WO2021060923A1 - Method and composition for producing compound having four or more carbon atoms from methane - Google Patents

Method and composition for producing compound having four or more carbon atoms from methane Download PDF

Info

Publication number
WO2021060923A1
WO2021060923A1 PCT/KR2020/013106 KR2020013106W WO2021060923A1 WO 2021060923 A1 WO2021060923 A1 WO 2021060923A1 KR 2020013106 W KR2020013106 W KR 2020013106W WO 2021060923 A1 WO2021060923 A1 WO 2021060923A1
Authority
WO
WIPO (PCT)
Prior art keywords
coli
composition
methane
mutant
methanogens
Prior art date
Application number
PCT/KR2020/013106
Other languages
French (fr)
Korean (ko)
Inventor
이승구
이혜원
이대희
백지인
김하성
염수진
이진영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2021060923A1 publication Critical patent/WO2021060923A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01028D-Lactate dehydrogenase (1.1.1.28)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0101Acetaldehyde dehydrogenase (acetylating) (1.2.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01006Fumarate reductase (NADH) (1.3.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/05Oxidoreductases acting on the CH-CH group of donors (1.3) with a quinone or related compound as acceptor (1.3.5)
    • C12Y103/05004Fumarate reductase (menaquinone) (1.3.5.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)

Definitions

  • the present invention relates to a composition and method for producing a compound having 4 or more carbon atoms by using methanogens and mutated E. coli.
  • Methane (CH 4 ) is a hydrocarbon gas with a simple structure composed of one carbon. It is relatively cheaper than a liquid hydrocarbon such as petroleum, but it is difficult to attempt to convert it to a high value-added compound. In addition, since it is known as a gas that can induce a greenhouse effect, attempts to industrially apply it while reducing methane by converting methane into other compounds are continuing.
  • Methanogens are bacteria that can use methane as the sole carbon source or energy source, and can convert methane to methanol using methane monooxygenase (MMO), and then convert methanol to methanol through various biosynthetic pathways. This is because it can be converted into a kind of organic compound.
  • MMO methane monooxygenase
  • the inventors of the present invention use a microorganism such as E. coli, which has a high growth rate and a considerable level of research on the introduction method of external genes, as a co-culture partner microorganism of the methanogen, instead of directly improving and using the methanogens.
  • a microorganism such as E. coli
  • E. coli which has a high growth rate and a considerable level of research on the introduction method of external genes, as a co-culture partner microorganism of the methanogen, instead of directly improving and using the methanogens.
  • the inventors of the present invention newly developed a microbial co-cultivation system capable of industrially producing high value-added compounds with high efficiency while being much more applicable than the method that directly improved the conventional methanogens by co-culturing methane-magnetizing bacteria and mutant Escherichia coli. Constructed to complete the present invention.
  • the present invention is a relatively inexpensive carbon number 1 gas, especially methane (CH 4 ), while cultivating and using microorganisms to convert and produce various useful compounds, without directly improving and using microorganisms that can utilize methane.
  • An object of the present invention is to provide a composition for use in producing a compound having 4 or more carbon atoms with high efficiency.
  • it is an object of the present invention to provide a method for co-culture with methane magnetizing bacteria, such as E. coli, with methane magnetizing bacteria that are difficult to co-culture.
  • it is an object of the present invention to provide a method for producing a compound having 4 or more carbon atoms with high productivity by utilizing the microorganism culture method as described above.
  • One aspect of the present invention in order to achieve the above object, for producing a compound having a carbon number of 4 or more from methane (CH 4 ), including a mutant E. coli capable of metabolizing acetic acid and methanotroph.
  • the composition is provided.
  • Another aspect of the present invention in order to achieve the above object, comprising the step of simultaneously culturing methanotroph, and mutant E. coli capable of metabolizing acetic acid, as a co-culture method of methanogen and Escherichia coli the mutant E.
  • coli frdA fluarate reductase flavoprotein subunit
  • ldhA D-lactate dehydrogenase
  • pta phosphotransacetylase
  • adhE alcohol / acetaldehyde dehydrogenase activity of the protein expressed from one or more genes selected from the group consisting of and patZ (peptidyl-lysine acetyltransferase)
  • patZ peptidyl-lysine acetyltransferase
  • Another aspect of the present invention is a method for producing a compound having 4 or more carbon atoms, comprising simultaneously culturing methanotroph and mutant E. coli capable of metabolizing acetic acid in order to achieve the above object. to provide.
  • the present invention provides a composition and method capable of producing a compound having 4 or more carbon atoms with high efficiency by converting methane (CH 4) at a lower price than petroleum.
  • Methanogens which are microorganisms that use methane, may be inhibited by the high concentration of organic acids produced thereby.
  • partner microorganisms capable of producing useful compounds having 4 or more carbon atoms using organic acids produced by methanogens By co-culturing the methanogens and the two microbial strains, a system was developed in which both microbial strains can grow stably.
  • the general wild-type E. coli overcomes the disadvantage of not having the characteristic of not growing together with methanogens, and exhibits excellent growth rates even when co-cultured with methanogens, and has a characteristic capable of producing a compound having a carbon number of 4 or more.
  • Methane Capital Using Mutants The present invention provides a composition and method capable of producing a compound having 4 or more carbon atoms with high efficiency by converting methane (CH 4) at a low price compared to petroleum.
  • Methanogens which are microorganisms that use methane, may be inhibited by the high concentration of organic acids produced thereby.
  • partner microorganisms capable of producing useful compounds having 4 or more carbon atoms using organic acids produced by methanogens
  • co-culturing the methanogens and the two microbial strains a system was developed in which both microbial strains can grow stably.
  • the general wild-type E. coli overcomes the disadvantage of not having the characteristic of not growing together with methanogens, and exhibits excellent growth rates even when co-cultured with methanogens, and has a characteristic capable of producing a compound having a carbon number of 4 or more.
  • the mutant we succeeded in constructing a co-culture system with methanogens, and both the methanogens and partner microorganisms can exhibit a high growth rate through the optimal inoculation ratio.
  • the methanogens are regenerated through repetitive and continuous fermentation and cultivation processes.
  • stability is poor because it may have characteristics
  • the present invention it has the advantage of showing excellent stability by confirming that the same characteristics are maintained even during continuous fermentation while culturing the methane-magnetizing bacteria together with a partner microorganism. Accordingly, the composition and production method using the co-culture system of the present invention is expected to be useful for repetitive production on a larger scale for industrial purposes.
  • a new system can be constructed by changing the type of compound to be produced without difficulty, by using a partner microorganism having the characteristics of easy introduction of external genes and easy strain engineering, without directly improving the methanogens.
  • a partner microorganism having the characteristics of easy introduction of external genes and easy strain engineering, without directly improving the methanogens.
  • 1 is a M. capsulatus bath classified as Type I among methanogens and M. trichosporium OB3b classified as Type II.
  • 1B is a graph comparing the cell growth rate and the concentrations of acetic acid (AA) and succinic acid (SA) in the medium by culturing by supplying methane under oxygen-restricted conditions.
  • Figure 2 is a M. capsulatus bath (M. capsulatus bath) NMS medium (with copper, Figure 2A) to which 10 ⁇ M of CuCl 2 is added and a medium to which CuCl 2 is not added (without copper, Figure 2)
  • NMS medium with copper, Figure 2A
  • AA acetic acid
  • SA succinic acid
  • Figure 3 is a methylococcus capsulatus bath (M. capsulatus bath) oxygen restriction condition (reduced from 14.7% to 3.5%), sulfur restriction condition (reduced to 1/10 level), nitrogen restriction condition (1/10 level)
  • creativity 1 per cell mass is methyllococcus capsulatus bath, classified as Type I, and methyl, classified as Type II, among methanogens.
  • Sinus trichosporium OB3b M. trichosporium OB3b, Fig. 1B
  • Figure 2 is a M. capsulatus bath (M. capsulatus bath) NMS medium (with copper, Figure 2A) to which 10 ⁇ M of CuCl 2 is added and a medium to which CuCl 2 is not added (without copper, Figure 2)
  • NMS medium with copper, Figure 2A
  • AA acetic acid
  • SA succinic acid
  • Figure 3 is a methylococcus capsulatus bath (M. capsulatus bath) oxygen restriction condition (reduced from 14.7% to 3.5%), sulfur restriction condition (reduced to 1/10 level), nitrogen restriction condition (1/10 level) Is a graph comparing by measuring the concentration of acetic acid produced per cell mass after culturing each in (reduced to ).
  • Figure 4 is a graph comparing the concentration of acetic acid measured by culturing M. capsulatus Bath in a medium containing limited nitrogen source under various conditions.
  • a control Normal (NO 3 )
  • a medium containing nitric acid was used as a nitrogen source, and a medium containing nitric acid was limited to 1/10 level (1/10 NO 3 ), and ammonia was limited to 1/10 level.
  • a medium containing (1/10 NH 4 ) a medium containing a mixture of nitric acid and ammonia was limited to a level of 1/10, and the containing medium (1/10 NO 3 & NH 4 ) was used, respectively.
  • 5 is a diagram showing a fermentation system of methane magnetizing bacteria.
  • Figure 6 is a methylococcus capsulatus bath (M. capsulatus Bath) after culturing in two different medium nitrogen sources, cell growth rate and concentrations of acetic acid (AA), succinic acid (SA) and malic acid (MA) in the medium.
  • AA acetic acid
  • SA succinic acid
  • MA malic acid
  • Figure 7 shows the amount of acetic acid (acetate) production measured after culturing M. capsulatus Bath in 3xNMS medium and 3xAMS medium for 48 hours and succinate production measured after incubating for 44 hours. This is a comparison graph.
  • FIG. 8 is after co-culturing each of its partner microorganism candidate strains with M. capsulatus Bath, cell growth rate and acetic acid (AA), succinic acid (SA), and mevalonic acid (MVA) in the medium. It is a graph comparing by measuring the concentration of.
  • FIG. 8A is a wild-type E. coli MG1655 strain as a partner microorganism
  • FIG. 8B is an E. coli DSM01 strain as a partner microorganism
  • FIG. 8C is a result of using the E. coli SBA01 strain as a partner microorganism.
  • E. coli SBA01 strain transformed with a plasmid vector constructed using a gene related to the mevalonic acid production pathway ("SBA01-MVA"), an Escherichia coli SBA01 strain without introducing the plasmid ("SBA01-no plasmid”) and meval After culturing the E. coli SBA01 strain ("SBA01-control plasmid”) transformed with a plasmid irrelevant to the production pathway of ronic acid, the cell growth rate and the concentration of acetic acid and mevalonic acid in the medium were measured and compared.
  • SBA01-MVA a gene related to the mevalonic acid production pathway
  • FIG. 10 is a graph comparing M. capsulatus Bath and E. coli SBA01 strains by co-culture at different inoculation ratios, and then measuring and comparing their cell growth rates and concentrations of acetic acid and succinic acid in the medium.
  • a to C of Figure 10 shows the cell growth and acetic acid, succinic acid concentration change of the methane-magnetizing bacteria
  • Figure 10 D, E shows the cell growth of the E. coli SBA01 strain.
  • A is the result of inoculating the strains at a ratio of 1:1, B and D at a ratio of 5:1, and C and E at a ratio of 10:1, respectively.
  • FIG. 11 is after co-culture with M. capsulatus Bath and Escherichia coli SBA01 strain under optimized conditions using methane as the sole carbon source, and then their cell growth rate and acetic acid (AA) and succinic acid in the medium ( SA), malic acid (MA) and mevalonic acid (MVA) concentrations were measured and compared.
  • FIG. 11A shows the cell growth rate of Methylococcus capsulartus bath
  • FIG. 11B shows the cell growth rate of E. coli SBA01.
  • Figure 12 is not co-cultured with methanogens, and after culturing the E. coli SBA01 strain introduced with the mevalonic acid production pathway alone while supplying methane, the cell growth rate of the E. coli SBA01 strain and the concentration of succinic acid and mevalonic acid in the medium are measured. It is a graph that was compared.
  • FIG. 13 is a M. capsulatus Bath (M. capsulatus Bath) and E. coli SBA01 strains were first cultured and then continuously secondary cultured in a new medium, and then their cell growth rate and acetic acid (AA) and succinic acid in the medium It is a graph comparing concentrations of (SA), malic acid (MA) and mevalonic acid (MVA).
  • SA concentrations of
  • MA malic acid
  • MVA mevalonic acid
  • FIG. 13A shows the cell growth rate of Methylococcus capsulartus bath
  • FIG. 13B shows the cell growth rate of E. coli SBA01.
  • FIG. 14 is a diagram showing a process of converting mevalonic acid from methane by co-culture by introducing a gene related to mevalonic acid biosynthesis to a mutant Escherichia coli, which is a methane magnetizing bacterium and its partner microorganism, a mutant E. coli.
  • composition for production of compounds having 4 or more carbon atoms 1.
  • One aspect of the present invention provides a composition for producing a compound having 4 or more carbon atoms.
  • the composition for production of a compound having 4 or more carbon atoms includes a mutant E. coli capable of metabolizing methanotroph and acetic acid, and the mutant E. coli is a frdA (fumarate reductase flavoprotein subunit) gene, hereinafter, the present invention in detail.
  • frdA frumarate reductase flavoprotein subunit
  • a composition for producing a compound having 4 or more carbon atoms 1.
  • One aspect of the present invention provides a composition for producing a compound having 4 or more carbon atoms.
  • the composition for producing the compound having 4 or more carbon atoms includes methanotroph, and mutant E. coli capable of metabolizing acetic acid.
  • the composition may be for producing a compound having 4 or more carbon atoms from methane (CH 4 ).
  • the mutant E. coli is active in the protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) and patZ ( The activity of a protein expressed from the peptidyl-lysine acetyltransferase) gene may be lost, and a biosynthesis-related gene of the compound having 4 or more carbon atoms may be introduced.
  • composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention two microbial strains can construct a co-culture system as the methanogens and mutant E. coli are included together. have. Methanogens produce and secrete organic acids (acetic acid, succinic acid, etc.) using compounds with 1 carbon number such as methane (CH 4 ), and mutant Escherichia coli uses organic acids produced by methanogens to produce compounds with 4 or more carbon atoms. Since it can be produced, the composition of the present invention can be used for the production of a compound having 4 or more carbon atoms.
  • co-culture system refers to a system for culturing two or more kinds of strains together under the same culture conditions, and a culture in which two or more strains are cultivated together, a culture method, the activity of each of the strains and It is a concept that includes all of the interactions between strains and the resulting products.
  • the composition may not contain a carbon source other than methane (CH 4 ).
  • the methane may be dissolved and included in the composition, or may be provided in a form in which methane gas is supplied to the composition.
  • Other carbon sources other than methane may be, for example, methanol, glucose, starch, or sugar, but are not limited thereto.
  • the concentration of the other carbon source in the composition is 0, or the methanogens and mutant E. coli in the composition contain a carbon source at a level that cannot be continuously grown using a carbon source other than methane. It may have been.
  • the initial composition does not contain other carbon sources other than methane, but as the methanogens and mutant Escherichia coli in the composition progress through growth and metabolism using the methane as a carbon source, organic acids produced using methane, such as Acetic acid, succinic acid, malic acid, and the like may be included in the composition, and a compound having 4 or more carbon atoms produced by mutant E. coli using the organic acid (eg, acetic acid) may be included in the composition.
  • organic acids produced using methane such as Acetic acid, succinic acid, malic acid, and the like
  • a compound having 4 or more carbon atoms produced by mutant E. coli using the organic acid eg, acetic acid
  • the methanotroph is a bacterium that can metabolize methane by using methane as a carbon source and an energy source, and any strain having such properties may be used.
  • Methanobacteria can be classified into two types: Type I ( ⁇ -proteobacteria) and Type II ( ⁇ -proteobacteria), depending on which pathway is used in the process of producing organic compounds from methane.
  • the methanogens of the present invention may be those that perform carbon assimilation using the RuMP (ribulose monophosphate) pathway, or those that perform carbon assimilation using the serine pathway, for example, using the RuMP pathway. Thus, it may be a methanogens capable of producing organic acids from methane.
  • the methanogens may be strains classified as Methylococcus capsulatus , Methylosinus trichosporium , or Methylomonas sp., for example, methylococcus capsulatus. It may be a Lococcus capsulatus Bath (Methylococcus capsulatus Bath) strain.
  • the mutant E. coli is a strain capable of metabolizing and growing even under a condition where an organic acid is the only carbon source, and specifically, the organic acid may be acetic acid, succinic acid, and/or malic acid, and more specifically, acetic acid.
  • the mutant E. coli can be used for production, growth (increase of biomass), or energy metabolism of a compound having 4 or more carbon atoms by using the organic acid as a carbon source or an energy source.
  • Proteins expressed from the frdA (fumarate reductase flavoprotein subunit) gene, ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase), and adhE (alcohol/acetaldehyde dehydrogenase), respectively, are involved in the metabolic circuit of succinic acid, lactic acid, acetic acid and alcohol production. It is a protein, and when the activity of a protein expressed from one or more genes selected from the group consisting of the above genes is lost, the production of by-products is suppressed, and the characteristic of producing acetyl-CoA from a carbon source such as glucose may be increased. Accordingly, in the mutant E.
  • the acetyl-CoA productivity may be increased than that of E. coli in which the activity of the protein is not lost.
  • the mutant E. coli may have lost all of the activities of proteins expressed from frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase), and adhE (alcohol/acetaldehyde dehydrogenase).
  • the mutant Escherichia coli is an Escherichia coli strain characterized in that the activity of the protein expressed from the patZ gene is essentially lost, cspC (cold shock domain-containing protein), mukB (Mukaku), lomR (lambda outer membrane protein) And yhjE (putative major facilitator superfamily transporter).
  • the activity of a protein expressed from at least one gene selected from the group consisting of yhjE (putative major facilitator superfamily transporter) may be additionally lost.
  • the mutant E. coli may have lost the activity of all proteins expressed from the genes of cspC , mukB , lomR, and yhjE.
  • the term "lost activity of a protein expressed from a gene" of the present invention means that the protein fails to perform the function indicated by the protein in a wild-type individual or has a reduced function. This means that a mutation occurs in the gene, that the expression of the protein (such as RNA transcription or protein translation) is inhibited, that an inhibitor of the activity of the protein is present, that the protein is moved or released to the outside of the cell, the The concept includes, but is not limited to, that the decomposition of the protein is accelerated, that the substrate of the reaction catalyzed by the protein cannot bind to the protein, and that the protein cannot bind to its receptor.
  • the mutated patZ , cspC , mukB , lomR and yhjE genes may each include a nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 5, but are limited thereto. It does not become.
  • the mutation of the patZ gene may be that Trp, the 501st amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 6, is mutated with a stop codon (Trp501Stop), and the mutation of the cspC gene is of SEQ ID NO: 7 Gln, the 58th amino acid of the wild-type enzyme consisting of an amino acid sequence, may be mutated with a stop codon (Gln58Stop), and the mutation of the mukB gene is the 54th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 8.
  • Phosphorus Asp may be mutated to Glu (Asp54Glu), and the mutation of the lomR gene may be that Pro, which is the 114th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 9, is mutated to Leu (Pro114Leu),
  • the mutation of the yhjE gene may be that Ile, which is the 210th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 10, is mutated to Met (Ile210Met).
  • the term "mutation" means that the DNA molecule on which the genetic information is recorded differs from the original DNA by various factors. When a mutation occurs, a change occurs in the protein produced by the gene, which is genotype. It brings about a change in quality, which can change the biological characteristics of the individual.
  • the mutant E. coli may be a mutant microorganism described in Korean Patent Publication No. 2018-0034280, or a gene related to the biosynthesis of a compound having 4 or more carbon atoms is introduced into the mutant E. coli prepared through the method described in the Korean Patent Application Publication No. 2018-0034280. Can be.
  • the mutant E. coli may have its acetyl-CoA productivity higher than that of wild-type E. coli, and specifically, the frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE.
  • the activity of the protein expressed from (alcohol/acetaldehyde dehydrogenase) may be increased compared to the acetyl-CoA productivity of E. coli that has not been lost.
  • the mutant E. coli of the present invention is a strain capable of growth and metabolism using acetic acid even under conditions in which acetic acid is the only carbon source as the activity of proteins expressed from the above genes is lost.
  • the mutant E. coli may be a gene introduced into the E. coli SBA01 strain deposited with the accession number KCTC13040BP, and a gene related to the biosynthesis of the compound having a carbon number of 4 or more was introduced, and the E. coli SBA01 strain was assigned the accession number KCTC13040BP to the Microbial Resource Center of the Korea Institute of Bioscience and Biotechnology in 2016 Since it was deposited on June 10, it is a microorganism that can be easily obtained by a person skilled in the art pre-sale from the depositing institution.
  • the compound having 4 or more carbon atoms may be a compound having 5 or more carbon atoms, a compound having 6 or more carbon atoms, a compound having 8 or more carbon atoms, a compound having 10 or more carbon atoms, or a compound having 12 or more carbon atoms, but is not limited thereto.
  • the compound having 4 or more carbon atoms may be mevalonate, butanol, isobutanol, pentanol, isopentanol, bisabolen, bisabolol, isoprene, lycopene, or himachalene, but is not limited thereto.
  • the composition of the invention may be a composition for use in producing mevalonic acid.
  • the mutant E. coli may be transformed by introducing a polynucleotide encoding an MvaE enzyme and an MvaS enzyme.
  • the MvaE enzyme has acetoacetyl-CoA thiolase activity and 3-hydroxy-3-methylglutaryl-CoA reductase activity.
  • the MvaS enzyme may have a 3-hydroxy-3-methylglutaryl-CoA synthase activity.
  • the polynucleotide encoding the MvaE enzyme and the MvaS enzyme may be derived from Enterococcus faecalis , and the polynucleotide may be included in a vector such as a plasmid and transformed into the mutant E. coli.
  • the introduction of genes related to biosynthesis thereof into mevalonic acid in relation to the compound having 4 or more carbon atoms is described, but this is only one representative example, so the compound having 4 or more carbon atoms is mebalan
  • the present invention is not limited to ronic acid, and any known gene or metabolic pathway for biosynthesis of compounds having 4 or more carbon atoms can be applied to the present invention.
  • a person skilled in the art in the same technical field as the present invention can appropriately select and apply any introduction method for introducing the biosynthesis-related gene or related metabolic pathway into the mutant E. coli.
  • the composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may include the methanogens and the mutant Escherichia coli in a ratio of 3:1 to 15:1. Specifically, the ratio of the methanogens and the mutant E. coli is, 4:1 to 13:1, 5:1 to 12:1, 8:1 to 11:1, 9:1 to 11:1 or 10:1 May be, but is not limited thereto. When the methanogens and mutant E. coli are included in the composition in the ratio of the above range, the two strains may not negatively affect each other's growth, and the growth rate of cells may be improved.
  • the number of cells may increase by 20 times or more for methanogens and 10 times or more for mutant Escherichia coli within 48 hours.
  • the ratio of the methanogens and mutant E. coli may be the ratio of the number of microbial cells measured through optical density (OD), and may be, for example, an optical density of 600 nm wavelength. Specifically, the ratio may be calculated by comparing the measured optical density value of the mutant E. coli, based on the measured optical density value 1 of the methane magnetizing bacteria.
  • the composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may further include copper ions.
  • the copper ions may be included in the form of CuCl 2 , for example, 5 ⁇ M to 15 ⁇ M, 7 ⁇ M to 13 ⁇ M, or 9 to 11 ⁇ M.
  • the copper ions can promote the activity of methane monooxygenase (MMO) or electron transport, and accordingly, the process of producing organic acids from methane in the composition of the present invention is promoted, resulting in production efficiency. Can be increased.
  • MMO methane monooxygenase
  • the composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may include nitric acid (NO 3 ⁇ ) as a nitrogen source.
  • the "nitrogen source” refers to an external nitrogen compound accepted by the methanogens or mutant E. coli contained in the composition of the present invention to synthesize a nitrogen compound.
  • the nitrogen source may be included in the composition in the form of a mixture of nitric acid and ammonia (NH 4 + ), but the composition may not contain ammonia.
  • nitric acid is used as the nitrogen source in the composition of the present invention, the growth rate of methanogens or the production of organic acids may be increased compared to the case of using ammonia.
  • the mutant E. coli can use the organic acid to produce a compound having 4 or more carbon atoms, thereby improving the productivity of a compound having 4 or more carbon atoms.
  • the nitrogen source may be included in the composition at a concentration of 5% to 15% of the nitrogen source concentration contained in a conventional NMS (nitrate mineral salts) medium, and the nitrogen source concentration contained in the NMS medium may be, for example, 0.5 mM to 2 mM. However, it is not limited thereto.
  • the nitrogen source may be included in a concentration of 0.1 mM to 50 mM in the composition of the present invention. Specifically, the nitrogen source may be included in a concentration of 0.1 mM to 45 mM, 0.2 mM to 45 mM, 0.5 mM to 40 mM, or 0.8 mM to 35 mM in the composition of the present invention. More specifically, for an excellent organic acid production efficiency effect, the nitrogen source may be included in the composition at a concentration of 0.1 mM to 3 mM, 0.5 mM to 2 mM, or 0.8 mM to 1.5 mM, while securing a sufficient cell mass. In order to achieve excellent organic acid production efficiency, the nitrogen source may be included in the composition at a concentration of 15 mM to 45 mM, 20 mM to 40 mM, or 25 mM to 35 mM.
  • the composition of the present invention may further include an additive.
  • the additive may be a protective agent, a buffer, or a carrier.
  • the protective agent protects the methanogens and mutant Escherichia coli in the process of storing, storing, and distributing the composition of the present invention without affecting the growth and metabolism of the methanogens and mutant Escherichia coli, and their damage Or anything that functions to prevent death.
  • the protective agent may be a cryoprotectant.
  • the cryoprotectant may be one or more selected from the group consisting of skim milk powder, maltodextrin, dextrin, trehalose, maltose, lactose, mannitol, cyclodextrin, glycerol, chicory, potassium phosphate, and honey, but is not limited thereto, and freezing of the composition Any agent that can prevent the methanogens and mutant E. coli from being damaged or killed during the drying process may be included.
  • the cryoprotectant is included in the composition of the present invention, the composition may be used in the form of a lyophilized product, such as a powder, through a lyophilization process.
  • the lyophilized composition has advantageous advantages in formulation, packaging, storage, etc., and has an effect of preserving the methanogens and mutant E. coli contained therein for a long time.
  • Another aspect of the present invention provides a method of co-culturing methanogens and E. coli.
  • the co-culture method of the methanogens and E. coli includes culturing methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium, and the mutant E. coli is frdA (fumarate reductase flavoprotein subunit). ), the protein expressed from the ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) activity and patZ (peptidyl-lysine acetyltransferase protein expressed from one or more genes selected from the group consisting of a) gene The activity of is lost.
  • frdA frdA
  • pta phosphotransacetylase
  • adhE alcohol / acetaldehyde dehydrogenase
  • patZ peptidyl-lysine acetyltransferase protein expressed from one or more genes selected from the group
  • the mutant E. coli is a strain capable of metabolizing and growing even under a condition where an organic acid is the only carbon source, and specifically, the organic acid may be acetic acid, succinic acid, and/or malic acid, and more specifically, acetic acid.
  • the mutant E. coli can be used for the production, growth (increase of biomass), or energy metabolism of useful compounds by using the organic acid as a carbon source or an energy source.
  • the mutant Escherichia coli is an Escherichia coli strain characterized in that the activity of the protein expressed from the patZ gene is essentially lost, cspC (cold shock domain-containing protein), mukB (Mukaku), lomR (lambda outer membrane protein) And yhjE (putative major facilitator superfamily transporter).
  • the activity of a protein expressed from at least one gene selected from the group consisting of yhjE (putative major facilitator superfamily transporter) may be additionally lost.
  • the mutant E. coli may have lost the activity of all proteins expressed from the genes of cspC , mukB , lomR, and yhjE.
  • composition for producing a compound having 4 or more carbon atoms is the same as those described in 1.
  • the mutant E. coli may be a mutant microorganism described in Korean Patent Publication No. 2018-0034280, or a mutant E. coli produced through the method described in the Korean Patent Application Publication.
  • the mutant Escherichia coli may be an Escherichia coli SBA01 strain deposited with the accession number KCTC13040BP, and the Escherichia coli SBA01 strain was deposited on June 10, 2016 under the accession number KCTC13040BP at the Korea Research Institute of Bioscience and Biotechnology Microbial Resource Center, Is a microorganism that can be easily obtained by pre-sale from the depository institution.
  • the mutant E. coli may be transformed by introducing a specific gene according to the purpose of use thereof, and for example, may be introduced a gene related to biosynthesis of a compound having 4 or more carbon atoms.
  • Methanogens can metabolize methane by using methane as a carbon source, but the efficiency of reusing organic acids produced by methanogens is low, and growth may be inhibited by accumulation of organic acids such as succinic acid. Therefore, when co-cultured with a partner microorganism capable of using an organic acid produced by methanogens, there is a more advantageous advantage compared to culturing the methanogens alone.
  • microorganisms that cannot use methane as a carbon source must have the property of using organic acids produced by the methanogens as the sole carbon source.
  • the mutant E. coli of the present invention can use an organic acid as the sole carbon source and, in particular, can be grown using acetic acid, so that the growth of both methanogens and mutant E. coli can be increased through the co-culture method of the present invention.
  • the step of culturing the methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium may be culturing under conditions in which methane (CH 4 ) is supplied as a carbon source.
  • methane CH 4
  • Methanophilic bacteria produce organic acids (such as acetic acid) using methane, and mutant E. coli can grow and metabolize using the organic acid as a carbon source.
  • the methane (CH 4 ) When the methane (CH 4 ) is cultivated under a condition in which it is supplied as a carbon source, it may be supplied to contain methane in a ratio of 20% to 40% of air supplied during cultivation, for example, 25% to 35%, Alternatively, it may be supplied to contain methane in a ratio of 28% to 32%. In this case, oxygen may be included in the supplied air in a ratio of 2% to 5%, 2.5% to 4.5%, or 3% to 4%.
  • the step of culturing the methanotroph and mutant Escherichia coli capable of metabolizing acetic acid together in the same medium includes inoculating the methanogenic bacteria and the mutant Escherichia coli in a ratio of 3:1 to 15:1. It can be. Specifically, the ratio of the methanogens and the mutant E. coli is, 4:1 to 13:1, 5:1 to 12:1, 8:1 to 11:1, 9:1 to 11:1 or 10:1 May be, but is not limited thereto. When the methanogens and mutant E. coli are inoculated at the ratio of the above range, the two strains may not negatively affect each other's growth, and the growth rate of cells may be improved.
  • the number of cells may increase by 20 times or more for methanogens and 10 times or more for mutant Escherichia coli within 48 hours.
  • the ratio of the methanogens and mutant E. coli may be the ratio of the number of microbial cells measured through optical density (OD), and may be, for example, an optical density of 600 nm wavelength. Specifically, the ratio may be calculated by comparing the measured optical density value of the mutant E. coli, based on the measured optical density value 1 of the methane magnetizing bacteria.
  • the step of culturing the methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium may be culturing in the presence of copper ions.
  • the copper ions may be included in the form of CuCl 2 , for example, 5 ⁇ M to 15 ⁇ M, 7 ⁇ M to 13 ⁇ M, or 9 to 11 ⁇ M.
  • the copper ions can promote the activity or electron transport of methane monooxygenase (MMO), thereby increasing the methane conversion rate of the methane magnetizing bacteria to promote their growth and increase the production of organic acids by the methanogens to increase the production of mutant Escherichia coli. Growth can also be promoted.
  • MMO methane monooxygenase
  • the step of culturing the methanotroph and mutant Escherichia coli capable of metabolizing acetic acid together in the same medium may be culturing under conditions in which nitric acid (NO 3 ⁇ ) is supplied as a nitrogen source.
  • the "nitrogen source” refers to an external nitrogen compound that is accepted by the methane magnetizing bacteria or mutant Escherichia coli contained in the composition of the present invention to synthesize the nitrogen compound.
  • the nitrogen source may be supplied in the form of a mixture of nitric acid and ammonia (NH 4 + ), but the culturing step may be culturing under a condition in which ammonia is not supplied.
  • the growth rate or the production of organic acids of methanogens may be increased compared to the case of using ammonia, and the growth rate of mutant E. coli using the organic acid may also be increased.
  • the nitrogen source may be included in the composition at a concentration of 5% to 15% of the nitrogen source concentration contained in a conventional NMS (nitrate mineral salts) medium, and the nitrogen source concentration contained in the NMS medium may be, for example, 0.5 mM to 2 mM. However, it is not limited thereto.
  • the nitrogen source may be included in a concentration of 0.1 mM to 50 mM in the composition of the present invention. Specifically, the nitrogen source may be included in a concentration of 0.1 mM to 45 mM, 0.2 mM to 45 mM, 0.5 mM to 40 mM, or 0.8 mM to 35 mM in the composition of the present invention. More specifically, for an excellent organic acid production efficiency effect, the nitrogen source may be included in the composition at a concentration of 0.1 mM to 3 mM, 0.5 mM to 2 mM, or 0.8 mM to 1.5 mM, while securing a sufficient cell mass. In order to achieve excellent organic acid production efficiency, the nitrogen source may be included in the composition at a concentration of 15 mM to 45 mM, 20 mM to 40 mM, or 25 mM to 35 mM.
  • Another aspect of the present invention provides a method for producing a compound having 4 or more carbon atoms.
  • the method for producing a compound having 4 or more carbon atoms includes culturing a methanotroph and a mutant E. coli capable of metabolizing acetic acid at the same time.
  • the mutant E. coli is a protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit) gene, ldhA (D-lactate dehydrogenase) gene, pta (phosphotransacetylase) gene, and adhE (alcohol/acetaldehyde dehydrogenase) gene.
  • frdA fluarate reductase flavoprotein subunit
  • ldhA D-lactate dehydrogenase
  • pta phosphotransacetylase
  • adhE alcohol/acetaldehyde dehydrogenase
  • the method may be to produce a compound having 4 or more carbon atoms from methane (CH 4 ).
  • the methanogens, mutant Escherichia coli, a compound having 4 or more carbon atoms, and a description of their production, refer to '1. It is the same as described for these in'Composition for producing a compound having 4 or more carbon atoms.
  • the mutant E. coli may be a biosynthesis-related gene of the compound having 4 or more carbon atoms introduced into the E. coli SBA01 strain deposited under the accession number KCTC13040BP.
  • the method may be cultured under conditions of supplying methane (CH 4) as a carbon source.
  • the methane (CH 4 ) may be supplied to a mass flow controller (MFC).
  • MFC mass flow controller
  • the supply rate of methane can be controlled, and the ratio of methane when supplied with other gases such as oxygen and nitrogen can be controlled.
  • the methane may be supplied to be included in a proportion of 20% to 40% of air supplied during cultivation, for example, may be supplied to be included in a proportion of 25% to 35%, or 28% to 32%.
  • oxygen may be included in the supplied air in a ratio of 2% to 5%, 2.5% to 4.5%, or 3% to 4%.
  • the method for producing a compound having 4 or more carbon atoms of the present invention includes 10 hours or more, specifically 15 hours or more, 20 hours or more , When co-cultured for 30 hours or more, 40 hours or more, 48 hours or more, 50 hours or more, or 60 hours or more, mevalonic acid is 15 mg/L or more, specifically 20 mg/L or more, 30 mg/L or more, 40 mg It may be produced at a concentration of /L or more, 50 mg/L or more, 55 mg/L or more, 60 mg/L or more, or 61 mg/L or more.
  • the productivity of a compound having 4 or more carbon atoms according to the production method of a compound having 4 or more carbon atoms of the present invention is similar to the case of culturing the methanogens after improving the methanogens by having the property of producing a compound having 4 or more carbon atoms from methane. In comparison, 80% or more, 85% or more, 90% or more, 95% or more, 100% or more, 105% or more, 110% or more, 115% or more of the productivity of the compound having 4 or more carbon atoms of the improved methanogens, Or 120% or more.
  • Another aspect of the present invention provides a composition comprising the methanogenic bacteria and mutant Escherichia coli capable of metabolizing the acetic acid for use in producing a compound having 4 or more carbon atoms from methane (CH 4 ).
  • Another aspect of the present invention provides a use for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of a composition comprising the methanogens and mutant Escherichia coli capable of metabolizing acetic acid.
  • Another aspect of the present invention provides the use of the methanogens and mutant E. coli capable of metabolizing the acetic acid for producing a composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ).
  • organic acids especially acetic acid (acetate) can be produced from methane with high efficiency.
  • the conditions that can be checked were confirmed.
  • Methanobacteria can be classified into two types, depending on which pathway is used to produce organic compounds from methane. Type I ( ⁇ -proteobacteria) and serine using the ribulose monophosphate (RumP) pathway. It is classified as Type II ( ⁇ -proteobacteria) using the pathway. Methylococcus capsulatus Bath (hereinafter referred to as'Bath') belonging to Type I and Methylococcus Tricot belonging to Type II in order to use the methanogens, which are more efficient in producing organic acids, among the methanogens.
  • Type I ⁇ -proteobacteria
  • RumP ribulose monophosphate
  • Type II ⁇ -proteobacteria
  • Methylococcus capsulatus Bath hereinafter referred to as'Bath'
  • Methylococcus Tricot belonging to Type II in order to use the methanogens, which are more efficient in producing organic acids, among the methanogens.
  • OB3b Methylosinus trichosporium OB3b, hereinafter'OB3b' strains were cultured under oxygen-restricted conditions in an environment where methane (CH 4 ) was given, and their organic acid production was checked and compared. Specifically, first, Bath and OB3b strains NMS medium (Nitrate Mineral Salts medium) was inoculated to a concentration of OD 600 1.7. The composition of the NMS medium is as described in Table 1 below. After incubation for 72 hours at 37° C. or 30° C. under oxygen-restricted state, the amounts of acetic acid and succinate were measured by liquid chromatography (LC).
  • LC liquid chromatography
  • the Bath strain showed a high cell growth rate for the same time compared to the OB3b strain, and the Bath strain produced 6.2 mg/L of acetic acid and 2.1 mg/L of succinic acid at 72 hours, compared to the acetic acid and succinic acid production of OB3b. It was measured to be produced in an amount more than twice as large (Fig. 1). From the above results, the methanogens have the ability to produce organic acids such as acetic acid and succinic acid using methane under oxygen-limited conditions. Among the two types of methanogenic bacteria, it was confirmed that the organic acid productivity was more excellent because the methane magnetizing bacteria classified as Type I had a better carbon utilization rate compared to the Type II strain.
  • the Bath strain cultured in NMS medium to which copper ions were added showed higher production of acetic acid and succinic acid as compared to the control group to which copper ions were not added. It was confirmed that the production of acetic acid was significantly higher than that of the control group (18.7 mg/L) by producing at a concentration of L (FIG. 2).
  • the methanogens were cultured under conditions in which oxygen, sulfur, and nitrogen were respectively restricted, and their organic acid conversion rate was confirmed. Specifically, 30% of the air was removed from the vial inoculated with the methanogens and replaced by supplying methane. And in order to set the oxygen limit condition, 14.7% of oxygen in the remaining 70% of air was replaced with nitrogen and reduced to 3.5%.
  • the Bath strain was cultured in a medium in which sulfur and nitrogen were reduced to 10% levels in the NMS medium of Table 1, respectively. After culturing the Bath strain under the oxygen, sulfur, and nitrogen conditions as described above, the production amount of acetic acid and succinic acid was confirmed through LC.
  • the nitrogen source to nitrate in order to evaluate more closely the effect of nitrogen source on acid conversion targeting Bath strain (nitrate, NO 3 -), the 10 mM culture medium (control), the nitrate-containing medium (10 mM) used to contain Restriction medium (containing 1 mM nitrate) in which the concentration of nitrate was reduced to 10% level, and ammonia-containing medium containing ammonia (NH 4 + ) instead of nitrate at a concentration of 10 mM reduced the concentration of ammonia to 10% level.
  • Restriction medium (containing 1 mM ammonia), and a restriction medium in which the concentration of nitrate/ammonia was reduced to 10% level in a medium in which nitrate and ammonia were mixed at a concentration of 2.5 mM and 5 mM, respectively (nitrate 0.25 mM, ammonia 0.5 mM containing) was used to compare the organic acid production.
  • the fermentation conditions of the methanogens were established and optimized to produce organic acids with high efficiency while increasing the growth rate of the methanogens to secure sufficient cell mass.
  • gas was supplied at a ratio of 20% of methane and 80% of the remaining gas using a mass flow controller (MFC).
  • MFC mass flow controller
  • a methanogen fermentation system was constructed using a micro-sparger (CNS) (FIG. 5).
  • CNS micro-sparger
  • As a culture medium for methanogens a medium modified by adding nitric acid (3X), phosphate (1.5X), and trace elements (3X) to the NMS medium containing the components according to Table 1 was used.
  • Capsulartus bath (hereinafter referred to as'Bath') strain was fermented and cultured.
  • the growth rate of the methanogens is fast, but after sufficient cell growth occurs, the nitrogen source limiting conditions are set due to consumption of the nitrogen source, so that organic acids can be produced with high efficiency.
  • a growth rate of 0.16 h -1 was shown, and it was confirmed that 2.5 mM acetic acid and 2.5 mM succinic acid were produced at the end of fermentation (FIG. 6).
  • the Bath strain was cultured for 48 hours under two different nitrogen source conditions, and its growth rate and organic acid (acetic acid and succinic acid) production amount were measured. Compared. Compared with Bath cultured in 3xAMS medium containing ammonia as nitrogen source, Bath strain cultured in 3xNMS medium containing nitric acid as nitrogen source showed shorter growth delay and higher production of organic acids (especially acetic acid). There was (Fig. 7).
  • nitric acid as a nitrogen source rather than ammonia is more advantageous for the growth of Bath and the production of organic acids, which is thought to be because ammonia causes an imbalance in electron transport and affects cell physiology.
  • a co-culture partner microorganism having a characteristic capable of co-culture with methane magnetizing bacteria was selected.
  • Methane by selecting co-culture partner microorganisms, which has the characteristics of being resistant to organic acids produced by methane-automated bacteria, and is capable of growing using them, and the characteristics of efficiently converting them into high value-added compounds using the organic acids.
  • a platform for the production of derived useful substances was developed.
  • the E. coli SBA01 strain of the present invention was used as a microorganism having characteristics that can be used as a co-culture partner of methanogens.
  • the SBA01 strain has high resistance to acetic acid and has an excellent growth rate using it.
  • ACS acetyl-CoA synthetase
  • E. coli SBA01 strain of the present invention has excellent properties that can be used as a co-culture partner of methanogens
  • wild-type E. coli MG1655 and E. coli DSM01 strain, which can inhibit the production of by-products, were used as a control.
  • the DSM01 strain is characterized in that some genes are deleted by mutating the wild-type MG1655 strain (MG1655 ⁇ frdA ⁇ ldhA ⁇ pta ⁇ adhE ).
  • the SBA01 strain of the present invention is an evolutionary improvement of the DSM01 strain to give new characteristics, and the activity of the patZ gene is lost.
  • a mevalonate pathway was introduced to produce mevalonate in the E.
  • E. coli strains Specifically , an enzyme capable of synthesizing mevalonic acid by constructing a recombinant vector using the MvaE enzyme and MvaS enzyme gene derived from Enterococcus faecalis , and transforming it into the wild-type E. coli MG1655 strain, E. coli DSM01 strain, and E. coli SBA01 strain. E. coli strains expressing the were prepared.
  • E. coli DSM01 strain While culturing the wild-type E. coli MG1655, E. coli DSM01 strain, and E. coli SBA01 strain in a minimal medium (M9) containing acetic acid and succinic acid, their cell growth was checked, and changes in the concentration of acetic acid and succinic acid in the medium, and mevalonic acid production were measured. .
  • M9 minimal medium
  • the E. coli DSM01 strain did not grow at all in a medium containing acetic acid and succinic acid
  • the E. coli SBA01 strain showed a high cell growth rate without inhibition of growth by organic acids, and mevalonic acid at a concentration of 288 mg/L for 54 hours.
  • a plasmid vector was constructed through recombination of Enterococcus faecalis- derived MvaE enzyme and MvaS enzyme gene, and the mevalonic acid-producing plasmid was transformed into E. coli SBA01 strain.
  • an E. coli SBA01 strain that did not transform the mevalonic acid-producing plasmid and an E. coli SBA01 strain into which a plasmid unrelated to mevalonic acid production was introduced were prepared.
  • the three types of E. coli SBA01 strains were pre-cultured three times by supplying glucose or acetic acid as a carbon source to M9 restriction medium, and then cultured again in M9 medium containing acetic acid. After supplying 0.1 mM IPTG to induce the expression of genes related to the mevalonic acid pathway, the concentration of acetic acid remaining in the medium and the amount of mevalonic acid produced were confirmed.
  • Example 2 the E. coli SBA01 strain, which has excellent acetic acid resistance and excellent acetic acid utilization activity, was selected as a candidate for co-culture partner microorganisms of methanogens. Thus, it was confirmed whether or not both strains were able to grow by co-culturing the methanogens and the SBA01 strain, and the co-culture conditions were optimized so that the two strains do not inhibit the growth of each other.
  • a Methylococcus capsulatus Bath hereinafter referred to as'Bath'
  • 'Bath' Methylococcus capsulatus Bath
  • the Bath strain and the SBA01 strain were inoculated into the 3xNMS medium of Experimental Example 1-3 at a ratio of 1:1, 5:1, and 10:1, respectively.
  • methane CH 4
  • both the Bath strain and the SBA01 strain were inoculated and cultured at a ratio of 5:1 and 10:1
  • co-culture is possible (FIG. 10).
  • the ratio of the methanogen Bath strain and the partner microorganism SBA01 strain was 1:1, growth of both strains was not observed.
  • the initial inoculation amount of SBA01 increased, the growth of SBA01 and the methanogen Bath strain was negatively affected. It is thought to have an effect, and it was confirmed that inoculation at a ratio of 10:1 is the optimal ratio.
  • the Methylococcus capsulatus Bath (hereinafter referred to as'Bath') strain was optimized according to the E. coli SBA01 strain and the mevalonic acid pathway-related enzyme introduced in the same manner as in Experimental Example 2.
  • Co-fermentation culture was carried out under co-culture conditions (10:1 inoculation ratio). While co-culturing the methanogens and SBA01 strains for 48 hours, their growth rates were checked, and the concentrations of acetic acid, succinic acid, and mevalonic acid in the culture medium were measured.
  • Methylomicrobium alcaliphilum 20Z engineered to produce 2,3-butanediol (2,3-BDO) at a concentration of 68.8 mg/L or 86.2 mg/L.
  • Research results (Anh Duc Nguyen et al ., "Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane", Metab Eng .
  • the E. coli SBA01 strain transformed with the mevalonic acid-producing plasmid was cultured under the same conditions as the co-culture conditions in Experimental Example 4-1 (same medium, pH, temperature, etc.). While supplying methane as the sole carbon source, the growth of the E. coli SBA01 strain was confirmed, and the concentration of mevalonic acid was measured. As a result, it was determined that even though methane was continuously supplied, the SBA01 strain did not grow and mevalonic acid was not produced (FIG. 12).
  • E. coli SBA01 strain was transformed with a mevalonic acid producing plasmid, but there is no activity to use methane, so when only methane is supplied as the only carbon source, it cannot produce mevalonic acid. It was confirmed that only when successfully co-cultured, a compound with a carbon number of 4 or more, such as mevalonic acid, could be produced from methane and growth was possible.

Abstract

The present invention relates to: a composition for producing a compound having four or more carbon atoms from methane (CH4), the composition containing methanotroph and mutant E. coli; and a method for producing a compound having four or more carbon atoms by co-culturing the strains. In addition, the present invention relates to a method for co-culturing methanotroph and E. coli.

Description

메탄으로부터 탄소 수 4 이상인 화합물을 생산하는 방법 및 조성물Method and composition for producing a compound having 4 or more carbon atoms from methane
본 발명은 메탄자화균 및 돌연변이된 대장균을 이용하여, 탄소수 4 이상인 화합물을 생산하기 위한 조성물 및 방법에 관한 것이다.The present invention relates to a composition and method for producing a compound having 4 or more carbon atoms by using methanogens and mutated E. coli.
메탄(CH4)은 하나의 탄소로 구성된 간단한 구조의 탄화수소 기체로, 석유와 같은 액체 형태의 탄화수소보다는 상대적으로 가격이 저렴하지만 고부가가치의 화합물로의 전환을 시도하는 것이 어려운 특징이 있다. 또한, 온실 효과를 유발할 수 있는 기체로 알려져 있으므로, 메탄을 다른 화합물로 전환시킴으로써 메탄을 저감시키면서 이를 산업적으로 응용하고자 하는 시도가 계속되고 있다.Methane (CH 4 ) is a hydrocarbon gas with a simple structure composed of one carbon. It is relatively cheaper than a liquid hydrocarbon such as petroleum, but it is difficult to attempt to convert it to a high value-added compound. In addition, since it is known as a gas that can induce a greenhouse effect, attempts to industrially apply it while reducing methane by converting methane into other compounds are continuing.
메탄을 생물학적인 수단을 이용하여 전환하기 위하여, 메탄자화균(methanotroph)을 이용하는 방법을 고려할 수 있다. 메탄자화균은 메탄을 유일한 탄소원 또는 에너지원으로 이용할 수 있는 특성을 가진 세균으로 메탄 모노옥시게나제(MMO, methane monooxygenase)를 이용해 메탄을 메탄올로 전환할 수 있고 이후 메탄올을 다양한 생합성 경로를 통해 여러 종류의 유기 화합물로 전환시킬 수 있기 때문이다.In order to convert methane using biological means, a method using methanotroph can be considered. Methanogens are bacteria that can use methane as the sole carbon source or energy source, and can convert methane to methanol using methane monooxygenase (MMO), and then convert methanol to methanol through various biosynthetic pathways. This is because it can be converted into a kind of organic compound.
생물학적 방법을 이용해 메탄을 고부가가치 화합물로 전환시키기 위해서는, 1) 고효율의 메탄 활성화 특성, 그리고 2) 탄소-탄소(C-C) 결합을 위한 높은 에너지 대사 효율의 고에너지 세포 환경이 요구된다. 그러나, 자연계에 존재하는 메탄자화균은 최소의 에너지로 세포 성장이나 필수 단백질을 생산할 수 있도록 특화된 성질이 있어, 메탄을 고부가가치 화합물로 전환시킴에 있어 요구되는 상기 2가지 특성을 모두 갖춘 메탄자화균을 발굴해 내기 어려운 실정이다. 또한, 대장균(E. coli)처럼 이미 분자생물학적 조작 방법이 많이 연구된 다른 미생물들과는 달리, 메탄자화균은 대사 엔지니어링에 필요한 다양한 효소의 대량 발현, 조절 등 필수적인 분자생물학적 기술을 효과적으로 적용하기 어려운 문제점이 있다.In order to convert methane into a high value-added compound using a biological method, 1) a high-efficiency methane activation property, and 2) a high-energy cellular environment with high energy metabolism efficiency for carbon-carbon (CC) bonding is required. However, the methanogens that exist in nature have specialized properties to produce essential proteins or cell growth with minimal energy, so they have both of the above-described properties required to convert methane into a high value-added compound. It is difficult to find out. In addition, unlike other microorganisms that have already studied a lot of molecular biological manipulation methods, such as E. coli , methanogens are difficult to effectively apply essential molecular biology techniques such as mass expression and regulation of various enzymes required for metabolic engineering. have.
종래 메탄자화균 Methylomicrobium buryatense에서 젖산(lactate) 생산 관련 유전자를 도입시켜 메탄으로부터 젖산을 생산하고자 했던 연구(Bioconversion of methane to lactate by an obligate methanotrophic bacterium, Scientific Reports volume 6, Article number: 21585 (2016))가 있었으나, 메탄자화균이 아닌 다른 종류의 미생물 유래의 효소 유전자를 메탄자화균에 도입시키기 위해서는 어떤 종의 효소 유전자가 메탄자화균에서 성공적으로 발현될 수 있는지 여부를 반복적 실험을 통해 규명해야 하며 메탄자화균만의 특성을 고려하여 코돈 최적화를 거쳐야 하는 등 복잡한 도입 과정이 수반된다. 또한, 이러한 번거로운 과정을 통한 특정 외부 유전자의 도입이 성공하더라도, 다른 종류의 유전자를 도입시켜 다른 화합물을 생산하고자 한다면 다른 유전자가 도입된, 새롭게 개량된 메탄자화균을 연구, 제조해야 한다는 단점이 있다.A study that attempted to produce lactic acid from methane by introducing a gene related to lactate production in the conventional methanotrophic bacterium Methylomicrobium buryatense (Bioconversion of methane to lactate by an obligate methanotrophic bacterium, Scientific Reports volume 6, Article number: 21585 (2016)) However, in order to introduce an enzyme gene derived from a microorganism other than the methanogens into the methanogens, it is necessary to find out which species of enzyme genes can be successfully expressed in the methanogens through repeated experiments. A complex introduction process is involved, such as having to undergo codon optimization in consideration of the characteristics of magnetophilus only. In addition, even if the introduction of a specific foreign gene through such a cumbersome process is successful, there is a drawback that if you want to introduce another kind of gene to produce another compound, you must study and manufacture a newly improved methanogen with another gene introduced therein. .
상기와 같은 문제점을 고려할 때, 성장속도도 느리고 대사활성도 상대적으로 약한 메탄자화균에 1) 메탄 가용화 단계, 2) 유용 탄소 화합물의 생산 단계를 모두 수행할 수 있는 특성을 부여하여, 메탄으로부터 고부가가치 화합물을 생산하고자 하는 시도는 효율성 측면에서 많은 단점과 한계가 있다.Considering the above problems, it gives the methane-magnetizing bacteria, which have a slow growth rate and relatively weak metabolic activity, 1) the methane solubilization step, and 2) the production steps of useful carbon compounds, giving them high added value from methane. Attempts to produce compounds have many drawbacks and limitations in terms of efficiency.
본 발명의 발명자는 메탄자화균을 직접 개량하여 이용하는 대신, 성장속도가 빠르고 외부 유전자의 도입 방법 등에 관한 연구가 이미 상당 수준 진행되어 있는 대장균과 같은 미생물을 메탄자화균의 공배양 파트너 미생물로 이용함으로써, 상기와 같은 종래 기술의 문제점을 해결하고자 하였다. 현재까지 메탄자화균을 다른 종류의 미생물, 예컨대 대장균과 서로 상승작용을 나타내면서 공배양하는 방법을 제시한 연구 결과는 없었으며 이들의 공배양 시스템을 이용해 메탄으로부터 고부가가치 화합물, 특히 탄소 수 4 이상인 화합물을 생산하고자 했던 시도 역시 없었다. 이에, 본 발명의 발명자는 메탄자화균과 돌연변이 대장균을 공배양함으로써 종래 메탄자화균을 직접 개량했던 방법보다 훨씬 더 적용이 용이하면서도 높은 효율로 고부가가치 화합물을 산업적 생산 가능한, 미생물 공배양 시스템을 새롭게 구축하여 본 발명을 완성하였다.The inventors of the present invention use a microorganism such as E. coli, which has a high growth rate and a considerable level of research on the introduction method of external genes, as a co-culture partner microorganism of the methanogen, instead of directly improving and using the methanogens. , To solve the problems of the prior art as described above. Until now, there have been no research results that suggested a method of co-culturing methanogens with other types of microorganisms, such as E. coli, synergistically with each other, and high value-added compounds from methane, especially compounds with carbon number of 4 or more, using their co-culture system. There was also no attempt to produce it. Accordingly, the inventors of the present invention newly developed a microbial co-cultivation system capable of industrially producing high value-added compounds with high efficiency while being much more applicable than the method that directly improved the conventional methanogens by co-culturing methane-magnetizing bacteria and mutant Escherichia coli. Constructed to complete the present invention.
본 발명은 상대적으로 저렴한 가격의 탄소 수 1 가스, 특히 메탄(CH4)을 다양한 유용 화합물로 전환하여 생산하기 위해 미생물을 배양하여 이용하면서, 메탄을 활용할 수 있는 미생물을 직접 개량하여 이용하지 않으면서도 높은 효율로 탄소 수 4 이상인 화합물을 생산하기 위한 용도의 조성물을 제공하는 것을 목적으로 한다. 또한, 대장균과 같이 메탄자화균과 공배양이 어려운 미생물을 메탄자화균과 함께 공배양하는 방법을 제공하는 것을 목적으로 한다. 또한, 상기와 같은 미생물 배양 방법을 활용하여 높은 생산성으로 탄소 수 4 이상인 화합물을 생산하는 방법을 제공하는 것을 목적으로 한다. The present invention is a relatively inexpensive carbon number 1 gas, especially methane (CH 4 ), while cultivating and using microorganisms to convert and produce various useful compounds, without directly improving and using microorganisms that can utilize methane. An object of the present invention is to provide a composition for use in producing a compound having 4 or more carbon atoms with high efficiency. In addition, it is an object of the present invention to provide a method for co-culture with methane magnetizing bacteria, such as E. coli, with methane magnetizing bacteria that are difficult to co-culture. In addition, it is an object of the present invention to provide a method for producing a compound having 4 or more carbon atoms with high productivity by utilizing the microorganism culture method as described above.
본 발명의 일 측면은, 상기의 목적을 달성하기 위하여, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 포함하는, 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물을 제공한다.One aspect of the present invention, in order to achieve the above object, for producing a compound having a carbon number of 4 or more from methane (CH 4 ), including a mutant E. coli capable of metabolizing acetic acid and methanotroph. The composition is provided.
본 발명의 다른 측면은, 상기의 목적을 달성하기 위하여, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동시에 배양하는 단계를 포함하는, 메탄자화균 및 대장균의 공배양 방법으로서, 상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실된 것인, 메탄자화균 및 대장균의 공배양 방법을 제공한다.Another aspect of the present invention, in order to achieve the above object, comprising the step of simultaneously culturing methanotroph, and mutant E. coli capable of metabolizing acetic acid, as a co-culture method of methanogen and Escherichia coli the mutant E. coli frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) activity of the protein expressed from one or more genes selected from the group consisting of and patZ (peptidyl-lysine acetyltransferase) Provides a method for co-culture of methanza-degrading bacteria and E. coli, in which the activity of the protein expressed from the gene has been lost.
본 발명의 또 다른 측면은, 상기의 목적을 달성하기 위하여, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동시에 배양하는 단계를 포함하는, 탄소 수 4 이상인 화합물의 생산 방법을 제공한다.Another aspect of the present invention is a method for producing a compound having 4 or more carbon atoms, comprising simultaneously culturing methanotroph and mutant E. coli capable of metabolizing acetic acid in order to achieve the above object. to provide.
본 발명에서는 석유 대비 저렴한 가격의 메탄(CH4)을 전환하여 탄소 수 4 이상인 화합물을 높은 효율로 생산할 수 있는 조성물 및 방법을 제공한다. 메탄을 이용하는 미생물인 메탄자화균은 이에 의해 생산되는 고농도의 유기산에 의해 성장이 저해될 수 있는데, 본 발명에서는 메탄자화균에 의해 생산되는 유기산을 이용해 탄소 수 4 이상인 유용 화합물을 생산할 수 있는 파트너 미생물과 상기 메탄자화균을 공배양함으로써 두 미생물 균주가 모두 안정적으로 성장할 수 있는 시스템을 개발하였다.The present invention provides a composition and method capable of producing a compound having 4 or more carbon atoms with high efficiency by converting methane (CH 4) at a lower price than petroleum. Methanogens, which are microorganisms that use methane, may be inhibited by the high concentration of organic acids produced thereby.In the present invention, partner microorganisms capable of producing useful compounds having 4 or more carbon atoms using organic acids produced by methanogens By co-culturing the methanogens and the two microbial strains, a system was developed in which both microbial strains can grow stably.
특히, 통상적인 야생형의 대장균은 메탄자화균과 함께 성장하지 못하는 특징을 가진다는 단점을 극복하여, 메탄자화균과 공배양하더라도 우수한 성장 속도를 나타내면서 탄소 수 4 이상인 화합물을 생산할 수 있는 특성이 있는 대장균 돌연변이체를 이용하여 메탄자본 발명에서는 석유 대비 저렴한 가격의 메탄(CH4)을 전환하여 탄소 수 4 이상인 화합물을 높은 효율로 생산할 수 있는 조성물 및 방법을 제공한다. 메탄을 이용하는 미생물인 메탄자화균은 이에 의해 생산되는 고농도의 유기산에 의해 성장이 저해될 수 있는데, 본 발명에서는 메탄자화균에 의해 생산되는 유기산을 이용해 탄소 수 4 이상인 유용 화합물을 생산할 수 있는 파트너 미생물과 상기 메탄자화균을 공배양함으로써 두 미생물 균주가 모두 안정적으로 성장할 수 있는 시스템을 개발하였다.In particular, the general wild-type E. coli overcomes the disadvantage of not having the characteristic of not growing together with methanogens, and exhibits excellent growth rates even when co-cultured with methanogens, and has a characteristic capable of producing a compound having a carbon number of 4 or more. Methane Capital Using Mutants The present invention provides a composition and method capable of producing a compound having 4 or more carbon atoms with high efficiency by converting methane (CH 4) at a low price compared to petroleum. Methanogens, which are microorganisms that use methane, may be inhibited by the high concentration of organic acids produced thereby.In the present invention, partner microorganisms capable of producing useful compounds having 4 or more carbon atoms using organic acids produced by methanogens By co-culturing the methanogens and the two microbial strains, a system was developed in which both microbial strains can grow stably.
특히, 통상적인 야생형의 대장균은 메탄자화균과 함께 성장하지 못하는 특징을 가진다는 단점을 극복하여, 메탄자화균과 공배양하더라도 우수한 성장 속도를 나타내면서 탄소 수 4 이상인 화합물을 생산할 수 있는 특성이 있는 대장균 돌연변이체를 이용하여 메탄자화균과의 공배양 시스템을 구축하는 것에 성공하였고, 최적의 접종 비율을 통해 메탄자화균 및 파트너 미생물이 모두 높은 성장률을 나타낼 수 있다.In particular, the general wild-type E. coli overcomes the disadvantage of not having the characteristic of not growing together with methanogens, and exhibits excellent growth rates even when co-cultured with methanogens, and has a characteristic capable of producing a compound having a carbon number of 4 or more. Using the mutant, we succeeded in constructing a co-culture system with methanogens, and both the methanogens and partner microorganisms can exhibit a high growth rate through the optimal inoculation ratio.
또한, 종래 메탄자화균이 메탄을 이용해 탄소 수 4 이상인 유용 화합물을 직접 생산할 수 있도록 메탄자화균을 개량시킨 기술의 경우, 반복적이고 연속적인 발효, 배양 과정을 거침에 따라 메탄자화균이 다시 야생형의 특성을 가지게 될 수 있어 안정성이 떨어지는 단점이 있지만, 본 발명에서는 메탄자화균을 파트너 미생물과 함께 배양하면서 연속 발효에도 동일한 특성을 유지함을 확인하여 우수한 안정성을 나타내는 장점이 있다. 이에 따라, 본 발명의 공배양 시스템을 활용한 조성물 및 생산 방법은, 산업적인 목적에서 보다 큰 규모의 반복적 생산에도 유용하게 사용될 수 있을 것으로 전망된다.In addition, in the case of a technology that has improved the methanogens to directly produce useful compounds having 4 or more carbon atoms using methane, the methanogens are regenerated through repetitive and continuous fermentation and cultivation processes. There is a disadvantage in that stability is poor because it may have characteristics, but in the present invention, it has the advantage of showing excellent stability by confirming that the same characteristics are maintained even during continuous fermentation while culturing the methane-magnetizing bacteria together with a partner microorganism. Accordingly, the composition and production method using the co-culture system of the present invention is expected to be useful for repetitive production on a larger scale for industrial purposes.
본 발명에서는 메탄자화균을 직접 개량하지 않고, 외부 유전자의 도입이 용이하고 균주의 엔지니어링이 쉬운 특징을 갖는 파트너 미생물을 이용함에 따라, 생산하고자 하는 화합물의 종류를 어렵지 않게 변경하여 새로운 시스템을 구축할 수 있으며, 종래 메탄자화균을 직접 개량시킨 경우와 비교할 때 고부가 가치의 화합물을 유사한 수준의 생산성으로 생산할 수 있는 효과가 있다.In the present invention, a new system can be constructed by changing the type of compound to be produced without difficulty, by using a partner microorganism having the characteristics of easy introduction of external genes and easy strain engineering, without directly improving the methanogens. In addition, there is an effect of producing a high value-added compound at a similar level of productivity when compared to the case where the methane magnetizing bacteria are directly improved in the related art.
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다. However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 메탄자화균 중에서 Type I으로 분류되는 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath, 도 1의 A)와 Type II로 분류되는 메틸로시누스 트리코스포리움 OB3b(M. trichosporium OB3b, 도 1의 B)를 산소 제한 조건에서 메탄을 공급하여 배양하여, 이들의 세포 성장률과 배지 내 아세트산(AA) 및 숙신산(SA)의 농도를 측정하여 비교한 그래프이다. 1 is a M. capsulatus bath classified as Type I among methanogens and M. trichosporium OB3b classified as Type II. 1B) is a graph comparing the cell growth rate and the concentrations of acetic acid (AA) and succinic acid (SA) in the medium by culturing by supplying methane under oxygen-restricted conditions.
도 2는 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 10 μM의 CuCl2가 첨가된 NMS 배지(with copper, 도 2의 A)와 CuCl2를 첨가하지 않은 배지(without copper, 도 2의 B)에서 산소 제한 조건 하에 메탄을 공급하여 배양한 후, 세포 성장률과 배지 내 아세트산(AA) 및 숙신산(SA)의 농도를 측정하여 비교한 그래프이다.Figure 2 is a M. capsulatus bath (M. capsulatus bath) NMS medium (with copper, Figure 2A) to which 10 μM of CuCl 2 is added and a medium to which CuCl 2 is not added (without copper, Figure 2) After culturing by supplying methane under oxygen-restricted conditions in B), the cell growth rate and the concentration of acetic acid (AA) and succinic acid (SA) in the medium were measured and compared.
도 3은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 산소 제한 조건(14.7%에서 3.5%로 감소), 황 제한 조건(1/10 수준으로 감소), 질소 제한 조건(1/10 수준으로 감소)에서 각각 배양한 후, cell mass 당 생도 1은 메탄자화균 중에서 Type I으로 분류되는 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath, 도 1의 A)와 Type II로 분류되는 메틸로시누스 트리코스포리움 OB3b(M. trichosporium OB3b, 도 1의 B)를 산소 제한 조건에서 메탄을 공급하여 배양하여, 이들의 세포 성장률과 배지 내 아세트산(AA) 및 숙신산(SA)의 농도를 측정하여 비교한 그래프이다.Figure 3 is a methylococcus capsulatus bath (M. capsulatus bath) oxygen restriction condition (reduced from 14.7% to 3.5%), sulfur restriction condition (reduced to 1/10 level), nitrogen restriction condition (1/10 level) After cultivation in each cell mass), creativity 1 per cell mass is methyllococcus capsulatus bath, classified as Type I, and methyl, classified as Type II, among methanogens. Sinus trichosporium OB3b ( M. trichosporium OB3b, Fig. 1B) was cultured by supplying methane under oxygen-limited conditions, and their cell growth rate and the concentration of acetic acid (AA) and succinic acid (SA) in the medium were measured. This is a comparison graph.
도 2는 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 10 μM의 CuCl2가 첨가된 NMS 배지(with copper, 도 2의 A)와 CuCl2를 첨가하지 않은 배지(without copper, 도 2의 B)에서 산소 제한 조건 하에 메탄을 공급하여 배양한 후, 세포 성장률과 배지 내 아세트산(AA) 및 숙신산(SA)의 농도를 측정하여 비교한 그래프이다.Figure 2 is a M. capsulatus bath (M. capsulatus bath) NMS medium (with copper, Figure 2A) to which 10 μM of CuCl 2 is added and a medium to which CuCl 2 is not added (without copper, Figure 2) After culturing by supplying methane under oxygen-restricted conditions in B), the cell growth rate and the concentration of acetic acid (AA) and succinic acid (SA) in the medium were measured and compared.
도 3은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 산소 제한 조건(14.7%에서 3.5%로 감소), 황 제한 조건(1/10 수준으로 감소), 질소 제한 조건(1/10 수준으로 감소)에서 각각 배양한 후, cell mass 당 생산된 아세트산의 농도를 측정하여 비교한 그래프이다.Figure 3 is a methylococcus capsulatus bath (M. capsulatus bath) oxygen restriction condition (reduced from 14.7% to 3.5%), sulfur restriction condition (reduced to 1/10 level), nitrogen restriction condition (1/10 level) Is a graph comparing by measuring the concentration of acetic acid produced per cell mass after culturing each in (reduced to ).
도 4는 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 다양한 조건으로 질소원이 제한 함유된 배지에서 배양하여 아세트산의 농도를 측정하여 비교한 그래프이다. 대조군(Normal(NO3))으로는 질소원으로 질산을 함유하는 배지를 이용하였고, 질산을 1/10 수준으로 제한시켜 함유하는 배지(1/10 NO3), 암모니아를 1/10 수준으로 제한시켜 함유하는 배지(1/10 NH4), 질산 및 암모니아의 혼합물을 1/10 수준으로 제한시켜 함유하는 배지(1/10 NO3 & NH4)를 각각 이용하였다.Figure 4 is a graph comparing the concentration of acetic acid measured by culturing M. capsulatus Bath in a medium containing limited nitrogen source under various conditions. As a control (Normal (NO 3 )), a medium containing nitric acid was used as a nitrogen source, and a medium containing nitric acid was limited to 1/10 level (1/10 NO 3 ), and ammonia was limited to 1/10 level. A medium containing (1/10 NH 4 ), a medium containing a mixture of nitric acid and ammonia was limited to a level of 1/10, and the containing medium (1/10 NO 3 & NH 4 ) was used, respectively.
도 5는 메탄자화균의 발효 시스템을 나타낸 그림이다.5 is a diagram showing a fermentation system of methane magnetizing bacteria.
도 6은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 질소원이 서로 다른 두 배지에서 배양한 후, 세포 성장률과 배지 내 아세트산(AA), 숙신산(SA) 및 말산(MA)의 농도를 측정하여 비교한 그래프이다. 도 6의 A는 3xNMS 배지에서, 도 6의 B는 3xAMS 배지에서 배양한 결과를 의미한다.Figure 6 is a methylococcus capsulatus bath (M. capsulatus Bath) after culturing in two different medium nitrogen sources, cell growth rate and concentrations of acetic acid (AA), succinic acid (SA) and malic acid (MA) in the medium. This is a graph that was measured and compared. 6A shows the results of culturing in 3xNMS medium, and FIG. 6B shows the results of culturing in 3xAMS medium.
도 7은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)를 3xNMS 배지와 3xAMS 배지에서, 48시간 배양한 후 측정한 아세트산(acetate) 생산량과 44 시간 배양한 후 측정한 숙신산(succinate) 생산량을 비교한 그래프이다.Figure 7 shows the amount of acetic acid (acetate) production measured after culturing M. capsulatus Bath in 3xNMS medium and 3xAMS medium for 48 hours and succinate production measured after incubating for 44 hours. This is a comparison graph.
도 8은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)와 함께 이의 파트너 미생물 후보 균주들을 각각 공배양한 후, 세포 성장률과 배지 내 아세트산(AA), 숙신산(SA) 및 메발론산(MVA)의 농도를 측정하여 비교한 그래프이다. 도 8의 A는 파트너 미생물로 야생형 대장균 MG1655 균주를, 도 8의 B는 파트너 미생물로 대장균 DSM01 균주를, 도 8의 C는 파트너 미생물로 대장균 SBA01 균주를 이용한 결과이다.Figure 8 is after co-culturing each of its partner microorganism candidate strains with M. capsulatus Bath, cell growth rate and acetic acid (AA), succinic acid (SA), and mevalonic acid (MVA) in the medium. It is a graph comparing by measuring the concentration of. FIG. 8A is a wild-type E. coli MG1655 strain as a partner microorganism, FIG. 8B is an E. coli DSM01 strain as a partner microorganism, and FIG. 8C is a result of using the E. coli SBA01 strain as a partner microorganism.
도 9는 메발론산 생산 경로 관련 유전자를 이용하여 구축한 플라스미드 벡터를 형질전환시킨 대장균 SBA01 균주("SBA01-MVA"), 상기 플라스미드를 도입시키지 않은 대장균 SBA01 균주("SBA01-no plasmid") 및 메발론산 생산 경로와 무관한 플라스미드로 형질전환시킨 대장균 SBA01 균주("SBA01-control plasmid")를 배양한 후, 세포 성장률과 배지 내 아세트산 및 메발론산의 농도를 각각 측정하여 비교한 그래프이다.9 is an E. coli SBA01 strain transformed with a plasmid vector constructed using a gene related to the mevalonic acid production pathway ("SBA01-MVA"), an Escherichia coli SBA01 strain without introducing the plasmid ("SBA01-no plasmid") and meval After culturing the E. coli SBA01 strain ("SBA01-control plasmid") transformed with a plasmid irrelevant to the production pathway of ronic acid, the cell growth rate and the concentration of acetic acid and mevalonic acid in the medium were measured and compared.
도 10은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)와 대장균 SBA01 균주를 서로 다른 접종 비율로 공배양한 후, 이들의 세포 성장률과 배지 내 아세트산 및 숙신산 의 농도를 측정하여 비교한 그래프이다. 도 10의 A 내지 C는 메탄자화균의 세포 성장과 아세트산, 숙신산 농도 변화를 나타낸 것이고, 도 10의 D, E는 대장균 SBA01 균주의 세포 성장을 나타낸 것이다. A는 상기 균주들을 1:1의 비율로, B, D는 5:1의 비율로, C, E는 10:1의 비율로 각각 접종하여 배양한 결과이다.FIG. 10 is a graph comparing M. capsulatus Bath and E. coli SBA01 strains by co-culture at different inoculation ratios, and then measuring and comparing their cell growth rates and concentrations of acetic acid and succinic acid in the medium. . A to C of Figure 10 shows the cell growth and acetic acid, succinic acid concentration change of the methane-magnetizing bacteria, and Figure 10 D, E shows the cell growth of the E. coli SBA01 strain. A is the result of inoculating the strains at a ratio of 1:1, B and D at a ratio of 5:1, and C and E at a ratio of 10:1, respectively.
도 11은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)와 대장균 SBA01 균주를 메탄을 유일한 탄소원으로 하여 최적화된 조건으로 공배양한 후, 이들의 세포 성장률과 배지 내 아세트산(AA), 숙신산(SA), 말산(MA) 및 메발론산(MVA)의 농도를 측정하여 비교한 그래프이다. 도 11의 A는 메틸로코커스 캡슐라투스 바스의 세포 성장률을 나타내며, 도 11의 B는 대장균 SBA01의 세포 성장률을 나타낸다.Figure 11 is after co-culture with M. capsulatus Bath and Escherichia coli SBA01 strain under optimized conditions using methane as the sole carbon source, and then their cell growth rate and acetic acid (AA) and succinic acid in the medium ( SA), malic acid (MA) and mevalonic acid (MVA) concentrations were measured and compared. FIG. 11A shows the cell growth rate of Methylococcus capsulartus bath, and FIG. 11B shows the cell growth rate of E. coli SBA01.
도 12는 메탄자화균과 공배양하지 않고, 메발론산 생산 경로를 도입시킨 대장균 SBA01 균주를 메탄을 공급하면서 단독으로 배양한 후, 대장균 SBA01 균주의 세포 성장률과 배지 내 숙신산 및 메발론산의 농도를 측정하여 비교한 그래프이다.Figure 12 is not co-cultured with methanogens, and after culturing the E. coli SBA01 strain introduced with the mevalonic acid production pathway alone while supplying methane, the cell growth rate of the E. coli SBA01 strain and the concentration of succinic acid and mevalonic acid in the medium are measured. It is a graph that was compared.
도 13은 메틸로코커스 캡슐라투스 바스(M. capsulatus Bath)와 대장균 SBA01 균주를 1차 배양한 다음 새로운 배지에서 연속적으로 2차 배양한 후, 이들의 세포 성장률과 배지 내 아세트산(AA), 숙신산(SA), 말산(MA) 및 메발론산(MVA)의 농도를 측정하여 비교한 그래프이다. 도 13의 A는 메틸로코커스 캡슐라투스 바스의 세포 성장률을 나타내며, 도 13의 B는 대장균 SBA01의 세포 성장률을 나타낸다.13 is a M. capsulatus Bath (M. capsulatus Bath) and E. coli SBA01 strains were first cultured and then continuously secondary cultured in a new medium, and then their cell growth rate and acetic acid (AA) and succinic acid in the medium It is a graph comparing concentrations of (SA), malic acid (MA) and mevalonic acid (MVA). FIG. 13A shows the cell growth rate of Methylococcus capsulartus bath, and FIG. 13B shows the cell growth rate of E. coli SBA01.
도 14는 메탄자화균과 이의 파트너 미생물인 돌연변이 대장균에 메발론산 생합성 관련 유전자를 도입시켜 공배양함으로써 메탄으로부터 메발론산을 전환하여 생산하는 과정을 나타내는 그림이다.FIG. 14 is a diagram showing a process of converting mevalonic acid from methane by co-culture by introducing a gene related to mevalonic acid biosynthesis to a mutant Escherichia coli, which is a methane magnetizing bacterium and its partner microorganism, a mutant E. coli.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
1. 탄소 수 4 이상인 화합물의 생산용 조성물1. Composition for production of compounds having 4 or more carbon atoms
본 발명의 일 측면은, 탄소 수 4 이상인 화합물의 생산용 조성물을 제공한다.One aspect of the present invention provides a composition for producing a compound having 4 or more carbon atoms.
상기 탄소 수 4 이상인 화합물의 생산용 조성물은, 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 포함하고, 상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit) 유전자, 이하, 본 발명을 상세히 설명한다. The composition for production of a compound having 4 or more carbon atoms includes a mutant E. coli capable of metabolizing methanotroph and acetic acid, and the mutant E. coli is a frdA (fumarate reductase flavoprotein subunit) gene, hereinafter, the present invention in detail. Explain.
1. 탄소 수 4 이상인 화합물을 생산하기 위한 조성물1. A composition for producing a compound having 4 or more carbon atoms
본 발명의 일 측면은, 탄소 수 4 이상인 화합물을 생산하기 위한 조성물을 제공한다.One aspect of the present invention provides a composition for producing a compound having 4 or more carbon atoms.
상기 탄소 수 4 이상인 화합물을 생산하기 위한 조성물은, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 포함한다. 상기 조성물은 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 것일 수 있다. The composition for producing the compound having 4 or more carbon atoms includes methanotroph, and mutant E. coli capable of metabolizing acetic acid. The composition may be for producing a compound having 4 or more carbon atoms from methane (CH 4 ).
상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실되고, 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것일 수 있다. The mutant E. coli is active in the protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) and patZ ( The activity of a protein expressed from the peptidyl-lysine acetyltransferase) gene may be lost, and a biosynthesis-related gene of the compound having 4 or more carbon atoms may be introduced.
본 발명의 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물에는, 상기 메탄자화균 및 돌연변이 대장균이 함께 포함됨에 따라 두 미생물 균주가 공배양 시스템(co-culture system)을 구축할 수 있다. 메탄자화균이 메탄(CH4)과 같은 탄소 수 1의 화합물을 이용해 유기산(아세트산, 숙신산 등)을 생산, 분비하고, 메탄자화균에 의해 생산된 유기산을 이용해 돌연변이 대장균이 탄소 수 4 이상의 화합물을 생산할 수 있으므로, 본 발명의 상기 조성물을 탄소 수 4 이상인 화합물의 생산 용도로 이용할 수 있다. In the composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention, two microbial strains can construct a co-culture system as the methanogens and mutant E. coli are included together. have. Methanogens produce and secrete organic acids (acetic acid, succinic acid, etc.) using compounds with 1 carbon number such as methane (CH 4 ), and mutant Escherichia coli uses organic acids produced by methanogens to produce compounds with 4 or more carbon atoms. Since it can be produced, the composition of the present invention can be used for the production of a compound having 4 or more carbon atoms.
본 발명에서 용어 "공배양 시스템"은 2가지 이상의 종류의 균주를 같은 배양 조건에서 함께 배양하는 시스템을 의미하며, 2가지 이상의 균주가 함께 배양된 배양물, 배양 방법, 상기 균주들 각각의 활성과 균주들 간의 상호작용, 그리고 이에 의한 결과물을 모두 포함하는 개념이다.In the present invention, the term "co-culture system" refers to a system for culturing two or more kinds of strains together under the same culture conditions, and a culture in which two or more strains are cultivated together, a culture method, the activity of each of the strains and It is a concept that includes all of the interactions between strains and the resulting products.
상기 조성물은, 메탄(CH4) 이외의 다른 탄소원을 포함하지 않는 것일 수 있다. 상기 메탄은 조성물 내에 용해되어 포함되거나, 상기 조성물에 메탄 기체가 공급되는 형태로 제공될 수 있다. 상기 메탄 이외의 다른 탄소원은, 예를 들어, 메탄올, 포도당, 전분, 또는 설탕일 수 있으나 이에 제한되는 것은 아니다. 메탄 이외의 다른 탄소원을 포함하지 않는 것은, 조성물 내 상기 다른 탄소원의 농도가 0이거나, 조성물 내 상기 메탄자화균 및 돌연변이 대장균이 상기 메탄 이외의 탄소원을 이용하여 지속적으로 성장할 수 없는 수준으로 탄소원이 포함되어 있는 것일 수 있다. 다만, 초기 조성물에는 메탄 이외의 다른 탄소원이 포함되지 않지만, 상기 메탄을 탄소원으로 하여 조성물 내 메탄자화균 및 돌연변이 대장균이 성장, 대사를 진행함에 따라, 메탄자화균이 메탄을 이용해 생산한 유기산, 예컨대 아세트산, 숙신산, 말산 등이 조성물 내에 포함될 수 있고 돌연변이 대장균이 상기 유기산(예를 들어 아세트산)을 이용해 생산한 탄소 수 4 이상인 화합물이 조성물 내에 포함될 수 있다.The composition may not contain a carbon source other than methane (CH 4 ). The methane may be dissolved and included in the composition, or may be provided in a form in which methane gas is supplied to the composition. Other carbon sources other than methane may be, for example, methanol, glucose, starch, or sugar, but are not limited thereto. In the absence of a carbon source other than methane, the concentration of the other carbon source in the composition is 0, or the methanogens and mutant E. coli in the composition contain a carbon source at a level that cannot be continuously grown using a carbon source other than methane. It may have been. However, the initial composition does not contain other carbon sources other than methane, but as the methanogens and mutant Escherichia coli in the composition progress through growth and metabolism using the methane as a carbon source, organic acids produced using methane, such as Acetic acid, succinic acid, malic acid, and the like may be included in the composition, and a compound having 4 or more carbon atoms produced by mutant E. coli using the organic acid (eg, acetic acid) may be included in the composition.
상기 메탄자화균(methanotroph)은 메탄을 탄소원 및 에너지원으로 이용하여 대사할 수 있는 세균으로, 이러한 성질을 가지는 균주라면 어느 것이든 이용될 수 있다. 메탄자화균은 메탄으로부터 유기 화합물을 생산하는 과정에 어떠한 경로를 이용하는지 여부에 따라 Type I(γ-proteobacteria)과 Type II(α-proteobacteria)의 2가지 유형으로 분류될 수 있다. 본 발명의 메탄자화균은 RuMP(ribulose monophosphate) 경로를 사용하여 탄소 동화작용을 수행하는 것이거나, 세린(serine) 경로를 사용하여 탄소 동화작용을 수행하는 것일 수 있으며, 예를 들어 RuMP 경로를 사용하여 메탄으로부터 유기산을 생산할 수 있는 메탄자화균일 수 있다. 상기 메탄자화균은 메틸로코커스 캡슐라투스(Methylococcus capsulatus), 메틸로시누스 트리코스포리움(Methylosinus trichosporium), 또는 메틸로모나스 속(Methylomonas sp.)으로 분류되는 균주일 수 있으며, 예를 들어 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath) 균주일 수 있다.The methanotroph is a bacterium that can metabolize methane by using methane as a carbon source and an energy source, and any strain having such properties may be used. Methanobacteria can be classified into two types: Type I (γ-proteobacteria) and Type II (α-proteobacteria), depending on which pathway is used in the process of producing organic compounds from methane. The methanogens of the present invention may be those that perform carbon assimilation using the RuMP (ribulose monophosphate) pathway, or those that perform carbon assimilation using the serine pathway, for example, using the RuMP pathway. Thus, it may be a methanogens capable of producing organic acids from methane. The methanogens may be strains classified as Methylococcus capsulatus , Methylosinus trichosporium , or Methylomonas sp., for example, methylococcus capsulatus. It may be a Lococcus capsulatus Bath (Methylococcus capsulatus Bath) strain.
상기 돌연변이 대장균은, 유기산이 유일한 탄소원인 조건에서도 이를 대사하여 성장이 가능한 특징이 있는 균주이며, 구체적으로 상기 유기산은 아세트산, 숙신산 및/또는 말산일 수 있으며, 더욱 구체적으로는 아세트산일 수 있다. 상기 돌연변이 대장균은 상기 유기산을 탄소원 또는 에너지원으로 이용하여 탄소 수 4 이상인 화합물의 생산, 성장(바이오매스 증가), 또는 에너지 대사에 이용할 수 있다.The mutant E. coli is a strain capable of metabolizing and growing even under a condition where an organic acid is the only carbon source, and specifically, the organic acid may be acetic acid, succinic acid, and/or malic acid, and more specifically, acetic acid. The mutant E. coli can be used for production, growth (increase of biomass), or energy metabolism of a compound having 4 or more carbon atoms by using the organic acid as a carbon source or an energy source.
상기 frdA(fumarate reductase flavoprotein subunit) 유전자, ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로부터 발현되는 단백질은, 각각 숙신산, 젖산, 아세트산 및 알코올 생산 대사회로에 관여하는 단백질이며, 상기 유전자들로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성이 소실될 경우, 부산물의 생산이 억제되어 포도당 등과 같은 탄소원으로부터 아세틸-CoA를 생산하는 특성이 증가될 수 있다. 이에 따라, 본 발명의 상기 돌연변이 대장균은 이의 아세틸-CoA 생산성이 상기 단백질의 활성이 소실되지 않은 대장균의 아세틸-CoA 생산성보다 증가된 것일 수 있다. 상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로부터 발현되는 단백질의 활성이 모두 소실된 것일 수 있다. Proteins expressed from the frdA (fumarate reductase flavoprotein subunit) gene, ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase), and adhE (alcohol/acetaldehyde dehydrogenase), respectively, are involved in the metabolic circuit of succinic acid, lactic acid, acetic acid and alcohol production. It is a protein, and when the activity of a protein expressed from one or more genes selected from the group consisting of the above genes is lost, the production of by-products is suppressed, and the characteristic of producing acetyl-CoA from a carbon source such as glucose may be increased. Accordingly, in the mutant E. coli of the present invention, its acetyl-CoA productivity may be increased than that of E. coli in which the activity of the protein is not lost. The mutant E. coli may have lost all of the activities of proteins expressed from frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase), and adhE (alcohol/acetaldehyde dehydrogenase).
또한, 상기 돌연변이 대장균은, patZ 유전자로부터 발현되는 단백질의 활성이 필수적으로 소실된 것을 특징으로 하는 대장균 균주이며, cspC(cold shock domain-containing protein), mukB(Mukaku), lomR(lambda outer membrane protein) 및 yhjE(putative major facilitator superfamily transporter)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성이 추가적으로 소실된 것일 수 있다. 또한, 상기 돌연변이 대장균은 상기 cspC, mukB, lomRyhjE의 유전자로부터 발현되는 단백질 모두의 활성이 소실된 것일 수 있다.In addition, the mutant Escherichia coli is an Escherichia coli strain characterized in that the activity of the protein expressed from the patZ gene is essentially lost, cspC (cold shock domain-containing protein), mukB (Mukaku), lomR (lambda outer membrane protein) And yhjE (putative major facilitator superfamily transporter). The activity of a protein expressed from at least one gene selected from the group consisting of yhjE (putative major facilitator superfamily transporter) may be additionally lost. In addition, the mutant E. coli may have lost the activity of all proteins expressed from the genes of cspC , mukB , lomR, and yhjE.
본 발명의 용어 "유전자로부터 발현되는 단백질의 활성이 소실된 것"은, 상기 단백질이 야생형 개체에서 단백질이 나타내는 기능을 수행하지 못하거나 기능이 감소한 것을 의미한다. 이는, 상기 유전자에서 돌연변이가 발생하는 것, 상기 단백질의 발현(예컨대 RNA 전사 또는 단백질 번역)이 억제되는 것, 상기 단백질의 활성 억제제가 존재하는 것, 상기 단백질이 세포 외로 이동되거나 배출되는 것, 상기 단백질의 분해가 촉진되는 것, 상기 단백질이 촉매하는 반응의 기질이 상기 단백질과 결합하지 못하는 것, 상기 단백질이 이의 수용체 등에 결합하지 못하는 것 등을 모두 포함하는 개념이나, 이에 제한되지 않는다.The term "lost activity of a protein expressed from a gene" of the present invention means that the protein fails to perform the function indicated by the protein in a wild-type individual or has a reduced function. This means that a mutation occurs in the gene, that the expression of the protein (such as RNA transcription or protein translation) is inhibited, that an inhibitor of the activity of the protein is present, that the protein is moved or released to the outside of the cell, the The concept includes, but is not limited to, that the decomposition of the protein is accelerated, that the substrate of the reaction catalyzed by the protein cannot bind to the protein, and that the protein cannot bind to its receptor.
상기 patZ, cspC, mukB, lomRyhjE 유전자가 돌연변이되는 경우, 상기 돌연변이된 patZ, cspC, mukB, lomRyhjE 유전자는 각각 서열번호 1 내지 서열번호 5의 염기서열을 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.When the patZ , cspC , mukB , lomR and yhjE genes are mutated, the mutated patZ , cspC , mukB , lomR and yhjE genes may each include a nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 5, but are limited thereto. It does not become.
상기 patZ 유전자의 돌연변이는 서열번호 6의 아미노산 서열로 이루어진 야생형 효소의 501번째 아미노산인 Trp이 종결 코돈(stop codon)으로 돌연변이된 것(Trp501Stop)일 수 있고, 상기 cspC 유전자의 돌연변이는 서열번호 7의 아미노산 서열로 이루어진 야생형 효소의 58번째 아미노산인 Gln이 종결 코돈(stop codon)으로 돌연변이된 것(Gln58Stop)일 수 있고, 상기 mukB 유전자의 돌연변이는 서열번호 8의 아미노산 서열로 이루어진 야생형 효소의 54번째 아미노산인 Asp이 Glu으로 돌연변이된 것(Asp54Glu)일 수 있고, 상기 lomR 유전자의 돌연변이는 서열번호 9의 아미노산 서열로 이루어진 야생형 효소의 114번째 아미노산인 Pro이 Leu으로 돌연변이된 것(Pro114Leu)일 수 있고, 상기 yhjE 유전자의 돌연변이는 서열번호 10의 아미노산 서열로 이루어진 야생형 효소의 210번째 아미노산인 Ile이 Met으로 돌연변이된 것(Ile210Met)일 수 있다.The mutation of the patZ gene may be that Trp, the 501st amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 6, is mutated with a stop codon (Trp501Stop), and the mutation of the cspC gene is of SEQ ID NO: 7 Gln, the 58th amino acid of the wild-type enzyme consisting of an amino acid sequence, may be mutated with a stop codon (Gln58Stop), and the mutation of the mukB gene is the 54th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 8. Phosphorus Asp may be mutated to Glu (Asp54Glu), and the mutation of the lomR gene may be that Pro, which is the 114th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 9, is mutated to Leu (Pro114Leu), The mutation of the yhjE gene may be that Ile, which is the 210th amino acid of the wild-type enzyme consisting of the amino acid sequence of SEQ ID NO: 10, is mutated to Met (Ile210Met).
본 발명에서 용어 "돌연변이"는 유전정보가 기록된 DNA 분자가 여러가지 요인에 의하여 원래의 DNA와 그 서열이 달라지는 것을 의미하는 것으로서, 돌연변이가 일어나면 그 유전자에 의해 생산되는 단백질에 변화가 생기고, 이는 유전형질의 변화를 불러오게 되어, 해당 개체의 생물학적 특징 등에 변형시킬 수 있다.In the present invention, the term "mutation" means that the DNA molecule on which the genetic information is recorded differs from the original DNA by various factors. When a mutation occurs, a change occurs in the protein produced by the gene, which is genotype. It brings about a change in quality, which can change the biological characteristics of the individual.
상기 돌연변이 대장균은 한국 공개특허공보 제2018-0034280호에 기재된 돌연변이 미생물일 수 있으며, 또는, 상기 공개특허공보에 기재된 방법을 통해 제조되는 돌연변이 대장균에 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자를 도입시킨 것일 수 있다.The mutant E. coli may be a mutant microorganism described in Korean Patent Publication No. 2018-0034280, or a gene related to the biosynthesis of a compound having 4 or more carbon atoms is introduced into the mutant E. coli prepared through the method described in the Korean Patent Application Publication No. 2018-0034280. Can be.
상기 돌연변이 대장균은 이의 아세틸-CoA 생산성이 야생형 대장균의 아세틸-CoA 생산성보다 증가된 것일 수 있으며, 구체적으로, 상기 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로부터 발현되는 단백질의 활성이 소실되지 않은 대장균의 아세틸-CoA 생산성보다 증가된 것일 수 있다.The mutant E. coli may have its acetyl-CoA productivity higher than that of wild-type E. coli, and specifically, the frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE. The activity of the protein expressed from (alcohol/acetaldehyde dehydrogenase) may be increased compared to the acetyl-CoA productivity of E. coli that has not been lost.
본 발명의 돌연변이 대장균은, 상기와 같은 유전자들로부터 발현되는 단백질의 활성이 소실됨에 따라, 아세트산이 유일한 탄소원으로 존재하는 조건에서도 아세트산을 이용해 성장, 대사가 가능한 특징이 있는 균주이다.The mutant E. coli of the present invention is a strain capable of growth and metabolism using acetic acid even under conditions in which acetic acid is the only carbon source as the activity of proteins expressed from the above genes is lost.
상기 돌연변이 대장균은 수탁번호 KCTC13040BP로 기탁된 대장균 SBA01 균주에 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것일 수 있으며, 상기 대장균 SBA01 균주는 한국생명공학연구원 미생물자원센터에 수탁번호 KCTC13040BP로 2016년 6월 10일자에 기탁되었으므로, 당업계의 통상의 기술자가 상기 기탁기관으로부터 분양받아 용이하게 입수 가능한 미생물이다.The mutant E. coli may be a gene introduced into the E. coli SBA01 strain deposited with the accession number KCTC13040BP, and a gene related to the biosynthesis of the compound having a carbon number of 4 or more was introduced, and the E. coli SBA01 strain was assigned the accession number KCTC13040BP to the Microbial Resource Center of the Korea Institute of Bioscience and Biotechnology in 2016 Since it was deposited on June 10, it is a microorganism that can be easily obtained by a person skilled in the art pre-sale from the depositing institution.
상기 탄소 수 4 이상인 화합물은 탄소 수가 5 이상인 화합물, 탄소 수가 6 이상인 화합물, 탄소 수가 8 이상인 화합물, 탄소 수가 10 이상인 화합물, 또는 탄소 수가 12 이상인 화합물일 수 있으나 이에 제한되지 않는다. 또한, 상기 탄소 수 4 이상인 화합물은 메발론산(mevalonate), 부탄올, 이소부탄올, 펜타놀, 이소펜타놀, 비사볼렌, 비사볼올, 이소프렌, 라이코펜 또는 히마찰렌일 수 있으나 이에 제한되지 않으며, 구체적으로 본 발명의 조성물은 메발론산을 생산하기 위한 용도의 조성물일 수 있다. 상기와 같은 탄소 수 4 이상인 화합물을 생산하기 위하여, 상기 돌연변이 대장균에는 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된다. 예를 들어, 상기 탄소 수 4 이상인 화합물이 메발론산일 경우, 상기 돌연변이 대장균은 MvaE 효소 및 MvaS 효소를 암호화하는 폴리뉴클레오티드가 도입되어 형질전환된 것일 수 있다. 상기 MvaE 효소는 아세토아세틸-CoA 티올라아제(acetoacetyl-CoA thiolase) 활성 및 3-히드록시-3-메틸글루타릴-CoA 환원효소(3-hydroxy-3-methylglutaryl-CoA reductase) 활성을 가지는 것일 수 있고, 상기 MvaS 효소는 3-히드록시-3-메틸글루타릴-CoA 합성효소(3-hydroxy-3-methylglutaryl-CoA synthase) 활성을 가지는 것일 수 있다. 상기 MvaE 효소 및 MvaS 효소를 암호화하는 폴리뉴클레오티드는 Enterococcus faecalis로부터 유래하는 것일 수 있으며, 상기 폴리뉴클레오티드는 벡터, 예컨대 플라스미드에 포함되어 상기 돌연변이 대장균에 형질전환되는 것일 수 있다.The compound having 4 or more carbon atoms may be a compound having 5 or more carbon atoms, a compound having 6 or more carbon atoms, a compound having 8 or more carbon atoms, a compound having 10 or more carbon atoms, or a compound having 12 or more carbon atoms, but is not limited thereto. In addition, the compound having 4 or more carbon atoms may be mevalonate, butanol, isobutanol, pentanol, isopentanol, bisabolen, bisabolol, isoprene, lycopene, or himachalene, but is not limited thereto. The composition of the invention may be a composition for use in producing mevalonic acid. In order to produce a compound having 4 or more carbon atoms as described above, a gene related to biosynthesis of the compound having 4 or more carbon atoms is introduced into the mutant E. For example, when the compound having 4 or more carbon atoms is mevalonic acid, the mutant E. coli may be transformed by introducing a polynucleotide encoding an MvaE enzyme and an MvaS enzyme. The MvaE enzyme has acetoacetyl-CoA thiolase activity and 3-hydroxy-3-methylglutaryl-CoA reductase activity. In addition, the MvaS enzyme may have a 3-hydroxy-3-methylglutaryl-CoA synthase activity. The polynucleotide encoding the MvaE enzyme and the MvaS enzyme may be derived from Enterococcus faecalis , and the polynucleotide may be included in a vector such as a plasmid and transformed into the mutant E. coli.
본 발명의 구체적인 실시예에서는, 상기 탄소 수 4 이상인 화합물과 관련하여 메발론산을 대상으로 이의 생합성 관련 유전자의 도입에 대해 기재하고 있으나, 이는 한 가지 대표적인 예시에 불과하므로 상기 탄소 수 4 이상인 화합물은 메발론산으로 제한되지 않으며, 기존에 알려진 탄소 수 4 이상인 화합물의 생합성을 위한 관련 유전자 또는 관련 대사 경로라면 어떤 것이든 본 발명에 적용될 수 있다. 또한, 본 발명과 동일한 기술분야의 통상의 기술자라면 상기 생합성 관련 유전자 또는 관련 대사 경로를 돌연변이 대장균에 도입시키기 위한 어떠한 도입 방법이라도 적절히 선택하여 적용할 수 있다.In a specific embodiment of the present invention, the introduction of genes related to biosynthesis thereof into mevalonic acid in relation to the compound having 4 or more carbon atoms is described, but this is only one representative example, so the compound having 4 or more carbon atoms is mebalan The present invention is not limited to ronic acid, and any known gene or metabolic pathway for biosynthesis of compounds having 4 or more carbon atoms can be applied to the present invention. In addition, a person skilled in the art in the same technical field as the present invention can appropriately select and apply any introduction method for introducing the biosynthesis-related gene or related metabolic pathway into the mutant E. coli.
본 발명의 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물은, 상기 메탄자화균 및 상기 돌연변이 대장균을 3:1 내지 15:1의 비율로 포함할 수 있다. 구체적으로, 상기 메탄자화균 및 상기 돌연변이 대장균의 비율은, 4:1 내지 13:1, 5:1 내지 12:1, 8:1 내지 11:1, 9:1 내지 11:1 또는 10:1일 수 있으나 이에 제한되지 않는다. 상기 메탄자화균 및 돌연변이 대장균이 상기 범위의 비율로 조성물에 포함될 경우, 두 균주가 서로의 성장에 부정적인 영향을 주지 않을 수 있고 세포의 성장 속도가 향상될 수 있는 장점이 있다. 예를 들어, 상기 범위의 비율로 메탄자화균 및 돌연변이 대장균을 접종하여 배양할 경우, 48시간 내에 메탄자화균은 20배 이상, 돌연변이 대장균은 10배 이상 세포 수가 증가될 수 있다. 상기 메탄자화균 및 돌연변이 대장균의 비율은 광학 밀도(optical density, OD)를 통해 측정된 각 미생물 세포의 수의 비율일 수 있으며, 예를 들어 600 ㎚ 파장의 광학 밀도일 수 있다. 구체적으로, 상기 비율은 메탄자화균의 측정된 광학 밀도 값 1을 기준으로 하였을 때, 상기 돌연변이 대장균의 측정된 광학 밀도 값을 비교하여 계산되는 것일 수 있다. The composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may include the methanogens and the mutant Escherichia coli in a ratio of 3:1 to 15:1. Specifically, the ratio of the methanogens and the mutant E. coli is, 4:1 to 13:1, 5:1 to 12:1, 8:1 to 11:1, 9:1 to 11:1 or 10:1 May be, but is not limited thereto. When the methanogens and mutant E. coli are included in the composition in the ratio of the above range, the two strains may not negatively affect each other's growth, and the growth rate of cells may be improved. For example, in the case of inoculating and culturing methanogens and mutant Escherichia coli at a ratio of the above range, the number of cells may increase by 20 times or more for methanogens and 10 times or more for mutant Escherichia coli within 48 hours. The ratio of the methanogens and mutant E. coli may be the ratio of the number of microbial cells measured through optical density (OD), and may be, for example, an optical density of 600 nm wavelength. Specifically, the ratio may be calculated by comparing the measured optical density value of the mutant E. coli, based on the measured optical density value 1 of the methane magnetizing bacteria.
본 발명의 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물은, 구리 이온을 더 포함할 수 있다. 상기 구리 이온은 CuCl2의 형태로 포함될 수 있으며, 예컨대 5 μM 내지 15 μM, 7 μM 내지 13 μM, 또는 9 내지 11 μM의 농도로 포함될 수 있다. 상기 구리 이온은 메탄 모노옥시게나제(MMO, methane monooxygenase)의 활성 또는 전자 수송을 촉진할 수 있으며, 이에 따라 본 발명의 조성물 내 메탄자화균이 메탄으로부터 유기산을 생산하는 과정이 촉진되어 생산 효율이 증가될 수 있다.The composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may further include copper ions. The copper ions may be included in the form of CuCl 2 , for example, 5 μM to 15 μM, 7 μM to 13 μM, or 9 to 11 μM. The copper ions can promote the activity of methane monooxygenase (MMO) or electron transport, and accordingly, the process of producing organic acids from methane in the composition of the present invention is promoted, resulting in production efficiency. Can be increased.
본 발명의 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물은, 질소원으로 질산(NO3 -)을 포함할 수 있다. 상기 "질소원"은 본 발명의 조성물 내 포함된 메탄자화균 또는 돌연변이 대장균이 질소화합물을 합성하기 위해 받아들이는 외부 질소화합물을 의미한다. 상기 질소원은 질산과 암모니아(NH4 +)의 혼합물의 형태로 조성물에 포함될 수도 있으나, 상기 조성물은 암모니아를 포함하지 않는 것일 수 있다. 본 발명의 조성물 내 질소원으로 질산을 이용할 경우 암모니아를 이용하는 경우보다 메탄자화균의 성장률 또는 유기산 생산량이 증가될 수 있다. 메탄자화균에 의한 유기산 생산량이 증가하면, 돌연변이 대장균이 유기산을 이용하여 탄소 수 4 이상의 화합물을 생산할 수 있으므로, 탄소 수 4 이상의 화합물 생산성 역시 향상될 수 있는 장점이 있다. The composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of the present invention may include nitric acid (NO 3 ) as a nitrogen source. The "nitrogen source" refers to an external nitrogen compound accepted by the methanogens or mutant E. coli contained in the composition of the present invention to synthesize a nitrogen compound. The nitrogen source may be included in the composition in the form of a mixture of nitric acid and ammonia (NH 4 + ), but the composition may not contain ammonia. When nitric acid is used as the nitrogen source in the composition of the present invention, the growth rate of methanogens or the production of organic acids may be increased compared to the case of using ammonia. When the amount of organic acid produced by the methanogens increases, the mutant E. coli can use the organic acid to produce a compound having 4 or more carbon atoms, thereby improving the productivity of a compound having 4 or more carbon atoms.
상기 질소원은, 통상의 NMS(nitrate mineral salts) 배지에 함유되는 질소원 농도의 5% 내지 15%의 농도로 조성물 내에 포함될 수 있으며, 상기 NMS 배지에 함유되는 질소원 농도는 예컨대 0.5 mM 내지 2 mM일 수 있으나, 이에 제한되는 것은 아니다.The nitrogen source may be included in the composition at a concentration of 5% to 15% of the nitrogen source concentration contained in a conventional NMS (nitrate mineral salts) medium, and the nitrogen source concentration contained in the NMS medium may be, for example, 0.5 mM to 2 mM. However, it is not limited thereto.
또한, 상기 질소원은 본 발명의 조성물 내에 0.1 mM 내지 50 mM의 농도로 포함될 수 있다. 구체적으로, 상기 질소원은 본 발명의 조성물 내에 0.1 mM 내지 45 mM, 0.2 mM 내지 45 mM, 0.5 mM 내지 40 mM, 또는 0.8 mM 내지 35 mM의 농도로 포함될 수 있다. 보다 구체적으로 우수한 유기산 생산 효율 효과를 위하여 상기 질소원은 조성물 내에 0.1 mM 내지 3 mM, 0.5 mM 내지 2 mM, 또는 0.8 mM 내지 1.5 mM의 농도로 포함될 수 있으며, 충분한 세포량(cell mass)을 확보하면서 우수한 유기산 생산 효율까지 달성하기 위하여 상기 질소원은 조성물 내에 15 mM 내지 45 mM, 20 mM 내지 40 mM, 또는 25 mM 내지 35 mM의 농도로 포함될 수 있다.In addition, the nitrogen source may be included in a concentration of 0.1 mM to 50 mM in the composition of the present invention. Specifically, the nitrogen source may be included in a concentration of 0.1 mM to 45 mM, 0.2 mM to 45 mM, 0.5 mM to 40 mM, or 0.8 mM to 35 mM in the composition of the present invention. More specifically, for an excellent organic acid production efficiency effect, the nitrogen source may be included in the composition at a concentration of 0.1 mM to 3 mM, 0.5 mM to 2 mM, or 0.8 mM to 1.5 mM, while securing a sufficient cell mass. In order to achieve excellent organic acid production efficiency, the nitrogen source may be included in the composition at a concentration of 15 mM to 45 mM, 20 mM to 40 mM, or 25 mM to 35 mM.
본 발명의 조성물은 첨가제를 더 포함할 수 있다. 상기 첨가제는 본 발명의 조성물에 포함된 메탄자화균 및 돌연변이 대장균의 성장, 대사 등의 활성을 저해하지 않는 것이라면 어느 것이든 이용될 수 있으며, 예컨대 상기 첨가제는 보호제, 완충제 또는 담체일 수 있다. 상기 보호제는 상기 메탄자화균 및 돌연변이 대장균의 성장, 대사 등의 활성에는 영향을 미치지 않으면서, 본 발명의 조성물을 보관, 저장, 유통하는 과정에서 상기 메탄자화균 및 돌연변이 대장균을 보호하고 이들의 손상이나 사멸을 방지하는 기능을 하는 것이라면 어느 것이든 포함될 수 있다. 본 발명의 조성물이 동결건조된 상태로 보관, 저장, 유통 또는 이용되는 경우, 상기 보호제는 동결보호제일 수 있다. 상기 동결보호제는 탈지분유, 말토덱스트린, 덱스트린, 트레할로스, 말토오스, 유당, 만니톨, 사이클로덱스트린, 글리세롤, 치커리, 인산칼륨 및 꿀로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 조성물의 동결건조 과정에서 상기 메탄자화균 및 돌연변이 대장균이 손상되거나 사멸되는 것을 방지할 수 있는 제제라면 어느 것이든 포함될 수 있다. 본 발명의 조성물에 상기 동결보호제가 포함되는 경우, 상기 조성물은 동결건조 과정을 거쳐 동결건조물, 예컨대 분말의 형태로 사용될 수 있다. 상기 동결건조된 조성물은 제형화, 포장, 보관 등에 있어 유리한 장점이 있고 이에 포함된 상기 메탄자화균 및 돌연변이 대장균을 장기간 보존할 수 있는 효과가 있다.The composition of the present invention may further include an additive. Any of the additives may be used as long as they do not inhibit the growth and metabolism of methanogens and mutant Escherichia coli contained in the composition of the present invention. For example, the additive may be a protective agent, a buffer, or a carrier. The protective agent protects the methanogens and mutant Escherichia coli in the process of storing, storing, and distributing the composition of the present invention without affecting the growth and metabolism of the methanogens and mutant Escherichia coli, and their damage Or anything that functions to prevent death. When the composition of the present invention is stored, stored, distributed or used in a lyophilized state, the protective agent may be a cryoprotectant. The cryoprotectant may be one or more selected from the group consisting of skim milk powder, maltodextrin, dextrin, trehalose, maltose, lactose, mannitol, cyclodextrin, glycerol, chicory, potassium phosphate, and honey, but is not limited thereto, and freezing of the composition Any agent that can prevent the methanogens and mutant E. coli from being damaged or killed during the drying process may be included. When the cryoprotectant is included in the composition of the present invention, the composition may be used in the form of a lyophilized product, such as a powder, through a lyophilization process. The lyophilized composition has advantageous advantages in formulation, packaging, storage, etc., and has an effect of preserving the methanogens and mutant E. coli contained therein for a long time.
2. 메탄자화균 및 대장균의 공배양 방법2. Co-cultivation method of Methanobacteria and Escherichia coli
본 발명의 다른 일 측면은, 메탄자화균 및 대장균을 공배양하는 방법을 제공한다.Another aspect of the present invention provides a method of co-culturing methanogens and E. coli.
상기 메탄자화균 및 대장균의 공배양 방법은, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계를 포함하며, 상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실된 것이다.The co-culture method of the methanogens and E. coli includes culturing methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium, and the mutant E. coli is frdA (fumarate reductase flavoprotein subunit). ), the protein expressed from the ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) activity and patZ (peptidyl-lysine acetyltransferase protein expressed from one or more genes selected from the group consisting of a) gene The activity of is lost.
상기 메탄자화균에 관한 설명은 '1. 탄소 수 4 이상인 화합물을 생산하기 위한 조성물'에서 메탄자화균에 대해 설명한 것과 동일하다.For the explanation of the above methane magnetizing bacteria, refer to '1. It is the same as that described for the methanogens in'Composition for producing a compound having 4 or more carbon atoms'.
상기 돌연변이 대장균은, 유기산이 유일한 탄소원인 조건에서도 이를 대사하여 성장이 가능한 특징이 있는 균주이며, 구체적으로 상기 유기산은 아세트산, 숙신산 및/또는 말산일 수 있으며, 더욱 구체적으로는 아세트산일 수 있다. 상기 돌연변이 대장균은 상기 유기산을 탄소원 또는 에너지원으로 이용하여 유용 화합물의 생산, 성장(바이오매스 증가), 또는 에너지 대사에 이용할 수 있다.The mutant E. coli is a strain capable of metabolizing and growing even under a condition where an organic acid is the only carbon source, and specifically, the organic acid may be acetic acid, succinic acid, and/or malic acid, and more specifically, acetic acid. The mutant E. coli can be used for the production, growth (increase of biomass), or energy metabolism of useful compounds by using the organic acid as a carbon source or an energy source.
또한, 상기 돌연변이 대장균은, patZ 유전자로부터 발현되는 단백질의 활성이 필수적으로 소실된 것을 특징으로 하는 대장균 균주이며, cspC(cold shock domain-containing protein), mukB(Mukaku), lomR(lambda outer membrane protein) 및 yhjE(putative major facilitator superfamily transporter)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성이 추가적으로 소실된 것일 수 있다. 또한, 상기 돌연변이 대장균은 상기 cspC, mukB, lomRyhjE의 유전자로부터 발현되는 단백질 모두의 활성이 소실된 것일 수 있다.In addition, the mutant Escherichia coli is an Escherichia coli strain characterized in that the activity of the protein expressed from the patZ gene is essentially lost, cspC (cold shock domain-containing protein), mukB (Mukaku), lomR (lambda outer membrane protein) And yhjE (putative major facilitator superfamily transporter). The activity of a protein expressed from at least one gene selected from the group consisting of yhjE (putative major facilitator superfamily transporter) may be additionally lost. In addition, the mutant E. coli may have lost the activity of all proteins expressed from the genes of cspC , mukB , lomR, and yhjE.
상기 유전자로부터 발현되는 단백질의 활성의 소실, 상기 유전자들의 돌연변이에 관한 설명은 1. 탄소 수 4 이상인 화합물을 생산하기 위한 조성물'에서 이들에 대해 설명한 것과 동일하다.The loss of the activity of the protein expressed from the gene and the mutation of the genes are the same as those described in 1. Composition for producing a compound having 4 or more carbon atoms.
상기 돌연변이 대장균은 한국 공개특허공보 제2018-0034280호에 기재된 돌연변이 미생물이나, 상기 공개특허공보에 기재된 방법을 통해 제조되는 돌연변이 대장균일 수 있다.The mutant E. coli may be a mutant microorganism described in Korean Patent Publication No. 2018-0034280, or a mutant E. coli produced through the method described in the Korean Patent Application Publication.
상기 돌연변이 대장균은 수탁번호 KCTC13040BP로 기탁된 대장균 SBA01 균주일 수 있으며, 상기 대장균 SBA01 균주는 한국생명공학연구원 미생물자원센터에 수탁번호 KCTC13040BP로 2016년 6월 10일자에 기탁되었으므로, 당업계의 통상의 기술자가 상기 기탁기관으로부터 분양받아 용이하게 입수 가능한 미생물이다.The mutant Escherichia coli may be an Escherichia coli SBA01 strain deposited with the accession number KCTC13040BP, and the Escherichia coli SBA01 strain was deposited on June 10, 2016 under the accession number KCTC13040BP at the Korea Research Institute of Bioscience and Biotechnology Microbial Resource Center, Is a microorganism that can be easily obtained by pre-sale from the depository institution.
상기 돌연변이 대장균은, 이의 활용 목적에 따라 특정 유전자를 도입하여 형질전환시킨 것일 수 있으며, 예를 들어 탄소 수 4 이상인 화합물의 생합성 관련 유전자를 도입한 것일 수 있다.The mutant E. coli may be transformed by introducing a specific gene according to the purpose of use thereof, and for example, may be introduced a gene related to biosynthesis of a compound having 4 or more carbon atoms.
메탄자화균은 메탄을 탄소원으로 이용하여 대사할 수 있으나, 메탄자화균에 의해 생성되는 유기산을 다시 이용할 수 있는 효율이 떨어져, 숙신산과 같은 유기산의 축적에 의해 성장이 저해될 수 있다. 따라서, 메탄자화균에 의해 생성되는 유기산을 이용할 수 있는 특징이 있는 파트너 미생물과 공배양할 경우 메탄자화균을 단독으로 배양하는 것에 비해 더 유리한 장점이 있다. 또한, 메탄자화균의 배양 과정에서 메탄만이 유일한 탄소원으로 공급되는 경우, 메탄을 탄소원으로 이용하지 못하는 미생물은 메탄자화균에 의해 생산된 유기산을 유일한 탄소원으로 이용할 수 있는 특성이 있어야만 한다. 본 발명의 돌연변이 대장균은 유기산을 유일한 탄소원으로 이용할 수 있으며 특히 아세트산을 이용하여 성장이 가능하므로, 본 발명의 공배양 방법을 통해 메탄자화균과 돌연변이 대장균의 성장이 모두 증가될 수 있는 효과가 있다.Methanogens can metabolize methane by using methane as a carbon source, but the efficiency of reusing organic acids produced by methanogens is low, and growth may be inhibited by accumulation of organic acids such as succinic acid. Therefore, when co-cultured with a partner microorganism capable of using an organic acid produced by methanogens, there is a more advantageous advantage compared to culturing the methanogens alone. In addition, when only methane is supplied as the sole carbon source during the cultivation of methanogens, microorganisms that cannot use methane as a carbon source must have the property of using organic acids produced by the methanogens as the sole carbon source. The mutant E. coli of the present invention can use an organic acid as the sole carbon source and, in particular, can be grown using acetic acid, so that the growth of both methanogens and mutant E. coli can be increased through the co-culture method of the present invention.
상기 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계는, 메탄(CH4)이 탄소원으로 공급되는 조건에서 배양하는 것일 수 있다. 메탄자화균은 메탄을 이용하여 유기산(아세트산 등)을 생산하고 돌연변이 대장균은 상기 유기산을 탄소원으로 이용하여 성장 및 대사할 수 있다. The step of culturing the methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium may be culturing under conditions in which methane (CH 4 ) is supplied as a carbon source. Methanophilic bacteria produce organic acids (such as acetic acid) using methane, and mutant E. coli can grow and metabolize using the organic acid as a carbon source.
상기 메탄(CH4)이 탄소원으로 공급되는 조건에서 배양하는 경우, 배양 시 공급되는 공기의 20% 내지 40%의 비율로 메탄이 포함되도록 공급될 수 있으며, 예를 들어, 25% 내지 35%, 또는 28% 내지 32%의 비율로 메탄이 포함되도록 공급될 수 있다. 이 때, 상기 공급되는 공기 내에 산소는 2% 내지 5%, 2.5% 내지 4.5%, 또는 3% 내지 4%의 비율로 포함될 수 있다.When the methane (CH 4 ) is cultivated under a condition in which it is supplied as a carbon source, it may be supplied to contain methane in a ratio of 20% to 40% of air supplied during cultivation, for example, 25% to 35%, Alternatively, it may be supplied to contain methane in a ratio of 28% to 32%. In this case, oxygen may be included in the supplied air in a ratio of 2% to 5%, 2.5% to 4.5%, or 3% to 4%.
또한, 상기 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계는, 상기 메탄자화균 및 상기 돌연변이 대장균을 3:1 내지 15:1의 비율로 접종하여 배양하는 것일 수 있다. 구체적으로, 상기 메탄자화균 및 상기 돌연변이 대장균의 비율은, 4:1 내지 13:1, 5:1 내지 12:1, 8:1 내지 11:1, 9:1 내지 11:1 또는 10:1일 수 있으나 이에 제한되지 않는다. 상기 메탄자화균 및 돌연변이 대장균이 상기 범위의 비율로 접종될 경우, 두 균주가 서로의 성장에 부정적인 영향을 주지 않을 수 있고 세포의 성장 속도가 향상될 수 있는 장점이 있다. 예를 들어, 상기 범위의 비율로 메탄자화균 및 돌연변이 대장균을 접종하여 배양할 경우, 48시간 내에 메탄자화균은 20배 이상, 돌연변이 대장균은 10배 이상 세포 수가 증가될 수 있다. 상기 메탄자화균 및 돌연변이 대장균의 비율은 광학 밀도(optical density, OD)를 통해 측정된 각 미생물 세포의 수의 비율일 수 있으며, 예를 들어 600 ㎚ 파장의 광학 밀도일 수 있다. 구체적으로, 상기 비율은 메탄자화균의 측정된 광학 밀도 값 1을 기준으로 하였을 때, 상기 돌연변이 대장균의 측정된 광학 밀도 값을 비교하여 계산되는 것일 수 있다.In addition, the step of culturing the methanotroph and mutant Escherichia coli capable of metabolizing acetic acid together in the same medium includes inoculating the methanogenic bacteria and the mutant Escherichia coli in a ratio of 3:1 to 15:1. It can be. Specifically, the ratio of the methanogens and the mutant E. coli is, 4:1 to 13:1, 5:1 to 12:1, 8:1 to 11:1, 9:1 to 11:1 or 10:1 May be, but is not limited thereto. When the methanogens and mutant E. coli are inoculated at the ratio of the above range, the two strains may not negatively affect each other's growth, and the growth rate of cells may be improved. For example, in the case of inoculating and culturing methanogens and mutant Escherichia coli at a ratio of the above range, the number of cells may increase by 20 times or more for methanogens and 10 times or more for mutant Escherichia coli within 48 hours. The ratio of the methanogens and mutant E. coli may be the ratio of the number of microbial cells measured through optical density (OD), and may be, for example, an optical density of 600 nm wavelength. Specifically, the ratio may be calculated by comparing the measured optical density value of the mutant E. coli, based on the measured optical density value 1 of the methane magnetizing bacteria.
또한, 상기 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계는, 구리 이온이 존재하는 조건에서 배양하는 것일 수 있다. 상기 구리 이온은 CuCl2의 형태로 포함될 수 있으며, 예컨대 5 μM 내지 15 μM, 7 μM 내지 13 μM, 또는 9 내지 11 μM의 농도로 포함될 수 있다. 상기 구리 이온은 메탄 모노옥시게나제(MMO, methane monooxygenase)의 활성 또는 전자 수송을 촉진할 수 있어 메탄자화균의 메탄 전환율을 높여 이의 성장을 촉진하고 메탄자화균에 의한 유기산 생산량을 높여 돌연변이 대장균의 성장 역시 촉진할 수 있다.In addition, the step of culturing the methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium may be culturing in the presence of copper ions. The copper ions may be included in the form of CuCl 2 , for example, 5 μM to 15 μM, 7 μM to 13 μM, or 9 to 11 μM. The copper ions can promote the activity or electron transport of methane monooxygenase (MMO), thereby increasing the methane conversion rate of the methane magnetizing bacteria to promote their growth and increase the production of organic acids by the methanogens to increase the production of mutant Escherichia coli. Growth can also be promoted.
상기 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계는, 질소원으로 질산(NO3 -)이 공급되는 조건에서 배양하는 것일 수 있다. 상기 “질소원”은 본 발명의 조성물 내 포함된 메탄자화균 또는 돌연변이 대장균이 질소화합물을 합성하기 위해 받아들이는 외부 질소화합물을 의미한다. 상기 질소원은 질산과 암모니아(NH4 +)의 혼합물의 형태로 공급될 수도 있으나, 상기 배양하는 단계는 암모니아가 공급되지 않는 조건에서 배양하는 것일 수 있다. 질소원으로 질산을 이용할 경우 암모니아를 이용하는 경우보다 메탄자화균의 성장률 또는 유기산 생산량이 증가될 수 있으며, 상기 유기산을 이용하는 돌연변이 대장균의 성장률 역시 증가될 수 있다.The step of culturing the methanotroph and mutant Escherichia coli capable of metabolizing acetic acid together in the same medium may be culturing under conditions in which nitric acid (NO 3 −) is supplied as a nitrogen source. The "nitrogen source" refers to an external nitrogen compound that is accepted by the methane magnetizing bacteria or mutant Escherichia coli contained in the composition of the present invention to synthesize the nitrogen compound. The nitrogen source may be supplied in the form of a mixture of nitric acid and ammonia (NH 4 + ), but the culturing step may be culturing under a condition in which ammonia is not supplied. When nitric acid is used as the nitrogen source, the growth rate or the production of organic acids of methanogens may be increased compared to the case of using ammonia, and the growth rate of mutant E. coli using the organic acid may also be increased.
상기 질소원은, 통상의 NMS(nitrate mineral salts) 배지에 함유되는 질소원 농도의 5% 내지 15%의 농도로 조성물 내에 포함될 수 있으며, 상기 NMS 배지에 함유되는 질소원 농도는 예컨대 0.5 mM 내지 2 mM일 수 있으나, 이에 제한되는 것은 아니다.The nitrogen source may be included in the composition at a concentration of 5% to 15% of the nitrogen source concentration contained in a conventional NMS (nitrate mineral salts) medium, and the nitrogen source concentration contained in the NMS medium may be, for example, 0.5 mM to 2 mM. However, it is not limited thereto.
또한, 상기 질소원은 본 발명의 조성물 내에 0.1 mM 내지 50 mM의 농도로 포함될 수 있다. 구체적으로, 상기 질소원은 본 발명의 조성물 내에 0.1 mM 내지 45 mM, 0.2 mM 내지 45 mM, 0.5 mM 내지 40 mM, 또는 0.8 mM 내지 35 mM의 농도로 포함될 수 있다. 보다 구체적으로 우수한 유기산 생산 효율 효과를 위하여 상기 질소원은 조성물 내에 0.1 mM 내지 3 mM, 0.5 mM 내지 2 mM, 또는 0.8 mM 내지 1.5 mM의 농도로 포함될 수 있으며, 충분한 세포량(cell mass)을 확보하면서 우수한 유기산 생산 효율까지 달성하기 위하여 상기 질소원은 조성물 내에 15 mM 내지 45 mM, 20 mM 내지 40 mM, 또는 25 mM 내지 35 mM의 농도로 포함될 수 있다.In addition, the nitrogen source may be included in a concentration of 0.1 mM to 50 mM in the composition of the present invention. Specifically, the nitrogen source may be included in a concentration of 0.1 mM to 45 mM, 0.2 mM to 45 mM, 0.5 mM to 40 mM, or 0.8 mM to 35 mM in the composition of the present invention. More specifically, for an excellent organic acid production efficiency effect, the nitrogen source may be included in the composition at a concentration of 0.1 mM to 3 mM, 0.5 mM to 2 mM, or 0.8 mM to 1.5 mM, while securing a sufficient cell mass. In order to achieve excellent organic acid production efficiency, the nitrogen source may be included in the composition at a concentration of 15 mM to 45 mM, 20 mM to 40 mM, or 25 mM to 35 mM.
3. 탄소 수 4 이상인 화합물의 생산 방법3. Method for producing compounds having 4 or more carbon atoms
본 발명의 또 다른 일 측면은, 탄소 수 4 이상인 화합물의 생산 방법을 제공한다.Another aspect of the present invention provides a method for producing a compound having 4 or more carbon atoms.
상기 탄소 수 4 이상인 화합물의 생산 방법은, 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동시에 배양하는 단계를 포함한다. The method for producing a compound having 4 or more carbon atoms includes culturing a methanotroph and a mutant E. coli capable of metabolizing acetic acid at the same time.
상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit) 유전자, ldhA(D-lactate dehydrogenase) 유전자, pta(phosphotransacetylase) 유전자 및 adhE(alcohol/acetaldehyde dehydrogenase) 유전자로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실되고, 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것일 수 있다.The mutant E. coli is a protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit) gene, ldhA (D-lactate dehydrogenase) gene, pta (phosphotransacetylase) gene, and adhE (alcohol/acetaldehyde dehydrogenase) gene. Activity and activity of a protein expressed from the patZ (peptidyl-lysine acetyltransferase) gene may be lost, and a biosynthesis-related gene of the compound having 4 or more carbon atoms may be introduced.
상기 방법은 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하는 것일 수 있다.The method may be to produce a compound having 4 or more carbon atoms from methane (CH 4 ).
상기 메탄자화균, 돌연변이 대장균, 탄소 수 4 이상인 화합물 및 이의 생산에 관한 설명은, '1. 탄소 수 4 이상인 화합물을 생산하기 위한 조성물'에서 이들에 대해 설명한 것과 동일하다.The methanogens, mutant Escherichia coli, a compound having 4 or more carbon atoms, and a description of their production, refer to '1. It is the same as described for these in'Composition for producing a compound having 4 or more carbon atoms.
상기 돌연변이 대장균은 수탁번호 KCTC13040BP로 기탁된 대장균 SBA01 균주에 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것일 수 있다.The mutant E. coli may be a biosynthesis-related gene of the compound having 4 or more carbon atoms introduced into the E. coli SBA01 strain deposited under the accession number KCTC13040BP.
상기 메탄자화균(methanotroph) 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동시에 배양하는 단계에 관한 설명은, '2. 메탄자화균 및 대장균의 공배양 방법'에서 이에 대해 설명한 것과 동일하다.For a description of the step of simultaneously culturing the methanotroph and mutant E. coli capable of metabolizing acetic acid, see '2. It is the same as described in'Co-cultivation method of methanogen and E. coli.'
상기 방법은 탄소원으로 메탄(CH4)을 공급하는 조건에서 배양하는 것일 수 있다. 상기 메탄(CH4)은 질량 흐름 제어기(MFC, mass flow controller)로 공급되는 것일 수 있다. 질량 흐름 제어기에 의해 메탄이 공급될 경우, 메탄의 공급 속도를 조절할 수 있고 메탄이 산소, 질소 등 다른 기체와 함께 공급될 때 이들의 비율을 조절할 수 있다. 상기 메탄은, 배양 시 공급되는 공기의 20% 내지 40%의 비율로 포함되도록 공급될 수 있으며, 예를 들어, 25% 내지 35%, 또는 28% 내지 32%의 비율로 포함되도록 공급될 수 있다. 이 때, 상기 공급되는 공기 내에 산소는 2% 내지 5%, 2.5% 내지 4.5%, 또는 3% 내지 4%의 비율로 포함될 수 있다.The method may be cultured under conditions of supplying methane (CH 4) as a carbon source. The methane (CH 4 ) may be supplied to a mass flow controller (MFC). When methane is supplied by the mass flow controller, the supply rate of methane can be controlled, and the ratio of methane when supplied with other gases such as oxygen and nitrogen can be controlled. The methane may be supplied to be included in a proportion of 20% to 40% of air supplied during cultivation, for example, may be supplied to be included in a proportion of 25% to 35%, or 28% to 32%. . In this case, oxygen may be included in the supplied air in a ratio of 2% to 5%, 2.5% to 4.5%, or 3% to 4%.
상기 상기 탄소 수 4 이상인 화합물이 메발론산(mevalonate)일 경우, 본 발명의 탄소 수 4 이상인 화합물의 생산 방법은, 상기 메탄자화균 및 돌연변이 대장균을 10시간 이상, 구체적으로 15시간 이상, 20시간 이상, 30시간 이상, 40시간 이상, 48시간 이상, 50시간 이상, 또는 60시간 이상 공배양하였을 때 메발론산을 15 ㎎/L 이상, 구체적으로 20 ㎎/L 이상, 30 ㎎/L 이상, 40 ㎎/L 이상, 50 ㎎/L 이상, 55 ㎎/L 이상, 60 ㎎/L 이상, 또는 61 ㎎/L 이상의 농도로 생산하는 것일 수 있다.When the compound having 4 or more carbon atoms is mevalonate, the method for producing a compound having 4 or more carbon atoms of the present invention includes 10 hours or more, specifically 15 hours or more, 20 hours or more , When co-cultured for 30 hours or more, 40 hours or more, 48 hours or more, 50 hours or more, or 60 hours or more, mevalonic acid is 15 mg/L or more, specifically 20 mg/L or more, 30 mg/L or more, 40 mg It may be produced at a concentration of /L or more, 50 mg/L or more, 55 mg/L or more, 60 mg/L or more, or 61 mg/L or more.
본 발명의 탄소 수 4 이상인 화합물의 생산 방법에 따른 탄소 수 4 이상인 화합물의 생산성은, 메탄으로부터 탄소 수 4 이상인 화합물을 생산할 수 있는 특성을 갖도록 하여 메탄자화균을 개량한 후 이를 단독 배양하는 경우와 비교할 때, 상기 개량된 메탄자화균의 탄소 수 4 이상인 화합물의 생산성의 80% 이상, 85% 이상, 90% 이상, 95% 이상, 100% 이상, 105% 이상, 110% 이상, 115% 이상, 또는 120% 이상일 수 있다.The productivity of a compound having 4 or more carbon atoms according to the production method of a compound having 4 or more carbon atoms of the present invention is similar to the case of culturing the methanogens after improving the methanogens by having the property of producing a compound having 4 or more carbon atoms from methane. In comparison, 80% or more, 85% or more, 90% or more, 95% or more, 100% or more, 105% or more, 110% or more, 115% or more of the productivity of the compound having 4 or more carbon atoms of the improved methanogens, Or 120% or more.
본 발명의 또 다른 일 측면은, 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 용도의 상기 메탄자화균 및 상기 아세트산을 대사할 수 있는 돌연변이 대장균을 포함하는 조성물을 제공한다.Another aspect of the present invention provides a composition comprising the methanogenic bacteria and mutant Escherichia coli capable of metabolizing the acetic acid for use in producing a compound having 4 or more carbon atoms from methane (CH 4 ).
본 발명의 또 다른 일 측면은, 상기 메탄자화균 및 상기 아세트산을 대사할 수 있는 돌연변이 대장균을 포함하는 조성물의 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 용도를 제공한다.Another aspect of the present invention provides a use for producing a compound having 4 or more carbon atoms from methane (CH 4 ) of a composition comprising the methanogens and mutant Escherichia coli capable of metabolizing acetic acid.
본 발명의 또 다른 일 측면은, 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물을 생산하기 위한 상기 메탄자화균 및 상기 아세트산을 대사할 수 있는 돌연변이 대장균의 용도를 제공한다.Another aspect of the present invention provides the use of the methanogens and mutant E. coli capable of metabolizing the acetic acid for producing a composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ).
이하, 본 발명을 실험예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by experimental examples.
단, 하기 실험예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 하기 실시예에 의해 한정되지 아니한다.However, the following experimental examples specifically illustrate the present invention, and the contents of the present invention are not limited by the following examples.
[실험예 1][Experimental Example 1]
메탄자화균(methanotroph)을 이용한 아세트산 생산 조건 확립Establishment of acetic acid production conditions using methanotroph
메탄자화균(methanotroph) 및 이의 공배양 파트너 미생물을 이용하여, 메탄으로부터 탄소 수 4 이상의 화합물을 생산하기 위한 시스템을 구축하기 위하여, 먼저 메탄자화균으로부터 유기산, 특히 아세트산(acetate)을 높은 효율로 생산할 수 있는 조건을 확인하였다.In order to construct a system for producing a compound having 4 or more carbon atoms from methane using methanotroph and its co-culture partner microorganism, first, organic acids, especially acetic acid (acetate) can be produced from methane with high efficiency. The conditions that can be checked were confirmed.
[1-1] Type I 메탄자화균과 Type II 메탄자화균의 유기산 생산량 비교[1-1] Comparison of organic acid production between Type I and Type II methanogens
메탄자화균은 메탄으로부터 유기 화합물을 생산하는 과정에 어떠한 경로를 이용하는지 여부에 따라 2가지 유형으로 분류될 수 있는데, RuMP(ribulose monophosphate) 경로를 이용하는 Type I(γ-proteobacteria)와 세린(serine) 경로를 이용하는 Type II(α-proteobacteria)로 분류된다. 메탄자화균 중에서도 유기산의 생산 효율이 더 우수한 메탄자화균을 이용하기 위하여, Type I에 속하는 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath, 이하 'Bath')와 Type II에 속하는 메틸로시누스 트리코스포리움 OB3b(Methylosinus trichosporium OB3b, 이하 'OB3b') 균주를 메탄(CH4)이 주어지는 환경에서 산소 제한 조건으로 배양하면서 이들의 유기산 생산량을 확인하여 비교하였다. 구체적으로, 먼저 Bath 및 OB3b 균주를 NMS 배지(Nitrate Mineral Salts 배지) 에 OD600 1.7의 농도가 되도록 접종하였다. 상기 NMS 배지의 조성은 하기 표 1에 기재된 것과 같다. 37 ℃ 또는 30 ℃에서 산소를 제한시킨 상태로 72시간 배양한 후, LC(liquid chromatography)로 아세트산(acetate)과 숙신산(succinate)의 양을 측정하였다.Methanobacteria can be classified into two types, depending on which pathway is used to produce organic compounds from methane. Type I (γ-proteobacteria) and serine using the ribulose monophosphate (RumP) pathway. It is classified as Type II (α-proteobacteria) using the pathway. Methylococcus capsulatus Bath (hereinafter referred to as'Bath') belonging to Type I and Methylococcus Tricot belonging to Type II in order to use the methanogens, which are more efficient in producing organic acids, among the methanogens. Sporium OB3b ( Methylosinus trichosporium OB3b, hereinafter'OB3b') strains were cultured under oxygen-restricted conditions in an environment where methane (CH 4 ) was given, and their organic acid production was checked and compared. Specifically, first, Bath and OB3b strains NMS medium (Nitrate Mineral Salts medium) Was inoculated to a concentration of OD 600 1.7. The composition of the NMS medium is as described in Table 1 below. After incubation for 72 hours at 37° C. or 30° C. under oxygen-restricted state, the amounts of acetic acid and succinate were measured by liquid chromatography (LC).
NMS 배지의 조성 성분Composition of NMS medium 함량(per liter)Content (per liter)
MgSO4·7H2OMgSO 4 7H 2 O 1.0 g1.0 g
KNO3 KNO 3 1.0 g1.0 g
CaCl2·2H2OCaCl 2 2H 2 O 0.2 g0.2 g
3.8% (w/v) solution Fe-EDTA3.8% (w/v) solution Fe-EDTA 0.1 ㎖0.1 ml
0.1% (w/v) NaMo·4H2O0.1% (w/v) NaMo 4H 2 O 0.5 ㎖0.5 ml
FeSO4·7H2OFeSO 4 7H 2 O 0.5 ㎎0.5 mg
ZnSO4·7H2OZnSO 4 7H 2 O 0.4 ㎎0.4 mg
MnCl2·7H2OMnCl 2 7H 2 O 0.02 ㎎0.02 mg
CoCl2·6H2OCoCl 2 6H 2 O 0.05 ㎎0.05 mg
NiCl2·6H2ONiCl 2 6H 2 O 0.01 ㎎0.01 mg
H3BO3 H 3 BO 3 0.015 ㎎0.015 mg
EDTAEDTA 0.25 ㎎0.25 mg
그 결과, Bath 균주는 OB3b 균주와 비교할 때 같은 시간 동안 높은 세포 성장률을 보였고, Bath 균주는 72시간 시점에 아세트산을 6.2㎎/L, 숙신산을 2.1㎎/L 생산하여 OB3b의 아세트산, 숙신산 생산량에 비해 2배 이상 많은 양으로 생산하는 것으로 측정되었다(도 1).상기와 같은 결과로 볼 때, 메탄자화균은 산소 제한 조건에서 메탄을 이용해 아세트산 및 숙신산과 같은 유기산을 생산할 수 있는 능력이 있으며, 특히 2가지 종류의 메탄자화균 중에서도 Type I으로 분류되는 메탄자화균이 Type II 균주와 비교할 때 탄소 활용률이 더 우수하여 상기 유기산 생산성이 더 우수한 것을 확인할 수 있었다.As a result, the Bath strain showed a high cell growth rate for the same time compared to the OB3b strain, and the Bath strain produced 6.2 mg/L of acetic acid and 2.1 mg/L of succinic acid at 72 hours, compared to the acetic acid and succinic acid production of OB3b. It was measured to be produced in an amount more than twice as large (Fig. 1). From the above results, the methanogens have the ability to produce organic acids such as acetic acid and succinic acid using methane under oxygen-limited conditions. Among the two types of methanogenic bacteria, it was confirmed that the organic acid productivity was more excellent because the methane magnetizing bacteria classified as Type I had a better carbon utilization rate compared to the Type II strain.
[1-2] 유기산 생산성 향상을 위한 메탄자화균 배양 조건 확인[1-2] Confirmation of Methanophilic Bacteria Culture Conditions to Improve Organic Acid Productivity
상기 실험예 1-1을 통해, Type I으로 분류되는 메탄자화균의 우수한 유기산 생산 능력을 확인하였으므로, 메틸로코커스 캡슐라투스 바스(이하, 'Bath') 균주를 다양한 조건에서 배양하면서 유기산 생산 효율을 확인하였다.Through the Experimental Example 1-1, it was confirmed that the methanogens classified as Type I have excellent organic acid production ability, so that the Methylococcus capsulartus bath (hereinafter referred to as'Bath') strain was cultured under various conditions while culturing organic acid production efficiency. Was confirmed.
먼저, 배지 내에 구리 이온이 함유될 때 유기산 생산성이 증가하는지 여부를 확인하였다. 상기 표 1과 같은 조성의 NMS 배지 에 10 μM의 CuCl2를 첨가하여 Bath 균주에 메탄을 공급하면서 산소 제한 조건으로 배양하여 유기산의 생산량을 LC를 통해 측정하였고, 구리 이온이 첨가되지 않은 NMS 배지에서 배양시킨 대조군의 경우와 유기산 생산량을 비교하였다.First, it was confirmed whether or not the organic acid productivity increases when copper ions are contained in the medium. 10 μM of CuCl 2 was added to the NMS medium of the composition shown in Table 1, and methane was supplied to the Bath strain, and the production of organic acid was measured through LC by culturing under oxygen-restricted conditions, and in the NMS medium to which copper ions were not added. The production of organic acids was compared with the case of the cultured control group.
그 결과, 구리 이온이 첨가된 NMS 배지에서 배양한 Bath 균주는 구리 이온이 첨가되지 않은 대조군과 비교할 때, 아세트산 및 숙신산의 생산량이 더 높게 나타났으며, 특히 아세트산의 경우 132시간 시점에 39㎎/L의 농도로 생산하여 대조군(18.7㎎/L)에 비해 아세트산 생산량이 현저하게 높은 것을 확인하였다(도 2). 상기와 같은 실험 결과를 통해, 유기산을 생산하기 위한 목적에서 메탄자화균을 배양하고자 할 때에는 구리 이온이 존재하는 환경 하에서 배양하는 것이 더 유리함을 알 수 있었고, 구리 이온은 메탄 모노옥시게나아제(MMO, methane monooxygenase) 효소의 생산 조절 등에 관계된 유전자 발현을 조절하고 전자 수송에 도움을 줄 수 있어 메탄을 유기산으로 전환하는 효율을 높일 수 있을 것으로 생각된다.As a result, the Bath strain cultured in NMS medium to which copper ions were added showed higher production of acetic acid and succinic acid as compared to the control group to which copper ions were not added. It was confirmed that the production of acetic acid was significantly higher than that of the control group (18.7 mg/L) by producing at a concentration of L (FIG. 2). Through the above experimental results, it was found that it is more advantageous to cultivate methane magnetizing bacteria for the purpose of producing organic acids in an environment in which copper ions are present, and copper ions are methane monooxygenase (MMO , methane monooxygenase) It is thought that it can improve the efficiency of converting methane into organic acids by controlling gene expression related to the regulation of enzyme production and helping electron transport.
다음으로, 산소, 황 및 질소를 각각 제한시킨 조건에서 메탄자화균을 배양하고 이의 유기산 전환율을 확인하였다. 구체적으로, 메탄자화균을 접종한 vial에서 공기의 30%를 제거하고 메탄을 공급하여 대체하였다. 그리고 산소 제한 조건을 설정하기 위하여, 남아있는 70%의 공기 내 14.7%의 산소를 질소로 대체하여 3.5%로 감소시켰다. 황 제한 조건 및 질소 제한 조건의 경우, 상기 표 1의 NMS 배지에서 각각 황과 질소를 10% 수준으로 감소시킨 배지에서 Bath 균주를 배양하였다. 상기와 같은 산소, 황, 질소 제한 조건에서 Bath 균주를 배양한 다음, LC를 통해 아세트산 및 숙신산의 생산량을 확인하였다.Next, the methanogens were cultured under conditions in which oxygen, sulfur, and nitrogen were respectively restricted, and their organic acid conversion rate was confirmed. Specifically, 30% of the air was removed from the vial inoculated with the methanogens and replaced by supplying methane. And in order to set the oxygen limit condition, 14.7% of oxygen in the remaining 70% of air was replaced with nitrogen and reduced to 3.5%. In the case of the sulfur limiting condition and the nitrogen limiting condition, the Bath strain was cultured in a medium in which sulfur and nitrogen were reduced to 10% levels in the NMS medium of Table 1, respectively. After culturing the Bath strain under the oxygen, sulfur, and nitrogen conditions as described above, the production amount of acetic acid and succinic acid was confirmed through LC.
그 결과, 질소원 제한 배지에서 Bath 균주를 배양하였을 때 아세트산 생산량이 24시간 시점에 1,884 μmol-acetate/g-DCW로 나타나, 산소 또는 황을 제한시킨 조건에서 배양한 경우보다 현저하게 많은 양의 유기산을 생산할 수 있음을 확인할 수 있었으며, 종래 메탄자화균으로부터 유기산을 생산함에 있어 유리한 조건으로 알려져 있던 산소 제한 조건보다, 질소 제한 조건이 훨씬 더 고농도의 유기산을 생산할 수 있도록 함을 새롭게 확인하였다(도 3).As a result, when the Bath strain was cultivated in a nitrogen source-restricted medium, the acetic acid production was 1,884 μmol-acetate/g-DCW at the time point of 24 hours. It was confirmed that it could be produced, and it was newly confirmed that the nitrogen limiting condition allows the production of a much higher concentration of organic acid than the oxygen limiting condition, which was known as an advantageous condition for producing organic acids from the methane magnetizing bacteria (Fig. 3). .
이에, Bath 균주를 대상으로 유기산 전환율에 관한 질소원의 영향을 더 자세히 평가하기 위하여, 질소원으로 질산염(nitrate, NO3 -)을 10 mM 함유시켜 사용한 배지(대조군), 상기 질산염 함유 배지(10 mM)에서 질산염의 농도를 10% 수준으로 감소시킨 제한 배지(질산염 1 mM 함유), 질산염 대신 암모니아(NH4 +)를 10 mM의 농도로 함유하는 암모니아 함유 배지에서 암모니아의 농도를 10% 수준으로 감소시킨 제한 배지(암모니아 1 mM 함유), 그리고 질산염 및 암모니아가 각각 2.5 mM, 5 mM의 함량의 농도로 혼합된 배지에서 질산염/암모니아의 농도를 10% 수준으로 감소시킨 제한 배지(질산염 0.25 mM, 암모니아 0.5 mM 함유)를 이용하여 유기산 생산량을 비교하였다.Thus, the nitrogen source to nitrate in order to evaluate more closely the effect of nitrogen source on acid conversion targeting Bath strain (nitrate, NO 3 -), the 10 mM culture medium (control), the nitrate-containing medium (10 mM) used to contain Restriction medium (containing 1 mM nitrate) in which the concentration of nitrate was reduced to 10% level, and ammonia-containing medium containing ammonia (NH 4 + ) instead of nitrate at a concentration of 10 mM reduced the concentration of ammonia to 10% level. Restriction medium (containing 1 mM ammonia), and a restriction medium in which the concentration of nitrate/ammonia was reduced to 10% level in a medium in which nitrate and ammonia were mixed at a concentration of 2.5 mM and 5 mM, respectively (nitrate 0.25 mM, ammonia 0.5 mM containing) was used to compare the organic acid production.
vial 내에서 상기 3가지 배지 조건으로 Bath 균주를 배양하고 아세트산의 생산량을 확인한 결과, 암모니아 함유 배지, 그리고 암모니아 및 질산염 혼합 배지에서의 결과와 비교할 때, 질산염을 질소원으로 사용하면서 이의 농도를 제한시킨 경우에 아세트산 생산량이 가장 높게 측정됨을 확인할 수 있었다(도 4).As a result of culturing the Bath strain in the vial under the above three medium conditions and confirming the production amount of acetic acid, when compared with the results in the ammonia-containing medium and the ammonia and nitrate mixed medium, the concentration thereof was limited while using nitrate as a nitrogen source. It was confirmed that the amount of acetic acid production was measured to be the highest (FIG. 4).
[1-3] 메탄자화균 발효 조건의 최적화[1-3] Optimization of fermentation conditions for methanogens
충분한 cell mass를 확보할 수 있도록 메탄자화균의 성장 속도를 높이면서도, 높은 효율로 유기산을 생산할 수 있도록 메탄자화균의 발효 조건을 구축하고 이를 최적화하였다. 메탄, 산소 및 질소 기체의 비율과 공급 속도를 조절하기 위해 MFC(Mass Flow Controller, 이즈브이티)를 이용하여 메탄 20%, 나머지 기체 80%의 비율로 기체를 공급하였고, 일정한 가스 전달을 위해 마이크로 스파저(micro-sparger, CNS)를 사용하여 메탄자화균 발효 시스템을 구축하였다(도 5). 메탄자화균의 배양 배지로는 상기 표 1에 따른 성분을 함유하는 NMS 배지에 질산(3X), 인산염(1.5X), 미량 원소(3X)를 더 첨가하여 변형시킨 배지를 이용하였으며, 메틸로코커스 캡슐라투스 바스(이하, 'Bath') 균주를 발효 배양하였다. 상기와 같은 조건의 배지를 이용할 경우, 메탄자화균의 성장 속도가 빠르면서도, 충분한 세포 성장이 일어난 뒤 질소원의 소모로 인한 질소원 제한 조건이 설정되므로 높은 효율로 유기산이 생산될 수 있다. 상기 조건으로 Bath 균주를 배양한 결과, 0.16 h-1의 성장률을 나타냈으며, 발효 종료 시점에 2.5 mM의 아세트산과 2.5 mM의 숙신산을 생산하는 것을 확인할 수 있었다(도 6).The fermentation conditions of the methanogens were established and optimized to produce organic acids with high efficiency while increasing the growth rate of the methanogens to secure sufficient cell mass. In order to control the ratio and supply rate of methane, oxygen, and nitrogen gas, gas was supplied at a ratio of 20% of methane and 80% of the remaining gas using a mass flow controller (MFC). A methanogen fermentation system was constructed using a micro-sparger (CNS) (FIG. 5). As a culture medium for methanogens, a medium modified by adding nitric acid (3X), phosphate (1.5X), and trace elements (3X) to the NMS medium containing the components according to Table 1 was used. Capsulartus bath (hereinafter referred to as'Bath') strain was fermented and cultured. In the case of using the medium under the conditions as described above, the growth rate of the methanogens is fast, but after sufficient cell growth occurs, the nitrogen source limiting conditions are set due to consumption of the nitrogen source, so that organic acids can be produced with high efficiency. As a result of culturing the Bath strain under the above conditions, a growth rate of 0.16 h -1 was shown, and it was confirmed that 2.5 mM acetic acid and 2.5 mM succinic acid were produced at the end of fermentation (FIG. 6).
그리고, 상기 질산을 첨가한 변형 3xNMS 배지와, 질산 대신 암모니아를 더 첨가한 3xAMS 배지를 이용하여 2가지 서로 다른 질소원 조건에서 Bath 균주를 48시간 동안 배양하면서 이의 성장률과 유기산(아세트산 및 숙신산) 생산량을 비교하였다. 암모니아를 질소원으로 함유한 3xAMS 배지에서 배양한 Bath와 비교할 때, 질산을 질소원으로 함유한 3xNMS 배지에서 배양시킨 Bath 균주는 생장 지연 시간이 더 짧고 유기산(특히, 아세트산)의 생산량이 더 많은 것을 확인할 수 있었다(도 7). 상기와 같은 결과를 통해, 질소원으로 암모니아 보다는 질산을 이용하는 것이 Bath의 생장과 유기산 생산에 더 유리한 것을 알 수 있었으며, 이는 암모니아가 전자 수송의 불균형을 유발하여 세포 생리에 영향을 주기 때문인 것으로 생각된다.And, using the modified 3xNMS medium to which nitric acid was added, and 3xAMS medium to which ammonia was added instead of nitric acid, the Bath strain was cultured for 48 hours under two different nitrogen source conditions, and its growth rate and organic acid (acetic acid and succinic acid) production amount were measured. Compared. Compared with Bath cultured in 3xAMS medium containing ammonia as nitrogen source, Bath strain cultured in 3xNMS medium containing nitric acid as nitrogen source showed shorter growth delay and higher production of organic acids (especially acetic acid). There was (Fig. 7). Through the above results, it was found that the use of nitric acid as a nitrogen source rather than ammonia is more advantageous for the growth of Bath and the production of organic acids, which is thought to be because ammonia causes an imbalance in electron transport and affects cell physiology.
*[실험예 2] * [Experimental Example 2]
SBA01 균주의 메탄자화균 공배양 파트너로서의 특성 확인Confirmation of the characteristics of SBA01 strain as a co-culture partner for methanogens
메탄으로부터 탄소 수 4 이상의 화합물을 생산하기 위한 시스템을 구축하기 위하여, 메탄자화균과 함께 공배양이 가능한 특성을 갖는 공배양 파트너 미생물을 선정하였다. 메탄자화균에 의해 생성되는 유기산에 대해 내성을 가지고 있어 이를 이용해 생장이 가능한 특징이 있고, 상기 유기산을 이용해 이를 고부가 가치의 화합물로 효율적으로 전환할 수 있는 특징이 있는, 공배양 파트너 미생물를 선정함으로써 메탄 유래 유용물질의 생산 플랫폼을 개발하였다.In order to construct a system for producing a compound having 4 or more carbon atoms from methane, a co-culture partner microorganism having a characteristic capable of co-culture with methane magnetizing bacteria was selected. Methane by selecting co-culture partner microorganisms, which has the characteristics of being resistant to organic acids produced by methane-automated bacteria, and is capable of growing using them, and the characteristics of efficiently converting them into high value-added compounds using the organic acids. A platform for the production of derived useful substances was developed.
상기에서 설명한 것과 같이 메탄자화균의 공배양 파트너로 이용될 수 있는 특성을 가지는 미생물로 본 발명의 대장균 SBA01 균주를 이용하였다. 상기 SBA01 균주는 아세트산에 대해 높은 내성을 가지고 있으며 이를 활용한 성장률이 우수한 특징이 있다. 또한, 아세틸-CoA 합성효소(acetyl-CoA synthetase, ACS)의 활성이 야생형 대장균과 비교할 때 8배 이상 높은 특징이 있어, 아세트산을 효율적으로 전환시킬 수 있다. As described above, the E. coli SBA01 strain of the present invention was used as a microorganism having characteristics that can be used as a co-culture partner of methanogens. The SBA01 strain has high resistance to acetic acid and has an excellent growth rate using it. In addition, since the activity of acetyl-CoA synthetase (ACS) is 8 times higher than that of wild-type E. coli, acetic acid can be efficiently converted.
[2-1] 대장균 SBA01 균주와 다른 대장균 균주들의 공배양 특성 비교[2-1] Comparison of co-culture characteristics of E. coli SBA01 strain and other E. coli strains
본 발명의 대장균 SBA01 균주가 메탄자화균의 공배양 파트너로 이용될 수 있는 우수한 특성들을 갖는다는 점을 확인하기 위하여, 야생형의 대장균 MG1655, 그리고 부산물의 생산을 억제할 수 있는 대장균 DSM01 균주를 대조군으로 이용하였다. 상기 DSM01 균주는 야생형 MG1655 균주를 돌연변이시켜 일부 유전자들을 결실시킨 특징이 있다(MG1655 βfrdA βldhA βpta βadhE). 본 발명의 SBA01 균주는 상기 DSM01 균주를 진화개량하여 새로운 특성을 부여한 것으로 patZ 유전자의 활성이 소실되어 있다. 또한, 상기 대장균 균주들에서 메발론산(mevalonate)을 생산할 수 있도록 메발론산염 경로(mevalonate pathway)를 도입시켰다. 구체적으로, Enterococcus faecalis 유래의 MvaE 효소 및 MvaS 효소 유전자를 이용하여 재조합 벡터를 구축하고, 이를 상기 야생형 대장균 MG1655 균주, 대장균 DSM01 균주, 그리고 대장균 SBA01 균주에 형질전환시킴으로써, 메발론산을 합성할 수 있는 효소를 발현시키는 대장균 균주들을 제조하였다.In order to confirm that the E. coli SBA01 strain of the present invention has excellent properties that can be used as a co-culture partner of methanogens, wild-type E. coli MG1655, and E. coli DSM01 strain, which can inhibit the production of by-products, were used as a control. Was used. The DSM01 strain is characterized in that some genes are deleted by mutating the wild-type MG1655 strain (MG1655 β frdA β ldhA β pta β adhE ). The SBA01 strain of the present invention is an evolutionary improvement of the DSM01 strain to give new characteristics, and the activity of the patZ gene is lost. In addition, a mevalonate pathway was introduced to produce mevalonate in the E. coli strains. Specifically , an enzyme capable of synthesizing mevalonic acid by constructing a recombinant vector using the MvaE enzyme and MvaS enzyme gene derived from Enterococcus faecalis , and transforming it into the wild-type E. coli MG1655 strain, E. coli DSM01 strain, and E. coli SBA01 strain. E. coli strains expressing the were prepared.
상기 야생형 대장균 MG1655, 대장균 DSM01 균주 및 대장균 SBA01 균주를 아세트산 및 숙신산이 함유된 최소배지(M9)에서 배양하면서, 이들의 세포 성장을 확인하고 배지 내 아세트산과 숙신산의 농도 변화, 메발론산 생산량을 측정하였다. 그 결과, 대장균 DSM01 균주는 아세트산, 숙신산 포함 배지에서 전혀 성장하지 못한 것과는 달리, 대장균 SBA01 균주는 유기산에 의한 성장 저해 없이 높은 세포 성장 속도를 보였으며, 54시간 동안 메발론산을 288㎎/L의 농도로 생산하는 것으로 측정되어 매우 메발론산 생산 효과가 우수함을 확인할 수 있었다(도 8). 또한, 대장균 SBA01 균주의 배지 내에서 아세트산 및 숙신산의 농도는 배양 시간이 경과함에 따라 감소하는 것으로 확인되어, 상기 대장균 SBA01 균주는 배지 내 유기산을 이용하여 탄소 수 5의 화합물인 메발론산을 생산할 수 있는 특징이 있는 것임을 알 수 있었다.While culturing the wild-type E. coli MG1655, E. coli DSM01 strain, and E. coli SBA01 strain in a minimal medium (M9) containing acetic acid and succinic acid, their cell growth was checked, and changes in the concentration of acetic acid and succinic acid in the medium, and mevalonic acid production were measured. . As a result, the E. coli DSM01 strain did not grow at all in a medium containing acetic acid and succinic acid, whereas the E. coli SBA01 strain showed a high cell growth rate without inhibition of growth by organic acids, and mevalonic acid at a concentration of 288 mg/L for 54 hours. As measured to be produced, it was confirmed that the mevalonic acid production effect was very excellent (FIG. 8). In addition, it was confirmed that the concentration of acetic acid and succinic acid in the medium of the E. coli SBA01 strain decreases with the passage of the culture time, so that the E. coli SBA01 strain can produce mevalonic acid, a compound having 5 carbon atoms, using an organic acid in the medium. It can be seen that it has a characteristic.
[2-2] 메발론산 경로 형질전환 여부에 따른 메발론산 생산 확인[2-2] Confirmation of mevalonic acid production depending on whether or not the mevalonic acid pathway is transformed
상기 실험예 2-1을 통해 메탄자화균의 공배양 파트너로서 대장균 SBA01 균주만이 기능할 수 있는 것을 확인한 것에 더하여, 대장균 SBA01 균주에 메발론산 경로를 형질전환시킨 경우에만 아세트산을 소비하여 메발론산을 생산하는 것인지 여부를 검증하였다.In addition to confirming that only Escherichia coli SBA01 strain can function as a co-culture partner of methanogens through Experimental Example 2-1, acetic acid was consumed only when the mevalonic acid pathway was transformed into E. coli SBA01 strain to obtain mevalonic acid. It was verified whether it was produced or not.
구체적으로, 상기 실험예 2-1과 같이 Enterococcus faecalis 유래의 MvaE 효소 및 MvaS 효소 유전자의 재조합을 통해 플라스미드 벡터를 구축하였고, 이러한 메발론산 생산 플라스미드를 대장균 SBA01 균주에 형질전환시켰다. 그리고, 상기 메발론산 생산 플라스미드를 형질전환시키지 않은 대장균 SBA01 균주 및 메발론산 생산과 무관한 플라스미드를 도입시킨 대장균 SBA01 균주를 제조하였다. 상기 3가지 형태의 대장균 SBA01 균주를, M9 제한배지에 포도당 또는 아세트산을 탄소원으로 공급하여 3회 전배양을 수행한 후, 다시 아세트산이 포함된 M9 배지에서 배양하였다. 메발론산 경로 관련 유전자의 발현을 유도하기 위하여 IPTG를 0.1 mM 공급한 후, 배지 내 남아 있는 아세트산의 농도와 생산된 메발론산의 양을 확인하였다.Specifically, as in Experimental Example 2-1 , a plasmid vector was constructed through recombination of Enterococcus faecalis- derived MvaE enzyme and MvaS enzyme gene, and the mevalonic acid-producing plasmid was transformed into E. coli SBA01 strain. In addition, an E. coli SBA01 strain that did not transform the mevalonic acid-producing plasmid and an E. coli SBA01 strain into which a plasmid unrelated to mevalonic acid production was introduced were prepared. The three types of E. coli SBA01 strains were pre-cultured three times by supplying glucose or acetic acid as a carbon source to M9 restriction medium, and then cultured again in M9 medium containing acetic acid. After supplying 0.1 mM IPTG to induce the expression of genes related to the mevalonic acid pathway, the concentration of acetic acid remaining in the medium and the amount of mevalonic acid produced were confirmed.
그 결과, 플라스미드를 형질전환시키지 않은 대장균 SBA01 균주나, 메발론산 생산과 무관한 플라스미드로 형질전환시킨 대장균 SBA01 균주의 경우, 정상적인 세포 성장은 일어났으나 메발론산은 생산되지 않았다. 이와는 달리, 메발론산 생산 플라스미드로 형질전환시킨 대장균 SBA01 균주의 경우 세포 성장과 함께 메발론산의 농도 역시 증가하였다(도 9). 따라서, 메발론산 경로를 도입시킴에 따라 대장균 SBA01 균주가 메발론산을 생산할 수 있는 활성을 가지게 되었음을 확인할 수 있었다.As a result, in the case of the E. coli SBA01 strain not transformed with the plasmid or the E. coli SBA01 strain transformed with the plasmid independent of mevalonic acid production, normal cell growth occurred, but no mevalonic acid was produced. In contrast, in the case of the E. coli SBA01 strain transformed with the mevalonic acid producing plasmid, the concentration of mevalonic acid also increased with cell growth (FIG. 9). Therefore, it was confirmed that the E. coli SBA01 strain had an activity capable of producing mevalonic acid by introducing the mevalonic acid pathway.
[실험예 3][Experimental Example 3]
메탄자화균 및 SBA01 균주의 공배양 가능 여부 확인 및 접종 비율의 최적화Confirmation of co-culture of methanogen and SBA01 strain and optimization of inoculation ratio
상기 실시예 2를 통해 아세트산 내성이 우수하고 아세트산의 활용 활성이 우수한 특징이 있는 대장균 SBA01 균주를 메탄자화균의 공배양 파트너 미생물 후보로 선정하였다. 이에, 실제로 메탄자화균과 상기 SBA01 균주를 공배양하여 모두 성장이 가능한지 여부를 확인하였고, 두 균주가 서로의 성장을 저해하지 않도록 공배양 조건을 최적화하였다. 이를 위해, 메탄자화균으로는 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath, 이하 'Bath') 균주를 이용하였고, Bath 균주와 SBA01 균주의 접종 비율을 달리하여, 두 균주의 성장률을 확인하였다. In Example 2, the E. coli SBA01 strain, which has excellent acetic acid resistance and excellent acetic acid utilization activity, was selected as a candidate for co-culture partner microorganisms of methanogens. Thus, it was confirmed whether or not both strains were able to grow by co-culturing the methanogens and the SBA01 strain, and the co-culture conditions were optimized so that the two strains do not inhibit the growth of each other. To this end, a Methylococcus capsulatus Bath (hereinafter referred to as'Bath') strain was used as the methanogenic bacteria, and the growth rates of the two strains were confirmed by varying the inoculation ratio of the Bath strain and the SBA01 strain.
구체적으로, Bath 균주와 SBA01 균주를 각각 1:1의 비율, 5:1의 비율, 그리고 10:1의 비율로 상기 실험예 1-3의 3xNMS 배지에 접종하였다. 메탄(CH4)을 유일한 탄소원으로 공급하면서 상기 균주들을 배양하여 성장률을 확인한 결과, Bath 균주와 SBA01 균주를 5:1, 및 10:1의 비율로 접종하여 배양하였을 때 모두 안정적으로 성장함을 관찰하여 공동 배양이 가능함을 확인하였다(도 10). 특히, 메탄자화균 Bath 균주와 파트너 미생물 SBA01 균주의 비율이 1:1일 때에는 두 균주 모두의 성장이 관찰되지 않았던 것으로 볼 때, SBA01의 초기 접종량이 많을수록 SBA01 및 메탄자화균 Bath 균주의 성장에 부정적 영향을 주는 것으로 생각되며, 10:1의 비율로 접종하는 것이 최적의 비율임을 확인할 수 있었다. Specifically, the Bath strain and the SBA01 strain were inoculated into the 3xNMS medium of Experimental Example 1-3 at a ratio of 1:1, 5:1, and 10:1, respectively. As a result of confirming the growth rate by culturing the strains while supplying methane (CH 4 ) as the sole carbon source, it was observed that both the Bath strain and the SBA01 strain were inoculated and cultured at a ratio of 5:1 and 10:1 It was confirmed that co-culture is possible (FIG. 10). In particular, when the ratio of the methanogen Bath strain and the partner microorganism SBA01 strain was 1:1, growth of both strains was not observed. As the initial inoculation amount of SBA01 increased, the growth of SBA01 and the methanogen Bath strain was negatively affected. It is thought to have an effect, and it was confirmed that inoculation at a ratio of 10:1 is the optimal ratio.
종래 연구 결과에 따르면 메탄자화균과 야생형 대장균 MG1655 균주는 함께 배양하더라도 대장균이 증식하지 못하고 메탄자화균도 지속적인 성장이 불가능하여 안정적인 공배양이 불가능한 것으로 알려져 있다(Sascha M. B. Krause et al., "Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions", PNAS, 2017 Jan 10;114(2):358-363). 이는 미생물 종류에 무관하게 어떠한 미생물 종이든 메탄자화균과 함께 공배양이 가능한 것이 아님을 의미하며 특히 통상적인 대장균은 메탄자화균과 공배양이 불가능한 것으로 알려져 있었음에도 불구하고 본 발명에서는 대장균 돌연변이체인 SBA01 균주가 메탄자화균과 효과적으로 공배양이 가능함을 새롭게 밝혀냈다.According to the results of previous studies, it is known that even when cultivated together with the methanogens and wild-type E. coli MG1655 strains, E. coli cannot proliferate and the methanogens cannot be continuously grown, so stable co-culture is not possible (Sascha MB Krause et al ., "Lanthanide-). dependent cross-feeding of methane-derived carbon is linked by microbial community interactions", PNAS, 2017 Jan 10;114(2):358-363). This means that any microbial species cannot be co-cultured with methanogens regardless of the type of microorganism. In particular, although it was known that common E. coli cannot be co-cultured with methanogens, in the present invention, SBA01, an E. coli mutant. It has been newly discovered that the strain can be effectively co-cultured with methanogens.
[실험예 4][Experimental Example 4]
본 발명의 공배양 시스템을 이용한, 메탄으로부터 메발론산(C5)의 생산Production of mevalonic acid (C5) from methane using the co-culture system of the present invention
[4-1] 메탄자화균 및 SBA01 균주 공배양에 의한 메발론산 생산성 확인[4-1] Confirmation of mevalonic acid productivity by co-culture of methanogens and SBA01 strains
메탄자화균 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath, 이하 'Bath') 균주를, 상기 실험예 2와 동일하게 메발론산 경로 관련 효소가 도입된 대장균 SBA01 균주와 상기 실험예 3에 따라 최적화된 공배양 조건(10:1의 접종 비율)으로 공동 발효 배양하였다. 상기 메탄자화균과 SBA01 균주를 48시간 동안 공배양하면서 이들의 성장률을 확인하고, 배양 배지 내에 존재하는 아세트산, 숙신산 및 메발론산의 농도를 측정하였다.The Methylococcus capsulatus Bath (hereinafter referred to as'Bath') strain was optimized according to the E. coli SBA01 strain and the mevalonic acid pathway-related enzyme introduced in the same manner as in Experimental Example 2. Co-fermentation culture was carried out under co-culture conditions (10:1 inoculation ratio). While co-culturing the methanogens and SBA01 strains for 48 hours, their growth rates were checked, and the concentrations of acetic acid, succinic acid, and mevalonic acid in the culture medium were measured.
그 결과, 도 11의 A에서 볼 수 있듯이 메탄자화균은 SBA01 균주와 함께 배양하더라도 정상적으로 성장하는 것을 확인할 수 있고, 숙신산의 경우 세포 성장률과 유사하게 그 농도가 증가하는 것을 확인할 수 있지만 아세트산의 경우 배지 내에 거의 존재하지 않는 것을 확인할 수 있다. 그리고, 도 11의 B에서 볼 수 있듯이, 대장균 SBA01 균주는 공배양에 따라 세포 수가 점차 증가하여 정상적인 성장이 가능한 것을 확인할 수 있고, 공배양 48시간 경과 시점에 메발론산이 61 ㎎/L만큼 생산되어 존재하는 것으로 확인되었다.As a result, as shown in A of FIG. 11, it can be confirmed that the methanogens grow normally even when cultured with the SBA01 strain, and in the case of succinic acid, its concentration increases similarly to the cell growth rate, but in the case of acetic acid, the medium It can be seen that it is hardly present within. And, as can be seen in B of Figure 11, the E. coli SBA01 strain gradually increased the number of cells according to the co-culture, and it can be confirmed that normal growth is possible. Mevalonic acid was produced by 61 mg/L after 48 hours of co-culture. Confirmed to exist.
종래 메탄자화균을 이용하여 메탄으로부터 화합물을 생산 기술에는, 2,3-butanediol(2,3-BDO)을 68.8 ㎎/L이나 86.2 ㎎/L의 농도로 생산할 수 있도록 엔지니어링된 Methylomicrobium alcaliphilum 20Z에 관한 연구 결과(Anh Duc Nguyen et al., "Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane", Metab Eng. 2018 May;47:323-333), crotonic acid를 최대 70 ㎎/L로 생산하고 butyric acid를 40 ㎎/L로 생산할 수 있도록 엔지니어링된 Methylomicrobium buryatense 5GB1C에 관한 연구 결과(Shivani Garg et al., "Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C", Metab Eng. 2018 Jul;48:175-183.)가 있다. 본 발명에서는 종래 기술들과는 달리 메탄자화균을 직접 엔지니어링하지 않았음에도 불구하고, 개량된 메탄자화균의 생산성보다 더 우수하거나 유사한 수준의 생산성을 달성하였다. 따라서, 본 발명의 공배양 시스템은 메탄을 원료로 하여 탄소 수 4 이상 화합물을 높은 효율로 생산할 수 있는 우수한 효과가 있는 새로운 기술임을 확인할 수 있었다. In the conventional technology for producing compounds from methane using methanogens, Methylomicrobium alcaliphilum 20Z engineered to produce 2,3-butanediol (2,3-BDO) at a concentration of 68.8 mg/L or 86.2 mg/L. Research results (Anh Duc Nguyen et al ., "Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane", Metab Eng . 2018 May;47:323-333), crotonic acid up to 70 mg/L Methylomicrobium buryatense 5GB1C engineered to produce butyric acid at 40 mg/L (Shivani Garg et al ., "Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C", Metab Eng . 2018 Jul;48:175-183.). In the present invention, unlike the prior art, although not directly engineering the methane-magnetizing bacteria, the productivity of the improved methane-automating bacteria was better or similar to that of the productivity. Accordingly, it was confirmed that the co-culture system of the present invention is a new technology having excellent effects that can produce compounds having 4 or more carbon atoms with high efficiency using methane as a raw material.
[4-2] 대장균 SBA01 균주의 단독 배양 시 메탄 공급에 따른 메발론산 생산 여부 확인[4-2] Confirmation of mevalonic acid production according to methane supply when culturing E. coli SBA01 strain alone
상기 실험예 2를 통해, 메발론산 경로 관련 유전자가 형질전환된 대장균 SBA01 균주는 아세트산이 주어지는 조건에서 이를 이용해 메발론산을 생산할 수 있음을 확인하였고, 상기 실험예 4-1을 통해 SBA01 균주를 메탄자화균과 공배양할 경우 메탄을 공급하였을 때 메발론산을 성공적으로 생산해 낼 수 있음을 확인하였다. 이에, 대장균 SBA01 균주를 메탄자화균 없이 단독 배양하면서 메탄을 공급할 경우, 메발론산을 생산할 수 있는지 여부를 확인하였다.Through the Experimental Example 2, it was confirmed that the E. coli SBA01 strain transformed with a gene related to the mevalonic acid pathway can produce mevalonic acid under the condition where acetic acid is given, and the SBA01 strain was methane magnetized through Experimental Example 4-1. When co-cultured with bacteria, it was confirmed that mevalonic acid could be successfully produced when methane was supplied. Thus, when methane is supplied while culturing the E. coli SBA01 strain alone without methanogens, it was confirmed whether or not mevalonic acid could be produced.
구체적으로, 실험예 4-1에서의 공배양 조건과 동일한 조건(동일한 배지, pH, 온도 등)으로 메발론산 생산 플라스미드로 형질전환된 대장균 SBA01 균주를 배양하였다. 메탄을 유일한 탄소원으로 공급하면서 대장균 SBA01 균주의 성장을 확인하고, 메발론산의 농도를 측정하였다. 그 결과, 지속적으로 메탄이 공급되었음에도 불구하고, SBA01 균주는 성장하지 않았으며 메발론산도 생산되지 않는 것으로 측정되었다(도 12).Specifically, the E. coli SBA01 strain transformed with the mevalonic acid-producing plasmid was cultured under the same conditions as the co-culture conditions in Experimental Example 4-1 (same medium, pH, temperature, etc.). While supplying methane as the sole carbon source, the growth of the E. coli SBA01 strain was confirmed, and the concentration of mevalonic acid was measured. As a result, it was determined that even though methane was continuously supplied, the SBA01 strain did not grow and mevalonic acid was not produced (FIG. 12).
상기와 같은 실험 결과로 볼 때, 대장균 SBA01 균주는 메발론산 생산 플라스미드로 형질전환되었지만 메탄을 이용할 수 있는 활성이 없어 메탄만이 유일한 탄소원으로 공급되었을 때에는 메발론산을 생산할 수 없으며, 반드시 메탄자화균과 성공적으로 공배양되었을 때에만 메탄으로부터 메발론산과 같은 탄소 수 4 이상의 화합물을 생산해 낼 수 있고 성장이 가능하다는 점을 확인할 수 있었다.From the above experimental results, E. coli SBA01 strain was transformed with a mevalonic acid producing plasmid, but there is no activity to use methane, so when only methane is supplied as the only carbon source, it cannot produce mevalonic acid. It was confirmed that only when successfully co-cultured, a compound with a carbon number of 4 or more, such as mevalonic acid, could be produced from methane and growth was possible.
[실험예 5][Experimental Example 5]
메탄자화균 및 SBA01 균주 공배양 시스템의 안정성 확인Confirmation of the stability of the co-culture system of methanogens and SBA01 strains
메탄자화균 및 대장균 SBA01 균주의 안정적인 공동 배양이 가능한지 여부를 확인하기 위하여, 메탄자화균 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath, 이하 'Bath') 균주와 SBA01 균주의 연속발효를 수행하였다. SBA01 균주는 상기 실험예 3과 동일하게 메발론산 경로가 도입된 균주를 이용하였다. Bath 균주와 상기 SBA01 균주를 상기 실험예 3에 따라 최적화된 공배양 조건(10:1의 접종 비율)으로 1차 공동 발효 배양시킨 다음, 10%의 균주를 다시 새로운 발효 배지에 접종하여 동일한 조건에서 2차로 연속발효를 수행하였다.In order to confirm whether stable co-cultivation of the Methanobacteriaceae and E. coli SBA01 strains is possible , continuous fermentation of the Methylococcus capsulatus Bath (hereinafter'Bath') strain and the SBA01 strain was performed. The SBA01 strain was used in the same manner as in Experimental Example 3 to which the mevalonic acid pathway was introduced. The Bath strain and the SBA01 strain were subjected to primary co-fermentation culture under the optimized co-culture conditions (10:1 inoculation ratio) according to Experimental Example 3, and then 10% of the strain was again inoculated into a new fermentation medium under the same conditions. Secondly, continuous fermentation was performed.
그 결과, 연속적인 배양을 수행하더라도 Bath 균주와 SBA01 균주 모두 성장을 지속하는 것으로 확인되어 안정적인 공배양이 가능함을 확인하였고, 특히 두 번째로 접종시킨 배양 단계에서도 정상 상태(steady-state)에서 Bath 균주와 SBA01 균주의 비율이 10:1로 유지됨을 확인하였다. 또한, 2차 배양 과정에서도 1차 공배양 시와 동일하게, 배지 내 숙신산 농도는 증가하였으나 아세트산 농도는 증가하지 않았고 메발론산이 성공적으로 합성되어 그 농도가 증가하는 것으로 측정되었다(도 13). 이는, 연속적인 배양을 통한 발효를 수행하더라도 메탄자화균에 의해 숙신산 및 아세트산이 생성되고, SBA01 균주가 아세트산을 이용해 메발론산을 정상적으로 생산할 수 있음을 의미한다. 따라서, 본 발명의 메탄자화균 및 아세트산을 이용할 수 있는 SBA01 균주를 공배양하는 시스템은, 유용 화합물을 생산하기 위한 목적에서 산업적으로 응용될 수 있는 가능성이 있다.As a result, even if continuous culture was performed, it was confirmed that both the Bath strain and the SBA01 strain continued to grow, confirming that stable co-culture was possible.In particular, the Bath strain in a steady-state even in the second inoculation stage. It was confirmed that the ratio of the strain and SBA01 was maintained at 10:1. In addition, in the second culture process, as in the first co-culture, the concentration of succinic acid in the medium increased, but the acetic acid concentration did not increase, and mevalonic acid was successfully synthesized and the concentration increased (FIG. 13). This means that even if fermentation through continuous culture is performed, succinic acid and acetic acid are produced by methanogens, and the SBA01 strain can normally produce mevalonic acid using acetic acid. Therefore, the system for co-culturing the SBA01 strain capable of using the methanogens and acetic acid of the present invention has the potential to be industrially applied for the purpose of producing useful compounds.
상기에서는 본 발명의 대표적인 실험예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실험예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above, representative experimental examples of the present invention have been exemplarily described, but the scope of the present invention is not limited to the specific experimental examples as described above, and those of ordinary skill in the relevant field are within the scope of the claims of the present invention. It will be possible to change it accordingly.

Claims (17)

  1. 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 포함하는, 메탄(CH4)으로부터 탄소 수 4 이상인 화합물을 생산하기 위한 조성물.Methanotroph, and a composition for producing a compound having 4 or more carbon atoms from methane (CH 4 ), including mutant Escherichia coli capable of metabolizing acetic acid.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실된 것이고, 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것인, 조성물.The mutant E. coli is active in the protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) and patZ ( peptidyl-lysine acetyltransferase) is that the activity of the protein expressed from the gene is lost, and the biosynthesis-related gene of the compound having 4 or more carbon atoms is introduced.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 메탄자화균은 RuMP(ribulose monophosphate) 경로를 사용하여 탄소 동화작용을 수행하는 것인, 조성물.The methanogens are to perform carbon assimilation using the RuMP (ribulose monophosphate) route, the composition.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 메탄자화균은 메틸로코커스 캡슐라투스 바스(Methylococcus capsulatus Bath)인 것인, 조성물.The methanogens are methylococcus capsulatus bath (Methylococcus capsulatus Bath) will, the composition.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 돌연변이 대장균은 이의 아세틸-CoA 생산성이 야생형 대장균의 아세틸-CoA 생산성보다 증가된 것인, 조성물.The mutant E. coli has its acetyl-CoA productivity higher than that of wild-type E. coli acetyl-CoA, the composition.
  6. 청구항 2에 있어서,The method according to claim 2,
    상기 돌연변이 대장균은 cspC(cold shock domain-containing protein), mukB(Mukaku), lomR(lambda outer membrane protein) 및yhjE(putative major facilitator superfamily transporter)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성이 더 소실된 것인, 조성물.The mutant E. coli is the activity of a protein expressed from one or more genes selected from the group consisting of cspC (cold shock domain-containing protein), mukB (Mukaku), lomR (lambda outer membrane protein), and yhjE (putative major facilitator superfamily transporter). The composition is further lost.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소 수 4 이상의 화합물은 메발론산(mevalonate), 부탄올, 이소부탄올, 펜타놀, 이소펜타놀, 비사볼렌, 비사볼올, 이소프렌, 라이코펜 및 히마찰렌으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 조성물.The compound having 4 or more carbon atoms is any one selected from the group consisting of mevalonate, butanol, isobutanol, pentanol, isopentanol, bisabolen, bisabolol, isoprene, lycopene, and himachalene. Composition.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 메발론산의 생합성 관련 유전자는, MvaE 효소 및 MvaS 효소를 암호화하는 폴리뉴클레오티드를 포함하는 것인, 조성물.The biosynthesis-related gene of mevalonic acid, the composition comprising a polynucleotide encoding the enzyme MvaE and MvaS enzyme.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 메탄자화균 및 상기 돌연변이 대장균은 3:1 내지 15:1의 비율로 포함되는 것인, 조성물.The methanogen and the mutant Escherichia coli will be contained in a ratio of 3:1 to 15:1, the composition.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 조성물은 구리 이온을 더 포함하는 것인, 조성물.The composition further comprises a copper ion, the composition.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 조성물은 질소원으로 질산(NO3 -)을 포함하는 것인, 조성물.The composition will contain nitric acid (NO 3 - ) as a nitrogen source, the composition.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 조성물 내 질소원은 0.1 mM 내지 45 mM의 농도로 포함되는 것인, 조성물.The nitrogen source in the composition will be contained in a concentration of 0.1 mM to 45 mM, the composition.
  13. 메탄자화균(methanotroph), 및 아세트산을 대사할 수 있는 돌연변이 대장균을 동일한 배지에서 함께 배양하는 단계를 포함하는, 메탄자화균 및 대장균의 공배양 방법으로서,As a co-culture method of methanogens and E. coli, comprising culturing methanotroph and mutant E. coli capable of metabolizing acetic acid together in the same medium,
    상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실된 것인, 메탄자화균 및 대장균의 공배양 방법.The mutant E. coli is active in the protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) and patZ ( peptidyl-lysine acetyltransferase) is that the activity of the protein expressed from the gene is lost, the method of co-culture of methanogens and Escherichia coli.
  14. 메탄자화균(methanotroph), 및 아세트산을 이용할 수 있는 돌연변이 대장균을 동시에 배양하는 단계를 포함하는, 탄소 수 4 이상인 화합물의 생산 방법.Methanotroph, and a method for producing a compound having 4 or more carbon atoms comprising the step of simultaneously culturing mutant E. coli capable of using acetic acid.
  15. 청구항 14에 있어서,The method of claim 14,
    상기 돌연변이 대장균은 frdA(fumarate reductase flavoprotein subunit), ldhA(D-lactate dehydrogenase), pta(phosphotransacetylase) 및 adhE(alcohol/acetaldehyde dehydrogenase)로 이루어진 군으로부터 선택되는 하나 이상의 유전자로부터 발현되는 단백질의 활성 및 patZ(peptidyl-lysine acetyltransferase) 유전자로부터 발현되는 단백질의 활성이 소실된 것이고, 상기 탄소 수 4 이상인 화합물의 생합성 관련 유전자가 도입된 것인, 탄소 수 4 이상인 화합물의 생산 방법.The mutant E. coli is active in the protein expressed from one or more genes selected from the group consisting of frdA (fumarate reductase flavoprotein subunit), ldhA (D-lactate dehydrogenase), pta (phosphotransacetylase) and adhE (alcohol / acetaldehyde dehydrogenase) and patZ ( peptidyl-lysine acetyltransferase) is that the activity of the protein expressed from the gene is lost, and the biosynthesis-related gene of the compound having 4 or more carbon atoms is introduced, a method for producing a compound having 4 or more carbon atoms.
  16. 청구항 14에 있어서,The method of claim 14,
    탄소원으로 메탄(CH4)을 공급하는 조건에서 배양하는 것인, 탄소 수 4 이상인 화합물의 생산 방법.A method for producing a compound having 4 or more carbon atoms by culturing under conditions of supplying methane (CH 4) as a carbon source.
  17. 청구항 16에 있어서,The method of claim 16,
    상기 메탄(CH4)은 질량 흐름 제어기(MFC, mass flow controller)로 공급되는 것인, 탄소 수 4 이상인 화합물의 생산 방법.The methane (CH 4 ) is supplied to a mass flow controller (MFC), a method for producing a compound having 4 or more carbon atoms.
PCT/KR2020/013106 2019-09-25 2020-09-25 Method and composition for producing compound having four or more carbon atoms from methane WO2021060923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0118424 2019-09-25
KR20190118424 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021060923A1 true WO2021060923A1 (en) 2021-04-01

Family

ID=75164863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013106 WO2021060923A1 (en) 2019-09-25 2020-09-25 Method and composition for producing compound having four or more carbon atoms from methane

Country Status (2)

Country Link
KR (1) KR20210036298A (en)
WO (1) WO2021060923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131673A1 (en) * 2022-01-07 2023-07-13 Unibio A/S Process for producing single cell protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027335A1 (en) * 2021-08-26 2023-03-02 한국생명공학연구원 Recombinant microorganism for producing mevalonic acid and method for producing mevalonic acid using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165763A1 (en) * 2013-04-04 2014-10-09 Michael Lynch Microorganisms for the conversion of methane and methanol to higher value chemicals and fuels
JP2016504034A (en) * 2012-12-21 2016-02-12 グリーンライト バイオサイエンシーズ インコーポレーテッドGreenlight Biosciences,Inc. A cell-free system that converts methane to fuel, pyruvate or isobutanol
JP2017195890A (en) * 2011-06-30 2017-11-02 インビスタ テクノロジーズ エス.アー.エール.エル. Bioconversion process for producing nylon-7, nylon-7,7 and polyesters
KR20180097816A (en) * 2017-02-24 2018-09-03 한국과학기술원 An engineered cell having improved methionine biosynthetic ability
KR101954530B1 (en) * 2017-09-13 2019-05-23 경희대학교 산학협력단 Recombinant microorganism for producing succinic acid from methane and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195890A (en) * 2011-06-30 2017-11-02 インビスタ テクノロジーズ エス.アー.エール.エル. Bioconversion process for producing nylon-7, nylon-7,7 and polyesters
JP2016504034A (en) * 2012-12-21 2016-02-12 グリーンライト バイオサイエンシーズ インコーポレーテッドGreenlight Biosciences,Inc. A cell-free system that converts methane to fuel, pyruvate or isobutanol
WO2014165763A1 (en) * 2013-04-04 2014-10-09 Michael Lynch Microorganisms for the conversion of methane and methanol to higher value chemicals and fuels
KR20180097816A (en) * 2017-02-24 2018-09-03 한국과학기술원 An engineered cell having improved methionine biosynthetic ability
KR101954530B1 (en) * 2017-09-13 2019-05-23 경희대학교 산학협력단 Recombinant microorganism for producing succinic acid from methane and uses thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131673A1 (en) * 2022-01-07 2023-07-13 Unibio A/S Process for producing single cell protein

Also Published As

Publication number Publication date
KR20210036298A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
Yazdani et al. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
WO2021060923A1 (en) Method and composition for producing compound having four or more carbon atoms from methane
Kallio et al. Intracellular Expression of VitreoscillaHemoglobin (VHb) Enhances Total Protein Secretion and Improves the Production of α‐Amylase and Neutral Protease in Bacillus subtilis
Kuit et al. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production
US8192977B2 (en) Ethanol production
WO2014003439A1 (en) Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof
WO2013162274A1 (en) Novel strain producing d-lactic acid and use thereof
CA2374482A1 (en) Methods and materials for the synthesis of organic products
WO2016024771A1 (en) O-phosphoserine producing microorganism and method for producing o-phosphoserine or l-cysteine using same
WO2019203436A1 (en) Acid-resistant yeast with supressed ethanol production pathway and method for producing lactic acid using same
US20160053223A1 (en) Methods and compositions for affecting the differentiation of clostridia in culture
IL148762A (en) Preparation of 1,3- propanediol by fermentaiton of glycerol
Cameron et al. Developments in metabolic engineering
WO2012030130A2 (en) Novel mutant microorganism producing succinic acid simultaneously using sucrose and glycerol, and method for preparing succinic acid using same
WO2015093831A1 (en) Recombinant microorganism having increased d(-) 2,3-butanediol productivity, and method for producing d(-) 2,3-butanediol by using same
WO2020075986A2 (en) Recombinant acid-resistant yeast in which alcohol production is inhibited and method for producing lactic acid by using same
WO2010104224A1 (en) Production method for 1,3-propanediol using recombinant microbial strain having glycerol oxidation metabolic pathway blocked
Liu et al. Adaptation of lactic acid bacteria to butanol
WO2014148754A1 (en) Recombinant microorganism with increased productivity of 2,3-butanediol, and method for producing 2,3-butanediol using same
WO2015093832A1 (en) Recombinant microorganism with improved 1,3-propanediol productivity, and method for producing 1,3-propanediol by using same
WO2017052299A1 (en) Novel candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
Klapatch et al. Organism development and characterization for ethanol production using thermophilic bacteria
WO2015163682A1 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol, and method for producing 2,3-butanediol using same
Buddenhagen et al. Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O 2
WO2015194900A1 (en) Kluyveromyces marxianus having pathway of lactic acid degradation blocked, and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869708

Country of ref document: EP

Kind code of ref document: A1