WO2021062584A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2021062584A1
WO2021062584A1 PCT/CN2019/109312 CN2019109312W WO2021062584A1 WO 2021062584 A1 WO2021062584 A1 WO 2021062584A1 CN 2019109312 W CN2019109312 W CN 2019109312W WO 2021062584 A1 WO2021062584 A1 WO 2021062584A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
offset
ssb
type
terminal device
Prior art date
Application number
PCT/CN2019/109312
Other languages
English (en)
French (fr)
Inventor
田文强
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP23158786.6A priority Critical patent/EP4213432A1/en
Priority to JP2021540256A priority patent/JP7204930B2/ja
Priority to EP19948006.2A priority patent/EP3873142B1/en
Priority to CN201980054668.5A priority patent/CN112889319A/zh
Priority to AU2019468915A priority patent/AU2019468915B2/en
Priority to ES19948006T priority patent/ES2947165T3/es
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/109312 priority patent/WO2021062584A1/zh
Priority to KR1020217017773A priority patent/KR102491331B1/ko
Priority to CN202110429236.7A priority patent/CN113133128B/zh
Publication of WO2021062584A1 publication Critical patent/WO2021062584A1/zh
Priority to US17/410,260 priority patent/US11387971B2/en
Priority to US17/846,956 priority patent/US20220329398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • This application relates to the field of communications, in particular to a wireless communication method and terminal equipment.
  • the New Radio (NR) system supports data transmission on the unlicensed spectrum.
  • communication equipment communicates on the unlicensed spectrum, it needs to be based on the principle of Listen Before Talk (LBT), that is, communication equipment Before signal transmission on the unlicensed spectrum channel, channel listening (or called channel detection) needs to be performed first. Only when the channel detection result is that the channel is idle, the communication device can transmit the signal; if the communication device is in the unlicensed The result of channel sensing on the spectrum is that the channel is busy, and signal transmission cannot be performed.
  • LBT Listen Before Talk
  • CORESET Control-Resource Set
  • the embodiments of the present application provide a wireless communication method and terminal equipment, which can effectively determine the frequency domain position of the CORESET of the RMSI associated with the SSB on the asynchronous raster.
  • a wireless communication method includes: a terminal device detects a first-type synchronization signal block SSB on a frequency point of an asynchronous grid; the terminal device determines based on the first-type SSB The frequency domain position of the control resource set CORESET of the remaining minimum system information RMSI associated with the first type of SSB.
  • a terminal device including: a processing unit, configured to detect a first-type synchronization signal block SSB at a frequency point of an asynchronous grid;
  • the processing unit is further configured to determine the frequency domain position of the control resource set CORESET of the remaining minimum system information RMSI associated with the first type SSB based on the first type SSB.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a device is provided to implement any one of the foregoing first aspect or the method in each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspects or the method in each implementation manner thereof.
  • the device may be a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any aspect of the above-mentioned first aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned aspects of the first aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned aspects of the first aspect or the method in each of its implementation manners.
  • the terminal device after the terminal device detects the first type of SSB on the frequency of the non-synchronized raster, it can determine the frequency domain position of the CORESET of the RMSI associated with the first type of SSB according to the detected SSB, thereby effectively determining the disparity Synchronize the frequency domain position of the CORESET of the RMSI associated with the SSB on the raster.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Figures 2 to 4 are schematic diagrams of the relationship between SSB and RMSI CORESET.
  • Fig. 5 is a schematic diagram of determining the frequency domain position of the CORESET of the RMSI based on the second type of SSB.
  • Fig. 6 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • FIGS. 7-11 are schematic diagrams of determining the frequency domain position of the CORESET of the RMSI based on the second type of SSB according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a device according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be called communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the communication system 100 shown in FIG. 1 may also be an NTN system, that is, the network device 110 in FIG. 1 may be a satellite.
  • FIGs 2 to 4 show the relationship between the synchronization signal (Synchronization Signal, SSB)/Physical Broadcast Channel (Physical Broadcast Channel, PBCH) block and the CORESET of the RMSI.
  • the CORESET of SSB and RMSI is the relationship of Time Division Multiplexing (TDM) (referred to as Mode 1).
  • TDM Time Division Multiplexing
  • the CORESET of SSB and RMSI is a relatively fixed relationship and there is no overlap in the time domain and frequency domain (referred to as mode 2).
  • the CORESET of SSB and RMSI is a relatively fixed relationship and a relationship of Frequency Division Multiplexing (FDM) (referred to as Mode 3).
  • FDM Frequency Division Multiplexing
  • the SSB may include a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal device can determine the position of the CORESET of the RMSI through the RMSI-PDCCH-Config field in the Master Information Block (MIB) message.
  • the RMSI-PDCCH-Config field consists of 8 bits, of which 4 bits are used to determine CORESET information, for example, the 4 bits can form the ControlResourceSetZero field; the other 4 bits can be used to confirm the information of the search space, for example, the 4 bits can form SearchSpaceZero field.
  • the terminal device can obtain the current pattern, the frequency domain resource size of CORESET (Number of RBs), and the time domain resource size of CORESET (Number of Symbols). ), and the relative frequency domain offset (Offset) of CORESET between SSB and RMSI.
  • the offset here can be understood as: the offset between the smallest resource block (Resource Blocks, RB) number of CORESET and the smallest common resource block (CRB) RB number that overlaps with the first RB of the SSB. That is to say, the Offset here is the frequency domain offset of the CORESET of the RMSI relative to the SSB.
  • 5G defines a method for determining the CORESET of the RMSI of the cell by synchronizing the SSB on the raster (Synchronization raster) frequency point. Specifically, first, in the cell search process, the terminal device can determine the frequency domain position of the SSB through the synchronized raster frequency point predefined by the protocol. Then, the terminal device can determine the frequency domain position of the SSB as a reference, and determine the RMSI based on the limited and specific offset indication, that is, the Offset between the SSB indicated by the RMSI-PDCCH-Config field and the CORESET of the RMSI. The frequency domain position of CORESET.
  • the SSB in the above content is used to define the SSB of the cell, that is, the SSB sent on the synchronous raster frequency.
  • the SSB is generally associated with the RMSI, which means that the terminal device can detect the SSB accordingly after detecting the SSB
  • Corresponding RMSI that is, cell information can be obtained. It should be understood that the embodiment of the present application does not limit the name of the SSB, that is, the SSB may be called a cell defined SSB (Cell defined SSB, CD-SSB), or may be called a second type SSB or other names.
  • the above method for determining the resource location of the RMSI CORESET based on the SSB on the synchronized raster frequency point is effective in the 5G system.
  • SIB system information block
  • the unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region.
  • This spectrum can be considered as a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government.
  • LBT Listen Before Talk
  • the communication device performs signals on the channels of the unlicensed spectrum. Before sending, channel listening (or called channel detection) is required.
  • the communication device can send signals; if the communication device performs channel listening on the unlicensed spectrum If the channel is busy, the signal cannot be sent.
  • the duration of signal transmission by a communication device using an unlicensed spectrum channel may not exceed the maximum channel occupation time (Maximum Channel Occupation Time, MCOT).
  • a problem that may arise at this time is: if two operators A and B both deploy cell ID25(A) and ID25(B) with the same cell ID on the same frequency, and both of these cells are used as secondary cells , Its synchronization signal or SSB can be deployed and sent on the frequency of non-synchronized raster.
  • the terminal equipment in order for the terminal equipment to distinguish different operator information, to avoid cell confusion and potential wrong scheduling problems caused by different operators deploying cells with the same cell ID at the same frequency point, the terminal equipment There may also be a need to determine network information such as Public Land Mobile Network (PLMN), Cell Global Identifier (CGI), or global cell ID information through SIB1 or other broadcast messages.
  • PLMN Public Land Mobile Network
  • CGI Cell Global Identifier
  • SIB1 Short Identifier
  • the terminal device determines the RMSI (SIB1) of the cell where the SSB of the non-synchronized raster frequency point is located is a problem to be solved urgently.
  • the current technology cannot solve this problem. For example, referring to FIG. 5, when the terminal device finds SSB1 on the synchronization raster point, it can determine the frequency domain position of the CORESET of the RMSI according to the indication information in the MIB. In the current technology, only the limited frequency domain position of the SSB and the relative position of the CORESET of the RMSI are considered when designing the RMSI-PDCCH-Config.
  • the embodiment of the present application proposes a wireless communication method, which can effectively determine the frequency domain position of the CORESET of the RMSI associated with the SSB on the asynchronous raster.
  • FIG. 6 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application.
  • the method shown in FIG. 6 may be executed by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 200 may include at least part of the following content.
  • the terminal device detects the first type of SSB on the frequency of the non-synchronized raster.
  • the terminal device determines the frequency domain position of the CORESET of the RMSI associated with the first type SSB based on the first type SSB (referred to as the target frequency domain position for the convenience of description).
  • the first type of SSB mainly refers to the SSB that is not the second type of SSB.
  • the first type of SSB may also be referred to as a non-CD SSB or other names.
  • network equipment may additionally send some SSBs, and these SSBs may not be sent on the frequency of the synchronous raster.
  • these SSBs are measurement reference signals, but because they are SSBs, they also carry physical cell ID (PCI) information and information in MIBs. Therefore, the embodiments of this application refer to this type of SSB as It is the first type of SSB.
  • PCI physical cell ID
  • the association of the first type of SSB and RMSI in the above content can be understood as: the first type of SSB and RMSI belong to the same cell.
  • the terminal device After the terminal device detects the first type of SSB actually sent by the network device on the first frequency point, it can determine the reference frequency domain position of the second type of SSB, and then according to the reference frequency domain position and the first offset of the second type of SSB, Determine the target frequency domain location.
  • the terminal device may determine the second frequency point on the synchronous raster in the subband where the first frequency point is located according to the first frequency point on the asynchronous raster. Further, the terminal device may determine the second frequency point on the synchronous raster according to the second frequency point. The reference frequency domain position of the second type of SSB.
  • the first frequency point may be pre-configured by the network equipment to the terminal equipment.
  • the network equipment may be configured through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the network equipment may be configured through the RRC reconfiguration message. Terminal Equipment.
  • RRC Radio Resource Control
  • FIG. 7 there is only one synchronous raster frequency point corresponding to the first frequency point in the subband where the first frequency point is located.
  • FIG. 8 there are two synchronous raster frequency points corresponding to the first frequency point in the subband where the first frequency point is located.
  • the terminal device determining the second frequency point may include: the terminal device determines the multiple frequency points on the synchronized raster based on the first frequency point. Frequency points, and then the terminal device determines the second frequency point among the multiple frequency points.
  • the terminal device may be based on the distance between each frequency point in the multiple frequency points and the first frequency point, or according to the distance between each frequency point in the multiple frequency points and the first frequency point. The distance from the center of the subband to determine the second frequency point.
  • the terminal device may determine the frequency point closest to the first frequency point among the multiple frequency points as the second frequency point.
  • the terminal device may determine the frequency point farthest from the first frequency point among the multiple frequency points as the second frequency point.
  • the terminal device may determine the frequency point closest to the center of the subband where the first frequency point is located among the multiple frequency points as the second frequency point.
  • the terminal device may determine the frequency point farthest from the center of the subband where the first frequency point is located among the multiple frequency points as the second frequency point.
  • the terminal device can select again in the third frequency point to Determine the second frequency point.
  • the terminal device may determine a frequency point higher than the first frequency point in the third frequency point as the second frequency point.
  • the terminal device may determine a frequency point whose frequency point is lower than the first frequency point in the third frequency point as the second frequency point.
  • the terminal device may determine according to each of the third frequency points.
  • the distance between the frequency point and the center of the subband where the first frequency point is located determines the second frequency point.
  • the terminal device may determine the The distance between each frequency point of and the center of the subband where the first frequency point is located determines the second frequency point.
  • the terminal device may receive fourth indication information, where the fourth indication information is used to indicate the second frequency point. After receiving the fourth indication information, the terminal device may determine the second frequency point among the multiple frequency points according to the fourth indication information.
  • the fourth indication information may only need to indicate a certain frequency point among a plurality of frequencies. Therefore, this implementation manner can save signaling overhead. For example, when there are 13 synchronous raster frequency points in the subband where the first frequency point is located, the fourth indication information may indicate by 4 bits which synchronous raster frequency point among the multiple frequency points is available.
  • the reference frequency domain position of the second type SSB may refer to any one of the following frequency domain positions: (a) the reference center frequency point position of the second type SSB; (b) the second type SSB The reference lower edge frequency domain position of the reference; (c) the upper edge position of the second type SSB; (d) the RB boundary frequency domain position of the CRB overlapping the second type SSB.
  • the method 200 may further include: the terminal device receives first indication information, where the first indication information is used to indicate the first offset.
  • the first indication information may be carried in the MIB of the first type of SSB.
  • the magnitude of the first offset may be the magnitude of the offset between the reference frequency domain position and the target frequency domain position of the second type of SSB.
  • the first offset may be the offset between the reference frequency domain position of the second type of SSB and the target frequency domain position, or the first offset may also be an offset in other physical sense, which is not described in this embodiment of the application. Specific restrictions.
  • the first offset is the offset between the reference frequency domain position of the second type SSB and the target frequency domain position
  • the first offset may be any one of the following offsets:
  • the center RB of the second type SSB is the 11th RB.
  • the minimum RB of the second-type SSB in the foregoing content may also be the smallest CRB that overlaps with the second-type SSB, and the largest RB of the second-type SSB may also be the largest CRB that overlaps the second-type SSB.
  • the smallest RB, the largest RB, or the center RB of the second type SSB may also be the smallest or largest RB that overlaps the RB.
  • the transmission position of RMSI is CRB 10
  • the transmission position of Type 2 SSB is CRB 13.5 (representing the 7th subcarrier of CRB 14)
  • the minimum RB of Type 2 SSB is CRB 13.
  • the transmission position of RMSI is CRB 20
  • the transmission position of the second type SSB is CRB 23.5
  • the maximum RB of the second type SSB is CRB 24.
  • the first offset may include any one of the following: (a) at least one RB; (b) at least one subcarrier; (c) at least one RB and at least one subcarrier. That is, the first offset may be an RB level offset, or the first offset may be a subcarrier level offset, or the first offset may be an RB level and a subcarrier level offset.
  • the first indication information may indicate the RB level offset and the sub-carrier level offset through the first sub-information and the second sub-information respectively, that is, the first sub-information indicates the RB level Offset, the second sub-information indicates the sub-carrier level offset.
  • the second type of SSB in the embodiment of the present application is not actually transmitted, but only to determine the SSB assumed for the frequency domain position of the RMSI CORESET associated with the first type of SSB.
  • the terminal device After the terminal device detects the first type of SSB actually sent by the network device on the first frequency point, it can determine the second offset, and then according to the second offset, the first offset and the first type of SSB The frequency domain position of the target is determined, and the target frequency domain position is determined.
  • the terminal device can determine the frequency domain position of the first type of SSB and the target frequency domain position according to the first offset and the second offset. Then, the terminal device can determine the target frequency domain position based on the frequency domain position of the first type of SSB and the fourth offset.
  • the frequency domain position of the first type SSB may refer to any one of the following frequency domain positions: (a) the center frequency point position of the first type SSB; (b) the lower edge frequency domain position of the first type SSB; (c) ) The frequency domain position of the upper edge of the first type SSB; (d) the frequency domain position of the RB boundary of the CRB overlapping the first type SSB.
  • the second offset may include any one of the following: (a) at least one RB; (b) at least one subcarrier; (c) at least one RB and at least one subcarrier. That is, the second offset may be m RBs, or the second offset may be n subcarriers, or the second offset may be m RBs and n subcarriers. n and m are positive integers.
  • the second offset may be the offset between the frequency domain position of the first type of SSB and the reference frequency domain position of the second type of SSB; or, the second offset may be the first frequency point and the second frequency domain position. The offset between the points.
  • the terminal device may determine the second offset Including: after the terminal device determines the second frequency point based on the first frequency point, the reference frequency domain position of the second type SSB is determined according to the second frequency point, and then according to the frequency domain position of the first type SSB and the second type SSB With reference to the frequency domain position, the second offset is determined.
  • the terminal device determining the second offset may include: after the terminal device determines the second frequency point based on the first frequency point, the terminal device may The first frequency point and the second frequency point determine the second offset.
  • determining the second offset by the terminal device may include: the terminal device receives third indication information, where the third indication information is used to indicate the second offset.
  • the terminal device can determine the second offset and the third offset, and then the terminal device can determine the second offset and the third offset according to the second offset, The third offset and the frequency domain position of the first type of SSB determine the target frequency domain position.
  • the terminal device can determine the frequency domain position of the first type of SSB and the target frequency domain position according to the second offset and the third offset. Then, the terminal device can determine the target frequency domain position based on the frequency domain position of the first type of SSB and the fourth offset.
  • the size of the second offset can be the size of the offset between the first frequency point and the second frequency point, or the offset between the CORESET frequency domain position of the reference RMSI and the target frequency domain position. size.
  • the size of the third offset may be the size of the offset between the frequency domain position of the first type of SSB and the frequency domain position of the reference RMSI CORESET.
  • the third offset may be the offset between the frequency domain position of the first type of SSB and the frequency domain position of the reference RMSI CORESET, or the third offset may also be an offset in other physical senses. This application is implemented The example does not make specific restrictions on this.
  • the third offset is the magnitude of the offset between the frequency domain position of the first type of SSB and the frequency domain position of the reference RMSI CORESET
  • the third offset may be any of the following offsets:
  • the minimum RB of the first-type SSB in the foregoing content may also be the smallest CRB that has overlap with the first-type SSB, and the largest RB of the first-type SSB may also be the largest CRB that has overlap with the first-type SSB.
  • the smallest RB, the largest RB, or the center RB of the first type of SSB may also be the smallest or largest RB that overlaps the RB.
  • the method 200 may further include: the terminal device receives second indication information, where the second indication information is used to indicate the third offset.
  • the second indication information may be carried in the MIB of the first type of SSB. After the terminal device receives the second indication information, the terminal device may determine the third offset based on the second indication information
  • the third offset may include any one of: (a) at least one RB; (b) at least one subcarrier; (c) at least one RB and at least one subcarrier. That is, the third offset may be an RB level offset, or the third offset may be a subcarrier level offset, or the third offset may be an RB level and a subcarrier level offset.
  • the second indication information may indicate the RB level offset and the subcarrier level offset of the third offset through the third sub-information and the fourth sub-information respectively, that is, the third The sub-information indicates the RB level offset of the third offset, and the fourth sub-information indicates the sub-carrier level offset of the third offset.
  • the terminal device may receive fifth indication information, which is used to indicate the fifth offset between the frequency domain position of the first type of SSB and the target frequency domain position. size. After the terminal device receives the fifth indication information and detects the first type of SSB actually sent by the network device on the first frequency point, it can determine the target frequency domain position according to the frequency domain position and the fifth offset of the first type of SSB .
  • the technical solution of the embodiment 4 is more direct.
  • the technical solution of the embodiment 4 has a larger signaling overhead.
  • the number of synchronous raster frequency points corresponding to the first frequency point in the subband where the first frequency point is located is not limited in Embodiment 2 to Embodiment 4. That is, in Embodiment 2 to Embodiment 4, the first There may be only one synchronous raster frequency point in the subband where the frequency point is located, of course, there may also be multiple synchronous raster frequency points.
  • Embodiment 1 to Embodiment 4 are described above separately, this does not mean that Embodiment 1 to Embodiment 4 are independent, and the description of each embodiment may refer to each other. For example, the related description in Embodiment 1 can be applied to Embodiment 4.
  • the terminal device after the terminal device detects the first type of SSB on the frequency of the non-synchronized raster, it can determine the frequency domain position of the CORESET of the RMSI associated with the first type of SSB according to the detected SSB, thereby effectively determining the The frequency domain position of the CORESET of the RMSI associated with the SSB on the asynchronous raster.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the wireless communication method according to the embodiment of the present application is described in detail above.
  • the communication device according to the embodiment of the present application will be described below in conjunction with FIG. 12 and FIG. 13.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 12 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application. As shown in FIG. 12, the terminal device 300 includes:
  • the processing unit 310 is configured to detect the first type of synchronization signal block SSB at the frequency point of the asynchronous grid.
  • the processing unit is further configured to 310, based on the first type SSB, determine the frequency domain position of the control resource set CORESET of the remaining minimum system information RMSI associated with the first type SSB.
  • the processing unit 310 is specifically configured to: based on detecting the first frequency point on the asynchronous grid of the first type of SSB, determine the subordinate of the first frequency point.
  • the reference frequency domain position and the first offset of the second type SSB are determined to determine the frequency domain position of the CORESET of the RMSI, and the magnitude of the first offset is the reference frequency domain position of the second type SSB and the The magnitude of the offset between the frequency domain positions of the CORESET of the RMSI.
  • the processing unit 310 is specifically configured to: determine a second offset; according to the first offset, the second offset, and the frequency domain position of the first type of SSB, Determining the frequency domain position of the CORESET of the RMSI;
  • the magnitude of the first offset is the magnitude of the offset between the reference frequency domain position of the second type SSB and the frequency domain position of the RMSI CORESET
  • the second offset is the first type SSB
  • the offset between the frequency domain position of the second type SSB and the reference frequency domain position of the second type SSB, or the second offset is the offset between the first frequency point and the second frequency point, the second type SSB
  • the first frequency point is the frequency point at which the terminal device detects the first type of SSB on the asynchronous grid
  • the second frequency point is the first frequency point.
  • the terminal device 300 further includes: a communication unit 320, configured to receive first indication information, where the first indication information is used to indicate the first offset.
  • the first indication information is carried in the main information block MIB of the first type of SSB.
  • the first offset includes any one of the following: at least one resource block RB; at least one subcarrier; at least one RB and at least one subcarrier.
  • the first offset is any one of the following offsets:
  • the smallest RB of the second type SSB is the smallest common resource block CRB overlapping with the second type SSB; the largest RB of the second type SSB is the same as the first type SSB. The largest CRB that the second type of SSB overlaps.
  • the processing unit 310 is specifically configured to: determine a second offset and a third offset; according to the third offset, the second offset, and the first offset
  • the frequency domain position of the SSB-like type determines the frequency-domain position of the CORESET of the RMSI; wherein the second offset is the frequency domain position of the first type SSB and the reference frequency domain position of the second type SSB Offset, or, the second offset is the offset between the first frequency point and the second frequency point, the second type of SSB is the SSB transmitted on the synchronization grid, and the first frequency point is
  • the terminal device detects a frequency point of the first type of SSB on an asynchronous grid, and the second frequency point is a frequency point on a synchronization grid in a subband where the first frequency point is located, and the The magnitude of the third offset is the magnitude of the offset between the frequency domain position of the first type of SSB and the frequency domain position of the reference RMSI CORESET.
  • the terminal device 300 further includes: a communication unit, configured to receive second indication information, where the second indication information is used to indicate the third offset.
  • the second indication information is carried in the MIB of the first type of SSB.
  • the third offset includes any one of the following: at least one RB; at least one subcarrier;
  • At least one RB and at least one subcarrier At least one RB and at least one subcarrier.
  • the third offset is any one of the following offsets:
  • the smallest RB of the first-type SSB is the smallest common resource block CRB that overlaps the first-type SSB;
  • the maximum RB of the first type SSB is the maximum CRB that overlaps the first type SSB.
  • the processing The unit 310 is specifically configured to: determine the second frequency point based on the first frequency point; determine the reference frequency domain position of the second type SSB according to the second frequency point; and determine the reference frequency domain position of the second type SSB according to the first type SSB The frequency domain position of and the reference frequency domain position of the second type of SSB determine the second offset.
  • the processing unit 310 is specifically configured to: The first frequency point, the second frequency point is determined; and the second offset is determined according to the first frequency point and the second frequency point.
  • the terminal device 300 further includes: a communication unit 320, configured to receive third indication information, where the third indication information is used to indicate the second offset.
  • the second offset includes any one of the following: at least one RB; at least one subcarrier;
  • At least one RB and at least one subcarrier At least one RB and at least one subcarrier.
  • the processing unit 310 is specifically configured to: determine multiple frequency points on the synchronization grid based on the first frequency point; among the multiple frequency points, determine The second frequency point.
  • the processing unit 310 is specifically configured to: according to the distance between each of the multiple frequency points and the first frequency point, or according to the multiple frequency points. The distance between each of the frequency points and the center of the subband where the first frequency point is located determines the second frequency point.
  • the second frequency point is the frequency point closest to the first frequency point among the multiple frequency points; or the second frequency point is the multiple frequency points.
  • the frequency point closest to the center of the subband where the first frequency point is located is the first frequency point among the multiple frequency points.
  • the processing unit 310 further It is used to determine the frequency point whose frequency point is higher than the first frequency point in the frequency point closest to the first frequency point or the frequency point closest to the center of the subband where the first frequency point is located.
  • the terminal device 300 further includes: a communication unit 320, configured to receive fourth indication information, where the fourth indication information is used to indicate the second frequency point.
  • the terminal device 300 further includes: a communication unit 320, configured to receive fifth indication information, where the fifth indication information is used to indicate the frequency domain position of the first type of SSB The magnitude of the fifth offset from the frequency domain position of the CORESET of the RMSI;
  • the processing unit 310 is specifically configured to determine the frequency domain position of the CORESET of the RMSI based on the frequency domain position of the first type SSB and the fifth offset.
  • terminal device 300 may correspond to the terminal device in the method 200, and can implement the corresponding operations of the terminal device in the method 200. For the sake of brevity, details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a terminal device 400 provided by an embodiment of the present application.
  • the terminal device 400 shown in FIG. 13 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the terminal device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the terminal device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 400 may specifically be a terminal device of an embodiment of the present application, and the terminal device 400 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • Fig. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 500 shown in FIG. 14 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the device 500 may further include an input interface 530.
  • the processor 510 can control the input interface 530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 500 may further include an output interface 540.
  • the processor 510 can control the output interface 540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device 500 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the sake of brevity it is not here. Go into details again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Alarm Systems (AREA)

Abstract

本申请实施例涉及一种无线通信方法和终端设备,该方法包括:终端设备在非同步栅格的频点上检测第一类同步信号块SSB;所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。本申请实施例的无线通信方法和终端设备,可以有效确定非同步raster上的SSB关联的RMSI的CORESET的频域位置。

Description

无线通信方法和终端设备 技术领域
本申请涉及通信领域,具体涉及一种无线通信方法和终端设备。
背景技术
新无线(New Radio,NR)系统中支持免授权频谱上的数据传输,通信设备在免授权频谱上进行通信时,需要基于先听后说(Listen Before Talk,LBT)的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。
由于在免授权频谱上存在终端设备在非同步栅格(raster)频点上发现小区并确定该小区的剩余最小系统信息(Remaining Minimum System Information,RMSI)的需求,因此,如何确定该小区的RMSI的控制资源集(Control-Resource Set,CORESET)是一项亟待解决的问题。
发明内容
本申请实施例提供一种无线通信方法和终端设备,可以有效确定与非同步raster上的SSB关联的RMSI的CORESET的频域位置。
第一方面,提供了一种无线通信方法,所述方法包括:终端设备在非同步栅格的频点上检测第一类同步信号块SSB;所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。
第二方面,提供了一种终端设备,包括:处理单元,用于在非同步栅格的频点上检测第一类同步信号块SSB;
所述处理单元还用于,基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面中的任一方面或其各实现方式中的方法。
可选地,该装置可以为芯片。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
上述技术方案,终端设备在非同步raster的频点上检测到第一类SSB后,可以根据检测到的SSB确定与第一类SSB关联的RMSI的CORESET的频域位置,从而可以有效确定与非同步raster上的SSB关联的RMSI的CORESET的频域位置。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2-图4是SSB与RMSI的CORESET之间的关系的示意图。
图5是基于第二类SSB确定RMSI的CORESET的频域位置的示意图。
图6是根据本申请实施例的无线通信方法的示意性图。
图7-图11是本申请实施例的基于第二类SSB确定RMSI的CORESET的频域位置的示意图。
图12是根据本申请实施例的终端设备的示意性框图。
图13是根据本申请实施例的终端设备的示意性框图。
图14是根据本申请实施例的装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可 以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
还应理解,图1所示的通信系统100还可以是NTN系统,也就是说,图1中的网络设备110可以是卫星。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。
图2-图4示出了同步信号(Synchronization Signal,SSB)/物理广播信道(Physical Broadcast Channel,PBCH)块(block)与RMSI的CORESET的关系。在图2中,SSB和RMSI的CORESET是时分复用(Time Division Multiplexing,TDM)的关系(称为模式1)。在图3中,SSB和RMSI的CORESET是相对固定关系且在时域和频域上没有重叠(称为模式2)。在图4中,SSB和RMSI的CORESET是相对固定关系且是频分复用(Frequency Division Multiplexing,FDM)的关系(称为模式3)。
其中,SSB可以包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast Channel,PBCH)。
针对上述三种关系,在5G中,终端设备可以通过主信息块(Master Information Block,MIB)消息中的RMSI-PDCCH-Config字段确定RMSI的CORESET的位置。RMSI-PDCCH-Config字段由8比特(bit)组成,其中,4bit用于确定CORESET的信息,例如,该4bit可以组成ControlResourceSetZero字段;另外4bit可以用于确认搜索空间的信息,例如,该4bit可以组成SearchSpaceZero字段。
对于用于确定CORESET的信息来说,针对上述三种模式(pattern),终端设备可以获得当前的pattern情况、CORESET的频域资源大小(Number of RBs)、CORESET的时域资源大小(Number of Symbols),以及SSB与RMSI的CORESET的相对频域偏移(Offset)。
此处的Offset可以理解为:CORESET的最小资源块(Resource Blocks,RB)编号到与SSB的第一个RB有重叠的最小公共RB(Common Resource Blocks,CRB)的RB编号之间的offset,也就是说此处的Offset为RMSI的CORESET相对于SSB的频域偏移。
5G定义了通过同步raster(Synchronization raster)频点上的SSB确定小区RMSI的 CORESET的方法。具体而言,首先,在小区搜索过程中,终端设备可以通过协议预定义的同步raster频点确定SSB的频域位置。然后,终端设备可以以确定的SSB的频域位置为参考,基于有限且特定的偏移量的指示,即RMSI-PDCCH-Config字段指示的SSB与RMSI的CORESET之间的Offset,确定出RMSI的CORESET的频域位置。
上述内容中的SSB是用来定义小区的SSB,也就是在同步raster频点上发送的SSB,该SSB一般与RMSI相关联,也就是说终端设备检测到一个SSB后可以相应地检测到该SSB对应的RMSI,也就是可以得到小区信息。应理解,本申请实施例对该SSB的名称不作限定,即该SSB可以称为小区定义SSB(Cell define SSB,CD-SSB),也可以称为第二类SSB或者其他名称。
上述基于同步raster频点上的SSB确定RMSI的CORESET的资源位置的方法在5G系统中是行之有效的。但是,在免授权频谱,由于存在在非同步raster频点上发现小区并确定该小区系统信息块(System Information Block,SIB)信息的需求,上述方法将不再适用。
为了加深对本申请实施例的理解,下面对免授权频谱做简单介绍。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,需要基于先听后说(Listen Before Talk,LBT)的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长可以不超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
由于免授权频谱是共享频谱,可能会存在不同的运营商或者公司共用同一频段或频点的情况,而此时各家网络利用者可以通过竞争的方式去利用有限的信道资源。此时可能出现的一个问题是:如果两个运营商A和B都同频部署了相同小区ID的小区ID25(A)和ID25(B),且这两个小区都用来作为辅小区使用的话,其同步信号或者说SSB可以在非同步raster的频点上部署发送。
此外,在这种情况下,终端设备为了区分出不同的运营商信息,以避免不同运营商在相同频点部署同样小区ID的小区所带来的小区混淆以及潜在的错误调度等问题,终端设备还可能会出现通过SIB1或者其他广播消息确定例如公共陆地移动网络(Public Land Mobile Network,PLMN)、小区全局标识(Cell Global Identifier,CGI)等网络信息或者全球小区ID信息的需求。
因此,终端设备如何确定出非同步栅格(raster)频点的SSB所在小区的RMSI(SIB1)是一项亟待解决的问题。目前的技术并不能解决该问题,例如,参考图5,当终端设备在同步raster点上找到了SSB1后,可以根据MIB中的指示信息确定出RMSI的CORESET的频域位置。由于目前的技术中,在设计RMSI-PDCCH-Config时只考虑了有限的SSB的频域位置与RMSI的CORESET的相对位置。但对于非同步raster点上的SSB来说,这种相对位置更多,从这些非同步raster频点上的SSB的频域位置到RMSI的CORESET的相对偏移也更多,可能超出现有系统的RMSI-PDCCH-Config的指示能力。因此,当终端设备在非同步raster点上找到了SSB2后,基于现有MIB中的指示信息,终端设备并不能确定出RMSI的CORESET的位置。
鉴于此,本申请实施例提出了一种无线通信方法,可以有效确定与非同步raster上的SSB关联的RMSI的CORESET的频域位置。
图6是根据本申请实施例的无线通信方法200的示意性图。图6所示的方法可以由 终端设备执行,该终端设备例如可以为图1中所示的终端设备120。
应理解,本申请实施例的技术方案可以应用于多种通信场景中,例如,可以应用于免授权频谱的场景中,也可以应用于其它通信场景中,本申请实施例对此不作具体限定。
如图6所示,方法200可以包括以下内容中的至少部分内容。
在210中,终端设备在非同步raster的频点上检测第一类SSB。
在220中,终端设备基于第一类SSB,确定与第一类SSB关联的RMSI的CORESET的频域位置(为了描述方便,称为目标频域位置)。
其中,第一类SSB主要指不是第二类SSB的SSB。在本申请实施例中,第一类SSB也可以称为非CD SSB或其他名称。在5G中,除了第二类SSB之外,考虑到测量等因素,网络设备可以额外地发送一些SSB,这些SSB可以不在同步raster的频点上发送。从本质上来说,这些SSB是测量参考信号,不过由于其作为SSB,自身也携带者小区物理标识(Physical cell ID,PCI)信息以及MIB中的信息,因此,本申请实施例将这类SSB称为第一类SSB。
上述内容的第一类SSB与RMSI关联可以理解为:第一类SSB和RMSI属于同一个小区。
为了更清楚的描述本申请实施例,下面将结合4个实施例详细描述终端设备基于第一类SSB,确定目标频域位置的实现方式。
实施例1
终端设备在第一频点上检测到网络设备实际发送的第一类SSB后,可以确定第二类SSB的参考频域位置,然后根据第二类SSB的参考频域位置和第一偏移,确定目标频域位置。
具体而言,终端设备可以根据非同步raster上的第一频点,确定第一频点所在子带内的同步raster上的第二频点,进一步地,终端设备可以根据第二频点,确定第二类SSB的参考频域位置。
第一频点可以是由网络设备预先配置给终端设备的,示例性地,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令进行配置,比如网络设备可以通过RRC重配置消息配置给终端设备。
在本申请实施中,第一频点所在子带内可以有至少一个与第一频点相对应的同步raster频点。在图7中,第一频点所在子带内只有一个与第一频点相对应的同步raster频点。在图8中,第一频点所在子带内有2个与第一频点相对应的同步raster频点。
当第一频点所在子带内有多个与第一频点相对应的同步raster频点时,终端设备确定第二频点可以包括:终端设备基于第一频点,确定同步raster上的多个频点,然后终端设备在该多个频点中,确定第二频点。
在一种实现方式中,终端设备可以根据该多个频点中的每个频点与第一频点之间的距离,或根据该多个频点中的每个频点与第一频点所在子带中心的距离,确定第二频点。
示例性地,终端设备可以将多个频点中距离第一频点最近的频点确定为第二频点。
再示例性地,终端设备可以将多个频点中距离第一频点最远的频点确定为第二频点。
再示例性地,终端设备可以将多个频点中最靠近第一频点所在子带中心的频点确定为第二频点。
再示例性地,终端设备可以将多个频点中距离第一频点所在子带中心最远的频点确定为第二频点。
在该实现方式中,若终端设备根据上述实现方式确定出的频点(为了描述方便,称为第三频点)的数量大于1,则终端设备可以在第三频点中再次进行选择,以确定出第二频点。
例如,终端设备可以在第三频点中,将频点高于第一频点的频点确定为第二频点。
或者,终端设备可以在第三频点中,将频点低于第一频点的频点确定为第二频点。
或者,若终端设备根据该多个频点中的每个频点与第一频点之间的距离确定出的第三频点有多个,则终端设备可以根据第三频点中的每个频点与第一频点所在子带中心的距离,确定第二频点。
类似地,若终端设备根据该多个频点中的每个频点与第一频点所在子带中心的距离确定出的第三频点有多个,则终端设备可以根据第三频点中的每个频点与第一频点所在子带中心的距离,确定第二频点。
在另一种实现方式中,再次参考图8,终端设备可以接收第四指示信息,该第四指示信息用于指示第二频点。终端设备接收到第四指示信息后,可以根据第四指示信息在该多个频点中,确定第二频点。
在该实现方式中,第四指示信息可以只需要指示多个中的某一个频点,因此,该实现方式可以节省信令开销。例如,当第一频点所在子带内有13个同步raster频点时,第四指示信息可通过4bit指示出上述多个频点中的第几个同步raster频点可用。
可选地,在本申请实施例中,第二类SSB的参考频域位置可以指以下任意一个频域位置:(a)第二类SSB的参考中心频点位置;(b)第二类SSB的参考下边沿频域位置;(c)第二类SSB的上边沿位置;(d)与第二类SSB重叠的CRB的RB边界频域位置。
可选地,方法200还可以包括:终端设备接收第一指示信息,该第一指示信息用于指示第一偏移。其中,第一指示信息可以承载于第一类SSB的MIB中。
第一偏移的大小可以为第二类SSB的参考频域位置与目标频域位置之间的偏移大小。第一偏移可以为第二类SSB的参考频域位置与目标频域位置之间的偏移,或者,第一偏移也可以为其他物理意义上的偏移,本申请实施例对此不作具体限定。
在第一偏移为第二类SSB的参考频域位置与目标频域位置之间的偏移时,第一偏移可以为以下偏移中的任意一项:
第二类SSB的最小RB与RMSI的CORESET的最小RB之间的偏差;
第二类SSB的最大RB与RMSI的CORESET的最大RB之间的偏差;
第二类SSB的中心RB与RMSI的CORESET的中心RB之间的偏差。
举例说明,当第二类SSB是包括20个RB时,第二类SSB的中心RB为第11个RB。
可选地,上述内容中的第二类SSB的最小RB还可以是与第二类SSB有重叠的最小CRB,第二类SSB的最大RB还可以是与第二类SSB有重叠的最大CRB。或者,第二类SSB的最小RB、最大RB或者中心RB还可以是与该RB有重叠的最小或者最大RB。
例如,RMSI的发送位置为CRB 10,第二类SSB的发送位置为CRB 13.5(表示CRB 14的第7个子载波),则第二类SSB的最小RB为CRB 13。
再例如,RMSI的发送位置为CRB 20,第二类SSB的发送位置为CRB 23.5,则第二类SSB的最大RB为CRB 24。
可选地,第一偏移可以包括以下中的任意一个:(a)至少一个RB;(b)至少一个子载波;(c)至少一个RB和至少一个子载波。也就是说,第一偏移可以是RB级别偏移,或者,第一偏移可以是子载波级别偏移,或者,第一偏移可以是RB级别和子载波级别偏移。
当第一偏移为RB级别和子载波级别偏移时,第一指示信息可以通过第一子信息和第二子信息分别指示RB级别偏移和子载波级别偏移,即第一子信息指示RB级别偏移,第二子信息指示子载波级别偏移。
需要说明的是,本申请实施例中的第二类SSB并没有实际传输,只是为了确定与第一类SSB关联的RMSI的CORESET的频域位置假设的SSB。
实施例2
如图9所示,终端设备在第一频点上检测到网络设备实际发送的第一类SSB后,可以确定第二偏移,然后根据第二偏移、第一偏移和第一类SSB的频域位置,确定目标频域位置。
具体而言,第一偏移与第二偏移的和为第四偏移,即终端设备可以根据第一偏移和第二偏移确定第一类SSB的频域位置和目标频域位置之间的偏移,然后终端设备可以基于第一类SSB的频域位置和第四偏移,确定出目标频域位置。
可选地,第一类SSB的频域位置可以指以下任意一个频域位置:(a)第一类SSB的中心频点位置;(b)第一类SSB的下边沿频域位置;(c)第一类SSB的上边沿频域位置;(d)与第一类SSB重叠的CRB的RB边界频域位置。
可选地,第二偏移可以包括以下中的任意一个:(a)至少一个RB;(b)至少一个子载波;(c)至少一个RB和至少一个子载波。也就是说,第二偏移可以是m个RB,或者,第二偏移可以是n个子载波,或者,第二偏移可以是m个RB以及n个子载波。n和m为正整数。
可选地,第二偏移可以为第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移;或者,第二偏移可以为第一频点和第二频点之间的偏移。
在本申请实施例中,作为一种示例,若第二偏移为第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,终端设备确定第二偏移可以包括:终端设备在基于第一频点确定出第二频点后,根据第二频点确定第二类SSB的参考频域位置,再根据第一类SSB的频域位置与第二类SSB的参考频域位置,确定第二偏移。
若第二偏移为第一频点和第二频点之间的偏移,终端设备确定第二偏移可以包括:终端设备基于第一频点确定出第二频点后,终端设备可以根据第一频点和第二频点确定第二偏移。
作为另一种示例,终端设备确定第二偏移,可以包括:终端设备接收第三指示信息,该第三指示信息用于指示第二偏移。
实施例3
如图10所示,终端设备在第一频点上检测到网络设备实际发送的第一类SSB后,终端设备可以确定第二偏移和第三偏移,然后终端设备根据第二偏移、第三偏移和第一类SSB的频域位置,确定目标频域位置。
具体而言,第二偏移与第三偏移的和为第四偏移,即终端设备可以根据第二偏移和第三偏移确定第一类SSB的频域位置和目标频域位置之间的偏移,然后终端设备可以基于第一类SSB的频域位置和第四偏移,确定出目标频域位置。
其中,第二偏移的大小可以是第一频点和第二频点之间的偏移的大小,也可以是参考的RMSI的CORESET的频域位置与目标频域位置之间的偏移的大小。
其中,第三偏移的大小可以为第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移大小。第三偏移可以为第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移,或者,第三偏移也可以为其他物理意义上的偏移,本申请实施例对此不作具体限定。
在第三偏移为第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移大小时,第三偏移可以为以下偏移中的任意一项:
第一类SSB的最小RB与参考的RMSI的CORESET的最小RB之间的偏差;
第一类SSB的最大RB与参考的RMSI的CORESET的最大RB之间的偏差;
第一类SSB的中心RB与参考的RMSI的CORESET的中心RB之间的偏差。
上述内容中的第一类SSB的最小RB还可以是与第一类SSB有重叠的最小CRB,第一类SSB的最大RB还可以是与第一类SSB有重叠的最大CRB。或者,第一类SSB的最小RB、最大RB或者中心RB还可以是与该RB有重叠的最小或者最大RB。
可选地,方法200还可以包括:终端设备接收第二指示信息,该第二指示信息用于指示第三偏移。第二指示信息可以承载于第一类SSB的MIB中。在终端设备接收到第二指示信息后,终端设备可以基于第二指示信息确定第三偏移
第三偏移可以包括以下中的任意一个:(a)至少一个RB;(b)至少一个子载波; (c)至少一个RB和至少一个子载波。也就是说,第三偏移可以是RB级别偏移,或者,第三偏移可以是子载波级别偏移,或者,第三偏移可以是RB级别和子载波级别偏移。
当第三偏移为RB级别和子载波级别偏移时,第二指示信息可以通过第三子信息和第四子信息分别指示第三偏移的RB级别偏移和子载波级别偏移,即第三子信息指示第三偏移的RB级别偏移,第四子信息指示第三偏移的子载波级别偏移。
实施例4
如图11所示,在该实施例中,终端设备可以接收第五指示信息,该第五指示信息用于指示第一类SSB的频域位置与目标频域位置之间的第五偏移的大小。终端设备接收到第五指示信息,且在第一频点上检测到网络设备实际发送的第一类SSB后,可以根据第一类SSB的频域位置和第五偏移,确定目标频域位置。
实施例4的技术方案和其它实施例的技术方案相比,更加直接,然而,实施例4的技术方案的信令开销较大。
应理解,在本申请实施例中,“第一”、“第二”和“第三”等仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
还应理解,实施例2-实施例4中不限定第一频点所在子带内与第一频点相对应的同步raster频点的数量,即在实施例2-实施例4中,第一频点所在子带内可以只有唯一的一个同步raster频点,当然,也可以有多个同步raster频点。
还应理解,以上虽然分别描述了实施例1-实施例4,但是这并不意味着实施例1-实施例4是独立的,各个实施例的描述可以相互参考。例如,实施例1中的相关描述可以适用于实施例4。
本申请实施例,终端设备在非同步raster的频点上检测到第一类SSB后,可以根据检测到的SSB确定与第一类SSB关联的RMSI的CORESET的频域位置,从而可以有效确定与非同步raster上的SSB关联的RMSI的CORESET的频域位置。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的无线通信方法,下面将结合图12和图13,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图12示出了本申请实施例的终端设备300的示意性框图。如图12所示,该终端设备300包括:
处理单元310,用于在非同步栅格的频点上检测第一类同步信号块SSB。
所述处理单元还用于310,基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。
可选地,在本申请实施例中,所述处理单元310具体用于:基于检测到所述第一类SSB的非同步栅格上的第一频点,确定所述第一频点所在子带内的同步栅格上的第二频点;根据所述第二频点,确定第二类SSB的参考频域位置,所述第二类SSB为在同步栅格上传输的SSB;根据所述第二类SSB的参考频域位置和第一偏移,确定所述RMSI的CORESET的频域位置,所述第一偏移的大小为所述第二类SSB的参考频域位置与所述 RMSI的CORESET的频域位置之间的偏移大小。
可选地,在本申请实施例中,所述处理单元310具体用于:确定第二偏移;根据第一偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;
其中,所述第一偏移的大小为第二类SSB的参考频域位置与所述RMSI的CORESET的频域位置之间的偏移大小,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点。
可选地,在本申请实施例中,所述终端设备300还包括:通信单元320,用于接收第一指示信息,所述第一指示信息用于指示所述第一偏移。
可选地,在本申请实施例中,所述第一指示信息承载于所述第一类SSB的主信息块MIB中。
可选地,在本申请实施例中,所述第一偏移包括以下中的任意一个:至少一个资源块RB;至少一个子载波;至少一个RB和至少一个子载波。
可选地,在本申请实施例中,所述第一偏移为以下偏移中的任意一项:
所述第二类SSB的最小RB与所述RMSI的CORESET的最小RB之间的偏移;
所述第二类SSB的最大RB与所述RMSI的CORESET的最大RB之间的偏移;
所述第二类SSB的中心RB与所述RMSI的CORESET的中心RB之间的偏移。
可选地,在本申请实施例中,所述第二类SSB的最小RB为与所述第二类SSB重叠的最小公共资源块CRB;所述第二类SSB的最大RB为与所述第二类SSB重叠的最大CRB。
可选地,在本申请实施例中,所述处理单元310具体用于:确定第二偏移和第三偏移;根据所述第三偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;其中,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点,所述第三偏移的大小为所述第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移大小。
可选地,在本申请实施例中,所述终端设备300还包括:通信单元,用于接收第二指示信息,所述第二指示信息用于指示所述第三偏移。
可选地,在本申请实施例中,所述第二指示信息承载于所述第一类SSB的MIB中。
可选地,在本申请实施例中,所述第三偏移包括以下中的任意一个:至少一个RB;至少一个子载波;
至少一个RB和至少一个子载波。
可选地,在本申请实施例中,所述第三偏移为以下偏移中的任意一项:
所述第一类SSB的最小RB与所述参考的RMSI的CORESET的最小RB之间的偏移;
所述第一类SSB的最大RB与所述参考的RMSI的CORESET的最大RB之间的偏移;
所述第一类SSB的中心RB与所述参考的RMSI的CORESET的中心RB之间的偏移。
可选地,在本申请实施例中,所述第一类SSB的最小RB为与所述第一类SSB重叠的最小公共资源块CRB;
所述第一类SSB的最大RB为与所述第一类SSB重叠的最大CRB。
可选地,在本申请实施例中,若所述第二偏移为所述第一类SSB的频域位置与所述第二类SSB的参考频域位置之间的偏移,所述处理单元310具体用于:基于所述第一频点,确定所述第二频点;根据所述第二频点,确定所述第二类SSB的参考频域位置;根据所述第一类SSB的频域位置与所述第二类SSB的参考频域位置,确定所述第二偏移。
可选地,在本申请实施例中,若所述第二偏移为所述第一频点和所述第二频点之间的偏移大小,所述处理单元310具体用于:基于所述第一频点,确定所述第二频点;根据所述第一频点和所述第二频点,确定所述第二偏移。
可选地,在本申请实施例中,所述终端设备300还包括:通信单元320,用于接收第三指示信息,所述第三指示信息用于指示所述第二偏移。
可选地,在本申请实施例中,所述第二偏移包括以下中的任意一个:至少一个RB;至少一个子载波;
至少一个RB和至少一个子载波。
可选地,在本申请实施例中,所述处理单元310具体用于:基于所述第一频点,确定同步栅格上的多个频点;在所述多个频点中,确定所述第二频点。
可选地,在本申请实施例中,所述处理单元310具体用于:根据所述多个频点中的每个频点与所述第一频点之间的距离,或根据所述多个频点中的每个频点与所述第一频点所在子带中心的距离,确定所述第二频点。
可选地,在本申请实施例中,所述第二频点为所述多个频点中距离所述第一频点最近的频点;或所述第二频点为所述多个频点中最靠近所述第一频点所在子带中心的频点。
可选地,在本申请实施例中,若距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点的数量大于1,所述处理单元310还用于:在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点高于所述第一频点的频点确定为所述第二频点;或在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点低于所述第一频点的频点确定为所述第二频点。
可选地,在本申请实施例中,所述终端设备300还包括:通信单元320,用于接收第四指示信息,所述第四指示信息用于指示所述第二频点。
可选地,在本申请实施例中,所述终端设备300还包括:通信单元320,用于接收第五指示信息,所述第五指示信息用于指示所述第一类SSB的频域位置与所述RMSI的CORESET的频域位置之间的第五偏移的大小;
所述处理单元310具体用于:基于所述第一类SSB的频域位置和所述第五偏移,确定所述RMSI的CORESET的频域位置。
应理解,该终端设备300可对应于方法200中的终端设备,可以实现该方法200中的终端设备的相应操作,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种终端设备400示意性结构图。图13所示的终端设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,终端设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
可选地,如图13所示,终端设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备400具体可为本申请实施例的终端设备,并且该终端设备400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置500可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数 据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应 涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种无线通信方法,其特征在于,所述方法包括:
    终端设备在非同步栅格的频点上检测第一类同步信号块SSB;
    所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置,包括:
    所述终端设备基于检测到所述第一类SSB的非同步栅格上的第一频点,确定所述第一频点所在子带内的同步栅格上的第二频点;
    所述终端设备根据所述第二频点,确定第二类SSB的参考频域位置,所述第二类SSB为在同步栅格上传输的SSB;
    所述终端设备根据所述第二类SSB的参考频域位置和第一偏移,确定所述RMSI的CORESET的频域位置,所述第一偏移的大小为所述第二类SSB的参考频域位置与所述RMSI的CORESET的频域位置之间的偏移大小。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源,包括:
    所述终端设备确定第二偏移;
    所述终端设备根据第一偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;
    其中,所述第一偏移的大小为第二类SSB的参考频域位置与所述RMSI的CORESET的频域位置之间的偏移大小,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示所述第一偏移。
  5. 根据权利要求4所述的方法,其特征在于,所述第一指示信息承载于所述第一类SSB的主信息块MIB中。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一偏移包括以下中的任意一个:
    至少一个资源块RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述第一偏移为以下偏移中的任意一项:
    所述第二类SSB的最小RB与所述RMSI的CORESET的最小RB之间的偏移;
    所述第二类SSB的最大RB与所述RMSI的CORESET的最大RB之间的偏移;
    所述第二类SSB的中心RB与所述RMSI的CORESET的中心RB之间的偏移。
  8. 根据权利要求7所述的方法,其特征在于,所述第二类SSB的最小RB为与所述第二类SSB重叠的最小公共资源块CRB;
    所述第二类SSB的最大RB为与所述第二类SSB重叠的最大CRB。
  9. 根据权利要求1所述的方法,其特征在于,所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源,包括:
    所述终端设备确定第二偏移和第三偏移;
    所述终端设备根据所述第三偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;
    其中,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点,所述第三偏移的大小为所述第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移大小。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息用于指示所述第三偏移。
  11. 根据权利要求10所述的方法,其特征在于,所述第二指示信息承载于所述第一类SSB的MIB中。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第三偏移包括以下中的任意一个:
    至少一个RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述第三偏移为以下偏移中的任意一项:
    所述第一类SSB的最小RB与所述参考的RMSI的CORESET的最小RB之间的偏移;
    所述第一类SSB的最大RB与所述参考的RMSI的CORESET的最大RB之间的偏移;
    所述第一类SSB的中心RB与所述参考的RMSI的CORESET的中心RB之间的偏移。
  14. 根据权利要求13所述的方法,其特征在于,所述第一类SSB的最小RB为与所述第一类SSB重叠的最小公共资源块CRB;
    所述第一类SSB的最大RB为与所述第一类SSB重叠的最大CRB。
  15. 根据权利要求3、9至14中任一项所述的方法,其特征在于,若所述第二偏移为所述第一类SSB的频域位置与所述第二类SSB的参考频域位置之间的偏移,所述终端设备确定第二偏移,包括:
    所述终端设备基于所述第一频点,确定所述第二频点;
    所述终端设备根据所述第二频点,确定所述第二类SSB的参考频域位置;
    所述终端设备根据所述第一类SSB的频域位置与所述第二类SSB的参考频域位置,确定所述第二偏移。
  16. 根据权利要求3、9至14中任一项所述的方法,其特征在于,若所述第二偏移为所述第一频点和所述第二频点之间的偏移大小,所述终端设备确定第二偏移,包括:
    所述终端设备基于所述第一频点,确定所述第二频点;
    所述终端设备根据所述第一频点和所述第二频点,确定所述第二偏移。
  17. 根据权利要求3、9至14中任一项所述的方法,其特征在于,所述终端设备确定第二偏移,包括:
    所述终端设备接收第三指示信息,所述第三指示信息用于指示所述第二偏移。
  18. 根据权利要求3、9至17中任一项所述的方法,其特征在于,所述第二偏移包括以下中的任意一个:
    至少一个RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  19. 根据权利要求2、15或16所述的方法,其特征在于,所述终端设备基于第一频点,确定第二频点,包括:
    所述终端设备基于所述第一频点,确定同步栅格上的多个频点;
    所述终端设备在所述多个频点中,确定所述第二频点。
  20. 根据权利要求19所述的方法,其特征在于,所述终端设备在所述多个频点中,确定所述第二频点,包括:
    所述终端设备根据所述多个频点中的每个频点与所述第一频点之间的距离,或根据所述多个频点中的每个频点与所述第一频点所在子带中心的距离,确定所述第二频点。
  21. 根据权利要求20所述的方法,其特征在于,所述第二频点为所述多个频点中距离所述第一频点最近的频点;或
    所述第二频点为所述多个频点中最靠近所述第一频点所在子带中心的频点。
  22. 根据权利要求21所述的方法,其特征在于,若距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点的数量大于1,所述方法还包括:
    所述终端设备在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点高于所述第一频点的频点确定为所述第二频点;或
    所述终端设备在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点低于所述第一频点的频点确定为所述第二频点。
  23. 根据权利要求19所述的方法,其特征在于,所述终端设备在所述多个频点中,确定所述第二频点,包括:
    所述终端设备接收第四指示信息,所述第四指示信息用于指示所述第二频点。
  24. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第五指示信息,所述第五指示信息用于指示所述第一类SSB的频域位置与所述RMSI的CORESET的频域位置之间的第五偏移的大小;
    所述终端设备基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置,包括:
    所述终端设备基于所述第一类SSB的频域位置和所述第五偏移,确定所述RMSI的CORESET的频域位置。
  25. 一种终端设备,其特征在于,包括:
    处理单元,用于在非同步栅格的频点上检测第一类同步信号块SSB;
    所述处理单元还用于,基于所述第一类SSB,确定与所述第一类SSB关联的剩余最小系统信息RMSI的控制资源集CORESET的频域位置。
  26. 根据权利要求25所述的终端设备,其特征在于,所述处理单元具体用于:
    基于检测到所述第一类SSB的非同步栅格上的第一频点,确定所述第一频点所在子带内的同步栅格上的第二频点;
    根据所述第二频点,确定第二类SSB的参考频域位置,所述第二类SSB为在同步栅格上传输的SSB;
    根据所述第二类SSB的参考频域位置和第一偏移,确定所述RMSI的CORESET的频域位置,所述第一偏移的大小为所述第二类SSB的参考频域位置与所述RMSI的CORESET的频域位置之间的偏移大小。
  27. 根据权利要求25所述的终端设备,其特征在于,所述处理单元具体用于:
    确定第二偏移;
    根据第一偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;
    其中,所述第一偏移的大小为第二类SSB的参考频域位置与所述RMSI的CORESET 的频域位置之间的偏移大小,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第一指示信息,所述第一指示信息用于指示所述第一偏移。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第一指示信息承载于所述第一类SSB的主信息块MIB中。
  30. 根据权利要求26至29中任一项所述的终端设备,其特征在于,所述第一偏移包括以下中的任意一个:
    至少一个资源块RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  31. 根据权利要求26至30中任一项所述的终端设备,其特征在于,所述第一偏移为以下偏移中的任意一项:
    所述第二类SSB的最小RB与所述RMSI的CORESET的最小RB之间的偏移;
    所述第二类SSB的最大RB与所述RMSI的CORESET的最大RB之间的偏移;
    所述第二类SSB的中心RB与所述RMSI的CORESET的中心RB之间的偏移。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第二类SSB的最小RB为与所述第二类SSB重叠的最小公共资源块CRB;
    所述第二类SSB的最大RB为与所述第二类SSB重叠的最大CRB。
  33. 根据权利要求25所述的终端设备,其特征在于,所述处理单元具体用于:
    确定第二偏移和第三偏移;
    根据所述第三偏移、所述第二偏移和所述第一类SSB的频域位置,确定所述RMSI的CORESET的频域位置;
    其中,所述第二偏移为所述第一类SSB的频域位置与第二类SSB的参考频域位置之间的偏移,或,所述第二偏移为第一频点和第二频点之间的偏移,所述第二类SSB为在同步栅格上传输的SSB,所述第一频点为所述终端设备在非同步栅格上检测到所述第一类SSB的频点,所述第二频点为所述第一频点所在子带内的同步栅格上的频点,所述第三偏移的大小为所述第一类SSB的频域位置与参考的RMSI的CORESET的频域位置之间的偏移大小。
  34. 根据权利要求33所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第二指示信息,所述第二指示信息用于指示所述第三偏移。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第二指示信息承载于所述第一类SSB的MIB中。
  36. 根据权利要求33至35中任一项所述的终端设备,其特征在于,所述第三偏移包括以下中的任意一个:
    至少一个RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  37. 根据权利要求33至36中任一项所述的终端设备,其特征在于,所述第三偏移为以下偏移中的任意一项:
    所述第一类SSB的最小RB与所述参考的RMSI的CORESET的最小RB之间的偏移;
    所述第一类SSB的最大RB与所述参考的RMSI的CORESET的最大RB之间的偏 移;
    所述第一类SSB的中心RB与所述参考的RMSI的CORESET的中心RB之间的偏移。
  38. 根据权利要求37所述的终端设备,其特征在于,所述第一类SSB的最小RB为与所述第一类SSB重叠的最小公共资源块CRB;
    所述第一类SSB的最大RB为与所述第一类SSB重叠的最大CRB。
  39. 根据权利要求27、33至38中任一项所述的终端设备,其特征在于,若所述第二偏移为所述第一类SSB的频域位置与所述第二类SSB的参考频域位置之间的偏移,所述处理单元具体用于:
    基于所述第一频点,确定所述第二频点;
    根据所述第二频点,确定所述第二类SSB的参考频域位置;
    根据所述第一类SSB的频域位置与所述第二类SSB的参考频域位置,确定所述第二偏移。
  40. 根据权利要求27、33至38中任一项所述的终端设备,其特征在于,若所述第二偏移为所述第一频点和所述第二频点之间的偏移大小,所述处理单元具体用于:
    基于所述第一频点,确定所述第二频点;
    根据所述第一频点和所述第二频点,确定所述第二偏移。
  41. 根据权利要求27、33至38中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第三指示信息,所述第三指示信息用于指示所述第二偏移。
  42. 根据权利要求27、33至41中任一项所述的终端设备,其特征在于,所述第二偏移包括以下中的任意一个:
    至少一个RB;
    至少一个子载波;
    至少一个RB和至少一个子载波。
  43. 根据权利要求26、39或40所述的终端设备,其特征在于,所述处理单元具体用于:
    基于所述第一频点,确定同步栅格上的多个频点;
    在所述多个频点中,确定所述第二频点。
  44. 根据权利要求43所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述多个频点中的每个频点与所述第一频点之间的距离,或根据所述多个频点中的每个频点与所述第一频点所在子带中心的距离,确定所述第二频点。
  45. 根据权利要求44所述的终端设备,其特征在于,所述第二频点为所述多个频点中距离所述第一频点最近的频点;或
    所述第二频点为所述多个频点中最靠近所述第一频点所在子带中心的频点。
  46. 根据权利要求45所述的终端设备,其特征在于,若距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点的数量大于1,所述处理单元还用于:
    在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点高于所述第一频点的频点确定为所述第二频点;或
    在距离所述第一频点最近的频点或最靠近所述第一频点所在子带中心的频点中,将频点低于所述第一频点的频点确定为所述第二频点。
  47. 根据权利要求43所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第四指示信息,所述第四指示信息用于指示所述第二频点。
  48. 根据权利要求25所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第五指示信息,所述第五指示信息用于指示所述第一类SSB的频域位置与所述RMSI的CORESET的频域位置之间的第三偏移的大小;
    所述处理单元具体用于:
    基于所述第一类SSB的频域位置和所述第三偏移,确定所述RMSI的CORESET的频域位置。
  49. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至26中任一项所述的方法。
  50. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至24中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  53. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
PCT/CN2019/109312 2019-09-30 2019-09-30 无线通信方法和终端设备 WO2021062584A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2021540256A JP7204930B2 (ja) 2019-09-30 2019-09-30 無線通信方法及び端末装置
EP19948006.2A EP3873142B1 (en) 2019-09-30 2019-09-30 Wireless communication method and terminal device
CN201980054668.5A CN112889319A (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备
AU2019468915A AU2019468915B2 (en) 2019-09-30 2019-09-30 Wireless communication method and terminal device
ES19948006T ES2947165T3 (es) 2019-09-30 2019-09-30 Método de comunicación inalámbrica y dispositivo terminal
EP23158786.6A EP4213432A1 (en) 2019-09-30 2019-09-30 Wireless communication method and terminal device
PCT/CN2019/109312 WO2021062584A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备
KR1020217017773A KR102491331B1 (ko) 2019-09-30 2019-09-30 무선 통신 방법과 단말 장치
CN202110429236.7A CN113133128B (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备
US17/410,260 US11387971B2 (en) 2019-09-30 2021-08-24 Method for determining system information of cell and terminal
US17/846,956 US20220329398A1 (en) 2019-09-30 2022-06-22 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109312 WO2021062584A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/410,260 Continuation US11387971B2 (en) 2019-09-30 2021-08-24 Method for determining system information of cell and terminal

Publications (1)

Publication Number Publication Date
WO2021062584A1 true WO2021062584A1 (zh) 2021-04-08

Family

ID=75337585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109312 WO2021062584A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备

Country Status (8)

Country Link
US (2) US11387971B2 (zh)
EP (2) EP3873142B1 (zh)
JP (1) JP7204930B2 (zh)
KR (1) KR102491331B1 (zh)
CN (2) CN113133128B (zh)
AU (1) AU2019468915B2 (zh)
ES (1) ES2947165T3 (zh)
WO (1) WO2021062584A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083229A1 (zh) * 2021-11-09 2023-05-19 上海星思半导体有限责任公司 同步信号块的频域位置确定方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126030B (zh) * 2021-11-09 2024-06-11 星思连接(上海)半导体有限公司 同步信号块的频域位置确定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401487A (zh) * 2017-11-14 2018-08-14 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的频域信息指示方法
CN108702700A (zh) * 2018-03-16 2018-10-23 北京小米移动软件有限公司 定义小区同步广播块位置的指示、搜索方法及装置和基站
WO2018213026A1 (en) * 2017-05-16 2018-11-22 Qualcomm Incorporated Techniques and apparatuses for reusing remaining minimum system information configuration bits to signal a synchronization signal block location
CN110035493A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种信息指示、确定方法、终端及基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615897B2 (en) * 2016-06-01 2020-04-07 Qualcomm Incorporated Time division multiplexing of synchronization channels
EP3490184B1 (en) * 2016-07-21 2023-05-31 LG Electronics Inc. Method for transmitting or receiving downlink control information in wireless communication system and device therefor
CN110546900B (zh) * 2017-06-04 2021-03-12 Lg 电子株式会社 用于在无线通信系统中接收系统信息的方法及其装置
JP7106562B2 (ja) 2017-08-10 2022-07-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 送信デバイス、受信デバイス、およびそれらの方法
US10716079B2 (en) * 2017-08-23 2020-07-14 Lenovo (Singapore) Pte Ltd Synchronization signal block selection
US10993248B2 (en) * 2017-11-17 2021-04-27 Qualcomm Incorporated Designs for remaining minimum system information (RMSI) control resource set (CORESET) and other system information (OSI) coreset
JP2021511717A (ja) * 2018-01-12 2021-05-06 ノキア テクノロジーズ オサケユイチア 高度化セル探索
CN111630930A (zh) * 2018-02-01 2020-09-04 Oppo广东移动通信有限公司 信道发送方法及相关产品
WO2019221542A1 (ko) * 2018-05-17 2019-11-21 한양대학교 산학협력단 채널상태정보를 전송하는 방법 및 그 장치
US11197294B2 (en) * 2018-08-17 2021-12-07 Qualcomm Incorporated Synchronization signal block and remaining minimum system information integration in unlicensed systems
US11019588B2 (en) * 2018-09-11 2021-05-25 Samsung Electronics Co., Ltd. Method and apparatus for advanced frequency offset indication
US11234134B2 (en) * 2018-11-21 2022-01-25 Qualcomm Incorporated Initial network access for licensed supplemental downlink paired with unlicensed primary component carrier
KR20200120534A (ko) * 2019-04-12 2020-10-21 한양대학교 산학협력단 사이드링크 통신을 수행하는 방법 및 그 장치
KR20210002002A (ko) * 2019-06-27 2021-01-06 한양대학교 산학협력단 사이드링크 harq 피드백 전송 방법 및 그 장치
CN114731706A (zh) * 2019-09-25 2022-07-08 康维达无线有限责任公司 Nr-u中的基于帧的设备(fbe)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018213026A1 (en) * 2017-05-16 2018-11-22 Qualcomm Incorporated Techniques and apparatuses for reusing remaining minimum system information configuration bits to signal a synchronization signal block location
CN108401487A (zh) * 2017-11-14 2018-08-14 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的频域信息指示方法
CN110035493A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种信息指示、确定方法、终端及基站
CN108702700A (zh) * 2018-03-16 2018-10-23 北京小米移动软件有限公司 定义小区同步广播块位置的指示、搜索方法及装置和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "3GPP TSG RAN WG1 Meeting #92 R1-1801708", REMAINING ISSUES ON NR PBCH, 2 March 2018 (2018-03-02), XP051397690 *
CATT: "3GPP TSG RAN WG1 Meeting AH 1801 R1-1800228", REMAINING DETAILS ON NR PBCH, 26 January 2018 (2018-01-26), XP051384708 *
See also references of EP3873142A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083229A1 (zh) * 2021-11-09 2023-05-19 上海星思半导体有限责任公司 同步信号块的频域位置确定方法及系统

Also Published As

Publication number Publication date
AU2019468915B2 (en) 2022-09-29
KR20210089235A (ko) 2021-07-15
EP3873142B1 (en) 2023-04-12
CN112889319A (zh) 2021-06-01
CN113133128B (zh) 2023-01-13
JP2022517596A (ja) 2022-03-09
EP4213432A1 (en) 2023-07-19
US20210385054A1 (en) 2021-12-09
ES2947165T3 (es) 2023-08-02
AU2019468915A1 (en) 2021-06-10
CN113133128A (zh) 2021-07-16
JP7204930B2 (ja) 2023-01-16
EP3873142A1 (en) 2021-09-01
KR102491331B1 (ko) 2023-01-26
US11387971B2 (en) 2022-07-12
EP3873142A4 (en) 2021-12-29
US20220329398A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2020103161A1 (zh) 确定同步信号块的方法、终端设备和网络设备
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
JP7465289B2 (ja) 制御情報の伝送方法、端末装置及びネットワーク装置
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
US20220329398A1 (en) Wireless communication method and terminal device
US20220304072A1 (en) Method for determining random access resource and network device
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
TW202025838A (zh) 通訊方法、終端設備和網路設備
WO2021051306A1 (zh) 传输同步信号块的方法、终端设备和网络设备
WO2020177040A1 (zh) 无线通信的方法、终端设备和网络设备
US20210367825A1 (en) Wireless communication method, terminal device and network device
US11902796B2 (en) Communication method, terminal device, and network device
US11902949B2 (en) Wireless communication method and communication device
WO2020155181A1 (zh) 信道传输的方法和设备
WO2020150877A1 (zh) 用于非授权频谱的通信方法和设备
WO2022021226A1 (zh) 一种控制信息的传输方法、电子设备及存储介质
US12035260B2 (en) Wireless communication method, network device, and terminal device
WO2022021085A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
US20220104157A1 (en) Wireless communication method, network device, and terminal device
EP4054256A1 (en) Wireless communication method and terminal device
WO2020248272A1 (zh) 用于发送上行信道/信号的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019948006

Country of ref document: EP

Effective date: 20210525

ENP Entry into the national phase

Ref document number: 2019468915

Country of ref document: AU

Date of ref document: 20190930

Kind code of ref document: A

Ref document number: 20217017773

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021540256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE