后,不继续执行本次四步随机接入的步骤三和步骤四,直接根据Msg2的指示在设定条件下使用两步随机接入。若Msg4指示终端在设定条件下使用两步随机接入,则终端在接收到Msg4后,根据Msg4的指示在设定条件下使用两步随机接入。
在另一种场景下,若终端发送第一消息时采用两步随机接入,则第一消息为两步随机接入过程中的MsgA。第二消息为两步随机接入的MsgB。若MsgB指示终端在设定条件下使用四步随机接入,则终端在接收到MsgB后,根据MsgB的指示在设定条件下使用四步随机接入。若MsgB指示终端在设定条件下使用两步随机接入,则终端在接收到MsgB后,根据MsgB的指示在设定条件下使用两步随机接入。
该方法实施例中的设定条件可以参照上述对设定条件的描述。例如,设定条件可以是在时间窗内或一定时长内。那么终端根据第二消息,在时间窗内使用的所述第二消息指示的随机接入方式进行随机接入。时间窗的指示方式以及终端对时间窗的计时方式可以参照上文相关描述,在此不再赘述。
又例如,设定条件可以是在M次随机接入内,那么终端根据第二消息,在M次随机接入内使用的所述第二消息指示的随机接入方式进行随机接入。终端对M次的计数方式可以参照上文相关描述,在此不再赘述。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的数据传输方法,得到一些演变形式的举例。
本申请实施例中,“从网络设备接收”、“向网络设备发送”等表述,不是仅限于直接接收发送到射频信号,只是描述该信息/消息/数据的最原始的来源或者最终目的地是哪,其在传输过程中还可能经过其它器件或者设备处理过。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束 条件。
如图11所示,基于同一技术构思,本申请实施例还提供了一种装置1100,该装置1100可以是终端或网络设备,也可以是终端或网络设备中的装置,或者是能够和终端或网络设备匹配使用的装置。一种设计中,该装置1100可以包括执行上述方法实施例中终端或网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块1101和通信模块1102。处理模块1101用于调用通信模块1102执行接收和/或发送的功能。
当用于执行终端执行的方法时:
通信模块1102,用于在非动态调度资源上向网络设备传输第一上行数据;以及用于从网络设备接收针对第一上行数据的响应信息,响应信息用于指示第一上行数据是否接收成功;
处理模块1101用于根据响应信息确定在设定条件下监听物理下行控制信道PDCCH,PDCCH用于调度上行数据传输,或者,处理模块1101用于根据响应信息确定在设定条件下使用非动态调度资源传输第二上行数据。
当用于执行网络设备执行的方法时:
通信模块1102,用于从终端接收第一上行数据;以及用于向终端发送针对第一上行数据的响应信息;其中,响应信息用于指示第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式包括在设定条件下基于动态调度的上行传输,或者,在设定条件下使用非动态调度资源传输第二上行数据。
处理模块1101和通信模块1102还可以用于执行上述方法实施例终端或网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图12所示为本申请实施例提供的装置1200,用于实现上述方法中终端或网络设备的功能。当实现网络设备的功能时,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。当实现终端的功能时,该装置可以是终端,也可以是终端中的装置,或者是能够和终端匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1200包括至少一个处理器1220,用于实现本申请实施例提供的方法中终端或网络设备的功能。装置1200还可以包括通信接口1210。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1210用于装置1200中的装置可以和其它设备进行通信。示例性地,装置1200是网络设备时,该其它设备可以是终端。装置1200是终端设备时,该其它装置可以是网络设备。处理器1220利用通信接口1210收发数据,并用于实现上述方法实施例的方法。示例性地,当实现网络设备的功能时,处理器1220用于利用通信接口从终端接收第一上行数据,以及向终端发送针对第一上行数据的响应信息,其中,响应信息用于指示第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式包括在设定条件下基于动态调度的上行传输,或者,在设定条件下使用非动态调度资源传输第二上行数据。示例性地,当实 现网络设备的功能时,处理器1220用于利用通信接口1210在非动态调度资源上向网络设备传输第一上行数据,以及从网络设备接收针对第一上行数据的响应信息,其中,响应信息用于指示第一上行数据是否接收成功;处理器1220用于根据响应信息确定在设定条件下监听物理下行控制信道PDCCH,PDCCH用于调度上行数据传输,或者,用于根据响应信息确定在设定条件下使用非动态调度资源传输第二上行数据。处理器1220和通信接口1210还可以用于执行上述方法实施例终端或网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1330和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、通信接口1220以及通信接口1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置1100和装置1200具体是芯片或者芯片系统时,通信模块1102和通信接口1210所输出或接收的可以是基带信号。装置1100和装置1200具体是设备时,通信模块1102和通信接口1210所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序在装置上被执行时,使得装置实现上述方法实施例所述的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品在装置上被执行时,使得装置实现上述方法实施例所述的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种数据传输方法,其特征在于,包括:
    终端在非动态调度资源上向网络设备传输第一上行数据;
    所述终端从所述网络设备接收针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功;
    所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,所述PDCCH用于调度上行数据传输,或者,所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据。
  2. 如权利要求1所述的方法,其特征在于,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,包括:所述终端根据所述响应信息确定在时间窗内监听PDCCH;或者,
    所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,包括:所述终端根据所述响应信息确定在时间窗内使用所述非动态调度资源传输第二上行数据。
  3. 如权利要求2所述的方法,其特征在于,所述响应信息包括所述时间窗的指示信息。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端从所述网络设备接收所述时间窗的指示信息。
  5. 如权利要求2~4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端响应于所述响应信息,启动或重启定时器,所述定时器的计时时长为所述时间窗的长度;
    若所述响应信息用于指示监听PDCCH,所述终端在所述定时器运行期间,监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述终端在所述定时器运行期间,使用非动态调度方式传输第二上行数据。
  6. 如权利要求1所述的方法,其特征在于,所述终端根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,包括:所述终端根据所述响应信息确定在M次上行数据传输中的每次上行数据传输前监听物理下行控制信道PDCCH;或者,
    所述终端根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据,包括:所述终端根据所述响应信息确定使用所述非动态调度资源进行M次上行数据传输。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端响应于所述响应信息,启动或重启计数器;
    若所述响应信息指示监听PDCCH,所述终端在所述计数器记录的次数超过M次之前,监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述终端使用非动态调度方式传输第二上行数据。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
  9. 如权利要求1~7任一项所述的方法,其特征在于,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;
    或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
  10. 如权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送缓存状态报告BSR,所述BSR指示终端缓存有数据。
  11. 一种数据传输方法,其特征在于,包括:
    网络设备从终端接收第一上行数据;
    所述网络设备向终端发送针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式包括在设定条件下基于动态调度的上行传输,或者,在所述设定条件下使用所述非动态调度资源传输第二上行数据。
  12. 如权利要求11所述的方法,其特征在于,上行传输方式包括在时间窗内基于动态调度的上行传输,或者,在所述时间窗内使用所述非动态调度资源传输第二上行数据。
  13. 如权利要求11所述的方法,其特征在于,上行传输方式包括M次上行数据传输中的每次上行传输前监听物理下行控制信道PDCCH,或者,使用所述非动态调度资源进行M次上行传输。
  14. 如权利要求11~13任一项所述的方法,其特征在于,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
  15. 如权利要求11~13任一项所述的方法,其特征在于,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;
    或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
  16. 如权利要求11~15任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述终端发送缓存状态报告BSR,所述BSR指示终端缓存有数据。
  17. 一种装置,其特征在于,包括:
    通信模块,用于在非动态调度资源上向网络设备传输第一上行数据;以及用于从所述网络设备接收针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功;
    处理模块,用于根据所述响应信息确定在设定条件下监听物理下行控制信道PDCCH,所述PDCCH用于调度上行数据传输,或者,用于根据所述响应信息确定在所述设定条件下使用所述非动态调度资源传输第二上行数据。
  18. 如权利要求17所述的装置,其特征在于,所述处理模块用于:根据所述响应信息确定在时间窗内监听PDCCH;或者,
    所述处理模块用于:根据所述响应信息确定在时间窗内使用所述非动态调度资源传输第二上行数据。
  19. 如权利要求18所述的装置,其特征在于,所述响应信息包括所述时间窗的指示信息。
  20. 如权利要求18所述的装置,其特征在于,所述通信模块还用于:
    从所述网络设备接收所述时间窗的指示信息。
  21. 如权利要求18~20任一项所述的装置,其特征在于,所述处理模块还用于:
    响应于所述响应信息,启动或重启定时器,所述定时器的计时时长为所述时间窗的长度;
    若所述响应信息用于指示监听PDCCH,所述处理模块用于在所述定时器运行期间,监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述处理模块用于在所述定时器运行期间,使用非动态调度方式传输第二上行数据。
  22. 如权利要求17所述的装置,其特征在于,所述处理模块用于:根据所述响应信息确定在M次上行数据传输中的每次上行数据传输前监听物理下行控制信道PDCCH;或者,
    所述处理模块用于:根据所述响应信息确定使用所述非动态调度资源进行M次上行数据传输。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块还用于:
    响应于所述响应信息,启动或重启计数器;
    若所述响应信息用于指示监听PDCCH,所述处理模块用于在所述计数器记录的次数超过M次之前,监听PDCCH;或者,若所述响应信息用于指示使用非动态调度方式传输第二上行数据,所述处理模块用于使用非动态调度方式传输第二上行数据。
  24. 如权利要求17~23任一项所述的装置,其特征在于,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
  25. 如权利要求17~23任一项所述的装置,其特征在于,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;
    或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
  26. 如权利要求17~25任一项所述的装置,其特征在于,所述通信模块还用于:
    向所述网络设备发送缓存状态报告BSR,所述BSR指示终端缓存有数据。
  27. 一种装置,其特征在于,包括:
    通信模块,用于从终端接收第一上行数据;
    所述通信模块,用于向终端发送针对所述第一上行数据的响应信息;其中,所述响应信息用于指示所述第一上行数据是否接收成功,以及用于指示上行传输方式;其中,上行传输方式包括在设定条件下基于动态调度的上行传输,或者,在所述设定条件下使用所述非动态调度资源传输第二上行数据。
  28. 如权利要求27所述的装置,其特征在于,上行传输方式包括在时间窗内监听物理下行控制信道PDCCH,或者,在所述时间窗内使用所述非动态调度资源传输第二上行数据。
  29. 如权利要求27所述的装置,其特征在于,上行传输方式包括在M次上行数据传输中的每次上行传输前监听物理下行控制信道PDCCH,或者,使用所述非动态调度资源进行M次上行传输第二上行数据。
  30. 如权利要求27~29任一项所述的装置,其特征在于,所述响应信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述第一上行数据是否接收成功,所述第二指示信息用于指示在所述设定条件下监听PDCCH或者指示在所述设定条件下使用非动态调度方式传输第二上行数据。
  31. 如权利要求27~29任一项所述的装置,其特征在于,所述响应信息包括正确应答指令ACK;所述ACK用于指示所述第一上行数据接收成功、以及指示在所述设定条件下使用非动态调度方式传输第二上行数据;
    或者,所述响应信息包括否定应答指令NACK;所述NACK用于指示所述第一上行数据没有接收成功、以及指示在所述设定条件下监听PDCCH。
  32. 如权利要求27~31任一项所述的装置,其特征在于,所述通信模块还用于:
    从所述终端发送缓存状态报告BSR,所述BSR指示终端缓存有数据。
  33. 一种芯片,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1-16任意一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在装置上运行时,使得所述装置执行权利要求1至16任一项所述的方法。
PCT/CN2019/109714 2019-09-30 2019-09-30 一种数据传输方法及装置 WO2021062790A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19947584.9A EP4024983A4 (en) 2019-09-30 2019-09-30 DATA TRANSMISSION METHOD AND APPARATUS
PCT/CN2019/109714 WO2021062790A1 (zh) 2019-09-30 2019-09-30 一种数据传输方法及装置
CN201980100856.7A CN114451037A (zh) 2019-09-30 2019-09-30 一种数据传输方法及装置
US17/709,113 US20220225395A1 (en) 2019-09-30 2022-03-30 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109714 WO2021062790A1 (zh) 2019-09-30 2019-09-30 一种数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,113 Continuation US20220225395A1 (en) 2019-09-30 2022-03-30 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021062790A1 true WO2021062790A1 (zh) 2021-04-08

Family

ID=75336756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109714 WO2021062790A1 (zh) 2019-09-30 2019-09-30 一种数据传输方法及装置

Country Status (4)

Country Link
US (1) US20220225395A1 (zh)
EP (1) EP4024983A4 (zh)
CN (1) CN114451037A (zh)
WO (1) WO2021062790A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028271A1 (zh) * 2016-08-10 2018-02-15 深圳市金立通信设备有限公司 一种控制信息传输方法、设备以及通信系统
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN109391372A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法与设备
CN110035481A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 定时器的处理方法和终端设备
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质
CN110537390A (zh) * 2019-07-10 2019-12-03 北京小米移动软件有限公司 基于免授权上行调度的数据传输方法、装置及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172756A1 (en) * 2012-05-14 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Apparatuses and methods for managing pending harq retransmissions
US10595336B2 (en) * 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028271A1 (zh) * 2016-08-10 2018-02-15 深圳市金立通信设备有限公司 一种控制信息传输方法、设备以及通信系统
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN109391372A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法与设备
CN110035481A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 定时器的处理方法和终端设备
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质
CN110537390A (zh) * 2019-07-10 2019-12-03 北京小米移动软件有限公司 基于免授权上行调度的数据传输方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024983A4 *

Also Published As

Publication number Publication date
US20220225395A1 (en) 2022-07-14
EP4024983A1 (en) 2022-07-06
CN114451037A (zh) 2022-05-06
EP4024983A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
US11641646B2 (en) Method and apparatus for receiving a transport block in a transmission occasion
US10542533B2 (en) Method and apparatus for selecting a transmission resource
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US10594447B2 (en) Data transmission method, terminal, and ran device
US20180199338A1 (en) Method and apparatus for reducing latency of lte uplink transmissions
EP3308593A1 (en) Method and apparatus for reducing latency of lte uplink transmissions
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
WO2021035447A1 (zh) 一种数据传输方法及装置
WO2021147426A1 (zh) 一种跳过pdcch监测的指示方法及装置
WO2021204107A1 (zh) 一种通信方法及装置
WO2017075833A1 (zh) 信息传输的方法、终端和基站
KR20150075222A (ko) 교차 캐리어 스케줄링 제어 방법 및 장치
US11528714B2 (en) Data transmission method and apparatus
WO2021190392A1 (zh) 一种侧行链路通信方法及装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
CN110612766A (zh) 上行控制信息传输方法、装置及系统
WO2021062790A1 (zh) 一种数据传输方法及装置
JP2020017988A (ja) データ伝送のための方法及び端末
WO2022032681A1 (zh) 一种数据传输方法及通信装置
CN113938905B (zh) 数据传输方法及装置
WO2021142652A1 (zh) 上行数据传输的方法和装置
WO2021233164A1 (zh) 一种通信方法及装置
WO2023241171A9 (zh) 一种数据传输方法及装置
WO2022001797A1 (zh) 数据传输方法及装置
WO2023165449A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947584

Country of ref document: EP

Effective date: 20220331