WO2021062762A1 - 一种信号接收方法、终端设备 - Google Patents

一种信号接收方法、终端设备 Download PDF

Info

Publication number
WO2021062762A1
WO2021062762A1 PCT/CN2019/109685 CN2019109685W WO2021062762A1 WO 2021062762 A1 WO2021062762 A1 WO 2021062762A1 CN 2019109685 W CN2019109685 W CN 2019109685W WO 2021062762 A1 WO2021062762 A1 WO 2021062762A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal device
value
processing
activation time
Prior art date
Application number
PCT/CN2019/109685
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020227008867A priority Critical patent/KR20220071962A/ko
Priority to EP19947457.8A priority patent/EP3975641A4/en
Priority to JP2022515707A priority patent/JP7466633B2/ja
Priority to AU2019468569A priority patent/AU2019468569A1/en
Priority to BR112022001519A priority patent/BR112022001519A2/pt
Priority to CN202110374224.9A priority patent/CN113115419B/zh
Priority to CN201980040965.4A priority patent/CN113016222A/zh
Priority to PCT/CN2019/109685 priority patent/WO2021062762A1/zh
Publication of WO2021062762A1 publication Critical patent/WO2021062762A1/zh
Priority to US17/532,912 priority patent/US20220086949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of information processing technology, and in particular to a signal receiving method, terminal equipment, chip, computer readable storage medium, computer program product, and computer program.
  • the terminal device can configure the active time and inactive time of the carrier through the DRX configuration.
  • the terminal device can use the cross-slot scheduling method to control all of its own carriers for processing, which can also achieve a certain degree Energy saving.
  • these processes cannot achieve refined carrier management, and cannot achieve better energy-saving effects.
  • embodiments of the present invention provide a signal receiving method, terminal equipment, chip, computer-readable storage medium, computer program product, and computer program.
  • a signal receiving method includes:
  • the first processing method is to stop processing at least part of the signals transmitted by the one or more carriers within at least part of the activation time.
  • a terminal device including:
  • the processing unit when entering the activation time for discontinuous reception of DRX, controls one or more carriers to use the first processing mode to process the signal transmitted by the carrier;
  • the first processing method is to stop processing at least part of the signals transmitted by the one or more carriers within at least part of the activation time.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a chip is provided to implement the methods in the foregoing implementation manners.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer-readable storage medium for storing a computer program, and the computer program enables a computer to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • the processing method of one or more carriers at the activation time of entering DRX is controlled, specifically including processing such as reducing the monitoring time of the terminal device and/or reducing the monitoring content of the terminal device. In this way, it can be lowered.
  • the energy saving of the terminal equipment is controlled at a granular level, and the physical layer signaling interaction between the network side and the terminal side is not involved in the processing, which will not cause the problem of increased physical layer signaling overhead.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a signal receiving method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a DRX provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cross-slot processing scenario provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB network equipment
  • Evolutional Node B eNodeB
  • eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment may be a mobile switching center, a relay station, an access point, In-
  • the communication system 100 also includes at least one UE 120 located within the coverage area of the network device 110.
  • UE includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another UE's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a UE set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a "mobile terminal”.
  • direct terminal connection (Device to Device, D2D) communication may be performed between the UEs 120.
  • the embodiment of the present invention provides a signal receiving method. As shown in FIG. 2, the method includes:
  • Step 21 When the terminal device enters the discontinuous reception (DRX, Discontinuous Reception) activation time, it controls one or more carriers to use the first processing method to process the signal transmitted by the carrier;
  • DRX discontinuous Reception
  • the first processing method is to stop processing at least part of the signals transmitted by the one or more carriers within at least part of the activation time.
  • the DRX transmission mechanism implements discontinuous reception of signals in the time domain through a semi-static configuration.
  • the power consumption can be reduced by stopping receiving the PDCCH (the blind PDCCH detection will be stopped at this time).
  • the DRX configuration method is to configure a DRX cycle for the terminal device in the RRC connected state (RRC_CONNECTED state).
  • the DRX cycle is composed of the active time "Active Time” and the inactive time "Inactive Time”: during the "Active Time” time, the terminal device monitors and receives the PDCCH (active period); in the "Inactive Time” Within time, the terminal device does not receive PDCCH to reduce power consumption (sleep period).
  • the formation time of "Active Time” and "Inactive Time” is divided into a continuous DRX cycle (Cycle). Each DRX cycle starts to enter DRX ON When the DRX is ON, the UE will detect the PDCCH according to the configured MO (Monitoring Occasion). When the UE detects the PDCCH, it will also start and refresh an Inactivity Timer. If the DRX ON is not over or the Inactivity Timer is not over, the UE will be In Active Time. The UE in Active Time needs to detect the PDCCH.
  • the carrier is an auxiliary carrier configured to activate the terminal device, and may be one or more auxiliary carriers configured to be activated for the terminal device.
  • the terminal device when the terminal device enters the active time Active Time, it enters the first processing mode on one or more activated auxiliary carriers configured by the terminal device; wherein, the first processing mode may also be referred to as a sleep mode.
  • this example only controls the first processing method for the activated secondary carrier, but the second processing method is used by default for the primary carrier, or it can be understood that the primary carrier uses the processing method in the related technology to perform DRX processing. .
  • the second processing method is different from the first processing method, and the second processing method is to maintain the processing of the signal transmitted by the carrier during the activation time, and the maintained processing includes the control channel search for the configuration of the carrier Space for monitoring.
  • the signal transmitted by the carrier may be referred to as the signal transmitted on the carrier, such as CSI measurement, CSI reporting, and so on.
  • the first processing method may include at least one of the following:
  • PDCCH Physical Downlink Control channel
  • the adjusted monitoring period is used to monitor at least part of the PDCCH search space; wherein the length of the adjusted monitoring period is greater than the original monitoring period.
  • stopping monitoring at least part of the PDCCH search space refers to stopping monitoring part or all of the PDCCH search space on one or more of the aforementioned activated auxiliary carriers.
  • monitoring at least part of the PDCCH search space using the adjusted monitoring period means that the extended PDCCH search space monitoring period is used on one or more of the aforementioned activated auxiliary carriers.
  • the auxiliary carrier can stop monitoring at least part of the PDCCH search space within the activation time;
  • the auxiliary carriers monitor at least part of the PDCCH search space using the adjusted monitoring period during the activation time;
  • some of the auxiliary carriers may be designated to stop monitoring at least part of the PDCCH search space during the activation time; the remaining part of the auxiliary carriers may monitor at least part of the PDCCH search space using the adjusted monitoring period during the activation time.
  • the activated auxiliary carrier may be activated according to the designation of the network device, or activated by the configuration of the network device, or may be activated through negotiation between the terminal device and the network device.
  • the auxiliary carrier in the first processing mode may be used, and it may be a part or all of the activated auxiliary carriers, which are all within the protection scope of this example and will not be exhaustively listed.
  • the method for determining the aforementioned adjusted listening period may include:
  • the pre-configured monitoring period is adopted as the adjusted monitoring period.
  • the pre-configured listening period is greater than the original adjustment period.
  • the pre-configuration can be pre-configured by the network device for the terminal device through signaling.
  • the terminal device can maintain the activated auxiliary carrier, or enter the activated auxiliary carrier in the first processing mode, and maintain the processing of other parts of the signal transmitted by the carrier.
  • it may include: CSI measurement, CSI reporting, uplink and downlink Synchronization, etc.
  • the other part of the signal that can be processed by the carrier transmission can be pre-configured according to the actual situation.
  • the network device can configure the terminal device with a list of signals that must be processed by the carrier transmission, and then the terminal device can maintain the signal transmitted by the carrier in the list. Processing. Or, it can be a signal transmitted by some default carriers.
  • the method also includes:
  • the terminal device determines whether to enter the DRX activation time according to the indication of the energy saving signal and/or through the DRX timer.
  • the indication of the energy-saving signal can be sent by the network device.
  • the terminal device can report its own capability to the network device in advance, and the capability can include whether it supports the first processing method (or whether it supports the energy-saving processing capability); if it is supported In this case, the network device can send an energy-saving signal instruction to the terminal device according to the current situation.
  • the network device can perform energy saving according to whether it is currently needed, or it can send an energy saving request to the terminal device, and then if the network device agrees, it can send an energy saving signal instruction for it.
  • the duration of the DRX timer can be pre-configured for the terminal device.
  • the method further includes:
  • Acquire configuration information sent by a network device wherein the configuration information is used to indicate whether to enable the terminal device to use the first processing mode.
  • whether the pre-configured terminal device can enter the first processing mode to process the signal transmitted by the carrier can be enabled by the network device configuration to the terminal device.
  • the terminal device When the configuration information indicates that the terminal device is not enabled to use the first processing mode, the terminal device is in the DRX activation time, and uses the second processing mode to perform processing on the signal transmitted by the carrier on one or more auxiliary carriers. deal with;
  • the second processing method is different from the first processing method, and the second processing method is to maintain the processing of the signal transmitted by the carrier during the activation time, and the maintained processing includes the control channel search for the configuration of the carrier Space for monitoring.
  • the processing method when the terminal device enters the active time Active Time is the second processing method, that is, the non-sleeping method, or can be understood as Use the method in the related technology for processing.
  • the network device is configured to enable the terminal device to use the first processing mode, then the processing mode when the terminal device enters the active time Active Time is the first processing mode.
  • the configuration information may include:
  • the UE entering the sleep mode can be entered and exited by scheduling a specific bit field in the PDCCH. This method is based on whether the PDCCH real-time control carrier (that is, the aforementioned auxiliary carrier) enters or exits the first processing method.
  • the terminal device enters the DRX activation time, and when the first carrier uses the first processing method to process the signal transmitted by the first carrier, receives the first indication information sent by the downlink control channel through the second carrier, The first indication information is used to instruct the first carrier to exit the first processing mode;
  • the first carrier is controlled to exit the first processing mode, and the signal transmitted by the first carrier is processed on the first carrier by using the second processing mode.
  • the terminal device uses the second processing method to process the signal transmitted by the first carrier on the first carrier within the DRX activation time, the terminal device receives the downlink control channel transmission through the first carrier The second indication information; wherein the second indication information is used to indicate that the first carrier enters the first processing mode.
  • the downlink control channel that is, the PDCCH
  • the second carrier may be the main carrier, or may be another activated auxiliary carrier in the second processing mode
  • the first indication information monitored by the second carrier determines to switch the first carrier from the first processing mode to the second processing mode.
  • the specific field of the scheduled PDCCH may be used to instruct a specific carrier to select a sleep mode or a non-sleep mode for processing. That is, the first indication information may include an indication of changing the control processing mode, and the identification of the first carrier (or index, or number and other information capable of identifying the first carrier).
  • the downlink control channel (that is, PDCCH) can be monitored. Therefore, if the downlink control channel is monitored to instruct its own processing mode to switch, then the first carrier can directly follow the first carrier.
  • the second instruction information controls itself to switch from the second processing mode to the first processing mode.
  • Example 1 On the basis of Example 1, the difference from Example 1 is that several first processing methods are added, which may include:
  • the number of blind PDCCH detections is set to an adjusted first value; wherein the adjusted first value is less than the original first value of the number of blind PDCCH detections;
  • the number of channel estimation resources is set to the adjusted second value; wherein the adjusted second value is smaller than the original second value of the channel estimation resource number.
  • the method of adjusting the number of blind detection of PDCCH may include a preset first adjustment factor or a preset first value; for example, the first adjustment factor is an integer greater than 1, so the first adjustment is adopted.
  • the value obtained by multiplying the factor and the original first value is the adjusted first value; or alternatively, the preset first value is directly used as the adjusted first value.
  • the method of channel estimation resource number may include a preset second adjustment factor, or may be based on a preset second value; for example, the second adjustment factor is an integer greater than 1, so the second adjustment factor is used.
  • the value obtained by multiplying the adjustment factor and the original second value is the adjusted second value; or alternatively, the preset second value is directly used as the adjusted second value.
  • the several first processing methods provided in this example can also be used in combination with example 1.
  • the number of blind PDCCH detections can be further adjusted during the extended listening period, so as to further reduce the power consumption of the terminal device;
  • the number of blind PDCCH detections and the number of channel estimation resources can be adjusted within the extended monitoring period, and so on. This example is not exhaustive.
  • This example is different from Examples 1 and 2 in that this example can be applied to the primary carrier and/or the secondary carrier.
  • the first processing method is:
  • the activated secondary carrier and/or the primary carrier enters a cross-slot scheduling state.
  • the cross-slot scheduling state represents that in the time slot of the channel scheduled by the downlink control channel, or the time slot and the next N time slots, the terminal device controls part of the hardware in the terminal device to be in a low power consumption state.
  • N is an integer greater than or equal to 1.
  • the part of the hardware may at least include a radio frequency part.
  • a radio frequency part there may be other parts of the hardware that can be in a low-power state, and it is not exhaustive here.
  • the low power consumption state can be understood as stopping sending, and/or stopping receiving, and/or stopping processing, etc., as long as the power consumption of the terminal device can be reduced, it is within the protection scope of this embodiment.
  • the PDCCH of the control channel is configured to be detected periodically.
  • a relatively common situation is shown above the dividing line in Figure 4, where most PDCCH detection opportunities do not detect data scheduling, but the UE must buffer data after the PDCCH.
  • the PDCCH processing is in accordance with strict time requirements, within the time slot (slot) n (that is, the gray gradual part in the figure). This part indicates that the radio frequency part cannot sleep and needs to be saved.
  • the terminal device When the cross-slot scheduling is implemented, the terminal device eliminates the buffering link after the PDCCH, and can turn off the radio frequency module immediately after the PDCCH.
  • the bottom of the dividing line in Figure 4 shows the use of cross-slot scheduling. It can be seen that the PDCCH processing time is relaxed by a slot.
  • the gray gradient box part of slot (time slot) n+1 indicates the radio frequency part in this time slot. Can sleep, so power consumption can be significantly reduced.
  • K0 (may be referred to as the first value) represents the offset value of the slot where the PDCCH is located and the slot where the scheduled PDSCH is located.
  • This example is based on the aforementioned cross-slot scheduling state, and provides the cross-slot scheduling state on the configured active carrier (DRX-On) when entering Active Time.
  • DRX-On configured active carrier
  • the configuration of the cross-slot scheduling state includes:
  • the first value and the second value are The first value and the second value
  • the first value is the minimum value of the time slot offset of the downlink shared channel scheduled by the downlink control channel
  • the second value is the minimum value of the time slot offset of the uplink shared channel scheduled by the downlink control channel
  • the behavior of the UE in the cross-slot scheduling state is: the UE assumes that the k0/k2 value of the received data scheduling is greater than the pre-configured minimum value.
  • the first value k0 corresponds to the minimum value of the slot offset from the PDCCH to the scheduled PDSCH.
  • the second value k2 corresponds to the minimum value of the slot offset from the PDCCH to the scheduled PUSCH
  • the method also includes:
  • the terminal device determines whether to enter the DRX activation time according to the indication of the energy saving signal and/or through the DRX timer.
  • the indication of the energy-saving signal can be sent by the network device.
  • the terminal device can report its own capability to the network device in advance, and the capability can include whether it supports the first processing method (or whether it supports the energy-saving processing capability); if it is supported
  • the network device can send an energy-saving signal instruction to the terminal device according to the current situation.
  • the network device may perform energy saving according to whether it is currently needed, or may send an energy saving request to the terminal device, and then the network device may send an energy saving signal instruction for it if it agrees.
  • the duration of the DRX timer can be pre-configured for the terminal device.
  • the pre-configured minimum value is the minimum value of the default time slot offset configured by the network device.
  • the minimum value of the default time slot offset is:
  • a default minimum slot offset value is a configuration value of a fixed sequence number configured by a network device, such as the first configuration value.
  • the default minimum slot offset value is 0.
  • the default minimum slot offset value may be indicated by scheduling a specific bit field in the PDCCH
  • the update can be indicated through a specific ratio in the PDCCH.
  • an energy-saving method of uniformly processing all carriers configured by the terminal device is basically adopted, and the granularity of this energy-saving processing method is too high. Therefore, in the solution provided in this embodiment, the processing mode of the activation time of one or more carriers entering DRX can be controlled, specifically including processing such as reducing the monitoring time of the terminal device and/or reducing the monitoring content of the terminal device. In this way, the energy saving of the terminal equipment can be controlled at a lower granularity, and the physical layer signaling interaction between the network side and the terminal side is not involved in the processing, and the problem of increased physical layer signaling overhead will not be caused.
  • the solution provided in this embodiment can also trigger the terminal device to enter the second processing mode, that is, the non-energy-saving state, through dynamic signaling when some carriers perform the first processing mode, thereby ensuring the energy-saving state The response time will not be delayed.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 5, including:
  • the processing unit 31 when entering the discontinuous reception (DRX, Discontinuous Reception) activation time, controls one or more carriers to use the first processing mode to process the signal transmitted by the carrier;
  • the first processing method is to stop processing at least part of the signals transmitted by the one or more carriers within at least part of the activation time.
  • the carrier is one or more auxiliary carriers configured and activated by the terminal device. It should be understood that it can be one or more of all the auxiliary carriers that are activated by configuration; for example, there may be 10 auxiliary carriers that are configured and activated for the terminal device, and this example can be for 8 auxiliary carriers, or it can be All of them.
  • the processing unit 31 enters the first processing mode on the configured one or more activated auxiliary carriers when entering the active time Active Time; wherein, the first processing mode may also be referred to as a sleep mode.
  • the first processing method may include at least one of the following:
  • the adjusted monitoring period is used to monitor at least part of the PDCCH search space; wherein the length of the adjusted monitoring period is greater than the original monitoring period.
  • stopping monitoring at least part of the PDCCH search space refers to stopping monitoring part or all of the PDCCH search space on one or more of the aforementioned activated auxiliary carriers.
  • monitoring at least part of the PDCCH search space using the adjusted monitoring period means that the extended PDCCH search space monitoring period is used on one or more of the aforementioned activated auxiliary carriers.
  • the method for determining the aforementioned adjusted listening period may include:
  • the processing unit 31 adjusts the original monitoring period based on the adjustment factor to obtain the adjusted monitoring period
  • the pre-configured monitoring period is adopted as the adjusted monitoring period.
  • the processing unit 31 determines whether to enter the DRX activation time according to the instruction of the energy saving signal and/or through the DRX timer.
  • the terminal device further includes:
  • the communication unit 32 obtains configuration information sent by a network device; wherein the configuration information is used to indicate whether to enable the terminal device to use the first processing mode.
  • the processing unit 31 When the configuration information indicates that the terminal device is not enabled to use the first processing mode, the processing unit 31, at the activation time of DRX, uses the second processing mode for carrier transmission on one or more auxiliary carriers. Signal processing;
  • the second processing method is different from the first processing method, and the second processing method is to maintain the processing of the signal transmitted by the carrier during the activation time, and the maintained processing includes the control channel search for the configuration of the carrier Space for monitoring.
  • the configuration information may include:
  • the UE entering the sleep mode can be entered and exited by scheduling a specific bit field in the PDCCH. This method is based on whether the PDCCH real-time control carrier (that is, the aforementioned auxiliary carrier) enters or exits the first processing method.
  • the terminal device enters the DRX activation time, and when the first carrier uses the first processing method to process the signal transmitted by the first carrier, the communication unit 32 receives the second carrier transmitted by the downlink control channel through the second carrier.
  • One indication information the first indication information is used to instruct the first carrier to exit the first processing mode;
  • the processing unit 31 controls the first carrier to exit the first processing mode based on the first indication information, and uses a second processing mode on the first carrier to perform processing on the signal transmitted by the first carrier deal with.
  • the communication unit 32 receives the downlink signal through the first carrier.
  • the second indication information sent by the control channel; wherein the second indication information is used to indicate that the first carrier enters the first processing mode.
  • Example 1 On the basis of Example 1, the difference from Example 1 is that several first processing methods are added, which may include:
  • the number of blind PDCCH detections is set to an adjusted first value; wherein the adjusted first value is less than the original first value of the number of blind PDCCH detections;
  • the number of channel estimation resources is set to the adjusted second value; wherein the adjusted second value is smaller than the original second value of the channel estimation resource number.
  • This example is different from Examples 1 and 2 in that this example can be applied to the primary carrier and/or the secondary carrier.
  • the first processing method is:
  • the activated secondary carrier and/or the primary carrier enters a cross-slot scheduling state.
  • the configuration of the cross-slot scheduling state includes:
  • the first value and the second value are The first value and the second value
  • the first value is the minimum value of the time slot offset of the downlink shared channel scheduled by the downlink control channel
  • the second value is the minimum value of the time slot offset of the uplink shared channel scheduled by the downlink control channel
  • the behavior of the UE in the cross-slot scheduling state is: the UE assumes that the k0/k2 value of the received data scheduling is greater than the pre-configured minimum value.
  • k0 corresponds to the minimum value of the slot offset from the PDCCH to the scheduled PDSCH.
  • k2 corresponds to the minimum value of the slot offset from the PDCCH to the scheduled PUSCH
  • an energy-saving method of uniformly processing all carriers configured by the terminal device is basically adopted, and the granularity of this energy-saving processing method is too high. Therefore, in the solution provided in this embodiment, the processing mode of the activation time of one or more carriers entering DRX can be controlled, specifically including processing such as reducing the monitoring time of the terminal device and/or reducing the monitoring content of the terminal device. In this way, the energy saving of the terminal equipment can be controlled at a lower granularity, and the physical layer signaling interaction between the network side and the terminal side is not involved in the processing, and the problem of increased physical layer signaling overhead will not be caused.
  • the solution provided in this embodiment can also trigger the terminal device to enter the second processing mode, that is, the non-energy-saving state, through dynamic signaling when some carriers perform the first processing mode, thereby ensuring the energy-saving state The response time will not be delayed.
  • FIG. 6 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present invention.
  • the communication device in this embodiment may be specifically the terminal device in the foregoing embodiment.
  • the communication device 900 shown in FIG. 6 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present invention.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a satellite or a network device according to the embodiment of the present invention, and the communication device 900 may implement the corresponding procedures implemented by the mobile terminal/satellite in each method of the embodiment of the present invention. For the sake of brevity, I won't repeat them here.
  • Fig. 7 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1000 shown in FIG. 7 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present invention.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the satellite in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the satellite in each method of the embodiment of the present invention.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory switch link DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • FIG. 8 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 8, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 may be used to implement the corresponding function implemented by the UE in the above method
  • the network device 1120 may be used to implement the corresponding function implemented by the network device in the above method.
  • details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or satellite in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or satellite in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or satellite in the embodiment of the present invention.
  • the computer program runs on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号接收方法、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:终端设备进入非连续接收DRX的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行处理;其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分进行处理。

Description

一种信号接收方法、终端设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信号接收方法、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
终端设备的节能是相关技术中一直关心的问题。在相关技术中,终端设备可以通过DRX开配置使得载波进行激活时间以及非激活时间,再一种方式,终端设备可以采用跨时隙调度的方式来控制自身全部载波进行处理,也能实现一定程度上的节能。但是,这些处理都不能够实现精细化的载波管理,以及无法实现更好的节能效果。
发明内容
为解决上述技术问题,本发明实施例提供了一种信号接收方法、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种信号接收方法,所述方法包括:
终端设备进入非连续接收DRX的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行处理;
其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
第二方面,提供了一种终端设备,包括:
处理单元,进入非连续接收DRX的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行处理;
其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序, 该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过采用上述方案,针对一个或多个载波在进入DRX的激活时间的处理方式进行控制,具体的包括有减少终端设备的监听时长和/或减少终端设备的监听内容等处理,如此,可以更加低颗粒度的对终端设备的节能进行控制,并且在处理中不涉及到网络侧与终端侧的物理层信令交互,不会导致物理层信令开销增加的问题。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2为本发明实施例提供的一种信号接收方法流程示意图;
图3为本发明实施例提供的一种DRX示意图;
图4为本发明实施例提供的跨时隙处理场景示意图;
图5本发明实施例提供的一种终端设备组成结构示意图;
图6为本发明实施例提供的一种通信设备组成结构示意图;
图7是本申请实施例提供的一种芯片的示意性框图;
图8是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time  Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端”、“无线终端”或“移动终端”。
可选地,UE120之间可以进行终端直连(Device to Device,D2D)通信。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种信号接收方法,如图2所示,所述方法包括:
步骤21:终端设备进入非连续接收(DRX,Discontinuous Reception)的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号 进行处理;
其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
本实施例中,所述DRX传输机制是通过半静态的配置来实现在时域上的不连续接收信号。在没有数据传输的时候,可以通过停止接收PDCCH(此时会停止PDCCH盲检)来降低功耗。配置DRX方法是RRC连接态(RRC_CONNECTED态)的终端设备配置一个DRX cycle。如图3所示,DRX cycle由激活时间“Active Time”和非激活时间“Inactive Time”组成:在“Active Time””时间内,终端设备监听并接收PDCCH(激活期);在“Inactive Time”时间内,终端设备不接收PDCCH以减少功耗(休眠期)。“Active Time”和“Inactive Time”的形成时间被划分成一个个连续的DRX周期(Cycle)。每个DRX cycle开始进入DRX ON状态,在DRX ON时UE会按照配置的MO(监测时机,Monitoring Occasion)检测PDCCH。当UE检测到PDCCH时,还启动和刷新一个Inactivity Timer。如果DRX ON未结束或者Inactivity Timer未结束UE就处在Active Time。处在Active Time的UE需要检测PDCCH。
下面结合多种示例对本实施例提供的方案进行详细说明:
示例1、
本示例中,所述载波为终端设备配置激活的辅助载波,可以为为终端设备配置激活的一个或多个辅助载波。
也就是说,终端设备在进入激活时间Active Time时,在所述终端设备所配置的一个或者多个激活辅助载波上,进入第一处理方式;其中,第一处理方式还可以称为睡眠方式。
需要指出的是,本示例仅针对激活的辅助载波进行第一处理方式的控制,但是针对主载波默认为采用第二处理方式,或者可以理解为针对主载波采用相关技术中的处理方式进行DRX处理。其中,所述第二处理方式与第一处理方式不同,所述第二处理方式为在所述激活时间保持对载波传输的信号的处理,保持的处理包括对所述载波的配置的控制信道搜索空间进行监听。其中,载波传输的信号可以称为在载波上传输的信号,比如可以为CSI测量、CSI上报等等。
具体的,所述第一处理方式可以包括以下至少之一:
在所述激活时间内,停止监听至少部分物理下行控制信道(PDCCH,Physical DownLink Control CHannel)搜索空间;
在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间;其中,所述调整后的监听周期的长度大于原始监听周期。
在所述激活时间内,停止监听至少部分PDCCH搜索空间,指的是前述激活的一个或多个辅助载波上均停止监听部分或者全部PDCCH搜索空间。
在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索 空间,指的是,在前述激活的一个或多个辅助载波上均再用延长的PDCCH搜索空间的监听周期。
需要理解的是,前述两种第一处理方式可以单独使用也可以结合使用,比如:可以在每一次进行激活时间后,辅助载波均在所述激活时间内,停止监听至少部分PDCCH搜索空间;
或者,辅助载波均在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间;
或者,可以指定其中一部分辅助载波在所述激活时间内,停止监听至少部分PDCCH搜索空间;剩余的部分辅助载波在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间。
还需要理解的是,本示例中,激活的辅助载波可以为根据网络设备指定激活,或者网络设备配置的激活的,或者可以为终端设备和网络设备协商激活的。另外,可以使用第一处理方式的辅助载波,可以为激活的辅助载波中的一部分也可以为全部,均在本示例的保护范围内,不再进行穷举。
进一步地,关于前述调整后的监听周期的确定方式可以包括:
基于调整因子对所述原始监听周期进行调整得到调整后的监听周期;
或者,
采用预配置的监听周期作为所述调整后的监听周期。
其中调整因子可以为大于1的整数,也就是说调整后的监听周期一定会大于原始监听周期,比如,可以设置为10,那么调整后的监听周期=10*原始监听周期。
预配置的监听周期大于原始调整周期。预配置可以由网络设备预先为终端设备通过信令进行配置。
本示例中,终端设备可以保持所述激活的辅助载波,或者进入第一处理方式的激活的辅助载波,保持载波传输的其他部分信号的处理,比如,可以包括:CSI测量,CSI上报,上下行同步,等等。
具体可以保持处理的载波传输的其他部分信号可以根据实际情况预先配置,比如,可以网络设备为终端设备配置必须保持处理的载波传输的信号列表,然后终端设备可以保持该列表中的载波传输的信号的处理。或者,可以为默认的一些载波传输的信号。
所述方法还包括:
所述终端设备根据节能信号的指示,和/或通过DRX定时器确定是否进入DRX的激活时间。
其中,节能信号的指示可以为网络设备发送的,比如,预先可以终端设备向网络设备上报自身能力,该能力中可以包含有是否支持第一处理方式(或者是否支持节能处理能力);如果支持的情况下,网络设备可以根据当前情况向终端设备发送节能信号的指示。其中,网络设备可以根据当前是否需要进行节能,或者,可以为终端设备发送一个节能请求,然后网络 设备如果同意,则可以为其发送节能信号的指示。
DRX定时器的时长可以为预先为终端设备配置的。
另外一种方式中,所述方法还包括:
获取网络设备发来的配置信息;其中,所述配置信息用于指示是否使能所述终端设备使用所述第一处理方式。
也就是说,所述预配置终端设备是否可以进入第一处理方式对载波传输的信号进行处理的行为,可以由网络设备配置使能给终端设备。
当所述配置信息指示不使能所述终端设备使用所述第一处理方式时,所述终端设备处于DRX的激活时间,在一个或多个辅助载波采用第二处理方式对载波传输的信号进行处理;
其中,所述第二处理方式与第一处理方式不同,所述第二处理方式为在所述激活时间保持对载波传输的信号的处理,保持的处理包括对所述载波的配置的控制信道搜索空间进行监听。
比如,当网络设备配置不使能所述终端设备使用所述第一处理方式,那么终端设备进入激活时间Active Time时的处理方式为第二处理方式,也就是非睡眠的方式,或者可以理解为采用相关技术中的方式进行处理。反之,如果网络设备配置使能所述终端设备使用所述第一处理方式,那么终端设备进入激活时间Active Time时的处理方式为第一处理方式。
这样,可以对激活的一个或多个辅助载波进行是否能够进入第一处理方式的控制。
另外基于前述处理方式,所述配置信息,可以包括:
指示是否使能所述终端设备在一个或多个第一辅助载波使用所述第一处理方式;
或者,指示是否使能所述终端设备在一个或多个载波组使用所述第一处理方式。
也就是说,可以通过配置信息来分别为每一个辅助载波来配置是否使能进行第一处理方式;或者,可以基于载波组来配置是否使能该载波组中的辅助载波均采用第一处理方式。
再一种处理方式,所述UE进入睡眠方式可以通过调度PDCCH中的特定比特域所指示进入和退出。这种方式是基于PDCCH实时控制载波(也就是前述辅助载波)是否进入或退出第一处理方式。
具体的,所述终端设备进入DRX的激活时间,在第一载波采用第一处理方式对所述第一载波传输的信号进行处理时,通过第二载波接收下行控制信道发送的第一指示信息,所述第一指示信息用于指示第一载波退出第一处理方式;
基于所述第一指示信息,控制所述第一载波退出所述第一处理方式,在所述第一载波上采用第二处理方式对的所述第一载波传输的信号进行处理。
以及,所述终端设备在DRX的激活时间内,在所述第一载波上采用第二处理方式对的所述第一载波传输的信号进行处理时,通过所述第一载波接收下行控制信道发送的第二指示信息;其中,所述第二指示信息用于指示所述第一载波进入第一处理方式。
也就是说,当一个激活的辅助载波,在进入DRX激活时间的时候,采用第一处理方式对该载波传输的信号进行处理时,不会对下行控制信道,也就是PDCCH进行监听,因此,可以在另一个没有处于一处理方式的第二载波(比如,第二载波可以为主载波、或者,可以为其他处于第二处理方式的激活的辅助载波)接收下行控制信道(也就是PDCCH);通过该第二载波监听到的第一指示信息,来确定将第一载波由第一处理方式切换至第二处理方式。
其中,所述调度PDCCH的特定域可以用于指示特定的载波选择睡眠方式或者非睡眠的方式去处理。也就是,第一指示信息,可以包括有控制处理方式改变的指示,以及第一载波的标识(或者索引、或者编号等能够识别第一载波的信息)。
而当第一载波处于第二处理方式的时候,能够监听到下行控制信道(也就是PDCCH),因此,如果监听到下行控制信道对自身的处理方式指示切换,那么第一载波可以直接根据该第二指示信息控制自身由第二处理方式切换至第一处理方式。
可见,通过采用上述方案,就能够对终端设备进入DRX的激活时间的时候,控制载波进入第一处理方式,以减少监听内容或减少监听时间;从而保证了终端设备更加节能。
示例2、
在示例1的基础上,与示例1不同之处在于,增加几种第一处理方式,可以包括:
在所述激活时间内,将PDCCH盲检测数设置为调整后的第一数值;其中,所述调整后的第一数值小于PDCCH盲检测数的原第一数值;
在所述激活时间内,将信道估计资源数设置为调整后的第二数值;其中调整后的第二数值小于信道估计资源数的原第二数值。
其中调整PDCCH盲检测数的方式,可以包括有根据预设的第一调整因子,或者可以根据预设的第一数值;举例来说,第一调整因子为大于1的整数,因此采用第一调整因子与原第一数值相乘得到的数值为调整后的第一数值;又或者,直接采用预设的第一数值作为调整后的第一数值。
类似的,信道估计资源数的方式,可以包括有根据预设的第二调整因子,或者可以根据预设的第二数值;举例来说,第二调整因子为大于1的整数,因此采用第二调整因子与原第二数值相乘得到的数值为调整后的第二数值;又或者,直接采用预设的第二数值作为调整后的第二数值。
本示例提供的几种第一处理方式,还可以与示例1的结合使用,比如, 控制在延长后的监听周期内,可以进一步调整PDCCH盲检测数,从而进一步减少终端设备的功耗;又比如,可以在延长的监听周期内,对PDCCH盲检测数以及信道估计资源数均进行调整,等等。本示例不再穷举。
本示例的其他处理与前述示例1相同,这里不再进行赘述。
示例3、
本示例与示例1、2不同之处在于,本示例可以应用于主载波和/或辅助载波。
并且本示例中,所述第一处理方式为:
在所述激活时间内,激活的辅助载波和/或主载波进入跨时隙调度状态。
其中,所述跨时隙调度状态表征终端设备在下行控制信道所调度的信道所在时隙、或所在时隙及后N个时隙内,控制终端设备中的部分硬件处于低功耗状态。
其中,N为大于等于1的整数。
所述部分硬件至少可以包括有射频部分。当然,还可能存在其他可以处于低功耗状态的部分硬件,这里不进行穷举。另外,所述低功耗状态,可以理解为停止发送、和/或停止接收,和/或停止处理等状态,只要能够使得终端设备的功耗降低均在本实施例的保护范围内。
关于跨时隙(slot)状态说明如下:在5G演进项目中,目前支持一种DRX的增强机制。其中一种新的节能机制为跨slot调度。其基本原理如图4所示:
控制信道的PDCCH是配置成周期检测的。然而,比较普遍的一种情况如图4分割线上方所示,多数的PDCCH检测机会上并没有检测到数据调度,但是UE必须在PDCCH之后缓存数据。这样,PDCCH处理按照严格的时间要求,在时隙(slot)n内(也就是图中灰色渐变部分),这部分说明射频部分无法休眠并且需要保存。
当实现跨slot调度后,终端设备免去了PDCCH后的缓存环节,可以在PDCCH之后立即关闭射频模块。图4中分割线下方示意出采用跨时隙调度状态的示意,可以看出PDCCH处理时间放松了一个slot,在slot(时隙)n+1的灰色渐变方框部分说明该时隙内射频部分可以休眠,这样功耗可以明显减少。如图所示,其中,K0(可以称为第一值)代表PDCCH所在的slot与被调度的PDSCH所在的slot偏移值。
本示例基于前述跨时隙调度状态,提供了在进入Active Time时在所配置的激活载波(DRX-On)上进入cross-slot调度状态。
跨时隙调度状态的配置中,包括:
第一值以及第二值;
其中,所述第一值为下行控制信道调度的下行共享信道的时隙偏移的最小值;所述第二值为下行控制信道调度的上行共享信道的时隙偏移的最小值;
且所述第一值与第二值的比值大于预配置的最小数值。
也就是说,所述跨时隙(cross-slot)调度状态的UE行为即:UE假定所收到的数据调度的k0/k2值大于预配置的最小值。
其中第一值k0对应PDCCH到所调度的PDSCH的slot offset的最小值。
其中第二值k2对应PDCCH到所调度的PUSCH的slot offset的最小值
所述方法还包括:
所述终端设备根据节能信号的指示,和/或通过DRX定时器确定是否进入DRX的激活时间。
其中,节能信号的指示可以为网络设备发送的,比如,预先可以终端设备向网络设备上报自身能力,该能力中可以包含有是否支持第一处理方式(或者是否支持节能处理能力);如果支持的情况下,网络设备可以根据当前情况向终端设备发送节能信号的指示。其中,网络设备可以根据当前是否需要进行节能,或者,可以为终端设备发送一个节能请求,然后网络设备如果同意,则可以为其发送节能信号的指示。
DRX定时器的时长可以为预先为终端设备配置的。
所述预配置的最小数值为网络设备配置的缺省的时隙偏移的最小值。
其中,所述缺省的时隙偏移的最小值,为:
所述网络设备所配置的指定序号的配置值;
或者,通过下行控制信道指示。
比如,一个缺省的最小slot offset值为网络设备所配置的固定序号的配置值,如第一个配置值。或者缺省的最小slot offset值为0。
或者,所述缺省的最小slot offset值可以通过调度PDCCH中的特定比特域所指示;
或者,可以通过PDCCH中的特定比例指示更新。
在相关技术中基本采用统一处理终端设备所配置的全部载波的节能方式,这种节能处理方式的颗粒度过高。因此,本实施例提供的方案中,可以针对一个或多个载波在进入DRX的激活时间的处理方式进行控制,具体的包括有减少终端设备的监听时长和/或减少终端设备的监听内容等处理,如此,可以更加低颗粒度的对终端设备的节能进行控制,并且在处理中不涉及到网络侧与终端侧的物理层信令交互,不会导致物理层信令开销增加的问题。
另外,本实施例提供的方案,还可以在部分载波进行第一处理方式的情况下,网络设备通过动态信令触发终端设备进入第二处理方式也就是非节能的状态,从而保证了节能状态下的响应时间不会出现延迟。
本发明实施例提供了一种终端设备,如图5所示,包括:
处理单元31,进入非连续接收(DRX,Discontinuous Reception)的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行 处理;
其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
下面结合多种示例对本实施例提供的方案进行详细说明:
示例1、
本示例中,所述载波为终端设备配置激活的一个或多个辅助载波。需要理解的是,可以为配置激活的全部辅助载波中的一个或多个;比如可以终端设备可以存在10个配置激活的辅助载波,本示例针对的可以为其中的8个辅助载波,也可以为其中的全部。
也就是说,处理单元31,在进入激活时间Active Time时,在所配置的一个或者多个激活辅助载波上,进入第一处理方式;其中,第一处理方式还可以称为睡眠方式。
具体的,所述第一处理方式可以包括以下至少之一:
在所述激活时间内,停止监听至少部分PDCCH搜索空间;
在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间;其中,所述调整后的监听周期的长度大于原始监听周期。
在所述激活时间内,停止监听至少部分PDCCH搜索空间,指的是前述激活的一个或多个辅助载波上均停止监听部分或者全部PDCCH搜索空间。
在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间,指的是,在前述激活的一个或多个辅助载波上均再用延长的PDCCH搜索空间的监听周期。
进一步地,关于前述调整后的监听周期的确定方式可以包括:
处理单元31,基于调整因子对所述原始监听周期进行调整得到调整后的监听周期;
或者,
采用预配置的监听周期作为所述调整后的监听周期。
所述处理单元31,根据节能信号的指示,和/或通过DRX定时器确定是否进入DRX的激活时间。
另外一种方式中,所述终端设备还包括:
通信单元32,获取网络设备发来的配置信息;其中,所述配置信息用于指示是否使能所述终端设备使用所述第一处理方式。
当所述配置信息指示不使能所述终端设备使用所述第一处理方式时,所述处理单元31,处于DRX的激活时间,在一个或多个辅助载波采用第二处理方式对载波传输的信号进行处理;
其中,所述第二处理方式与第一处理方式不同,所述第二处理方式为在所述激活时间保持对载波传输的信号的处理,保持的处理包括对所述载波的配置的控制信道搜索空间进行监听。
另外基于前述处理方式,所述配置信息,可以包括:
指示是否使能所述终端设备在一个或多个第一辅助载波使用所述第一处理方式;
或者,指示是否使能所述终端设备在一个或多个载波组使用所述第一处理方式。
再一种处理方式,所述UE进入睡眠方式可以通过调度PDCCH中的特定比特域所指示进入和退出。这种方式是基于PDCCH实时控制载波(也就是前述辅助载波)是否进入或退出第一处理方式。
具体的,所述终端设备进入DRX的激活时间,在第一载波采用第一处理方式对所述第一载波传输的信号进行处理时,通信单元32,通过第二载波接收下行控制信道发送的第一指示信息,所述第一指示信息用于指示第一载波退出第一处理方式;
所述处理单元31,基于所述第一指示信息,控制所述第一载波退出所述第一处理方式,在所述第一载波上采用第二处理方式对所述第一载波传输的信号进行处理。
以及,所述终端设备在DRX的激活时间内,在所述第一载波上采用第二处理方式对所述第一载波传输的信号进行处理时,通信单元32,通过所述第一载波接收下行控制信道发送的第二指示信息;其中,所述第二指示信息用于指示所述第一载波进入第一处理方式。
示例2、
在示例1的基础上,与示例1不同之处在于,增加几种第一处理方式,可以包括:
在所述激活时间内,将PDCCH盲检测数设置为调整后的第一数值;其中,所述调整后的第一数值小于PDCCH盲检测数的原第一数值;
在所述激活时间内,将信道估计资源数设置为调整后的第二数值;其中调整后的第二数值小于信道估计资源数的原第二数值。
示例3、
本示例与示例1、2不同之处在于,本示例可以应用于主载波和/或辅助载波。
并且本示例中,所述第一处理方式为:
在所述激活时间内,激活的辅助载波和/或主载波进入跨时隙调度状态。
跨时隙调度状态的配置中,包括:
第一值以及第二值;
其中,所述第一值为下行控制信道调度的下行共享信道的时隙偏移的最小值;所述第二值为下行控制信道调度的上行共享信道的时隙偏移的最小值;
且所述第一值与第二值的比值大于预配置的最小数值。
也就是说,所述跨时隙(cross-slot)调度状态的UE行为即:UE假定所收到的数据调度的k0/k2值大于预配置的最小值。
其中k0对应PDCCH到所调度的PDSCH的slot offset的最小值。
其中k2对应PDCCH到所调度的PUSCH的slot offset的最小值
在相关技术中基本采用统一处理终端设备所配置的全部载波的节能方式,这种节能处理方式的颗粒度过高。因此,本实施例提供的方案中,可以针对一个或多个载波在进入DRX的激活时间的处理方式进行控制,具体的包括有减少终端设备的监听时长和/或减少终端设备的监听内容等处理,如此,可以更加低颗粒度的对终端设备的节能进行控制,并且在处理中不涉及到网络侧与终端侧的物理层信令交互,不会导致物理层信令开销增加的问题。
另外,本实施例提供的方案,还可以在部分载波进行第一处理方式的情况下,网络设备通过动态信令触发终端设备进入第二处理方式也就是非节能的状态,从而保证了节能状态下的响应时间不会出现延迟。
图6是本发明实施例提供的一种通信设备900示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备。图6所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图6所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图6所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本发明实施例的网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本发明实施例的卫星、或者网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由移动终端/卫星实现的相应流程,为了简洁,在此不再赘述。
图7是本发明实施例的芯片的示意性结构图。图7所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图7所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本发明实施 例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的网络设备,并且该芯片可以实现本发明实施例的各个方法中由卫星实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data  Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是本申请实施例提供的一种通信系统1100的示意性框图。如图8所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由UE实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或卫星,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或卫星,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或卫星,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (35)

  1. 一种信号接收方法,所述方法包括:
    终端设备进入非连续接收DRX的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行处理;
    其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
  2. 根据权利要求1所述的方法,其中,所述载波为终端设备所配置激活的一个或多个辅助载波。
  3. 根据权利要求2所述的方法,其中,所述第一处理方式为以下至少之一:
    在所述激活时间内,停止监听至少部分物理下行控制信道PDCCH搜索空间;
    在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间;其中,所述调整后的监听周期的长度大于原始监听周期;
    在所述激活时间内,将PDCCH盲检测数设置为调整后的第一数值;其中,所述调整后的第一数值小于PDCCH盲检测数的原第一数值;
    在所述激活时间内,将信道估计资源数设置为调整后的第二数值;其中调整后的第二数值小于信道估计资源数的原第二数值。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    基于调整因子对所述原始监听周期进行调整得到调整后的监听周期;
    或者,
    采用预配置的监听周期作为所述调整后的监听周期。
  5. 根据权利要求2-4任一项所述的方法,其中,所述方法还包括:
    获取网络设备发来的配置信息;其中,所述配置信息用于指示是否使能所述终端设备使用所述第一处理方式。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    当所述配置信息指示不使能所述终端设备使用所述第一处理方式时,所述终端设备处于DRX的激活时间,在载波采用第二处理方式对载波传输的信号进行处理;
    其中,所述第二处理方式与第一处理方式不同,所述第二处理方式为在所述激活时间保持对载波传输的信号的处理,保持的处理包括对所述载波的配置的控制信道搜索空间进行监听。
  7. 根据权利要求5所述的方法,其中,所述配置信息,包括:
    指示是否使能所述终端设备在一个或多个载波使用所述第一处理方式;
    或者,指示是否使能所述终端设备在一个或多个载波组使用所述第一处理方式;其中,所述载波组中包含一个或多个载波。
  8. 根据权利要求2-4任一项所述的方法,其中,所述方法还包括:
    所述终端设备进入DRX的激活时间,在第一载波采用第一处理方式对所述第一载波传输的信号进行处理时,通过第二载波接收下行控制信道发送的第一指示信息,所述第一指示信息用于指示第一载波退出第一处理方式;
    基于所述第一指示信息,控制所述第一载波退出所述第一处理方式,在所述第一载波上采用第二处理方式对的所述第一载波传输的信号进行处理。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端设备在DRX的激活时间内,在所述第一载波上采用第二处理方式对所述第一载波传输的信号进行处理时,通过所述第一载波接收下行控制信道发送的第二指示信息;其中,所述第二指示信息用于指示所述第一载波进入第一处理方式。
  10. 根据权利要求1所述的方法,其中,所述载波为:辅助载波和/或主载波。
  11. 根据权利要求10所述的方法,其中,所述第一处理方式为:
    在所述激活时间内,激活的辅助载波和/或主载波进入跨时隙调度状态。
  12. 根据权利要求11所述的方法,其中,跨时隙调度状态的配置中,包括:
    第一值以及第二值;
    其中,所述第一值为下行控制信道调度的下行共享信道的时隙偏移的最小值;所述第二值为下行控制信道调度的上行共享信道的时隙偏移的最小值;
    且所述第一值与第二值的比值大于预配置的最小数值。
  13. 根据权利要求12所述的方法,其中,所述预配置的最小数值为网络设备配置的缺省的时隙偏移的最小值。
  14. 根据权利要求13所述的方法,其中,所述缺省的时隙偏移的最小值,为:
    所述网络设备所配置的指定序号的配置值;
    或者,通过下行控制信道指示。
  15. 根据权利要求1-14任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据节能信号的指示,和/或通过DRX定时器确定是否进入DRX的激活时间。
  16. 一种终端设备,包括:
    处理单元,进入非连续接收DRX的激活时间时,控制一个或多个载波采用第一处理方式对载波传输的信号进行处理;
    其中,所述第一处理方式为在所述激活时间的至少部分时长内停止对所述一个或多个载波传输的至少部分信号进行处理。
  17. 根据权利要求16所述的终端设备,其中,所述载波为终端设备所 配置激活的一个或多个辅助载波。
  18. 根据权利要求17所述的终端设备,其中,所述第一处理方式为以下至少之一:
    在所述激活时间内,停止监听至少部分PDCCH搜索空间;
    在所述激活时间内,采用调整后的监听周期监听至少部分PDCCH搜索空间;其中,所述调整后的监听周期的长度大于原始监听周期;
    在所述激活时间内,将PDCCH盲检测数设置为调整后的第一数值;其中,所述调整后的第一数值小于PDCCH盲检测数的原第一数值;
    在所述激活时间内,将信道估计资源数设置为调整后的第二数值;其中调整后的第二数值小于信道估计资源数的原第二数值。
  19. 根据权利要求18所述的终端设备,其中,所述处理单元,基于调整因子对所述原始监听周期进行调整得到调整后的监听周期;
    或者,
    采用预配置的监听周期作为所述调整后的监听周期。
  20. 根据权利要求17-19任一项所述的终端设备,其中,所述终端设备还包括:
    通信单元,获取网络设备发来的配置信息;其中,所述配置信息用于指示是否使能所述终端设备使用所述第一处理方式。
  21. 根据权利要求20所述的终端设备,其中,所述处理单元,当所述配置信息指示不使能所述终端设备使用所述第一处理方式时,处于DRX的激活时间,在载波采用第二处理方式对载波传输的信号进行处理;
    其中,所述第二处理方式与第一处理方式不同,所述第二处理方式为在所述激活时间保持对载波传输的信号的处理,保持的处理包括对所述载波的配置的控制信道搜索空间进行监听。
  22. 根据权利要求20所述的终端设备,其中,所述配置信息,包括:
    指示是否使能所述终端设备在一个或多个载波使用所述第一处理方式;
    或者,指示是否使能所述终端设备在一个或多个载波组使用所述第一处理方式;其中,所述载波组中包含一个或多个载波。
  23. 根据权利要求17-19任一项所述的终端设备,其中,所述终端设备还包括:
    通信单元,进入DRX的激活时间,在第一载波采用第一处理方式对所述第一载波传输的信号进行处理时,通过第二载波接收下行控制信道发送的第一指示信息,所述第一指示信息用于指示第一载波退出第一处理方式;
    所述处理单元,基于所述第一指示信息,控制所述第一载波退出所述第一处理方式,在所述第一载波上采用第二处理方式对所述第一载波传输的信号进行处理。
  24. 根据权利要求23所述的终端设备,其中,所述通信单元,在DRX的激活时间内,在所述第一载波上采用第二处理方式对所述第一载波传输 的信号进行处理时,通过所述第一载波接收下行控制信道发送的第二指示信息;其中,所述第二指示信息用于指示所述第一载波进入第一处理方式。
  25. 根据权利要求16所述的终端设备,其中,所述载波为:辅助载波和/或主载波。
  26. 根据权利要求25所述的终端设备,其中,所述第一处理方式为:
    在所述激活时间内,激活的辅助载波和/或主载波进入跨时隙调度状态;
    其中,所述扩时隙调度状态表征控制当前下行控制信道所调度的信道所在时隙内射频功能处于休眠状态。
  27. 根据权利要求26所述的终端设备,其中,跨时隙调度状态的配置中,包括:
    第一值以及第二值;
    其中,所述第一值为下行控制信道调度的下行共享信道的时隙偏移的最小值;所述第二值为下行控制信道调度的上行共享信道的时隙偏移的最小值;
    且所述第一值与第二值的比值大于预配置的最小数值。
  28. 根据权利要求27所述的终端设备,其中,所述预配置的最小数值为网络设备配置的缺省的时隙偏移的最小值。
  29. 根据权利要求28所述的终端设备,其中,所述缺省的时隙偏移的最小值,为:
    所述网络设备所配置的指定序号的配置值;
    或者,通过下行控制信道指示。
  30. 根据权利要求16-29任一项所述的终端设备,其中,所述处理单元,根据节能信号的指示,和/或通过DRX定时器确定是否进入DRX的激活时间。
  31. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-15任一项所述方法的步骤。
  32. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-15中任一项所述的方法。
  33. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-15任一项所述方法的步骤。
  34. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-15中任一项所述的方法。
  35. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-15中任一项所述的方法。
PCT/CN2019/109685 2019-09-30 2019-09-30 一种信号接收方法、终端设备 WO2021062762A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020227008867A KR20220071962A (ko) 2019-09-30 2019-09-30 신호 수신 방법, 단말기 디바이스
EP19947457.8A EP3975641A4 (en) 2019-09-30 2019-09-30 SIGNAL RECEPTION METHOD AND TERMINAL DEVICE
JP2022515707A JP7466633B2 (ja) 2019-09-30 2019-09-30 信号受信方法、端末デバイス
AU2019468569A AU2019468569A1 (en) 2019-09-30 2019-09-30 Signal reception method and terminal device
BR112022001519A BR112022001519A2 (pt) 2019-09-30 2019-09-30 Método para receber sinal e dispositivo terminal
CN202110374224.9A CN113115419B (zh) 2019-09-30 2019-09-30 一种信号接收方法、终端设备
CN201980040965.4A CN113016222A (zh) 2019-09-30 2019-09-30 一种信号接收方法、终端设备
PCT/CN2019/109685 WO2021062762A1 (zh) 2019-09-30 2019-09-30 一种信号接收方法、终端设备
US17/532,912 US20220086949A1 (en) 2019-09-30 2021-11-22 Signal reception method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109685 WO2021062762A1 (zh) 2019-09-30 2019-09-30 一种信号接收方法、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/532,912 Continuation US20220086949A1 (en) 2019-09-30 2021-11-22 Signal reception method and terminal device

Publications (1)

Publication Number Publication Date
WO2021062762A1 true WO2021062762A1 (zh) 2021-04-08

Family

ID=75336735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109685 WO2021062762A1 (zh) 2019-09-30 2019-09-30 一种信号接收方法、终端设备

Country Status (8)

Country Link
US (1) US20220086949A1 (zh)
EP (1) EP3975641A4 (zh)
JP (1) JP7466633B2 (zh)
KR (1) KR20220071962A (zh)
CN (2) CN113016222A (zh)
AU (1) AU2019468569A1 (zh)
BR (1) BR112022001519A2 (zh)
WO (1) WO2021062762A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932023A (zh) * 2009-06-19 2010-12-29 华为技术有限公司 载波聚合的不连续接收方法、调度方法及装置
WO2011069368A1 (zh) * 2009-12-09 2011-06-16 中兴通讯股份有限公司 一种多载波上的不连续接收的优化方法和演进基站
CN107155212A (zh) * 2016-03-03 2017-09-12 中兴通讯股份有限公司 非连续接收控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002281A1 (en) 2008-12-30 2011-01-06 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
CN101841823B (zh) * 2009-03-16 2012-06-27 电信科学技术研究院 多载波系统中非连续监听控制信道的方法及装置
BR112012016864A2 (pt) * 2010-01-08 2018-06-12 Fujitsu Ltd método e aparelho para executar gerenciamento de portadora em sistema de agregação de portadora.
WO2018174635A1 (ko) 2017-03-24 2018-09-27 엘지전자 주식회사 페이징 메시지를 수신하는 방법 및 무선 기기
CN109511132B (zh) * 2017-09-14 2021-12-03 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932023A (zh) * 2009-06-19 2010-12-29 华为技术有限公司 载波聚合的不连续接收方法、调度方法及装置
WO2011069368A1 (zh) * 2009-12-09 2011-06-16 中兴通讯股份有限公司 一种多载波上的不连续接收的优化方法和演进基站
CN107155212A (zh) * 2016-03-03 2017-09-12 中兴通讯股份有限公司 非连续接收控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RESEARCH IN MOTION UK LIMITED: "DRX Operation for Carrier Aggregation", 3GPP TSG RAN WG2 MEETING #67BIS R2-095835, 16 October 2009 (2009-10-16), XP050390313 *

Also Published As

Publication number Publication date
KR20220071962A (ko) 2022-05-31
CN113016222A (zh) 2021-06-22
CN113115419A (zh) 2021-07-13
CN113115419B (zh) 2023-09-08
BR112022001519A2 (pt) 2022-03-22
AU2019468569A1 (en) 2022-02-03
JP7466633B2 (ja) 2024-04-12
EP3975641A1 (en) 2022-03-30
JP2022553494A (ja) 2022-12-23
US20220086949A1 (en) 2022-03-17
EP3975641A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
US11924907B2 (en) Method for discontinuous transmission and terminal device
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
WO2020220239A1 (zh) 一种控制终端接收信息的方法及装置、终端
US20220006599A1 (en) Method and device for managing band width part
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
US20210014786A1 (en) Signal transmission method and device
US20220039013A1 (en) Method and device for discontinuous reception
WO2021196102A1 (zh) 用户终端的省电方法、装置、通信设备及存储介质
WO2020019756A1 (zh) 一种传输资源确定方法及装置、终端设备
WO2021081838A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2021196227A1 (zh) 一种监听控制方法、终端设备、网络设备
US20220190981A1 (en) Method for determining downlink control information type, and apparatus
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021022894A1 (zh) 一种天线面板状态的通知方法、设备、芯片及存储介质
US20220182940A1 (en) Discontinuous reception processing method, and terminal device
WO2021056460A1 (zh) 一种测量管理方法及装置、通信设备
JP7457797B2 (ja) 無線通信方法、端末デバイス及びネットワークデバイス
WO2021088022A1 (zh) 一种信号监听方法、发送方法、终端设备、网络设备
WO2021062762A1 (zh) 一种信号接收方法、终端设备
WO2020124548A1 (zh) 时频资源确定方法、装置、芯片及计算机程序
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备
US20220030451A1 (en) Channel transmission method, device and storage medium
WO2020248280A1 (zh) 无线通信方法、网络设备和终端设备
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019947457

Country of ref document: EP

Effective date: 20211224

ENP Entry into the national phase

Ref document number: 2019468569

Country of ref document: AU

Date of ref document: 20190930

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001519

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022515707

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022001519

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220127

NENP Non-entry into the national phase

Ref country code: DE