WO2014003439A1 - Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof - Google Patents

Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof Download PDF

Info

Publication number
WO2014003439A1
WO2014003439A1 PCT/KR2013/005661 KR2013005661W WO2014003439A1 WO 2014003439 A1 WO2014003439 A1 WO 2014003439A1 KR 2013005661 W KR2013005661 W KR 2013005661W WO 2014003439 A1 WO2014003439 A1 WO 2014003439A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
kctc
lactic acid
gene
seq
Prior art date
Application number
PCT/KR2013/005661
Other languages
French (fr)
Korean (ko)
Inventor
손정훈
김현진
배정훈
성봉현
김철호
이승구
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2014003439A1 publication Critical patent/WO2014003439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01001Pyruvate decarboxylase (4.1.1.1)

Definitions

  • the present invention relates to a strain of Kluyveromyces marxianus , a Krebtri negative yeast inactivated pyruvate decarboxylase, and a yeast strain producing various organic acids by introducing various exogenous genes into the strain. .
  • the present invention also relates to a method for producing lactic acid by culturing the strain.
  • organic products such as lactic acid (Lactic acid, Lactate, lactate) are of industrial importance.
  • organic acids can be used to synthesize plastic materials and other products.
  • more efficient and cost-effective production methods have been developed.
  • One such method is to use bacteria.
  • some bacteria can produce large quantities of particular organic products under certain fermentation conditions.
  • live bacteria as producers has the disadvantage of limiting the growth of bacteria since organic products accumulate in the growth medium.
  • various product purification techniques have been used in the synthesis.
  • microorganisms other than bacteria has also been attempted.
  • Lactic acid which is one of the most representative compounds among the organic products, has been proved to function as a biodegradable polymer, and a production method using microorganisms has been researched and developed. Lactobacillus, a microorganism producing lactic acid, is already known in many kinds, but when lactic acid is produced by culturing these microorganisms, two optical isomers (L-lactate) are produced.
  • the present inventors selected the optimal strains by comparing the ability to use the carbon source and the resistance to high temperature, and produced a strain in which pyruvate decarboxylase was inactivated and a Cluiberomyces membrane
  • the optimal expression strain was prepared, and the growth was recovered to a level similar to that of the wild type strain, and a strain capable of selectively producing D or L-lactic acid was produced. It was. Using the strain produced in this way, it was confirmed that high-density pure D or L-lactic acid could be selectively produced from inexpensive biomass pork potato powder.
  • One object of the present invention is to provide a Kluyveromyces Marxian mutant strain in which pyruvate decarboxylase is inactivated in the parent strain Kluyveromyces marxianus . .
  • Another object of the present invention is to provide a method for producing lactic acid, comprising culturing the strain.
  • the mutant strain in which the pyruvate decarboxylase activity of the present invention is inactivated does not produce ethanol during lactic acid production, and relates to a method for effectively producing an organic acid through a strain capable of producing an organic acid by introducing an exogenous gene into the strain.
  • the strain of the present invention has a high temperature resistance, high fibrin substrate resolution, and can block lactic acid metabolism to efficiently produce lactic acid, and select L-lactic acid and D-lactic acid according to the type of lactate dehydrogenase introduced. Can be produced.
  • pig potato powder can be used as a nutrient source without any special processing, and has high lactic acid production capacity even at low pH. Accordingly, the strain of the present invention can selectively produce a high concentration of pure D or L-lactic acid from the low-cost biomass pork potato powder can be widely used in the field of lactic acid production.
  • 1 is a diagram confirming the high temperature resistance of strains Kluyveromyces maximians.
  • FIG. 2 is a diagram confirming the ADH1 gene disruption process using the URA3 cassette and the ADH1 gene disruption using PCR.
  • FIG. 3 is a diagram confirming the ADH2 gene disruption process using the URA3 cassette and the ADH2 gene disruption using PCR.
  • FIG. 4 is a diagram confirming the ADH3 gene disruption process using the URA3 cassette and the ADH3 gene disruption using PCR.
  • FIG. 5 is a diagram confirming the ADH4 gene disruption process using the URA3 cassette and the ADH4 gene disruption using PCR.
  • FIG. 6 is a diagram confirming the PDC1 gene disruption process using the URA3 cassette and the PDC1 gene disruption using PCR.
  • FIG. 7 is a graph measuring ethanol production according to cell growth in ethanol production medium.
  • Figure 8 is a schematic diagram showing the Kluyveromyces maximans vector for L-LDH or D-LDH expression.
  • Figure 9 is a graph measuring the L-lactic acid production, glucose consumption at 30 °C (A) and 35 °C (B).
  • 10 is a graph measuring L-lactic acid production (A), D-lactic acid production (B), and glucose consumption from pork potato powder.
  • 11 is a diagram confirming the CYB2 gene disruption process using the URA3 cassette and the CYB2 gene disruption using PCR.
  • the present invention is a Kluyveromyces marxianus , the parent strain, Pluuvate Decarboxylase inactivated Pluuvate Decarboxylase It provides a loose mutation strain.
  • the Kluyveromyces maxianus strain of the present invention is a kind of Krebtree negative strain.
  • the crabtree is the same as the crabtree effect, meaning that the respiration of cells is suppressed by the addition of glucose.
  • the term "crebtree negative strain” refers to a strain having a trait which does not occur the Krebtri phenomenon, that is, the phenomenon that the respiration of the cell by the addition of glucose does not occur.
  • the parent strain may be preferably Kluyveromyces marxianus .
  • Kluyveromyces maxilians are yeast strains that have high growth capacity, high growth rate, and low propensity to produce ethanol when exposed to excess sugar (Creptree negative type).
  • Creptree negative type because it secretes an excess of Inulin degrading enzymes, it is an excellent yeast that can use Helianthus tuberosus Linne containing excessive amount of Inulin as a nutrient source.
  • Kluyveromyces maximus has been reported a lot of strains, there is a characteristic that shows a variety of physiological characteristics depending on the strain. Even the same strains have reported different results between different study groups. Therefore, in the present invention, it is an important process to select specific strains of Cluyveromyces maximians with the required characteristics.
  • the parent strain of the present invention Kluyveromyces maxilianus is preferably Accession No. KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, It may be one selected from the group consisting of KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759 (Genetic Bank of Korea Biotechnology Institute), BY25569, BY25571, and BY25573 (Yeast Genetic Resource center, Japan), more preferably It may be one selected from the group consisting of KCTC 7155, KCTC 17631, BY25569, BY25571, and BY25573, and most preferably may be BY25571.
  • CMC Carboxymethyl cellulose
  • CB cellobiose
  • Peptone 1% Yeast extract
  • six strains of KCTC 7155, KCTC 17724, KCTC 17631, BY25569, BY25571, and BY25573 had high growth ability and high fibrinolytic substrate degradation ability.
  • the KCTC 7155, BY25569, BY25571, BY25573 strains have high heat resistance (Fig. 1). Accordingly, the four strains were confirmed to have desirable characteristics as parent strains.
  • strains having high fibrin substrate degrading ability and high temperature resistance were selected as parent strains, and thus, the following strains were prepared. Specifically, among the four strains having high fiber substrate degradation ability and high temperature resistance, the BY25571 strain was representatively selected as a parent strain to prepare a mutant strain.
  • pyruvate decarboxylase refers to an enzyme that catalyzes the reaction of pyruvate to produce carbonic acid and acetaldehyde (CH 3 COCOOH-> CH 3 CHO + CO 2 ). .
  • the strain may be a strain in which the production of ethanol is reduced in comparison with the strain in which pyruvate decarboxylase is not inactivated when cultured in a medium containing sugar.
  • the inactivation of the pyruvate decarboxylase may be performed by substitution, deletion or addition to the gene of the enzyme.
  • the inactivation of the gene in the strain can be produced in various forms.
  • gene expression can be reduced by alteration of the signal structure of gene expression or by antisense-RNA techniques.
  • the signal structure of gene expression can be, for example, a suppressor gene, an activator gene, an operator, a promoter, an attenuator, a ribosomal binding site, a start codon and Terminators are not limited thereto.
  • RNA interference (RNAi) method can be used.
  • a method may be employed in which a mutation through a transposon, which is a DNA sequence capable of moving to another position in the genome of a single cell, causes a function of a target gene to be blocked and inactivated. Mutations that induce changes or decreases in the catalytic activity of genetic proteins are well known in the art (Qiu and Goodman (Journal of Biological Chemistry 272: 8611 8617 (1997))).
  • the inactivation of a gene comprises: mutation of a single or complex sequence, deletion of a single or complex gene, insertion of a foreign gene into the gene, deletion of the entire gene group, insertion of a suppression sequence of a promoter of the gene group, mutation of a promoter, Expression suppression control insertion of a gene group, RNAi introduction into a single or multiple sequences of a gene group, transposon mediated mutations, or a combination of these variants can be performed.
  • the activity of the protein expressed from the gene may be very low, and a single or complex gene may be missed, or antibiotic resistance genes or other genes that are foreign genes within the base sequence. It may be a method of inserting to prevent the expression of the complete protein. Preferably, a method may be used in which all of the nucleotide sequences of genes present in the chromosome are deleted. Or in combination with the variants by the above methods.
  • the pyruvate decarboxylase can be found in GenBank, etc. of NCBI, which is a known database, but is not limited thereto, and may be a gene including SEQ ID NO: 41.
  • the pyruvate decarboxylase inactivated strain is not limited thereto, but may be a strain having accession number KCTC12225BP.
  • alcohol dehydrogenase ADH
  • alcohol dehydrogenase ADH
  • the "alcohol dehydrogenase” of the present invention is an enzyme that is involved in alcohol fermentation and is a catalyst that desorbs hydrogen from alcohol to form aldehydes or ketones, and is a reversible catalyst, which is a catalyst that can advance the reaction in the direction of alcohol production. (CH 3 CH 2 OH + NAD + ⁇ -> CH 3 CHO + NADH + H + ). Its broad substrate specificity also affects other alcohols.
  • the strain of the present invention is preferably in addition to inactivation of pyruvate decarboxylase, preferably further inactivation of alcohol dehydrogenase.
  • the alcohol dehydrogenase may be identified from GenBank, etc. of NCBI, which is a known database, but is not limited thereto.
  • genome analysis of the Kluyveromyces maximus strain confirmed that four ADH genes and one PDC gene were present.
  • a strain that inhibits ethanol production a strain (Accession Number KCTC12225BP) deleted from the alcohol dehydrogenase gene (ADH) or pyruvate decarboxylase gene (PDC1) of the Kluyveromyces maximus BY25571 strain was prepared (Accession No. KCTC12225BP).
  • ADH alcohol dehydrogenase gene
  • PDC1 pyruvate decarboxylase gene
  • each strain was compared through ethanol fermentation. 24 hours of each strain in a minimum nutrient medium seed culture and then 50g / ethanol fermentation medium (YE 0.5% glucose is added to the L, pepton 0.5%, KH 2 PO 4, Ammonia sulfate 0.2%, MgSO 4 ⁇ H 2 O 0.04% ) Were grown at 30 ° C. and 150 rpm, and cell growth and ethanol production were measured. As a result, the adh mutant strains produced ethanol without significant difference when compared with the natural strain, but the pdc1 mutant strain was confirmed that does not produce any ethanol (Fig. 7).
  • various organic acids can be produced using a strain in which a variety of exogenous genes related to specific organic acid production are introduced into a Krebtri negative strain (Cluyberomyces maximans) blocked by the alcohol production pathway.
  • exogenous gene refers to a gene of interest when a nucleic acid sequence that does not belong to a native strain is introduced from the outside for a certain purpose.
  • it means a gene associated with the production of a specific organic acid.
  • the specific organic acid targeted for the strain may be lactic acid. More preferably, it may be L-lactic acid or D-lactic acid which is an optical isomer.
  • the exogenous gene introduced into the strain to produce the lactic acid may preferably be a gene having lactate dehydrogenase (LDH) activity.
  • LDH lactate dehydrogenase
  • Lactate Dehydrogenase is an enzyme that generally decomposes hydrogen from L-lactic acid or D-lactic acid using NAD + to pyruvic acid, and catalyzes the corresponding final step of reverse reaction. It is an enzyme that produces L-lactic acid or D-lactic acid by reducing pyruvic acid using NADH. That is, it may be L-lactate dehydrogenase or D-lactate dehydrogenase.
  • the gene having lactate dehydrogenase activity may include at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of natural lactate dehydrogenase. Genes of enzymes having the same activity with homology are included. Mutation genes which induce mutations in the natural lactate dehydrogenase are also included in the lactate dehydrogenase of the present invention irrespective of the sequence, as long as they have lactate dehydrogenase activity.
  • the lactate dehydrogenase may be identified in GenBank, etc. of NCBI, which is a known database, but is not limited thereto.
  • the lactate dehydrogenase may be a gene including a nucleotide sequence selected from the group consisting of SEQ ID NOs: 42 to 50.
  • the lactate dehydrogenase producing L-lactic acid may be a gene including one nucleotide sequence selected from the group consisting of SEQ ID NOs: 42 to 46
  • the lactate dehydrogenase producing D-lactic acid is SEQ ID NOs: 47 to It may be a gene comprising one nucleotide sequence selected from the group consisting of 50.
  • the lactate dehydrogenase in the strains of the present invention can be expressed using the TEF1a promoter derived from Cluyveromyces macxanus.
  • the strain in which the lactate dehydrogenase is introduced into the Krebtri negative strain of which the alcohol production pathway is blocked is not limited thereto, but may be a strain having accession number KCTC12226BP.
  • mutation refers to any action that changes the genetic function of a gene.
  • a mutation of a gene refers to a mutation caused by a quantitative or qualitative change of a gene among various variations of an organism. . That is, a change in the molecular level at which one or more of the DNA bases is substituted with another base, ie, a base sequence resulting from substitution, deletion, addition, inversion, duplication, or insertion or deletion of one or two bases in the DNA.
  • Molecular changes such as frame shift, mean that the enzymes or peptides produced according to the genetic information of the DNA are not made or the activity is lost or the original activity is increased or changed.
  • Mutation methods for damaging or altering the genes of the present invention can be used without limitation mutation methods commonly used in the art.
  • genomic DNA was extracted from Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactococcus lactis in order to secure L-lactate or D-lactate dehydrogenase (LDH) gene.
  • LDH L-lactate or D-lactate dehydrogenase
  • PCR was performed on the extracted samples, and the amplified genes were cloned into the T-easy vector to secure each gene.
  • Eight vectors were constructed by inserting the L-LDH gene and the D-LDH gene into plasmid pTEFp-GAPt for expression in Kluyveromyces maximians.
  • the constructed vector was treated with restriction enzyme NheI to make a linear DNA state, transformed to BY25571 strain URA3 auxotroph strain and BY25571 ⁇ pdc1 strain PDC1 mutant strain, and a single strain (Accession No. KCTC12226BP) was selected from the transformants. Strains producing L-lactic acid and D-lactic acid at the highest concentration were selected by comparing lactic acid and D-lactic acid production (Example 5).
  • the strain of the present invention may be a mutant strain further inactivated L-lactate cytochrome-c oxidoreductase (CYB2). That is, the skin bait decarboxylase may be inactivated and in addition, the L-lactate cytochrome-c oxidoreductase may be inactivated. Inactivation in the present invention is as described above.
  • L-lactate cytochrome-c oxidoreductase is an enzyme that promotes oxidation of L-lactate.
  • the L-lactate cytochrome-c oxidoreductase can be identified in GenBank of NCBI, which is a well-known database, but is not limited thereto, and may include the nucleotide sequence of SEQ ID NO: 57.
  • the strain of the present invention may be a mutant strain having enhanced plasma membrane ATPase (PMA1) activity.
  • PMA1 plasma membrane ATPase
  • plasma membrane ATPase is one of hydrogen ion pumps, which is an enzyme that gives various driving force for active transport through maintaining the quantum slope.
  • the plasma membrane ATPase of the present invention can be identified from GenBank, etc. of NCBI, which is a known database, but is not limited thereto, and may be represented by the nucleotide sequence of SEQ ID NO: 58.
  • Method for enhancing the activity of the protein in the present invention can be applied to a variety of methods well known in the art.
  • the method may increase the number of copies by additionally inserting a polynucleotide including a nucleotide sequence encoding the protein and an expression control region introduced by itself or externally into a chromosome or by introducing into a vector system.
  • Method of controlling the expression of the gene including the substitution of the regulatory regulatory region with other regulatory sequences, modification of the entire or part of the nucleotide sequence of the expression regulatory region, and the method by strengthening the enzyme activity by introducing the mutation itself, etc. It may be, but is not limited thereto.
  • the strain of the present invention may be a BY25571 ⁇ pdc1, cyb2-PMA1 // L-LpLDH strain of accession number KCTC12435BP.
  • the strain (KCTC12225BP) prepared in Example 2 deleted KmCYB2 (L-lactate cytochrome-c oxidoreductase) gene and KmPMA1 (plasma membrane ATPase) Mutations that overexpress genes were introduced.
  • L-lactate dehydrogenase (L-LpLDH) was introduced.
  • the strain thus prepared was named BY25571 ⁇ pdc1, cyb2-PMA1 // L-LpLDH, and was deposited on June 26, 2013 at the Korea Institute of Bioscience and Biotechnology (KCTC), and received accession number KCTC12435BP.
  • the present invention provides a method for producing lactic acid, comprising culturing the strain.
  • the method for producing lactic acid of the present invention may include culturing a transformed strain in which the ethanol production pathway is blocked in the above strains, and the growth ability of lactic acid is maintained while the growth ability is maintained.
  • Cultivation of the strain in the present invention can be carried out according to well-known methods, conditions such as culture temperature, incubation time and pH of the medium can be appropriately adjusted.
  • Suitable culture methods include fed-batch culture, batch culture, and continuous culture (cintinuous culture) and the like, preferably batch culture, but is not limited thereto.
  • the culture medium used should suitably meet the requirements of the particular strain.
  • Culture media for various microorganisms are known (eg, "Manual of Methods for General Bacteriology” from American Society for Bacteriology (Washington D.C., USA, 1981)).
  • Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil.
  • the strain may be cultured using a nutrient source of biomass pork potato powder that can be supplied at low cost in large quantities.
  • pig potato powder medium of the present invention is a nutrition medium containing only pork potato powder without any pretreatment. Since it is a complete medium, it cannot be used as a medium for selection.
  • the materials constituting the culture medium can be used individually or as a mixture.
  • Nitrogen sources can be nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitrate Ammonium) can be used, and these materials can also be used individually or as a mixture.
  • Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium containing salts can be used as the phosphorus source.
  • the culture medium may contain metal salts necessary for growth (eg, magnesium sulfate or iron sulfate), and finally, essential growth-promoting substances such as amino acids and vitamins may be used in addition to the substances mentioned above.
  • Suitable precursors may further be added to the culture medium.
  • the feed material may be added to the culture all at once or may be appropriately supplied during the culture.
  • the lactic acid produced may be L-lactic acid and D-lactic acid which are optical isomers. This may vary depending on the type of LDH introduced.
  • Kluyveromyces marxianus KM
  • Screening strains suitable for the intended use is a very efficient way to utilize Kluyveromyces maximus as an industrial strain.
  • Fibrin substrate decomposing ability was obtained from 15 genes of Kluyveromyces maxianus strains from Gene Bank of Daejeon Korea Biotechnology Research Institute and 3 types of Kluyveromyces maxianus strains from Yeast Genetic Resource Center (Japan). And high temperature resistance were examined.
  • KM strains are not originally known to have fibrinolytic function but are known to have weak fibrinolytic capacity in some strains. Therefore, in order to select strains with strong fibrinolytic effect, 18 strains of Kluyveromyces maximanus strains were treated with YP (1% Yeast extract, 2% Peptone) medium containing 2% Carboxymethyl cellulose (CMC) and cellobiose (CB). Incubated for 48 hours at 30 °C to analyze the cell growth capacity of the cellulase (cellulase) activity. It was confirmed that the growth of most strains in the medium requiring the fibrinolytic ability was weak, and in particular, the growth ability of strains KCTC 7155 and BY25569, BY25571, BY25573 was relatively high (Table 1).
  • the optimum temperature of fibrinolytic enzyme is 40-50 ° C. when the fiber substrate is used as a bioethanol fermentation strain, it is necessary to develop a yeast resistant at such temperature.
  • Six strains with good growth potential were selected from the fibrin substrate to compare their resistance to high temperatures. Cell cultures were dotting in YPD (1% Yeast extract, 2% Peptone and 2% glucose) medium and incubated at 42 ° C, 45 ° C, and 50 ° C for 24 hours.
  • the KTCT 17724 strain had low heat resistance and KTCT 7155 , BY25569, BY25571, BY25573 strains were confirmed to have high heat resistance (Fig. 1). Accordingly, the four strains were confirmed to have desirable characteristics as parent strains.
  • BY25571 strain was selected as a parent strain to prepare a mutant strain.
  • the Kluyveromyces maxilianus strain has four alcohol dehydrogenase genes (ADH) and one pyruvate decarboxylase gene (PDC1). .
  • ADH alcohol dehydrogenase genes
  • PDC1 pyruvate decarboxylase gene
  • DNA fragments of 300 bp in the upstream and downstream of the ADH1 ORF were used using HJ368 (SEQ ID NO: 1), HJ369 (SEQ ID NO: 2), HJ370 (SEQ ID NO: 3), and HJ371 (SEQ ID NO: 4) primers.
  • amplified URA3 DNA fragments and overlap extension PCR were performed using primers Tc-f (SEQ ID NO: 6), U200r (SEQ ID NO: 7), U200f (SEQ ID NO: 8), and Tc-r (SEQ ID NO: 9).
  • the PCR fragment was transformed into BY25571 strain, and the strain introduced into ADH1 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ368 and HJ372 (SEQ ID NO: 5), U200f and HJ372, and PCR bands were identified at expected positions.
  • DNA fragments of 300 bp in the upstream and downstream of the ADH2 ORF were prepared using HJ458 (SEQ ID NO: 11), HJ459 (SEQ ID NO: 12), HJ460 (SEQ ID NO: 13), and HJ461 (SEQ ID NO: 14) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed.
  • PCR fragment was transformed into 25571 strain, and the strain introduced into ADH2 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ458 and HJ462 (SEQ ID NO: 15), U200f and HJ462, and PCR bands were identified at expected locations.
  • DNA fragments of 300 bp in the upstream and downstream of the ADH3 ORF were used using HJ412 (SEQ ID NO: 17), HJ413 (SEQ ID NO: 18), HJ414 (SEQ ID NO: 19), and HJ415 (SEQ ID NO: 20) primers.
  • HJ412 SEQ ID NO: 17
  • HJ413 SEQ ID NO: 18
  • HJ414 SEQ ID NO: 19
  • HJ415 SEQ ID NO: 20
  • the PCR fragment was transformed into 25571 strain, and the strain introduced into ADH3 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ412 and HJ416 (SEQ ID NO: 21), U200f and HJ416, and PCR bands were identified at expected positions.
  • DNA fragments of 300 bp in the upstream and downstream of the ADH4 ORF were prepared using HJ482 (SEQ ID NO: 23), HJ483 (SEQ ID NO: 24), HJ484 (SEQ ID NO: 25), and HJ485 (SEQ ID NO: 26) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed.
  • PCR fragment was transformed into 25571 strain and the strain introduced into ADH4 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ482 and HJ486 (SEQ ID NO: 27), U200f and HJ486, and PCR bands were identified at expected positions.
  • DNA fragments of 300 bp in the upstream and downstream of the PDC1 ORF were prepared using HJ464 (SEQ ID NO: 29), HJ465 (SEQ ID NO: 30), HJ466 (SEQ ID NO: 31), and HJ467 (SEQ ID NO: 32) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed.
  • PCR fragment was transformed into 25571 strain, and the strain introduced into PDC1 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ464 and HJ486 (SEQ ID NO: 33), U200f and HJ468, and PCR bands were identified at expected locations.
  • the strain prepared by the deletion of the pyruvate decarboxylase gene of the strain Kluyveromyces maxianus BY25571 was deposited on June 20, 2012 to KCTC of the Korea Research Institute of Bioscience and Biotechnology, and received the accession number KCTC12225BP. received.
  • each of the mutant strains was compared through ethanol fermentation. 24 hours of each strain in a minimum nutrient medium seed culture and then 50g / ethanol fermentation medium (YE 0.5% glucose is added to the L, pepton 0.5%, KH 2 PO 4, Ammonia sulfate 0.2%, MgSO 4 ⁇ H 2 O 0.04% ) was incubated at 30 ° C, 150rpm and cell growth and ethanol production were measured. As a result, adh mutant strains produced ethanol without significant difference compared to wild type strains, and as expected, pdc1 mutant strains reduced cell growth by 50% compared to wild type strains and produced no ethanol at all. 7).
  • acetaldehyde is produced by pyruvate decarboxylase and then to ethanol by alcohol dehydrogenase. Since four ADH genes are present in the Kluyveromyces maxianus strain, the deletion of one or two ADH genes does not completely block the conversion of pyruvate to ethanol, whereas the pyruvate decarboxylase gene is 1 Since only dogs existed, the deletion of the pdc1 gene alone was a complete blockade of the ethanol production pathway.
  • the reason for the pdc1 deletion strain growth is reduced compared to the wild-type strain in order to eliminate the NAD + / NADH imbalance is formed in the process requires the ethanol fermentation process, but in the pdc1 deletion strain because the ethanol fermentation route is blocked the NAD + / NADH imbalance This imbalance is caused by a decrease in growth because it acts as a barrier to strain growth. This phenomenon is expected to be able to solve the growth degradation problem caused by the pdc1 deletion strain because lactic acid fermentation can solve the NAD + / NADH imbalance in place of ethanol fermentation if the LDH gene expression was carried out.
  • L-lactate dehydrogenase and D-lactate dehydrogenase were extracted from Lactobacillus rhamnosus , Lactobacillus plantarum , Lactobacillus acidophilus , and Lactococcus lactis which are known to be excellent in lactic acid dehydrogenase.
  • L-LDH and D-LDH obtained by PCR with the extracted sample was cloned into a T-easy vector to secure each gene.
  • the pTEF1 vector contains a promoter of translation elongation factor 1a (TEF1a), a gene derived from Kluyveromyces maximans, for the powerful and constitutive expression of the LDH gene, and glyceraldehyde 3-phosphate to terminate the transcription of the LDH gene. It contains the transcription termination site of the dehydrogenase (GAP) gene.
  • GAP dehydrogenase
  • the constructed vector was treated with restriction enzyme NheI to make a linear DNA state, transformed to BY25571 strain URA3 auxotroph strain and BY25571 ⁇ pdc1 strain PDC1 mutant strain, and single strains were selected from the transformants. It was confirmed that it was introduced.
  • accession number KCTC12225BP strain prepared by deleting the pyruvate decarboxylase gene of the strain Kluyveromyces maxianus BY25571 was sent to the KCTC of the Korea Institute of Bioscience and Biotechnology (KCTC) in 2012. Deposited June 20, accession number KCTC12226BP was awarded.
  • Flask culture was carried out at 30 °C, 35 °C to determine the optimum reaction temperature for lactic acid production.
  • Each strain was shaken in YPD medium to recover cells, washed twice with distilled water, and then inoculated in YPD10 liquid medium (1% yeast extract, 2% peptone, 10% glucose) containing calcium carbonate and incubated for 72 hours. It was.
  • YPD10 liquid medium 1% yeast extract, 2% peptone, 10% glucose
  • lactic acid production was highest in 25571pdc1 / L-LpLDH and 25571pdc1 / D-LrLDH strains, and at 35 ° C, lactic acid production was high in 25571pdc1 / L-LpLDH and 25571pdc1 / D-LpLDH strains. From the above results, it can be confirmed that the production amount of each gene is different depending on the temperature (Table 2). Finally, L-lactic acid was produced using 25571pdc1 / L-LpLDH strain and D-lactic acid was produced using 25571pdc1 / D-LpLDH strain.
  • fed-batch culture was performed with 25571pdc1 / L-LpLDH strain. Before entering the main culture, the culture was activated by incubating in 100 ml of YPD liquid medium, and then inoculated in the main culture solution and incubated at 30 ° C. for 24 hours. 40% glucose (final 10%) was fed to the high concentration fermentation broth to perform lactic acid conversion at 30 ° C and 35 ° C.
  • the supernatant obtained by autoclave (20 minutes at 121 ° C) of pork potato starch was analyzed by HPLC and found to contain 60% of inulin.
  • porcine potato starch was added to each concentration and cultured in flask. Cells were harvested by shaking culture in YPD medium, washed twice with distilled water, inoculated in porcine potato starch added with 3% calcium carbonate, and cultured for 84 hours, and the lactic acid conversion rate was compared.
  • lactic acid production was analyzed by adding yeast extract to each concentration of pork starch.
  • Cells were harvested by shaking culture in YPD medium, washed twice with distilled water, and then inoculated in porcine potato starch added with 3% calcium carbonate using a flask and incubated for 72 hours to compare lactic acid conversion. 4).
  • Batch culture was performed to produce high concentrations of lactic acid from pig potatoes using 25571pdc1 / L-LpLDH strain and 25571pdc1 / D-LpLDH. After activating by culturing in 100ml YPD liquid medium and inoculating the culture medium and incubated at 30 °C for 24 hours to recover the cells, washed twice with distilled water and then inoculated in pork potato starch and incubated for 66 hours while lactic acid Conversion rates were compared.
  • L-lactic acid produced 130.1 g / l showed a conversion of 98.9%
  • D-lactic acid produced 122.3 g / l showed a conversion of 95.0% (Fig. 10).
  • Table 5 compares the results of the present invention with the results of recent studies conducted to produce lactic acid using pork potatoes.
  • the growth environment of the strain is gradually changed to low pH.
  • the present inventors deleted the KmCYB2 (L-lactate cytochrome-c oxidoreductase) gene from the strain prepared in Example 2 (KCTC12225BP) and overexpressed the KmPMA1 (plasma membrane ATPase) gene. Mutations were introduced.
  • DNA fragments of 300 bp in the upstream and downstream of the KmCYB2 ORF using the BY25571 genomic DNA as a template were identified by HJ628 (SEQ ID NO: 51), HJ629 (SEQ ID NO: 52), HJ630 (SEQ ID NO: 53), and HJ631 (SEQ ID NO: 54).
  • HJ628 SEQ ID NO: 51
  • HJ629 SEQ ID NO: 52
  • HJ630 SEQ ID NO: 53
  • HJ631 SEQ ID NO: 54
  • a gene was obtained from BY25571 genomic DNA, and the expression vector was prepared by cloning the URA3 gene of the pTEF1 vector with the LEU2 gene.
  • the produced vector was linearized with restriction enzyme PmlI, transformed into the PDC1, CYB2 mutant strain BY25571 ⁇ pdc1, cyb2 prepared above, and a single strain was selected from the transformants.
  • PTEF1-L-LpLDH used in Example 4 to introduce the L-LpLDH gene into the transformant obtained was treated with NheI and transformed to select a single strain.
  • the strain prepared above was named BY25571 ⁇ pdc1, cyb2-PMA1 // L-LpLDH, and was deposited on June 26, 2013 to the Bioresource Center (KCTC) of the Korea Research Institute of Bioscience and Biotechnology, and received accession number KCTC12435BP.
  • KCTC Bioresource Center
  • the lactic acid production was increased in the Krebtri negative strain (Cluyberomyces maximans) in which pyruvate decarboxylase was inactivated in the present invention, and the alcohol dehydrogenase was further inactivated.
  • lactate dehydrogenase was confirmed to produce a strain capable of producing a high concentration of lactic acid.
  • the strain of the present invention can selectively introduce the lactate dehydrogenase to be introduced as D or L-lactate dehydrogenase to selectively produce the lactic acid produced, and can use porcine potato powder as a nutrient source, in particular It was confirmed that the pork potato powder can be used as it is without any pretreatment.

Abstract

The present invention relates to a Kluyveromyces marxianus strain which is a Crabtree-negative yeast in which the pyruvate decarboxylase is inactivated in order to prevent ethanol fermentation, and to a yeast strain for producing various organic acids by introducing various exogenous genes to the Kluyveromyces marxianus strain. Further, the present invention relates to a method for producing lactic acids by culturing the strain. The mutant strain in which the pyruvate decarboxylase is inactivated according to the present invention does not produce ethanol during the production of lactic acids. The method of the present invention effectively produces organic acids through the strain that produces organic acids by introducing various exogenous genes to the strain.

Description

에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도Kluyveromyces maxianus strain with blocked ethanol production pathway and use thereof
본 발명은 피루베이트 탈탄산효소를 불활성화 시킨 크렙트리 음성 효모인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)균주와 이 균주에 여러 가지 외인성 유전자를 도입하여 다양한 유기산을 생산하는 효모 균주에 관한 것이다. 또한, 본 발명은 상기 균주를 배양하여 젖산(Lactic acid)을 생산하는 방법에 관한 것이다.The present invention relates to a strain of Kluyveromyces marxianus , a Krebtri negative yeast inactivated pyruvate decarboxylase, and a yeast strain producing various organic acids by introducing various exogenous genes into the strain. . The present invention also relates to a method for producing lactic acid by culturing the strain.
석유자원의 고갈이 다가옴에 따라 석유로부터 추출되는 여러 가지 화합물을 재생 가능한 원료로부터 생산하는 신재생 에너지 및 바이오화학 분야의 연구가 경쟁적으로 진행되고 있다. As the depletion of petroleum resources approaches, research in the field of renewable energy and biochemistry, which produces various compounds extracted from petroleum from renewable raw materials, is competitive.
석유로부터 추출되는 여러 가지 화합물 중에서 젖산(Lactic acid, Lactate, 락테이트)과 같은 유기 생성물은 산업적으로 그 사용이 중요시되고 있다. 예를 들어, 유기산은 가소성 재료 및 다른 생성물을 합성하는데 사용될 수 있다. 이러한 유기 생성물에 대한 수요의 증대에 대응하여 더 효과적이고 비용효율적인 생산 방법이 개발되고 있다. 이러한 방법 중 한가지는 박테리아를 이용하는 것이다. 구체적으로, 일부 박테리아는 다량의 특별한 유기 생성물을 일정 발효조건 하에서 생성할 수 있다. 살아있는 박테리아를 생산자로 사용하는 것은 유기 생성물이 성장 배지 내에 축적되므로 박테리아의 성장에 한계를 가져오는 단점이 있었다. 해당 단점을 극복하기 위하여, 다양한 생성물 정제 기술이 합성과정에서 사용되어 왔다. 덧붙여서, 박테리아를 제외한 다른 미생물을 사용하는 것도 시도되었다.Among the various compounds extracted from petroleum, organic products such as lactic acid (Lactic acid, Lactate, lactate) are of industrial importance. For example, organic acids can be used to synthesize plastic materials and other products. In response to the increasing demand for such organic products, more efficient and cost-effective production methods have been developed. One such method is to use bacteria. Specifically, some bacteria can produce large quantities of particular organic products under certain fermentation conditions. The use of live bacteria as producers has the disadvantage of limiting the growth of bacteria since organic products accumulate in the growth medium. To overcome this drawback, various product purification techniques have been used in the synthesis. In addition, the use of microorganisms other than bacteria has also been attempted.
상기 유기 생성물 중 가장 대표적인 화합물 중의 하나인 젖산은 생분해성 폴리머로서의 기능이 입증되어 미생물을 이용한 생산 방법이 연구개발되고 있다. 젖산을 생산하는 미생물인 락토바실러스는 이미 많은 종류가 알려져 있으나 이러한 미생물을 배양하여 젖산을 생산하면 두 가지 광학이성질체 젖산(D-lactate, L-lactate)이 함께 생산되는 단점이 있었다. Lactic acid, which is one of the most representative compounds among the organic products, has been proved to function as a biodegradable polymer, and a production method using microorganisms has been researched and developed. Lactobacillus, a microorganism producing lactic acid, is already known in many kinds, but when lactic acid is produced by culturing these microorganisms, two optical isomers (L-lactate) are produced.
이로 인하여 최근에는 본래 젖산을 생산하지 못하는 효모의 유전자를 조작하여 젖산을 생산하는 방법이 개발되고 있다. 효모에서 젖산을 생산하기 위해서는 락테이트 탈수소 효소를 선택적으로 도입하면 D- 혹은 L-젖산을 순수하게 생산할 수 있다. 열안정성이 높은 생분해성 폴리머를 제작하기 위해서는 L-젖산과 함께 동량의 D-젖산을 필요로 하지만, L-젖산에 비하여, D-젖산 생산에 관한 연구는 상대적으로 부족한 상태이다. 일반적인 효모 균주를 젖산 생산 균주로 사용하면 젖산과 함께 에탄올이 부산물로 함께 생성되어 젖산의 생산성을 감소시키는 단점이 있다. Due to this, recently, a method of producing lactic acid by manipulating a gene of yeast which does not produce lactic acid in recent years has been developed. To produce lactic acid in yeast, selective introduction of lactate dehydrogenase can produce pure D- or L-lactic acid. In order to prepare a biodegradable polymer having high thermal stability, an equivalent amount of D-lactic acid is required together with L-lactic acid, but research on the production of D-lactic acid is relatively insufficient compared to L-lactic acid. When a general yeast strain is used as a lactic acid producing strain, ethanol is produced together with lactic acid as a by-product, thereby reducing the productivity of lactic acid.
이러한 단점을 개선하기 위하여 피루베이트 탈탄산 효소를 불활성화시켜 에탄올 경로를 차단하는 방법이 사용되고 있다. 그러나, 피루베이트 탈탄산 효소가 불활성화된 균주는 야생균주에 비하여 성장이 매우 느려지는 단점을 내포하고 있다. 따라서, 순수한 광학이성질체 젖산을 선택적으로 고농도 생산하며, 부산물로 에탄올을 생산하지 않고, 피루베이트탈탄산 효소의 불활성화에도 성장능이 유지되며 낮은 pH에서도 생리적 특성을 유지하는 효모의 개발이 시급한 상황이다.In order to alleviate this drawback, a method of blocking the ethanol pathway by inactivating pyruvate decarboxylase is used. However, strains in which pyruvate decarboxylase is inactivated have the disadvantage of slow growth compared to wild strains. Therefore, there is an urgent need to develop yeasts that selectively produce high concentrations of pure optical isomer lactic acid, do not produce ethanol as a by-product, maintain growth ability even by inactivation of pyruvatetal carbonate, and maintain physiological properties even at low pH.
이러한 종래의 균주가 가지는 문제를 개선하기 위하여 본 발명자들은, 탄소원 사용능과 고온에 대한 저항성을 비교하여 최적의 균주를 선별하였으며 피루베이트 탈탄산 효소가 불활성화된 균주를 제작하고 클루이베로마이세스 막시아누스 균주에서 높은 활성을 나타내는 D 혹은 L-락테이트 탈수소 효소 유전자를 선별하여 최적 발현 균주를 제작함으로써 야생형 균주와 유사한 수준으로 성장이 회복되고 선택적으로 D 혹은 L-젖산을 생산할 수 있는 균주를 제작하였다. 이러한 방법으로 제작된 균주를 이용하면 저가의 바이오매스인 돼지감자 분말로부터 고농도의 순수한 D 혹은 L-젖산을 선택적으로 생산할 수 있음을 확인하여 본 발명을 완성하였다.In order to improve the problems of the conventional strains, the present inventors selected the optimal strains by comparing the ability to use the carbon source and the resistance to high temperature, and produced a strain in which pyruvate decarboxylase was inactivated and a Cluiberomyces membrane By selecting the D or L-lactate dehydrogenase gene showing high activity in the cyanus strain, the optimal expression strain was prepared, and the growth was recovered to a level similar to that of the wild type strain, and a strain capable of selectively producing D or L-lactic acid was produced. It was. Using the strain produced in this way, it was confirmed that high-density pure D or L-lactic acid could be selectively produced from inexpensive biomass pork potato powder.
본 발명의 하나의 목적은 모균주인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 피루베이트 탈탄산 효소(Pyruvate Decarboxylase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주를 제공하는 것이다.One object of the present invention is to provide a Kluyveromyces Marxian mutant strain in which pyruvate decarboxylase is inactivated in the parent strain Kluyveromyces marxianus . .
본 발명의 다른 목적은 상기 균주를 배양하는 단계를 포함하는, 젖산을 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing lactic acid, comprising culturing the strain.
본 발명의 피루베이트 탈탄산 효소 활성이 불활성화된 돌연변이 균주는 젖산 생산시 에탄올을 생산하지 않으며 이 균주에 외인성 유전자를 도입하여 유기산을 생산할 수 있는 균주를 통해 효과적으로 유기산을 생산하는 방법에 관한 것이다. 본 발명의 균주는 고온내성이 강하고, 섬유소 기질 분해능이 높을 뿐 아니라, 알코올 대사가 봉쇄되어 효율적으로 젖산을 생산할 수 있으며, 도입되는 락테이트 탈수소 효소의 종류에 따라 L-젖산과 D-젖산을 선택적으로 생산해낼 수 있다. 또한, 별다른 가공없이도 돼지감자 분말을 영양원으로 활용할 수 있으며, 낮은 pH에서도 높은 젖산 생산능을 가진다. 이에 따라, 본 발명의 균주는 저가의 바이오매스인 돼지감자 분말로부터 고농도의 순수한 D 혹은 L-젖산을 선택적으로 생산할 수 있어 젖산 생산 분야에서 널리 활용될 수 있다.The mutant strain in which the pyruvate decarboxylase activity of the present invention is inactivated does not produce ethanol during lactic acid production, and relates to a method for effectively producing an organic acid through a strain capable of producing an organic acid by introducing an exogenous gene into the strain. The strain of the present invention has a high temperature resistance, high fibrin substrate resolution, and can block lactic acid metabolism to efficiently produce lactic acid, and select L-lactic acid and D-lactic acid according to the type of lactate dehydrogenase introduced. Can be produced. In addition, pig potato powder can be used as a nutrient source without any special processing, and has high lactic acid production capacity even at low pH. Accordingly, the strain of the present invention can selectively produce a high concentration of pure D or L-lactic acid from the low-cost biomass pork potato powder can be widely used in the field of lactic acid production.
도 1은 strain이 다른 클루이베로마이세스 막시아누스 균주들의 고온내성을 확인한 도면이다. 1 is a diagram confirming the high temperature resistance of strains Kluyveromyces maximians.
도 2는 URA3 cassette를 이용한 ADH1 gene disruption 과정 및 PCR을 이용하여 ADH1 gene disruption을 확인하는 도면이다. 2 is a diagram confirming the ADH1 gene disruption process using the URA3 cassette and the ADH1 gene disruption using PCR.
도 3은 URA3 cassette를 이용한 ADH2 gene disruption 과정 및 PCR을 이용하여 ADH2 gene disruption을 확인하는 도면이다. 3 is a diagram confirming the ADH2 gene disruption process using the URA3 cassette and the ADH2 gene disruption using PCR.
도 4는 URA3 cassette를 이용한 ADH3 gene disruption 과정 및 PCR을 이용하여 ADH3 gene disruption을 확인하는 도면이다. 4 is a diagram confirming the ADH3 gene disruption process using the URA3 cassette and the ADH3 gene disruption using PCR.
도 5는 URA3 cassette를 이용한 ADH4 gene disruption 과정 및 PCR을 이용하여 ADH4 gene disruption을 확인하는 도면이다. 5 is a diagram confirming the ADH4 gene disruption process using the URA3 cassette and the ADH4 gene disruption using PCR.
도 6은 URA3 cassette를 이용한 PDC1 gene disruption 과정 및 PCR을 이용하여 PDC1 gene disruption을 확인하는 도면이다. 6 is a diagram confirming the PDC1 gene disruption process using the URA3 cassette and the PDC1 gene disruption using PCR.
도 7은 에탄올 생산용 배지에서 세포성장에 따른 에탄올 생산량을 측정한 그래프이다. 7 is a graph measuring ethanol production according to cell growth in ethanol production medium.
도 8은 L-LDH 또는 D-LDH 발현을 위한 클루이베로마이세스 막시아누스 vector를 나타낸 모식도이다. Figure 8 is a schematic diagram showing the Kluyveromyces maximans vector for L-LDH or D-LDH expression.
도 9는 30℃(A)와 35℃(B)에서 L-젖산 생산량, 포도당 소모를 측정한 그래프이다.Figure 9 is a graph measuring the L-lactic acid production, glucose consumption at 30 ℃ (A) and 35 ℃ (B).
도 10은 돼지감자 분말로부터 L-젖산 생산량(A), D-젖산 생산량(B), 포도당 소모를 측정한 그래프이다.10 is a graph measuring L-lactic acid production (A), D-lactic acid production (B), and glucose consumption from pork potato powder.
도 11은 URA3 cassette를 이용한 CYB2 gene disruption 과정 및 PCR을 이용하여 CYB2 gene disruption을 확인하는 도면이다. 11 is a diagram confirming the CYB2 gene disruption process using the URA3 cassette and the CYB2 gene disruption using PCR.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 모균주인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 피루베이트 탈탄산 효소(Pyruvate Decarboxylase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주를 제공한다. 본 발명의 클루이베로마이세스 막시아누스 균주는 크렙트리 음성 균주의 일종이다.As one embodiment for achieving the above object, the present invention is a Kluyveromyces marxianus , the parent strain, Pluuvate Decarboxylase inactivated Pluuvate Decarboxylase It provides a loose mutation strain. The Kluyveromyces maxianus strain of the present invention is a kind of Krebtree negative strain.
크렙트리(Crabtree)란, 글루코오스 첨가에 의해 세포의 호흡이 억제되는 현상을 뜻하는 크렙트리 효과(Crabtree effect)와 같은 의미이다. 본 발명에서 용어, "크렙트리 음성 균주"는 상기 크렙트리 현상, 곧 글루코오스 첨가에 의해 세포의 호흡이 억제되는 현상이 일어나지 않는 형질을 가지는 균주를 뜻한다. The crabtree is the same as the crabtree effect, meaning that the respiration of cells is suppressed by the addition of glucose. In the present invention, the term "crebtree negative strain" refers to a strain having a trait which does not occur the Krebtri phenomenon, that is, the phenomenon that the respiration of the cell by the addition of glucose does not occur.
본 발명에서 모균주는 바람직하게는 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)일 수 있다. 클루이베로마이세스 막시아누스는 고온에서의 성장 능력, 빠른 성장율 및 과량의 당에 노출되었을 때 에탄올을 생산하는 경향이 적은(크렙트리 음성형) 특성을 갖는 효모 균주이다. 특히, 과량의 이눌린(Inulin) 분해효소를 분비하기 때문에 이눌린을 과량 포함하고 있는 돼지감자(Helianthus tuberosus Linne)를 영양원으로 사용할 수 있는 능력이 뛰어난 효모이다. 일반적인 효모 균주와 달리 클루이베로마이세스 막시아누스는 많은 strain이 보고되어 있으며, strain에 따라 매우 다양한 생리적 특성을 나타내는 특성이 있다. 심지어는 동일한 strain이라도 다른 연구 그룹간 상이한 결과가 보고되기도 하였다. 따라서, 본 발명에서는 요구하는 특성을 갖는 클루이베로마이세스 막시아누스의 특정 strain을 선별하는 것이 중요한 과정이다.In the present invention, the parent strain may be preferably Kluyveromyces marxianus . Kluyveromyces maxilians are yeast strains that have high growth capacity, high growth rate, and low propensity to produce ethanol when exposed to excess sugar (Creptree negative type). In particular, because it secretes an excess of Inulin degrading enzymes, it is an excellent yeast that can use Helianthus tuberosus Linne containing excessive amount of Inulin as a nutrient source. Unlike common yeast strains, Kluyveromyces maximus has been reported a lot of strains, there is a characteristic that shows a variety of physiological characteristics depending on the strain. Even the same strains have reported different results between different study groups. Therefore, in the present invention, it is an important process to select specific strains of Cluyveromyces maximians with the required characteristics.
본 발명의 모균주인 클루이베로마이세스 막시아누스는, 바람직하게는 수탁번호 KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759(대전 한국생명공학연구원 소재 유전자은행), BY25569, BY25571, 및 BY25573(Yeast Genetic Resource center ,Japan)로 이루어진 군에서 선택된 하나일 수 있으며, 더욱 바람직하게는 KCTC 7155, KCTC 17631, BY25569, BY25571, 및 BY25573로 이루어진 군에서 선택된 하나일 수 있으며, 가장 바람직하게는 BY25571 일 수 있다.The parent strain of the present invention Kluyveromyces maxilianus is preferably Accession No. KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, It may be one selected from the group consisting of KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759 (Genetic Bank of Korea Biotechnology Institute), BY25569, BY25571, and BY25573 (Yeast Genetic Resource center, Japan), more preferably It may be one selected from the group consisting of KCTC 7155, KCTC 17631, BY25569, BY25571, and BY25573, and most preferably may be BY25571.
본 발명의 일 실시예에서는, 대전 한국생명공학연구원 소재 유전자은행에서 15종의 클루이베로마이세스 막시아누스 균주를 분양받고, Yeast Genetic Resource center (Japan)로부터 3종의 클루이베로마이세스 막시아누스 균주를 분양받아 섬유소 기질 분해 능력, 고온내성 등을 조사하였다(실시예 1-1 및 1-2). 먼저, 섬유소 기질 분해 능력에 대해서는 표 1에서 볼 수 있듯이, 상기 클루이베로마이세스 막시아누스 균주를 2% Carboxymethyl cellulose(CMC)와 cellobiose(CB)가 포함된 YP(1% Yeast extract, 2% Peptone) 배지에서 키운 결과 KCTC 7155, KCTC 17724, KCTC 17631, BY25569, BY25571, 및 BY25573의 여섯 종의 균주의 생장능이 높아, 섬유소 기질 분해 능력이 높은 것을 확인하였다.In one embodiment of the present invention, 15 kinds of Cluyveromyces maxianus strains were distributed in the Gene Bank of Daejeon Korea Research Institute of Bioscience and Biotechnology, and 3 kinds of Cluiberomyces maxianus were obtained from Yeast Genetic Resource center (Japan). Strains were distributed and examined for fibrinolytic activity, high temperature resistance (Examples 1-1 and 1-2). First, as shown in Table 1, cellulose (C1) decomposing ability of cellulose containing 2% Carboxymethyl cellulose (CMC) and cellobiose (CB), 1% Yeast extract, 2% Peptone As a result of growing in medium, it was confirmed that six strains of KCTC 7155, KCTC 17724, KCTC 17631, BY25569, BY25571, and BY25573 had high growth ability and high fibrinolytic substrate degradation ability.
또한, 섬유소 기질 분해 능력이 높은 여섯 종의 균주에 대하여 고온 내성을 확인한 결과 KCTC 7155, BY25569, BY25571, BY25573 균주는 열에 대한 내성이 높은 것을 확인하였다 (도 1). 이에 따라 상기 4개의 균주는 모균주로서, 바람직한 특성을 가지고 있음을 확인하였다. 상기와 같은 실험으로 높은 섬유소 기질 분해 능력 및 고온내성을 가지는 균주를 모균주로 선별하여 이하 변이균주를 제작하였다. 구체적으로는, 높은 섬유소 기질 분해 능력과 고온내성을 가지는 4개의 균주 중에 대표적으로 BY25571 균주를 모균주로 선별하여 변이균주를 제작하였다.In addition, as a result of confirming the high temperature resistance to six strains with high fibrinolytic substrate degradation ability, it was confirmed that the KCTC 7155, BY25569, BY25571, BY25573 strains have high heat resistance (Fig. 1). Accordingly, the four strains were confirmed to have desirable characteristics as parent strains. In the experiment as described above, strains having high fibrin substrate degrading ability and high temperature resistance were selected as parent strains, and thus, the following strains were prepared. Specifically, among the four strains having high fiber substrate degradation ability and high temperature resistance, the BY25571 strain was representatively selected as a parent strain to prepare a mutant strain.
한편, 본 발명의 목적은 알코올 생산이 적고 특정 유기산의 생성이 증가된 특성을 갖는 균주를 제공하는데 있다. 따라서, 상기 천연형 균주들을 바탕으로 알코올 생산이 적고 특정 유기산의 생산이 증가되는 형질전환체를 만들기 위해 피루베이트 탈탄산 효소 활성을 제거할 수 있다.On the other hand, it is an object of the present invention to provide a strain having a characteristic of low alcohol production and increased production of a specific organic acid. Therefore, the pyruvate decarboxylase activity can be removed to make a transformant having less alcohol production and increased production of a specific organic acid based on the natural strains.
본 발명의 용어, "피루베이트 탈탄산 효소(Pyruvate Decarboxylase, PDC)"는 피루베이트에 작용하여 탄산과 아세트 알데히드를 생성하는 반응(CH3COCOOH->CH3CHO + CO2)를 촉매하는 효소이다. 알코올 생성과 관련해서는 알코올 발효의 한 단계에서 필수적인 효소이다. 따라서, 본 발명에서 상기 균주에 존재하는 피루베이트 탈탄산 효소를 불활성화시켜 발효에 의한 알코올 생성이 저해된 균주를 제공할 수 있다. 바람직하게는, 상기 균주는 당이 포함된 배지에서 배양시 에탄올의 생성이 피루베이트 탈탄산 효소가 불활성화되지 않은 균주에 비해 감소되는 것인 균주일 수 있다. 또한, 상기 피루베이트 탈탄산 효소의 불활성화는 해당 효소의 유전자에 치환, 결손, 또는 부가되어 이루어질 수 있다.As used herein, the term "pyruvate decarboxylase (PDC)" refers to an enzyme that catalyzes the reaction of pyruvate to produce carbonic acid and acetaldehyde (CH 3 COCOOH-> CH 3 CHO + CO 2 ). . When it comes to alcohol production, it is an essential enzyme in one stage of alcohol fermentation. Therefore, in the present invention, it is possible to provide a strain in which alcohol production by fermentation is inhibited by inactivating pyruvate decarboxylase present in the strain. Preferably, the strain may be a strain in which the production of ethanol is reduced in comparison with the strain in which pyruvate decarboxylase is not inactivated when cultured in a medium containing sugar. In addition, the inactivation of the pyruvate decarboxylase may be performed by substitution, deletion or addition to the gene of the enzyme.
일반적으로 균주 내 유전자의 불활성화는 여러 가지 형태로 제작할 수 있다. 예를 들어, 유전자 발현의 신호구조의 변형 또는 안티센스(antisense)-RNA 기술에 의해 유전자 발현을 감소시킬 수 있다. 예를 들어, 유전자 발현의 신호 구조는, 예를 들어 억제(repressor) 유전자, 활성화(activator) 유전자, 작동자(operator), 프로모터, 감쇠자(attenuator), 리보솜 결합 자리, 시작 코돈(codon) 그리고 종료자(terminator) 들이며, 이에 한정되지 않는다.In general, the inactivation of the gene in the strain can be produced in various forms. For example, gene expression can be reduced by alteration of the signal structure of gene expression or by antisense-RNA techniques. For example, the signal structure of gene expression can be, for example, a suppressor gene, an activator gene, an operator, a promoter, an attenuator, a ribosomal binding site, a start codon and Terminators are not limited thereto.
또한, 목적 유전자의 mRNA와 상동인 서열을 가지는 센스 가닥과 이것과 상보적인 서열을 가지는 안티센스 가닥으로 구성되는 이중가닥 RNA(dsRNA)을 도입하여 목적유전자 mRNA의 분해를 유도함으로서 목적유전자의 발현을 억제하는 메커니즘인 RNA 간섭(RNA interference:RNAi) 방법을 사용할 수 있다. 또는, 단일 세포의 게놈 내에서 다른 위치로 이동할 수 있는 DNA 서열인 트랜스포존을 매개로 한 돌연변이를 일으켜 목적 유전자의 기능을 차단하여 불활성화하는 방법을 사용할 수도 있다. 유전자 단백질의 촉매 활성의 변화 또는 감소를 유도하는 돌연변이들은 당업계에 잘 알려져 있다(Qiu와 Goodman (Journal of Biological Chemistry 272: 8611 8617(1997))).In addition, by introducing a double-stranded RNA (dsRNA) consisting of a sense strand having a sequence homologous to the mRNA of the target gene and an antisense strand having a sequence complementary thereto, the expression of the target gene is suppressed by inducing degradation of the target gene mRNA. RNA interference (RNAi) method can be used. Alternatively, a method may be employed in which a mutation through a transposon, which is a DNA sequence capable of moving to another position in the genome of a single cell, causes a function of a target gene to be blocked and inactivated. Mutations that induce changes or decreases in the catalytic activity of genetic proteins are well known in the art (Qiu and Goodman (Journal of Biological Chemistry 272: 8611 8617 (1997))).
바람직하게는, 유전자의 불활성화는 단일 또는 복합 염기서열의 변이, 단일 또는 복합 유전자의 결손, 유전자 내에 외래 유전자의 삽입, 유전자군 전체의 결손, 유전자군의 프로모터의 억제 서열 삽입, 프로모터의 돌연변이, 유전자군의 발현 억제 조절 삽입, 유전자군의 단일 또는 복합 염기서열에 대한 RNAi 도입, 트랜스포존 매개 돌연변이 또는 이러한 변이체들의 조합 중 하나의 방법을 이용하여 수행될 수 있다.Preferably, the inactivation of a gene comprises: mutation of a single or complex sequence, deletion of a single or complex gene, insertion of a foreign gene into the gene, deletion of the entire gene group, insertion of a suppression sequence of a promoter of the gene group, mutation of a promoter, Expression suppression control insertion of a gene group, RNAi introduction into a single or multiple sequences of a gene group, transposon mediated mutations, or a combination of these variants can be performed.
상기에 기술한 방법들은 본 기술 분야에 통상의 사람에게 일반적으로 이해되어지며, Sambrook et al.(Molecular Cloning : A Laboratory Manual, Third Edition, Cold Spring Harbor Press 2001)에서 기술된 바와 같이 수행될 수 있다.The methods described above are generally understood by one of ordinary skill in the art and may be performed as described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Press 2001). .
유전자의 염기 서열 중 활성 부위의 단일 또는 복합 서열을 변화하여, 유전자로부터 발현되는 단백질의 활성을 매우 낮출 수도 있고, 단일 또는 복합 유전자의 결손, 염기서열 내부에 외래 유전자인 항생제 내성 유전자나 다른 유전자를 삽입하여 완전한 단백질이 발현되지 못하게 하는 방법일 수 있다. 바람직하게는 염색체에 존재하는 유전자의 염기 서열을 모두 결손하는 방법을 사용할 수도 있다. 또는 상기 방법에 의한 변이체의 조합으로 불활성화시킬 수 있다.By changing a single or complex sequence of active sites in the gene's base sequence, the activity of the protein expressed from the gene may be very low, and a single or complex gene may be missed, or antibiotic resistance genes or other genes that are foreign genes within the base sequence. It may be a method of inserting to prevent the expression of the complete protein. Preferably, a method may be used in which all of the nucleotide sequences of genes present in the chromosome are deleted. Or in combination with the variants by the above methods.
상기 피루베이트 탈탄산 효소는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 41을 포함하는 유전자일 수 있다.The pyruvate decarboxylase can be found in GenBank, etc. of NCBI, which is a known database, but is not limited thereto, and may be a gene including SEQ ID NO: 41.
상기 피루베이트 탈탄산 효소가 불활성화된 균주는 이에 제한되지 않으나, 수탁번호 KCTC12225BP인 균주일 수 있다.The pyruvate decarboxylase inactivated strain is not limited thereto, but may be a strain having accession number KCTC12225BP.
한편, 알코올 생성에 관여하는 효소는 피루베이트 탈탄산 효소 외에도 알코올 탈수소 효소(Alcohol Dehydrogenase, ADH)가 있다. 본 발명의 "알코올 탈수소 효소"는 알코올 발효에 관여하는 효소로 알코올에서 수소를 이탈시켜 알데히드 또는 케톤을 형성하는 촉매이며, 가역적 촉매임에 따라 알코올이 생성되는 방향으로 반응을 진행시킬 수도 있는 촉매이다(CH3CH2OH + NAD+ <-> CH3CHO + NADH + H+). 기질 특이성이 폭넓어 다른 알코올에도 작용한다.Meanwhile, enzymes involved in alcohol production include alcohol dehydrogenase (ADH) in addition to pyruvate decarboxylase. The "alcohol dehydrogenase" of the present invention is an enzyme that is involved in alcohol fermentation and is a catalyst that desorbs hydrogen from alcohol to form aldehydes or ketones, and is a reversible catalyst, which is a catalyst that can advance the reaction in the direction of alcohol production. (CH 3 CH 2 OH + NAD + <-> CH 3 CHO + NADH + H + ). Its broad substrate specificity also affects other alcohols.
본 발명의 균주는 피루베이트 탈탄산 효소의 불활성화에 더해 바람직하게는, 알코올 탈수소 효소가 추가로 불활성화될 수 있다. 상기 알코올 탈수소 효소는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 37 내지 서열번호 40으로 이루어진 군에서 하나 이상을 포함하는 유전자일 수 있다.The strain of the present invention is preferably in addition to inactivation of pyruvate decarboxylase, preferably further inactivation of alcohol dehydrogenase. The alcohol dehydrogenase may be identified from GenBank, etc. of NCBI, which is a known database, but is not limited thereto.
본 발명의 한 실시예에서는 클루이베로마이세스 막시아누스 균주를 유전체 분석하여 4개의 ADH 유전자와 한 개의 PDC 유전자가 존재하고 있음을 확인하였다. 에탄올 생산을 저해하는 균주를 제작하기 위해 클루이베로마이세스 막시아누스 BY25571 균주의 알코올 탈수소 효소 유전자(ADH) 또는 피루베이트 탈탄산 효소 유전자 (PDC1)가 결실된 균주(수탁번호 KCTC12225BP)를 제작하였다 (실시예 2). In one embodiment of the present invention, genome analysis of the Kluyveromyces maximus strain confirmed that four ADH genes and one PDC gene were present. In order to prepare a strain that inhibits ethanol production, a strain (Accession Number KCTC12225BP) deleted from the alcohol dehydrogenase gene (ADH) or pyruvate decarboxylase gene (PDC1) of the Kluyveromyces maximus BY25571 strain was prepared (Accession No. KCTC12225BP). Example 2).
상기 5개 결실 변이 균주들이 에탄올을 탄소원으로 이용하는지 확인하기 위해 YP-2% 에탄올 배지에서 세포 성장을 확인하였다. YP-2% 글루코오스를 대조구로 하여 비교해 본 결과 5개 균주 모두 에탄올을 탄소원으로 잘 이용하는 것으로 확인하였다(도 7). Cell growth was confirmed in YP-2% ethanol medium to determine if the five deletion strains use ethanol as a carbon source. As a result of comparing YP-2% glucose as a control, it was confirmed that all five strains use ethanol as a carbon source well (FIG. 7).
이에 더하여, 에탄올 발효를 통하여 각 균주들의 에탄올 생산량을 비교하였다. 각 균주들을 최소영양배지에서 24시간 seed culture 후 50g/L의 글루코오스가 첨가된 에탄올 발효배지(Y.E 0.5%, pepton 0.5%, KH2PO4, Ammonia sulfate 0.2%, MgSO4·H2O 0.04%)에서 30℃, 150rpm으로 배양하였으며 세포 생장과 생산된 에탄올을 측정하였다. 그 결과 adh 변이 균주들은 천연형 균주와 비교하였을 때 큰 차이 없이 에탄올이 생성되었지만, pdc1 변이 균주는 에탄올을 전혀 생산하지 않는 것을 확인하였다(도 7).In addition, the ethanol production of each strain was compared through ethanol fermentation. 24 hours of each strain in a minimum nutrient medium seed culture and then 50g / ethanol fermentation medium (YE 0.5% glucose is added to the L, pepton 0.5%, KH 2 PO 4, Ammonia sulfate 0.2%, MgSO 4 · H 2 O 0.04% ) Were grown at 30 ° C. and 150 rpm, and cell growth and ethanol production were measured. As a result, the adh mutant strains produced ethanol without significant difference when compared with the natural strain, but the pdc1 mutant strain was confirmed that does not produce any ethanol (Fig. 7).
또한, 본 발명의 목적은 특정 유기산을 생성하는 특성을 갖는 균주를 제공하는데 있다. 이를 위해, 상기 알코올 생산 경로가 봉쇄된 크렙트리 음성 균주(클루이베로마이세스 막시아누스)에 특정 유기산 생성과 관련되는 여러 가지 외인성 유전자를 도입한 균주를 이용하여 다양한 유기산을 생산할 수 있다.It is also an object of the present invention to provide a strain having the characteristics of producing a specific organic acid. To this end, various organic acids can be produced using a strain in which a variety of exogenous genes related to specific organic acid production are introduced into a Krebtri negative strain (Cluyberomyces maximans) blocked by the alcohol production pathway.
본 발명의 용어, "외인성 유전자"는 천연형 균주에 속해 있지 않았던 핵산 서열을 일정한 목적을 위해 외부에서 도입한 경우의 해당 유전자를 뜻한다. 특히, 본 발명에서는 특정 유기산의 생성과 관련되는 유전자를 의미한다. As used herein, the term “exogenous gene” refers to a gene of interest when a nucleic acid sequence that does not belong to a native strain is introduced from the outside for a certain purpose. In particular, in the present invention, it means a gene associated with the production of a specific organic acid.
바람직하게는, 본 발명에서는 균주의 목적이 되는 특정 유기산이 젖산일 수 있다. 더욱 바람직하게는 광학이성질체인 L-젖산 혹은 D-젖산일 수 있다.Preferably, in the present invention, the specific organic acid targeted for the strain may be lactic acid. More preferably, it may be L-lactic acid or D-lactic acid which is an optical isomer.
상기 젖산을 생성하기 위해 균주에 도입되는 외인성 유전자는 바람직하게는 락테이트 탈수소 효소(Lactate Dehydrogenase, LDH) 활성을 갖는 유전자일 수 있다. The exogenous gene introduced into the strain to produce the lactic acid may preferably be a gene having lactate dehydrogenase (LDH) activity.
본 발명의 용어, "락테이트 탈수소 효소(Lactate Dehydrogenase)"는 일반적으로 NAD+를 이용하여 L-젖산 혹은 D-젖산에서 수소를 이탈시켜 피루브산으로 만드는 효소로, 이와는 역반응인 해당의 최종단계를 촉매할 때에는 NADH를 이용하여 피루브산을 환원하여 L-젖산 혹은 D-젖산을 생성하는 효소이다. 즉, L-락테이트 탈수소 효소 또는 D-락테이트 탈수소 효소일 수 있다. 상기, 락테이트 탈수소 효소 활성을 갖는 유전자는 천연형 락테이트 탈수소 효소뿐 아니라, 이와 최소한 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 의 상동성을 가지는 동일한 활성을 갖는 효소의 유전자를 포함한다. 천연형 락테이트 탈수소 효소에 돌연변이를 유도한 변이 유전자 또한, 락테이트 탈수소 효소 활성을 갖는 이상, 서열에 무관하게 본 발명의 락테이트 탈수소 효소에 포함된다. As used herein, the term "Lactate Dehydrogenase" is an enzyme that generally decomposes hydrogen from L-lactic acid or D-lactic acid using NAD + to pyruvic acid, and catalyzes the corresponding final step of reverse reaction. It is an enzyme that produces L-lactic acid or D-lactic acid by reducing pyruvic acid using NADH. That is, it may be L-lactate dehydrogenase or D-lactate dehydrogenase. The gene having lactate dehydrogenase activity may include at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of natural lactate dehydrogenase. Genes of enzymes having the same activity with homology are included. Mutation genes which induce mutations in the natural lactate dehydrogenase are also included in the lactate dehydrogenase of the present invention irrespective of the sequence, as long as they have lactate dehydrogenase activity.
상기 락테이트 탈수소 효소는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 42 내지 50로 이루어진 군에서 선택된 염기서열을 포함하는 유전자일 수 있다. 특히, L-젖산을 생산하는 락테이트 탈수소 효소는 서열번호 42 내지 46로 이루어진 군에서 선택된 하나의 염기서열을 포함하는 유전자일 수 있으며, D-젖산을 생산하는 락테이트 탈수소 효소는 서열번호 47 내지 50로 이루어진 군에서 선택된 하나의 염기서열을 포함하는 유전자일 수 있다. 본 발명의 균주에서 락테이트 탈수소 효소는 클루이베로마이세스 막시아누스 유래의 TEF1a 프로모터를 이용하여 발현할 수 있다.The lactate dehydrogenase may be identified in GenBank, etc. of NCBI, which is a known database, but is not limited thereto. The lactate dehydrogenase may be a gene including a nucleotide sequence selected from the group consisting of SEQ ID NOs: 42 to 50. In particular, the lactate dehydrogenase producing L-lactic acid may be a gene including one nucleotide sequence selected from the group consisting of SEQ ID NOs: 42 to 46, and the lactate dehydrogenase producing D-lactic acid is SEQ ID NOs: 47 to It may be a gene comprising one nucleotide sequence selected from the group consisting of 50. The lactate dehydrogenase in the strains of the present invention can be expressed using the TEF1a promoter derived from Cluyveromyces macxanus.
상기 알코올 생산 경로가 봉쇄된 크렙트리 음성 균주에 락테이트 탈수소 효소를 도입한 균주는 이에 제한되지 않으나, 수탁번호 KCTC12226BP인 균주일 수 있다.The strain in which the lactate dehydrogenase is introduced into the Krebtri negative strain of which the alcohol production pathway is blocked is not limited thereto, but may be a strain having accession number KCTC12226BP.
본 발명에서 용어, "돌연변이"는, 유전자의 유전적 기능을 변화시키는 모든 행위를 의미하며, 구체적으로는 유전자의 돌연변이는 생물의 여러 가지 변이 중 유전자의 양적 또는 질적인 변화에 의해 생긴 변이를 말한다. 즉, DNA 염기 중 하나 이상이 다른 염기로 치환된 분자 수준의 변화, 즉, DNA의 하나 또는 다수 염기의 치환, 결실, 부가, 역위, 중복 또는 염기 중 1~2개의 삽입 또는 결실에 따른 염기배열의 이동(frame shift)과 같은 분자 수준의 변화를 통해 그 DNA가 갖는 유전정보에 따라 제조되는 효소나 펩타이드가 만들어지지 않거나 활성이 소실되는 변화가 나타나거나 원래의 활성이 증대되거나 변화하는 것을 의미하는데, 본 발명의 유전자를 손상 또는 변화시키는 돌연변이 방법은 당업계에서 통상적으로 사용되는 돌연변이 방법을 제한 없이 사용할 수 있다.As used herein, the term “mutation” refers to any action that changes the genetic function of a gene. Specifically, a mutation of a gene refers to a mutation caused by a quantitative or qualitative change of a gene among various variations of an organism. . That is, a change in the molecular level at which one or more of the DNA bases is substituted with another base, ie, a base sequence resulting from substitution, deletion, addition, inversion, duplication, or insertion or deletion of one or two bases in the DNA. Molecular changes, such as frame shift, mean that the enzymes or peptides produced according to the genetic information of the DNA are not made or the activity is lost or the original activity is increased or changed. Mutation methods for damaging or altering the genes of the present invention can be used without limitation mutation methods commonly used in the art.
본 발명의 한 실시예에서는 L-락테이트 또는 D-락테이트 탈수소효소 (LDH) 유전자를 확보하기 위하여 Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactococcus lactis로부터 genomic DNA를 추출하였다. 추출된 시료를 주형으로 PCR을 수행하여 증폭된 유전자를 T-easy vector에 클로닝하여 각 유전자를 확보하였다. L-LDH 유전자와 D-LDH 유전자를 클루이베로마이세스 막시아누스에서 발현하기 위해 plasmid pTEFp-GAPt에 삽입하여 8개의 벡터를 구축하였다 (도 8). 구축된 벡터를 제한효소 NheⅠ으로 처리하여 선형 DNA 상태로 만들고 URA3 auxotroph균주인 BY25571 균주와 PDC1 mutant 균주인 BY25571Δpdc1에 형질전환하여 형질전환체로부터 단일 균주(수탁번호 KCTC12226BP)를 선별하였으며 배양조선에 따른 L-젖산과 D-젖산 생산량을 비교하여 최고농도의 L-젖산과 D-젖산을 생산하는 균주를 선별하였다(실시예 5).In one embodiment of the present invention , genomic DNA was extracted from Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactococcus lactis in order to secure L-lactate or D-lactate dehydrogenase (LDH) gene. PCR was performed on the extracted samples, and the amplified genes were cloned into the T-easy vector to secure each gene. Eight vectors were constructed by inserting the L-LDH gene and the D-LDH gene into plasmid pTEFp-GAPt for expression in Kluyveromyces maximians. The constructed vector was treated with restriction enzyme NheI to make a linear DNA state, transformed to BY25571 strain URA3 auxotroph strain and BY25571Δpdc1 strain PDC1 mutant strain, and a single strain (Accession No. KCTC12226BP) was selected from the transformants. Strains producing L-lactic acid and D-lactic acid at the highest concentration were selected by comparing lactic acid and D-lactic acid production (Example 5).
본 발명의 균주는 L-락테이트 사이토크롬-c 산화환원효소(L-lactate cytochrome-c oxidreductase, CYB2)가 추가로 불활성화된 변이균주일 수 있다. 즉, 피부베이트 탈탄산 효소가 불활성화되고 이에 추가로 L-락테이트 사이토크롬-c 산화환원효소가 불활성화되는 것일 수 있다. 본 발명에서 불활성화는 상기 설명한 바와 같다.The strain of the present invention may be a mutant strain further inactivated L-lactate cytochrome-c oxidoreductase (CYB2). That is, the skin bait decarboxylase may be inactivated and in addition, the L-lactate cytochrome-c oxidoreductase may be inactivated. Inactivation in the present invention is as described above.
본 발명에서 "L-락테이트 사이토크롬-c 산화환원효소(L-lactate cytochrome-c oxidreductase, CYB2)"는 L-락테이트의 산화를 촉진하는 효소이다. 특히 본 발명의 L-락테이트 사이토크롬-c 산화환원효소는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 57의 염기서열을 포함하는 것일 수 있다.In the present invention, "L-lactate cytochrome-c oxidoreductase (CYB2)" is an enzyme that promotes oxidation of L-lactate. In particular, the L-lactate cytochrome-c oxidoreductase can be identified in GenBank of NCBI, which is a well-known database, but is not limited thereto, and may include the nucleotide sequence of SEQ ID NO: 57.
본 발명의 균주는 원형질막 ATPase(plasma membrane ATPase, PMA1) 활성이 강화된 변이균주일 수 있다. The strain of the present invention may be a mutant strain having enhanced plasma membrane ATPase (PMA1) activity.
본 발명에서 "원형질막 ATPase(plasma membrane ATPase, PMA1)"는 수소이온 펌프의 하나로 양자 기울기를 유지하는 것을 통하여 각종 능동 수송의 원동력을 주는 효소이다. 특히 본 발명의 원형질막 ATPase는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 58의 염기서열로 표시되는 것일 수 있다.In the present invention, "plasma membrane ATPase (PMA1)" is one of hydrogen ion pumps, which is an enzyme that gives various driving force for active transport through maintaining the quantum slope. In particular, the plasma membrane ATPase of the present invention can be identified from GenBank, etc. of NCBI, which is a known database, but is not limited thereto, and may be represented by the nucleotide sequence of SEQ ID NO: 58.
본 발명에서 단백질의 활성을 강화하는 방법은 당해 분야에서 잘 알려진 다양한 방법을 적용할 수 있다. 예를 들어, 상기 방법은 해당 단백질을 코딩하는 염기서열과 자체 혹은 외부로부터 도입된 발현조절부위를 포함하는 폴리뉴클레오타이드를 추가로 염색체에 삽입하는 방법, 벡터 시스템에 도입하는 방법에 의하여 카피수를 증가시키는 방법, 유전자의 발현을 조절하는 발현조절부위를 다른 조절서열로 치환, 발현조절부위의 염기서열 전체 혹은 일부 돌연변이가 유발된 변형, 유전자 자체의 변이도입에 의한 효소활성 강화 등에 의한 방법 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.Method for enhancing the activity of the protein in the present invention can be applied to a variety of methods well known in the art. For example, the method may increase the number of copies by additionally inserting a polynucleotide including a nucleotide sequence encoding the protein and an expression control region introduced by itself or externally into a chromosome or by introducing into a vector system. Method of controlling the expression of the gene, including the substitution of the regulatory regulatory region with other regulatory sequences, modification of the entire or part of the nucleotide sequence of the expression regulatory region, and the method by strengthening the enzyme activity by introducing the mutation itself, etc. It may be, but is not limited thereto.
이에 본 발명의 균주는 수탁번호 KCTC12435BP의 BY25571Δpdc1,cyb2-PMA1//L-LpLDH 균주일 수 있다.Therefore, the strain of the present invention may be a BY25571Δpdc1, cyb2-PMA1 // L-LpLDH strain of accession number KCTC12435BP.
*본 발명의 일실시예에서는 낮은 pH에서 젖산 생산성을 증가시키기 위해, 상기 실시예 2에서 제조한 균주(KCTC12225BP)에서 KmCYB2(L-lactate cytochrome-c oxidoreductase) 유전자를 결실시키고 KmPMA1(plasma membrane ATPase) 유전자를 과발현시키는 변이를 도입하였다. 이에 L-락테이트 탈수소 효소(L-LpLDH)를 도입하였다. 이렇게 제조한 균주를 BY25571Δpdc1,cyb2-PMA1//L-LpLDH로 명명하고, 한국생명공학연구원의 생물자원센터(KCTC)에 2013년 6월 26일 기탁하여, 수탁번호 KCTC12435BP를 수여받았다. 균주들을 배양하여 HPLC를 통하여 L-젖산 생산량을 확인한 결과 25571Δpdc1,cyb2-PMA1/L-LpLDH 균주의 경우 pH를 조절하는 조건과 pH를 조절하지 않는 조건 모두 25571Δpdc1/L-LpLDH보다 젖산 생산량이 20% 정도 증가한 것을 확인하였다(표 6).* In one embodiment of the present invention, in order to increase lactic acid productivity at low pH, the strain (KCTC12225BP) prepared in Example 2 deleted KmCYB2 (L-lactate cytochrome-c oxidoreductase) gene and KmPMA1 (plasma membrane ATPase) Mutations that overexpress genes were introduced. L-lactate dehydrogenase (L-LpLDH) was introduced. The strain thus prepared was named BY25571Δpdc1, cyb2-PMA1 // L-LpLDH, and was deposited on June 26, 2013 at the Korea Institute of Bioscience and Biotechnology (KCTC), and received accession number KCTC12435BP. As a result of culturing the strains and confirming the L-lactic acid production through HPLC, the production of 25571Δpdc1, cyb2-PMA1 / L-LpLDH strain was 20% higher than that of 25571Δpdc1 / L-LpLDH. It was confirmed that the degree increased (Table 6).
또 하나의 양태로서, 본 발명은 상기 균주를 배양하는 단계를 포함하는, 젖산을 생산하는 방법을 제공한다.As another aspect, the present invention provides a method for producing lactic acid, comprising culturing the strain.
본 발명의 젖산을 생산하는 방법은, 상기의 균주 중에서 에탄올 생성 경로가 봉쇄되고, 성장능이 유지되면서 젖산의 생산능이 높게 유지되는 형질전환 균주를 배양하는 단계를 포함할 수 있다. The method for producing lactic acid of the present invention may include culturing a transformed strain in which the ethanol production pathway is blocked in the above strains, and the growth ability of lactic acid is maintained while the growth ability is maintained.
본 발명에서 상기 균주의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 적절한 배양 방법으로는 유가식 배양(fed-batch culture), 회분식 배양(batch culture) 및 연속식 배양(cintinuous culture) 등이 가능하며, 바람직하게는 회분식 배양이지만, 이에 제한되는 것은 아니다.Cultivation of the strain in the present invention can be carried out according to well-known methods, conditions such as culture temperature, incubation time and pH of the medium can be appropriately adjusted. Suitable culture methods include fed-batch culture, batch culture, and continuous culture (cintinuous culture) and the like, preferably batch culture, but is not limited thereto.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다. The culture medium used should suitably meet the requirements of the particular strain. Culture media for various microorganisms are known (eg, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like.
본 발명에서 상기 균주는 저가로 대량공급이 가능한 바이오매스인 돼지감자 분말을 영양원으로 이용하여 배양될 수 있다. 본 발명의 용어, "돼지감자 분말 배지"는 일체의 전처리를 하지 않고 돼지감자 분말만을 포함하는 영양 배지이다. 완전 배지이기 때문에 선별을 위한 배지로는 사용될 수 없다. In the present invention, the strain may be cultured using a nutrient source of biomass pork potato powder that can be supplied at low cost in large quantities. The term "pig potato powder medium" of the present invention is a nutrition medium containing only pork potato powder without any pretreatment. Since it is a complete medium, it cannot be used as a medium for selection.
상기 배양 배지를 이루는 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있다. 인 공급원으로서 인산이수소칼륨 또는, 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있다. 또한, 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 최종적으로, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양물에 한번에 모두 가하거나, 배양중 적절하게 공급할 수 있다.The materials constituting the culture medium can be used individually or as a mixture. Nitrogen sources can be nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitrate Ammonium) can be used, and these materials can also be used individually or as a mixture. Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium containing salts can be used as the phosphorus source. In addition, the culture medium may contain metal salts necessary for growth (eg, magnesium sulfate or iron sulfate), and finally, essential growth-promoting substances such as amino acids and vitamins may be used in addition to the substances mentioned above. Suitable precursors may further be added to the culture medium. The feed material may be added to the culture all at once or may be appropriately supplied during the culture.
바람직하게는 상기 생산되는 젖산은 광학이성질체인 L-젖산과 D-젖산일 수 있다. 이는 도입하는 LDH의 종류에 따라 달라질 수 있다.Preferably, the lactic acid produced may be L-lactic acid and D-lactic acid which are optical isomers. This may vary depending on the type of LDH introduced.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention and the scope of the present invention is not limited thereto.
실시예 1. 클루이베로마이세스 막시아누스 균주 선별Example 1 Selection of Kluyveromyces maxianus strains
일반적인 효모 균주와 달리 클루이베로마이세스 막시아누스(Kluyveromyces marxianus, KM)는 상당히 많은 strain이 보고 되어있으며 그에 따라 매우 다양한 생리적 특성을 나타내며 심지어 동일한 strain이라도 다른 그룹에서는 상이한 결과가 보고되고 있다. 따라서 목적하는 용도에 적합한 strain을 선별하는 것이 클루이베로마이세스 막시아누스를 산업 균주로 활용하기 위해서는 매우 효율적인 방법이다.Unlike common yeast strains, Kluyveromyces marxianus (KM) has been reported with a large number of strains and accordingly has a wide variety of physiological characteristics, even the same strain has been reported different results in different groups. Therefore, screening strains suitable for the intended use is a very efficient way to utilize Kluyveromyces maximus as an industrial strain.
대전 한국생명공학연구원 소재 유전자은행에서 15종의 클루이베로마이세스 막시아누스 균주를 분양 받았고, Yeast Genetic Resource center (Japan)로부터 3종의 클루이베로마이세스 막시아누스 균주를 분양 받아 섬유소 기질 분해 능력, 고온내성 등을 조사하였다. Fibrin substrate decomposing ability was obtained from 15 genes of Kluyveromyces maxianus strains from Gene Bank of Daejeon Korea Biotechnology Research Institute and 3 types of Kluyveromyces maxianus strains from Yeast Genetic Resource Center (Japan). And high temperature resistance were examined.
실시예 1-1: 섬유소기질 분해 능력 비교Example 1-1: Comparison of Fibrin Substrate Degradability
KM 균주는 원래 섬유소 분해기능이 없지만 일부 균주에서 약한 섬유소 분해능을 갖는 것으로 알려져 있다. 따라서 섬유소 분해 효능이 강한 균주를 선별하기 위해 18종의 클루이베로마이세스 막시아누스 균주를 2% Carboxymethyl cellulose(CMC)와 cellobiose(CB)가 포함된 YP(1% Yeast extract, 2% Peptone) 배지에서 30℃에서 48시간 동안 배양하여 셀룰라아제(cellulase) 활성에 의한 세포의 생장능을 분석하였다. 상기 섬유소 분해능력을 요하는 배지에서 대부분 균주의 생장이 약하게 있음을 확인하였고 특히 KCTC 7155 균주와 BY25569, BY25571, BY25573균주의 생장능이 비교적 높은 것을 확인하였다(표 1). KM strains are not originally known to have fibrinolytic function but are known to have weak fibrinolytic capacity in some strains. Therefore, in order to select strains with strong fibrinolytic effect, 18 strains of Kluyveromyces maximanus strains were treated with YP (1% Yeast extract, 2% Peptone) medium containing 2% Carboxymethyl cellulose (CMC) and cellobiose (CB). Incubated for 48 hours at 30 ℃ to analyze the cell growth capacity of the cellulase (cellulase) activity. It was confirmed that the growth of most strains in the medium requiring the fibrinolytic ability was weak, and in particular, the growth ability of strains KCTC 7155 and BY25569, BY25571, BY25573 was relatively high (Table 1).
표 1 클루이베로마이세스 막시아누스 균주들의 섬유소 기질 활용 세포성장능 비교
strain 세포의 성장정도
YP+CB YP+CMC
KCTC 7001 ++ +
KCTC 7118 - -
KCTC 7149 ++ +
KCTC 7150 ++ +
KCTC 7155 +++ +++
KCTC 7524 ++ +
KCTC 17212 ++ +
KCTC 17544 ++ +
KCTC 17555 ++ ++
KCTC 17631 +++ ++
KCTC 17694 ++ +
KCTC 17724 ++ ++
KCTC 17725 ++ +
KCTC 17759 ++ +
BY25569 +++ +++
BY25571 +++ +++
BY25573 +++ +++
Table 1 Comparison of Cell Growth Capacity Using Fibrin Substrate of Kluyveromyces Maktians Strains
strain Cell growth
YP + CB YP + CMC
KCTC 7001 ++ +
KCTC 7118 - -
KCTC 7149 ++ +
KCTC 7150 ++ +
KCTC 7155 +++ +++
KCTC 7524 ++ +
KCTC 17212 ++ +
KCTC 17544 ++ +
KCTC 17555 ++ ++
KCTC 17631 +++ ++
KCTC 17694 ++ +
KCTC 17724 ++ ++
KCTC 17725 ++ +
KCTC 17759 ++ +
BY25569 +++ +++
BY25571 +++ +++
BY25573 +++ +++
실시예 1-2: 고온내성 비교Example 1-2: High Temperature Resistance Comparison
바이오에탄올 발효균주로서 섬유소 기질을 사용할 때 섬유소 분해효소의 최적온도가 40-50℃이므로 이러한 온도에서 내성을 갖는 효모의 개발이 필요하다. 섬유소 기질에서 성장성이 좋은 6종의 균주를 선별하여 고온에 대한 내성을 비교하였다. 세포 배양액을 YPD(1% Yeast extract, 2% Peptone 및 2% 글루코오스) 배지에 dotting 한 후 42℃, 45℃, 50℃에서 24시간동안 배양한 결과, KTCT 17724 균주는 열에 대한 내성이 낮았고 KTCT 7155, BY25569, BY25571, BY25573 균주는 열에 대한 내성이 높은 것을 확인하였다 (도 1). 이에 따라 상기 4개의 균주는 모균주로서, 바람직한 특성을 가지고 있음을 확인하였다. 섬유소기질 분해 능력과 열에 대한 내성이 높은 4개의 균주 중에 대표적으로 BY25571 균주를 모균주로 선별하여 변이균주를 제작하였다. Since the optimum temperature of fibrinolytic enzyme is 40-50 ° C. when the fiber substrate is used as a bioethanol fermentation strain, it is necessary to develop a yeast resistant at such temperature. Six strains with good growth potential were selected from the fibrin substrate to compare their resistance to high temperatures. Cell cultures were dotting in YPD (1% Yeast extract, 2% Peptone and 2% glucose) medium and incubated at 42 ° C, 45 ° C, and 50 ° C for 24 hours.The KTCT 17724 strain had low heat resistance and KTCT 7155 , BY25569, BY25571, BY25573 strains were confirmed to have high heat resistance (Fig. 1). Accordingly, the four strains were confirmed to have desirable characteristics as parent strains. Among the four strains with high fibrinolytic ability and heat resistance, BY25571 strain was selected as a parent strain to prepare a mutant strain.
실시예 2. ADH1, ADH2, ADH3, ADH4, PDC1 유전자 결실 균주 제작Example 2. Preparation of ADH1, ADH2, ADH3, ADH4, PDC1 gene deletion strain
유전체 분석 결과 클루이베로마이세스 막시아누스 균주는 사카로마이세스 세레비지에와는 달리 4개의 알코올 탈수소 효소 유전자(ADH)와 한 개의 피루베이트 탈탄산 효소 유전자 (PDC1)가 존재하고 있음을 확인하였다. 에탄올 생산을 저해하는 균주를 제작하기 위해 클루이베로마이세스 막시아누스 BY25571 균주의 알코올 탈수소 효소 유전자 또는 피루베이트 탈탄산 효소 유전자가 결실된 균주를 제작하였다. As a result of genome analysis, unlike Saccharomyces cerevisiae, the Kluyveromyces maxilianus strain has four alcohol dehydrogenase genes (ADH) and one pyruvate decarboxylase gene (PDC1). . In order to prepare a strain that inhibits ethanol production, a strain in which the alcohol dehydrogenase gene or the pyruvate decarboxylase gene of the strain Cluiberomyces maximus BY25571 was deleted was prepared.
실시예 2-1: ADH1 유전자 결실 균주 제작 Example 2-1 Preparation of ADH1 Gene Deleting Strains
genomic DNA를 template로 하여 ADH1 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ368(서열번호 1)과 HJ369(서열번호 2), HJ370(서열번호 3)과 HJ371(서열번호 4) primer를 이용하여 증폭 후 primer Tc-f(서열번호 6)와 U200r(서열번호 7), U200f(서열번호 8)와 Tc-r(서열번호 9)을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, PCR fragment는 BY25571 균주에 형질전환하여 ADH1 locus에 도입된 균주를 uracil이 없는 선택배지(0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% 글루코오스, 2% agar)에서 선별하였다. 형질전환 여부를 primer HJ368과 HJ372(서열번호 5), U200f와 HJ372를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR band를 확인하였다. ADH1 유전자가 남아있는지 확인하기 위해 HJ394(서열번호 10)와 HJ371 primer를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 ADH1 유전자(서열번호 37)가 knock-out되었음을 확인하였다(도 2).  Using genomic DNA as a template, DNA fragments of 300 bp in the upstream and downstream of the ADH1 ORF were used using HJ368 (SEQ ID NO: 1), HJ369 (SEQ ID NO: 2), HJ370 (SEQ ID NO: 3), and HJ371 (SEQ ID NO: 4) primers. After amplification, amplified URA3 DNA fragments and overlap extension PCR were performed using primers Tc-f (SEQ ID NO: 6), U200r (SEQ ID NO: 7), U200f (SEQ ID NO: 8), and Tc-r (SEQ ID NO: 9). . After mixing each of the gene fragments, the mixture was used as a template to link the two fragments.The PCR fragment was transformed into BY25571 strain, and the strain introduced into ADH1 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ368 and HJ372 (SEQ ID NO: 5), U200f and HJ372, and PCR bands were identified at expected positions. In order to confirm whether the remaining ADH1 gene was confirmed by PCR using HJ394 (SEQ ID NO: 10) and HJ371 primer, it was confirmed that the ADH1 gene (SEQ ID NO: 37) was knocked out by the URA3 cassette (Fig. 2).
실시예 2-2: ADH2 유전자 결실 균주 제작 Example 2-2 Preparation of ADH2 Gene Deleting Strains
genomic DNA를 template로 하여 ADH2 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ458(서열번호 11)과 HJ459(서열번호 12), HJ460(서열번호 13)과 HJ461(서열번호 14) primer를 이용하여 증폭 후 primer Tc-f와 U200r, U200f와 Tc-r을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, PCR fragment는 25571균주에 형질전환하여 ADH2 locus에 도입된 균주를 uracil이 없는 선택배지(0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% 글루코오스, 2% agar)에서 선별하였다. 형질전환 여부를 primer HJ458과 HJ462(서열번호 15), U200f와 HJ462를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR band를 확인하였다. ADH2 유전자가 남아있는지 확인하기 위해 HJ463(서열번호 16)와 HJ461 primer를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 ADH2 유전자(서열번호 38)가 knock-out되었음을 확인하였다(도 3). Using genomic DNA as a template, DNA fragments of 300 bp in the upstream and downstream of the ADH2 ORF were prepared using HJ458 (SEQ ID NO: 11), HJ459 (SEQ ID NO: 12), HJ460 (SEQ ID NO: 13), and HJ461 (SEQ ID NO: 14) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed. After mixing each of the gene fragments, this mixture was used as a template to link the two fragments.The PCR fragment was transformed into 25571 strain, and the strain introduced into ADH2 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ458 and HJ462 (SEQ ID NO: 15), U200f and HJ462, and PCR bands were identified at expected locations. In order to confirm whether the remaining ADH2 gene was confirmed by PCR using HJ463 (SEQ ID NO: 16) and HJ461 primer, it was confirmed that the ADH2 gene (SEQ ID NO: 38) was knocked out by the URA3 cassette (Fig. 3).
실시예 2-3: ADH3 유전자 결실 균주 제작 Example 2-3 Preparation of ADH3 Gene Deleting Strains
genomic DNA를 template로 하여 ADH3 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ412(서열번호 17)과 HJ413(서열번호 18), HJ414(서열번호 19)과 HJ415(서열번호 20) primer를 이용하여 증폭 후 primer Tc-f와 U200r, U200f와 Tc-r을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, PCR fragment는 25571균주에 형질전환하여 ADH3 locus에 도입된 균주를 uracil이 없는 선택배지(0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% 글루코오스, 2% agar)에서 선별하였다. 형질전환 여부를 primer HJ412과 HJ416(서열번호 21), U200f와 HJ416를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR band를 확인하였다. ADH3 유전자가 남아있는지 확인하기 위해 HJ434(서열번호 22)와 HJ415 primer를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 ADH3 유전자(서열번호 39)가 knock-out되었음을 확인하였다(도 4). Using genomic DNA as a template, DNA fragments of 300 bp in the upstream and downstream of the ADH3 ORF were used using HJ412 (SEQ ID NO: 17), HJ413 (SEQ ID NO: 18), HJ414 (SEQ ID NO: 19), and HJ415 (SEQ ID NO: 20) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed. After mixing the respective gene fragments, the mixture was used as a template to link the two fragments.The PCR fragment was transformed into 25571 strain, and the strain introduced into ADH3 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ412 and HJ416 (SEQ ID NO: 21), U200f and HJ416, and PCR bands were identified at expected positions. In order to confirm that the remaining ADH3 gene was confirmed by PCR using HJ434 (SEQ ID NO: 22) and HJ415 primer, it was confirmed that the ADH3 gene (SEQ ID NO: 39) was knocked out by the URA3 cassette (Fig. 4).
실시예 2-4: ADH4 유전자 결실 균주 제작 Example 2-4 Preparation of ADH4 Gene Deleting Strains
genomic DNA를 template로 하여 ADH4 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ482(서열번호 23)과 HJ483(서열번호 24), HJ484(서열번호 25)과 HJ485(서열번호 26) primer를 이용하여 증폭 후 primer Tc-f와 U200r, U200f와 Tc-r을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, PCR fragment는 25571균주에 형질전환하여 ADH4 locus에 도입된 균주를 uracil이 없는 선택배지(0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% 글루코오스, 2% agar)에서 선별하였다. 형질전환 여부를 primer HJ482과 HJ486(서열번호 27), U200f와 HJ486를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR band를 확인하였다. ADH4 유전자가 남아있는지 확인하기 위해 HJ487(서열번호 28)와 HJ485 primer를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 ADH4 유전자(서열번호 40)가 knock-out되었음을 확인하였다(도 5). Using genomic DNA as a template, DNA fragments of 300 bp in the upstream and downstream of the ADH4 ORF were prepared using HJ482 (SEQ ID NO: 23), HJ483 (SEQ ID NO: 24), HJ484 (SEQ ID NO: 25), and HJ485 (SEQ ID NO: 26) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed. After mixing the respective gene fragments, the mixture was used as a template to connect the two fragments.The PCR fragment was transformed into 25571 strain and the strain introduced into ADH4 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ482 and HJ486 (SEQ ID NO: 27), U200f and HJ486, and PCR bands were identified at expected positions. In order to confirm that the remaining ADH4 gene was confirmed by PCR using HJ487 (SEQ ID NO: 28) and HJ485 primer, it was confirmed that the ADH4 gene (SEQ ID NO: 40) was knocked out by the URA3 cassette (Fig. 5).
실시예 2-5: PDC1 유전자 결실 균주 제작 Example 2-5 Preparation of PDC1 Gene Deletion Strain
genomic DNA를 template로 하여 PDC1 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ464(서열번호 29)과 HJ465(서열번호 30), HJ466(서열번호 31)과 HJ467(서열번호 32) primer를 이용하여 증폭 후 primer Tc-f와 U200r, U200f와 Tc-r을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, PCR fragment는 25571균주에 형질전환하여 PDC1 locus에 도입된 균주를 uracil이 없는 선택배지(0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% 글루코오스, 2% agar)에서 선별하였다. 형질전환 여부를 primer HJ464과 HJ486(서열번호 33), U200f와 HJ468를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR band를 확인하였다. PDC1 유전자가 남아있는지 확인하기 위해 HJ469(서열번호 34)와 HJ467 primer를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 PDC1 유전자(서열번호 41)가 knock-out되었음을 확인하였다(도 6).  Using genomic DNA as a template, DNA fragments of 300 bp in the upstream and downstream of the PDC1 ORF were prepared using HJ464 (SEQ ID NO: 29), HJ465 (SEQ ID NO: 30), HJ466 (SEQ ID NO: 31), and HJ467 (SEQ ID NO: 32) primers. After amplification, URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r, and overlap extension PCR were performed. After mixing each of the gene fragments, this mixture was used as a template to link the two fragments.The PCR fragment was transformed into 25571 strain, and the strain introduced into PDC1 locus was selected as a medium without uracil (0.67% yeast nitrogen base without amino acids, 0.077% Ura-DO supplement, 2% glucose, 2% agar). Transformation was confirmed by PCR using primers HJ464 and HJ486 (SEQ ID NO: 33), U200f and HJ468, and PCR bands were identified at expected locations. In order to confirm whether the PDC1 gene remains, it was confirmed by PCR using HJ469 (SEQ ID NO: 34) and HJ467 primer, and it was confirmed that the PDC1 gene (SEQ ID NO: 41) was knocked out by the URA3 cassette (FIG. 6).
상기 클루이베로마이세스 막시아누스 BY25571 균주의 피루베이트 탈탄산 효소 유전자를 결실시켜 제조한 균주를 한국생명공학연구원의 생물자원센터(KCTC)에 2012년 6월 20일 기탁하여, 수탁번호 KCTC12225BP를 수여받았다.The strain prepared by the deletion of the pyruvate decarboxylase gene of the strain Kluyveromyces maxianus BY25571 was deposited on June 20, 2012 to KCTC of the Korea Research Institute of Bioscience and Biotechnology, and received the accession number KCTC12225BP. received.
실시예 3. 균주들의 에탄올 발효Example 3. Ethanol Fermentation of Strains
에탄올 발효를 통하여 각 결손 변이 균주들의 에탄올 생산량을 비교하였다. 각 균주들을 최소영양배지에서 24시간 seed culture 후 50g/L의 글루코오스가 첨가된 에탄올발효배지(Y.E 0.5%, pepton 0.5%, KH2PO4, Ammonia sulfate 0.2%, MgSO4·H2O 0.04%)에서 30℃, 150rpm으로 배양하였으며 세포 성장과 생산된 에탄올을 측정하였다. 그 결과 adh 변이 균주들은 wild type 균주와 비교하였을 때 큰 차이 없이 에탄올이 생성되었고, pdc1 변이 균주는 예상한 대로, 세포의 성장은 야생형 균주에 비하여 50% 정도 감소하였으며 에탄올은 전혀 생산하지 못하였다(도 7). 피루베이트가 에탄올로 전환되기 위해서는 피루베이트 탈탄산 효소에 의하여 아세트 알데히드가 생성된 후에 다시 알코올 탈수소효소에 의하여 에탄올로 전환되어야 한다. 클루이베로마이세스 막시아누스 균주에서는 4 가지의 ADH 유전자가 존재하기 때문에 한개 내지 두개 ADH 유전자 결실만으로는 피루베이트가 에탄올로 전환되는 과정을 완벽하게 봉쇄할 수 없으며 반면에 피루베이트 탈탄산효소 유전자는 1개만 존재하기 때문에 pdc1 유전자의 결실만으로도 에탄올 생산 경로가 완벽하게 봉쇄됨을 확인할 수 있었다. pdc1 결실 균주가 야생형 균주에 비하여 성장이 감소하는 이유는 해당과정에서 형성된 NAD+/NADH 불균형을 해소하기 위해서는 에탄올 발효과정이 필요하지만 pdc1 결실 균주에서는 에탄올 발효경로가 봉쇄되었기 때문에 NAD+/NADH 불균형이 발생하였고 이러한 불균형은 균주 성장의 장애요인으로 작용하기 때문에 성장이 감소하는 것이다. 이러한 현상은 LDH 유전자를 발현하면 젖산 발효가 에탄올 발효를 대신하여 NAD+/NADH 불균형을 해소할 수 있기 때문에 pdc1 결실 균주에서 발생한 성장저하문제는 해결될 수 있을 것으로 기대하여 하기 실험을 진행하였다.The ethanol production of each of the mutant strains was compared through ethanol fermentation. 24 hours of each strain in a minimum nutrient medium seed culture and then 50g / ethanol fermentation medium (YE 0.5% glucose is added to the L, pepton 0.5%, KH 2 PO 4, Ammonia sulfate 0.2%, MgSO 4 · H 2 O 0.04% ) Was incubated at 30 ° C, 150rpm and cell growth and ethanol production were measured. As a result, adh mutant strains produced ethanol without significant difference compared to wild type strains, and as expected, pdc1 mutant strains reduced cell growth by 50% compared to wild type strains and produced no ethanol at all. 7). In order to convert pyruvate to ethanol, acetaldehyde is produced by pyruvate decarboxylase and then to ethanol by alcohol dehydrogenase. Since four ADH genes are present in the Kluyveromyces maxianus strain, the deletion of one or two ADH genes does not completely block the conversion of pyruvate to ethanol, whereas the pyruvate decarboxylase gene is 1 Since only dogs existed, the deletion of the pdc1 gene alone was a complete blockade of the ethanol production pathway. The reason for the pdc1 deletion strain growth is reduced compared to the wild-type strain in order to eliminate the NAD + / NADH imbalance is formed in the process requires the ethanol fermentation process, but in the pdc1 deletion strain because the ethanol fermentation route is blocked the NAD + / NADH imbalance This imbalance is caused by a decrease in growth because it acts as a barrier to strain growth. This phenomenon is expected to be able to solve the growth degradation problem caused by the pdc1 deletion strain because lactic acid fermentation can solve the NAD + / NADH imbalance in place of ethanol fermentation if the LDH gene expression was carried out.
실시예 4. 미생물 유래의 L-락테이트 또는 D-락테이트 탈탄산 효소 (LDH) 발현 Example 4 Expression of L-Lactate or D-Lactate Decarboxylase (LDH) from Microorganisms
L-락테이트 탈수소효소와 D-락테이트 탈수소효소 (LDH) 유전자를 확보하기 위하여 젖산 탈수소효소 효소능이 우수한 것으로 알려진 Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus acidophilus, Lactococcus lactis로부터 genomic DNA를 추출하였다. 추출된 시료를 주형으로 PCR을 수행하여 얻은 L-LDH와 D-LDH를 T-easy vector에 클로닝하여 각 유전자를 확보하였다. In order to secure L-lactate dehydrogenase and D-lactate dehydrogenase (LDH) genes, genomic DNA was extracted from Lactobacillus rhamnosus , Lactobacillus plantarum , Lactobacillus acidophilus , and Lactococcus lactis which are known to be excellent in lactic acid dehydrogenase. L-LDH and D-LDH obtained by PCR with the extracted sample was cloned into a T-easy vector to secure each gene.
L-LDH 유전자와 D-LDH 유전자를 클루이베로마이세스 막시아누스에서 발현하기 위해 plasmid pTEF1에 삽입하여 8개의 벡터를 구축하였다(도 8). pTEF1 vector는 LDH 유전자를 강력하고 구성적으로 발현하기 위하여 클루이베로마이세스 막시아누스 유래의 translation elongation factor 1a(TEF1a) 유전자의 프로모터를 포함하고 있으며, LDH 유전자의 전사를 종결하기 위하여 glyceraldehyde 3-phosphate dehydrogenase(GAP) 유전자의 전사종결 부위를 포함하고 있다. 구축된 벡터를 제한효소 NheⅠ으로 처리하여 선형 DNA 상태로 만들고 URA3 auxotroph균주인 BY25571 균주와 PDC1 변이 균주인 BY25571Δpdc1에 형질전환하여 형질전환체로부터 단일 균주를 선별하였으며, PCR을 통하여 도입한 벡터가 염색체로 도입되었음을 확인하였다.Eight vectors were constructed by inserting the L-LDH gene and the D-LDH gene into plasmid pTEF1 for expression in Kluyveromyces maximians. The pTEF1 vector contains a promoter of translation elongation factor 1a (TEF1a), a gene derived from Kluyveromyces maximans, for the powerful and constitutive expression of the LDH gene, and glyceraldehyde 3-phosphate to terminate the transcription of the LDH gene. It contains the transcription termination site of the dehydrogenase (GAP) gene. The constructed vector was treated with restriction enzyme NheI to make a linear DNA state, transformed to BY25571 strain URA3 auxotroph strain and BY25571Δpdc1 strain PDC1 mutant strain, and single strains were selected from the transformants. It was confirmed that it was introduced.
이 중 클루이베로마이세스 막시아누스 BY25571 균주의 피루베이트 탈탄산 효소 유전자를 결실시켜 제조한 수탁번호 KCTC12225BP 균주에 L-LpLDH를 도입한 균주를 한국생명공학연구원의 생물자원센터(KCTC)에 2012년 6월 20일 기탁하여, 수탁번호 KCTC12226BP를 수여받았다.Among them, the strain which introduced L-LpLDH into the accession number KCTC12225BP strain prepared by deleting the pyruvate decarboxylase gene of the strain Kluyveromyces maxianus BY25571 was sent to the KCTC of the Korea Institute of Bioscience and Biotechnology (KCTC) in 2012. Deposited June 20, accession number KCTC12226BP was awarded.
실시예 5. 반응온도에 따른 젖산 생산 Example 5 Lactic Acid Production According to Reaction Temperature
젖산 생산을 위한 최적 반응온도를 확인하기 위해 30℃, 35℃에서 Flask 배양하였다. 각 균주들을 YPD 배지에서 진탕배양하여 세포를 회수한 후 증류수로 2회 세척한 다음 칼슘 카보네이트를 함유하는 YPD10 액체배지(1% 효모추출물, 2% 펩톤, 10% 포도당)에 접종하여 72시간동안 배양하였다. HPLC를 통하여 젖산 생산량을 확인한 결과 30℃보다는 35℃에서 젖산 생산량과 수율이 높은 것을 확인하였다. 30℃에서는 25571pdc1/L-LpLDH, 25571pdc1/D-LrLDH 균주에서 젖산 생산량이 가장 높았고 35℃에서는 25571pdc1/L-LpLDH, 25571pdc1/D-LpLDH 균주에서 젖산 생산량이 높은 것으로 확인하였다. 상기와 같은 결과를 보아, 온도에 따라서 유전자별 생산량이 다른 것을 확인할 수 있다(표 2). 최종적으로 L-젖산 생산은 25571pdc1/L-LpLDH균주를 이용하고, D-젖산 생산은 25571pdc1/D-LpLDH 균주를 이용하여 생산하였다.Flask culture was carried out at 30 ℃, 35 ℃ to determine the optimum reaction temperature for lactic acid production. Each strain was shaken in YPD medium to recover cells, washed twice with distilled water, and then inoculated in YPD10 liquid medium (1% yeast extract, 2% peptone, 10% glucose) containing calcium carbonate and incubated for 72 hours. It was. As a result of confirming the lactic acid production through HPLC, it was confirmed that the lactic acid production and yield is higher at 35 ℃ than 30 ℃. At 30 ° C, lactic acid production was highest in 25571pdc1 / L-LpLDH and 25571pdc1 / D-LrLDH strains, and at 35 ° C, lactic acid production was high in 25571pdc1 / L-LpLDH and 25571pdc1 / D-LpLDH strains. From the above results, it can be confirmed that the production amount of each gene is different depending on the temperature (Table 2). Finally, L-lactic acid was produced using 25571pdc1 / L-LpLDH strain and D-lactic acid was produced using 25571pdc1 / D-LpLDH strain.
표 2 30℃와 35℃에서 젖산 생산량 비교분석
균주 30℃ 발효 35℃ 발효
젖산 생산량 (g/L) 생산성(%) 순도 젖산 생산량 (g/L) 생산성(%) 순도
25571pdc1/L-LaLDH 25 82 99 42 73 99
25571pdc1/L-LpLDH 31 79 99 46 79 99
25571pdc1/L-LrLDH 25 73 99 46 78 99
25571pdc1/L-LlLDH 18 53 99 22 61 99
25571pdc1/D-LaLDH 0.5 2 99 10 58 99
25571pdc1/D-LpLDH 39 63 99 40 78 99
25571pdc1/D-LrLDH 49 76 99 31 70 99
25571pdc1/D-LlLDH 30 45 99 30 45 99
TABLE 2 Comparative Analysis of Lactic Acid Production at 30 ℃ and 35
Strain
30 ℃ fermentation 35 ℃ fermentation
Lactic Acid Production (g / L) productivity(%) water Lactic Acid Production (g / L) productivity(%) water
25571pdc1 / L-LaLDH 25 82 99 42 73 99
25571pdc1 / L-LpLDH 31 79 99 46 79 99
25571pdc1 / L-LrLDH 25 73 99 46 78 99
25571pdc1 / L-LlLDH 18 53 99 22 61 99
25571pdc1 / D-LaLDH 0.5 2 99 10 58 99
25571pdc1 / D-LpLDH 39 63 99 40 78 99
25571pdc1 / D-LrLDH 49 76 99 31 70 99
25571pdc1 / D-LlLDH 30 45 99 30 45 99
실시예 6. Glucose로부터 고농도의 젖산 생산Example 6 High Lactate Production from Glucose
온도에 따른 젖산 생산효과를 발효를 통하여 확인하고 젖산의 생산성을 증가시키기 위하여 25571pdc1/L-LpLDH 균주로 유가식 배양을 수행하였다. 본배양에 들어가기 전에 100ml의 YPD 액체배지에 배양하여 활성화시킨 후 본 배양액에 접종하여 30℃에서 24시간 동안 배양하였다. 고농도 발효액에 40%의 glucose(final 10%)를 feeding하여 30℃와 35℃에서 젖산 전환 반응을 수행하였다. HPLC를 통하여 젖산 생산량을 확인한 결과 30℃에서는 140g의 glucose로부터 97.3 g/l의 젖산이 생성되어 79.2%의 전환율을 보였고, 35℃에서는 105.5 g/l의 젖산이 생성되어 88.1%의 전환율을 보였다(도 9). 따라서 플라스크 배양에서 확인한 바와 같이 35℃에서 배양하면 약 10% 정도 생산량이 증가함을 확인하였다.In order to confirm the effect of lactic acid production according to temperature through fermentation and increase the productivity of lactic acid, fed-batch culture was performed with 25571pdc1 / L-LpLDH strain. Before entering the main culture, the culture was activated by incubating in 100 ml of YPD liquid medium, and then inoculated in the main culture solution and incubated at 30 ° C. for 24 hours. 40% glucose (final 10%) was fed to the high concentration fermentation broth to perform lactic acid conversion at 30 ° C and 35 ° C. As a result of confirming lactic acid production through HPLC, 97.3 g / l of lactic acid was produced from 140 g of glucose at 30 ° C, which showed 79.2% conversion, and 105.5 g / l of lactic acid was produced at 35 ° C, indicating 88.1% of conversion. 9). Therefore, as confirmed in the flask culture, it was confirmed that the production increased by about 10% when incubated at 35 ° C.
실시예 7. 돼지감자 전분으로부터 젖산 생산Example 7 Lactic Acid Production from Pork Potato Starch
돼지감자 전분을 autoclave (121℃에서 20분)하여 얻은 상등액을 HPLC로 성분 분석 결과 60%의 inulin이 함유되어 있는 것을 확인하였다. Inulin 농도에 따른 젖산 생산량을 비교하기 위해 돼지감자전분을 농도별로 첨가하여 flask 배양하였다. 각 균주들을 YPD 배지에서 진탕배양하여 세포를 회수한 후 증류수로 2회 세척한 다음 3% calcium carbonate가 첨가된 돼지감자 전분에 접종하여 84시간 동안 배양하면서 시간별로 젖산 전환율을 비교하였다. The supernatant obtained by autoclave (20 minutes at 121 ° C) of pork potato starch was analyzed by HPLC and found to contain 60% of inulin. In order to compare lactic acid production according to the concentration of Inulin, porcine potato starch was added to each concentration and cultured in flask. Cells were harvested by shaking culture in YPD medium, washed twice with distilled water, inoculated in porcine potato starch added with 3% calcium carbonate, and cultured for 84 hours, and the lactic acid conversion rate was compared.
상기 결과를 정리하면 하기 표 3과 같다.The results are summarized in Table 3 below.
표 3 이눌린 함량에 따른 젖산 생산량 분석
이눌린 함량(%) 당 소모량(g/L) 젖산 생산량(g/L) 수율(%) 젖산 광학순도(%)
2 20.0 19.7 98.5 99
5 50.0 47.5 95.0 99
10 50.1 42.2 86.2 99
14 44.3 23.0 51.9 99
TABLE 3 Analysis of Lactic Acid Production According to Inulin Content
Inulin Content (%) Sugar Consumption (g / L) Lactic Acid Production (g / L) yield(%) Lactate Optical Purity (%)
2 20.0 19.7 98.5 99
5 50.0 47.5 95.0 99
10 50.1 42.2 86.2 99
14 44.3 23.0 51.9 99
상기 표 3에서 확인할 수 있듯이 Inulin 농도가 5% 이상일 경우 오히려 젖산 생산량이 감소하였으며, inulin 농도가 낮을수록 젖산 전환율이 좋은 것으로 확인하였다. 초기 균주 접종량이 많지 않았지만 실험한 네 가지 조건에서 사용된 Inulin이 모두다 fructose로 분해되었음을 확인하였다. 따라서 발효를 통하여 배양조건을 최적화하면 돼지감자로부터 고농도의 젖산생산이 가능할 수 있음을 확인하였다.As can be seen in Table 3 above, when the concentration of Inulin was 5% or more, the amount of lactic acid was decreased, and the lower the level of inulin, the better the lactic acid conversion. Although the initial strain inoculation was not high, it was confirmed that all of the Inulin used under the four conditions tested were decomposed into fructose. Therefore, it was confirmed that optimizing the culture conditions through fermentation can produce high concentrations of lactic acid from pig potatoes.
실시예 8. Nitrogen source에 따른 젖산 생산량 분석Example 8. Analysis of Lactic Acid Production According to Nitrogen Source
일반적으로 돼지감자로부터 젖산을 생산하기 위해서 대부분의 미생물들은 부족한 질소원을 공급해 주어야하기 때문에 필요한 질소원 공급량을 확인하기 위하여 돼지감자 전분에 yeast extract를 농도별로 첨가하여 젖산 생산량을 분석하였다. 각 균주들을 YPD 배지에서 진탕배양하여 세포를 회수한 후 증류수로 2회 세척한 다음 플라스크를 이용하여 3% calcium carbonate가 첨가된 돼지감자 전분에 접종하여 72시간 동안 배양하여 젖산 전환율을 비교하였다(표 4). In general, in order to produce lactic acid from swine potatoes, most microorganisms must supply insufficient nitrogen source, and thus, lactic acid production was analyzed by adding yeast extract to each concentration of pork starch. Cells were harvested by shaking culture in YPD medium, washed twice with distilled water, and then inoculated in porcine potato starch added with 3% calcium carbonate using a flask and incubated for 72 hours to compare lactic acid conversion. 4).
표 4 Yeast extract 첨가량에 따른 젖산 생산량 분석
Yeast extract첨가량(%) 당 소모량(g/L) 젖산 생산량(g/L) 수율(%) 젖산 광학순도%)
0 56.8 53.3 93.8 99
0.1 58.3 50.4 86.3 99
0.2 59.0 50.3 85.3 99
0.3 59.0 50.3 85.2 99
0.4 58.1 49.2 84.7 99
0.5 59.4 48.9 82.3 99
1 57.6 48.2 83.7 99
Table 4 Analysis of Lactic Acid Production by Yeast Extract Addition
Yeast extract added amount (%) Sugar Consumption (g / L) Lactic Acid Production (g / L) yield(%) Lactic acid optical purity)
0 56.8 53.3 93.8 99
0.1 58.3 50.4 86.3 99
0.2 59.0 50.3 85.3 99
0.3 59.0 50.3 85.2 99
0.4 58.1 49.2 84.7 99
0.5 59.4 48.9 82.3 99
One 57.6 48.2 83.7 99
상기 표 4에서 확인할 수 있듯이, Yeast extract 첨가량이 증가하여도 젖산 생산량은 증가하지 않는 것으로 보아 돼지감자 전분 외에 다른 nitrogen source는 필요하지 않은 것으로 확인하였다.As can be seen in Table 4, the lactic acid production does not increase even if the addition amount of yeast extract is increased, so it was confirmed that no nitrogen source other than pork potato starch was needed.
실시예 9. 돼지감자 전분으로부터 고농도의 젖산 생산Example 9 High Lactate Production from Pork Potato Starch
25571pdc1/L-LpLDH 균주와 25571pdc1/D-LpLDH를 이용하여 돼지감자로부터 고농도의 젖산을 생산하기 위해 회분식 배양을 수행하였다. 100ml의 YPD 액체배지에 배양하여 활성화시킨 후 본 배양액에 접종하여 30℃에서 24시간 동안 배양하여 세포를 회수한 후 증류수로 2회 세척한 다음 돼지감자 전분에 접종하여 66시간 동안 배양하면서 시간별로 젖산 전환율을 비교하였다. HPLC를 통하여 젖산 생산량을 확인한 결과, L-젖산은 130.1 g/l 생성되어 98.9%의 전환율을 보였고, D-젖산은 122.3 g/l 생산되어 95.0%의 전환율을 보였다(도 10). Batch culture was performed to produce high concentrations of lactic acid from pig potatoes using 25571pdc1 / L-LpLDH strain and 25571pdc1 / D-LpLDH. After activating by culturing in 100ml YPD liquid medium and inoculating the culture medium and incubated at 30 ℃ for 24 hours to recover the cells, washed twice with distilled water and then inoculated in pork potato starch and incubated for 66 hours while lactic acid Conversion rates were compared. As a result of confirming the amount of lactic acid produced by HPLC, L-lactic acid produced 130.1 g / l showed a conversion of 98.9%, D-lactic acid produced 122.3 g / l showed a conversion of 95.0% (Fig. 10).
돼지감자를 이용하여 젖산을 생산하기위하여 진행된 최근의 연구결과와 본 발명의 결과를 비교하여 표 5에 정리하였다. Table 5 compares the results of the present invention with the results of recent studies conducted to produce lactic acid using pork potatoes.
표 5 돼지감자를 영양원으로 한 젖산 생산 방법 비교
영양원 D/L type 사용균주 발효방법 광학순도 생산성(g/L/hr) 최종농도(g/L) 효율(g/g) 참고문헌
돼지감자분말 분해물 + corn steep powder L B.coagulans fed-batch 99 2.5 134 96 Wang, L. et al.(2013)Bioresource technology, 130, 174-180.
돼지감자분말 분해물 + yeast extract L Immobilized L. lactis fed-batch 2.85 142 92 Shi, Z. et al.(2012) Enzyme and microbial technology, 51, 263-268.
돼지감자분말 고온추출물 + yeast extract L L. paracasei batch 93.2 0.25 92.5 98 Choi, H.Y. et al.(2012) Bioresource technology, 114, 745-747.
돼지감자분말 + sodium citrate L L.casei fed-batch 4.7 141.5 93.6 Ge, X.Y. et al.(2010) Journal of microbiology and biotechnology, 20, 101-109.
돼지감자분말 + soybean flour + sucrose L A.niger + Lactobacillus fed-batch 3.6 120.5 94.5 Ge, X.Y. et al.(2009) Bioresource technology, 100, 1872-1874
돼지감자분말 L K.marxianus batch 99 2 130 98 본 발명
D K.marxianus batch 99 2 122 95
Table 5 Comparison of Lactic Acid Production Methods Using Pork Potato as a Nutrient Source
Nutrition D / L type Use strain Fermentation method Optical purity Productivity (g / L / hr) Final concentration (g / L) Efficiency (g / g) references
Pork potato powder digest + corn steep powder L B.coagulans fed-batch 99 2.5 134 96 Wang, L. et al. (2013) Bioresource technology , 130, 174-180.
Pork Potato Powder Degradation + yeast extract L Immobilized L. lactis fed-batch 2.85 142 92 Shi, Z. et al. (2012) Enzyme and microbial technology , 51, 263-268.
Pork potato powder high temperature extract + yeast extract L L. paracasei batch 93.2 0.25 92.5 98 Choi, HY et al. (2012) Bioresource technology , 114, 745-747.
Pork Potato Powder + Sodium Citrate L L.casei fed-batch 4.7 141.5 93.6 Ge, XY et al. (2010) Journal of microbiology and biotechnology , 20, 101-109.
Pork Potato Powder + soybean flour + sucrose L A.niger + Lactobacillus fed-batch 3.6 120.5 94.5 Ge, XY et al. (2009) Bioresource technology , 100, 1872-1874
Pork Potato Powder L K.marxianus batch 99 2 130 98 The present invention
D K.marxianus batch 99 2 122 95
상기 표 5에서 확인할 수 있듯이, 아직까지 D-젖산을 본 발명과 유사한 농도로 생산하는 경우는 보고되지 않았으며 L-젖산의 경우에도 아무런 처리도 하지 않은 돼지감자 분말만을 영양원으로 이용하여 본 발명에서 제시한 농도로 L-젖산을 생산한 경우는 보고되지 않았다. 본 발명의 클루이베로마이세스 막시아누스 균주를 이용하면 아무런 전처리도 하지 않은 돼지감자 분말만을 영양원으로 사용하여 젖산을 생산할 수 있기 때문에 젖산 생산공정에서 많은 비중을 차지하는 배지 비용을 절감할 수 있으며 고순도의 광학이성질체를 선택적으로 생산할 수 있다.As can be seen in Table 5, the case of producing D-lactic acid at a concentration similar to the present invention has not been reported so far, and in the present invention using only pork potato powder that has not been treated in the case of L-lactic acid as a nutrient source No production of L-lactic acid at the indicated concentrations has been reported. By using the Cluiberomyces Maktianus strain of the present invention, lactic acid can be produced using only the pre-treated pork potato powder as a nutrient source, thereby reducing the cost of the medium, which takes up a large proportion in the lactic acid production process, and of high purity. Optical isomers can be produced selectively.
실시예 10. 젖산 생산성 증가를 위한 균주 제작 및 젖산 생산능 측정Example 10 Strain Preparation and Lactic Acid Production Capacity Measurement for Increasing Lactic Acid Productivity
젖산을 생산하는 과정에서 균주의 생장환경은 점차 낮은 pH로 변화되기 마련이다. 본 발명자들은 이러한 낮은 pH에서 젖산 생산성을 증가시키기 위해, 상기 실시예 2에서 제조한 균주(KCTC12225BP)에서 KmCYB2(L-lactate cytochrome-c oxidoreductase) 유전자를 결실시키고 KmPMA1(plasma membrane ATPase) 유전자를 과발현시키는 변이를 도입하였다.In the process of producing lactic acid, the growth environment of the strain is gradually changed to low pH. In order to increase lactic acid productivity at such low pH, the present inventors deleted the KmCYB2 (L-lactate cytochrome-c oxidoreductase) gene from the strain prepared in Example 2 (KCTC12225BP) and overexpressed the KmPMA1 (plasma membrane ATPase) gene. Mutations were introduced.
먼저, KmCYB2 유전자를 불활성하기 위하여 상기 실시예 2에서 설명한 ADH 유전자 결실방법과 동일한 방법을 사용하였다. 구체적으로, BY25571 genomic DNA를 template로 하여 KmCYB2 ORF의 upstream과 downstream에서 각 300 bp의 DNA 절편을 HJ628(서열번호 51)과 HJ629(서열번호 52), HJ630(서열번호 53)과 HJ631(서열번호 54) 프라이머를 이용하여 증폭 후 프라이머 Tc-f와 U200r, U200f와 Tc-r을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, 상기 overlap extension PCR 산물은 BY25571Δpdc1 균주(KCTC12225BP)에 형질전환시켰다. 도입한 PCR 단편이 CYB2 locus에 도입된 균주를 우라실(uracil)이 없는 선택배지에서 선별하였다. 형질전환 여부를 프라이머 HJ628과 HJ632(서열번호 55), U200f와 HJ632를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR 밴드를 확인하였다. CYB2 유전자가 남아있는지 확인하기 위해 HJ633(서열번호 56)와 HJ631 프라이머를 이용하여 PCR을 통해 확인한 결과 URA3 cassette에 의해 CYB2 유전자(서열번호 57)가 결실되었음을 확인하였다(도 11). URA3 cassette에 존재하는 URA3 유전자를 제거하기 위해 YPD 배지에서 4~6시간 배양 후 5-FOA 배지에서 선별하였다. PCR을 통해 URA3 유전자 pop-out 여부를 확인한 결과 URA3 유전자가 제거된 균주 BY25571Δpdc1,cyb2를 얻을 수 있었다.First, the same method as the deletion of the ADH gene described in Example 2 was used to inactivate the KmCYB2 gene. Specifically, DNA fragments of 300 bp in the upstream and downstream of the KmCYB2 ORF using the BY25571 genomic DNA as a template were identified by HJ628 (SEQ ID NO: 51), HJ629 (SEQ ID NO: 52), HJ630 (SEQ ID NO: 53), and HJ631 (SEQ ID NO: 54). After amplification using primers, overlap extension PCR with URA3 DNA fragments amplified using primers Tc-f and U200r, U200f and Tc-r was performed. After mixing each gene fragment, this mixture was used as a template to connect the two fragments, and the overlap extension PCR product was transformed into BY25571Δpdc1 strain (KCTC12225BP). Strains in which the introduced PCR fragments were introduced into the CYB2 locus were selected in a selection medium without uracil. Transformation was confirmed by PCR using primers HJ628 and HJ632 (SEQ ID NO: 55), U200f and HJ632, and PCR bands were identified at expected positions. In order to confirm whether the CYB2 gene remains, it was confirmed by PCR using the HJ633 (SEQ ID NO: 56) and the HJ631 primer, and it was confirmed that the CYB2 gene (SEQ ID NO: 57) was deleted by the URA3 cassette (FIG. 11). In order to remove the URA3 gene present in the URA3 cassette, 4-6 hours of incubation in YPD medium was selected in 5-FOA medium. As a result of PCR, the URA3 gene pop-out was confirmed. As a result, strain BY25571Δpdc1, cyb2 from which the URA3 gene was removed was obtained.
이후, PMA1 유전자(서열번호 58)를 과발현하는 균주를 얻기 위해 BY25571 genomic DNA로부터 유전자를 확보하여 pTEF1 vector의 URA3 유전자를 LEU2 유전자로 교체한 벡터에 클로닝하여 발현벡터를 제작하였다. 제작된 벡터는 제한효소 PmlⅠ으로 선형화하여 상기에서 제조한 PDC1, CYB2 변이 균주인 BY25571Δpdc1,cyb2에 형질전환한 후 형질전환체로부터 단일 균주를 선별하였다. 여기서 얻어진 형질전환체에 L-LpLDH 유전자를 도입하기 위해 실시예 4에서 사용된 pTEF1-L-LpLDH 를 NheⅠ으로 처리한 후 형질전환하여 단일 균주를 선별하였다. Subsequently, in order to obtain a strain overexpressing the PMA1 gene (SEQ ID NO: 58), a gene was obtained from BY25571 genomic DNA, and the expression vector was prepared by cloning the URA3 gene of the pTEF1 vector with the LEU2 gene. The produced vector was linearized with restriction enzyme PmlI, transformed into the PDC1, CYB2 mutant strain BY25571Δpdc1, cyb2 prepared above, and a single strain was selected from the transformants. PTEF1-L-LpLDH used in Example 4 to introduce the L-LpLDH gene into the transformant obtained was treated with NheI and transformed to select a single strain.
상기에서 제조한 균주를 BY25571Δpdc1,cyb2-PMA1//L-LpLDH로 명명하고, 한국생명공학연구원의 생물자원센터(KCTC)에 2013년 6월 26일 기탁하여, 수탁번호 KCTC12435BP를 수여받았다.The strain prepared above was named BY25571Δpdc1, cyb2-PMA1 // L-LpLDH, and was deposited on June 26, 2013 to the Bioresource Center (KCTC) of the Korea Research Institute of Bioscience and Biotechnology, and received accession number KCTC12435BP.
이후, 상기 제조한 형질전환체의 젖산 생산능을 확인하기 위하여, YPD 배지에서 진탕배양하여 세포를 회수한 후 증류수로 2회 세척한 다음 YPD10 액체배지 또는 칼슘 카보네이트를 함유하는 YPD10 액체배지에 접종하여 72시간 동안 배양하였다. HPLC를 통하여 L-젖산 생산량을 확인한 결과 25571Δpdc1,cyb2-PMA1/L-LpLDH 균주의 경우 pH를 조절하는 조건과 pH를 조절하지 않는 조건 모두 25571Δpdc1/L-LpLDH보다 젖산 생산량이 20% 정도 증가한 것을 확인하였다(표 6). 이와 같은 결과는 KmCYB2 유전자를 불활성화시키고 KmPMA1 유전자를 과발현함으로써 L-젖산의 산화 환원반응을 막고 세포 밖으로의 이동을 증가시켰기 때문으로 사료된다.Then, in order to confirm the lactic acid production capacity of the prepared transformant, cells were recovered by shaking culture in YPD medium, washed twice with distilled water, and then inoculated in YPD10 liquid medium or YPD10 liquid medium containing calcium carbonate. Incubated for 72 hours. As a result of confirming the production of L-lactic acid through HPLC, the production of 25571Δpdc1, cyb2-PMA1 / L-LpLDH strain showed a 20% increase in lactic acid production than 25571Δpdc1 / L-LpLDH in both the conditions of pH control and the condition of no pH control. (Table 6). These results may be due to the inactivation of the KmCYB2 gene and overexpression of the KmPMA1 gene, which prevented the redox reaction of L-lactic acid and increased migration out of cells.
표 6 pH 관련 변이 균주의 젖산 생산능 분석
구분 균주 당 소모량(g/L) 젖산 생산량 수율(%) 젖산의 광학 순도(%)
pH미조절 25571Δpdc1/L-LpLDH 16.0 13.3 83.0 99
25571Δpdc1,cyb2-PMA1/L-LpLDH 19.5 15.6 79.6 99
pH조절 25571Δpdc1/L-LpLDH 51.3 40.9 79.6 99
25571Δpdc1,cyb2-PMA1/L-LpLDH 61.9 48.6 78.4 99
Table 6 Analysis of Lactic Acid Production Capacity of pH Related Mutant Strains
division Strain Sugar Consumption (g / L) Lactic Acid Production yield(%) Optical purity of lactic acid (%)
pH unregulated 25571Δpdc1 / L-LpLDH 16.0 13.3 83.0 99
25571Δpdc1, cyb2-PMA1 / L-LpLDH 19.5 15.6 79.6 99
pH control 25571Δpdc1 / L-LpLDH 51.3 40.9 79.6 99
25571Δpdc1, cyb2-PMA1 / L-LpLDH 61.9 48.6 78.4 99
상기 실험 결과들을 종합하면, 본 발명에서 피루베이트 탈탄산효소를 불활성화시킨 크렙트리 음성균주(클루이베로마이세스 막시아누스)에서 젖산 생성이 증가됨을 확인하고, 이에 알코올 탈수소 효소가 추가로 불활성화시키거나 락테이트 탈수소 효소를 도입시켜 젖산을 고농도로 생산할 수 있는 균주를 제작하였음을 확인하였다. 이에 더하여, 본 발명의 균주는 도입하는 락테이트 탈수소 효소를 D 또는 L-락테이트 탈수소 효소로 선택적으로 도입하여, 생산되는 젖산도 선택적으로 생산할 수 있으며, 돼지감자 분말을 영양원으로 사용할 수 있고, 특히 아무런 전처리 없이 돼지감자 분말을 그대로 사용할 수 있음을 확인하였다.Summarizing the above experimental results, it was confirmed that the lactic acid production was increased in the Krebtri negative strain (Cluyberomyces maximans) in which pyruvate decarboxylase was inactivated in the present invention, and the alcohol dehydrogenase was further inactivated. Or by introducing lactate dehydrogenase was confirmed to produce a strain capable of producing a high concentration of lactic acid. In addition, the strain of the present invention can selectively introduce the lactate dehydrogenase to be introduced as D or L-lactate dehydrogenase to selectively produce the lactic acid produced, and can use porcine potato powder as a nutrient source, in particular It was confirmed that the pork potato powder can be used as it is without any pretreatment.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그 리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범 위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the embodiments described above are to be understood in all respects as illustrative and not restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the appended claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.
Figure PCTKR2013005661-appb-I000001
Figure PCTKR2013005661-appb-I000001
Figure PCTKR2013005661-appb-I000002
Figure PCTKR2013005661-appb-I000002
Figure PCTKR2013005661-appb-I000003
Figure PCTKR2013005661-appb-I000003

Claims (19)

  1. 모균주인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 피루베이트 탈탄산 효소(Pyruvate Decarboxylase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주로서, 상기 모균주는 수탁번호 KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759, BY25569, BY25571, 및 BY25573로 이루어진 군에서 선택된 것인, 변이균주.In the parent strain Kluyveromyces marxianus , the pyruvate decarboxylase is inactivated, and the parent strain is Accession No. KCTC 7001, Group consisting of KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759, BY25569, BY25571, and BY25573 It is a variant strain.
  2. 제1항에 있어서,The method of claim 1,
    상기 모균주는 BY25571인 것인, 변이균주.The parent strain is BY25571, mutant strain.
  3. 제1항에 있어서,The method of claim 1,
    상기 변이균주는 당이 포함된 배지에서 배양시 에탄올의 생성이 피루베이트 탈탄산 효소가 불활성화되지 않은 균주에 비해 감소되는 것인, 변이균주.The mutant strain is that the production of ethanol when cultured in a medium containing sugar is reduced compared to the strain in which pyruvate decarboxylase is not inactivated.
  4. 제1항에 있어서,The method of claim 1,
    상기 불활성화는 피루베이트 탈탄산 효소 유전자가 결손된 것인, 변이균주.The inactivation is that the pyruvate decarboxylase gene is missing, mutant strain.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 변이균주는 수탁번호 KCTC12225BP인, 변이균주.The variant strain is Accession No. KCTC12225BP, variant strain.
  6. 제1항에 있어서,The method of claim 1,
    알코올 탈수소 효소(Alcohol Dehydrogenase)가 추가로 불활성화된, 변이균주.Mutant strain further inactivated alcohol dehydrogenase.
  7. 제1항에 있어서,The method of claim 1,
    락테이트 탈수소 효소(Lactate Dehydrogenase) 활성이 도입된, 변이균주.A mutant strain in which Lactate Dehydrogenase activity is introduced.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 락테이트 탈수소 효소 활성을 갖는 유전자는 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 프란타룸(Lactobacillus plantarum), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 또는 락토코커스 락티스(Lactococcus lactis)로부터 유래한 것인, 변이균주.The gene having lactate dehydrogenase activity is derived from Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus acidophilus, or Lactococcus lactis. It is one, strain strain.
  9. 제8항에 있어서,The method of claim 8,
    상기 락테이트 탈수소 효소 활성을 갖는 유전자는 서열번호 42 내지 50으로 이루어진 군에서 선택된 염기서열인, 변이균주.The gene having lactate dehydrogenase activity is a nucleotide sequence selected from the group consisting of SEQ ID NOs: 42 to 50, variant strain.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 락테이트 탈수소 효소는 클루이베로마이세스 막시아누스 유래의 TEF1a 프로모터를 이용하여 발현하는 것인, 변이균주.The lactate dehydrogenase is a variant strain that is expressed using a TEF1a promoter derived from Cluyveromyces maximans.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 변이균주는 수탁번호 KCTC12226BP인, 변이균주.The variant strain is Accession No. KCTC12226BP, Mutant strain.
  12. 제1항에 있어서, The method of claim 1,
    L-락테이트 사이토크롬-c 산화환원효소(L-lactate cytochrome-c oxidreductase, CYB2)가 추가로 불활성화된, 변이균주.A variant strain wherein L-lactate cytochrome-c oxidreductase (CYB2) is further inactivated.
  13. 제12항에 있어서,The method of claim 12,
    원형질막 ATPase(plasma membrane ATPase, PMA1) 활성이 강화된, 변이균주.Mutant strain with enhanced plasma membrane ATPase (PMA1) activity.
  14. 제12항에 있어서,The method of claim 12,
    상기 L-락테이트 사이토크롬-c 산화환원효소는 서열번호 57의 염기서열로 표시되는 것인, 변이균주.The L-lactate cytochrome-c oxidoreductase is represented by the nucleotide sequence of SEQ ID NO: 57, variant strain.
  15. 13항에 있어서,The method of claim 13,
    상기 원형질막 ATPase는 서열번호 58의 염기서열로 표시되는 것인, 변이균주.The plasma membrane ATPase is represented by the nucleotide sequence of SEQ ID NO: 58, variant strain.
  16. 제13항에 있어서,The method of claim 13,
    상기 변이균주는 수탁번호 KCTC12435BP인, 변이균주.The variant strain is Accession No. KCTC12435BP, variant strain.
  17. 제1항의 균주를 배양하는 단계를 포함하는, 젖산을 생산하는 방법.A method for producing lactic acid, comprising culturing the strain of claim 1.
  18. 제17항에 있어서, The method of claim 17,
    상기 균주를 배양하는 단계는 돼지감자 분말을 영양원으로 하는 것인, 방법.The step of culturing the strain is that the pig potato powder as a nutrient source.
  19. 제17항에 있어서, The method of claim 17,
    상기 젖산은 L-젖산 또는 D-젖산인 것인, 방법.Wherein the lactic acid is L-lactic acid or D-lactic acid.
PCT/KR2013/005661 2012-06-26 2013-06-26 Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof WO2014003439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0068809 2012-06-26
KR20120068809 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014003439A1 true WO2014003439A1 (en) 2014-01-03

Family

ID=49783500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005661 WO2014003439A1 (en) 2012-06-26 2013-06-26 Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof

Country Status (2)

Country Link
KR (1) KR101576186B1 (en)
WO (1) WO2014003439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709540A (en) * 2014-06-20 2018-02-16 韩国生命工学研究院 Novel warehouse Delhi A Ziweishi Pichia pastoris strains NG7 and application thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577134B1 (en) * 2014-05-09 2015-12-14 씨제이제일제당 (주) A microorganism having enhanced productivity of lactic acid and a process for producing lactic acid using the same
KR101689004B1 (en) * 2014-06-20 2016-12-23 한국생명공학연구원 Kluyveromyces marxianus deficient in the lactic acid utilization pathway and use thereof
KR101686899B1 (en) * 2014-06-20 2016-12-16 한국생명공학연구원 Novel Kluyveromyces marxianus MJ1 and use thereof
KR102287347B1 (en) * 2014-12-18 2021-08-06 삼성전자주식회사 Yeast cell producing lactate comprising reduced activity of rim15 and igo2, method of producing yeast cell and method of producing lactate using the same
KR102287346B1 (en) * 2014-12-26 2021-08-06 삼성전자주식회사 Yeast cell comprising reduced activity of RGT1, method for producing the yeast cell and method for producing a product using the same
US10155967B2 (en) 2015-06-12 2018-12-18 Cj Cheiljedang Corporation Microorganism having enhanced productivity of lactic acid and a process for producing lactic acid using the same
US10570379B2 (en) 2015-11-13 2020-02-25 Invista North America S.A.R.L. Polypeptides for carbon-carbon bond formation and uses thereof
KR102140596B1 (en) 2018-04-17 2020-08-04 에스케이이노베이션 주식회사 Novel Promotor from Organic Acid Resistant Yeast and Method for Expressing Target Gene Using The Same
KR20210041903A (en) 2019-10-08 2021-04-16 에스케이이노베이션 주식회사 Recombinant Acid Resistant Yeast Inhibited Lactate Metabolism and Alcohol Production and Method for Preparing Lactic Acid Using The Same
KR20210158676A (en) 2020-06-24 2021-12-31 에스케이이노베이션 주식회사 Recombinant Acid Resistant Yeast Having Improbed Lactic Acid Productivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030228671A1 (en) * 2002-05-30 2003-12-11 Ben Hause Methods and materials for the production of L-lactic acid in yeast
US20050112737A1 (en) * 2003-11-20 2005-05-26 A. E. Staley Manufacturing Co. Lactic acid producing yeast
US20060110810A1 (en) * 2000-11-22 2006-05-25 Vineet Rajgarhia Methods and materials for the synthesis of organic products
WO2007117282A2 (en) * 2005-11-23 2007-10-18 Natureworks Llc Lactic acid-producing yeast cells having nonfunctional l-or d-lactate: ferricytochrome c oxidoreductase gene
US20090081793A1 (en) * 2007-06-06 2009-03-26 Tate & Lyle Americas, Inc. Method for improving acid and low pH tolerance in yeast
US7943366B2 (en) * 2003-05-02 2011-05-17 Cargill Inc. Genetically modified yeast species and fermentation processes using genetically modified yeast

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110810A1 (en) * 2000-11-22 2006-05-25 Vineet Rajgarhia Methods and materials for the synthesis of organic products
US20030228671A1 (en) * 2002-05-30 2003-12-11 Ben Hause Methods and materials for the production of L-lactic acid in yeast
US7943366B2 (en) * 2003-05-02 2011-05-17 Cargill Inc. Genetically modified yeast species and fermentation processes using genetically modified yeast
US20050112737A1 (en) * 2003-11-20 2005-05-26 A. E. Staley Manufacturing Co. Lactic acid producing yeast
WO2007117282A2 (en) * 2005-11-23 2007-10-18 Natureworks Llc Lactic acid-producing yeast cells having nonfunctional l-or d-lactate: ferricytochrome c oxidoreductase gene
US20090081793A1 (en) * 2007-06-06 2009-03-26 Tate & Lyle Americas, Inc. Method for improving acid and low pH tolerance in yeast

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI, GENBANK 11 May 2011 (2011-05-11), accession no. R774011.1 *
DATABASE NCBI, GENBANK 14 November 2005 (2005-11-14), accession no. Q225115.1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709540A (en) * 2014-06-20 2018-02-16 韩国生命工学研究院 Novel warehouse Delhi A Ziweishi Pichia pastoris strains NG7 and application thereof

Also Published As

Publication number Publication date
KR101576186B1 (en) 2015-12-10
KR20140001165A (en) 2014-01-06

Similar Documents

Publication Publication Date Title
WO2014003439A1 (en) Kluyveromyces marxianus strain having blocked ethanol production pathway, and use thereof
WO2015194921A1 (en) Novel pichia kudriavzevii strain ng7 and use of same
WO2013162274A1 (en) Novel strain producing d-lactic acid and use thereof
AU2006243052B2 (en) Thermophilic microorganisms with inactivated lactate dehydrogenase gene (LDH) for ethanol production
WO2014142463A1 (en) Strain having enhanced l-valine productivity and l-valine production method using same
US10190139B2 (en) Method for lactic acid production using Monascus strains modified for lactic acid production
WO2019203436A1 (en) Acid-resistant yeast with supressed ethanol production pathway and method for producing lactic acid using same
WO2013105802A2 (en) Microorganisms of corynebacterium which can utilize xylose and method for producing l-lysine using same
WO2007130984A2 (en) Thermophilic organisms for conversion of lignocellulosic biomass to ethanol
WO2016200207A1 (en) Microorganism producing lactic acid and method for producing lactic acid using same
WO2015186990A1 (en) Microorganism for producing o-acetyl-homoserine and method for producing o-acetyl-homoserine by using same
WO2015170914A1 (en) Microorganism capable of enhancing lactic acid production and method for producing lactic acid using same
WO2012030130A2 (en) Novel mutant microorganism producing succinic acid simultaneously using sucrose and glycerol, and method for preparing succinic acid using same
KR20100061460A (en) Thermophilic micro-organisms for ethanol production
US20220275409A1 (en) A genetically modified fungus and methods and uses related thereto
JP2010504747A (en) Thermophilic microorganisms for ethanol production
WO2014148754A1 (en) Recombinant microorganism with increased productivity of 2,3-butanediol, and method for producing 2,3-butanediol using same
WO2012046924A1 (en) Xylitol-producing strain to which an arabinose metabolic pathway is introduced, and method for producing xylitol using same
WO2015163682A1 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol, and method for producing 2,3-butanediol using same
WO2015194900A1 (en) Kluyveromyces marxianus having pathway of lactic acid degradation blocked, and use of same
Skory Induction of Rhizopus oryzae pyruvate decarboxylase genes
KR100630819B1 (en) Novel Rumen Bacteria Variants and Method for Preparing Succinic Acid Using the Same
US20190338256A1 (en) Redox balancing in yeast
WO2016122107A1 (en) Genetically modified yeast cell having 2,3-butanediol or acetoin productivity and method for producing 2,3-butanediol or acetoin by using same
WO2016195439A1 (en) Microorganism producing o-acetyl-homoserine, and method for producing o-acetyl-homoserine by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810074

Country of ref document: EP

Kind code of ref document: A1