WO2021062618A1 - 集装箱定位方法、系统及存储介质 - Google Patents

集装箱定位方法、系统及存储介质 Download PDF

Info

Publication number
WO2021062618A1
WO2021062618A1 PCT/CN2019/109420 CN2019109420W WO2021062618A1 WO 2021062618 A1 WO2021062618 A1 WO 2021062618A1 CN 2019109420 W CN2019109420 W CN 2019109420W WO 2021062618 A1 WO2021062618 A1 WO 2021062618A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
distance
container
intersection
preset
Prior art date
Application number
PCT/CN2019/109420
Other languages
English (en)
French (fr)
Inventor
邬承基
方红星
厉豪
Original Assignee
上海成业智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海成业智能科技股份有限公司 filed Critical 上海成业智能科技股份有限公司
Priority to PCT/CN2019/109420 priority Critical patent/WO2021062618A1/zh
Priority to CN201980099386.7A priority patent/CN114269676A/zh
Publication of WO2021062618A1 publication Critical patent/WO2021062618A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the present disclosure relates to the field of automatic control technology, for example, to a container positioning method, system and storage medium.
  • the function of the container lock pin is: in order to prevent the container from tipping, slipping, and stacking and stacking, the upper and lower boxes of the container must be connected at the four corners of the box by the lock pin. Therefore, when loading the ship, after the container is pulled to the side of the dock, four lock pins must be installed on the four corners of the bottom of the box before the container can be lifted and loaded by the dock quay crane. When each container is stacked on the lower container, The lock pins will automatically connect and lock the lower container; correspondingly, when the container is unloaded, the four lock pins at the bottom of the container need to be removed before being unloaded from the ship to the yard, so that it can be delivered by a container truck or a straddle carrier. Go to the dockyard. Whether it is a traditional dock or an automated dock, the disassembly and assembly operations of the lock pins in the above process can only be done manually.
  • an embodiment of the present invention provides a container positioning method, which may include:
  • the distance point and the second distance measurement point are both located on the distance measurement reference line, the angle between the straight line formed by the first distance measurement point and the positive side distance measurement point and the distance measurement reference line is the first preset angle, and the second distance measurement point The angle between the straight line formed by the point and the side ranging point and the ranging reference line is the second preset angle;
  • the to-be-positioned intersection point and the reference positioning point are determined according to the positioning parameters for the to-be-positioned intersection of the container's front side and the side of the container.
  • Determining the first positional relationship between the to-be-positioned intersection point and the reference positioning point according to the positioning parameters may include:
  • the first preset angle is a right angle
  • the second preset angle is an acute or obtuse angle
  • the direction of the distance measurement reference line is the horizontal direction
  • the direction perpendicular to the horizontal direction is the vertical direction.
  • the lateral distance of the intersection to be located relative to the reference positioning point is determined.
  • the above container positioning method may also include:
  • the second position relationship between the lock pin to be operated and the reference positioning point is determined.
  • the method can also include:
  • the coordinate system is established based on the direction of the distance measurement reference line, Obtain the coordinate data of the two positioned intersection points on the first side of the container and the coordinate data of the reference positioning point respectively;
  • the calculation parameters include the container's orientation. Side length and side length, and the coordinate data of the two positioned intersection points.
  • Calculating the coordinate data of the intersection to be located on the second side of the container according to the calculation parameters may include:
  • the second side of the container includes the intersection to be located, and the two located intersections include the first located intersection and the second located intersection.
  • the first vertical line includes the first vertical point and the second vertical line includes the second vertical point. Determine the first distance between the second positioned intersection point and the first vertical point, and calculate the first positioned point according to the calculation parameters and the first distance The second distance between the intersection and the second vertical point, and the third distance between the intersection to be located and the second vertical point;
  • the coordinate data of the intersection to be located is calculated.
  • the positive edge distance between the positive edge ranging point on the positive side of the container and the first ranging point which can include:
  • the parking sensor device If based on the parking sensor device set in the preset range of the preset parking space, it detects that the transfer equipment carrying the container is parked on the preset parking space, then the front side ranging point and the first ranging point on the front side of the container are acquired The distance between the positive edges.
  • an embodiment of the present invention also provides a container positioning system, which may include a container positioning device; wherein, the container positioning device may include:
  • the acquisition module is set to acquire the distance between the positive side ranging point on the side of the container and the first ranging point, and the side distance between the side ranging point on the side of the container and the second ranging point, wherein, the first ranging point and the second ranging point are both located on the ranging reference line, and the angle between the straight line formed by the first ranging point and the positive side ranging point and the ranging reference line is the first preset angle , The angle between the straight line formed by the second ranging point and the side ranging point and the ranging reference line is the second preset angle;
  • the first position relationship determination module is configured to set a reference positioning point on the distance measurement reference line with a preset reference distance from the second distance measurement point, then for the to-be-positioned intersection of the container's front side and the container side, according to
  • the positioning parameter determines the first positional relationship between the intersection to be positioned and the reference positioning point, where the positioning parameter includes at least one of the positive edge distance, the side edge distance, the preset reference distance, the first preset angle, and the second preset angle.
  • the container positioning system may also include: a parking position sensing device and a control device, wherein the parking position sensing device is set to detect whether the transfer equipment carrying the container is parked in a preset parking space, and if so, the equipment is stopped. The signal is sent to the control device so that the control device controls the container positioning device to start working.
  • the parking space sensing device can also be set to: if it is determined that the transfer equipment has left the preset parking space based on the detected parking space signal, the equipment leaving signal is sent to the control device, so that the control device controls the next transfer equipment to enter the scheduled parking space. Set up parking spaces.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program when executed by a processor, implements the container positioning method provided by any embodiment of the present invention.
  • At least one of the obtained front side distance, side distance, preset reference distance, first preset included angle, and second preset included angle on the container is used as a positioning parameter.
  • the first position relationship between the intersection to be positioned and the reference positioning point is determined according to the corner relationship in the at least one triangle constructed by the positioning parameters.
  • the first positional relationship between the to-be-positioned intersection point and the reference positioning point can be determined based on the corner relationship in at least one triangle, thereby achieving the effect of locating the to-be-positioned intersection point on the container based on the reference positioning point, that is, the container.
  • Figure 1 is a flowchart of a container positioning method in Embodiment 1 of the present invention.
  • Figure 2a is a schematic diagram of the first container positioning in the first embodiment of the present invention.
  • Figure 2b is a schematic diagram of the second container positioning in the first embodiment of the present invention.
  • Figure 3 is a flowchart of a container positioning method in the second embodiment of the present invention.
  • Figure 4 is a schematic diagram of a container positioning in the second embodiment of the present invention.
  • Figure 5a is a structural block diagram of the first container positioning system in the third embodiment of the present invention.
  • Figure 5b is a structural block diagram of the second container positioning system in the third embodiment of the present invention.
  • Fig. 6 is a working flow chart of a container positioning system in the third embodiment of the present invention.
  • the embodiment of the present invention provides a container positioning method, system and storage medium to realize automatic and precise positioning of the container.
  • a plurality of corner pieces for installing lock pins can be provided on the top and/or bottom of the container, and any type of corner pieces can be provided on the top and/or bottom of the container.
  • the corner fittings of the container are all standard parts.
  • the lock pin assembly and disassembly operation mechanism needs to install the lock pin to be installed on the corner piece of the container;
  • the lock pin assembly and disassembly operation mechanism needs to remove the lock pins to be disassembled on the container.
  • the transfer equipment enters the lock pin assembly and disassembly station, it is difficult for the unmanned transfer equipment to be accurately parked in the preset parking space, and it is likely to have some position deviations in all directions, especially in the transfer equipment. Some positional deviation in the forward direction. Therefore, the position deviation of the transfer equipment means the position deviation of the container. Therefore, the container needs to be accurately positioned. Only in this way, the lock pin assembly and disassembly operation mechanism can accurately find the lock pin to be disassembled on the container or use it for installation. The corner piece of the lock pin to be installed.
  • the positioning of a 40-foot container is the most common.
  • One solution is to set a distance sensor near the four corners of the preset parking space.
  • the distance sensor can be used to obtain the four intersection points of the 40-foot container to be located.
  • Location data For those non-40-foot containers, such as 20-foot containers or double 20-foot containers, because some intersections to be located do not correspond to distance sensors, that is, the location data of these intersections to be located cannot be obtained through the distance sensor. In this case, you can The location data of these intersections to be located are determined based on the container positioning method in the embodiment of the present invention.
  • Fig. 1 is a flowchart of a container positioning method provided in the first embodiment of the present invention. This embodiment is applicable to the case of container positioning, for example, to the case of positioning an intersection to be located on the container based on a reference positioning point.
  • the method may be executed by the container positioning device in the container positioning system provided by the embodiment of the present invention, and the container positioning device may be implemented by software and/or hardware.
  • the method of the embodiment of the present invention includes the following steps:
  • the container is mostly a tetragon, that is, each plane in the container is mostly a quadrilateral composed of four sides, such as a rectangle or a square.
  • the two opposite sides of the quadrilateral can be regarded as positive sides, and the other two The opposite sides are considered as side edges;
  • the two opposite sides in this quadrilateral that are basically parallel to the distance measurement standard can be regarded as positive sides, and the two opposite sides which are basically perpendicular to the distance measurement reference line are regarded as side edges, and vice versa.
  • the two relatively long sides of the quadrilateral can also be regarded as positive sides, and the other two relatively short sides are regarded as side sides, and vice versa; and so on.
  • the positive edge ranging point on the front side of the container is not preset, but is related to the first preset included angle.
  • the first preset included angle is a fixed, fixed clamp set in advance.
  • Angle which is the angle between the straight line formed by the first distance measurement point and the positive side distance measurement point set on the distance measurement reference line and the distance measurement reference line. Therefore, for the same container, if the container is loaded with lighter equipment If there is a difference in the stopping position, the positive side ranging point closely related to the first preset angle may be different. Of course, this is the same for the side ranging point on the side of the container.
  • the positive side distance can be measured by a ranging device set on the first ranging point.
  • the distance measuring device can be a distance meter or a measuring ruler.
  • the first ranging point if the forwarding equipment carrying the container has a preset parking space corresponding to the preset parking space, the approximate position of the four corners of the container can be determined according to the preset parking space, and/or the lock pins to be operated provided on the container Approximate location, then the first ranging point can be set near the four corners of the container and/or near the lock pin to be operated; on this basis, the size and quantity of the container can also be combined, such as a 20-foot container, 40 Two-foot container, double 20-foot container, etc., set multiple first ranging points on the ranging datum line.
  • first ranging points corresponding to each 20-foot container, thereby realizing the separate positioning of each 20-foot container.
  • the above content is the same for the side distance and the second ranging point.
  • the second ranging point can be set at a certain distance from the first ranging point and diagonally to the side of the container.
  • the parking space sensor device set within the preset range of the preset parking space detects that the transfer equipment carrying the container is parked at the preset parking space, the front side distance and the side distance can be obtained.
  • the preset range of the preset parking space can be to the side or below the preset parking space. This is because the parking space sensing device within the preset range should not prevent the transfer equipment from entering the preset parking space and can detect the transfer equipment In this way, according to the parking signal detected by the parking sensor device, it can be judged whether the transfer equipment carrying the container is parked in the preset parking space; if it has been parked, the front side of the container can be obtained.
  • the positive edge distance between the ranging point and the first ranging point is the parking space sensor device set within the preset range of the preset parking space detects that the transfer equipment carrying the container is parked at the preset parking space.
  • the to-be-positioned intersection point and the side of the container are determined according to the positioning parameters.
  • the reference positioning point may be the first ranging point, at this time, the first ranging point and the second ranging point are separated by a preset distance; the reference positioning point may be the second ranging point, at this time, the preset distance is 0;
  • the reference positioning point may also be a point on the ranging reference line other than the first ranging point and the second ranging point.
  • the significance of the setting of the reference positioning point is that the lock pin assembly and disassembly operation mechanism can be set at the reference positioning point.
  • the reference positioning point set on the distance measurement reference line has a certain distance from the preset parking space, it is set at the reference positioning point.
  • the locking pin assembly and disassembly operation mechanism at one point can avoid collision with the transfer equipment; on the other hand, the first position relationship between the intersection to be positioned and the reference positioning point is the first position of the intersection to be positioned and the lock pin assembly and disassembly operation mechanism This can prompt the follow-up operation of the lock pin assembly and disassembly operation mechanism.
  • the first positional relationship between the intersection to be located and the reference positioning point there are many ways to determine the first positional relationship between the intersection to be located and the reference positioning point according to the positioning parameters. This is because at least one triangle can be constructed according to the known positioning parameters, and at least one internal angle in each triangle and the The length of at least one side adjacent to the inner angle is known. From this, the remaining inner angles and side lengths in the triangle can be calculated, and then the first positional relationship between the intersection to be located and the reference positioning point can be determined. That is to say, when at least one of the constructed triangles and/or the known internal angles and side lengths of the triangles are different, there will naturally be differences in the determination of the first position relationship.
  • 1 is a container
  • 4 is a rangefinder set on the first ranging point
  • 5 is a set For the distance meter on the second ranging point
  • 6 is the side of the container
  • 7 is the front side of the container
  • 8 is the distance measurement datum line.
  • determining the first positional relationship between the intersection to be located and the reference positioning point according to the positioning parameters may include: if the first preset angle is a right angle, and the second preset angle is an acute or obtuse angle, the distance measurement reference line The direction is horizontal, and the direction perpendicular to the horizontal is vertical. The linear distance is determined according to the side distance and the second preset angle, and the longitudinal distance of the intersection point to be positioned relative to the reference positioning point is determined according to the positive edge distance; Set the reference distance and the straight line distance to determine the lateral distance of the intersection to be located relative to the reference positioning point.
  • At least one of the obtained front side distance, side distance, preset reference distance, first preset included angle, and second preset included angle on the container is used as a positioning parameter.
  • the first position relationship between the intersection to be positioned and the reference positioning point is determined according to the corner relationship in the at least one triangle constructed by the positioning parameters.
  • the first positional relationship between the to-be-positioned intersection point and the reference positioning point can be determined based on the corner relationship in at least one triangle, thereby achieving the effect of locating the to-be-positioned intersection point on the container based on the reference positioning point, that is, the container.
  • the relative position of each lock pin to be operated in the container is standard, that is, for each type of container, the container is used for
  • the corner pieces for installing the locking pins and the hole positions of the corner pieces are standard, especially the preset offset distance between the center point of each hole and the front or side of the container is fixed and known.
  • the preset offset distance between the lock pin to be operated on the container and the intersection to be located can be obtained, where the lock pin to be operated can be The hole position of the lock pin to be removed and/or the lock pin to be installed.
  • the second position relationship between the lock pin to be operated and the reference positioning point can be determined.
  • the first position relationship is 5 cm in the horizontal direction and 10 cm in the vertical direction
  • the preset offset distance is Horizontal -1 cm
  • the second positional relationship is 4 cm horizontal and 10 cm vertical.
  • the second position relationship between the lock pin to be operated and the reference positioning point is the second position relationship between the lock pin lock to be operated and the pin assembly and disassembly operation mechanism.
  • the lock pin assembly and disassembly operation mechanism is based on the second position relationship. You can find the lock pins to be operated on the container and perform operations on the lock pins to be operated.
  • Fig. 3 is a flowchart of a container positioning method provided in the second embodiment of the present invention.
  • the container positioning method described above may further include: if a lock pin assembling and disassembling operation mechanism is provided at the reference positioning point, and the lock pin assembling and disassembling operation mechanism does not find the lock pin to be operated according to the second position relationship, Then obtain the container's positive side length and side length, and establish a coordinate system based on the direction of the ranging datum line, and obtain the coordinate data of the two positioned intersection points on the first side of the container respectively; calculate according to the calculation parameters The coordinate data of the intersection to be located on the second side of the container, and the coordinate data of the intersection to be located is used as the first position relationship.
  • the calculation parameters include the length of the positive side, the length of the side and the coordinate data of the two located intersections . Wherein, the explanation of the same or corresponding terms as those in the foregoing embodiments will not be repeated here.
  • the method of this embodiment may include the following steps:
  • the to-be-positioned intersection point and the side of the container are determined according to the positioning parameters.
  • the lock pin assembly and disassembly operation mechanism can also have a visual recognition function, it can usually only achieve visual recognition within a small range, that is, if the lock pin assembly and disassembly operation mechanism determines the waiting mechanism according to the second positional relationship.
  • the position data of the operation lock pin is far from the actual position data of the lock pin to be operated, and the lock pin assembly and disassembly operation mechanism cannot find the lock pin to be operated.
  • a container positioning solution is to establish a coordinate system based on the direction of the ranging datum line.
  • the direction of the ranging datum line is taken as the X axis
  • the direction perpendicular to the ranging datum line is taken as the X axis.
  • the Y axis, or the direction of the distance measurement reference line as the Y axis, and the direction perpendicular to the distance measurement reference line as the X axis; correspondingly, the coordinate origin can be any point in the two-dimensional plane.
  • the container since the container includes a first side and a second side, the position data of the two located intersections on the first side can be obtained by the distance sensor.
  • the coordinate data of the distance sensor in the coordinate system is combined.
  • the coordinate data of the reference anchor point can also be obtained, which can be obtained in advance and fixed. In fact, 2 distance sensors can be set near each positioned intersection point, so that the horizontal and vertical coordinate data of the positioned intersection point can be obtained at the same time.
  • the coordinate data of the intersection to be located can be calculated according to the calculation parameters.
  • the two located intersections include the first located intersection and the second located intersection
  • a horizontal straight line that passes through the first located intersection and is parallel to the distance measurement reference line can be determined, and passes through the second located intersection and The first vertical line perpendicular to the horizontal straight line, and the second vertical line passing through the intersection to be positioned and perpendicular to the horizontal straight line.
  • multiple triangles can be formed, based on the known calculation parameters and the corners of these multiple triangles The relationship can determine the coordinate data of the intersection to be located.
  • the positive side length and side length of the container in this calculation parameter can be determined by the type of the container. According to the coordinate data of the intersection to be located and the coordinate data of the reference positioning point, the first positional relationship between the intersection to be located and the reference positioning can be re-determined, that is, the container is repositioned.
  • the determination process is naturally different.
  • the first vertical line includes the first vertical point and the second vertical line includes the second vertical point
  • the first distance between the second positioned intersection point and the first vertical point in the triangle can be determined, and according to Calculate the parameters and the first distance to calculate the second distance between the first located intersection and the second vertical point, and the third distance between the intersection to be located and the second vertical point; further, according to the coordinate data of the first located intersection , The second distance and the third distance, the coordinate data of the intersection to be located can be calculated.
  • the coordinate system is established by taking the direction of the ranging datum line as the X axis and the direction perpendicular to the ranging datum line as the Y axis.
  • the coordinate origin of the coordinate system may be in a two-dimensional plane.
  • the following data can be obtained: positive side length AD/BC, side length BA/CD, the first positioned intersection A and the second positioned intersection on the first side From the coordinate data of B, the coordinate data of the intersection point C to be located and the intersection point D to be located on the second side are calculated.
  • intersection point C Take the intersection point C to be located as an example, a horizontal straight line AE (horizontal straight line AE, intersecting CD at E) passing through the first positioned intersection point A and parallel to the distance measurement reference line, passing through the second positioned intersection point B and perpendicular to the horizontal straight line
  • the first vertical line BF of AE passing B ⁇ AE, crossing AE to F
  • the second vertical line CG passing C ⁇ AE, crossing AE to G
  • L ⁇ , L ⁇ and L ⁇ are all known internal angles.
  • the coordinate data of the intersection point C to be located is (X A + cos L ⁇ ⁇ AC, Y A + sin L ⁇ ⁇ AC).
  • the coordinate data of intersection D to be located is (X A +cos L ⁇ ⁇ AD, Y A -sin L ⁇ ⁇ AD).
  • the technical solution of the embodiment of the present invention is suitable for the application scenario where the parking position of the lighter equipment deviates from the preset parking space more.
  • the coordinate system is established based on the direction of the ranging reference line, and the coordinates on the first side of the container are obtained respectively.
  • the coordinate data of the two located intersections, and the coordinate data of the reference positioning point; further, the coordinate data of the intersection to be located on the second side of the container is calculated according to the calculation parameters, that is, the coordinate data to be located is calculated based on the coordinate data of the located intersection
  • the coordinate data of the intersection finally, according to the coordinate data of the intersection to be located and the coordinate data of the reference positioning point, the first position relationship is re-determined, so that the container can be repositioned and accurately positioned.
  • Figures 5a-5b are structural block diagrams of the container positioning system provided in the third embodiment of the present invention.
  • the system is configured to execute the container positioning method provided in any of the above embodiments.
  • This system belongs to the same concept as the container positioning method of the foregoing embodiments.
  • the system may include a container positioning device 30, where the container positioning device 30 may include an acquiring module 301 and a first position relationship determining module 302.
  • the acquiring module 301 is configured to acquire the distance between the positive side distance measuring point on the container side and the first distance measuring point, and the side distance between the side distance measuring point on the container side and the second distance measuring point.
  • the distance between the first distance measurement point and the second distance measurement point are located on the distance measurement reference line, and the angle between the straight line formed by the first distance measurement point and the positive side distance measurement point and the distance measurement reference line is the first predetermined distance.
  • Set the included angle, the included angle between the straight line formed by the second ranging point and the side ranging point and the ranging reference line is the second preset included angle;
  • the first position relationship determination module 302 is configured to, if a reference positioning point is set on the distance measurement reference line with a preset reference distance from the second distance measurement point, then for the to-be-positioned intersection of the container front side and the container side, The first positional relationship between the intersection to be positioned and the reference positioning point is determined according to the positioning parameters, where the positioning parameters include the distance between the positive edge, the distance from the side edge, the preset reference distance, the first preset angle and the second preset angle. at least one.
  • the first position relationship determination module 302 may include:
  • the longitudinal distance determining unit is configured to: if the first preset angle is a right angle, the second preset angle is an acute or obtuse angle, the direction of the distance measurement reference line is the horizontal direction, and the direction perpendicular to the horizontal direction is the vertical direction, according to The side distance and the second preset angle determine the straight line distance, and the longitudinal distance of the intersection to be positioned relative to the reference positioning point is determined according to the positive side distance;
  • the lateral distance determining unit is configured to determine the lateral distance of the intersection to be located relative to the reference positioning point according to the preset reference distance and the linear distance.
  • the container positioning device 30 may also include:
  • the preset offset distance acquisition module is configured to acquire the preset offset distance between the lock pin to be operated and the intersection point to be positioned on the container, where the lock pin to be operated includes the lock pin to be removed and/or the hole position of the lock pin to be installed;
  • the second position relationship determination module is configured to determine the second position relationship between the lock pin to be operated and the reference positioning point according to the preset offset distance and the first position relationship.
  • the container positioning device 30 may also include:
  • the coordinate data acquisition module is set to set the lock pin assembling and disassembling operation mechanism on the reference positioning point, and the lock pin assembling and disassembling operation mechanism does not find the lock pin to be operated according to the second position relationship, then use the distance measuring reference line where The direction is the reference to establish a coordinate system, and the coordinate data of the two positioned intersection points on the first side of the container and the coordinate data of the reference positioning point are obtained respectively;
  • the first position relationship re-determination module is configured to calculate the coordinate data of the intersection to be located on the second side of the container according to the calculation parameters, and re-determine the first position according to the coordinate data of the intersection to be located and the coordinate data of the reference positioning point The relationship, where the calculation parameters include the length of the positive side and the side of the container, and the coordinate data of the two located intersections.
  • the first position relationship re-determination module may include:
  • the auxiliary line determination unit is set to include the intersection to be located on the second side of the container, and the two located intersections include the first located intersection and the second located intersection, and determine the first located intersection and parallel to the distance measurement reference
  • the distance calculation unit is set so that the first vertical line includes the first vertical point and the second vertical line includes the second vertical point, determines the first distance between the second positioned intersection point and the first vertical point, and determines the first distance between the second positioned intersection point and the first vertical point, and according to the calculated parameters Calculate the second distance between the first located intersection and the second vertical point, and the third distance between the intersection to be located and the second vertical point;
  • the coordinate data determining unit is configured to calculate the coordinate data of the intersection to be located based on the coordinate data of the first located intersection, the second distance, and the third distance.
  • the acquisition module 301 can be set as:
  • the parking sensor device If based on the parking sensor device set in the preset range of the preset parking space, it detects that the transfer equipment carrying the container is parked on the preset parking space, then the front side ranging point and the first ranging point on the front side of the container are acquired The distance between the positive edges.
  • the container positioning system may also include a parking position sensing device 31 and a control device 32; wherein the parking position sensing device 31 is configured to detect whether the transfer equipment carrying the container is parked in a preset parking space, if so , The equipment stop signal is sent to the control device 32, so that the control device 32 controls the container positioning device 30 to start work.
  • the parking position sensing device 31 is also set to: if it is determined that the transfer equipment has left the preset parking space according to the detected parking space signal, the equipment leaving signal is sent to the control device 32 so that the control device 32 can control it. A transfer equipment drove into the preset parking space.
  • the distance between the two parking sensors matches the length of the lighter vehicle, so that when the lighter vehicle carrying container 1 enters the preset parking space according to the station sign, the A parking sensor 2 is triggered, the container inbound signal is sent, and the parking space red light is turned on; the transfer vehicle continues to move forward, the B parking space sensor 3 is triggered, the container inbound signal is issued, and the parking space red light is turned on.
  • the transfer vehicle can be based on two The parking space signal detected by the parking space sensor moves slowly so as to stop in the preset parking space; when the parking space signal sent by the parking space sensor A and B parking space sensor 3 received by the parking space sensing device 31 is fixed, it means that the transfer vehicle has stopped steadily.
  • the parking space is preset.
  • the parking position sensing device 31 sends the equipment stop signal to the control device 32 so that the control device 32 controls the container positioning device 30 to start working.
  • the second positional relationship between the lock pin to be operated and the reference positioning point can be determined, thus ,
  • the lock pin assembly and disassembly operation mechanism set on the reference positioning point can complete the lock pin assembly and disassembly operation according to the received second position relationship, and after the lock pin assembly and disassembly operation is completed, the lock pin assembly and disassembly completion signal is sent to the control
  • the system 32 enables the control system 32 to control the transfer equipment to leave the preset parking space.
  • the above calculation process of the horizontal distance and the vertical distance can be performed by the calculation server, for example, the frontal distance and the side distance in the container positioning device are directly transmitted to the calculation server, so that the calculation server can calculate according to the calculation.
  • the formula is calculated.
  • the computing server can be installed independently in the back-end computer room, and can also share system server resources with the help of the system.
  • the parking space sensing device 31 determines that the transfer equipment has left the preset parking space based on the detected parking space signal, for example, when the parking space sensor A and the parking space sensor B successively detect that the parking space in the station is vacant, the parking space green light is turned on, and the parking space sensing device 31 can The equipment leaving signal is sent to the control device 32, so that the control device 32 controls the next transfer equipment to drive into the preset parking space.
  • the work flow chart of the container positioning system can be shown in Figure 6.
  • the vehicle enters the parking space-triggers parking space induction-the vehicle moves to the preset parking space-the container positioning device starts the work-automatically measures the container's orientation Side distance-Transmit the measured data to the calculation server-Calculate the position data of point E of the container-Send the position data to the lock pin assembly and disassembly operation mechanism-Perform lock pin assembly and disassembly.
  • the container positioning device in the container positioning system provided in the third embodiment of the present invention through the mutual cooperation of the acquisition module and the first position relationship determination module, will obtain the frontal distance, the side distance, and the preset reference distance on the container.
  • At least one of the first preset included angle and the second preset included angle is used as a positioning parameter, and the first positional relationship between the to-be-positioned intersection point and the reference positioning point is determined according to the side angle relationship in the at least one triangle constructed by the positioning parameters.
  • the above system can determine the first positional relationship between the to-be-positioned intersection point and the reference positioning point based on the corner relationship in at least one triangle, thereby achieving the effect of positioning the to-be-positioned intersection point on the container based on the reference positioning point.
  • Reference positioning which provides data support for subsequent lock pin assembly and disassembly operations, so as to realize the unmanned operation of lock pin assembly and disassembly.
  • the container positioning system provided by the embodiment of the present invention can execute the container positioning method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • the fourth embodiment of the present invention provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a container positioning method when executed by a computer processor, and the method may include:
  • the distance point and the second distance measurement point are both located on the distance measurement reference line, the angle between the straight line formed by the first distance measurement point and the positive side distance measurement point and the distance measurement reference line is the first preset angle, and the second distance measurement point The angle between the straight line formed by the point and the side ranging point and the ranging reference line is the second preset angle;
  • the to-be-positioned intersection point and the reference positioning point are determined according to the positioning parameters for the to-be-positioned intersection of the container's front side and the side of the container.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present invention is not limited to the method operations described above, and can also execute any of the container positioning methods provided in any embodiment of the present invention. Related operations.
  • the present disclosure can be implemented by software and necessary general-purpose hardware, of course, it can also be implemented by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product, which can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), Flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a computer-readable storage medium such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), Flash memory (FLASH), hard disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种集装箱定位方法、系统及存储介质。该方法包括:获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离(S110);若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系(S120)。

Description

集装箱定位方法、系统及存储介质 技术领域
本公开涉及自动控制技术领域,例如涉及一种集装箱定位方法、系统及存储介质。
背景技术
随着全球经济逐步回暖,海运量稳步提升,港口集装箱装卸量也不断攀升。但是由于物价、劳动力等成本增长较快,导致港口的边际利润呈现下降趋势。由此,全自动作业的“无人化码头”应运而生,为码头降本增效提供了极好的技术手段,尤其是那些吞吐量大的港口,更是青睐“无人化码头”的改造。可时至今日,“无人化码头”作业中有一个小而不起眼、但在集装箱码头装卸时不可或缺的流程,却使得码头自动化无法实现真正的“无人化”,这就是集装箱锁销的拆装作业,该锁销也可以称为旋(扭)锁、固定锁、锁头等等。
集装箱锁销的作用是:为避免集装箱倾倒、滑移,并堆装码齐,集装箱的上下箱之间就必须要通过锁销在箱体四角连接。因此,在装船时,集装箱被拉到码头船边后,必须先在箱底四角装上四个锁销,方可由码头岸桥起吊集装箱装船,每个集装箱在堆装到下层箱上时,锁销就会自动连接锁住下层箱;相应的,在卸船时,当集装箱被卸下船送去堆场前,需要将箱底的四个锁销拆除,方可由集装箱卡车或是跨运车送去码头堆场。无论是传统码头还是自动化码头,上述流程中锁销的拆装作业都只能人工完成。
目前,船用集装箱锁销的使用情况十分复杂,锁销的制造者是航运公司船 主,锁销的具体构造在国际上没有统一标准,由此可见,能完全兼容所有锁销的自动化装拆作业较为困难,现在仍然需要人工进行辅助作业。
发明内容
第一方面,本发明实施例提供了一种集装箱定位方法,可以包括:
获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角;
若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
根据定位参数确定待定位交点和基准定位点的第一位置关系,可包括:
若第一预设夹角为直角,第二预设夹角为锐角或钝角,以测距基准线所在的方向为横向,以垂直于横向的方向为纵向,则根据侧边距离和第二预设夹角确定直线距离,根据正边距离确定待定位交点相对于基准定位点的纵向距离;
根据预设基准距离和直线距离,确定待定位交点相对于基准定位点的横向距离。
上述集装箱定位方法,还可以包括:
获取集装箱上待作业锁销与待定位交点间的预设偏移距离,其中,待作业锁销包括待拆卸锁销和/或待安装锁销孔位;
根据预设偏移距离和第一位置关系,确定待作业锁销与基准定位点的第二位置关系。
在此基础上,该方法还可以包括:
若在基准定位点上设置有锁销装拆作业机构,且锁销装拆作业机构根据第二位置关系未寻找到待作业锁销,则以测距基准线所在的方向为基准建立坐标系,分别获取集装箱的第一侧边上的两个已定位交点的坐标数据,以及,基准定位点的坐标数据;
根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,并根据待定位交点的坐标数据和基准定位点的坐标数据,重新确定第一位置关系,其中,计算参数包括集装箱的正边长和侧边长,及两个已定位交点的坐标数据。
根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,可以包括:
集装箱的第二侧边上包括待定位交点,两个已定位交点包括第一已定位交点和第二已定位交点,确定经第一已定位交点且平行于测距基准线的水平直线,经第二已定位交点且垂直于水平直线的第一垂直线,以及,经待定位交点且垂直于水平直线的第二垂直线;
第一垂直线包括第一垂点且第二垂直线包括第二垂点,确定第二已定位交点和第一垂点间的第一距离,并根据计算参数和第一距离计算第一已定位交点和第二垂点间的第二距离,以及,待定位交点和第二垂点间的第三距离;
根据第一已定位交点的坐标数据、第二距离和第三距离,计算待定位交点的坐标数据。
获取集装箱正边上的正边测距点和第一测距点间的正边距离,可包括:
若基于设置在预设车位的预设范围内的车位感应装置检测到承载有集装箱 的驳运设备停稳于预设车位上,则获取集装箱正边上的正边测距点和第一测距点间的正边距离。
第二方面,本发明实施例还提供了一种集装箱定位系统,该系统可以包括集装箱定位装置;其中,该集装箱定位装置可以包括:
获取模块,设置为获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角;
第一位置关系确定模块,设置为若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
在此基础上,该集装箱定位系统还可以包括:车位感应装置和控制装置,其中,车位感应装置设置为检测承载有集装箱的驳运设备是否停稳于预设车位上,若是,则将设备停稳信号发送至控制装置,以使控制装置控制集装箱定位装置启动工作。
车位感应装置还可以设置为:若根据检测得到的车位信号判断出驳运设备已驶离预设车位,则将设备驶离信号发送至控制装置,以使控制装置控制下一辆驳运设备驶入预设车位。
第三方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本发明任意实施例所提供的集 装箱定位方法。
本发明实施例的技术方案,通过将获取到的集装箱上的正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个作为定位参数,并根据定位参数构建出的至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系。上述技术方案,可以基于至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系,由此实现了基于基准定位点定位集装箱上的待定位交点的效果,即实现了集装箱的基准定位,这为后续的锁销装拆作业提供了数据支持,以便实现锁销装拆的无人化作业。
附图说明
图1是本发明实施例一中的一种集装箱定位方法的流程图;
图2a是本发明实施例一中的第一种集装箱定位示意图;
图2b是本发明实施例一中的第二种集装箱定位示意图;
图3是本发明实施例二中的一种集装箱定位方法的流程图;
图4是本发明实施例二中的一种集装箱定位示意图;
图5a是本发明实施例三中的第一种集装箱定位系统的结构框图;
图5b是本发明实施例三中的第二种集装箱定位系统的结构框图;
图6是本发明实施例三中的一种集装箱定位系统的工作流程图。
具体实施方式
下面结合附图和实施例对本公开作详细说明。可以理解的是,此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
目前,业内工程技术人员在想方设法地试图实现锁销装拆作业的自动化,比如,基于中转平台采用机械手来装拆锁销,但这个技术应用的前提是集装箱的精确定位,只有这样,机械手才能找到待拆卸锁销以及待安装锁销孔位。有鉴于此,实现集装箱的自动精确定位,是实现锁销的自动化装拆的必要前提。
本发明实施例提供了一种集装箱定位方法、系统及存储介质,以实现集装箱的自动精确定位。
在介绍本发明实施例之前,先对本发明实施例的应用场景进行说明:通常情况下,在集装箱的顶部和/或底部可以设置有多个用于安装锁销的角件,而且,任何类型的集装箱的角件都是标准件。在实际应用中,当承载有集装箱的驳运设备驶入锁销装拆站后,对于待装船的集装箱,锁销装拆作业机构需要将待安装锁销安装在集装箱的角件上;对于已卸船的集装箱,锁销装拆作业机构需要将集装箱上的待拆卸锁销拆卸下来。然而,当驳运设备驶入锁销装拆站时,无人驾驶的驳运设备很难十分精准的停稳于预设车位上,其很可能在各个方向出现一些位置偏差,特别是在驳运设备的前进方向的一些位置偏差。由此,驳运设备的位置偏差就意味着集装箱的位置偏差,因此,需要对集装箱进行精准定位,只有这样,锁销装拆作业机构才能准确寻找到集装箱上的待拆卸锁销或是用于安装待安装锁销的角件。
在实际应用中,40呎集装箱的定位最为常见,一种方案是在预设车位的四个角落的方向附近设置有距离传感器,该距离传感器可以用于获取40呎集装箱的4个待定位交点的位置数据。但是,对于那些非40呎集装箱,比如20呎集装箱或是双20呎集装箱,由于有些待定位交点未对应有距离传感器,即这些待定位交点的位置数据无法通过距离传感器获知,此时,就可以基于本发明实施例中的集装箱定位方法确定这些待定位交点的位置数据。
实施例一
图1是本发明实施例一中提供的一种集装箱定位方法的流程图。本实施例可适用于集装箱定位的情况,例如适用于基于基准定位点定位集装箱上的待定位交点的情况。该方法可以由本发明实施例提供的集装箱定位系统中的集装箱定位装置来执行,该集装箱定位装置可以由软件和/或硬件的方式实现。
参见图1,本发明实施例的方法包括如下步骤:
S110、获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角。
其中,集装箱多呈现为四方体,即集装箱中的每个平面多是由四条边长构成的四边形,比如长方形或是正方形,则,可以将这四边形中两条相对的边认为是正边,另外两条相对的边认为是侧边;可以将这四边形中与测距基准性基本平行的两条相对的边认为是正边,与测距基准线基本垂直的两条相对的边认为是侧边,反之亦然可以;或者,还可以将这四边形中两条相对的较长的边认为是正边,另外两条相对的较短的边认为是侧边,反之亦然可以;等等。
在此基础上,集装箱正边上的正边测距点并非是预先设置的,其与第一预设夹角有关,这是因为,第一预设夹角是预先设置的固定不变的夹角,其是设置于测距基准线上的第一测距点和正边测距点构成的直线与测距基准线间的夹角,因此,对于同一台集装箱,若承载有集装箱的驳运设备的停稳位置存在差异,则与第一预设夹角紧密联系的正边测距点就可能存在差异,当然,这对于集装箱侧边上的侧边测距点也是同理可言。
获取集装箱正边上的正边测距点和第一测距点间的正边距离的方式有很多种,比如,可以通过设置于第一测距点上的测距装置测量出正边距离,该测距装置可以是测距仪或是量尺。而且,对于第一测距点,若承载有集装箱的驳运设备对应有预设车位,则根据预设车位可以确定出集装箱四角的大概位置,和/或,设置于集装箱上的待作业锁销的大概位置,那么,就可以在对应于集装箱四角的附近和/或待作业锁销的附近设置第一测距点;在此基础上,还可以结合集装箱的尺寸和数量,比如20呎集装箱、40呎集装箱、双20呎集装箱等等,在测距基准线上设置多个第一测距点。示例性的,对于双20呎集装箱,针对于每个20呎集装箱可以对应有1个或是多个第一测距点,由此实现每个20呎集装箱的分别定位。当然,上述内容对侧边距离和第二测距点也是同理可言,比如,可以在与第一测距点相距一定距离且斜对集装箱侧边的方位设置第二测距点。
在此基础上,若基于设置在预设车位的预设范围内的车位感应装置检测到承载有集装箱的驳运设备停稳于预设车位上,就可以获取正边距离和侧边距离。其中,预设车位的预设范围可以是预设车位的侧方或者下方,这是因为,预设范围内的车位感应装置应以不妨碍到驳运设备驶入预设车位且可检测到驳运设备的相对位置为原则,这样一来,根据车位感应装置检测得到的车位信号可以判断承载有集装箱的驳运设备是否停稳于预设车位上;若已停稳,可以获取集装箱正边上的正边测距点和第一测距点间的正边距离。
S120、若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
其中,基准定位点可以是第一测距点,此时,第一测距点和第二测距点相距预设距离;基准定位点可以是第二测距点,此时,预设距离为0;基准定位点还可以是测距基准线上的除第一测距点和第二测距点以外的点。基准定位点设置的意义在于,可以将锁销装拆作业机构设置于基准定位点,一方面,由于设置于测距基准线上的基准定位点与预设车位存在一定距离,而设置于基准定位点上的锁销装拆作业机构就可以避免与驳运设备发生碰撞;另一方面,待定位交点和基准定位点的第一位置关系,就是待定位交点和锁销装拆作业机构的第一位置关系,这可以促使锁销装拆作业机构的后续作业。
根据定位参数确定待定位交点和基准定位点的第一位置关系的方式有很多种,这是因为,可以根据已知的定位参数构建出至少一个三角形,且每个三角形中的至少一个内角以及与该内角相邻的至少一条边长是已知的,由此,就可以计算出三角形中其余的内角和边长,进而确定待定位交点和基准定位点的第一位置关系。也就是说,当构建出的至少一个三角形和/或三角形中已知的内角和边长不同时,第一位置关系的确定方式自然存在差异。
示例性的,以构成两个三角形且基准定位点为第一测距点为例,如图2a所示,1是集装箱,4是设置于第一测距点上的测距仪,5是设置于第二测距点上的测距仪,6是集装箱侧边,7是集装箱正边,8是测距基准线。由此,根据正边距离a和第一预设夹角β可以计算边长②,即②=a*sinβ,根据侧边距离b和第二预设夹角
Figure PCTCN2019109420-appb-000001
可以计算边长③+④,
Figure PCTCN2019109420-appb-000002
则根据预设基准距离d可以计算⑤=d-③-④,则此时的第一位置关系是待定位交点E相对于基准定位点的横向距离是⑤,纵向距离是②。
再示例性,根据定位参数确定待定位交点和基准定位点的第一位置关系,可以包括:若第一预设夹角为直角,第二预设夹角为锐角或钝角,以测距基准 线所在的方向为横向,以垂直于横向的方向为纵向,则根据侧边距离和第二预设夹角确定直线距离,根据正边距离确定待定位交点相对于基准定位点的纵向距离;根据预设基准距离和直线距离,确定待定位交点相对于基准定位点的横向距离。比如,以构成一个三角形且基准定位点为第一测距点为例,如图2b所示,根据侧边距离b和第二预设夹角
Figure PCTCN2019109420-appb-000003
可以计算直线距离③+④,即
Figure PCTCN2019109420-appb-000004
则根据预设基准距离d和直线距离③+④,可以计算待定位交点E相对于基准定位点的横向距离⑤=d-③-④;根据正边距离a可以确定待定位交点E相对于基准定位点的纵向距离②=a,则此时的第一位置关系是待定位交点E相对于基准定位点的横向距离是⑤,纵向距离是②。
本发明实施例的技术方案,通过将获取到的集装箱上的正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个作为定位参数,并根据定位参数构建出的至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系。上述技术方案,可以基于至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系,由此实现了基于基准定位点定位集装箱上的待定位交点的效果,即实现了集装箱的基准定位,这为后续的锁销装拆作业提供了数据支持,以便实现锁销装拆的无人化作业。
在一实施方式中,在此基础上,虽然集装箱的类型存在差异性,但每个待作业锁销在集装箱中的相对位置是标准的,也就是说,对于各个类型的集装箱,集装箱上用于安装锁销的角件以及角件的孔位是标准的,尤其是每个孔位的中心点与集装箱正边或是侧边的预设偏移距离都是固定且已知的。在此基础上,由于待定位交点是集装箱正边和集装箱侧边的交点,由此可以获取集装箱上待作业锁销与待定位交点间的预设偏移距离,其中,待作业锁销可以是待拆卸锁销和/或待安装锁销孔位。
根据预设偏移距离和第一位置关系,可以确定待作业锁销与基准定位点的第二位置关系,比如,第一位置关系是横向5厘米,纵向10厘米,而预设偏移距离是横向-1厘米,则第二位置关系是横向4厘米,纵向10厘米。同样的,待作业锁销和基准定位点的第二位置关系,即为待作业锁销锁和销装拆作业机构的第二位置关系,那么,锁销装拆作业机构根据第二位置关系就可以寻找到集装箱上的待作业锁销,并对待作业锁销进行作业。
实施例二
图3是本发明实施例二中提供的一种集装箱定位方法的流程图。本实施例以上述各技术方案为基础进行优化。在本实施例中,上述集装箱定位方法,还可以包括:若在基准定位点上设置有锁销装拆作业机构,且锁销装拆作业机构根据第二位置关系未寻找到待作业锁销,则获取集装箱的正边长和侧边长,且以测距基准线所在的方向为基准建立坐标系,分别获取集装箱的第一侧边上的两个已定位交点的坐标数据;根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,并将待定位交点的坐标数据作为第一位置关系,其中,计算参数包括正边长、侧边长和两个已定位交点的坐标数据。其中,与上述各实施例相同或相应的术语的解释在此不再赘述。
参见图3,本实施例的方法可以包括如下步骤:
S210、获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角。
S220、若在测距基准线上设置有与第二测距点相距预设基准距离的基准定 位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
S230、若在基准定位点上设置有锁销装拆作业机构,且锁销装拆作业机构根据第二位置关系未寻找到待作业锁销,则以测距基准线所在的方向为基准建立坐标系,分别获取集装箱的第一侧边上的两个已定位交点的坐标数据,以及,基准定位点的坐标数据。
其中,如果锁销装拆作业机构根据第二位置关系未寻找到待作业锁销,这可能是驳运设备的停稳位置偏离预设车位较多,此时,可以采用其余的定位方案来重新定位集装箱。需要说明的是,虽然锁销装拆作业机构也可以具备视觉识别功能,但其通常只能实现很小范围内的视觉识别,即,如果锁销装拆作业机构根据第二位置关系确定的待作业锁销的位置数据与实际的待作业锁销的位置数据相差较远,则锁销装拆作业机构是无法寻找到待作业锁销。
在一实施方式中,一种集装箱定位方案,以测距基准线所在的方向为基准建立坐标系,比如,以测距基准线所在的方向为X轴,以垂直于测距基准线的方向为Y轴,或者,以测距基准线所在的方向为Y轴,以垂直于测距基准线的方向为X轴;相应的,坐标原点可以是二维平面中的任一点。在此基础上,由于集装箱包括第一侧边和第二侧边,第一侧边上的两个已定位交点的位置数据可以通过距离传感器获取,此时,结合坐标系中距离传感器的坐标数据,就可以确定两个已定位交点的坐标数据,比如,位置数据是(3,5),距离传感器的坐标数据是(2,1),则已定位交点的坐标数据是(5,6)。另外,还可以获取基准定位点的坐标数据,这可以是预先获取且固定不变的。实际上,每个已定位交点的附近可以设置有2个距离传感器,这样就可以同时获取已定位交点的横纵坐 标数据。
S240、根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,并根据待定位交点的坐标数据和基准定位点的坐标数据,重新确定第一位置关系,其中,计算参数可以包括集装箱的正边长和侧边长,以及,两个已定位交点的坐标数据。
其中,由于集装箱的第二侧边上的待定位交点未对应有距离传感器,则可以根据计算参数计算待定位交点的坐标数据。示例性的,若两个已定位交点包括第一已定位交点和第二已定位交点,则可以确定经第一已定位交点且平行于测距基准线的水平直线,经第二已定位交点且垂直于水平直线的第一垂直线,以及,经过待定位交点且垂直于水平直线的第二垂直线,此时,可以构成多个三角形,根据已获知的计算参数和这多个三角形的边角关系就可以确定待定位交点的坐标数据。需要说明的是,该计算参数中的集装箱的正边长和侧边长可以通过集装箱的类型确定。根据待定位交点的坐标数据和基准定位点的坐标数据,就可以重新确定待定位交点和基准定位的第一位置关系,即重新对集装箱进行定位。
需要说明的是,当基于不同的三角形和/或边角关系来确定待定位交点的坐标数据时,确定过程自然有所差异。在一实施方式中,若第一垂直线包括第一垂点且第二垂直线包括第二垂点,则可以确定三角形中第二已定位交点和第一垂点间的第一距离,并根据计算参数和第一距离计算第一已定位交点和第二垂点间的第二距离,以及,待定位交点和第二垂点间的第三距离;进而,根据第一已定位交点的坐标数据、第二距离和第三距离,就可以计算待定位交点的坐标数据。
示例性的,如图4所示,以测距基准线所在的方向为X轴,以垂直于测距 基准线的方向为Y轴建立坐标系,坐标系的坐标原点可以是二维平面中的任一点,此时,根据集装箱的类型和距离传感器可以获取如下数据:正边长AD/BC,侧边长BA/CD,第一侧边上的第一已定位交点A和第二已定位交点B的坐标数据,由此计算第二侧边上的待定位交点C和待定位交点D的坐标数据。
先以待定位交点C为例,经第一已定位交点A且平行于测距基准线的水平直线AE(水平直线AE,交CD于E),经第二已定位交点B且垂直于水平直线AE的第一垂直线BF(经B⊥AE,交AE于F),以及,经过待定位交点C且垂直于水平直线AE的第二垂直线CG(经C⊥AE,交AE于G),此时,可以构成三角形ABF、三角形ABC和三角形ACG,由此根据如下式子计算待定位交点C的坐标数据:
根据第二已定位交点B的纵坐标数据Y B和第一已定位交点A的纵坐标数据Y A,计算第一距离BF:BF=Y B-Y A
L α+L β+L γ=90°,
Figure PCTCN2019109420-appb-000005
在三角形ABF中,
Figure PCTCN2019109420-appb-000006
在三角形ABC中,
Figure PCTCN2019109420-appb-000007
Figure PCTCN2019109420-appb-000008
Figure PCTCN2019109420-appb-000009
此时,L α、L β和L γ均是已知的内角。
CG=Y C-Y A=sin L β·AC,则Y C=Y A+sin L β·AC
AG=X C-X A=cos Lβ·AC,则X C=X A+cos Lβ·AC
此时,待定位交点C的坐标数据为(X A+cos Lβ·AC,Y A+sin L β·AC)。同理可得,待定位交点D的坐标数据为(X A+cos L γ·AD,Y A-sin L γ·AD)。
本发明实施例的技术方案,适用于驳运设备的停稳位置偏离预设车位较多 的应用场景,以测距基准线所在的方向为基准建立坐标系,分别获取集装箱的第一侧边上的两个已定位交点的坐标数据,以及,基准定位点的坐标数据;进而,根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,即根据已定位交点的坐标数据推算待定位交点的坐标数据;最后,根据待定位交点的坐标数据和基准定位点的坐标数据,重新确定第一位置关系,实现了集装箱的重新且精准定位。
实施例三
图5a-5b为本发明实施例三提供的集装箱定位系统的结构框图,该系统设置为执行上述任意实施例所提供的集装箱定位方法。该系统与上述各实施例的集装箱定位方法属于同一个构思,在集装箱定位系统的实施例中未详尽描述的细节内容,可以参考上述集装箱定位方法的实施例。参见图5a,该系统可包括集装箱定位装置30,其中,该集装箱定位装置30可包括获取模块301和第一位置关系确定模块302。
其中,获取模块301,设置为获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角;
第一位置关系确定模块302,设置为若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
第一位置关系确定模块302,可以包括:
纵向距离确定单元,设置为若第一预设夹角为直角,第二预设夹角为锐角或钝角,以测距基准线所在的方向为横向,以垂直于横向的方向为纵向,则根据侧边距离和第二预设夹角确定直线距离,根据正边距离确定待定位交点相对于基准定位点的纵向距离;
横向距离确定单元,设置为根据预设基准距离和直线距离,确定待定位交点相对于基准定位点的横向距离。
在此基础上,集装箱定位装置30,还可以包括:
预设偏移距离获取模块,设置为获取集装箱上待作业锁销与待定位交点间的预设偏移距离,其中,待作业锁销包括待拆卸锁销和/或待安装锁销孔位;
第二位置关系确定模块,设置为根据预设偏移距离和第一位置关系,确定待作业锁销与基准定位点的第二位置关系。
在此基础上,集装箱定位装置30,还可以包括:
坐标数据获取模块,设置为若在基准定位点上设置有锁销装拆作业机构,且锁销装拆作业机构根据第二位置关系未寻找到待作业锁销,则以测距基准线所在的方向为基准建立坐标系,分别获取集装箱的第一侧边上的两个已定位交点的坐标数据,以及,基准定位点的坐标数据;
第一位置关系重新确定模块,设置为根据计算参数计算集装箱的第二侧边上的待定位交点的坐标数据,并根据待定位交点的坐标数据和基准定位点的坐标数据,重新确定第一位置关系,其中,计算参数包括集装箱的正边长和侧边长,以及,两个已定位交点的坐标数据。
第一位置关系重新确定模块,可包括:
辅助线确定单元,设置为集装箱的第二侧边上包括待定位交点,两个已定 位交点包括第一已定位交点和第二已定位交点,确定经第一已定位交点且平行于测距基准线的水平直线,经第二已定位交点且垂直于水平直线的第一垂直线,以及,经待定位交点且垂直于水平直线的第二垂直线;
距离计算单元,设置为第一垂直线包括第一垂点且第二垂直线包括第二垂点,确定第二已定位交点和第一垂点间的第一距离,并根据计算参数和第一距离计算第一已定位交点和第二垂点间的第二距离,以及,待定位交点和第二垂点间的第三距离;
坐标数据确定单元,设置为根据第一已定位交点的坐标数据、第二距离和第三距离,计算待定位交点的坐标数据。
获取模块301,可以设置为:
若基于设置在预设车位的预设范围内的车位感应装置检测到承载有集装箱的驳运设备停稳于预设车位上,则获取集装箱正边上的正边测距点和第一测距点间的正边距离。
在此基础上,参见图5b,该集装箱定位系统还可以包括车位感应装置31和控制装置32;其中,车位感应装置31设置为检测承载有集装箱的驳运设备是否停稳于预设车位上,若是,则将设备停稳信号发送至控制装置32,以使控制装置32控制集装箱定位装置30启动工作.
在此基础上,车位感应装置31还设置为:若根据检测得到的车位信号判断出驳运设备已驶离预设车位,则将设备驶离信号发送至控制装置32,以使控制装置32控制下一辆驳运设备驶入预设车位。
为了更好地理解上述步骤的实现过程,结合图5b所示的集装箱定位系统的结构图和图2b所示的集装箱定位示意图,示例性的,在沿着驳运车辆的前进方向上可以依次设置有A车位传感器2和B车位传感器3,两个车位传感器间的 距离与驳运车辆的长度相匹配,这样一来,当承载有集装箱1的驳运车辆根据站内标识驶入预设车位时,A车位传感器2被触发,发出集装箱进站信号,并开启车位红灯;驳运车辆继续前行,B车位传感器3被触发,发出集装箱进站信号,并开启车位红灯,此时的驳运车辆可以根据两个车位传感器检测得到的车位信号缓慢移动以便停正于预设车位内;当车位感应装置31接收到的A车位传感器2和B车位传感器3发送的车位信号固定不变时,说明驳运车辆停稳于预设车位,此时,车位感应装置31将设备停稳信号发送至控制装置32,以使控制装置32控制集装箱定位装置30启动工作。
集装箱定位装置30启动工作,获取集装箱的正边距离a和侧边距离b,进而,并根据计算式子计算出待定位交点E相对于基准定位点的横向距离⑤=d-③-④和纵向距离②=a。在此基础上,根据集装箱1上待作业锁销与待定位交点E间的预设偏移距离、横向距离和纵向距离,可以确定待作业锁销与基准定位点的第二位置关系,由此,设置于基准定位点上的锁销装拆作业机构根据接收到的第二位置关系可以完成锁销装拆作业,并在锁销装拆作业完成后,将锁销装拆完成信号发送至控制系统32,以使控制系统32控制驳运设备驶离预设车位。需要说明的是,上述横向距离和纵向距离的计算过程,可以是由计算服务器来执行,比如,将集装箱定位装置中的正边距离和侧边距离直接传输到计算服务器,以由计算服务器根据计算式子进行计算。该计算服务器可独立安装于后端机房,亦可借助于系统共享系统服务器资源。
车位感应装置31若根据检测得到的车位信号判断出驳运设备已驶离预设车位,比如,A车位传感器和B车位传感先后检测到站内车位空出时,开启车位绿灯,车位感应装置31可将设备驶离信号发送至控制装置32,以使控制装置32控制下一辆驳运设备驶入预设车位。
综上所述,集装箱定位系统的工作流程图可以如图6所示,车辆驶入车位——触发车位感应——车辆移动至预设车位——集装箱定位装置启动工作——自动测量集装箱的正侧边距离——将测量数据传输到计算服务器——计算集装箱E点的位置数据——位置数据发送锁销装拆作业机构——执行锁销装拆。
本发明实施例三提供的集装箱定位系统中的集装箱定位装置,通过获取模块和第一位置关系确定模块的相互配合,将获取到的集装箱上的正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个作为定位参数,并根据定位参数构建出的至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系。上述系统,可以基于至少一个三角形中的边角关系确定待定位交点和基准定位点的第一位置关系,由此实现了基于基准定位点定位集装箱上的待定位交点的效果,即实现了集装箱的基准定位,这为后续的锁销装拆作业提供了数据支持,以便实现锁销装拆的无人化作业。
本发明实施例所提供的集装箱定位系统可执行本发明任意实施例所提供的集装箱定位方法,具备执行方法相应的功能模块和有益效果。
值得注意的是,上述集装箱定位系统的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本公开的保护范围。
实施例四
本发明实施例四提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种集装箱定位方法,该方法可包括:
获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边 上的侧边测距点和第二测距点间的侧边距离,其中,第一测距点和第二测距点均位于测距基准线上,第一测距点和正边测距点构成的直线与测距基准线间的夹角为第一预设夹角,第二测距点和侧边测距点构成的直线与测距基准线间的夹角为第二预设夹角;
若在测距基准线上设置有与第二测距点相距预设基准距离的基准定位点,则针对于集装箱正边和集装箱侧边的待定位交点,根据定位参数确定待定位交点和基准定位点的第一位置关系,其中,定位参数包括正边距离、侧边距离、预设基准距离、第一预设夹角和第二预设夹角中的至少一个。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的集装箱定位方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本公开可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。依据这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。

Claims (10)

  1. 一种集装箱定位方法,包括:
    获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,所述第一测距点和所述第二测距点均位于测距基准线上,所述第一测距点和所述正边测距点构成的直线与所述测距基准线间的夹角为第一预设夹角,所述第二测距点和所述侧边测距点构成的直线与所述测距基准线间的夹角为第二预设夹角;
    若在所述测距基准线上设置有与所述第二测距点相距预设基准距离的基准定位点,则针对于所述集装箱正边和所述集装箱侧边的待定位交点,根据定位参数确定所述待定位交点和所述基准定位点的第一位置关系,其中,所述定位参数包括所述正边距离、所述侧边距离、所述预设基准距离、所述第一预设夹角和所述第二预设夹角中的至少一个。
  2. 根据权利要求1所述的方法,其中,所述根据定位参数确定所述待定位交点和所述基准定位点的第一位置关系,包括:
    若所述第一预设夹角为直角,所述第二预设夹角为锐角或钝角,以所述测距基准线所在的方向为横向,以垂直于所述横向的方向为纵向,则根据所述侧边距离和所述第二预设夹角确定直线距离,根据所述正边距离确定所述待定位交点相对于所述基准定位点的纵向距离;
    根据所述预设基准距离和所述直线距离,确定所述待定位交点相对于所述基准定位点的横向距离。
  3. 根据权利要求1或2所述的方法,还包括:
    获取所述集装箱上待作业锁销与所述待定位交点间的预设偏移距离,其中,所述待作业锁销包括待拆卸锁销和/或待安装锁销孔位;
    根据所述预设偏移距离和所述第一位置关系,确定所述待作业锁销与所述基准定位点的第二位置关系。
  4. 根据权利要求3所述的方法,还包括:
    若在所述基准定位点上设置有锁销装拆作业机构,且所述锁销装拆作业机构根据所述第二位置关系未寻找到所述待作业锁销,则以所述测距基准线所在的方向为基准建立坐标系,分别获取所述集装箱的第一侧边上的两个已定位交点的坐标数据,以及,所述基准定位点的坐标数据;
    根据计算参数计算所述集装箱的第二侧边上的所述待定位交点的坐标数据,并根据所述待定位交点的坐标数据和所述基准定位点的坐标数据,重新确定所述第一位置关系,其中,所述计算参数包括所述集装箱的正边长和侧边长,以及,所述两个已定位交点的坐标数据。
  5. 根据权利要求4所述的方法,其中,所述根据计算参数计算所述集装箱的第二侧边上的所述待定位交点的坐标数据,包括:
    所述集装箱的第二侧边上包括待定位交点,所述两个已定位交点包括第一已定位交点和第二已定位交点,确定经所述第一已定位交点且平行于所述测距基准线的水平直线,经所述第二已定位交点且垂直于所述水平直线的第一垂直线,以及,经所述待定位交点且垂直于所述水平直线的第二垂直线;
    所述第一垂直线包括第一垂点且所述第二垂直线包括第二垂点,确定所述第二已定位交点和所述第一垂点间的第一距离,并根据计算参数和所述第一距离计算所述第一已定位交点和所述第二垂点间的第二距离,以及,所述待定位交点和所述第二垂点间的第三距离;
    根据所述第一已定位交点的坐标数据、所述第二距离和所述第三距离,计算所述待定位交点的坐标数据。
  6. 根据权利要求1所述的方法,其中,所述获取集装箱正边上的正边测距点和第一测距点间的正边距离,包括:
    若基于设置在预设车位的预设范围内的车位感应装置检测到承载有集装箱的驳运设备停稳于所述预设车位上,则获取集装箱正边上的正边测距点和第一测距点间的正边距离。
  7. 一种集装箱定位系统,包括集装箱定位装置,其中,所述集装箱定位装置包括:
    获取模块,设置为获取集装箱正边上的正边测距点和第一测距点间的正边距离,集装箱侧边上的侧边测距点和第二测距点间的侧边距离,其中,所述第一测距点和所述第二测距点均位于测距基准线上,所述第一测距点和所述正边测距点构成的直线与所述测距基准线间的夹角为第一预设夹角,所述第二测距点和所述侧边测距点构成的直线与所述测距基准线间的夹角为第二预设夹角;
    第一位置关系确定模块,设置为若在所述测距基准线上设置有与所述第二测距点相距预设基准距离的基准定位点,则针对于所述集装箱正边和所述集装箱侧边的待定位交点,根据定位参数确定所述待定位交点和所述基准定位点的第一位置关系,其中,所述定位参数包括所述正边距离、所述侧边距离、所述预设基准距离、所述第一预设夹角和所述第二预设夹角中的至少一个。
  8. 根据权利要求7所述的系统,还包括车位感应装置和控制装置,其中,所述车位感应装置设置为检测承载有所述集装箱的驳运设备是否停稳于预设车位上,若是,则将设备停稳信号发送至所述控制装置,以使所述控制装置控制所述集装箱定位装置启动工作。
  9. 根据权利要求8所述的系统,其中,所述车位感应装置还设置为:若根据检测得到的车位信号判断出所述驳运设备已驶离所述预设车位,则将设备驶 离信号发送至所述控制装置,以使所述控制装置控制下一辆驳运设备驶入所述预设车位。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-6中任一所述的集装箱定位方法。
PCT/CN2019/109420 2019-09-30 2019-09-30 集装箱定位方法、系统及存储介质 WO2021062618A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109420 WO2021062618A1 (zh) 2019-09-30 2019-09-30 集装箱定位方法、系统及存储介质
CN201980099386.7A CN114269676A (zh) 2019-09-30 2019-09-30 集装箱定位方法、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109420 WO2021062618A1 (zh) 2019-09-30 2019-09-30 集装箱定位方法、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2021062618A1 true WO2021062618A1 (zh) 2021-04-08

Family

ID=75336315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109420 WO2021062618A1 (zh) 2019-09-30 2019-09-30 集装箱定位方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN114269676A (zh)
WO (1) WO2021062618A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160402A (ja) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd コンテナクレーンにおけるシャシ位置検出装置
CN101551241A (zh) * 2009-05-04 2009-10-07 齐齐哈尔轨道交通装备有限责任公司 一种集装箱平车锁座平面度检测方法、系统及装置
CN102175991A (zh) * 2011-01-16 2011-09-07 哈尔滨工程大学 基于最大定位似然传感器配置的目标定位方法
CN103196434A (zh) * 2012-01-04 2013-07-10 吉林省明普光学科技有限公司 一种港口集装箱定位装置和方法
CN106629399A (zh) * 2016-12-23 2017-05-10 上海电机学院 一种集装箱对箱引导系统
CN109384151A (zh) * 2017-08-03 2019-02-26 南通通镭软件有限公司 自动化装卸作业的自动着箱和防吊起方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160402A (ja) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd コンテナクレーンにおけるシャシ位置検出装置
CN101551241A (zh) * 2009-05-04 2009-10-07 齐齐哈尔轨道交通装备有限责任公司 一种集装箱平车锁座平面度检测方法、系统及装置
CN102175991A (zh) * 2011-01-16 2011-09-07 哈尔滨工程大学 基于最大定位似然传感器配置的目标定位方法
CN103196434A (zh) * 2012-01-04 2013-07-10 吉林省明普光学科技有限公司 一种港口集装箱定位装置和方法
CN106629399A (zh) * 2016-12-23 2017-05-10 上海电机学院 一种集装箱对箱引导系统
CN109384151A (zh) * 2017-08-03 2019-02-26 南通通镭软件有限公司 自动化装卸作业的自动着箱和防吊起方法

Also Published As

Publication number Publication date
CN114269676A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101699672B1 (ko) 컨테이너 크레인을 사용하여 랜딩 타깃 상에 컨테이너들을 자동적으로 랜딩하기 위한 방법 및 시스템
WO2022144039A1 (zh) 搬运机器人、搬运控制方法、控制设备和仓储系统
CN109850810B (zh) 叉车运动控制方法及装置
WO2022257838A1 (zh) 货物搬运方法、装置、设备、机器人及仓储系统
EP3950566B1 (en) High-position robot, method for calibrating return of storage container, and storage medium
CN113253737B (zh) 货架检测方法及装置、电子设备、存储介质
WO2022063038A1 (zh) 任务处理方法、控制终端、机器人、仓储系统及存储介质
WO2022000197A1 (zh) 飞行作业方法、无人机及存储介质
US11873195B2 (en) Methods and systems for generating landing solutions for containers on landing surfaces
TW202248102A (zh) 貨物搬運方法、裝置、設備、機器人及倉儲系統
WO2018214335A1 (zh) 一种船舶分段快速搭载的方法
CN112141894A (zh) 基于融合多个2d测量装置的抓箱对位方法
WO2021062618A1 (zh) 集装箱定位方法、系统及存储介质
WO2021062615A1 (zh) 集装箱锁销装拆方法、装置、设备及存储介质
WO2024021723A1 (zh) 集装箱旋锁自动拆装系统
WO2021062619A1 (zh) 集装箱锁销分拣方法、装置、设备及存储介质
CN115818515A (zh) 货物搬运方法及系统、设备、存储介质
CN114485437B (zh) 一种库区底层钢卷外径测算方法
CN114627101A (zh) 板体运输方法、装置及存储介质
CN115849192A (zh) 一种基于面阵激光扫描的外集卡自动放箱方法
WO2022032575A1 (zh) 锁销定位方法、装置、设备及存储介质
FI20195848A1 (en) Checking the position of the gripper
FI129322B (en) DETERMINATION OF A CONTAINER TREATMENT DEVICE
CN219916366U (zh) 库位物流的管理系统
CN109522632B (zh) 建筑工程施工中总负荷最小的塔机布置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19947621

Country of ref document: EP

Kind code of ref document: A1