WO2022000197A1 - 飞行作业方法、无人机及存储介质 - Google Patents

飞行作业方法、无人机及存储介质 Download PDF

Info

Publication number
WO2022000197A1
WO2022000197A1 PCT/CN2020/098999 CN2020098999W WO2022000197A1 WO 2022000197 A1 WO2022000197 A1 WO 2022000197A1 CN 2020098999 W CN2020098999 W CN 2020098999W WO 2022000197 A1 WO2022000197 A1 WO 2022000197A1
Authority
WO
WIPO (PCT)
Prior art keywords
target area
flight
drone
positioning marker
target
Prior art date
Application number
PCT/CN2020/098999
Other languages
English (en)
French (fr)
Inventor
张伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080006507.1A priority Critical patent/CN113168189A/zh
Priority to PCT/CN2020/098999 priority patent/WO2022000197A1/zh
Publication of WO2022000197A1 publication Critical patent/WO2022000197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • the present application relates to the technical field of path planning, and in particular, to a flight operation method, an unmanned aerial vehicle and a storage medium.
  • drones have been widely used.
  • drones can be used to inventory the goods in the target area.
  • the goods are placed on relatively high shelves, and the drones must be avoided when flying for inventory. Obstacles in the target area.
  • the existing method is to use 3D modeling of the target area and plan the flight path according to the 3D model.
  • the 3D modeling mainly uses 3D software to draw the model, or uses the sensor equipment carried by the UAV to carry out measurement modeling.
  • the three-dimensional modeling process of the method is complex, time-consuming and labor-intensive.
  • the UAV needs to be equipped with expensive sensor equipment such as lidar, which leads to the high cost of the UAV.
  • the present application provides a flight operation method, an unmanned aerial vehicle and a storage medium.
  • the present application provides a method for flying operations, the method being applied to a UAV, including:
  • the flight operation path of the target area is determined according to the distribution map of the target area positioning markers and the operation requirements;
  • Errors in the flight process are corrected according to the positioning marker image in the environment image.
  • an unmanned aerial vehicle comprising: a memory and a processor
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the flight operation path of the target area is determined according to the distribution map of the target area positioning markers and the operation requirements;
  • Errors in the flight process are corrected according to the positioning marker image in the environment image.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor implements the above-mentioned flight operation method .
  • the embodiments of the present application provide a flight operation method, an unmanned aerial vehicle, and a storage medium, by obtaining a flight operation path of a target area, and the flight operation path is determined according to a distribution map of positioning markers in the target area and operation requirements;
  • the flight operation path flies and obtains the surrounding environment image during the flight; according to the positioning marker image in the environment image, the error during the flight process is corrected, without 3D modeling of the target area, the target area can be
  • the distribution map and operation requirements of the positioning markers determine the flight operation path of the target area, avoiding the complex process of 3D modeling, which not only saves the time required for the modeling process, but also allows the UAV not to be equipped with expensive sensors such as lidar.
  • positioning markers help the UAV to locate during the flight, and fly along the flight operation path determined according to the distribution map of the target area positioning markers and the operation requirements.
  • the error during the flight is corrected according to the positioning marker image in the obtained surrounding environment image, so as to ensure that the flight does not deviate from the flight path.
  • it can help the UAV to avoid various obstacles.
  • it can meet the purpose of the drone flying in the target area, that is, to meet the operational requirements.
  • FIG. 1 is a schematic flowchart of an embodiment of a flight operation method of the present application
  • FIG. 2 is a schematic diagram of a positioning marker according to an embodiment of the flight operation method of the present application.
  • FIG. 3 is a schematic flowchart of another embodiment of the flight operation method of the present application.
  • FIG. 4 is a schematic diagram of the shelf distribution of a three-dimensional warehouse according to an embodiment of the flight operation method of the present application
  • FIG. 5 is a schematic diagram of the distribution of shelves and positioning markers in an embodiment of the flight operation method of the present application
  • FIG. 6 is a schematic diagram of path planning according to an embodiment of the flight operation method of the present application.
  • FIG. 7 is a schematic diagram of path planning in another embodiment of the flight operation method of the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of the flight operation method of the present application.
  • FIG. 9 is a schematic flowchart of another embodiment of the flight operation method of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of an unmanned aerial vehicle of the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a control device of the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of the flight operation system of the present application.
  • the flight operation method of the embodiment of the present application can be applied in many scenarios, for example, the flight operation method of the embodiment of the present application can be used to carry out cargo inventory.
  • Cargo inventory refers to the inventory of goods, etc.
  • the common methods include book inventory method and spot inventory method. Inventory machines are often used as tools, and their functions are to integrate and summarize warehouses and inventory inventory. For large warehouses, the quantity of goods is large and the scale of shelves is huge, and it is difficult to complete efficient inventory by traditional methods.
  • a barcode is a graphic identifier used to express a set of information by arranging multiple black bars and blanks with different widths according to certain coding rules.
  • a common barcode is a pattern of parallel lines formed by black bars (referred to as bars) and white bars (referred to as spaces) with greatly different reflectivities, which can be easily identified by image algorithms. In large warehouses, barcodes are often used to track important information such as the type, quantity, and location of goods, which is convenient for digital management.
  • the first barcode on the goods can be exposed, and the side of the goods affixed with the first barcode can be placed outside the shelf.
  • the flight path of the drone covers the goods on all shelves, and the information of various goods is entered by scanning the first barcode of all goods on the shelves in the storage space. In this way, it is possible to obtain information about all the goods on the shelves of the storage space.
  • the flight environment of the storage area is not an open and open environment, but a relatively closed and restricted complex environment: the flight height of the storage area is generally limited, and the area also includes various obstacles that affect the flight and need to be avoided ( For example, shelves, forklifts, people, machines, etc.), the height of obstacles may be inconsistent, and the positions of some obstacles may change at any time.
  • the signal in the warehouse may be poor, resulting in inaccurate positioning of the drone during flight, resulting in flight Accidents, etc., all of which make it difficult for drones to fly in the storage area, and the flight path is very difficult to plan.
  • the embodiments of the present application can also be used to transfer goods from one location to another (for example: transfer goods from one location to a shelf, or transfer goods from a shelf to another location), and there are many existing The forklift removes the goods, transfers them to another location, and then puts the goods on the shelves. This method is also only suitable for relatively short shelves, which is inefficient and has a long cycle.
  • the second barcode can be pasted on the shelf, and the goods to be placed on the shelf are also pasted with the second barcode.
  • the second barcode on the shelf corresponds to the second barcode on the goods.
  • the second barcode on the shelf can be consistent with the second barcode on the goods, or the two second barcodes can be identified by scanning the information of the barcode to be paired with each other, indicating that the goods need to be placed on the shelf. Therefore,
  • the flight path of the drone can cover all the shelves, and by scanning the second barcode on the shelf, it is determined whether the second barcode of the shelf corresponds to the second barcode of the goods currently carried on the drone.
  • the flight environment of the cargo area is not an open and open environment, but is usually a relatively closed and restricted complex environment: the flight height of the cargo area is generally limited, and the area also includes various obstacles that affect the flight and need to be avoided (such as shelves, forklifts, people, machines, etc.), the height of obstacles may be inconsistent, and the positions of some obstacles may change at any time.
  • the signal may not be good during the transportation of goods, resulting in the positioning of the drone during flight. Accuracy, causing flight accidents, etc., all these conditions make it difficult for UAVs to fly in the cargo area, and the flight path is very difficult to plan. If 3D modeling of the target area is performed, the 3D modeling process is complex, time-consuming and labor-intensive, and the UAV needs to be equipped with expensive sensor equipment such as lidar, resulting in high cost of the UAV.
  • the embodiment of the present application obtains the flight operation path of the target area, and the flight operation path is determined according to the distribution map of the positioning markers in the target area and the operation requirements; According to the positioning marker images in the environment images, the errors during the flight are corrected, and the target area can be determined according to the distribution map of the positioning markers and the operation requirements without 3D modeling of the target area.
  • the flight path of the area avoids the complex process of 3D modeling, which not only saves the time required for the modeling process, but also allows the UAV not to be equipped with expensive sensor equipment such as lidar, thereby reducing the cost of UAV manufacturing;
  • the positioning marker helps the UAV to locate during the flight, and the flight operation is carried out along the flight operation path determined according to the distribution map of the target area positioning marker and the operation requirements, and the flight operation is based on the obtained surrounding environment images during the flight.
  • the positioning marker image corrects the error during the flight and ensures that the flight does not deviate from the flight path. On the one hand, it can help the UAV to avoid various obstacles and ensure flight safety.
  • the purpose of the aircraft flying in the target area is to meet the operational requirements.
  • FIG. 1 is a schematic flowchart of an embodiment of the flight operation method of the present application.
  • the method is applied to an unmanned aerial vehicle, and the method includes:
  • Step S101 obtaining a flight operation path of the target area, where the flight operation path is determined according to the distribution map of the positioning markers in the target area and the operation requirements.
  • Step S102 Fly the operation according to the flight operation path and acquire surrounding environment images during the flight.
  • Step S103 correcting the error during the flight according to the positioning marker image in the environment image.
  • the target area can be the area where the drone is flying, for example: if the drone is used to take inventory of the goods, the target area can be the storage area; if the drone is used to transport the goods, the target area can be the freight area; If drones are used to monitor construction, the target area can be the construction area; if drones are used for traffic supervision, the target area can be a road traffic site; etc.; the target area can be an indoor space, an outdoor space, or One part is indoor space, another part is outdoor space, and so on.
  • the target can be the object that needs attention in the UAV flight operation in the target area, usually including the operation object and the obstacle object; for example, the operation object can be the goods, the goods can be daily necessities in life, or industrial industrial objects. Cargo can also be construction cargo, etc. When using drones for operations, flight safety must be ensured first. Therefore, obstacles can be various obstacles in the target area that affect flight safety.
  • Positioning landmarks may refer to landmarks that are used to locate a position (including position and orientation) in the current environment based on visual recognition.
  • the form of the positioning marker can be various, and in some embodiments, the form can be relatively simple and can be identified without strong computing power.
  • the positioning marker includes, but is not limited to, one or more of random points, numbers, and two-dimensional codes.
  • different random points are preset to correspond to different positioning information, and different random point positioning markers are respectively set at different positions corresponding to different positioning information in advance.
  • a specific random point positioning marker at a certain position is identified by the visual recognition technology, and the specific positioning information corresponding to the specific random point positioning marker is further determined.
  • the positioning marker can also be formed by splicing a plurality of random point positioning markers.
  • a ground coordinate system is established in advance, random point positioning markers are pre-laid on the ground, and the coordinate position of a random point positioning marker in the ground coordinate system is identified by visual recognition technology.
  • different numbers are preset to correspond to different positioning information, and different digital positioning markers are respectively set at different positions corresponding to different positioning information in advance.
  • a specific digital positioning marker at a certain position is identified through the visual recognition technology, and the specific positioning information corresponding to the specific digital positioning marker is further determined.
  • the two-dimensional code can carry the most abundant information. Different positioning information at different positions is carried in different two-dimensional codes, and different two-dimensional codes are respectively set at different corresponding positions. As long as the camera device observes the two-dimensional code, the positioning information can be read from it.
  • Figure 2 is Aruco Marker;
  • Aruco is an open source miniature augmented reality library, which includes visual marker classes,
  • Aruco Marker is a widely used QR code, and an Aruco Marker has a set of black on the periphery
  • the interior is composed of a two-dimensional matrix that determines the ID of the marker; the black border can speed up the detection speed of the marker in the image, and the internal two-dimensional code can uniquely identify the marker, and perform error detection and error detection at the same time.
  • the size of the marker determines the size of the internal matrix.
  • the positioning markers are set in the target area, and the positioning markers help the UAV to locate during the flight, and fly along the flight operation path determined according to the distribution map of the positioning markers in the target area and the operation requirements.
  • the positioning markers corrects the errors during the flight according to the positioning marker images in the obtained surrounding environment images, so as to ensure that the flight does not deviate from the flight path.
  • it can help the UAV to avoid various Obstacles to ensure flight safety, on the other hand, it can meet the purpose of UAV flying in the target area, that is, to meet the operational requirements.
  • the distribution map of localization markers in the target area can be obtained in advance.
  • the method of obtaining the distribution map of the positioning markers in the target area may include: first, you can manually draw the distribution of the positioning markers on the paper version in the target area on the two-dimensional plan of the target area on the paper version, and then map the positioning markers on the paper version.
  • the distribution of the objects in the target area is input into the machine to obtain the distribution map of the positioning markers in the target area; or, the location of the positioning markers in the target area can be input on the two-dimensional plan of the target area, and then the location markers in the target area can be obtained.
  • Distribution map or, set up positioning markers in the target area on the ground, control the drone to fly in the target area on the ground and identify the location of the positioning markers, and then combine the two-dimensional plan of the target area to obtain the target area positioning markers distribution map.
  • the flight operation path of the target area obtained in step S101 may be obtained by the unmanned aerial vehicle from its own source.
  • One method may be: sending the distribution map of the target area positioning markers and the operation requirements to the unmanned aerial vehicle,
  • the UAV determines the flight path of the target area according to the distribution map of the target area positioning markers and the operation requirements.
  • Another way can be: other devices determine the target area according to the distribution map of the target area positioning markers and the operation requirements.
  • the flight operation path, and then the determined flight operation path of the target area is imported into the UAV in advance; it can also be obtained by the UAV from the control device in real time, that is, the control device will locate the distribution map and operation requirements of the markers according to the target area.
  • the determined flight operation path of the target area is sent to the UAV, and the UAV receives the flight operation path of the target area sent by the control device (see the section on the flight operation method applied to the control terminal later).
  • the operation requirement may be a requirement for the UAV to perform operations on objects in the target area including the target object when the UAV flies in the target area.
  • the operation requirements at this time include: making the flight path cover the location of all the goods in the storage space, and making the drone scan all the goods on the shelves in the storage space (shelves and goods are the targets) the first barcode.
  • the UAV obtains the flight path of the storage space determined according to the distribution map of the positioning markers in the storage space and the above-mentioned operation requirements, it can fly according to the flight path to cover the positions of all the goods in the storage space.
  • the aircraft can scan the first barcodes of all the goods on the shelves in the storage space.
  • the operation requirements at this time include: making the flight path cover the positions of all the shelves in the cargo space, making the drone scan the second barcode on the shelf in the cargo space, and The cargo with the second barcode carried on the drone is placed on the corresponding shelf (the shelf, the cargo is the target), or the cargo with the second barcode is loaded on the drone and transferred to the destination by the drone.
  • the UAV After the UAV obtains the flight path of the cargo space determined according to the distribution map of the cargo space positioning markers and the above-mentioned operation requirements, it can fly according to the flight path to cover the positions of all the shelves in the cargo space, and at the same time, no one During the flight along the flight path, the drone can scan the second barcode on the cargo space shelf, and compare the second barcode on the shelf with the second barcode of the cargo carried on the drone.
  • the second barcode corresponds to the second barcode of the goods carried on the drone, and the goods with the second barcode carried on the drone are placed on the corresponding shelf or the goods with the second barcode on the shelf are carried on the
  • the drone is transported to the destination by the drone.
  • the operation requirements at this time include: making the flight operation path cover all the positions of a certain traffic artery, so that the drone can monitor the pedestrians, motor vehicles, non-motor vehicles ( Whether pedestrians, motor vehicles, and non-motor vehicles are the targets) comply with relevant regulations such as the Traffic Safety Law. Prompt to stop them from violating the traffic safety law and other relevant regulations. If the motor vehicle still violates the traffic safety law and other relevant regulations, identify and record the license plate number of the motor vehicle.
  • the drone can fly according to the flight operation path to cover the location where the main road is located.
  • relevant regulations such as traffic safety laws. If pedestrians, non-motor vehicles are found , Motor vehicles will violate the Traffic Safety Law and other relevant regulations, shout to pedestrians, non-motor vehicles, and motor vehicles to prevent them from violating the Traffic Safety Law and other relevant regulations. If the motor vehicle still violates the Traffic Safety Law and other relevant regulations, identify and record the The license plate number of the motor vehicle.
  • the UAV Since the flight operation path is not only the flight path, but also requires the UAV to operate during the flight, so the UAV operates according to the flight operation path determined according to the distribution map of the positioning markers in the target area and the operation requirements. In this way, UAVs can develop new applications in target areas, such as using UAVs for cargo inventory, cargo handling, traffic supervision, construction monitoring, and so on.
  • Embodiments of the present application obtains the flight operation path of the target area, and the flight operation path is determined according to the distribution map of the target area positioning markers and the operation requirements; According to the positioning marker images in the environment images, the errors during the flight are corrected, and the target area can be determined according to the distribution map of the positioning markers and the operation requirements without 3D modeling of the target area.
  • the flight path of the area avoids the complex process of 3D modeling, which not only saves the time required for the modeling process, but also allows the UAV not to be equipped with expensive sensor equipment such as lidar, thereby reducing the cost of UAV manufacturing;
  • the positioning marker helps the UAV to locate during the flight, and the flight operation is carried out along the flight operation path determined according to the distribution map of the target area positioning marker and the operation requirements, and the flight operation is based on the obtained surrounding environment images during the flight.
  • the positioning marker image corrects the error during the flight and ensures that the flight does not deviate from the flight path. On the one hand, it can help the UAV to avoid various obstacles and ensure flight safety.
  • the purpose of the aircraft flying in the target area is to meet the operational requirements.
  • the distribution map of the positioning markers in the target area may be: setting the positioning markers on-site according to the actual situation of the target area, and obtaining the distribution map of the positioning markers in the target area according to the positioning markers set in the target area.
  • the distribution map of the positioning markers in the target area is determined according to the distribution map of the objects in the target area, and the distribution map of the objects in the target area is determined according to the distribution map of the target area. 2D floor plan determined.
  • the setting position of the target area positioning marker is determined according to the distribution map of the target area target, and the distribution map of the target area positioning marker is determined according to the distribution of the positioning markers set in the target area.
  • the setting position of the positioning marker in the target area according to the distribution map of the target in the target area. For example: input the distribution map of the target in the target area, mark the location of the positioning marker on the distribution map of the target in the target area, and generate the target area positioning marker according to the position of the positioning marker marked on the distribution map of the target area.
  • the distribution map according to the location of the positioning marker marked on the distribution map of the target object in the target area, sets the positioning marker on the spot in the target area.
  • the positioning markers are set on the spot in the target area, and the distribution map of the positioning markers in the target area is obtained according to the positioning markers set in the target area.
  • the setting positions of the positioning markers include but are not limited to: on the ground of the corridor on both sides of the work object, set close to the work object, set at a predetermined distance directly above the work object, although far from the work object, it needs to change direction to another
  • the position of the work object, the position of the obstacle object, for the work object that is movable, the work object can be set in the area where the movable range of the work object is concentrated, and so on.
  • the distribution map of the target area positioning markers determined according to the distribution map of the target area target can, on the one hand, be able to Provide technical support for UAVs to avoid various obstacles and ensure flight safety during flight. On the other hand, it can provide technical support to meet operational requirements when UAVs fly in target areas.
  • the target area has a two-dimensional plan.
  • the two-dimensional plan of the target area and the position information of the target are used to determine the distribution of the target in the target area, so that the target can be obtained.
  • the distribution map of the target objects in the area can be further combined with the size information of the target objects to obtain a three-dimensional map of the target objects in the target area. Since the 2D plan information of the target area is fully utilized, the complex process of 3D modeling is avoided, which not only saves the time required for the modeling process, but also allows the UAV not to be equipped with sensor equipment such as lidar, thereby reducing the cost of the UAV. manufacturing cost.
  • step S104 before acquiring the flight operation path of the target area described in step S101, it may further include: step S104.
  • Step S104 Obtain a distribution map of objects in the target area.
  • the distribution map of the objects in the target area has been predetermined, it can be obtained; or, if the distribution map of the objects in the target area has not been predetermined, the distribution map of the objects in the target area can be determined first.
  • the obtaining the distribution map of the objects in the target area may include: determining the distribution map of the objects in the target area according to the two-dimensional plan of the target area.
  • the specific method may include: combining the identifiers specially marked with the target objects on the two-dimensional plan of the target area to obtain a distribution map of the objects in the target area; or, on the two-dimensional plan of the target area, combining the input position coordinates of the target objects , display the position coordinates of the target object on the two-dimensional plan of the target area, so as to obtain the distribution map of the target object in the target area; or, on the two-dimensional plan of the target area, combined with the position coordinates of the input target
  • the shape, size and other information of the object can be obtained to obtain a three-dimensional distribution map of the target; and so on.
  • This embodiment makes full use of the existing two-dimensional plan of the target area, and determines the distribution map of objects in the target area based on this, which is simple and fast.
  • step S104 determining the distribution map of objects in the target area according to the two-dimensional plan of the target area, may further include: sub-step S1041 and sub-step S1042, as shown in FIG. 3 .
  • Sub-step S1041 Set a reference coordinate system on the two-dimensional plane map of the target area to construct a two-dimensional plane map.
  • Sub-step S1042 On the two-dimensional plane map, combined with the parameters of the target object, a three-dimensional distribution map of the target object in the target area is obtained.
  • the two-dimensional plan of the target area is more common with a two-dimensional CAD plan.
  • the parameters of the target object are combined on the two-dimensional plane map of the target area to obtain a three-dimensional distribution map of the target object in the target area, and the distribution information of the target object is obtained without performing 3D modeling of the target area through expensive sensor equipment.
  • the parameters of the target include: the shape, size, and position of the target.
  • the target object in the target area is the shelf of the warehouse. Since the shape and size of the shelf are fixed and unified in the shape of a cuboid, its placement position is usually fixed, so it can be directly based on the CAD two-dimensional plan of the warehouse.
  • a three-dimensional shelf distribution map is obtained. According to the three-dimensional shelf distribution map, determine the location of the positioning markers in the warehouse, and then determine the distribution map of the positioning markers in the warehouse. According to the distribution map of the positioning markers in the warehouse and operation requirements, a flight operation path is planned, wherein the operation requirements include scanning the first barcodes of all goods on the warehouse shelves, and the flight operation path covers the locations of all goods in the warehouse.
  • the positioning markers help the UAV to locate during the flight, fly along the flight operation path determined according to the distribution map of the warehouse positioning markers and the operation requirements, and fly according to the surrounding environment images obtained during the flight.
  • the positioning marker image in the image corrects the error during the flight and ensures that the flight does not deviate from the flight path.
  • it can help the drone to avoid various obstacles and ensure flight safety.
  • the purpose of the inventory of goods flying by man-machine in the warehouse is to meet the operation requirements.
  • the drone To correct the error in the flight process, the drone first needs to locate itself through its own positioning system, and then compare the positioning data with the target data of the flight path. When the comparison result exceeds the acceptable range, the flight needs to be corrected. errors in the process.
  • there are many ways for drones to locate themselves such as inertial navigation systems, radar, GPS, visual positioning, and so on.
  • the camera device mounted on the UAV acquires the surrounding environment images during the flight, and recognizes the environment images. If the camera captures the location marker in the surrounding environment, it will appear in the image of the environment.
  • the camera is usually placed below the drone.
  • step S103 may further include: determining whether it is necessary to correct the error during the flight according to the position of the positioning marker image in the environment image. error.
  • This embodiment determines whether the error in the flight process needs to be corrected according to the position of the positioning marker image in the environment image.
  • This method is relatively rough, but the situation that does not need correction can be easily and quickly excluded, so that refinement can be avoided. Relatively complex calculation in the judgment method.
  • determining whether the error during the flight needs to be corrected according to the position of the positioning marker image in the environment image may be: if the positioning marker image is within a preset range in the environment image, then It is determined that the error during the flight does not need to be corrected; if the positioning marker image is not within the preset range in the environment image, it is determined that the error during the flight needs to be corrected.
  • the preset range can be a circular area with the center of the environment image as the center and R as the radius. If the positioning marker image is within the circular area, it can be considered that the positioning marker image is within the preset range and meets the requirements , no correction is required; if the positioning marker image is outside the circular area, it can be considered that the positioning marker image is outside the preset range, does not meet the requirements, and needs to be corrected.
  • the preset range in a certain direction (the positioning marker is set in a certain direction), can be a semicircular area with the center of the environment image as the center and R as the radius, if the positioning marker image is in the semicircle If the image of the positioning marker is outside the semicircular area, it can be considered that the image of the positioning marker is outside the preset range, and it does not need to be corrected. If the requirements are met, it needs to be corrected.
  • the setting of the preset area can also be a square, a rectangle, and other shapes, which are not limited in this application.
  • step S103 the error during the flight is corrected according to the positioning marker image in the environment image, and there can be various refined processing methods, which are described in detail below with examples.
  • the first processing method may be: the target area is provided with a first positioning marker, the information given by the image of the first positioning marker is the setting position of the first positioning marker itself in the target area, and the The setting position is also the position on the flight path, which is the ideal target position of the drone.
  • step S103, correcting the error during the flight according to the positioning marker image in the environment image may include:
  • A1 Acquire the setting position of the first positioning marker in the target area according to the first positioning marker image in the environment image.
  • A2 Obtain the detection position of the drone in the target area detected by the positioning system of the drone. Among them, A1 and A2 have no obvious execution order.
  • A3 When the difference between the setting position of the first positioning marker in the target area and the detection position of the UAV in the target area is greater than the first threshold, the unmanned The machine moves to the setting position of the first positioning marker.
  • the UAV's positioning system is used to obtain the detection position of the UAV in the target area detected by the positioning system. Due to errors in the positioning system, the UAV will gradually deviate from the flight operation during the flight. Therefore, comparing the setting position of the first positioning marker in the target area (that is, the ideal target position of the drone) and the detection position of the drone in the target area, when the first When the difference between the setting position of the positioning marker in the target area and the detection position of the UAV in the target area is greater than the first threshold, it is considered that correction is required, and the UAV is moved to The setting position of the first positioning marker. In this way, the position accuracy and flight safety of the UAV can be guaranteed during the flight.
  • set the Moving the drone to the setting position of the first positioning marker may also be: when the setting position of the first positioning marker in the two-dimensional plan of the target area is the same as the setting position of the drone in the When the difference between the detected positions in the two-dimensional plan view of the target area is greater than the first threshold, the drone is moved to the setting position of the first positioning marker.
  • the setting position of the first positioning marker in the target area and the detection position of the UAV in the target area are transformed into the two-dimensional plan view of the target area, and then compared, in this way
  • the difference between the setting position of the first positioning marker in the two-dimensional plan view of the target area and the detection position of the drone in the two-dimensional plan view of the target area can be visually compared.
  • the second processing method may be: a second positioning marker is set in the target area, and the information given by the image of the second positioning marker can be more accurate than the positioning system of the UAV for the actual position of the current UAV.
  • the setting position of the second positioning marker in the target area is the position on the flight operation path, which is the target position of the UAV under ideal conditions.
  • step S103, correcting the error during the flight according to the positioning marker image in the environment image may include:
  • the second positioning marker can be Aruco Marker.
  • B2 Obtain the setting position of the second positioning marker in the target area. Among them, B1 and B2 have no obvious execution sequence.
  • the setting position of the second positioning marker can be stored locally in advance.
  • the second positioning marker is used to more accurately locate the current actual position of the drone, and the setting position of the second positioning marker is the position on the flight path, which is the ideal situation for the drone. Therefore, comparing the actual position of the UAV in the target area with the setting position of the second positioning marker in the target area (that is, the ideal target position of the UAV), when all the When the difference between the actual position of the drone in the target area and the setting position of the second positioning marker in the target area is greater than the second threshold, it is considered that correction is required, and the drone is Move to the setting position of the second positioning marker. In this way, the position accuracy and flight safety of the UAV can be guaranteed during the flight.
  • B3 when the difference between the actual position of the drone in the target area and the setting position of the second positioning marker in the target area is greater than a second threshold
  • the UAV moves to the setting position of the second positioning marker, and may also include:
  • the setting position of the second positioning marker in the target area and the actual position of the drone in the target area are transformed into the two-dimensional plan view of the target area, and then compared, in this way
  • the difference between the setting position of the second positioning marker in the two-dimensional plan view of the target area and the actual position of the drone in the two-dimensional plan view of the target area can be visually compared.
  • the third processing method may be: a third positioning marker is set in the target area, and the information given by the image of the third positioning marker can be more accurate than the positioning system of the UAV for the actual position of the UAV.
  • the setting position of the third positioning marker in the target area is not on the flight operation path, and the ideal target position of the UAV can be obtained through the flight operation path.
  • This embodiment does not use the positioning system of the drone itself, but uses a third positioning marker to more accurately locate the actual position where the drone is currently located.
  • step S103 correcting the error during the flight according to the positioning marker image in the environment image, may include:
  • the third positioning marker can be Aruco Marker.
  • C2 Obtain the target position with the shortest distance from the actual position of the UAV in the target area to the flight path.
  • the third positioning marker is used to more accurately locate the current actual position of the drone, and the target position on the flight path with the shortest distance from the current actual position of the drone is determined.
  • the difference between the actual position of the man-machine in the target area and the target position of the flight path when the difference between the actual position of the drone in the target area and the target position of the flight path is greater than the first
  • C3 when the difference between the actual position of the drone in the target area and the target position of the flight path is greater than a third threshold, move the drone to the
  • the target location of the flight path which may also include:
  • the target position of the flight path and the actual position of the UAV in the target area are transformed into the two-dimensional plan of the target area, and then compared.
  • the difference between the actual position of the aircraft in the target area and the target position of the flight path can be visually compared.
  • the distance between the positioning marker and the target is less than or equal to a fourth threshold.
  • the positioning markers are usually set closer to the target.
  • a fourth threshold is set, and the fourth threshold may be the maximum distance between the positioning marker and the target that can ensure that the error during the flight is within an acceptable range.
  • the number of localization markers should not be too small, and usually there are at least two localization markers.
  • the positioning marker is set on the ground.
  • the positioning marker is set at a first position on the target area, and the first position corresponds to the coordinate origin of the reference coordinate system of the two-dimensional plan view of the target area.
  • the UAV can locate the coordinate origin of the reference coordinate system of the two-dimensional plan view of the target area, and complete the initialization relocation.
  • the positioning marker is marked as Marker (abbreviated as M in the figure), and the long rectangle represents the target shelf.
  • M1 The distance between M2, M3, M1, M2, M3 and the shelf is 0.5m), for example, paste a marker0 (abbreviated as M0 in the figure) at the origin of the coordinate system to record the origin of the coordinate and the direction of the coordinate axis, then no After the man-machine takes off in the area near the marker0, it can directly complete the relocation after identifying the marker0; on the barcode side of the shelf, evenly paste the markers, such as marker1, marker2, and marker3 in the picture, when the first shelf needs to be scanned You only need to fly to the top of marker1, then correct the error during the flight, and then scan; during the scanning process, when passing through marker2 and marker3, the position information of the UAV will be continuously corrected to ensure the position of the UAV during the flight.
  • step S101 there are two ways to obtain the flight operation path of the target area: one is a preset flight operation path, and the other is a self-constructed flight operation path.
  • the acquiring the flight operation path of the target area in step S101 may include: planning the flight operation path according to the distribution map of the target area positioning markers and operation requirements.
  • step S101 before planning the flight operation path according to the distribution map of the target area positioning markers and the operation requirements, it may further include: determining the target area positioning markers according to the distribution map of the target area targets According to the setting position of the target area positioning marker, determine the distribution map of the target area positioning marker. Since the setting positions of the positioning markers in the target area are determined according to the distribution map of the target objects in the target area, the distribution map of the positioning markers in the target area is determined, and the flight operation path is then planned. In this way, it can be more guaranteed Positional accuracy and flight safety during drone flight.
  • the method may further include: planning the trajectory of the flight operation path according to the flight operation path.
  • planning the trajectory of the flight operation path may be to generate a smooth flight trajectory of the displacement, velocity and acceleration of the UAV in the flight process in combination with the constraints of the maneuverability of the UAV itself. In this way, the displacement, velocity and acceleration of the UAV can be controlled during the flight, and the position accuracy and flight safety of the UAV can be further ensured in detail.
  • the target area is the storage space
  • the target object is the shelf.
  • plan the optimal cargo scanning path according to the distribution of the shelves cover all the positions of the goods, and control the drone to fly along the trajectory. It can be divided into two steps:
  • the first step is to determine the position of each shelf according to the warehouse CAD map in Figure 4. As shown in Figure 6, after the drone takes off and relocates, the positions and markers of shelves 1-6 can be accurately obtained. position, you can plan the traversal path between the shelves as shown in Figure 6.
  • the flight speed of each point on the path is planned, and the speed of each inflection point is smoothed, so that the UAV moves smoothly, and there are no dangers such as sudden braking and deviation from the planned path. behavior to further ensure the position accuracy and flight safety of the UAV during flight.
  • the drone can also be returned to the charging pile for charging, that is, the method can further include: step S201 and step S202, as shown in FIG. 8 .
  • Step S201 During the process of flying and operating according to the flight operation path, if the power of the drone is lower than the threshold power, return to the position of the charging pile for charging.
  • Step S202 After the charging is completed, return along the original route and continue to fly and operate according to the flight operation path.
  • the charging pile is located at the origin of the coordinate system of the distribution map of objects in the target area.
  • FIG. 9 is a schematic flowchart of another embodiment of the flight operation method of the present application.
  • the method of this embodiment is applied to the control terminal. It should be noted that the method of this embodiment is different from the above-mentioned method applied to an unmanned aerial vehicle.
  • the content is basically the same, that is, the control terminal can also implement the steps in the above-mentioned method applied to the drone, and the control terminal then sends the implementation result to the drone; please refer to the above-mentioned application to the drone for a detailed description of the relevant content. The content part of the method will not be repeated here.
  • the method includes: step S301 and step S302.
  • Step S301 Obtain a flight operation path of the target area, where the flight operation path is determined according to the distribution map of the positioning markers in the target area and the operation requirements.
  • Step S302 Send the flight operation path to the UAV so that the UAV flies and operates according to the flight operation path.
  • the distribution map of the positioning markers in the target area is determined according to the distribution map of the objects in the target area, and the distribution map of the objects in the target area is determined according to the two-dimensional plan of the target area.
  • the method before acquiring the flight operation path of the target area, includes: acquiring a distribution map of objects in the target area.
  • the obtaining the distribution map of the objects in the target area includes: determining the distribution map of the objects in the target area according to the two-dimensional plan of the target area.
  • determining the distribution map of objects in the target area according to the two-dimensional plan of the target area includes: setting a reference coordinate system on the two-dimensional plan of the target area to construct a two-dimensional plane map; On the plane map, combined with the parameters of the target object, the three-dimensional distribution map of the target object in the target area is obtained.
  • the parameters of the target include: the shape, size, and position of the target.
  • the obtaining of the flight operation path of the target area includes: planning the flight operation path according to the distribution map of the target area positioning markers and the operation requirements.
  • the method before planning the flight operation path according to the distribution map of the target area positioning markers and the operation requirements, includes: determining the setting positions of the target area positioning markers according to the distribution map of the target area targets; The setting position of the target area positioning marker is determined, and the distribution map of the target area positioning marker is determined.
  • the method further includes: planning the trajectory of the flight operation path according to the flight operation path.
  • the distance between the positioning marker and the target is less than or equal to a fourth threshold.
  • the positioning marker is set on the ground.
  • the positioning marker is set at a first position on the target area, and the first position corresponds to the coordinate origin of the reference coordinate system of the two-dimensional plan view of the target area.
  • the target area includes storage space or freight space; and the target object includes shelves.
  • the goods are affixed with a first barcode
  • the operation requirements include scanning the first barcodes of all goods on the shelves in the storage space
  • the flight operation path covers the positions of all goods in the storage space.
  • the shelf is affixed with a second barcode
  • the operation requirements include scanning the second barcode on the cargo space shelf, placing the goods with the second barcode carried on the drone on the corresponding shelf or
  • the cargo with the second barcode is loaded onto the drone and transferred to the destination by the drone, and the flight operation path covers the positions of all the shelves in the cargo space.
  • FIG. 10 is a schematic structural diagram of an embodiment of an unmanned aerial vehicle of the present application. It should be noted that the unmanned aerial vehicle of this embodiment can perform the steps in the above-mentioned flight operation method applied to an unmanned aerial vehicle. For a detailed description, please refer to the above-mentioned relevant content of the flight operation method applied to the UAV, which will not be repeated here.
  • the drone 100 includes: a memory 1 and a processor 2, and the memory 1 and the processor 2 are connected through a bus.
  • the processor 2 may be a microcontroller unit, a central processing unit or a digital signal processor, and so on.
  • the memory 1 may be a Flash chip, a read-only memory, a magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the memory 1 is used to store a computer program; the processor 2 is used to execute the computer program and implement the following steps when executing the computer program:
  • the flight operation path is determined according to the distribution map of the target area positioning markers and the operation requirements; fly the operation according to the flight operation path and acquire the surrounding environment images during the flight; The positioning marker image in the environment image is used to correct the error during the flight.
  • the distribution map of the positioning markers in the target area is determined according to the distribution map of the objects in the target area and operation requirements, and the distribution map of the objects in the target area is determined according to the two-dimensional plan of the target area.
  • the processor when executing the computer program, implements the following steps: determining a distribution map of objects in the target area according to the two-dimensional plan of the target area.
  • the processor when executing the computer program, implements the following steps: setting a reference coordinate system on the two-dimensional plane map of the target area, and constructing a two-dimensional plane map; on the two-dimensional plane map, combining The parameters of the target object are obtained, and the three-dimensional distribution map of the target object in the target area is obtained.
  • the parameters of the target include: the shape, size, and position of the target.
  • the processor when executing the computer program, implements the following steps: if the positioning marker image is within a preset range in the environment image, it is determined that the error during the flight does not need to be corrected; If the positioning marker image is not within the preset range in the environment image, it is determined that the error during the flight needs to be corrected.
  • the processor when executing the computer program, implements the following steps: acquiring the setting position of the first positioning marker in the target area according to the first positioning marker image in the environment image, The setting position of the first positioning marker is the position on the flight path; obtain the detection position of the drone in the target area detected by the positioning system of the drone; When the difference between the setting position of the first positioning marker in the target area and the detection position of the drone in the target area is greater than a first threshold, move the drone to the The setting position of the first positioning marker.
  • the processor executes the computer program, the following steps are implemented: when the setting position of the first positioning marker in the two-dimensional plan of the target area is the same as that of the drone in the target area When the difference between the detection positions in the two-dimensional plan of the , is greater than the first threshold, move the drone to the setting position of the first positioning marker.
  • the processor when executing the computer program, implements the following steps: recognizing and detecting the second positioning marker image in the environment image, and obtaining the actual position of the UAV in the target area,
  • the setting position of the second positioning marker is the position on the flight path; obtain the setting position of the second positioning marker in the target area; when the drone is in the target area
  • the drone is moved to the setting position of the second positioning marker.
  • the processor executes the computer program, the following steps are implemented: when the actual position of the drone in the two-dimensional plan of the target area and the second positioning marker are in the target area When the difference between the setting positions in the two-dimensional plan of the , is greater than the second threshold, move the drone to the setting position of the second positioning marker.
  • the processor when executing the computer program, implements the following steps: identifying and detecting a third positioning marker image in the environment image, and obtaining the actual position of the drone in the target area,
  • the setting position of the third positioning marker is not the position on the flight path; obtain the target position with the shortest distance from the actual position of the drone in the target area to the flight path; when the When the difference between the actual position of the target area and the target position of the flight path is greater than a third threshold, the UAV moves the UAV to the target position of the flight path.
  • the processor executes the computer program, the following steps are implemented: when the actual position of the UAV in the two-dimensional plan of the target area and the flight of the drone in the two-dimensional plan of the target area When the difference between the target positions of the work path is greater than a third threshold, move the drone to the target position of the flight work path.
  • the distance between the positioning marker and the target is less than or equal to a fourth threshold.
  • the positioning marker is set on the ground.
  • the positioning marker is set at a first position on the target area, and the first position corresponds to the coordinate origin of the reference coordinate system of the two-dimensional plan view of the target area.
  • the environment image is acquired by a camera device on the drone, and the camera device is arranged below the drone.
  • the processor when executing the computer program, implements the following steps: planning a flight operation path according to the distribution map of the target area positioning marker and the operation requirements.
  • the processor when executing the computer program, implements the following steps: determining the setting position of the target area positioning marker according to the distribution map of the target area target; The location is set, and the distribution map of the positioning markers in the target area is determined.
  • the processor when executing the computer program, implements the following steps: planning the trajectory of the flight operation path according to the flight operation path.
  • the processor when executing the computer program, implements the following steps: in the process of flying and operating according to the flight operation path, if the power of the drone is lower than the threshold power, returning to the charging pile After charging, go back along the original route and continue to fly and operate according to the flight operation path.
  • the charging pile is located at the origin of the coordinate system of the distribution map of objects in the target area.
  • the target area includes storage space or freight space; and the target object includes shelves.
  • the goods are affixed with a first barcode
  • the operation requirements include scanning the first barcodes of all goods on the shelves in the storage space
  • the flight operation path covers the positions of all goods in the storage space.
  • the processor when executing the computer program, implements the following steps: acquiring job result data after the job is completed.
  • the processor executes the computer program, the following steps are implemented: after scanning the first barcodes of all the goods on the shelves of the storage space, the storage inventory data is acquired.
  • the processor executes the computer program, the following steps are implemented: the first barcode information obtained by scanning the first barcode is counted to obtain warehouse inventory data.
  • the shelf is affixed with a second barcode
  • the operation requirements include scanning the second barcode on the cargo space shelf, placing the goods with the second barcode carried on the drone on the corresponding shelf or
  • the cargo with the second barcode is loaded onto the drone and transferred to the destination by the drone, and the flight operation path covers the positions of all the shelves in the cargo space.
  • FIG. 11 is a schematic structural diagram of an embodiment of the control device of the present application. It should be noted that the control device of this embodiment can execute the steps in the above-mentioned flight operation method applied to the control terminal. Please refer to the above-mentioned relevant content of the flight operation method applied to the control terminal, which will not be repeated here.
  • the control device 200 includes: a communication circuit 30 , a memory 10 and a processor 20 , and the communication circuit 30 and the memory 10 are respectively connected to the processor 20 .
  • the processor 20 may be a microcontroller unit, a central processing unit or a digital signal processor, and so on.
  • the memory 10 may be a Flash chip, a read-only memory, a magnetic disk, an optical disk, a U disk, a mobile hard disk, or the like.
  • the memory 10 is used to store a computer program; the processor 20 is used to execute the computer program and implement the following steps when executing the computer program:
  • the flight operation path is determined according to the distribution map of the target area positioning markers and the operation requirements; control the communication circuit to send the flight operation path to the UAV to make the UAV Fly and work according to the flight work path.
  • the distribution map of the positioning markers in the target area is determined according to the distribution map of the objects in the target area, and the distribution map of the objects in the target area is determined according to the two-dimensional plan of the target area.
  • the processor when executing the computer program, implements the following steps: determining a distribution map of objects in the target area according to the two-dimensional plan of the target area.
  • the processor when executing the computer program, implements the following steps: setting a reference coordinate system on the two-dimensional plane map of the target area, and constructing a two-dimensional plane map; on the two-dimensional plane map, combining The parameters of the target object are obtained, and the three-dimensional distribution map of the target object in the target area is obtained.
  • the parameters of the target include: the shape, size, and position of the target.
  • the processor when executing the computer program, implements the following steps: planning a flight operation path according to the distribution map of the target area positioning marker and the operation requirements.
  • the processor when executing the computer program, implements the following steps: determining the setting position of the target area positioning marker according to the distribution map of the target area target; The location is set, and the distribution map of the positioning markers in the target area is determined.
  • the processor when executing the computer program, implements the following steps: planning the trajectory of the flight operation path according to the flight operation path.
  • the distance between the positioning marker and the target is less than or equal to a fourth threshold.
  • the positioning marker is set on the ground.
  • the positioning marker is set at a first position on the target area, and the first position corresponds to the coordinate origin of the reference coordinate system of the two-dimensional plan view of the target area.
  • the target area includes storage space or freight space; and the target object includes shelves.
  • the goods are affixed with a first barcode
  • the operation requirements include scanning the first barcodes of all goods on the shelves in the storage space
  • the flight operation path covers the positions of all goods in the storage space.
  • the shelf is affixed with a second barcode
  • the operation requirements include scanning the second barcode on the cargo space shelf, placing the goods with the second barcode carried on the drone on the corresponding shelf or
  • the cargo with the second barcode is loaded onto the drone and transferred to the destination by the drone, and the flight operation path covers the positions of all the shelves in the cargo space.
  • Fig. 12 is a schematic structural diagram of an embodiment of the flight operation system of the present application.
  • the flight operation 300 includes the UAV 100 described in any of the above and the control device 200 described in any of the above.
  • the relevant content please refer to the relevant content of the above-mentioned UAV and the relevant content of the control device, which will not be repeated here.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to implement any of the above applied to the flight of an unmanned aerial vehicle method of operations.
  • a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to implement any of the above applied to the flight of an unmanned aerial vehicle method of operations.
  • the computer-readable storage medium may be an internal storage unit of the above-mentioned drone, such as a hard disk or a memory.
  • the computer-readable storage medium may also be an external storage device, such as an equipped plug-in hard disk, smart memory card, secure digital card, flash memory card, and the like.
  • the present application further provides another computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor, the processor enables the processor to implement any of the above flight operations applied to the control terminal method.
  • the relevant content please refer to the above-mentioned relevant content section, which will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the above-mentioned control device, such as a hard disk or a memory.
  • the computer-readable storage medium may also be an external storage device, such as an equipped plug-in hard disk, smart memory card, secure digital card, flash memory card, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种飞行作业方法、无人机及存储介质,该方法包括:获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的(S101);按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像(S102);根据所述环境图像中的定位标志物图像修正飞行过程中的误差(S103)。

Description

飞行作业方法、无人机及存储介质 技术领域
本申请涉及路径规划技术领域,尤其涉及一种飞行作业方法、无人机及存储介质。
背景技术
随着无人机技术的发展,无人机取得了广泛的应用,例如可以利用无人机对目标区域的货物进行盘点,货物放置在比较高的货架上,无人机飞行盘点时必须避开目标区域中的障碍物。
目标区域的飞行环境比较复杂时,例如:目标区域中的障碍物高度可能不一致,障碍物的种类可能多种多样,有些障碍物的位置可能随时变动,等等,这些情况均导致无人机在目标区域飞行作业时困难重重,飞行作业路径非常难以规划。现有方法是通过对目标区域进行三维建模,根据三维模型规划飞行作业的路径,三维建模主要通过三维软件进行模型绘制,或利用无人机携带的传感器设备进行测量建模,这两种方式的三维建模过程复杂,耗时耗力,无人机上需要配备激光雷达等昂贵的传感器设备,导致无人机成本较高。
发明内容
基于此,本申请提供一种飞行作业方法、无人机及存储介质。
第一方面,本申请提供了一种飞行作业方法,所述方法应用于无人机,包括:
获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;
按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;
根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
第二方面,本申请提供了一种无人机,包括:存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;
按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;
根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
第三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的飞行作业方法。
本申请实施例提供了一种飞行作业方法、无人机及存储介质,通过获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;根据所述环境图像中的定位标志物图像修正飞行过程中的误差,无需对目标区域进行三维建模,就可以根据目标区域定位标志物的分布地图和作业要求确定目标区域的飞行作业路径,避免了三维建模的复杂过程,不仅能够节省建模过程所需的时间,也允许无人机不配备激光雷达等昂贵的传感器设备,从而降低无人机制造的成本;定位标志物有助于无人机在飞行过程中进行定位,沿着根据目标区域定位标志物的分布地图和作业要求确定的飞行作业路径飞行作业并在飞行过程中根据获取的周围的环境图像中的定位标志物图像修正飞行过程中的误差,保证飞行不偏离飞行作业路径,一方面能够有助于无人机避开各种各样的障碍物,保证飞行安全,另一方面能够满足无人机在目标区域飞行的目的,即满足作业要求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请飞行作业方法一实施例的流程示意图;
图2是本申请飞行作业方法中一实施例的定位标志物示意图;
图3是本申请飞行作业方法又一实施例的流程示意图;
图4是本申请飞行作业方法中一实施例的三维的仓库的货架分布示意图;
图5是本申请飞行作业方法中一实施例的货架、定位标志物的分布示意图;
图6是本申请飞行作业方法中一实施例的路径规划的示意图;
图7是本申请飞行作业方法中另一实施例的路径规划的示意图;
图8是本申请飞行作业方法又一实施例的流程示意图;
图9是本申请飞行作业方法又一实施例的流程示意图
图10是本申请无人机一实施例的结构示意图;
图11是本申请控制装置一实施例的结构示意图;
图12是本申请飞行作业系统一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请实施例的飞行作业方法可以应用在诸多场景,例如,可以利用本申 请实施例的飞行作业方法进行货物盘点。货物盘点是指对货物等进行清点,常用方法有账面盘点法与现货盘点法,常采用盘点机作为工具,其作用是对仓库的整合、归纳以及对库存的清点。对于大型仓库来说,货物数量繁多,货架的规模庞大,传统方式难以完成高效盘点。
由于货物上贴有第一条形码(barcode),因此可以利用无人机扫描条形码从而对货物进行盘点。条形码是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案,很容易通过图像算法进行识别。在大型仓库中,条形码经常用来追踪货物的类别、数量、位置等重要信息,便于进行数字化管理。
在货架上放置货物的时候,可以将货物上的第一条形码露出,并将货物贴有第一条形码的一面放置在货架外侧。仓储盘点时,无人机的飞行路径覆盖所有货架上的货物,通过扫描仓储空间货架上所有货物的第一条形码,把各种货物的信息录入。通过这种方式,能够获得仓储空间货架上所有货物的相关信息。
但是,仓储区域的飞行环境并不是一个开阔的空旷环境,是一个相对封闭、受限的复杂环境:仓储区域飞行高度一般有限,区域内还包括各种各样影响飞行需要避开的障碍物(例如货架、叉车、人、机器,等等),障碍物高度可能不一致,有些障碍物的位置可能随时变动,此外仓库内信号可能不好,导致无人机飞行过程中定位可能不准确,造成飞行事故等,这些情况均导致无人机在仓储区域飞行作业时困难重重,飞行作业路径非常难以规划。如果对目标区域进行三维建模,其三维建模过程复杂,耗时耗力,无人机上需要配备激光雷达等昂贵的传感器设备,导致无人机成本较高。另外,本申请实施例还可以用来将货物从一个位置转移到另一个位置(例如:将货物从一个位置转移到货架上,或者将货物从货架上转移到另一个位置),现有很多通过叉车把货物取下,转运到另一个位置,然后将货物放在货架上,这种方式也是只适用于比较矮的货架,效率低,周期长。
因此可以利用无人机进行货运。(1)将货物放在货架上:可以在货架上贴上第二条形码,将要放在该货架上的货物上也贴有第二条形码,货架上的第 二条形码与货物上的第二条形码对应,例如可以使货架上的第二条形码与货物上的第二条形码一致,或通过扫描条形码的信息识别出两个第二条形码是相互配对的,说明需要将该货物放在该货架上,因此,在利用无人机货运时,可以使无人机的飞行路径覆盖所有货架,通过扫描货架上的第二条形码,判断该货架的第二条形码与无人机上当前搭载的货物的第二条形码是否对应,如果对应,则将该货物放在对应的货架上。(2)从货架取货物运往其他目的地:可以在货架的货物上贴上第二条形码,无人机货运时,无人机的飞行路径覆盖所有货物,通过扫描货物上的第二条形码,判断该货物的第二条形码是否是当前需要搬运的货物,如果是,则将所述货物搭载在无人机上,无人机飞到其他目的地放下货物。通过这种方式,能够通过无人机进行自动化货物运输,可以大大降低货运成本,提高货运效率,保证货运过程的安全性,进而减轻企业货运管理成本。
但是,货运区域的飞行环境并不是一个开阔的空旷环境,通常是一个相对封闭、受限的复杂环境:货运区域飞行高度一般有限,区域内还包括各种各样影响飞行需要避开的障碍物(例如货架、叉车、人、机器,等等),障碍物高度可能不一致,有些障碍物的位置可能随时变动,此外在货物运输过程中信号可能不好,导致无人机飞行过程中定位可能不准确,造成飞行事故等,这些情况均导致无人机在货运区域飞行作业时困难重重,飞行作业路径非常难以规划。如果对目标区域进行三维建模,其三维建模过程复杂,耗时耗力,无人机上需要配备激光雷达等昂贵的传感器设备,导致无人机成本较高。
需要说明的是,以上应用场景仅是示例性的,并不对本申请构成限制,将本申请的方法应用于其他应用场景同样属于本申请的保护范围。
针对上述问题,本申请实施例通过获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;根据所述环境图像中的定位标志物图像修正飞行过程中的误差,无需对目标区域进行三维建模,就可以根据目标区域定位标志物的分布地图和作业要求确定目标区域的飞行作业路径,避免了三维建模的复杂过程,不仅能够节省建模过程所需的时间, 也允许无人机不配备激光雷达等昂贵的传感器设备,从而降低无人机制造的成本;定位标志物有助于无人机在飞行过程中进行定位,沿着根据目标区域定位标志物的分布地图和作业要求确定的飞行作业路径飞行作业并在飞行过程中根据获取的周围的环境图像中的定位标志物图像修正飞行过程中的误差,保证飞行不偏离飞行作业路径,一方面能够有助于无人机避开各种各样的障碍物,保证飞行安全,另一方面能够满足无人机在目标区域飞行的目的,即满足作业要求。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参见图1,图1是本申请飞行作业方法一实施例的流程示意图,所述方法应用于无人机,所述方法包括:
步骤S101:获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的。
步骤S102:按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像。
步骤S103:根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
本实施例中,目标区域可以是无人机飞行作业的区域,例如:如果利用无人机对货物盘点,目标区域可以是仓储区域;如果利用无人机搬运货物,目标区域可以是货运区域;如果利用无人机监控施工,目标区域可以是施工区域;如果利用无人机进行交通监管,目标区域可以是道路交通现场;等等;目标区域可以是室内空间,也可以是室外空间,也可以一部分为室内空间另一部分为室外空间,等等。目标物可以是目标区域中无人机飞行作业需要关注的对象,通常包括作业对象和障碍物对象;例如,作业对象可以是货物,货物可以是生活中的日常用品,也可以是工业用的工业货物,也可以是建筑施工货物,等等;利用无人机进行作业,首先必须保证飞行安全,因此,障碍物对象可以是目标区域各种各样影响飞行安全性的障碍物。
定位标志物可以是指基于视觉识别、用来对当前环境中的位置进行定位 (包括位置和方向)的标志物。定位标志物的形式可以多种多样,在一些实施方式中,可以形式比较简单,不需要很强的算力即可识别出来。本实施例中,定位标志物包括但不限于随机点、数字、二维码中的一种或多种。
例如:预先设定不同的随机点对应不同的定位信息,预先在不同的定位信息对应的不同位置处分别设置不同的随机点定位标志物。通过视觉识别技术识别出某处位置具体的随机点定位标志物,进一步确定该具体的随机点定位标志物对应的具体的定位信息。
进一步,定位标志物还可以通过多张随机点定位标志物拼接而成。
又如,预先建立地面坐标系,将随机点定位标志物预先铺设在地面,通过视觉识别技术识别出某处随机点定位标志物在地面坐标系中的坐标位置。
又如:预先设定不同的数字对应不同的定位信息,预先在不同的定位信息对应的不同位置处分别设置不同的数字定位标志物。通过视觉识别技术识别出某处位置具体的数字定位标志物,进一步确定该具体的数字定位标志物对应的具体的定位信息。
又如:二维码能够携带的信息最丰富,将不同位置处的不同定位信息携带在不同的二维码中,将不同的二维码分别设置在对应的不同位置处。只要摄像装置观测到二维码,即可从中读出定位信息。如图2所示,图2是Aruco Marker;Aruco是一个开源的微型的现实增强库,该库包括视觉标志物类,Aruco Marker是被广泛使用的二维码,一个Aruco Marker外围都有一组黑色边框,同时内部由确定该标志物ID的二维矩阵组合而成;黑色的边框能加速标志物在图像中的检测速度,内部的二维编码能唯一识别该标志物,同时进行错误检测和错误修复,标志物的大小确定了内部矩阵的大小。
在本实施例中,定位标志物设置在目标区域,定位标志物有助于无人机在飞行过程中进行定位,沿着根据目标区域定位标志物的分布地图和作业要求确定的飞行作业路径飞行作业并在飞行过程中根据获取的周围的环境图像中的定位标志物图像修正飞行过程中的误差,保证飞行不偏离飞行作业路径,一方面能够有助于无人机避开各种各样的障碍物,保证飞行安全,另一方面能够满足无人机在目标区域飞行的目的,即满足作业要求。可以预先获取目标区域定 位标志物的分布地图。获取目标区域定位标志物的分布地图的方式可以包括:可以先在纸版的目标区域的二维平面图上手工画出纸版的定位标志物在目标区域的分布情况,然后将纸版的定位标志物在目标区域的分布情况输入机器中,得到目标区域定位标志物的分布地图;或者,可以在目标区域的二维平面图上输入定位标志物在目标区域的位置,进而得到目标区域定位标志物的分布地图;或者,在实地的目标区域设置好定位标志物,控制无人机在实地的目标区域飞行并识别出定位标志物的位置,然后结合目标区域的二维平面图,获得目标区域定位标志物的分布地图。
在本实施例中,步骤S101中获取目标区域的飞行作业路径可以是无人机从自身来源获取,一种方式可以是:将目标区域定位标志物的分布地图和作业要求发送给无人机,无人机根据目标区域定位标志物的分布地图和作业要求确定好目标区域的飞行作业路径,另一种方式可以是:其他装置根据目标区域定位标志物的分布地图和作业要求确定好目标区域的飞行作业路径,然后将确定好的目标区域的飞行作业路径预先导入无人机中;也可以是无人机从控制装置实时获取,即控制装置将根据目标区域定位标志物的分布地图和作业要求确定好的目标区域的飞行作业路径发送给无人机,无人机接收控制装置发送的目标区域的飞行作业路径(可以参见后面应用于控制端的飞行作业方法部分)。
作业要求可以是无人机在目标区域飞行时针对所述目标区域内包括目标物在内的物体进行作业的要求。例如:如果利用无人机进行货物盘点,此时作业要求包括:使飞行作业路径覆盖所述仓储空间所有货物所在位置,使无人机扫描仓储空间货架上所有货物(货架、货物为目标物)的第一条形码。当无人机获取到根据仓储空间定位标志物的分布地图和上述作业要求确定的仓储空间的飞行作业路径后,根据该飞行作业路径飞行即可覆盖所述仓储空间所有货物所在位置,同时无人机在沿着该飞行作业路径进行飞行的过程中,能够扫描到仓储空间货架上所有货物的第一条形码。
又如:如果利用无人机搬运货物,此时作业要求包括:使飞行作业路径覆盖所述货运空间所有货架所在位置,使无人机扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上(货 架、货物为目标物)或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地。当无人机获取到根据货运空间定位标志物的分布地图和上述作业要求确定的货运空间的飞行作业路径后,根据该飞行作业路径飞行即可覆盖所述货运空间所有货架所在位置,同时无人机在沿着该飞行作业路径进行飞行的过程中,能够扫描到货运空间货架上的第二条形码,将货架上的第二条形码与无人机上搭载的货物的第二条形码比较,如果货架上的第二条形码与无人机上搭载的货物的第二条形码对应,则将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将货架上的具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地。
又如:如果利用无人机进行交通监管,此时作业要求包括:使飞行作业路径覆盖某交通要道的所有位置,使无人机监控该交通要道上的行人、机动车、非机动车(行人、机动车、非机动车即为目标物)是否遵守交通安全法等相关规定,如果发现行人、非机动车、机动车将要违反交通安全法等相关规定,对行人、非机动车、机动车进行喊话,阻止其违反交通安全法等相关规定,如果机动车依然违反交通安全法等相关规定,识别并记录该机动车的车牌号。当无人机获取到根据交通要道所在区域定位标志物的分布地图和上述作业要求确定的交通要道所在区域的飞行作业路径后,根据该飞行作业路径飞行即可覆盖所述交通要道所在区域,同时无人机在沿着该飞行作业路径进行飞行的过程中,能够监控该交通要道上的行人、机动车、非机动车是否遵守交通安全法等相关规定,如果发现行人、非机动车、机动车将要违反交通安全法等相关规定,对行人、非机动车、机动车进行喊话,阻止其违反交通安全法等相关规定,如果机动车依然违反交通安全法等相关规定,识别并记录该机动车的车牌号。
由于所述飞行作业路径不仅仅是飞行路径,还要求无人机在飞行过程中进行作业,因此无人机按照根据目标区域定位标志物的分布地图和作业要求确定的飞行作业路径进行作业,通过这种方式,能够使无人机在目标区域发展新应用,例如利用无人机进行货物盘点、搬运货物、交通监管、施工监控,等等。
本申请实施例本申请实施例通过获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;按照所述 飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;根据所述环境图像中的定位标志物图像修正飞行过程中的误差,无需对目标区域进行三维建模,就可以根据目标区域定位标志物的分布地图和作业要求确定目标区域的飞行作业路径,避免了三维建模的复杂过程,不仅能够节省建模过程所需的时间,也允许无人机不配备激光雷达等昂贵的传感器设备,从而降低无人机制造的成本;定位标志物有助于无人机在飞行过程中进行定位,沿着根据目标区域定位标志物的分布地图和作业要求确定的飞行作业路径飞行作业并在飞行过程中根据获取的周围的环境图像中的定位标志物图像修正飞行过程中的误差,保证飞行不偏离飞行作业路径,一方面能够有助于无人机避开各种各样的障碍物,保证飞行安全,另一方面能够满足无人机在目标区域飞行的目的,即满足作业要求。
目标区域定位标志物的分布地图可以是:根据目标区域的现场的实际情况现场设置定位标志物,根据目标区域设置的定位标志物得到目标区域定位标志物的分布地图。
其中,为了使目标区域的飞行作业路径满足作业要求,所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
本实施例中,目标区域定位标志物的设置位置是根据目标区域目标物的分布地图确定的,目标区域定位标志物的分布地图是根据目标区域设置的定位标志物的分布情况确定的。
根据目标区域目标物的分布地图确定目标区域定位标志物的设置位置的具体方式很多。例如:输入目标区域目标物的分布地图,在目标区域目标物的分布地图上标识定位标志物的位置,根据目标区域目标物的分布地图上标识的定位标志物的位置生成目标区域定位标志物的分布地图,根据目标区域目标物的分布地图上标识的定位标志物的位置在目标区域现场设置定位标志物。或者,根据目标区域目标物的分布地图,在目标区域现场设置定位标志物,根据目标区域设置的定位标志物,得到目标区域定位标志物的分布地图。
其中,在目标区域现场设置定位标志物时,需要根据具体的作业要求来进 行设置。例如:定位标志物的设置位置包括但不限于:在作业对象两边的走廊的地面,靠近作业对象物设置,设置在作业对象正上方预定距离的位置,虽然远离作业对象但是需要转变方向到另一处作业对象的位置,有障碍物对象的位置,对于作业对象为可移动的作业对象可以设置在可移动的作业对象活动范围集中的区域,等等。
由于目标物可以是目标区域中无人机飞行作业需要关注的对象,通常包括作业对象和障碍物对象,那么根据目标区域目标物的分布地图确定的目标区域定位标志物的分布地图,一方面能够为无人机在飞行过程中避开各种各样的障碍物、保证飞行安全提供技术支持,另一方面能够为满足无人机在目标区域飞行时满足作业要求提供技术支持。
目标区域具有二维平面图,在规划目标区域的飞行作业路径时,利用这些目标区域自身的二维平面图和目标物的位置信息来确定所述目标区域目标物的分布情况,从而能够得到所述目标区域目标物的分布地图,进一步结合目标物的尺寸信息,可以得到目标区域目标物的三维地图。由于充分利用了目标区域的二维平面图信息,避免了三维建模的复杂过程,不仅能够节省建模过程所需的时间,也允许无人机不配备激光雷达等传感器设备,从而降低无人机制造的成本。
在一实施例中,步骤S101所述获取目标区域的飞行作业路径之前,还可以包括:步骤S104。
步骤S104:获取目标区域目标物的分布地图。
如果目标区域目标物的分布地图已经预先确定,则可以获取;或者,如果目标区域目标物的分布地图没有预先确定,则可以先确定目标区域目标物的分布地图。
在目标区域目标物的分布地图没有预先确定的情况下,步骤S104,所述获取目标区域目标物的分布地图,可以包括:根据目标区域的二维平面图,确定目标区域目标物的分布地图。具体方式可以包括:在目标区域的二维平面图上结合专门标出目标物的标识,得到目标区域目标物的分布地图;或者,在目标区域的二维平面图上,结合输入的目标物的位置坐标,在目标区域的二维平 面图上显示目标物的位置坐标,从而得到目标区域目标物的分布地图;或者,在目标区域的二维平面图上,结合输入的目标物的位置坐标,输入的目标物的形状、尺寸等信息,得到三维的目标物的分布地图;等等。
本实施例充分利用已有的目标区域的二维平面图,据此确定目标区域目标物的分布地图,简单快速。
进一步,步骤S104,所述根据目标区域的二维平面图,确定目标区域目标物的分布地图,还可以包括:子步骤S1041和子步骤S1042,如图3所示。
子步骤S1041:在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图。
子步骤S1042:在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
目标区域的二维平面图比较常见的有二维CAD平面图。本实施例在目标区域的二维平面地图上结合目标物的参数,得到目标区域目标物的三维分布地图,无需通过昂贵的传感器设备对目标区域进行三维建模而得到目标物的分布信息。
其中,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
例如,如图4,目标区域的目标物是仓库的货架,由于货架的形状、尺寸是固定的,统一为长方体形状,其摆放位置通常也是固定的,因此可以直接根据仓库的CAD二维平面图得到三维的货架分布图。根据三维的货架分布图,确定仓库中定位标志物的设置位置,进而确定仓库中定位标志物的分布地图。根据仓库中定位标志物的分布地图和作业要求,规划出飞行作业路径,其中所述作业要求包括扫描仓库货架上所有货物的第一条形码,所述飞行作业路径覆盖仓库所有货物所在位置。
由于充分利用了仓库区域的二维平面图信息和货架的形状、尺寸信息,避免了三维建模的复杂过程,不仅能够节省建模过程所需的时间,也允许无人机不配备激光雷达等传感器设备,从而降低无人机制造的成本。另外,定位标志物有助于无人机在飞行过程中进行定位,沿着根据仓库定位标志物的分布地图和作业要求确定的飞行作业路径飞行作业并在飞行过程中根据获取的周围的 环境图像中的定位标志物图像修正飞行过程中的误差,保证飞行不偏离飞行作业路径,一方面能够有助于无人机避开各种各样的障碍物,保证飞行安全,另一方面能够满足无人机在仓库飞行的货物盘点的目的,即满足作业要求。
由于无人机在飞行过程中存在误差,可能偏离原来的飞行作业路径,如果不修正误差,会导致不能满足作业要求(例如货物盘点有误、无法按照要求运送货物,等等),导致无人机发生碰撞,因此按照所述飞行作业路径飞行作业,同时修正飞行过程中的误差。
修正飞行过程中的误差可以是无人机首先需要通过自身的定位系统对自身进行定位,然后将定位数据与飞行作业路径的目标数据进行比较,当比较结果超出可以接受的范围时则需要修正飞行过程中的误差。其中无人机对自身进行定位的方式很多,例如惯性导航系统、雷达、GPS、视觉定位,等等。
通常视觉定位成本较低,应用较为广泛,再结合周围环境中设置的定位标志物可以修正飞行过程中的误差。
搭载在无人机上的摄像装置在飞行过程中获取周围的环境图像,并对环境图像进行识别。如果摄像装置拍摄到周围环境中定位标志物,就会出现在环境图像中。通常将摄像装置设置在无人机的下方。
其中,步骤S103根据所述环境图像中的定位标志物图像修正飞行过程中的误差之前,还可以包括:根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差。
本实施例根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差,该方式较为粗略,但是能够简单快速将不需要修正的情况排除,从而能够避免精细化判断方式中相对比较复杂的计算。
其中,根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差,可以是:若所述定位标志物图像在所述环境图像中的预设范围内,则确定不需要修正飞行过程中的误差;若所述定位标志物图像不在所述环境图像中的预设范围内,则确定需要修正飞行过程中的误差。
当识别出环境图像中有定位标志物图像,且定位标志物图像在环境图像中的预设范围内,则认为满足要求,不需要修正;否则需要修正。例如:预设范 围可以是以环境图像的中心为中心,以R为半径的圆形区域,如果定位标志物图像在圆形区域内,则可以认为定位标志物图像在预设范围内,满足要求,不需要修正;如果定位标志物图像在圆形区域外,则可以认为定位标志物图像在预设范围外,不满足要求,需要修正。又如:在某一个方向时(定位标志物设置在某一个方向),预设范围可以是以环境图像的中心为中心,以R为半径的半圆形区域,如果定位标志物图像在半圆形区域内,则可以认为定位标志物图像在预设范围内,满足要求,不需要修正;如果定位标志物图像在半圆形区域外,则可以认为定位标志物图像在预设范围外,不满足要求,需要修正,预设区域的设置除了以上方式,还可以为正方形、长方形,以及其他形状,本申请对此不作限制。
当识别出环境图像中有定位标志物图像时,步骤S103,根据所述环境图像中的定位标志物图像修正飞行过程中的误差,可以有多种精细化的处理方式,下面举例具体说明。
第一种处理方式可以是:目标区域设置有第一定位标志物,第一定位标志物的图像给出的信息是第一定位标志物自身在目标区域中的设置位置,第一定位标志物的设置位置也是飞行作业路径上的位置,是无人机在理想情况下的目标位置。此时,步骤S103,根据所述环境图像中的定位标志物图像修正飞行过程中的误差,可以包括:
A1:根据所述环境图像中的第一定位标志物图像,获取所述第一定位标志物在所述目标区域中的设置位置。
A2:获取所述无人机的定位系统检测到的所述无人机在所述目标区域中的检测位置。其中,A1和A2没有明显的执行先后顺序。
A3:当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
本实施例中,利用无人机的定位系统获取定位系统检测到的无人机在所述目标区域中的检测位置,由于定位系统存在误差,无人机在飞行过程中会慢慢偏离飞行作业路径,因此,比较第一定位标志物在所述目标区域中的设置位置 (即无人机理想的目标位置)与所述无人机在所述目标区域中的检测位置,当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,认为需要修正,将所述无人机移动至所述第一定位标志物的设置位置。通过这种方式,能够保证无人机飞行过程中的位置精确性和飞行安全性。
其中,A3:当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置,还可以是:当所述第一定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
即将第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置均转化到所述目标区域的二维平面图中,然后进行比较,这种方式使上述第一定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的检测位置之间的差值能够直观的进行比较。
第二种处理方式可以是:目标区域设置有第二定位标志物,第二定位标志物的图像给出的信息能够对无人机当前所在的实际位置进行比无人机的定位系统更加准确的定位,同时第二定位标志物在目标区域的设置位置是飞行作业路径上的位置,是无人机在理想情况下的目标位置。此时,步骤S103,根据所述环境图像中的定位标志物图像修正飞行过程中的误差,可以包括:
B1:识别并检测所述环境图像中的第二定位标志物图像,得到所述无人机在所述目标区域中的实际位置。其中第二定位标志物可以采用Aruco Marker。
B2:获取所述第二定位标志物在所述目标区域中的设置位置。其中,B1和B2没有明显的执行先后顺序。本地可以预先保存第二定位标志物的设置位置。
B3:当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所 述第二定位标志物的设置位置。
本实施例中,利用第二定位标志物对无人机当前的实际位置进行更加准确的定位,同时第二定位标志物的设置位置是飞行作业路径上的位置,是无人机在理想情况下的目标位置,因此,比较所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置(即无人机理想的目标位置),当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,认为需要修正,将所述无人机移动至所述第二定位标志物的设置位置。通过这种方式,能够保证无人机飞行过程中的位置精确性和飞行安全性。
其中,B3,所述当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置,还可以包括:
当所述无人机在所述目标区域的二维平面图中的实际位置与所述第二定位标志物在所述目标区域的二维平面图中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
即将第二定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的实际位置均转化到所述目标区域的二维平面图中,然后进行比较,这种方式使上述第二定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的实际位置之间的差值能够直观的进行比较。
第三种处理方式可以是:目标区域设置有第三定位标志物,第三定位标志物的图像给出的信息能够对无人机当前所在的实际位置进行比无人机的定位系统更加准确的定位,同时第三定位标志物在目标区域的设置位置不在飞行作业路径上,无人机在理想情况下的目标位置可以通过飞行作业路径获取。本实施例没有采用无人机自身的定位系统,而是采用第三定位标志物对无人机当前所在的实际位置进行更为准确的定位。
此时,步骤S103,根据所述环境图像中的定位标志物图像修正飞行过程中的误差,可以包括:
C1:识别并检测所述环境图像中的第三定位标志物图像,得到所述无人机在所述目标区域中的实际位置。其中第三定位标志物可以采用Aruco Marker。
C2:获取所述无人机在所述目标区域中的实际位置到所述飞行作业路径距离最短的目标位置。
C3:当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
本实施例中,利用第三定位标志物对无人机当前的实际位置进行更加准确的定位,确定飞行作业路径上与无人机当前的实际位置距离最短的目标位置,因此,比较所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置,当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,认为需要修正,将所述无人机移动至所述飞行作业路径的目标位置。通过这种方式,能够保证无人机飞行过程中的位置精确性和飞行安全性。
其中,C3,所述当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置,还可以包括:
当所述无人机在所述目标区域的二维平面图中的实际位置与所述目标区域的二维平面图中所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
即将所述飞行作业路径的目标位置与所述无人机在所述目标区域中的实际位置均转化到所述目标区域的二维平面图中,然后进行比较,这种方式使上述所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值能够直观的进行比较。
其中,所述定位标志物与所述目标物之间的距离小于或等于第四阈值。
由于所述飞行作业路径是根据目标区域目标物的分布地图和作业要求确定的,所述定位标志物用于修正飞行过程中的误差,因此通常所述定位标志物设置的位置比较靠近所述目标物,为此设置了第四阈值,第四阈值可以是能够 保证飞行过程中的误差在可以接受的范围内的所述定位标志物与所述目标物之间的距离最大值。
定位标志物的数目不能太少,通常所述定位标志物至少为两个。在一实施例中,所述定位标志物设置在地面。
其中,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。通过这种方式,能够使无人机定位所述目标区域的二维平面图的参考坐标系的坐标原点,完成初始化重定位。
参见图5,定位标志物标记为Marker(图中简写为M),长条状长方形表示目标物货架,在货架所在位置附近选择合适的位置贴上marker1、marker2、marker3(图中简写为M1、M2、M3,M1、M2、M3与货架之间的距离是0.5m),例如,在坐标系原点处贴一个marker0(图中简写为M0),用来记录坐标原点与坐标轴方向,则无人机在该marker0附近区域起飞后,识别到marker0即可以直接完成重定位;在货架的条形码一侧,均匀贴上Marker,如图中的marker1、marker2、marker3,则当需要扫描第一个货架时,只需要先飞行到marker1上方,然后修正飞行过程的误差,然后再进行扫描;扫描过程中经过marker2、marker3时也会不断修正无人机的位置信息,保证无人机飞行过程中的位置精确性和飞行安全性。
下面详细说明步骤S101获取目标区域的飞行作业路径的细节内容。
步骤S101获取目标区域的飞行作业路径的方式可以包括两种:一种是预先设置好的飞行作业路径,另外一种是自行构建的飞行作业路径。
在一实施例中,自行构建飞行作业路径,步骤S101所述获取目标区域的飞行作业路径,可以包括:根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
其中,步骤S101,所述根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径之前,还可以包括:根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。由于根据所述目标区域目 标物的分布地图确定所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图,进而规划得到飞行作业路径,通过这种方式,能够更加保证无人机飞行过程中的位置精确性和飞行安全性。
在此基础上,所述方法还可以包括:根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。在本实施例中,规划所述飞行作业路径的轨迹可以是结合无人机自身机动性能约束,生成无人机在飞行过程中的位移、速度和加速度的平滑飞行轨迹。通过这种方式,能够控制无人机飞行过程中的位移、速度和加速度,从细节上进一步保证无人机飞行过程中的位置精确性和飞行安全性。
例如:目标区域为仓储空间,目标物为货架,路径规划时根据货架的分布情况规划最优的货物扫描路径,覆盖所有的货物所在位置,并控制无人机沿轨迹飞行。可以分为两个步骤:
A、路径规划:
1)货架遍历路径规划
在仓储的路径规划中,第一步先根据图4中仓库CAD地图确定各个货架的位置,如图6所示,无人机起飞重定位后,就可以准确得到货架1-6的位置和marker位置,则可以如图6规划货架间的遍历路径。
2)覆盖式扫描路径规划
对于每一个货架来说,采用“弓字型”扫描方式,以第一个货架为例,如图7所示。
B、轨迹规划:
根据路径规划结果,结合无人机的飞行性能限制,规划出路径上各个点的飞行速度,平滑各个拐点的速度,使得无人机运动顺滑,不会出现急刹、偏离规划的路径等危险行为,进一步保证无人机飞行过程中的位置精确性和飞行安全性。
在一实施例中,无人机在作业过程中,还可以返回充电桩充电,即所述方法还可以包括:步骤S201和步骤S202,如图8所示。
步骤S201:在按照所述飞行作业路径飞行并进行作业的过程中,若所述无人机的电量低于阈值电量,则返回充电桩的位置进行充电。
步骤S202:充电完毕后,沿原路返回继续按照所述飞行作业路径飞行并进行作业。
其中,所述充电桩位于所述目标区域目标物的分布地图的坐标系原点位置处。
参见图9,图9是本申请飞行作业方法又一实施例的流程示意图,本实施例的方法应用于控制端,需要说明的是,本实施例的方法与上述应用于无人机的方法的内容基本相同,即:控制端也可以实现上述应用于无人机的方法中的步骤,控制端然后将实施的结果发送给无人机;相关内容的详细说明请参见上述应用于无人机的方法的内容部分,在此不再赘叙。
所述方法包括:步骤S301和步骤S302。
步骤S301:获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的。
步骤S302:向无人机发送所述飞行作业路径使所述无人机按照所述飞行作业路径飞行并进行作业。
其中,所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
其中,所述获取目标区域的飞行作业路径之前,包括:获取目标区域目标物的分布地图。
其中,所述获取目标区域目标物的分布地图,包括:根据目标区域的二维平面图,确定目标区域目标物的分布地图。
其中,所述根据目标区域的二维平面图,确定目标区域目标物的分布地图,包括:在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图;在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
其中,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
其中,所述获取目标区域的飞行作业路径,包括:根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
其中,所述根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径之前,包括:根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。
其中,所述方法还包括:根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。
其中,所述定位标志物与所述目标物之间的距离小于或等于第四阈值。
其中,所述定位标志物至少为两个。
其中,所述定位标志物设置在地面。
其中,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。
其中,所述目标区域包括仓储空间或货运空间;所述目标物包括货架。
其中,货物上贴有第一条形码,所述作业要求包括扫描所述仓储空间货架上所有货物的第一条形码,所述飞行作业路径覆盖所述仓储空间所有货物所在位置。
其中,所述货架上贴有第二条形码,所述作业要求包括扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地,所述飞行作业路径覆盖所述货运空间所有货架所在位置。
参见图10,图10是本申请无人机一实施例的结构示意图,需要说明的是,本实施例的无人机能够执行上述应用于无人机的飞行作业方法中的步骤,相关内容的详细说明,请参见上述应用于无人机的飞行作业方法的相关内容,在此不再赘叙。
该无人机100包括:存储器1和处理器2,存储器1和处理器2通过总线连接。
其中,处理器2可以是微控制单元、中央处理单元或数字信号处理器,等等。
其中,存储器1可以是Flash芯片、只读存储器、磁盘、光盘、U盘或者 移动硬盘等等。
所述存储器1用于存储计算机程序;所述处理器2用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
其中,所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图和作业要求确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取目标区域目标物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据目标区域的二维平面图,确定目标区域目标物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图;在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
其中,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若所述定位标志物图像在所述环境图像中的预设范围内,则确定不需要修正飞行过程中的误差;若所述定位标志物图像不在所述环境图像中的预设范围内,则确定需要修正飞行过程中的误差。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述环境图像中的第一定位标志物图像,获取所述第一定位标志物在所述目标区域中的设置位置,所述第一定位标志物的设置位置是所述飞行作业路径上的位置;获取所述无人机的定位系统检测到的所述无人机在所述目标区域中的检测位 置;当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:当所述第一定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:识别并检测所述环境图像中的第二定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第二定位标志物的设置位置是所述飞行作业路径上的位置;获取所述第二定位标志物在所述目标区域中的设置位置;当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:当所述无人机在所述目标区域的二维平面图中的实际位置与所述第二定位标志物在所述目标区域的二维平面图中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:识别并检测所述环境图像中的第三定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第三定位标志物的设置位置不是所述飞行作业路径上的位置;获取所述无人机在所述目标区域中的实际位置到所述飞行作业路径距离最短的目标位置;当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:当所述无人机在所述目标区域的二维平面图中的实际位置与所述目标区域的二维平面图中所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移 动至所述飞行作业路径的目标位置。
其中,所述定位标志物与所述目标物之间的距离小于或等于第四阈值。
其中,所述定位标志物至少为两个。
其中,所述定位标志物设置在地面。
其中,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。
其中,所述环境图像是通过所述无人机上的摄像装置获取的,所述摄像装置设置在所述无人机的下方。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:在按照所述飞行作业路径飞行并进行作业的过程中,若所述无人机的电量低于阈值电量,则返回充电桩的位置进行充电;充电完毕后,沿原路返回继续按照所述飞行作业路径飞行并进行作业。
其中,所述充电桩位于所述目标区域目标物的分布地图的坐标系原点位置处。
其中,所述目标区域包括仓储空间或货运空间;所述目标物包括货架。
其中,货物上贴有第一条形码,所述作业要求包括扫描所述仓储空间货架上所有货物的第一条形码,所述飞行作业路径覆盖所述仓储空间所有货物所在位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:作业完成后获取作业结果数据。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:扫描完所述仓储空间货架上所有货物的第一条形码之后,获取仓储库存数据。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:统计扫描第一条形码得到的第一条形码信息,得到仓储库存数据。
其中,所述货架上贴有第二条形码,所述作业要求包括扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地,所述飞行作业路径覆盖所述货运空间所有货架所在位置。
参见图11,图11是本申请控制装置一实施例的结构示意图,需要说明的是,本实施例的控制装置能够执行上述应用于控制端的飞行作业方法中的步骤,相关内容的详细说明,请参见上述应用于控制端的飞行作业方法的相关内容,在此不再赘叙。
该控制装置200包括:通信电路30、存储器10和处理器20,通信电路30、存储器10分别和处理器20连接。
其中,处理器20可以是微控制单元、中央处理单元或数字信号处理器,等等。
其中,存储器10可以是Flash芯片、只读存储器、磁盘、光盘、U盘或者移动硬盘等等。
所述存储器10用于存储计算机程序;所述处理器20用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;控制所述通信电路向无人机发送所述飞行作业路径使所述无人机按照所述飞行作业路径飞行并进行作业。
其中,所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取目标区域目标物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据目标区域的二维平面图,确定目标区域目标物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图;在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
其中,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。
其中,所述定位标志物与所述目标物之间的距离小于或等于第四阈值。
其中,所述定位标志物至少为两个。
其中,所述定位标志物设置在地面。
其中,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。
其中,所述目标区域包括仓储空间或货运空间;所述目标物包括货架。
其中,货物上贴有第一条形码,所述作业要求包括扫描所述仓储空间货架上所有货物的第一条形码,所述飞行作业路径覆盖所述仓储空间所有货物所在位置。
其中,所述货架上贴有第二条形码,所述作业要求包括扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地,所述飞行作业路径覆盖所述货运空间所有货架所在位置。
参见图12,图12是本申请飞行作业系统一实施例的结构示意图,所述飞 行作业300包括如上任一项所述的无人机100和如上任一项所述的控制装置200。相关内容的详细说明,请参见上述无人机的相关内容和控制装置的相关内容,在此不再赘叙。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上任一项应用于无人机的飞行作业方法。相关内容的详细说明请参见上述相关内容部分,在此不再赘叙。
其中,该计算机可读存储介质可以是上述无人机的内部存储单元,例如硬盘或内存。该计算机可读存储介质也可以是外部存储设备,例如配备的插接式硬盘、智能存储卡、安全数字卡、闪存卡,等等。
本申请还提供另一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上任一项应用于控制端的飞行作业方法。相关内容的详细说明请参见上述相关内容部分,在此不再赘叙。
其中,该计算机可读存储介质可以是上述控制装置的内部存储单元,例如硬盘或内存。该计算机可读存储介质也可以是外部存储设备,例如配备的插接式硬盘、智能存储卡、安全数字卡、闪存卡,等等。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (61)

  1. 一种飞行作业方法,所述方法应用于无人机,其特征在于,包括:
    获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;
    按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;
    根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
  2. 根据权利要求1所述的方法,其特征在于,
    所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述获取目标区域的飞行作业路径之前,包括:
    获取目标区域目标物的分布地图。
  4. 根据权利要求3所述的方法,其特征在于,所述获取目标区域目标物的分布地图,包括:
    根据目标区域的二维平面图,确定目标区域目标物的分布地图。
  5. 根据权利要求4所述的方法,其特征在于,所述根据目标区域的二维平面图,确定目标区域目标物的分布地图,包括:
    在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图;
    在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
  6. 根据权利要求5所述的方法,其特征在于,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述环境图像中的定位标志物图像修正飞行过程中的误差之前,包括:
    根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差,包括:
    若所述定位标志物图像在所述环境图像中的预设范围内,则确定不需要修正飞行过程中的误差;
    若所述定位标志物图像不在所述环境图像中的预设范围内,则确定需要修正飞行过程中的误差。
  9. 根据权利要求1所述的方法,其特征在于,所述根据所述环境图像中的定位标志物图像修正飞行过程中的误差,包括:
    根据所述环境图像中的第一定位标志物图像,获取所述第一定位标志物在所述目标区域中的设置位置,所述第一定位标志物的设置位置是所述飞行作业路径上的位置;
    获取所述无人机的定位系统检测到的所述无人机在所述目标区域中的检测位置;
    当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
  10. 根据权利要求9所述的方法,其特征在于,所述当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置,包括:
    当所述第一定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
  11. 根据权利要求1所述的方法,其特征在于,所述根据所述环境图像中的定位标志物图像修正飞行过程中的误差,包括:
    识别并检测所述环境图像中的第二定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第二定位标志物的设置位置是所述飞行作业路径上的位置;
    获取所述第二定位标志物在所述目标区域中的设置位置;
    当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
  12. 根据权利要求11所述的方法,其特征在于,所述当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置,包括:
    当所述无人机在所述目标区域的二维平面图中的实际位置与所述第二定位标志物在所述目标区域的二维平面图中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
  13. 根据权利要求1所述的方法,其特征在于,所述根据所述环境图像中的定位标志物图像修正飞行过程中的误差,包括:
    识别并检测所述环境图像中的第三定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第三定位标志物的设置位置不是所述飞行作业路径上的位置;
    获取所述无人机在所述目标区域中的实际位置到所述飞行作业路径距离最短的目标位置;
    当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
  14. 根据权利要求13所述的方法,其特征在于,所述当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置,包括:
    当所述无人机在所述目标区域的二维平面图中的实际位置与所述目标区域的二维平面图中所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
  15. 根据权利要求2所述的方法,其特征在于,所述定位标志物与所述目 标物之间的距离小于或等于第四阈值。
  16. 根据权利要求15所述的方法,其特征在于,所述定位标志物至少为两个。
  17. 根据权利要求15所述的方法,其特征在于,所述定位标志物设置在地面。
  18. 根据权利要求2所述的方法,其特征在于,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。
  19. 根据权利要求1所述的方法,其特征在于,所述环境图像是通过所述无人机上的摄像装置获取的,所述摄像装置设置在所述无人机的下方。
  20. 根据权利要求2所述的方法,其特征在于,所述获取目标区域的飞行作业路径,包括:
    根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
  21. 根据权利要求20所述的方法,其特征在于,所述根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径之前,包括:
    根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;
    根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,所述方法还包括:
    在按照所述飞行作业路径飞行并进行作业的过程中,若所述无人机的电量低于阈值电量,则返回充电桩的位置进行充电;
    充电完毕后,沿原路返回继续按照所述飞行作业路径飞行并进行作业。
  24. 根据权利要求23所述的方法,其特征在于,所述充电桩位于所述目标区域目标物的分布地图的坐标系原点位置处。
  25. 根据权利要求1-24任一项所述的方法,其特征在于,所述目标区域包括仓储空间或货运空间;所述目标物包括货架。
  26. 根据权利要求25所述的方法,其特征在于,货物上贴有第一条形码,所述作业要求包括扫描所述仓储空间货架上所有货物的第一条形码,所述飞行作业路径覆盖所述仓储空间所有货物所在位置。
  27. 根据权利要求26所述的方法,其特征在于,所述按照所述飞行作业路径飞行作业之后,还包括:
    作业完成后获取作业结果数据。
  28. 根据权利要求27所述的方法,其特征在于,所述作业完成后获取作业结果数据,包括:
    扫描完所述仓储空间货架上所有货物的第一条形码之后,获取仓储库存数据。
  29. 根据权利要求28所述的方法,其特征在于,所述获取仓储库存数据,包括:
    统计扫描第一条形码得到的第一条形码信息,得到仓储库存数据。
  30. 根据权利要求25所述的方法,其特征在于,所述货架上贴有第二条形码,所述作业要求包括扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地,所述飞行作业路径覆盖所述货运空间所有货架所在位置。
  31. 一种无人机,其特征在于,包括:存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取目标区域的飞行作业路径,所述飞行作业路径是根据目标区域定位标志物的分布地图和作业要求确定的;
    按照所述飞行作业路径飞行作业并在飞行过程中获取周围的环境图像;
    根据所述环境图像中的定位标志物图像修正飞行过程中的误差。
  32. 根据权利要求31所述的无人机,其特征在于,
    所述目标区域定位标志物的分布地图是根据目标区域目标物的分布地图和作业要求确定的,所述目标区域目标物的分布地图是根据目标区域的二维平面图确定的。
  33. 根据权利要求32所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    获取目标区域目标物的分布地图。
  34. 根据权利要求33所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据目标区域的二维平面图,确定目标区域目标物的分布地图。
  35. 根据权利要求34所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    在所述目标区域的二维平面图上设置参考坐标系,构建出二维平面地图;
    在所述二维平面地图上,结合目标物的参数,得到目标区域目标物的三维分布地图。
  36. 根据权利要求35所述的无人机,其特征在于,所述目标物的参数包括:所述目标物的形状、尺寸、以及位置。
  37. 根据权利要求31-36任一项所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述定位标志物图像在所述环境图像中的位置确定是否需要修正飞行过程中的误差。
  38. 根据权利要求37所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若所述定位标志物图像在所述环境图像中的预设范围内,则确定不需要修正飞行过程中的误差;
    若所述定位标志物图像不在所述环境图像中的预设范围内,则确定需要修正飞行过程中的误差。
  39. 根据权利要求31所述的无人机,其特征在于,所述处理器在执行所 述计算机程序时,实现如下步骤:
    根据所述环境图像中的第一定位标志物图像,获取所述第一定位标志物在所述目标区域中的设置位置,所述第一定位标志物的设置位置是所述飞行作业路径上的位置;
    获取所述无人机的定位系统检测到的所述无人机在所述目标区域中的检测位置;
    当所述第一定位标志物在所述目标区域中的设置位置与所述无人机在所述目标区域中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
  40. 根据权利要求39所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    当所述第一定位标志物在所述目标区域的二维平面图中的设置位置与所述无人机在所述目标区域的二维平面图中的检测位置之间的差值大于第一阈值时,将所述无人机移动至所述第一定位标志物的设置位置。
  41. 根据权利要求31所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    识别并检测所述环境图像中的第二定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第二定位标志物的设置位置是所述飞行作业路径上的位置;
    获取所述第二定位标志物在所述目标区域中的设置位置;
    当所述无人机在所述目标区域的实际位置与所述第二定位标志物在所述目标区域中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
  42. 根据权利要求41所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    当所述无人机在所述目标区域的二维平面图中的实际位置与所述第二定位标志物在所述目标区域的二维平面图中的设置位置之间的差值大于第二阈值时,将所述无人机移动至所述第二定位标志物的设置位置。
  43. 根据权利要求31所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    识别并检测所述环境图像中的第三定位标志物图像,得到所述无人机在所述目标区域中的实际位置,所述第三定位标志物的设置位置不是所述飞行作业路径上的位置;
    获取所述无人机在所述目标区域中的实际位置到所述飞行作业路径距离最短的目标位置;
    当所述无人机在所述目标区域的实际位置与所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
  44. 根据权利要求43所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    当所述无人机在所述目标区域的二维平面图中的实际位置与所述目标区域的二维平面图中所述飞行作业路径的目标位置之间的差值大于第三阈值时,将所述无人机移动至所述飞行作业路径的目标位置。
  45. 根据权利要求32所述的无人机,其特征在于,所述定位标志物与所述目标物之间的距离小于或等于第四阈值。
  46. 根据权利要求45所述的无人机,其特征在于,所述定位标志物至少为两个。
  47. 根据权利要求45所述的无人机,其特征在于,所述定位标志物设置在地面。
  48. 根据权利要求32所述的无人机,其特征在于,所述定位标志物设置在所述目标区域上的第一位置,所述第一位置对应所述目标区域的二维平面图的参考坐标系的坐标原点。
  49. 根据权利要求31所述的无人机,其特征在于,所述环境图像是通过所述无人机上的摄像装置获取的,所述摄像装置设置在所述无人机的下方。
  50. 根据权利要求32所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据目标区域定位标志物的分布地图和作业要求,规划出飞行作业路径。
  51. 根据权利要求50所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述目标区域目标物的分布地图,确定所述目标区域定位标志物的设置位置;
    根据所述目标区域定位标志物的设置位置,确定所述目标区域定位标志物的分布地图。
  52. 根据权利要求50所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    根据所述飞行作业路径,规划出所述飞行作业路径的轨迹。
  53. 根据权利要求31-52任一项所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    在按照所述飞行作业路径飞行并进行作业的过程中,若所述无人机的电量低于阈值电量,则返回充电桩的位置进行充电;
    充电完毕后,沿原路返回继续按照所述飞行作业路径飞行并进行作业。
  54. 根据权利要求53所述的无人机,其特征在于,所述充电桩位于所述目标区域目标物的分布地图的坐标系原点位置处。
  55. 根据权利要求31-54任一项所述的无人机,其特征在于,所述目标区域包括仓储空间或货运空间;所述目标物包括货架。
  56. 根据权利要求55所述的无人机,其特征在于,货物上贴有第一条形码,所述作业要求包括扫描所述仓储空间货架上所有货物的第一条形码,所述飞行作业路径覆盖所述仓储空间所有货物所在位置。
  57. 根据权利要求56所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    作业完成后获取作业结果数据。
  58. 根据权利要求57所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    扫描完所述仓储空间货架上所有货物的第一条形码之后,获取仓储库存数 据。
  59. 根据权利要求58所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    统计扫描第一条形码得到的第一条形码信息,得到仓储库存数据。
  60. 根据权利要求55所述的无人机,其特征在于,所述货架上贴有第二条形码,所述作业要求包括扫描所述货运空间货架上的第二条形码,将所述无人机上搭载的具有第二条形码的货物放在对应的货架上或者将具有第二条形码的货物搭载到所述无人机上通过无人机转运到目的地,所述飞行作业路径覆盖所述货运空间所有货架所在位置。
  61. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-30任一项所述的飞行作业方法。
PCT/CN2020/098999 2020-06-29 2020-06-29 飞行作业方法、无人机及存储介质 WO2022000197A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006507.1A CN113168189A (zh) 2020-06-29 2020-06-29 飞行作业方法、无人机及存储介质
PCT/CN2020/098999 WO2022000197A1 (zh) 2020-06-29 2020-06-29 飞行作业方法、无人机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098999 WO2022000197A1 (zh) 2020-06-29 2020-06-29 飞行作业方法、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2022000197A1 true WO2022000197A1 (zh) 2022-01-06

Family

ID=76879278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098999 WO2022000197A1 (zh) 2020-06-29 2020-06-29 飞行作业方法、无人机及存储介质

Country Status (2)

Country Link
CN (1) CN113168189A (zh)
WO (1) WO2022000197A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415901A (zh) * 2022-03-30 2022-04-29 深圳市海清视讯科技有限公司 人机交互方法、装置、设备及存储介质
CN115562355A (zh) * 2022-11-11 2023-01-03 众芯汉创(北京)科技有限公司 基于机器视觉的室内环境内旋翼无人机的航向校准系统
CN116484996A (zh) * 2022-10-31 2023-07-25 广东电网有限责任公司佛山供电局 基于无人机盘点的立体货架物资快速盘点方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355984A (zh) * 2022-03-18 2022-04-15 北京卓翼智能科技有限公司 系留无人机的控制方法、控制装置、控制器及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025822A1 (en) * 2017-07-19 2019-01-24 Superior Communications, Inc. Security drone system
CN109726949A (zh) * 2017-10-31 2019-05-07 青岛日日顺物流有限公司 一种无人机货物盘点系统、方法和无人机
CN110532978A (zh) * 2019-09-03 2019-12-03 北京百度网讯科技有限公司 仓储管理方法、装置、设备及存储介质
CN110780678A (zh) * 2019-10-29 2020-02-11 无锡汉咏科技股份有限公司 一种基于点云数据的无人机视觉导航控制方法
CN110825111A (zh) * 2019-11-15 2020-02-21 天津光电通信技术有限公司 适用于高架仓库货物盘点的无人机控制方法、货物盘点方法、装置、服务器及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025822A1 (en) * 2017-07-19 2019-01-24 Superior Communications, Inc. Security drone system
CN109726949A (zh) * 2017-10-31 2019-05-07 青岛日日顺物流有限公司 一种无人机货物盘点系统、方法和无人机
CN110532978A (zh) * 2019-09-03 2019-12-03 北京百度网讯科技有限公司 仓储管理方法、装置、设备及存储介质
CN110780678A (zh) * 2019-10-29 2020-02-11 无锡汉咏科技股份有限公司 一种基于点云数据的无人机视觉导航控制方法
CN110825111A (zh) * 2019-11-15 2020-02-21 天津光电通信技术有限公司 适用于高架仓库货物盘点的无人机控制方法、货物盘点方法、装置、服务器及存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415901A (zh) * 2022-03-30 2022-04-29 深圳市海清视讯科技有限公司 人机交互方法、装置、设备及存储介质
CN116484996A (zh) * 2022-10-31 2023-07-25 广东电网有限责任公司佛山供电局 基于无人机盘点的立体货架物资快速盘点方法及系统
CN116484996B (zh) * 2022-10-31 2023-09-08 广东电网有限责任公司佛山供电局 基于无人机盘点的立体货架物资快速盘点方法及系统
CN115562355A (zh) * 2022-11-11 2023-01-03 众芯汉创(北京)科技有限公司 基于机器视觉的室内环境内旋翼无人机的航向校准系统
CN115562355B (zh) * 2022-11-11 2023-11-03 众芯汉创(北京)科技有限公司 基于机器视觉的室内环境内旋翼无人机的航向校准系统

Also Published As

Publication number Publication date
CN113168189A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022000197A1 (zh) 飞行作业方法、无人机及存储介质
US11772267B2 (en) Robotic system control method and controller
US11480974B2 (en) Topological map generation apparatus for navigation of robot and method thereof
EP3407294B1 (en) Information processing method, device, and terminal
US9630320B1 (en) Detection and reconstruction of an environment to facilitate robotic interaction with the environment
CN112764053B (zh) 一种融合定位方法、装置、设备和计算机可读存储介质
US11164149B1 (en) Method and system for warehouse inventory management using drones
CN110837814A (zh) 车辆导航方法、装置及计算机可读存储介质
CN113253737B (zh) 货架检测方法及装置、电子设备、存储介质
CN105446334A (zh) 一种引导车导航系统及一种引导车导航方法
EP3984920A1 (en) Automatic carrying system
CN110789529B (zh) 车辆的控制方法、装置及计算机可读存储介质
CN108875689B (zh) 无人驾驶车辆对位方法、系统、设备及存储介质
US20170108874A1 (en) Vision-based system for navigating a robot through an indoor space
CN110825111A (zh) 适用于高架仓库货物盘点的无人机控制方法、货物盘点方法、装置、服务器及存储介质
CN113759906B (zh) 一种车辆对位方法、装置、计算机设备和存储介质
WO2018194808A1 (en) Aisle-based roadmap generation
WO2023005384A1 (zh) 可移动设备的重定位方法及装置
CN112926395A (zh) 目标检测方法、装置、计算机设备及存储介质
CN108876857A (zh) 无人驾驶车辆的定位方法、系统、设备及存储介质
CN111366912A (zh) 激光传感器与摄像头标定方法、系统、设备及存储介质
WO2021093413A1 (zh) 获取运输设备的姿态调整参数方法、运输设备及存储介质
Naumann et al. Literature review: Computer vision applications in transportation logistics and warehousing
CA2957380C (en) Vision-based system for navigating a robot through an indoor space
US20220397676A1 (en) Aircraft identification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943566

Country of ref document: EP

Kind code of ref document: A1