WO2021062692A1 - 固态刹车机构及包括该固态刹车机构的机器人 - Google Patents

固态刹车机构及包括该固态刹车机构的机器人 Download PDF

Info

Publication number
WO2021062692A1
WO2021062692A1 PCT/CN2019/109583 CN2019109583W WO2021062692A1 WO 2021062692 A1 WO2021062692 A1 WO 2021062692A1 CN 2019109583 W CN2019109583 W CN 2019109583W WO 2021062692 A1 WO2021062692 A1 WO 2021062692A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
solid
brake pad
groove
state
Prior art date
Application number
PCT/CN2019/109583
Other languages
English (en)
French (fr)
Inventor
杨勇
张晟
姜超
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to PCT/CN2019/109583 priority Critical patent/WO2021062692A1/zh
Priority to CN201980100317.3A priority patent/CN114401831A/zh
Publication of WO2021062692A1 publication Critical patent/WO2021062692A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D51/00Brakes with outwardly-movable braking members co-operating with the inner surface of a drum or the like

Definitions

  • the present invention mainly relates to the field of robots, in particular to a solid-state braking mechanism and a robot including the solid-state braking mechanism.
  • a collaborative robot is a robot designed to interact closely with humans in a common working space.
  • personnel control and monitor production while collaborative robots are responsible for tiring physical work.
  • Humans and machines work hand in hand. Give full play to their respective expertise.
  • the harmonic reducer is mainly composed of four basic components: a wave generator, a flexible gear, a flexible bearing and a rigid gear.
  • the wave generator is equipped with a flexible bearing to make the flexible gear produce controllable elastic deformation and mesh with the rigid gear to transmit motion. And power gear transmission. Due to the existence of flexible gears, the torsional stiffness of joints is very low. The increased degree of freedom of the multi-degree-of-freedom collaborative robot further weakens the rigidity of the system.
  • a brake mechanism is usually installed on the output side of the joint.
  • the existing brake mechanisms mainly include hub brakes and electromagnetic brakes.
  • the hub brake uses the brake wheel cylinder to drive the brake shoe to abut the brake drum to provide braking force. It requires an external hydraulic pressure as a power source, and is bulky and heavy, which is inconvenient to install and control, and cannot be applied to collaborative robots.
  • Electromagnetic brakes use magnets to attract metal brake pads to provide braking force. The braking torque is small, and it is often used on the motor side of collaborative robots, but it still cannot improve the torsional stiffness of the joints.
  • the present invention aims to provide a solid-state brake mechanism and a robot including the solid-state brake mechanism to simplify the structure of the brake mechanism, reduce the volume and weight of the brake mechanism, and improve the torsional stiffness of the robot joints.
  • the present invention provides a solid-state brake mechanism, comprising: a brake pad, the brake pad is provided with an expansion gap and a groove communicating with the expansion gap, and the brake pad can expand and contract through the expansion gap ,
  • a piezoelectric ceramic sheet is arranged in the groove, and the piezoelectric ceramic sheet can be elongated after power-on, and abuts against the groove at both ends of the elongation direction; the fixing part is arranged on the The periphery of the brake pad is adapted to contact the brake pad after being pushed and stretched by the piezoelectric ceramic sheet to provide braking force.
  • the piezoelectric ceramic sheet is extended after power-on, so that the brake pad is stretched and abuts against the fixed part to provide braking force, making the entire solid-state brake mechanism volume It is small, light in weight, simple in structure, and has greater torsional rigidity.
  • a plurality of piezoelectric ceramic sheets are arranged in the groove, and the plurality of piezoelectric ceramic sheets are arranged side by side in the groove. In this way, by arranging a plurality of piezoelectric ceramic sheets in the groove, the output force of the piezoelectric ceramic sheets can be increased, and the braking effect of the brake pad can be improved.
  • a plurality of piezoelectric ceramic sheets are arranged in the groove, and the plurality of piezoelectric ceramic sheets are stacked in a depth direction of the groove. In this way, by arranging a plurality of piezoelectric ceramic sheets in the groove, the output force of the piezoelectric ceramic sheets can be increased, and the braking effect of the brake pad can be improved.
  • a top sheet is arranged in the groove, and the top sheet is arranged between the piezoelectric ceramic sheet and the side wall of the groove. In this way, the space between the piezoelectric ceramic sheet and the side wall of the groove can be compressed, and the stress transmission efficiency can be improved.
  • the top sheet includes a protrusion, and the protrusion separates a plurality of piezoelectric ceramic sheets. In this way, mutual interference between multiple piezoelectric ceramic sheets can be avoided.
  • the expansion gap includes a first expansion gap and a second expansion gap, the first expansion gap is linear, and the second expansion gap is C-shaped. In this way, the expansion gap can cover the angle of the brake pad as much as possible, which can provide the brake pad with uniform braking force and reduce the regional loss of the brake mechanism.
  • it further includes an adjusting screw and an elastic washer, and the elastic washer applies a restoring force to the adjusting screw so that the brake pads on both sides of the expansion gap are close to each other.
  • the restoring force can be provided, so that the brake pads can quickly recover from the braking state to the transmission state, and the mobility of the system is improved.
  • a pre-tightening screw is further included, and the pre-tightening screw limits the distance between the brake pad and the fixing portion within a preset range.
  • piezoelectric ceramic materials with a smaller piezoelectric coefficient can also be applied to the solid-state brake mechanism in the embodiment of the present invention.
  • the piezoelectric ceramic sheet is made of lead zirconate titanate based piezoelectric ceramic material or barium calcium titanate based ceramic material.
  • the present invention also provides a robot including the solid-state braking mechanism as described above. Because the solid-state brake mechanism is small in size, light in weight, simple in structure, and has greater torsional rigidity, after the solid-state brake mechanism is installed, the volume and weight of the robot will be reduced accordingly, and it can provide larger joints and arm linkages. Torsional stiffness.
  • Figure 1 is a front view of a solid-state brake mechanism according to an embodiment of the present invention
  • Figure 2 is a front cross-sectional view of a solid state brake mechanism according to an embodiment of the present invention
  • Figure 3 is a side cross-sectional view of a solid state brake mechanism according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a robot joint including an embodiment of the present invention.
  • the hub brake uses the brake wheel cylinder to drive the brake shoe to abut the brake drum to provide braking force. It requires an external hydraulic pressure as a power source, and is bulky and heavy, which is inconvenient to install and control. Cannot be applied to collaborative robots. Electromagnetic brakes use magnets to attract metal brake pads to provide braking force. The braking torque is small, and it is often used on the motor side of collaborative robots, but it still cannot improve the torsional stiffness of the joints.
  • the purpose of the present invention is to provide a solid-state brake mechanism and a robot including the solid-state brake mechanism to simplify the structure of the brake mechanism, reduce the volume and weight of the brake mechanism, and improve the torsional rigidity of the robot joints.
  • Piezoelectric Ceramic is a kind of functional ceramics with piezoelectric effect. It is a kind of piezoelectric material, and it is small in size and light in weight.
  • the piezoelectric effect refers to the phenomenon that polarization (or electric field) is induced by stress, or stress (or strain) is induced by electric field.
  • the former is the positive piezoelectric effect
  • the latter is the negative piezoelectric effect
  • the two are collectively referred to as the piezoelectric effect.
  • the invention utilizes the negative piezoelectric effect of piezoelectric ceramics to realize a solid-state braking mechanism with small volume, light weight, simple structure, and greater torsional rigidity.
  • FIG. 1 is a front view of a solid state brake mechanism 100 according to an embodiment of the present invention.
  • the solid-state brake mechanism 100 includes a brake pad 110.
  • the brake pad 110 is a brake pad with a certain thickness and a circular cross section.
  • the brake pad 110 can rotate about a rotation axis.
  • the brake pad 110 is integrally formed with the rotating shaft.
  • the brake pad 110 may also be formed separately from the rotating shaft.
  • a plurality of screw holes can be correspondingly provided on the split brake pad 110 and the rotating shaft, and the brake pad 110 and the rotating shaft can be connected by screwing in the screw hole, so that the rotating shaft can drive the brake pad to rotate .
  • Fig. 3 is a side cross-sectional view of a solid-state brake mechanism 100 according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of a robot joint including the solid-state brake mechanism 100 according to an embodiment of the present invention.
  • the brake pad 110 is connected to the transmission part 130 by a fixing screw 131, which can transmit the torque of the brake pad 110 to the transmission part 130 so that the transmission part 130 rotates with the brake pad 110.
  • the brake pad 110 is provided with an expansion gap 101, and the brake pad 110 can extend and contract along the expansion gap 101.
  • the expansion gap 101 includes a first expansion gap 1011 and a second expansion gap 1012.
  • the first expansion gap 1011 is linear
  • the second expansion gap 1012 is C-shaped.
  • the first expansion gap 1011 extends from the edge of the brake pad 110 to the inside of the brake pad 110
  • the second expansion gap 1012 extends inside the brake pad 110.
  • the first expansion gap 1011 and the second expansion gap 1012 are continuous and communicated, and both penetrate from the bottom surface to the surface of the brake pad 110.
  • the first expansion gap 1011 and the second expansion gap 1012 cover an angle of nearly 360° of the brake pad 110, which can provide the brake pad with uniform braking force and reduce the regional loss of the brake mechanism. It can be understood that the first expansion gap 1011 and the groove 102 have a certain included angle, so as to transmit the deformation of the first expansion gap 1011 to the groove 102. Preferably, the first expansion gap 1011 and the groove 102 are perpendicular to each other.
  • the structure shown in FIG. 1 is only an example, and is not used to limit the structure of the expansion gap 101.
  • the expansion gap 101 may be an irregular arc structure.
  • the expansion gap 101 is formed by a cutting process, that is, the brake pad 110 with the expansion gap 101 is formed by two processes. In other embodiments, the brake pad 110 with the expansion gap 101 can also be formed by casting, that is, a single process.
  • a groove 102 is provided on the brake pad 110, and the groove 102 penetrates the bottom surface and the surface of the brake pad 110.
  • the groove 102 is a square groove, and its bottom edge is close to the center of the brake pad 110.
  • One end of the groove 102 is connected to the first expansion gap 1011, and the other end is connected to the second expansion gap 1012.
  • the structure of the groove 102 is not limited to that depicted in FIG. 1.
  • the shape of the groove 102 may also be a polygon. It can be understood that, in order to provide a uniform braking force, the center of the groove 102 can be set to coincide with the center of the brake pad 110, which can reduce the regional loss of the brake mechanism.
  • Two square piezoelectric ceramic sheets 103 are arranged side by side in the groove 102. There is a gap between the two square piezoelectric ceramic sheets 103, and the two square piezoelectric ceramic sheets 103 extend in the direction of extension (X1 and X2 directions). The end abuts against the groove 102.
  • the shape of the piezoelectric ceramic sheet 103 matches the shape of the groove 102.
  • fitting may mean having the same three-dimensional size, or may mean having the same shape type.
  • the piezoelectric ceramic sheet 103 may be made of lead zirconate titanate-based piezoelectric ceramic material, or may be made of lead-free piezoelectric ceramic material.
  • the lead-free piezoelectric ceramic material may be barium calcium titanate-based ceramics.
  • the materials of the two piezoelectric ceramic sheets 103 shown in FIG. 1 may be the same or different. Preferably, two materials with close piezoelectric coefficients are selected, so that a relatively uniform braking force can be provided.
  • one of the piezoelectric ceramic sheets 103 may be made of a lead zirconate titanate-based piezoelectric ceramic material, and the other piezoelectric ceramic sheet 103 may be made of another lead zirconate titanate-based piezoelectric ceramic material.
  • the piezoelectric ceramic sheet 103 can be driven by self-excitation, or it can be driven by excitation. After the piezoelectric ceramic sheet 103 is powered on by the driving circuit, the piezoelectric ceramic sheet 103 can be elongated along the elongation direction (X1 and X2 directions).
  • the driving circuit may include functional devices such as filters, voltage regulators, amplifiers, etc., which will not be repeated here.
  • the two piezoelectric ceramic sheets 103 can use the same driving circuit or different driving circuits.
  • the figure shown in FIG. 1 is only an example, and is not used to limit the structure of the piezoelectric ceramic sheet 103.
  • only a single piezoelectric ceramic sheet may be provided, and both ends of the single ceramic sheet abut against the groove.
  • a plurality of piezoelectric ceramic sheets 103 may also be stacked in the groove 102 along the depth direction of the groove (102). It can be understood that in this way, by arranging a plurality of piezoelectric ceramic sheets in the groove, the output force of the piezoelectric ceramic sheets can be increased, and the braking effect of the brake pad can be improved.
  • the shape of the piezoelectric ceramic sheet 103 is not limited to a square shape, and may be any other shape that can fit the groove 102 and transfer stress.
  • a top sheet 104 is further disposed in the groove 102, and the top sheet 104 is disposed between the piezoelectric ceramic sheet 103 and the side wall of the groove 102.
  • the top sheet 104 further includes a protrusion 104a, which penetrates into the gap between the two piezoelectric ceramic sheets 103 and separates the two piezoelectric ceramic sheets 103. In this way, mutual interference between multiple piezoelectric ceramic sheets can be avoided.
  • the solid-state brake mechanism 100 further includes a fixing portion 120 disposed on the periphery of the brake pad 110 and adapted to contact the brake pad 110 after the brake pad 110 is pushed and stretched by the piezoelectric ceramic sheet 130 to provide braking force.
  • the fixing portion 120 is a circular ring with a certain thickness, and the inner surface of the circular ring can be in contact with the inner surface of the brake pad 110 to provide braking force.
  • the brake pad 110 rotates around the rotation axis.
  • the drive circuit powers on the piezoelectric ceramic sheet 103.
  • the piezoelectric ceramic sheet 103 that has been powered on stretches in the elongation direction (X1 and X2 directions) due to the negative piezoelectric effect, which drives the brake pad 110 to stretch and stretch.
  • the outer surface of the rear brake pad 110 contacts the inner surface of the fixing portion 120 to provide a braking force.
  • the brake pad 110 gradually brakes under the braking force until it stops rotating.
  • Fig. 2 is a front cross-sectional view of a solid state brake mechanism according to an embodiment of the present invention.
  • the solid-state brake mechanism further includes an adjusting screw 105 and an elastic washer 106.
  • the adjusting screw 105 is arranged in the side hole of the brake pad 110 and the fixing part 120, and the elastic washer 106 is located between the adjusting screw 105 and the bottom surface of the side hole, and is in contact with the adjusting screw 105 and the side hole respectively.
  • the elastic washer 106 can provide a restoring force, so that the brake pads 110 on both sides of the expansion gap 101 are close to each other, the outer surface of the brake pad 110 is far away from the fixed portion 120, and the brake pad 110 resumes rotation.
  • the piezoelectric ceramic material has a slow recovery speed after power failure.
  • the combined structure of the adjusting screw 105 and the elastic washer 106 can provide restoring force, so that the brake pad 110 can quickly recover from the braking state to the transmission state, which improves the mobility of the system.
  • the solid-state brake mechanism further includes a pre-tightening screw 107.
  • the pre-tightening screw 107 is arranged in the side holes of the brake pad 110 and the fixing portion 120, and one end of the pre-tensioning screw 107 abuts against the top piece 104. Since the pre-tensioning screw 107 abuts on the top plate 104, the brake pads 110 on both sides of the expansion gap 101 are far away from each other, and the outer surface of the brake pad 110 is close to the fixing portion 120, and the distance between the brake pad 110 and the fixing portion 120 can be limited to Within the preset range.
  • the piezoelectric ceramic material with a smaller piezoelectric coefficient can also be applied to the solid-state brake mechanism in the embodiment of the present invention.
  • This embodiment of the present invention provides a solid-state brake mechanism.
  • the solid-state brake mechanism piezoelectric ceramic sheets are arranged in the grooves of the brake pads.
  • the piezoelectric ceramic sheets extend after power-on, so that the brake pads are stretched and fixed.
  • the ceramic material is small in size and light in weight, so the volume and weight of the entire solid-state brake mechanism can be reduced.
  • the piezoelectric ceramic sheet has a simple structure and can be in contact with the fixed part surface, making the solid-state brake mechanism It has a large torsional stiffness and can output a large torque.
  • the present invention also provides a robot including the solid-state brake mechanism. Because the solid-state brake mechanism is small in size, light in weight, simple in structure, and has a large torsional rigidity, the volume and weight of the robot will be correspondingly after the solid-state brake mechanism is installed. It is lowered and can provide greater torsional stiffness for joints and arm links. The joints and arm linkages in the robot can be existing structures, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)
  • Manipulator (AREA)

Abstract

一种固态刹车机构(100)及包括该固态刹车机构(100)的机器人,该固态刹车机构(100)包括:刹车片(110),刹车片(110)上设有伸缩间隙(101)以及与伸缩间隙(101)连通的凹槽(102),刹车片(110)可通过伸缩间隙(101)伸缩,凹槽(102)内设置有压电陶瓷片(103),压电陶瓷片(103)可在上电后伸长,并在伸长方向的两端与凹槽(102)抵接;固定部(120),设置于刹车片(110)的外围,适于在刹车片(110)受压电陶瓷片(103)推动伸展后与刹车片(110)接触,以提供制动力。该固态刹车机构(100)体积小,重量轻,结构简单,具有较大的扭转刚度;在安装该固态刹车机构(100)之后,机器人的体积和重量也会相应降低,并且能够为关节以及臂连杆提供较大的扭转刚度。

Description

固态刹车机构及包括该固态刹车机构的机器人 技术领域
本发明主要涉及机器人领域,尤其涉及一种固态刹车机构及包括该固态刹车机构的机器人。
背景技术
协作机器人(collaborative robot)是设计和人类在共同工作空间中有近距离互动的机器人,在人机协作模式下,人员控制并监控生产,协作机器人则负责劳累的体力工作,人与机器携手合作,发挥各自的专长。
大多数协作机器人关节采用谐波减速器。谐波减速器主要由波发生器、柔性齿轮、柔性轴承和刚性齿轮四个基本构件组成,靠波发生器装配上柔性轴承使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力的齿轮传动。由于柔性齿轮的存在,使得关节扭转刚度很低。多自由度协作机器人的自由度增加,进一步削弱了系统的刚度。
为了提高系统的刚度,通常在关节的输出侧加装刹车机构。现有的刹车机构主要包括毂式刹车(hub brake)和电磁刹车(electromagnetic brake)。毂式刹车通过制动轮缸驱动制动蹄与制动鼓抵接,从而提供制动力,其需要外接液压作为动力源,并且体积庞大重量过重,不便安装和控制,无法应用于协作机器人。电磁刹车通过磁铁吸引金属刹车片提供制动力,其制动力矩较小,常用于协作机器人的电机侧,仍然无法提高关节的扭转刚度。
发明内容
本发明旨在提供一种固态刹车机构及包括该固态刹车机构的机器人,以简化刹车机构的结构,降低刹车机构的体积和重量,并提高机器人关节的扭转刚度。
为实现上述目的,本发明提供了一种固态刹车机构,包括:刹车片,所述刹车片上设有伸缩间隙以及与所述伸缩间隙连通的凹槽,所述刹车片可通过所述伸缩间隙伸缩,所述凹槽内设置有压电陶瓷片,所述压电陶瓷片可在上电后伸长,并在伸长方向的两端与所述凹槽抵接;固定部,设置于所述刹 车片的外围,适于在所述刹车片受所述压电陶瓷片推动伸展后与所述刹车片接触,以提供制动力。这样,通过在刹车片的凹槽中设置有压电陶瓷片,压电陶瓷片在上电后伸长,使得刹车片伸展后与固定部抵接,提供刹车制动力,使得整个固态刹车机构体积小,重量轻,结构简单,并且具有较大的扭转刚度。
在本发明的一实施例中,所述凹槽内设置有多个压电陶瓷片,所述多个压电陶瓷片在所述凹槽内并排设置。这样,通过在凹槽内设置多个压电陶瓷片,可以增加压电陶瓷片的输出力,提高刹车片的制动效果。
在本发明的一实施例中,所述凹槽内设置有多个压电陶瓷片,所述多个压电陶瓷片沿所述凹槽的深度方向堆叠设置。这样,通过在凹槽内设置多个压电陶瓷片,可以增加压电陶瓷片的输出力,提高刹车片的制动效果。
在本发明的一实施例中,所述凹槽内设置有顶片,所述顶片设置于所述压电陶瓷片与所述凹槽的侧壁之间。这样,可以压缩压电陶瓷片与凹槽的侧壁之间的空间,提高应力的传递效率。
在本发明的一实施例中,所述顶片包括突出部,所述突出部将多个压电陶瓷片隔开。这样,可以避免多个压电陶瓷片之间的相互干扰。
在本发明的一实施例中,所述伸缩间隙包括第一伸缩间隙和第二伸缩间隙,所述第一伸缩间隙为直线型,所述第二伸缩间隙为C字型。这样,伸缩间隙可以尽可能多的覆盖刹车片的角度,能够为刹车片提供均匀的制动力,降低刹车机构的区域性损耗。
在本发明的一实施例中,还包括调节螺钉和弹性垫圈,所述弹性垫圈向所述调节螺钉施加回复力,使得伸缩间隙两侧的刹车片相互靠近。这样,可以提供回复力,使得刹车片从刹车状态迅速恢复到传动状态,提高了系统的机动性。
在本发明的一实施例中,还包括预紧螺钉,所述预紧螺钉将所述刹车片与所述固定部的距离限定在预设范围内。这样,具有较小压电系数的压电陶瓷材料也可以应用于本发明的实施例中的固态刹车机构中。
在本发明的一实施例中,所述压电陶瓷片由锆钛酸铅基压电陶瓷材料或钛酸钡钙基陶瓷材料制成。
本发明还提出了一种机器人,包括如上所述的固态刹车机构。由于固态刹车机构体积小,重量轻,结构简单,具有较大的扭转刚度,在安装该固态 刹车机构之后,机器人的体积和重量也会相应降低,并且能够为关节以及臂连杆提供较大的扭转刚度。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1是根据本发明的一实施例的固态刹车机构的正视图;
图2是根据本发明的一实施例的固态刹车机构的正面剖视图;
图3是根据本发明的一实施例的固态刹车机构的侧面剖视图;
图4是包括本发明的一实施例的机器人关节的结构示意图。
附图标记说明
100 固态刹车机构
101 伸缩间隙
1011 第一伸缩间隙
1012 第二伸缩间隙
102 凹槽
103 压电陶瓷片
104 顶片
104a 突出部
105 调节螺钉
106 弹性垫圈
107 预紧螺钉
110 刹车片
120 固定部
130 传动部
131 固定螺钉
X1、X2 压电陶瓷片的伸长方向
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图 说明本发明的具体实施方式。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本发明和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
如背景技术介绍到,毂式刹车通过制动轮缸驱动制动蹄与制动鼓抵接,从而提供制动力,其需要外接液压作为动力源,并且体积庞大重量过重,不便安装和控制,无法应用于协作机器人。电磁刹车通过磁铁吸引金属刹车片提供制动力,其制动力矩较小,常用于协作机器人的电机侧,仍然无法提高关节的扭转刚度。
本发明的目的在于本发明旨在提供一种固态刹车机构及包括该固态刹车机构的机器人,以简化刹车机构的结构,降低刹车机构的体积和重量,并提高机器人关节的扭转刚度。
压电陶瓷(Piezoelectric Ceramic)是具有压电效应的一种功能陶瓷,是压电材料的一种,其体积小重量轻。压电效应是指由应力诱导出极化(或电场),或由电场诱导出应力(或应变)的现象。前者为正压电效应,后者为负压电效应,两者统称为压电效应。本发明利用压电陶瓷的负压电效应,实现一种体积小,重量轻,结构简单,并且具有较大的扭转刚度的固态刹车机构。
图1是根据本发明的一实施例的固态刹车机构100的正视图。如图1所示,固态刹车机构100包括刹车片110。刹车片110是具有一定厚度的截面为圆形的刹车片。刹车片110可以绕旋转轴线旋转。刹车片110与旋转轴一体成型。
在一些实施例中,刹车片110也可以与旋转轴分体成型。作为一个非限定的示例,可以在分体的刹车片110和旋转轴上对应设置多个螺孔,通过在螺孔中旋进螺钉将刹车片110和旋转轴连接起来,使得旋转轴能够驱动刹车片旋转。
刹车片110的扭矩还可以进一步传递至下一级。图3是根据本发明的一实施例的固态刹车机构100的侧面剖视图,图4是包括本发明的一实施例的 固态刹车机构100的机器人关节的结构示意图。如图3和图4所示,刹车片110通过固定螺钉131连接至传动部130,可以将刹车片110的扭矩传递至传动部130,使得传动部130随着刹车片110旋转。
参考图1所示,刹车片110上设有伸缩间隙101,刹车片110可沿伸缩间隙101伸展和收缩。具体地,伸缩间隙101包括第一伸缩间隙1011和第二伸缩间隙1012。其中,第一伸缩间隙1011为直线型,第二伸缩间隙1012为C型。第一伸缩间隙1011从刹车片110的边沿延伸到刹车片110的内部,第二伸缩间隙1012在刹车片110的内部延伸。第一伸缩间隙1011和第二伸缩间隙1012是连续并且相通的,均从刹车片110的底面贯穿到表面。第一伸缩间隙1011和第二伸缩间隙1012覆盖了刹车片110将近360°的角度,能够为刹车片提供均匀的制动力,降低刹车机构的区域性损耗。可以理解,第一伸缩间隙1011与凹槽102具有一定的夹角,以将第一伸缩间隙1011的形变传递至凹槽102。优选地,第一伸缩间隙1011与凹槽102之间相互垂直。
图1所示仅为示例,不用于限制伸缩间隙101的结构。在一些实施例中,伸缩间隙101可以为不规则的圆弧结构。
在一些实施例中,可以整体形成刹车片110之后,通过切割工艺形成伸缩间隙101,即两次工艺形成具有伸缩间隙101的刹车片110。在另一些实施例中,也可以通过铸造,即一次工艺形成具有伸缩间隙101的刹车片110。
继续参考图1,刹车片110上设有凹槽102,凹槽102贯穿刹车片110的底面和表面。凹槽102为方形凹槽,其底边靠近刹车片110的圆心。凹槽102的一端连通至第一伸缩间隙1011,另一端连接至第二伸缩间隙1012。
在一些实施例中,凹槽102的结构并不限定于图1所描绘的那样。例如,凹槽102的形状也可以为多边形。可以理解,为了提供均匀的制动力,可以将凹槽102的中心设置为与刹车片110的中心重合,这样可以降低刹车机构的区域性损耗。
凹槽102内并排设置有两个方形压电陶瓷片103,两个方形压电陶瓷片103之间具有间隙,并且两个方形压电陶瓷片103在伸长方向(X1和X2方向)的两端与凹槽102抵接。
压电陶瓷片103的形状与凹槽102的形状相适配。在本发明的实施例中,适配可以指具有相同的三维尺寸,也可以指具有相同的形状类型。对于相同的形状类型,只需压电陶瓷片103在伸长方向的两端与凹槽102抵接即可。
压电陶瓷片103可以由锆钛酸铅基压电陶瓷材料制成,也可以由无铅压电陶瓷材料制成。无铅压电陶瓷材料可以是钛酸钡钙基陶瓷。图1中示出的两个压电陶瓷片103的材料可以相同,也可以不同。优选地,选用两个压电系数接近的材料,这样可以提供较为均为的制动力。例如,其中一个压电陶瓷片103可以由一种锆钛酸铅基压电陶瓷材料制成,另一个压电陶瓷片103由另一种锆钛酸铅基压电陶瓷材料制成。
压电陶瓷片103可以是自激励驱动,也可以是它激励驱动。驱动电路给压电陶瓷片103上电之后,压电陶瓷片103可沿着伸长方向(X1和X2方向)进行伸长。驱动电路可以包括滤波器、稳压器、放大器等功能器件,此处不再赘述。两个压电陶瓷片103可以使用同一驱动电路,也可以使用不同的驱动电路。
图1所示仅为示例,不用于限制压电陶瓷片103的结构。在一些实施例中,可以仅设置单个压电陶瓷片,该单个陶瓷片的两端与凹槽抵接。在一些实施例中,也可以在凹槽102中沿凹槽(102)的深度方向堆叠多个压电陶瓷片103。可以理解,这样,通过在凹槽内设置多个压电陶瓷片,可以增加压电陶瓷片的输出力,提高刹车片的制动效果。在一些实施例中,压电陶瓷片103的形状并不局限于方形,也可以是其它任意能够与凹槽102适配并且传递应力的形状。
在一些实施例中,凹槽102中还设置有顶片104,顶片104设置于压电陶瓷片103与凹槽102的侧壁之间。通过在设置于压电陶瓷片103与凹槽102的侧壁之间设置顶片104,可以压缩压电陶瓷片103与凹槽102的侧壁之间的空间,提高应力的传递效率。顶片104还包括一突出部104a,该突出部104a深入两个压电陶瓷片103的间隙中,将两个压电陶瓷片103间隔开。这样,可以避免多个压电陶瓷片之间的相互干扰。
固态刹车机构100还包括固定部120,固定部120设置于刹车片110的外围,适于在刹车片110受压电陶瓷片130推动伸展后与刹车片110接触,以提供制动力。固定部120为具有一定厚度的圆环,该圆环的内表面可与刹车片110的内表面接触,从而提供制动力。
在驱动轴的驱动下,刹车片110绕旋转轴线旋转。当需要刹车时,驱动电路给压电陶瓷片103上电,经过上电的压电陶瓷片103由于负压电效应沿伸长方向(X1和X2方向)伸长,带动刹车片110伸展,伸展后的刹车片110 的外表面与固定部120的内表面接触,提供一制动力,刹车片110在制动力的作用力逐渐刹车,直至停止旋转。
图2是根据本发明的一实施例的固态刹车机构的正面剖视图。参考图2所示,固态刹车机构还包括调节螺钉105和弹性垫圈106。调节螺钉105设置于刹车片110和固定部120的侧孔中,弹性垫圈106位于调节螺钉105与侧孔的底面之间,并且分别与调节螺钉105和侧孔接触。在刹车机构刹车之后,弹性垫圈106可提供一回复力,使得伸缩间隙101两侧的刹车片110相互靠近,刹车片110的外表面远离至固定部120,刹车片110恢复旋转。压电陶瓷材料在掉电后复原速度慢,通过调节螺钉105和弹性垫圈106的组合结构,可以提供回复力,使得刹车片110从刹车状态迅速恢复到传动状态,提高了系统的机动性。
继续参考图2,固态刹车机构还包括预紧螺钉107。预紧螺钉107设置于刹车片110和固定部120的侧孔中,其一端与顶片104抵接。由于预紧螺钉107抵接至顶片104,使得伸缩间隙101两侧的刹车片110相互远离,刹车片110的外表面靠近至固定部120,可以将刹车片110与固定部120的距离限定在预设范围内。由于预紧螺钉107可以将刹车片110与固定部120的距离限定在预设范围内,具有较小压电系数的压电陶瓷材料也可以应用于本发明的实施例中的固态刹车机构中。
本发明的该实施例提供了一种固态刹车机构,该固态刹车机构中刹车片的凹槽中设置有压电陶瓷片,压电陶瓷片在上电后伸长,使得刹车片伸展后与固定部抵接,提供刹车制动力,由于陶瓷材料体积小重量轻,因此可以降低整个固态刹车机构的体积和重量,此外,压电陶瓷片结构简单,并且可以与固定部面接触,使得固态刹车机构具有较大的扭转刚度,可以输出较大的扭矩。
本发明还提供一种包括该固态刹车机构的机器人,由于固态刹车机构体积小,重量轻,结构简单,具有较大的扭转刚度,在安装该固态刹车机构之后,机器人的体积和重量也会相应降低,并且能够为关节以及臂连杆提供较大的扭转刚度。机器人中关节和臂连杆可以是现有的结构,此处不再赘述。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本 领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。

Claims (10)

  1. 一种固态刹车机构(100),包括:
    刹车片(110),所述刹车片(110)上设有伸缩间隙(101)以及与所述伸缩间隙(101)连通的凹槽(102),所述刹车片(110)可通过所述伸缩间隙(101)伸缩,所述凹槽(102)内设置有压电陶瓷片(103),所述压电陶瓷片(103)可在上电后伸长,并在伸长方向的两端与所述凹槽(102)抵接;
    固定部(120),设置于所述刹车片(110)的外围,适于在所述刹车片受所述压电陶瓷片推动伸展后与所述刹车片(110)接触,以提供制动力。
  2. 如权利要求1所述的固态刹车机构,其特征在于,所述凹槽(102)内设置有多个压电陶瓷片(103),所述多个压电陶瓷片(103)在所述凹槽(102)内并排设置。
  3. 如权利要求1所述的固态刹车机构,其特征在于,所述凹槽(102)内设置有多个压电陶瓷片(103),所述多个压电陶瓷片(103)沿所述凹槽(102)的深度方向堆叠设置。
  4. 如权利要求1-3任一项所述的固态刹车机构,其特征在于,所述凹槽(102)内设置有顶片(104),所述顶片(104)设置于所述压电陶瓷片(103)与所述凹槽(102)的侧壁之间。
  5. 如权利要求4所述的固态刹车机构,其特征在于,所述顶片(104)包括突出部(104a),所述突出部(104a)将多个压电陶瓷片(103)隔开。
  6. 如权利要求1所述的固态刹车机构,其特征在于,所述伸缩间隙(101)包括第一伸缩间隙(1011)和第二伸缩间隙(1012),所述第一伸缩间隙(1011)为直线型,所述第二伸缩间隙(1012)为C字型。
  7. 如权利要求1所述的固态刹车机构,其特征在于,还包括调节螺钉(105)和弹性垫圈(106),所述弹性垫圈(106)向所述调节螺钉(105)施加回复力,使得伸缩间隙(101)两侧的刹车片(110)相互靠近。
  8. 如权利要求1或7所述的固态刹车机构,其特征在于,还包括预紧螺钉(107),所述预紧螺钉(107)将所述刹车片(110)与所述固定部(130)的距离限定在预设范围内。
  9. 如权利要求1所述的固态刹车机构,其特征在于,所述压电陶瓷片(103)由锆钛酸铅基压电陶瓷材料或钛酸钡钙基陶瓷材料制成。
  10. 一种机器人,包括如权利要求1-9任一项所述的固态刹车机构。
PCT/CN2019/109583 2019-09-30 2019-09-30 固态刹车机构及包括该固态刹车机构的机器人 WO2021062692A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109583 WO2021062692A1 (zh) 2019-09-30 2019-09-30 固态刹车机构及包括该固态刹车机构的机器人
CN201980100317.3A CN114401831A (zh) 2019-09-30 2019-09-30 固态刹车机构及包括该固态刹车机构的机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109583 WO2021062692A1 (zh) 2019-09-30 2019-09-30 固态刹车机构及包括该固态刹车机构的机器人

Publications (1)

Publication Number Publication Date
WO2021062692A1 true WO2021062692A1 (zh) 2021-04-08

Family

ID=75337688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109583 WO2021062692A1 (zh) 2019-09-30 2019-09-30 固态刹车机构及包括该固态刹车机构的机器人

Country Status (2)

Country Link
CN (1) CN114401831A (zh)
WO (1) WO2021062692A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2129514A (en) * 1982-11-10 1984-05-16 Norman Brian Pigott Braking device
JP2004060746A (ja) * 2002-07-29 2004-02-26 Oriental Motor Co Ltd 回転機用ブレーキ装置とクラッチ装置
US20100310305A1 (en) * 2009-06-09 2010-12-09 Samir Mekid Spherical joint with internal brake
CN103994159A (zh) * 2014-05-06 2014-08-20 南京航空航天大学 一种采用柔性放大结构的叠层式压电制动器及其工作方法
CN207747076U (zh) * 2018-01-19 2018-08-21 王心成 一种协作机器人关节位置止动器
CN108748274A (zh) * 2018-08-30 2018-11-06 遨博(北京)智能科技有限公司 一种刹车装置、机器人关节臂及机器人
CN109278067A (zh) * 2018-11-30 2019-01-29 上海宇塚电子科技有限公司 机器人关节模组中盘式制动装置结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201434030Y (zh) * 2009-06-29 2010-03-31 刘杰 摩托车刹车盘
CN206617472U (zh) * 2017-04-17 2017-11-07 浙江农业商贸职业学院 一种汽车制动性能体验提升用刹车盘
CN108869579B (zh) * 2018-06-01 2020-04-03 华东交通大学 一种单轨运输机的限速器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2129514A (en) * 1982-11-10 1984-05-16 Norman Brian Pigott Braking device
JP2004060746A (ja) * 2002-07-29 2004-02-26 Oriental Motor Co Ltd 回転機用ブレーキ装置とクラッチ装置
US20100310305A1 (en) * 2009-06-09 2010-12-09 Samir Mekid Spherical joint with internal brake
CN103994159A (zh) * 2014-05-06 2014-08-20 南京航空航天大学 一种采用柔性放大结构的叠层式压电制动器及其工作方法
CN207747076U (zh) * 2018-01-19 2018-08-21 王心成 一种协作机器人关节位置止动器
CN108748274A (zh) * 2018-08-30 2018-11-06 遨博(北京)智能科技有限公司 一种刹车装置、机器人关节臂及机器人
CN109278067A (zh) * 2018-11-30 2019-01-29 上海宇塚电子科技有限公司 机器人关节模组中盘式制动装置结构

Also Published As

Publication number Publication date
CN114401831A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN1026278C (zh) 压电致动器
US7762770B2 (en) Hybrid actuator for helicopter rotor blade control flaps
JP2018111198A (ja) ロボットシステムのクラッチ式関節モジュール
CN107486850B (zh) 一种柔索驱动机器人变刚度弹性关节
CN106239554B (zh) 一种可变刚度的传导机构以及机器人关节
JP2012250320A5 (zh)
JP6963155B2 (ja) マニピュレーター及びロボット
WO2020078158A1 (zh) 机器人双关节单元及应用其的足式机器人和协作机械臂
CN109352671B (zh) 一种贴片式压电驱动的机械手关节及其工作方法
EP2910308B1 (en) Jaw crusher driving device
US20130180353A1 (en) Robot arm having a weight compensation mechanism
CN105538288A (zh) 机器人
CN110048636B (zh) 基于纵振夹心式换能器的压电超声驱动器及其使用方法
CN201432303Y (zh) 仿人机器人的膝关节机构
WO2021062692A1 (zh) 固态刹车机构及包括该固态刹车机构的机器人
WO2019210625A1 (zh) 新型波发生器的谐波传动机构
JP2007319954A (ja) 可動軸駆動装置およびロボット装置
CN107947630B (zh) 外圈输出的中空式超声电机
JP2013187971A (ja) 振動波駆動装置
JP2017534025A (ja) 受動型ブレードピッチ制御モジュール
JP2000210831A (ja) パラレル機構
JP2010207985A (ja) 関節型駆動機構
RU2364512C1 (ru) Устройство тиснения
CN103174724A (zh) 夹心式悬臂梁弯曲振动工作模式的可解锁螺母
CN108582040B (zh) 一种具有新型助力装置的工业机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948201

Country of ref document: EP

Kind code of ref document: A1