WO2022021226A1 - 一种控制信息的传输方法、电子设备及存储介质 - Google Patents

一种控制信息的传输方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2022021226A1
WO2022021226A1 PCT/CN2020/105893 CN2020105893W WO2022021226A1 WO 2022021226 A1 WO2022021226 A1 WO 2022021226A1 CN 2020105893 W CN2020105893 W CN 2020105893W WO 2022021226 A1 WO2022021226 A1 WO 2022021226A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
grid
synchronization grid
frequency
terminal device
Prior art date
Application number
PCT/CN2020/105893
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20946872.7A priority Critical patent/EP4156584A4/en
Priority to PCT/CN2020/105893 priority patent/WO2022021226A1/zh
Priority to CN202080104586.XA priority patent/CN116250313A/zh
Publication of WO2022021226A1 publication Critical patent/WO2022021226A1/zh
Priority to US18/146,441 priority patent/US20230132121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method for transmitting control information, an electronic device, and a storage medium.
  • Embodiments of the present application provide a control information transmission method, electronic device, and storage medium, and specify how to transmit control information when multiple synchronization grids are allowed within the channel bandwidth.
  • an embodiment of the present application provides a method for transmitting control information, including: a terminal device determining a first synchronization grid from at least two synchronization grids allowed in a channel bandwidth; and based on the first synchronization grid Determines information that controls the collection of resources.
  • an embodiment of the present application provides a method for transmitting control information, including: a network device sending a synchronization signal block (Synchronization Signal Block, SSB), where the SSB is used by a terminal device to synchronize at least two synchronizations allowed within a channel bandwidth A first synchronization grid is determined in the grid, and the first synchronization grid is used to determine the information of the control resource set.
  • SSB Synchronization Signal Block
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processing unit configured to determine a first synchronization grid from at least two synchronization grids allowed in a channel bandwidth; based on the first synchronization grid A synchronization grid determines the information that controls the resource set.
  • an embodiment of the present application provides a network device, the network device includes: a sending unit configured to send an SSB, where the SSB is used by a terminal device to determine one of at least two synchronization grids allowed within a channel bandwidth A first synchronization grid, where the first synchronization grid is used to determine the information of the control resource set.
  • an embodiment of the present application provides a terminal device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein the processor is configured to execute the above-mentioned terminal when the computer program is executed. Steps of a method for transmitting control information performed by a device.
  • an embodiment of the present application provides a network device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the above network when running the computer program. Steps of a method for transmitting control information performed by a device.
  • an embodiment of the present application provides a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the above-mentioned method for transmitting control information executed by a terminal device.
  • an embodiment of the present application provides a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the above method for transmitting control information executed by a network device.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned method for transmitting control information executed by a terminal device is implemented.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned method for transmitting control information executed by a network device is implemented.
  • an embodiment of the present application provides a computer program product, including computer program instructions, the computer program instructions enable a computer to execute the above-mentioned method for transmitting control information executed by a terminal device.
  • an embodiment of the present application provides a computer program product, including computer program instructions, the computer program instructions causing a computer to execute the foregoing method for transmitting control information executed by a network device.
  • an embodiment of the present application provides a computer program, the computer program causing a computer to execute the above-mentioned method for transmitting control information executed by a terminal device.
  • an embodiment of the present application provides a computer program, the computer program causing a computer to execute the above-mentioned method for transmitting control information executed by a network device.
  • the control information transmission method, electronic device, and storage medium provided by the embodiments of the present application include: a terminal device determines a first synchronization grid from at least two synchronization grids allowed in a channel bandwidth; based on the first synchronization grid The grid determines the information that controls the collection of resources. In this way, it is clarified that when multiple synchronization grids are allowed within the channel bandwidth, the terminal device can determine the first synchronization grid for determining the offset of the second resource block, and then determine the control resource set according to the first synchronization grid information to realize the transmission of control information in the case where multiple synchronization grids are allowed within the channel bandwidth.
  • Fig. 1 is the structural representation of SSB of this application.
  • FIG. 2 is a schematic diagram of the application receiving SIB1 through a secondary cell
  • FIG. 3 is a schematic diagram of the composition and structure of a communication system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optional processing flow of a method for transmitting control information provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of another optional processing flow of the control information transmission method provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a detailed processing flow of a method for transmitting control information provided by an embodiment of the present application
  • FIG. 7 is an optional schematic diagram of determining a first synchronization grid according to a predefined rule according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a detailed processing flow of another method for transmitting control information provided by an embodiment of the present application.
  • FIG. 9 is an optional schematic diagram of determining the first synchronization grid by using the indication information of the SSB according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an optional composition of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an optional composition structure of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a hardware composition of an electronic device provided by an embodiment of the present application.
  • Unlicensed spectrum is the spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is generally considered to be shared spectrum, that is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum license from the government. In order to enable various communication systems that use unlicensed spectrum for wireless communication to coexist amicably on this spectrum, some countries or regions stipulate the regulatory requirements that must be met when using unlicensed spectrum.
  • LBT Listen-Before-Talk
  • MCOT Maximum Channel Occupation Time
  • SS synchronization signal
  • PBCH Physical Broadcast Channel
  • NR New Radio
  • Common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning, which is convenient for the terminal equipment (User Equipment, UE) in the cell to receive.
  • the multi-beam transmission of the SS can be realized by defining a burst set of SS/PBCH.
  • An SS burst set contains one or more SS/PBCH blocks, and one SS block is used to carry the synchronization signal and broadcast channel of a beam. Therefore, one SS burst set can contain the synchronization signals of SS block number beams in the cell.
  • the maximum number L of the SS block number is related to the frequency band of the system; specifically, in the frequency range below 3GHz, the value of L is 4; in the frequency range from 3GHz to 6GHz, the value of L is 8; in the frequency range from 6GHz to 52.6GHz range, the value of L is 64.
  • An SS/PBCH block (hereinafter referred to as SSB) contains a primary synchronization signal (Primary Synchronization Signal, PSS) of a symbol, a secondary synchronization signal (Secondary Synchronization Signal, SSS) of a symbol and a PBCH of two symbols, as shown in Figure 1. Show.
  • the time-frequency resources occupied by the PBCH include a demodulation reference signal (demodulation reference signal, DMRS), which is used for demodulation of the PBCH.
  • DMRS demodulation reference signal
  • All SS/PBCH blocks in the SS/PBCH burst set are sent within a time window of 5ms, and are sent repeatedly at a certain period.
  • the period is configured by the high-level parameter SSB-timing, including 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the index of the SSB is obtained through the received SS/PBCH block, and the SSB index corresponds to the relative position of the SSB within the 5ms time window.
  • the index of the SS/PBCH block is indicated by the DMRS of the PBCH or the information carried by the PBCH.
  • the SSB index can be used to obtain frame synchronization and Quasi Co-Located (QCL) relationships; for the former, the position of the SSB in the wireless frame is obtained through the SSB index and half-frame indication, Thereby obtaining frame synchronization.
  • QCL Quasi Co-Located
  • the standard defines the frequency domain location of the synchronization grid where the SSB for initial access is located.
  • the spacing between synchronization grids is 1.2MHz or 1.44MHz, corresponding to the 0-3GHz and 3-24.25GHz frequency ranges, respectively, as shown in Table 1 below.
  • the spacing between synchronization grids is 17.28MHz, as shown in the table below.
  • the reason for the smaller spacing between synchronization grids is that because the licensed bands support different channel bandwidths and band allocations, it is necessary to allow the synchronization signal blocks to be sent in as many frequency-domain locations as possible to deploy cells.
  • the channel bandwidth of the unlicensed spectrum in the 6GHz-7GHz frequency range is 20MHz and is shared by multiple operators, there is no need to define many synchronization grid positions in the channel bandwidth of 20MHz.
  • the location of the UE can reduce the blind detection complexity of the UE. There is only one allowed synchronization grid per 20MHz defined in the Rel-16 standard.
  • the information carried by the PBCH channel includes master information block (Master information block, MIB) information and 8-bit information in the physical layer information.
  • Physical layer system frame number System Frame Number, SFN
  • the MIB information carried by the PBCH includes a 6-bit SFN information field, a 1-bit subcarrier interval information field, a 4-bit SSB subcarrier offset (ssb-SubcarrierOffset) information field, and an 8-bit pdcch-ConfigSIB1 information field.
  • the 8-bit pdcch-ConfigSIB1 information field is used to indicate the search space information of the Physical Downlink Control Channel (PDCCH) carrying the scheduling information of the Physical Downlink Shared Channel (PDSCH) of the SIB1.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal equipment For the reception of the SIB1, in the initial access process, the terminal equipment all receive the SIB1 in the primary cell.
  • SIB1 In the NR-U system, there is another case of SIB1 reception, that is, the SIB1 is received in the secondary cell.
  • ANR automatic neighbor relations
  • PCI physical cell ID
  • the terminal device After receiving the SIB1 of the secondary cell, the terminal device can report the Cell Global Identity (CGI), which is used for the ANR function of the network.
  • CGI Cell Global Identity
  • the terminal device In order to receive SIB1 in the secondary cell, the terminal device needs to receive the SS/PBCH block configured on the secondary cell to obtain the search space information of Type0-PDCCH. Since the secondary cell is not the cell used for initial access, the frequency domain position of the SS/PBCH block used to carry the search space information of Type0-PDCCH is not located on the synchronization grid, but the frequency domain of the SSB configured by the measurement configuration information.
  • the Absolute Radio Frequency Channel Number (ARFCN) of the domain location, such an SSB is called an ANR SSB. In this case, it is necessary to design how to obtain the search space information of Type0-PDCCH through the SS/PBCH block received on the asynchronous grid.
  • a schematic diagram of receiving SIB1 through a secondary cell, as shown in Figure 2 includes the following steps:
  • Step 1 detect ANR SS/PBCH block, decode PBCH to obtain MIB information.
  • Step 2 obtain subcarrier offset information ssb-SubcarrierOffset through MIB information to obtain according to Determine k SSB .
  • Step 3 Determine the boundary of the common RB (CRB) according to k SSB .
  • Step 4 Determine the first RB offset according to the CORESET#0 information in the MIB.
  • Step 5 Determine the second RB offset according to the frequency offset between the center frequency of the ANR SS/PBCH block and the GSCN of the allowed synchronization grid defined within the channel bandwidth.
  • Step 6 Determine the frequency domain position of CORESET#0 according to the first RB offset and the second RB offset.
  • the carrier bandwidth of the unlicensed spectrum used in the NR-U technology of Rel-16 is 20MHz, and multiple 20MHz can be bundled for use through carrier aggregation.
  • the location of a synchronization grid where the SSB is located is predefined.
  • the resource location of CORESET#0 carried by the ANR SS/PBCH block is relative to the resource location of the SSB on the predefined synchronization grid within the 20MHz bandwidth.
  • a single channel bandwidth can reach 2.16GHz.
  • multiple synchronization grids may be predefined, such as supporting multiple frequency division SSBs at the same time transport to resolve OCB issues sent by SSB. At this time, how to obtain the control resource set through the ANR SSB is not yet clear.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD Time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • evolution systems of NR systems LTE on unlicensed bands (LTE-based access to unlicensed spectrum, LTE-U) system, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency bands, universal mobile telecommunication system (UMTS), global Worldwide interoperability for microwave access (WiMAX) communication systems, wireless local area networks (WLAN), wireless fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • the network equipment involved in the embodiments of this application may be a common base station (such as a NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Remote radio module, micro base station, relay, distributed unit (distributed unit), reception point (transmission reception point, TRP), transmission point (transmission point, TP) or any other equipment.
  • a common base station such as a NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Remote radio module
  • micro base station relay, distributed unit (distributed unit)
  • reception point transmission reception point
  • TRP transmission point
  • TP transmission point
  • the terminal device may be any terminal, for example, the terminal device may be user equipment of machine type communication. That is to say, the terminal device can also be called user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc. network, RAN) communicates with one or more core networks, for example, the terminal device can be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be a portable, pocket-sized , handheld, computer built-in or vehicle mounted mobile devices that exchange language and/or data with the radio access network.
  • the terminal device may be any terminal, for example, the terminal device may be user equipment of machine type communication. That is to say, the terminal device can also be called user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc. network, RAN) communicates with one or more core networks, for example, the terminal device can be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • communication between the network device and the terminal device and between the terminal device and the terminal device can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or both through licensed spectrum and unlicensed spectrum for communications.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the spectrum below 7 gigahertz (GHz), or through the frequency spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz and the frequency spectrum at the same time.
  • the spectrum above 7GHz is used for communication.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in this embodiment of the present application is as shown in FIG. 3 .
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device can be a mobile switching center, relay station, access point, in-vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolved Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network device can be a mobile switching center, relay station, access point, in-vehicle equipment, Wearable devices, hub
  • the communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110 .
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter; and/or a device of another terminal device configured to receive/transmit communication signals; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- An FM broadcast transmitter AM- An FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device arranged to communicate via a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, fax, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminal devices 120 .
  • the 5G system or 5G network may also be referred to as a new radio (New Radio, NR) system or NR network.
  • New Radio NR
  • FIG. 3 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • An optional processing flow of the control information transmission method provided by the embodiment of the present application, as shown in FIG. 4 includes the following steps:
  • Step S201 the terminal device determines a first synchronization grid from at least two synchronization grids allowed within the channel bandwidth.
  • a first synchronization grid needs to be determined from the plurality of synchronization grids; Information used to determine the set of control resources.
  • the terminal device may determine a first synchronization grid from at least two synchronization grids allowed in the channel bandwidth according to a preset rule, that is, the first synchronization grid is predefined; during specific implementation , which can be agreed in a protocol or negotiated between the terminal device and the network device.
  • the terminal device may determine a first synchronization grid according to the indication information in the SSB detected by the terminal device. The following describes the two manners of determining the first synchronization grid respectively.
  • the first synchronization grid is the synchronization grid with the highest frequency among the allowed synchronization grids within the channel bandwidth; or, the first synchronization grid
  • the grid is the synchronization grid with the lowest frequency among the allowed synchronization grids within the channel bandwidth; or, the number of synchronization grids allowed within the channel bandwidth is N, where N is an odd number, and the first synchronization grid is a frequency-based synchronization grid.
  • the first synchronization grid is the synchronization grid with the highest frequency among the synchronization grids allowed in the channel bandwidth
  • N synchronization grids
  • the corresponding frequency relationship is f 1 ⁇ f 2 ⁇ f 3 ⁇ ... ⁇ f N
  • the synchronization grid corresponding to the frequency f N is the first synchronization grid.
  • the first synchronization grid is the synchronization grid with the lowest frequency among the synchronization grids allowed in the channel bandwidth
  • N synchronization grids
  • the corresponding frequency relationship is f 1 ⁇ f 2 ⁇ f 3 ⁇ ... ⁇ f N
  • the synchronization grid corresponding to the frequency f 1 is the first synchronization grid.
  • the number of synchronization grids allowed within the channel bandwidth is N, where N is an odd number, and the first synchronization grid is the (N+1)/2th synchronization grid among the N synchronization grids arranged in the order of frequency.
  • N an odd number
  • the first synchronization grid is the (N+1)/2th synchronization grid among the N synchronization grids arranged in the order of frequency.
  • the third synchronization grid is determined. is the first synchronization grid.
  • the number of synchronization grids allowed within the channel bandwidth is N
  • N is an even number
  • the first synchronization grid is the N/2th synchronization grid among the N synchronization grids arranged in the order of frequency. Note: If the number of synchronization grids allowed in the channel bandwidth is 8, and the frequencies corresponding to the 8 synchronization grids are arranged in order from large to small or from small to large, the fourth synchronization grid is determined as the first synchronization. grid.
  • the number of synchronization grids allowed within the channel bandwidth is N, where N is an even number, and the first synchronization grid is the N/2+1th synchronization grid among the N synchronization grids arranged in the order of frequency.
  • N is an even number
  • the first synchronization grid is the N/2+1th synchronization grid among the N synchronization grids arranged in the order of frequency.
  • the fifth synchronization grid is determined as the first synchronization grid.
  • the first synchronization grid is a synchronization grid that satisfies a first relationship with the frequency position of the SSB detected by the terminal device: in some embodiments, the first relationship may be a relationship with the The frequency position of the SSB is the closest, or is the farthest away from the frequency position of the SSB; therefore, the first synchronization grid may be the synchronization grid corresponding to the frequency with the closest frequency position of the SSB detected by the terminal device Alternatively, the first synchronization grid may be a synchronization grid corresponding to the frequency with the farthest frequency position of the SSB detected by the terminal device.
  • the first synchronization grid is determined by the PCI carried in the SSB detected by the terminal device: in some embodiments, the first synchronization grid is the same as the SSB detected by the terminal device.
  • the PCIs carried in have a corresponding synchronization grid.
  • the PCI has a corresponding relationship with the first synchronization grid, which may be a modulo operation result obtained by performing a modulo operation on the PCI based on the number of synchronization grids allowed in the channel bandwidth, There is a corresponding relationship with the number of the first synchronization grid. If the number of synchronization grids allowed in the channel bandwidth is 5, the result obtained by performing the modulo 5 operation on the PCI is 0, or 1, or 2, or 3, or 4.
  • the five synchronization grids allowed within the channel bandwidth may be pre-numbered in the order of the frequency positions of the synchronization grids from high to low, or in the order of the frequency positions of the synchronization grids from low to high, such as five synchronization grids.
  • the numbers are 0, 1, 2, 3, and 4 respectively; of course, the synchronization grid can also be numbered in other practicable manners, such as numbering A, B, C, etc. Taking the numbers of the five synchronization grids as 0, 1, 2, 3, and 4 as an example, if the result obtained by performing the modulo 5 operation on the PCI is 1, the terminal device determines that the first synchronization grid is the synchronization numbered 1. grid.
  • the terminal device may determine a first synchronization grid according to the indication information in the SSB detected by the terminal device.
  • the indication information may be used to indicate the frequency position of the first synchronization grid.
  • the indication manner of the indication information is not specifically limited in this embodiment of the present application.
  • the PBCH DMRS sequence may be used to indicate the frequency position of the first synchronization grid, or the bit information in the information field carried in the PBCH may be used to indicate the frequency position of the first synchronization grid. frequency location.
  • Step S202 Determine the information of the control resource set based on the first synchronization grid.
  • the terminal device determines a second resource block offset between the frequency corresponding to the detected SSB and the frequency corresponding to the first synchronization grid, and determines the first resource according to MIB information in the detected SSB Block offset: Determine the frequency domain position of the control resource set according to the first resource block offset and the second resource block offset.
  • the terminal device may determine the information of the control resource set according to the first resource block offset, the second resource block offset, and the search space information of Type 0-PDCCH.
  • the terminal device when it determines the second resource block offset between the detected frequency corresponding to the SSB and the frequency corresponding to the first synchronization grid, it can The center frequency corresponding to the synchronization grid determines the second resource block offset; the second resource block offset may also be determined according to the edge frequency corresponding to the SSB and the edge frequency corresponding to the first synchronization grid; or the SSB
  • the common RB of a certain RB is determined, for example, the second resource block offset is determined according to the distance between the common RBs corresponding to the first RB of the SSB.
  • Another optional processing flow of the control information transmission method provided by the embodiment of the present application, as shown in FIG. 5 includes the following steps:
  • Step S301 the network device sends an SSB, where the SSB is used by the terminal device to determine a first synchronization grid from at least two synchronization grids allowed within the channel bandwidth.
  • the network device sends an SSB to the terminal device, the SSB is used by the terminal device to determine a first synchronization grid from a plurality of synchronization grids allowed within the channel bandwidth, the first synchronization grid The grid is used to determine the frequency domain location of the set of control resources.
  • the SSB includes indication information for indicating a frequency location of the first synchronization grid.
  • the PCI carried in the SSB is used to determine the first synchronization grid.
  • the PCI has a corresponding relationship with the first synchronization grid.
  • the corresponding relationship between the PCI and the first synchronization grid may include: a modulo operation result obtained by performing a modulo operation on the PCI based on the number of synchronization grids allowed within the channel bandwidth, and the The numbers of the first synchronization grids have a corresponding relationship.
  • the number of the first synchronization grid is obtained based on the frequency positions of the allowed synchronization grids in the channel bandwidth in descending order; or, the number of the first synchronization grid is The frequency positions of the synchronization grids allowed within the channel bandwidth are identified in order from low to high.
  • the result of performing a modulo 5 operation on the PCI is 0, or 1, or 2, or 3, or 4.
  • the five synchronization grids allowed within the channel bandwidth may be pre-numbered in the order of the frequency positions of the synchronization grids from high to low, or in the order of the frequency positions of the synchronization grids from low to high, such as five synchronization grids.
  • the numbers are 0, 1, 2, 3, and 4 respectively; of course, the synchronization grid can also be numbered in other practicable manners, such as numbering A, B, C, etc. Taking the numbers of the five synchronization grids as 0, 1, 2, 3, and 4 as an example, if the result obtained by performing the modulo 5 operation on the PCI is 1, the terminal device determines that the first synchronization grid is the synchronization numbered 1. grid.
  • control information transmission method provided by the embodiment of the present application will be described in detail below based on different ways of determining the first synchronization grid.
  • a detailed processing flow of a method for transmitting control information provided by an embodiment of the present application, as shown in FIG. 6 , includes the following steps:
  • Step S401 the network device sends the ANR SS/PBCH block to the terminal device.
  • Step S402 the terminal device decodes the PBCH to obtain MIB information, and obtains subcarrier offset information through the MIB information.
  • Step S403 the terminal device determines the boundary of the CRB according to the subcarrier offset information.
  • Step S404 the terminal device determines the first resource block offset according to the information of the common control resource set in the MIB information.
  • Step S405 the terminal device determines a first synchronization grid from a plurality of synchronization grids allowed within the channel bandwidth according to a predefined rule.
  • the GSCN includes: GSCN0, GSCN1, and GSCN2.
  • the ARFCN of the SSB is the closest to GSCN1, and the grid corresponding to GSCN1 is determined as the first synchronization grid.
  • the terminal device obtains the PCI after receiving and demodulating the SSB.
  • the predefined PCI and the first synchronization grid The corresponding relationship of determines the first synchronization grid. If the number of synchronization grids allowed in the channel bandwidth is 3, the modulo operation is performed on the PCI, and the obtained result is 0, and the numbers of the three synchronization grids allowed in the channel bandwidth correspond to 0, 1, and 2 respectively; then It is determined that the synchronization grid whose number corresponds to 0 is the first synchronization grid.
  • different PCIs may correspond to different first
  • Step S406 the terminal device determines a second resource block offset according to the detected frequency corresponding to the SSB and the frequency corresponding to the first synchronization grid.
  • the terminal device determines the second resource block offset according to the frequency offset between GSCN1 and the ARFCN where the SS/PBCH block is located.
  • Step S407 the terminal device determines the frequency position of the control resource set according to the first resource block offset and the second resource block offset.
  • steps S401 to S404, and steps S406 to S407 may be implemented based on the prior art, which will not be repeated here.
  • the signaling overhead caused by the network device indicating the first synchronization grid to the terminal device can be saved.
  • the detailed processing flow of another control information transmission method includes the following steps:
  • Step S501 the network device sends the ANR SS/PBCH block to the terminal device, and the terminal device decodes the PBCH to obtain MIB information.
  • Step S502 the terminal device obtains the subcarrier offset information through the MIB information.
  • Step S503 the terminal device determines the boundary of the CRB according to the subcarrier offset information.
  • Step S504 the terminal device determines the first resource block offset according to the information of the common control resource set in the MIB information.
  • Step S505 the terminal device determines a first synchronization grid from a plurality of synchronization grids allowed within the channel bandwidth according to the indication information in the SSB.
  • the SSB includes indication information for indicating the frequency position of the first synchronization grid.
  • the indication manner of the indication information is not specifically limited in the embodiments of the present application.
  • the PBCH DMRS sequence may be used to indicate the frequency position of the first synchronization grid, or the bit information in the information field carried in the PBCH may be used to indicate the frequency position of the first synchronization grid. frequency location.
  • the information carried by the PBCH includes A-bit information from the upper layer and additional 8-bit information related to the physical layer, where the information related to the physical layer includes SFN, field indication, SSB index, and the like.
  • the specific definition can be as follows:
  • the bits carried by the PBCH include the MIB information from the upper layer, a total of A bits, and the associated 8 bits from the physical layer,
  • A-bit MIB information is described in the following standards, that is, it includes 6-bit SFN, 1-bit subcarrier spacing information, 4-bit SSB subcarrier offset, DMRS related information, and resource information of PDCCH scheduling SIBs, etc., Also contains 1 spare bit.
  • the 8 bits related to the physical layer, middle is the lowest 4 bits of SFN, Indicates the half frame.
  • L SSB is the maximum number of SSBs
  • k SSB is the subcarrier offset information of the SSB.
  • the SSB is not used for the initial access of the terminal device, wherein the information carried on the PBCH may be used to represent other meanings, such as the location of one of the multiple allowed synchronization grids. For example, five synchronization grids are predefined within the channel bandwidth, and the position of one of the synchronization grids is indicated by the indication information of the SSB, which is used to calculate the second resource block offset.
  • the specific indication method in the PBCH is not limited here, for example, using the PBCH DMRS sequence, using the bits in the above-mentioned information field carried in the PBCH, and the like.
  • the predefined GSCNs in the channel bandwidth include: GSCN0, GSCN1 and GSCN2, and the indication information of the SSB indicates that the frequency position of the first synchronization grid corresponds to GSCN0.
  • Step S506 the terminal device determines the second resource block offset according to the detected frequency corresponding to the SSB and the frequency corresponding to the first synchronization grid.
  • the terminal device determines the second resource block offset according to the frequency offset between the GSCN0 and the ARFCN where the SS/PBCH block is located.
  • Step S507 the terminal device determines the frequency position of the control resource set according to the first resource block offset and the second resource block offset.
  • steps S501 to S504, and steps S506 to S507 may be implemented based on the prior art, which will not be repeated here.
  • the network device can flexibly indicate the location of the first synchronization grid through the SSB, so that the terminal device can determine the first synchronization grid from the multiple synchronization grids allowed within the channel bandwidth according to the SSB instruction.
  • the SSB described in the embodiments of the present application may be an ANR SSB.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the embodiment of the present application further provides a terminal device.
  • the optional composition structure of the terminal device 600 includes:
  • the processing unit 601 is configured to determine a first synchronization grid from at least two synchronization grids allowed in the channel bandwidth; and determine the information of the control resource set based on the first synchronization grid.
  • the first synchronization grid is predefined; or, the first synchronization grid is determined by indication information in the SSB detected by the terminal device.
  • the first synchronization grid when the first synchronization grid is predefined, the first synchronization grid is the synchronization grid with the highest frequency among the allowed synchronization grids within the channel bandwidth;
  • the first synchronization grid is the synchronization grid with the lowest frequency among the allowed synchronization grids within the channel bandwidth;
  • the number of allowed synchronization grids in the channel bandwidth is N, N is an odd number, and the first synchronization grid is the (N+1)/2th synchronization among the N synchronization grids arranged in the order of frequency and size grid;
  • the number of allowed synchronization grids in the channel bandwidth is N, N is an even number, and the first synchronization grid is the N/2th synchronization grid among the N synchronization grids arranged in the order of frequency;
  • the number of synchronization grids allowed within the channel bandwidth is N, where N is an even number, and the first synchronization grid is the N/2+1th synchronization grid among the N synchronization grids arranged in the order of frequency size ;
  • the first synchronization grid is a synchronization grid that satisfies a first relationship with the frequency position of the SSB detected by the terminal device;
  • the first synchronization grid is determined by the PCI carried in the SSB detected by the terminal device.
  • the first synchronization grid is a synchronization grid that satisfies a first relationship with the frequency position of the SSB detected by the terminal device, including: the first synchronization grid is a synchronization grid within a channel bandwidth The synchronization grid that is closest to the frequency position of the SSB; or, the first synchronization grid is the synchronization grid that is the farthest from the frequency position of the SSB among the synchronization grids within the channel bandwidth.
  • the indication information is used to indicate the frequency position of the first synchronization grid.
  • the PCI when the first synchronization grid is determined by the PCI carried in the SSB detected by the terminal device, the PCI has a corresponding relationship with the first synchronization grid.
  • the PCI and the first synchronization grid have a corresponding relationship, including:
  • a modulo operation result obtained by performing a modulo operation on the PCI based on the number of synchronization grids allowed within the channel bandwidth has a corresponding relationship with the number of the first synchronization grid.
  • the number of the first synchronization grid is obtained based on the frequency positions of the synchronization grids allowed within the channel bandwidth in descending order;
  • the number of the first synchronization grid is obtained based on the frequency positions of the synchronization grids allowed within the channel bandwidth from low to high order.
  • the processing unit 601 is configured to determine the control based on a second resource block offset between the frequency corresponding to the SSB detected by the terminal device and the frequency corresponding to the first synchronization grid The frequency domain location of the resource set.
  • the processing unit 601 is configured to determine the frequency domain position of the control resource set based on the second resource block offset and the first resource block offset.
  • the first resource block offset is determined from MIB information in the SSB detected by the terminal device.
  • the embodiment of the present application further provides a network device.
  • the optional composition structure of the network device 800 includes:
  • a sending unit 801 configured to send an SSB, where the SSB is used by a terminal device to determine a first synchronization grid from at least two synchronization grids allowed within a channel bandwidth, where the first synchronization grid is used to determine a control resource set Information.
  • the SSB includes indication information for indicating a frequency location of the first synchronization grid.
  • the PCI carried in the SSB is used to determine the first synchronization grid.
  • the PCI has a corresponding relationship with the first synchronization grid.
  • the PCI and the first synchronization grid have a corresponding relationship, including:
  • a modulo operation result obtained by performing a modulo operation on the PCI based on the number of synchronization grids allowed within the channel bandwidth has a corresponding relationship with the number of the first synchronization grid.
  • the number of the first synchronization grid is obtained based on the frequency positions of the synchronization grids allowed within the channel bandwidth in descending order;
  • the number of the first synchronization grid is obtained based on the frequency positions of the synchronization grids allowed within the channel bandwidth in an order from low to high.
  • An embodiment of the present application further provides a terminal device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the program executed by the terminal device when the processor is running the computer program.
  • the steps of the transmission method of control information are described in detail below.
  • An embodiment of the present application further provides a network device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the program executed by the network device when running the computer program.
  • the steps of the transmission method of control information are described in detail below.
  • An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the above-mentioned method for transmitting control information executed by a terminal device.
  • An embodiment of the present application further provides a chip, including: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes the above-mentioned method for transmitting control information executed by a network device.
  • An embodiment of the present application further provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned method for transmitting control information executed by a terminal device is implemented.
  • An embodiment of the present application further provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned method for transmitting control information executed by a network device is implemented.
  • Embodiments of the present application further provide a computer program product, including computer program instructions, the computer program instructions enable a computer to execute the above-mentioned method for transmitting control information executed by a terminal device.
  • Embodiments of the present application further provide a computer program product, including computer program instructions, the computer program instructions enable a computer to execute the above-mentioned method for transmitting control information executed by a network device.
  • An embodiment of the present application further provides a computer program, the computer program enables a computer to execute the above-mentioned method for transmitting control information executed by a terminal device.
  • An embodiment of the present application further provides a computer program, the computer program enables a computer to execute the above-mentioned method for transmitting control information executed by a network device.
  • FIG. 12 is a schematic diagram of a hardware structure of an electronic device (terminal device or network device) according to an embodiment of the present application.
  • the electronic device 700 includes: at least one processor 701 , memory 702 and at least one network interface 704 .
  • the various components in electronic device 700 are coupled together by bus system 705 .
  • bus system 705 is used to implement the connection communication between these components.
  • the bus system 705 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 705 in FIG. 12 .
  • memory 702 may be either volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM, Programmable Read-Only Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM -ROM, Compact Disc Read-Only Memory); magnetic surface memory can be disk memory or tape memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Type Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiments of the present application is intended to include, but not limited to, these and any other suitable types of memory.
  • the memory 702 in this embodiment of the present application is used to store various types of data to support the operation of the electronic device 700 .
  • Examples of such data include: any computer program used to operate on electronic device 700, such as application 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022 .
  • the methods disclosed in the above embodiments of the present application may be applied to the processor 701 or implemented by the processor 701 .
  • the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in the form of software.
  • the above-mentioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), Complex Programmable Logic Devices (CPLDs) , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic component implementation for performing the aforementioned method.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal processors
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Devices
  • FPGA general-purpose processor
  • controller MCU, MPU, or other electronic component implementation for performing the aforementioned method.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种控制信息的传输方法,包括:终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。本申请还公开了另一种控制信息的传输方法、电子设备及存储介质。

Description

一种控制信息的传输方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种控制信息的传输方法、电子设备及存储介质。
背景技术
相关技术中,在信道带宽内允许多个同步栅格的情况下,如何传输控制资源集等控制信息尚未被明确。
发明内容
本申请实施例提供一种控制信息的传输方法、电子设备及存储介质,明确了在信道带宽内允许多个同步栅格的情况下,如何传输控制信息。
第一方面,本申请实施例提供一种控制信息的传输方法,包括:终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。
第二方面,本申请实施例提供一种控制信息的传输方法,包括:网络设备发送同步信号块(Synchronization Signal Block,SSB),所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的信息。
第三方面,本申请实施例提供一种终端设备,所述终端设备包括:处理单元,配置为从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。
第四方面,本申请实施例提供一种网络设备,所述网络设备包括:发送单元,配置为发送SSB,所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的信息。
第五方面,本申请实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的控制信息的传输方法的步骤。
第六方面,本申请实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的控制信息的传输方法的步骤。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述终端设备执行的控制信息的传输方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述网络设备执行的控制信息的传输方法。
第九方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的控制信息的传输方法。
第十方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的控制信息的传输方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的控制信息的传输方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的控制信息的传输方法。
第十三方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的控制信息的传输方法。
第十四方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述网络设备执行的控制信息的传输方法。
本申请实施例提供的控制信息的传输方法、电子设备及存储介质,包括:终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。如此,明确了在信道带宽内允许多个同步栅格的情况下,终端设备能够确定用于确定第二资源块偏移量的第一同步栅格,进而根据第一同步栅格确定控制资源集合的信息,实现在信道带宽内允许多个同步栅格的情况下的控制信息的传输。
附图说明
图1为本申请SSB的结构示意图;
图2为本申请通过辅小区接收SIB1的示意图;
图3为本申请实施例通信系统的组成结构示意图;
图4为本申请实施例提供的控制信息的传输方法的一种可选处理流程示意图;
图5为本申请实施例提供的控制信息的传输方法的另一种可选处理流程示意图;
图6为本申请实施例提供的一种控制信息的传输方法的详细处理流程示意图;
图7为本申请实施例提供的根据预定义的规则确定第一同步栅格的的可选示意图;
图8为本申请实施例提供的另一种控制信息的传输方法的详细处理流程示意图;
图9为本申请实施例提供的通过SSB的指示信息确定第一同步栅格的可选示意图;
图10为本申请实施例提供的终端设备的一种可选组成结构示意图;
图11为本申请实施例提供的网络设备的一种可选组成结构示意图;
图12为本申请实施例提供的电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例进行说明之前,对相关内容进行简要说明。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区通信设备遵循“先听后说”(Listen-Before-Talk,LBT)原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进 行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
目前在3GPP版本16(Rel-16)的NR-U技术用于7GHz以下的非授权频段,在后续的技术演进中,会考虑在更高的频段的非授权频谱的使用,以及相关的技术,如在Rel-17标准中讨论的52.6GHz-71GHz。
下面对新无线(New Radio,NR)系统中的同步信号(SS,synchronization signal)/物理广播信道(Physical Broadcast Channel,PBCH)块(block)进行说明。
NR系统中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的终端设备(User Equipment,UE)接收。SS的多波束发送可通过定义SS/PBCH簇集合(burst set)实现。一个SS burst set包含一个或多个SS/PBCH block,一个SS block用于承载一个波束的同步信号和广播信道。因此,一个SS burst set可以包含小区内SS block number个波束的同步信号。SS block number的最大数目L与系统的频段有关;具体的,在3GHz以下的频率范围,L的值为4;在3GHz到6GHz的频率范围,L的值为8;在6GHz到52.6GHz的频率范围,L的值为64。
一个SS/PBCH block(以下简称SSB)中包含一个符号的主同步信号(Primary Synchronization Signal,PSS),一个符号的辅同步信号(Secondary Synchronization Signal,SSS)和两个符号的PBCH,如图1所示。其中,PBCH所占的时频资源中包含解调参考信号(demodulation reference signal,DMRS),用于PBCH的解调。
SS/PBCH burst set内所有的SS/PBCH block在5ms的时间窗内发送,并以一定的周期重复发送,周期通过高层的参数SSB-timing进行配置,包括5ms,10ms,20ms,40ms,80ms,160ms等。对于终端设备来说,通过接收到的SS/PBCH block得到该SSB的索引(index),SSB index对应该SSB在5ms时间窗内的相对位置,)根据该信息和PBCH中承载的半帧指示,或者帧同步。其中,SS/PBCH block的index通过PBCH的DMRS或者PBCH承载的信息来指示。在授权频谱中,例如,6GHz以下的频段,SSB burst中包含的SSB最多有8个,SSB index的取值为0-7。在使用授权频谱的NR系统中,SSB index可以用于获得帧同步和准共址(Quasi Co-Located,QCL)关系;对于前者,通过SSB index和半帧指示获得SSB在无线帧中的位置,从而获得帧同步。
对于SSB的频域位置,标准定义了用于初始接入的SSB所在的同步栅格的频域位置。对于授权频谱,同步栅格之间的间隔为1.2MHz或1.44MHz,分别对应0-3GHz和3-24.25GHz频率范围,如下表1所示。
表1.全局频率栅格的GSCN参数
Figure PCTCN2020105893-appb-000001
对于24.25GHz-100GHz的频段范围内的同步栅格的位置,同步栅格之间的间隔为17.28MHz,如下表所示。
表2.全局频率栅格的GSCN参数
Figure PCTCN2020105893-appb-000002
同步栅格之间间隔较小的原因是由于授权频段支持不同的信道带宽和频段分配,需要允许在尽可能多的频域位置上发送同步信号块以部署小区。对于非授权频谱,由于6GHz-7GHz频率范围的非授权频谱的信道带宽为20MHz,并且是多个运营商共享使用,因此信道带宽20MHz中不需要定义很多同步栅格的位置,通过减少同步栅格的位置可以减少UE的盲检测复杂度。在Rel-16的标准中定义每个20MHz只有一个允许的同步栅格。
PBCH信道承载的信息包括主信息块(Master information block,MIB)信息和物理层信息中8比特信息。物理层系统帧号(System Frame Number,SFN)、半帧指示、SSB索引等。PBCH承载的MIB信息包括6比特的SFN信息域,1比特的子载波间隔信息域,4比特的SSB的子载波偏移(ssb-SubcarrierOffset)信息域和8比特的pdcch-ConfigSIB1信息域等。其中,8比特的pdcch-ConfigSIB1信息域用于指示承载SIB1的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的调度信息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的搜索空间信息。
针对SIB1的接收,在初始接入过程中,终端设备都是在主小区接收SIB1。在NR-U系统中,还有一种SIB1接收的情况是在辅小区接收SIB1。这是为了在NR-U系统中支持自动邻区关联(automatic neighbour relations,ANR)功能,以解决解决不同运营商部署小区时可能产生物理小区ID(PCI)冲突的问题。由于ANR功能依赖于SIB1的获取,需要在辅小区支持SIB1的接收。终端设备在接收到辅小区的SIB1之后,可以上报小区全球标识(Cell Global Identity,CGI),用于网络的ANR功能。为了在辅小区接收SIB1,终端设备需要接收辅小区上配置的SS/PBCH block来获得Type0-PDCCH的搜索空间信息。由于辅小区并非用于初始接入的小区,用于携带Type0-PDCCH的搜索空间信息的SS/PBCH block的频域位置也并非位于同步栅格上,而是通过测量配置信息配置的SSB的频域位置的绝对无线频道编号(Absolute Radio Frequency Channel Number,ARFCN),这样的SSB称为ANR SSB。在这种情况下,需要设计如何通过非同步栅格上接收到的SS/PBCH block来获得Type0-PDCCH的搜索空间信息。通过辅小区接收SIB1的示意图,如图2所示,包括以下步骤:
步骤1,检测ANR SS/PBCH block,解码PBCH获得MIB信息。
步骤2,通过MIB信息获得子载波偏移信息ssb-SubcarrierOffset得到
Figure PCTCN2020105893-appb-000003
根据
Figure PCTCN2020105893-appb-000004
确定k SSB
具体的,根据ssb-SubcarrierOffset得到
Figure PCTCN2020105893-appb-000005
Figure PCTCN2020105893-appb-000006
否则,
Figure PCTCN2020105893-appb-000007
步骤3,根据k SSB确定common RB(CRB)的边界。
步骤4,根据MIB中的CORESET#0信息确定第一RB偏移。
步骤5,根据ANR SS/PBCH block的中心频率和该信道带宽内定义的允许的同步栅格的GSCN之间的频率偏移,确定第二RB偏移。
步骤6,根据第一RB偏移和第二RB偏移确定CORESET#0的频域位置。
目前Rel-16的NR-U技术中使用的非授权频谱的载波带宽为20MHz,通过载波聚 合可以捆绑多个20MHz使用。在每个20MHz的带宽内,预定义了SSB所在一个同步栅格的位置。当为了ANR的目的通过辅小区接收SIB1时,ANR SS/PBCH block携带的CORESET#0的资源位置是相对于20MHz的带宽内预定义的同步栅格上的SSB的资源位置。
对于52.6GHz-71GHz的频段范围内的非授权频谱来说,单个信道带宽可以达到2.16GHz,在该信道带宽内,可能会预定义多个同步栅格,例如支持多个频分的SSB的同时传输,以解决SSB发送的OCB问题。此时,如何通过ANR SSB获得控制资源集合尚未被明确。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也 可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100,如图3所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图3示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体, 本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图3示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例提供的控制信息的传输方法的一种可选处理流程,如图4所示,包括以下步骤:
步骤S201,终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格。
在一些实施例中,在信道带宽内允许的同步栅格的数量大于或等于两个的情况下,需从多个同步栅格中确定一个第一同步栅格;所述第一同步栅格用于确定控制资源集合的信息。
在一些实施例中,终端设备可以根据预设的规则从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,即第一同步栅格为预定义的;在具体实施时,可以是协议约定的,也可以是终端设备与网络设备协商约定的。在另一些实施例中,终端设备可以根据终端设备检测到的SSB中的指示信息确定一个第一同步栅格。下面针对这两种确定第一同步栅格的方式分别进行说明。
方式1、在第一同步栅格为预定义的情况下,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最高的同步栅格;或者,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最低的同步栅格;或者,所述信道带宽内允许的同步栅格为N个,N为奇数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第(N+1)/2个同步栅格;或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2个同步栅格;或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2+1个同步栅格;或者,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格;或者,所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定。
针对所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最高的同步栅格的情况举例说明:若信道带宽内允许的同步栅格的数量为N,N个同步栅格对应的频率关系为f 1﹤f 2﹤f 3﹤…﹤f N,则频率f N对应的同步栅格为第一同步栅格。
针对所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最低的同步栅格的情况举例说明:若信道带宽内允许的同步栅格的数量为N,N个同步栅格对应的频率关系为f 1﹤f 2﹤f 3﹤…﹤f N,则频率f 1对应的同步栅格为第一同步栅格。
针对所述信道带宽内允许的同步栅格为N个,N为奇数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第(N+1)/2个同步栅格的情况举例说明:若信道带宽内允许的同步栅格的数量为7,将7个同步栅格对应的频率由大到小或者由小到大的顺序排列,则确定第3个同步栅格为第一同步栅格。
针对所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2个同步栅格的情况举例说明:若信道带宽内允许的同步栅格的数量为8,将8个同步栅格对应的频率由大到小或者由小到大的顺序排列,则确定第4个同步栅格为第一同步栅格。
针对所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2+1个同步栅格的情况举例说明:若信道带宽内 允许的同步栅格的数量为8,将8个同步栅格对应的频率由大到小或者由小到大的顺序排列,则确定第5个同步栅格为第一同步栅格。
针对所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格的情况举例说明:在一些实施例中,所述第一关系可以是与所述SSB的频率位置距离最近,或者与所述SSB的频率位置距离最远;因此,所述第一同步栅格可以是与所述终端设备检测到的SSB的频率位置距离最近的频率对应的同步栅格;或者,所述第一同步栅格可以是与所述终端设备检测到的SSB的频率位置距离最远的频率对应的同步栅格。
针对所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定的情况举例说明:在一些实施例中,所述第一同步栅格为与所述终端设备检测到的SSB中携带的PCI具有对应关系的同步栅格。在具体实施时,所述PCI与所述第一同步栅格具有对应关系,可以是基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。若所述信道带宽内允许的同步栅格的数目为5,则对PCI执行模5运算得到的结果为0、或1、或2、或3、或4。所述信道带宽内允许的5个同步栅格可以按照同步栅格的频率位置由高到低的顺序、或者按照同步栅格的频率位置由低到高的顺序预先编号,如5个同步栅格的编号分别为0、1、2、3和4;当然,也可以对同步栅格以其他可实施的方式进行编号,如编号为A、B、C…等。以5个同步栅格的编号分别为0、1、2、3和4为例,若对PCI执行模5运算得到的结果为1,则终端设备确定第一同步栅格为编号为1的同步栅格。
方式2,终端设备可以根据终端设备检测到的SSB中的指示信息确定一个第一同步栅格。在一些实施例中,所述指示信息可以用于指示所述第一同步栅格的频率位置。
其中,所述指示信息的指示方式在本申请实施例中不做具体限定。如,所述SSB承载于PBCH上,则可以利用PBCH DMRS序列指示所述第一同步栅格的频率位置,也可以利用PBCH中承载的信息域中的比特信息指示所述第一同步栅格的频率位置。
步骤S202,基于所述第一同步栅格确定控制资源集合的信息。
在一些实施例中,终端设备确定检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移,根据检测到的SSB中的MIB信息确定第一资源块偏移;根据第一资源块偏移和第二资源块偏移,确定控制资源集合的频域位置。在具体实施时,终端设备可以根据第一资源块偏移、第二资源块偏移、Type0-PDCCH的搜索空间信息来确定控制资源集合的信息。
在一些实施例中,终端设备确定检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移时,可以根据SSB对应的中心频率与所述第一同步栅格对应的中心频率确定第二资源块偏移;也可以根据SSB对应的边缘频率与所述第一同步栅格对应的边缘频率确定第二资源块偏移;还可以根据所述SSB的某一个RB的common RB确定,如根据SSB的第一个RB对应的common RB之间的距离确定第二资源块偏移。
本申请实施例提供的控制信息的传输方法的另一种可选处理流程,如图5所示,包括以下步骤:
步骤S301,网络设备发送SSB,所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格。
在一些实施例中,所述网络设备向终端设备发送SSB,所述SSB用于所述终端设备从信道带宽内允许的多个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的频域位置。
在一些实施例中,所述SSB包括指示信息,所述指示信息用于指示所述第一同步栅格的频率位置。在另一些实施例中,所述SSB中携带的PCI用于确定所述第一同步栅 格。
针对所述SSB中携带的PCI用于确定所述第一同步栅格的场景,所述PCI与所述第一同步栅格具有对应关系。其中,所述PCI与所述第一同步栅格的对应关系可以包括:基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
在具体实施时,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
举例来说,若所述信道带宽内允许的同步栅格的数目为5,则对PCI执行模5运算得到的结果为0、或1、或2、或3、或4。所述信道带宽内允许的5个同步栅格可以按照同步栅格的频率位置由高到低的顺序、或者按照同步栅格的频率位置由低到高的顺序预先编号,如5个同步栅格的编号分别为0、1、2、3和4;当然,也可以对同步栅格以其他可实施的方式进行编号,如编号为A、B、C…等。以5个同步栅格的编号分别为0、1、2、3和4为例,若对PCI执行模5运算得到的结果为1,则终端设备确定第一同步栅格为编号为1的同步栅格。
下面基于不同的确定第一同步栅格的方式,对本申请实施例提供的控制信息的传输方法的具体实现过程进行详细描述。
通过预定义的方式确定第一同步栅格的情况下,本申请实施例提供的一种控制信息的传输方法的详细处理流程,如图6所示,包括以下步骤:
步骤S401,网络设备向终端设备发送ANR SS/PBCH block。
步骤S402,终端设备解码PBCH获得MIB信息,通过MIB信息获得子载波偏移信息。
步骤S403,终端设备根据子载波偏移信息确定CRB的边界。
步骤S404,终端设备根据MIB信息中的公共控制资源集合的信息确定第一资源块偏移。
步骤S405,终端设备根据预定义的规则从信道带宽内允许的多个同步栅格中确定一个第一同步栅格。
以预定义的规则为信道带宽内距离所述终端设备检测到的SSB的频率位置最近的频率对应的同步栅格为第一同步栅格为例,如图7所示,信道带宽内预定义的GSCN包括:GSCN0、GSCN1和GSCN2,SSB的ARFCN距离GSCN1最近,则确定GSCN1对应的栅格为第一同步栅格。
以预定义的规则为第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定为例,终端设备接收并解调SSB之后得到PCI,根据预先定义的PCI与第一同步栅格的对应关系确定第一同步栅格。若信道带宽内允许的同步栅格的数量为3,则对PCI执行取模运算,得到的结果为0,信道带宽内允许的3个同步栅格的编号分别与0、1和2对应;则确定编号与0对应的同步栅格为第一同步栅格。这里,不同的PCI可能对应不同的第一
步骤S406,终端设备根据检测到的SSB对应的频率与所述第一同步栅格对应的频率确定第二资源块偏移。
在一些实施例中,以图7为例,终端设备根据GSCN1与SS/PBCH block所在的ARFCN之间的频率偏移确定第二资源块偏移。
步骤S407,终端设备根据第一资源块偏移和第二资源块偏移确定控制资源集合的频率位置。
需要说明的是,本申请实施例中,步骤S401至步骤S404,以及步骤S406至步骤 S407的可基于现有技术实现,这里不再赘述。
本申请实施例中,通过预先定义第一同步栅格,能够节省网络设备向终端设备指示第一同步栅格带来的信令开销。
通过SSB中的指示信息确定一个第一同步栅格的情况下,本申请实施例提供的另一种控制信息的传输方法的详细处理流程,如图8所示,包括以下步骤:
步骤S501,网络设备向终端设备发送ANR SS/PBCH block,终端设备解码PBCH获得MIB信息。
步骤S502,终端设备通过MIB信息获得子载波偏移信息。
步骤S503,终端设备根据子载波偏移信息确定CRB的边界。
步骤S504,终端设备根据MIB信息中的公共控制资源集合的信息确定第一资源块偏移。
步骤S505,终端设备根据SSB中的指示信息从信道带宽内允许的多个同步栅格中确定一个第一同步栅格。
在一些实施例中,SSB中包括指示信息,所述指示信息用于指示第一同步栅格的频率位置。
在一些实施例中,所述指示信息的指示方式在本申请实施例中不做具体限定。如,所述SSB承载于PBCH上,则可以利用PBCH DMRS序列指示所述第一同步栅格的频率位置,也可以利用PBCH中承载的信息域中的比特信息指示所述第一同步栅格的频率位置。
举例来说,PBCH承载的信息包括来自高层的A比特信息和物理层相关的额外8比特信息,其中,物理层相关的信息包括SFN、半帧指示、SSB index等。具体定义可以如下:
PBCH承载的比特包括来自高层的MIB信息,共A比特,
Figure PCTCN2020105893-appb-000008
以及来自物理层相关的8比特,
Figure PCTCN2020105893-appb-000009
其中A比特MIB信息的定义如下标准所描述,即包括6比特的SFN,1比特的子载波间隔信息,4比特的SSB的子载波偏移,DMRS相关信息、调度SIB的PDCCH的资源信息等,还包含1个空闲比特。其中,物理层相关的8比特,
Figure PCTCN2020105893-appb-000010
中,
Figure PCTCN2020105893-appb-000011
为SFN的最低4位,
Figure PCTCN2020105893-appb-000012
为半帧指示。当L SSB=64时,
Figure PCTCN2020105893-appb-000013
为SSB index的最高3位,否则,
Figure PCTCN2020105893-appb-000014
为参数k SSB的最高位,
Figure PCTCN2020105893-appb-000015
为保留比特。其中,L SSB为最大的SSB个数,k SSB为SSB的子载波偏移信息。当系统频带小于6GHz时,即L SSB小于64时,层1相关的信息有2比特保留比特。
在一些实施例中,SSB不是用于终端设备的初始接入,其中,PBCH承载的信息可以用来表示其他的含义,例如多个允许的同步栅格的其中一个同步栅格的位置。举例来说,信道带宽内预定义了5个同步栅格,通过SSB的指示信息指示其中一个同步栅格的位置,用于计算第二资源块偏移。在PBCH中的具体指示方法在这里不做限定,例如利用PBCH DMRS序列,利用PBCH中承载的上述信息域中的比特等。
如图9所示,信道带宽内预定义的GSCN包括:GSCN0、GSCN1和GSCN2,SSB的指示信息指示第一同步栅格的频率位置对应GSCN0。
步骤S506,终端设备根据检测到的SSB对应的频率与所述第一同步栅格对应的频率确定第二资源块偏移。
在一些实施例中,以图8为例,终端设备根据GSCN0与SS/PBCH block所在的ARFCN之间的频率偏移确定第二资源块偏移。
步骤S507,终端设备根据第一资源块偏移和第二资源块偏移确定控制资源集合的频率位置。
需要说明的是,本申请实施例中,步骤S501至步骤S504,以及步骤S506至步骤S507的可基于现有技术实现,这里不再赘述。
本申请实施例中,网络设备可以通过SSB灵活的指示第一同步栅格的位置,使得终端设备可以根据SSB的指示从信道带宽内允许的多个同步栅格中确定第一同步栅格,实现了控制资源集合的灵活配置。
需要说明的是,本申请实施例中所述的SSB可以是ANR SSB。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为实现本申请实施例提供的控制信息的传输方法,本申请实施例还提供一种终端设备,所述终端设备600的可选组成结构,如图10所示,包括:
处理单元601,配置为从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。
在一些实施例中,所述第一同步栅格为预定义;或者,所述第一同步栅格由所述终端设备检测到的SSB中的指示信息确定。
在一些实施例中,所述第一同步栅格为预定义的情况下,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最高的同步栅格;
或者,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最低的同步栅格;
或者,所述信道带宽内允许的同步栅格为N个,N为奇数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第(N+1)/2个同步栅格;
或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2个同步栅格;
或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2+1个同步栅格;
或者,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格;
或者,所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定。
在一些实施例中,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格,包括:第一同步栅格为信道带宽内的同步栅格中与所述SSB的频率位置距离最近的同步栅格;或者,第一同步栅格为信道带宽内的同步栅格中与所述SSB的频率位置距离最远的同步栅格。
在一些实施例中,所述第一同步栅格由所述终端设备检测到的SSB中的指示信息确定的情况下,所述指示信息用于指示所述第一同步栅格的频率位置。
在一些实施例中,所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定的情况下,所述PCI与所述第一同步栅格具有对应关系。
在一些实施例中,所述PCI与所述第一同步栅格具有对应关系,包括:
基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
在一些实施例中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置 由低到高的顺序标识得到。
在一些实施例中,所述处理单元601,配置为基于所述终端设备检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移确定所述控制资源集合的频域位置。
在一些实施例中,所述处理单元601,配置为基于所述第二资源块偏移与第一资源块偏移,确定所述控制资源集合的频域位置。
在一些实施例中,所述第一资源块偏移由所述终端设备检测到的SSB中的MIB信息确定。
为实现本申请实施例提供的控制信息的传输方法,本申请实施例还提供一种网络设备,所述网络设备800的可选组成结构,如图11所示,包括:
发送单元801,配置为发送SSB,所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的信息。
在一些实施例中,所述SSB包括指示信息,所述指示信息用于指示所述第一同步栅格的频率位置。
在一些实施例中,所述SSB中携带的PCI用于确定所述第一同步栅格。
在一些实施例中,所述PCI与所述第一同步栅格具有对应关系。
在一些实施例中,所述PCI与所述第一同步栅格具有对应关系,包括:
基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
在一些实施例中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
本申请实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的控制信息的传输方法的步骤。
本申请实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的控制信息的传输方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述终端设备执行的控制信息的传输方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述网络设备执行的控制信息的传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的控制信息的传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的控制信息的传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的控制信息的传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的控制信息的传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的控制信息的传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述网络设备执行的控制信息的传输方法。
图12是本申请实施例的电子设备(终端设备或网络设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图12中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (44)

  1. 一种控制信息的传输方法,所述方法包括:
    终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;
    基于所述第一同步栅格确定控制资源集合的信息。
  2. 根据权利要求1所述的方法,其中,所述第一同步栅格为预定义;
    或者,所述第一同步栅格由所述终端设备检测到的同步信号块SSB中的指示信息确定。
  3. 根据权利要求2所述的方法,其中,若所述第一同步栅格为预定义,
    则所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最高的同步栅格;
    或者,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最低的同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为奇数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第(N+1)/2个同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2个同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2+1个同步栅格;
    或者,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格;
    或者,所述第一同步栅格由所述终端设备检测到的SSB中携带的物理小区标识PCI确定。
  4. 根据权利要求3所述的方法,其中,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格包括:
    所述第一同步栅格为所述信道带宽内的同步栅格中与所述SSB的频率位置距离最近的同步栅格;
    或者,所述第一同步栅格为所述信道带宽内的同步栅格中与所述SSB的频率位置距离最远的同步栅格。
  5. 根据权利要求2所述的方法,其中,所述指示信息用于指示所述第一同步栅格的频率位置。
  6. 根据权利要求3所述的方法,其中,所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定的情况下,所述PCI与所述第一同步栅格具有对应关系。
  7. 根据权利要求6所述的方法,其中,所述PCI与所述第一同步栅格具有对应关系,包括:
    基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
  8. 根据权利要求7所述的方法,其中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
    或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
  9. 根据权利要求1至8任一项所述的方法,其中,基于所述第一同步栅格确定控制资源集合的信息,包括:
    基于所述终端设备检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移确定所述控制资源集合的频域位置。
  10. 根据权利要求9所述的方法,其中,所述基于所述终端设备检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移确定控制资源集合的频域位置,包括:
    基于所述第二资源块偏移与第一资源块偏移,确定所述控制资源集合的频域位置。
  11. 根据权利要求10所述的方法,其中,所述第一资源块偏移根据所述终端设备检测到的SSB中的主信息块MIB信息确定。
  12. 一种控制信息的传输方法,所述方法包括:
    网络设备发送同步信号块SSB,所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的信息。
  13. 根据权利要求12所述的方法,其中,所述SSB包括指示信息,所述指示信息用于指示所述第一同步栅格的频率位置。
  14. 根据权利要求12所述的方法,其中,所述SSB中携带的物理小区标识PCI用于确定所述第一同步栅格。
  15. 根据权利要求14所述的方法,其中,所述PCI与所述第一同步栅格具有对应关系。
  16. 根据权利要求15所述的方法,其中,所述PCI与所述第一同步栅格具有对应关系,包括:
    基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
  17. 根据权利要求16所述的方法,其中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
    或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
  18. 一种终端设备,所述终端设备包括:
    处理单元,配置为从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格;基于所述第一同步栅格确定控制资源集合的信息。
  19. 根据权利要求18所述的终端设备,其中,所述第一同步栅格为预定义;
    或者,所述第一同步栅格由所述终端设备检测到的同步信号块SSB中的指示信息确定。
  20. 根据权利要求19所述的终端设备,其中,若所述第一同步栅格为预定义,
    则所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最高的同步栅格;
    或者,所述第一同步栅格为所述信道带宽内允许的同步栅格中频率最低的同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为奇数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第(N+1)/2个同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2个同步栅格;
    或者,所述信道带宽内允许的同步栅格为N个,N为偶数,所述第一同步栅格为按频率大小顺序排列的N个同步栅格中第N/2+1个同步栅格;
    或者,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格;
    或者,所述第一同步栅格由所述终端设备检测到的SSB中携带的物理小区标识PCI确定。
  21. 根据权利要求20所述的终端设备,其中,所述第一同步栅格为与所述终端设备检测到的SSB的频率位置满足第一关系的同步栅格包括:
    所述第一同步栅格为所述信道带宽内的同步栅格中与所述SSB的频率位置距离最近的同步栅格;
    或者,所述第一同步栅格为所述信道带宽内的同步栅格中与所述SSB的频率位置距离最远的同步栅格。
  22. 根据权利要求19所述的终端设备,其中,所述指示信息用于指示所述第一同步栅格的频率位置。
  23. 根据权利要求20所述的终端设备,其中,所述第一同步栅格由所述终端设备检测到的SSB中携带的PCI确定的情况下,所述PCI与所述第一同步栅格具有对应关系。
  24. 根据权利要求23所述的终端设备,其中,所述PCI与所述第一同步栅格具有对应关系,包括:
    基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
  25. 根据权利要求24所述的终端设备,其中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
    或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
  26. 根据权利要求18至25任一项所述的终端设备,其中,
    所述处理单元,配置为基于所述终端设备检测到的SSB对应的频率与所述第一同步栅格对应的频率之间的第二资源块偏移确定所述控制资源集合的频域位置。
  27. 根据权利要求26所述的终端设备,其中,所述处理单元,配置为基于所述第二资源块偏移与第一资源块偏移,确定所述控制资源集合的频域位置。
  28. 根据权利要求27所述的终端设备,其中,所述第一资源块偏移根据所述终端设备检测到的SSB中的主信息块MIB信息确定。
  29. 一种网络设备,所述网络设备包括:
    发送单元,配置为发送同步信号块SSB,所述SSB用于终端设备从信道带宽内允许的至少两个同步栅格中确定一个第一同步栅格,所述第一同步栅格用于确定控制资源集合的信息。
  30. 根据权利要求29所述的网络设备,其中,所述SSB包括指示信息,所述指示信息用于指示所述第一同步栅格的频率位置。
  31. 根据权利要求29所述的网络设备,其中,所述SSB中携带的物理小区标识PCI用于确定所述第一同步栅格。
  32. 根据权利要求31所述的网络设备,其中,所述PCI与所述第一同步栅格具有对应关系。
  33. 根据权利要求32所述的网络设备,其中,所述PCI与所述第一同步栅格具有对应关系,包括:
    基于所述信道带宽内允许的同步栅格的数目对所述PCI执行取模运算得到的取模运算结果,与所述第一同步栅格的编号具有对应关系。
  34. 根据权利要求33所述的网络设备,其中,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由高到低的顺序标识得到;
    或者,所述第一同步栅格的编号是基于所述信道带宽内允许的同步栅格的频率位置由低到高的顺序标识得到。
  35. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至11任一项所述的控制信息的传输方法的步骤。
  36. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求12至17任一项所述的控制信息的传输方法的步骤。
  37. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至11任一项所述的控制信息的传输方法。
  38. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求12至17任一项所述的控制信息的传输方法。
  39. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11任一项所述的控制信息的传输方法。
  40. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求12至17任一项所述的控制信息的传输方法。
  41. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至11任一项所述的控制信息的传输方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求12至17任一项所述的控制信息的传输方法。
  43. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11任一项所述的控制信息的传输方法。
  44. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求12至17任一项所述的控制信息的传输方法。
PCT/CN2020/105893 2020-07-30 2020-07-30 一种控制信息的传输方法、电子设备及存储介质 WO2022021226A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20946872.7A EP4156584A4 (en) 2020-07-30 2020-07-30 METHOD OF TRANSFERRING CONTROL INFORMATION, ELECTRONIC DEVICE AND STORAGE MEDIA
PCT/CN2020/105893 WO2022021226A1 (zh) 2020-07-30 2020-07-30 一种控制信息的传输方法、电子设备及存储介质
CN202080104586.XA CN116250313A (zh) 2020-07-30 2020-07-30 一种控制信息的传输方法、电子设备及存储介质
US18/146,441 US20230132121A1 (en) 2020-07-30 2022-12-26 Method for transmitting control information, electronic device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105893 WO2022021226A1 (zh) 2020-07-30 2020-07-30 一种控制信息的传输方法、电子设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,441 Continuation US20230132121A1 (en) 2020-07-30 2022-12-26 Method for transmitting control information, electronic device and storage medium

Publications (1)

Publication Number Publication Date
WO2022021226A1 true WO2022021226A1 (zh) 2022-02-03

Family

ID=80037390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105893 WO2022021226A1 (zh) 2020-07-30 2020-07-30 一种控制信息的传输方法、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20230132121A1 (zh)
EP (1) EP4156584A4 (zh)
CN (1) CN116250313A (zh)
WO (1) WO2022021226A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169003A (zh) * 2017-01-11 2019-08-23 高通股份有限公司 用于无线通信的信号加扰序列技术
CN110603852A (zh) * 2017-11-17 2019-12-20 Lg电子株式会社 发送和接收下行链路信道的方法及其装置
US20200084739A1 (en) * 2018-09-11 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus for advanced frequency offset indication
CN111106895A (zh) * 2017-05-16 2020-05-05 高通股份有限公司 用于重用其余最小系统信息配置比特以通过信号发送同步信号块位置的技术和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395246B2 (en) * 2018-05-11 2022-07-19 Lg Electronics Inc. Method for transmitting or receiving system information and apparatus therefor
US11184776B2 (en) * 2018-07-16 2021-11-23 Kt Corporation Method and apparatus for performing wireless communication in unlicensed band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169003A (zh) * 2017-01-11 2019-08-23 高通股份有限公司 用于无线通信的信号加扰序列技术
CN111106895A (zh) * 2017-05-16 2020-05-05 高通股份有限公司 用于重用其余最小系统信息配置比特以通过信号发送同步信号块位置的技术和装置
CN110603852A (zh) * 2017-11-17 2019-12-20 Lg电子株式会社 发送和接收下行链路信道的方法及其装置
US20200084739A1 (en) * 2018-09-11 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus for advanced frequency offset indication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Initial access signals and channels", 3GPP DRAFT; R1-1910944 INITIAL ACCESS SIGNALS AND CHANNELS, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 13, XP051789724 *
ERICSSON: "Initial access signals and channels", 3GPP DRAFT; R1-1912706, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 22, XP051823550 *
See also references of EP4156584A4 *

Also Published As

Publication number Publication date
EP4156584A1 (en) 2023-03-29
EP4156584A4 (en) 2023-07-19
US20230132121A1 (en) 2023-04-27
CN116250313A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
JP7016404B2 (ja) リソース割り当て方法、端末及びネットワークデバイス
WO2020103161A1 (zh) 确定同步信号块的方法、终端设备和网络设备
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
US20210385774A1 (en) Wireless communication method, terminal device and network device
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
EP3863357A1 (en) Data transmission method and terminal device
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
WO2020227995A1 (zh) 一种d2d系统中的通信方法及终端设备、网络设备
US20230403689A1 (en) Method for determining random access resource, and electronic device and storage medium
KR20230042398A (ko) 무선 통신 방법, 네트워크 기기 및 단말 기기
WO2021062584A1 (zh) 无线通信方法和终端设备
CN112237037B (zh) 一种控制信息的传输方法、设备及存储介质
US20220124699A1 (en) Uplink transmission method, electronic device, and storage medium
US11856539B2 (en) Method and device for transmitting downlink control information
WO2022183455A1 (zh) 一种随机接入资源确定方法、电子设备及存储介质
WO2022021226A1 (zh) 一种控制信息的传输方法、电子设备及存储介质
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2022104755A1 (zh) 一种随机接入方法、通信设备及存储介质
WO2022188110A1 (zh) 一种信息传输方法、电子设备及存储介质
CN114339664B (zh) 一种链路传输方法、终端设备及存储介质
WO2022151189A1 (zh) 一种信道传输方法、电子设备及存储介质
WO2022021085A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2021092774A1 (zh) 无线通信的方法、网络设备和终端设备
CN116097804A (zh) 一种信号传输方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020946872

Country of ref document: EP

Effective date: 20221223

NENP Non-entry into the national phase

Ref country code: DE