WO2021059841A1 - Polyarylene sulfide resin composition - Google Patents
Polyarylene sulfide resin composition Download PDFInfo
- Publication number
- WO2021059841A1 WO2021059841A1 PCT/JP2020/032280 JP2020032280W WO2021059841A1 WO 2021059841 A1 WO2021059841 A1 WO 2021059841A1 JP 2020032280 W JP2020032280 W JP 2020032280W WO 2021059841 A1 WO2021059841 A1 WO 2021059841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- weight
- parts
- component
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/372—Sulfides, e.g. R-(S)x-R'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
Definitions
- Polyarylene sulfide resin is an engineering plastic with excellent chemical resistance, heat resistance, mechanical properties, etc. For this reason, polyarylene sulfide resins are widely used as electrical and electronic parts, vehicle-related parts, aircraft parts, and housing equipment parts. However, the polyarylene sulfide resin has a problem that burrs are generated during molding. As a means for solving this problem, Patent Document 1 discloses a resin composition containing a polyphenylene sulfide resin and a polycarbonate resin. However, since the conventionally commercially available polyphenylene sulfide resin contains a certain amount of sodium as an impurity due to the limitation of the polymer polymerization method, the polycarbonate resin is remarkably decomposed during the molding process to exhibit excellent properties.
- Patent Document 5 discloses a resin composition composed of a polyphenylene sulfide resin and a polycarbonate resin containing a branched structure
- Patent Document 6 discloses a resin composition containing a polyphenylene sulfide resin and a polycarbonate resin in which decomposition of the polycarbonate resin is suppressed.
- the mechanical strength and heat resistance of the resin composition were insufficient.
- a resin composition composed of a polyarylene sulfide resin, a polycarbonate resin, a mercaptan containing a functional group or a disulfide compound and a reinforcing material retains the excellent properties of the polyarylene sulfide resin.
- they have found that they are excellent in mechanical strength, heat resistance and low burr property, and have arrived at the present invention.
- the above-mentioned problem is (C) with respect to (C) 99 to 1 part by weight of the polyarylene sulfide resin (component A) and (B) 1 to 99 parts by weight of the polycarbonate resin (component B), for a total of 100 parts by weight. ) It is achieved by a resin composition containing 0.001 to 10 parts by weight of a mercaptan or a disulfide compound (C component) containing a functional group and 10 to 350 parts by weight of (D) a reinforcing material (D component).
- Component A Polyarylene sulfide resin
- any polyarylene sulfide resin may be used as long as it belongs to the category called polyarylene sulfide resin.
- the production method includes an iodide step and a polymerization step.
- the aryl compound is reacted with iodine to obtain a diiodoaryl compound.
- a polyallylene sulfide resin is produced by polymerizing a diiodoaryl compound with solid sulfur using a polymerization terminator. Iodine is generated in the form of gas in this step, and it is recovered and used again in the iodination step. Iodine is essentially a catalyst.
- a cyclooctasulfur form (S8 ) in which eight atoms are linked at room temperature can be mentioned.
- the sulfur compound used in the polymerization reaction is not limited, and any form can be used as long as it is solid or liquid at room temperature.
- Typical diiodoaryl compounds used in the above-mentioned production method include at least one selected from the group consisting of diiodobenzene, diiodonnaphthalene, diiodobiphenyl, diiodobisphenol and diiodobenzophenone, and alkyl. Derivatives of iodoaryl compounds to which groups or sulfone groups are bonded or oxygen or nitrogen is introduced are also used.
- Typical polymerization inhibitors used in the above production method include monoiodoaryl compounds, benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates, aromatic sulfide compounds and the like.
- Preferred examples of the monoiodoaryl compound include at least one selected from the group consisting of iodobiphenyl, iodophenol, iodoaniline, and iodobenzophenone.
- Preferred examples of the benzothiazoles include at least one selected from the group consisting of 2-mercaptobenzothiazole and 2,2'-dithiobisbenzothiazole.
- Preferred examples of the benzothiazole sulfenamides are N-cyclohexylbenzothiazole2-sulfenamide, N, N-dicyclohexyl-2-benzothiazolesulfenamide, 2-morpholinothiobenzothiazole, benzothiazolesulfenamide. , Dibenzothiazole disulfide, N-dicyclohexylbenzothiazole 2-sulfenamide, at least one selected from the group.
- Preferred examples of thiurams include at least one selected from the group consisting of tetramethylthiuram monosulfide and tetramethylthiuram disulfide.
- Preferred examples of the dithiocarbamates include at least one selected from the group consisting of zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate.
- Preferred examples of the aromatic sulfide compound include at least one selected from the group consisting of diphenyl sulfide, diphenyl disulfide, diphenyl ether, biphenyl and benzophenone. Further, in any of the polymerization inhibitors, one or more functional groups may be substituted on the conjugated aromatic ring skeleton.
- Examples of the functional group include a hydroxy group, a carboxy group, a mercapto group, an amino group, a cyano group, a sulfo group, a nitro group and the like, and preferred examples include a carboxy group and an amino group, with more preferred examples thereof. Examples include a carboxy group and an amino group showing a peak of 1600 to 1800 cm -1 or 3300 to 3500 cm -1 on the FT-IR spectrum.
- the content of the polymerization inhibitor is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
- polyarylene sulfide resin used as the component A of the present invention a carboxy group, a carboxy group derivative group, a thiol group, a sulfone group, a hydroxy group, an amino group, an epoxy group, and the like, for the purpose of obtaining higher compatibility.
- a polyarylene sulfide resin having a reactive functional group such as a mercapto group, a cyano group or a nitro group at the end can also be used.
- a polyarylene sulfide resin having the reactive functional group at the end a resin that exhibits excellent compatibility with other polymer materials, carbon fibers, etc., has excellent peelability, and has higher mechanical strength.
- the composition can be obtained.
- a more preferable example of the polyarylene sulfide resin having the reactive functional group at the terminal is a polyarylene sulfide resin having at least one terminal group structure selected from a carboxy group and an amino group.
- the polyarylene sulfide resin having at least one terminal group structure selected from the carboxy group and the amino group is about 1600 to 1800 cm -1 or amino derived from the carboxy group in the FT-IR spectrum of FT-IR spectroscopy.
- a peak of about 3300 ⁇ 3500 cm -1 derived from a group is taken as 100% the height strength aromatic ring stretching peak appearing at 1400 ⁇ 1600 cm -1, wherein about 1600 ⁇ 1800 cm -1 or about 3300 ⁇ 3500 cm - It is a polyarylene sulfide resin having a relative height intensity of 1 peak of 0.001 to 10%.
- a particularly preferable example of the polyarylene sulfide resin having at least one terminal group structure selected from the carboxy group and the amino group is a polyarylene sulfide resin having a terminal group structure of a carboxy group, which has the following general formula (1). ) Is indicated by the structural unit.
- the Ar group is an arylene group and n is the number of repeating units.
- a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, or the like can be used as the arylene group.
- the substituted phenylene group is one or more F, Cl, Br, C1-C3 alkyl, trifluoromethyl, C1-C3 alkoxy, trifluoromethoxy, trifluoromethylthio, dimethylamino, cyano,
- a phenylene group optionally substituted with (C1-C3 alkyl) SO 2- , (C1-C3 alkyl) NHSO 2- , (C1-C3 alkyl) 2NSO 2- , NH 2 SO 2-.
- R is a hydrogen atom or an alkali metal atom
- R is a hydrogen atom or an alkali metal atom
- a polymerization reaction catalyst may be used in the above-mentioned production method, and a nitrobenzene-based catalyst can be mentioned as a typical polymerization reaction catalyst.
- Preferred examples of nitrobenzene-based catalysts are 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol, iodonitrobenzene, and 2,6-diiodo-4-. At least one selected from the group consisting of nitroamines can be mentioned.
- the content of the polymerization reaction catalyst is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
- Typical examples of the reaction conditions of the production method are from the initial reaction conditions of a temperature of 180 to 250 ° C. and a pressure of 50 to 450 Torr (6.7 to 60 kPa), a temperature of 270 to 350 ° C. and a pressure of 0.001 to 20 Torr (0).
- the process is carried out for 1 to 30 hours while raising the temperature and lowering the pressure until the final reaction condition of .00013 to 2.7 kPa).
- the initial reaction conditions are a temperature of 180 ° C. or higher and a pressure of 450 Torr (60 kPa) or less in consideration of the reaction rate
- the final reaction conditions are a temperature of 350 ° C. or lower and a pressure of 20 Torr (2. 7 kPa) The following can be mentioned.
- the polyphenylene sulfide resin of the present invention may contain a polyphenylene sulfide resin obtained by another polymerization method.
- B component polycarbonate resin
- the polycarbonate resin used in the present invention is obtained by reacting a divalent phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a molten transesterification method, a solid phase transesterification method of a carbonate prepolymer, a ring-opening polymerization method of a cyclic carbonate compound, and the like, but the molten transesterification method is preferable.
- the polycarbonate resin may also be a branched polycarbonate resin obtained by polymerizing trifunctional phenols, and further copolymerized by copolymerizing an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, or a divalent aliphatic or alicyclic alcohol. It may be polycarbonate.
- the viscosity average molecular weight of the polycarbonate resin is preferably 1.3 ⁇ 10 4 to 4.0 ⁇ 10 4 , more preferably 1.5 ⁇ 10 4 to 3.8 ⁇ 10 4 .
- the viscosity average molecular weight (M) of the aromatic polycarbonate resin was obtained by inserting the specific viscosity ( ⁇ sp ) obtained at 20 ° C. from a solution of 0.7 g of the polycarbonate resin in 100 ml of methylene chloride into the following formula. Details of such a polycarbonate resin are described in JP-A-2002-129003.
- the polycarbonate resin used in the present invention may be various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other dihydric phenols, in addition to the commonly used bisphenol A type polycarbonate. Good. The following are preferably exemplified as specific examples of various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other divalent phenols.
- the bisphenol A component is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate.
- the BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate, and
- the 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane component is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
- the polycarbonate resin it is possible to use not only the virgin raw material but also the polycarbonate resin regenerated from the used product.
- the used products include containers typified by water bottles, optical discs, and automobile headlamps.
- the content of the B component is 1 to 99 parts by weight, preferably 5 to 95 parts by weight, more preferably 5 to 30 parts by weight and 70 to 95 parts by weight, out of 100 parts by weight of the total of the A component and the B component. ..
- the content is 5 to 30 parts by weight, it may be possible to design a resin that makes the best use of the excellent properties of the polyphenylene sulfide resin, while when the content is 70 to 95 parts by weight, the polycarbonate resin is more excellent. It may be possible to design a resin that takes advantage of its characteristics. If the content is less than 1 part by weight, the characteristics of the polycarbonate resin are not exhibited and the generation of burrs cannot be suppressed.
- R 2 and R 3 may be the same or different, and independently contain up to 20 carbon atoms, and are composed of a group consisting of a carboxy group, an amino group, a hydroxy group and an epoxy group at the end.
- Examples of functional group-containing disulfide compounds include 2,2'-benzimidazole, dithioglycolic acid, ⁇ , ⁇ '-dithiodilactic acid, ⁇ , ⁇ '-dithiodilactic acid, 2,2'-dithiodianiline.
- Examples of mercaptans containing functional groups include 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercaptobenzoic acid, thioglycolic acid, thiolactic acid, 2-mercaptoaniline, 3-mercaptoaniline, 4 -Mercaptoaniline, 2-mercaptopyridine, 4-mercaptopyridine, 2-mercaptobenzothiazole can be mentioned.
- inorganic fibers such as glass fiber, glass milled fiber, wallastnite, carbon fiber, potassium titanate, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, and metal fiber.
- organic fibers such as total aromatic polyamide fibers, and glass fibers, glass milled fibers, wallastonite, carbon fibers, and total aromatic polyamide fibers are preferably used.
- silicates such as sericite, kaolin, mica, clay, bentonite, asbestos, talc, and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina, silicon oxide, magnesium oxide, zirconium oxide, and titanium oxide.
- Metal compounds such as iron oxide, carbonates such as magnesium oxide and dolomite, sulfates such as calcium sulfate and barium sulfate, glass flakes, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica, etc.
- glass flakes, mica, talc, and glass beads are preferably used. These may be hollow, and it is also possible to use two or more kinds of these reinforcing materials in combination.
- these reinforcing materials are pretreated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound, and a swellable layered silicate with an organic onium ion.
- a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound, and a swellable layered silicate with an organic onium ion.
- a conductive filler As a reinforcing material for imparting conductivity to the resin composition of the present invention, a conductive filler can be mentioned.
- the conductive filler is not particularly limited as long as it is a conductive filler usually used for making a resin conductive, and specific examples thereof include metal powder, metal flakes, metal ribbons, metal fibers, metal oxides, and conductive substances. Examples include coated inorganic fillers, carbon powders, graphite, carbon fibers, carbon flakes, scaly carbon and the like. Specific examples of metal powders, metal flakes, and metal types of metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
- metal type of the metal fiber examples include iron, copper, stainless steel, aluminum, brass and the like.
- the metal powder, metal flakes, metal ribbon, and metal fiber may be surface-treated with a surface treatment agent such as titanate-based, aluminum-based, or silane-based.
- the metal oxide examples include SnO 2 (antimony doping), In 2 O 3 (antimony doping), ZnO (aluminum doping), and the like, and these are surfaces of titanate-based, aluminum-based, silane-based coupling agents, and the like.
- the surface may be treated with a treatment agent.
- the conductive substance in the inorganic filler coated with the conductive substance include aluminum, nickel, silver, carbon, SnO 2 (antimony doping), and In 2 O 3 (antimony doping).
- the inorganic fillers to be coated include mica, glass beads, glass fiber, carbon fiber, potassium titanate whiskers, barium sulfate, zinc oxide, titanium oxide, aluminum borate whiskers, zinc oxide whiskers, titanic acid whiskers, and charcoal.
- An example is a silicon whisker.
- the coating method include a vacuum vapor deposition method, a sputtering method, an electroless plating method, and a baking method. Further, these may be surface-treated with a surface treatment agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
- Carbon powder is classified into acetylene black, gas black, oil black, naphthaline black, thermal black, furnace black, lamp black, channel black, roll black, disc black, etc. according to its raw material and manufacturing method.
- the raw material and production method of the carbon powder that can be used in the present invention are not particularly limited, but acetylene black and furnace black are particularly preferably used.
- the content of the D component is 10 to 350 parts by weight, preferably 20 to 300 parts by weight, and more preferably 60 to 200 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. If the content of the D component is less than 10 parts by weight, the mechanical strength and heat resistance are inferior, and the burr also deteriorates. If it exceeds 350 parts by weight, the molding processability is lowered.
- a carbon fiber having a tensile elastic modulus of 250 GPa or more measured by JIS R7608 is preferable from the viewpoint of the effect of the present invention.
- Specific examples of carbon fibers include carbon fibers, carbon milled fibers, carbon nanotubes, and the like.
- the carbon nanotubes preferably have a fiber diameter of 0.003 to 0.1 ⁇ m. Further, they may be single-layer, two-layer, or multi-layer, and multi-layer (so-called MWCNT) is preferable.
- the carbon milled fiber preferably has an average fiber length of 0.05 to 0.2 mm. Among these, carbon fiber is preferable in terms of excellent mechanical strength.
- the preferable range of the tensile elastic modulus of the carbon fiber used is 250 to 600 GPa. , More preferably 260-500 GPa.
- the tensile strength of the carbon fiber measured by JIS R7608 is preferably 3,000 MPa or more. However, if the tensile strength of the carbon fiber exceeds 7,000 MPa, the carbon fiber becomes very expensive as well as the tensile elastic modulus, and the versatility is lowered from the viewpoint of raw material supply. Therefore, the preferable range of the tensile strength of the carbon fiber to be used is It is 3,000 to 7,000 MPa, more preferably 5,000 to 6,500 MPa.
- the average fiber diameter of the carbon fiber is not particularly limited, but is preferably 3 to 15 ⁇ m, and more preferably 4 to 13 ⁇ m.
- a carbon fiber having an average fiber diameter in such a range can exhibit good mechanical strength and fatigue characteristics without impairing the appearance of the molded product.
- the fiber length of the carbon fiber is preferably 60 to 500 ⁇ m, more preferably 80 to 400 ⁇ m, and particularly preferably 100 to 300 ⁇ m as the number average fiber length in the resin composition.
- the number average fiber length is a value calculated by an image analyzer from the residue of carbon fibers collected by high-temperature ashing of the molded product, dissolution with a solvent, decomposition with chemicals, etc. from observation with an optical microscope. is there. Further, when calculating such a value, a value having a length shorter than or equal to the fiber length is a value obtained by a method that does not count.
- the above carbon fiber may be coated with a metal layer on the surface of the carbon fiber.
- the metal include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of corrosion resistance of the metal layer.
- the metal coating method various methods described above for surface coating with different materials in the glass reinforcing material can be adopted. Above all, the plating method is preferably used. Further, also in the case of such a metal-coated carbon fiber, the carbon fiber mentioned above can be used as the original carbon fiber.
- the thickness of the metal coating layer is preferably 0.1 to 1 ⁇ m, more preferably 0.15 to 0.5 ⁇ m. More preferably, it is 0.2 to 0.35 ⁇ m.
- the resin composition of the present invention contains an antioxidant, a heat-resistant stabilizer (hindered phenol-based, hydroquinone-based, phosphite-based and substitutes thereof, etc.) and a weather-resistant agent (resorcinol-based) as long as the effects of the present invention are not impaired.
- a heat-resistant stabilizer hindered phenol-based, hydroquinone-based, phosphite-based and substitutes thereof, etc.
- a weather-resistant agent resorcinol-based
- Pigments cadmium sulfide, phthalocyanine, carbon black, etc.
- dyes niglosin, etc.
- crystal nucleating agents talc, silica, kaolin, clay, etc.
- plastic agents octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.) Etc.
- antistatic agents alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agents Etc.
- flame retardant red phosphorus, phosphate ester, melamine cyanurate, magnesium hydroxide, hydroxides such as aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy Resins or combinations of these bromine-based
- a vacuum pump is preferably installed from the vent to efficiently discharge the generated water and volatile gas to the outside of the extruder. It is also possible to install a screen for removing foreign substances and the like mixed in the extruded raw material in the zone in front of the die portion of the extruder to remove the foreign substances from the resin composition. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (disc filter, etc.) and the like.
- the screws used in the twin-screw extruder are made up of a single screw by inserting screw pieces of various shapes between the forward flight pieces for transportation, combining them in a complicated manner, and integrating them into a single screw. Screw pieces such as forward kneading pieces, reverse kneading pieces, reverse flight pieces, forward flight pieces with notches, and reverse flight pieces are arranged and combined in an appropriate order and position in consideration of the characteristics of the raw materials to be processed. You can mention things like screws.
- melt kneader examples include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts, in addition to the twin-screw extruder.
- the total sodium content of the resin composition of the present invention is preferably 39 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and particularly preferably 8 ppm or less.
- the total amount of sodium exceeds 39 ppm, the decomposition of the polycarbonate resin cannot be suppressed, so that the effect of suppressing burrs by the polycarbonate resin is not exhibited, and in the worse case, pelletization may be difficult.
- a molded product using the resin composition of the present invention can be obtained by molding pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding.
- Pellets were obtained by melt-kneading a polyarylene sulfide resin, a polycarbonate resin, a mercaptan having a functional group or a disulfide compound, and a reinforcing material at the respective blending amounts shown in Tables 1 and 2 using a bent twin-screw extruder. ..
- the vent type twin-screw extruder the Japan Steel Works, Ltd .: TEX-30XSST (complete meshing, rotating in the same direction) was used.
- the extrusion conditions were a discharge rate of 12 kg / h, a screw rotation speed of 150 rpm, a degree of vacuum of the vent of 3 kPa, and an extrusion temperature of 300 ° C. from the first supply port to the die portion.
- the reinforcing material is supplied from the second supply port using the side feeder of the extruder, and the polyarylene sulfide resin, polycarbonate resin and mercaptans having functional groups or disulfide compounds are supplied to the extruder from the first supply port. did.
- the first supply port referred to here is the supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port.
- the obtained pellets are dried at 130 ° C.
- A-2 Polyphenylene sulfide resin obtained in Production Method 2 [Production Method 2] A reactant containing 5130 g of paradiiodobenzene and 450 g of sulfur and 4 g of mercaptobenzothiazole as a reaction initiator is heated to 180 ° C. to completely melt and mix, then the temperature is raised to 220 ° C. and the pressure is 350 Torr. The pressure was lowered. The polymerization reaction of the obtained mixture proceeded while gradually changing the temperature and pressure so that the final temperature and pressure were 300 ° C. and 1 Torr or less, respectively.
- ⁇ B component> B-1 Polycarbonate resin obtained in Production Method 3 (viscosity average molecular weight 12500, hydroxyl group amount 13 eq / t) [Manufacturing method 3] 219.4 parts of ion-exchanged water and 40.2 parts of 48% sodium hydroxide aqueous solution were charged into a reactor with a thermometer, agitator and a reflux condenser, and 2,2-bis (4-hydroxyphenyl) propane 57. After adding 5 parts and 0.12 parts of hydroxide and dissolving in 25 minutes, add 181 parts of methylene chloride in 5 minutes and blow in 27.8 parts of phosgen at 15 to 25 ° C. for 40 minutes with stirring. It is.
- the powder and granules were prepared, and a mixture of the powder and granules and water was put into a hot water treatment tank in a hot water treatment step having a hot water treatment tank with a stirrer whose water temperature was controlled to 95 ° C. The mixture was mixed with a stirrer for 30 minutes at a mixing ratio of 75 parts. The mixture of the powder or granular material and water was separated by a centrifuge to obtain a powder or granular material containing 0.5% by weight of methylene chloride and 45% by weight of water.
- the powder or granular material was continuously supplied at 50 kg / Hr (polycarbonate resin equivalent) to a SUS316L conduction heat receiving groove type twin-screw continuous dryer controlled at 140 ° C., and the condition was that the average drying time was 6 hours.
- a powder or granular material having a viscosity average molecular weight of 11800 was put into acetone, stirred for 30 minutes, the powder or granular material slurry solution was taken out, and after solid-liquid separation, it was dried at 140 ° C. for 4 hours in a nitrogen atmosphere, and the viscosity average molecular weight was 12500 and the hydroxyl group was extracted with acetone.
- a powder or granular material (powder) having an amount of 13 eq / ton was obtained.
- C-1 2,2'-dithiodibenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
- C-2 4-Mercaptobenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
- C-3 4,4'-dithiodianiline (manufactured by Tokyo Chemical Industry Co., Ltd.)
- C-4 4-Mercaptoaniline (manufactured by Tokyo Chemical Industry Co., Ltd.)
- C-5 Diphenyl disulfide (manufactured by Tokyo Chemical Industry Co., Ltd.)
- D-1 Circular cross-section chopped glass fiber (T-732H, manufactured by Nippon Electric Glass Co., Ltd., diameter: 10.5 ⁇ m, cut length: 3 mm, epoxy-based sizing agent)
- D-2 Mica (Kinsei Matek Co., Ltd.
- D-3 Carbon fiber (IM702 6 mm major axis: 6 ⁇ m, cut length: 6 mm, tensile elastic modulus: 282 GPa, tensile strength: 5,490 MPa, urethane-based focusing agent manufactured by Teijin Limited))
- D-4 Total Aromatic Polyamide Fiber (Teijin Co., Ltd. Para-Aromatic Polyamide Fiber T322EH 3-12 Major Diameter: 12 ⁇ m, Cut Length: 3 mm)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention provides a polyarylene sulfide resin composition that is superior in mechanical strength and heat resistance, and has less burr properties, while retaining the excellent characteristics of a polyarylene sulfide resin. The resin composition according to the present invention is characterized by containing, with respect to 100 parts by weight which is the total of (A) 99-1 parts by weight of a polyarylene sulfide resin (component A) and (B) 1-99 parts by weight of a polycarbonate resin (component B), (C) 0.001-10 parts by weight of a disulfide compound or a mercaptan including a functional group (component C), and (D) 10-350 parts by weight of a reinforcement material (component D).
Description
本発明は、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、官能基を含有するメルカプタン類またはジスルフィド化合物および強化材からなる樹脂組成物であって、ポリアリーレンスルフィド樹脂が有する優れた特性を保持しつつ、機械的強度、耐熱性および低バリ性に優れた樹脂組成物に関するものである。
The present invention is a resin composition composed of a polyarylene sulfide resin, a polycarbonate resin, a mercaptan containing a functional group or a disulfide compound, and a reinforcing material, and mechanically while maintaining the excellent properties of the polyarylene sulfide resin. It relates to a resin composition excellent in strength, heat resistance and low burr property.
ポリアリーレンスルフィド樹脂は、耐薬品性、耐熱性、機械的特性などに優れるエンジニアリングプラスチックである。このため、ポリアリーレンスルフィド樹脂は、電気電子部品、車両関連部品、航空機部品、住設機器部品として広く利用されている。しかしながらポリアリーレンスルフィド樹脂には成形加工時にバリが発生するという問題がある。この問題を解決する手段として特許文献1には、ポリフェニレンスルフィド樹脂およびポリカーボネート樹脂を含有する樹脂組成物が開示されている。しかしながら、従来市販されているポリフェニレンスルフィド樹脂は、ポリマー重合方法の制約から、不純物としてある程度のナトリウムを含有しているために、成形加工時にポリカーボネート樹脂が著しく分解し、優れた特性を発現するには至っていない。特許文献2には、塩素含有量を低減したポリフェニレンスルフィド樹脂が提案されている。しかしながら、この塩素含有量を低減したポリフェニレンスルフィド樹脂を使用するのみではポリカーボネート樹脂の分解を抑制できない。また、塩素含有量を低減させるために、反応工程が煩雑になり、コスト競争力に劣るものであった。特許文献3にはアルカリ金属を低減させたポリフェニレンスルフィド樹脂が開示されているが、ポリカーボネート樹脂による改質を目的とするものではなく、またコスト競争力に劣るものであった。特許文献4には、分散度が2.5以下でアルカリ金属含量が50ppm以下であるポリフェニレンスルフィド樹脂および熱可塑性樹脂を含有する樹脂組成物が開示されている。しかしながら、ポリカーボネート樹脂による改質、特にバリの抑制を目的としたものではなく、特性についても満足できるものではなかった。さらに特許文献5にはポリフェニレンスルフィド樹脂および分岐構造を含有するポリカーボネート樹脂からなる樹脂組成物、特許文献6には、ポリカーボネート樹脂の分解を抑制したポリフェニレンスルフィド樹脂およびポリカーボネート樹脂を含有する樹脂組成物が開示されているが、当該樹脂組成物の機械的強度および耐熱性が不十分であった。
Polyarylene sulfide resin is an engineering plastic with excellent chemical resistance, heat resistance, mechanical properties, etc. For this reason, polyarylene sulfide resins are widely used as electrical and electronic parts, vehicle-related parts, aircraft parts, and housing equipment parts. However, the polyarylene sulfide resin has a problem that burrs are generated during molding. As a means for solving this problem, Patent Document 1 discloses a resin composition containing a polyphenylene sulfide resin and a polycarbonate resin. However, since the conventionally commercially available polyphenylene sulfide resin contains a certain amount of sodium as an impurity due to the limitation of the polymer polymerization method, the polycarbonate resin is remarkably decomposed during the molding process to exhibit excellent properties. Not reached. Patent Document 2 proposes a polyphenylene sulfide resin having a reduced chlorine content. However, the decomposition of the polycarbonate resin cannot be suppressed only by using the polyphenylene sulfide resin having a reduced chlorine content. Further, in order to reduce the chlorine content, the reaction process becomes complicated and the cost competitiveness is inferior. Patent Document 3 discloses a polyphenylene sulfide resin in which an alkali metal is reduced, but it is not intended to be modified with a polycarbonate resin and is inferior in cost competitiveness. Patent Document 4 discloses a resin composition containing a polyphenylene sulfide resin and a thermoplastic resin having a dispersity of 2.5 or less and an alkali metal content of 50 ppm or less. However, it was not intended to be modified with a polycarbonate resin, particularly to suppress burrs, and its characteristics were not satisfactory. Further, Patent Document 5 discloses a resin composition composed of a polyphenylene sulfide resin and a polycarbonate resin containing a branched structure, and Patent Document 6 discloses a resin composition containing a polyphenylene sulfide resin and a polycarbonate resin in which decomposition of the polycarbonate resin is suppressed. However, the mechanical strength and heat resistance of the resin composition were insufficient.
本発明の目的は、ポリアリーレンスルフィド樹脂が有する優れた特性を保持しつつ、機械的強度、耐熱性および低バリ性に優れたポリアリーレンスルフィド樹脂組成物を提供することである。
An object of the present invention is to provide a polyarylene sulfide resin composition having excellent mechanical strength, heat resistance and low burr property while retaining the excellent properties of the polyarylene sulfide resin.
本発明者は鋭意検討を重ねた結果、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、官能基を含有するメルカプタン類またはジスルフィド化合物および強化材からなる樹脂組成物が、ポリアリーレンスルフィド樹脂が有する優れた特性を保持しつつ、機械的強度、耐熱性および低バリ性に優れることを見出し本発明に至った。
As a result of diligent studies by the present inventor, a resin composition composed of a polyarylene sulfide resin, a polycarbonate resin, a mercaptan containing a functional group or a disulfide compound and a reinforcing material retains the excellent properties of the polyarylene sulfide resin. However, they have found that they are excellent in mechanical strength, heat resistance and low burr property, and have arrived at the present invention.
具体的には、上記課題は、(A)ポリアリーレンスルフィド樹脂(A成分)99~1重量部および(B)ポリカーボネート樹脂(B成分)1~99重量部の合計100重量部に対し、(C)官能基を含有するメルカプタン類またはジスルフィド化合物(C成分)0.001~10重量部並びに(D)強化材(D成分)10~350重量部を含有する樹脂組成物により達成される。
Specifically, the above-mentioned problem is (C) with respect to (C) 99 to 1 part by weight of the polyarylene sulfide resin (component A) and (B) 1 to 99 parts by weight of the polycarbonate resin (component B), for a total of 100 parts by weight. ) It is achieved by a resin composition containing 0.001 to 10 parts by weight of a mercaptan or a disulfide compound (C component) containing a functional group and 10 to 350 parts by weight of (D) a reinforcing material (D component).
本発明の樹脂組成物は、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、官能基を含有するメルカプタン類またはジスルフィド化合物並びに強化材からなる樹脂組成物であって、ポリアリーレンスルフィド樹脂が有する優れた特性を保持しつつ、機械的強度、耐熱性および低バリ性に優れたポリアリーレンスルフィド樹脂組成物であることから、パソコン、タブレット、携帯電話用ハウジング、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材および外板、風車の羽根などにおいて幅広く有用であり、特にコンピューター、ノートブック、ウルトラブック、タブレット、携帯電話用ハウジング、ハイブリッド自動車や電気自動車用のインバータハウジング等の電子機器筐体などにおいて幅広く有用であり、その奏する産業上の効果は格別である。
The resin composition of the present invention is a resin composition composed of a polyarylene sulfide resin, a polycarbonate resin, a mercaptan containing a functional group or a disulfide compound, and a reinforcing material, and retains the excellent properties of the polyarylene sulfide resin. At the same time, because it is a polyarylene sulfide resin composition having excellent mechanical strength, heat resistance and low burr property, it is a personal computer, a tablet, a chassis for a mobile phone, a display, an OA device, a mobile phone, a personal digital assistant, a facsimile, and a compact. Electricity for disks, portable MDs, portable radio cassettes, PDAs (personal digital assistants), video cameras, digital still cameras, optical equipment, audio, air conditioners, lighting equipment, entertainment products, toy products, and other home appliances. , Electronic equipment chassis and internal members such as trays and chassis, their cases, mechanical parts, panels and other building materials, motor parts, alternator terminals, alternator connectors, IC regulators, light weight potential meter bases, suspension parts, exhaust Various valves such as gas valves, fuel related, exhaust system or intake system various pipes, air intake nozzle snorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pumps, gasoline tanks, CNG tanks, engine cooling water joints , Carburettor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crank shaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, heating temperature Wind flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, distributor, starter switch, starter relay, wire harness for transmission, window washer nozzle, air conditioner panel switch board, fuel related Electromagnetic valve coil, fuse connector, battery tray, AT bracket, head lamp support, pedal housing, handle, door beam, protector, chassis, frame, armrest, horn terminal, step motor rotor, lamp socket, lamp reflector, lamp house Car, brake piston, noise shield, radiator support, spare tire cover, seat shell, solenoid bobbin, engine oil filter, ignition device case, undercover, scuff plate, pillar trim, propeller shaft, wheel, fender, facer, bumper, bumper beam , Bonnets, aero parts, platforms, cowl louvers, roofs, instrument panels, spoilers and various modules, automobiles, motorcycle related parts, parts and skins, landing gear pods, winglets, spoilers, edges, rudder, elevators, faye Widely useful for aircraft-related parts such as rings and ribs, parts and skins, windmill blades, etc., especially for computers, notebooks, ultrabooks, tablets, mobile phone housings, hybrid and electric vehicle inverter housings, etc. It is widely useful in electronic device housings, etc., and its industrial effect is exceptional.
以下、本発明の詳細について説明する。
(A成分:ポリアリーレンスルフィド樹脂)
本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィド樹脂と称される範疇に属するものであれば如何なるものを用いてもよい。 Hereinafter, the details of the present invention will be described.
(Component A: Polyarylene sulfide resin)
As the polyarylene sulfide resin used as the component A of the present invention, any polyarylene sulfide resin may be used as long as it belongs to the category called polyarylene sulfide resin.
(A成分:ポリアリーレンスルフィド樹脂)
本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィド樹脂と称される範疇に属するものであれば如何なるものを用いてもよい。 Hereinafter, the details of the present invention will be described.
(Component A: Polyarylene sulfide resin)
As the polyarylene sulfide resin used as the component A of the present invention, any polyarylene sulfide resin may be used as long as it belongs to the category called polyarylene sulfide resin.
ポリアリーレンスルフィド樹脂としては、その構成単位として、例えばp-フェニレンスルフィド単位、m-フェニレンスルフィド単位、o-フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げることができ、その中でも、p-フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらに、ポリ(p-フェニレンスルフィド)がより好ましい。
The polyarylene sulfide resin has, as its constituent units, for example, p-phenylene sulfide unit, m-phenylene sulfide unit, o-phenylene sulfide unit, phenylene sulfide sulfide unit, phenylene sulfide ketone unit, phenylene sulfide ether unit, diphenylene sulfide unit. , Substituent-containing phenylene sulfide unit, branched structure-containing phenylene sulfide unit, etc. Among them, those containing p-phenylene sulfide unit in an amount of 70 mol% or more, particularly 90 mol% or more. Preferably, poly (p-phenylene sulfide) is more preferable.
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総塩素含有量は、好ましくは500ppm以下、より好ましくは450ppm以下、さらに好ましくは300ppm以下、特に好ましくは50ppm以下である。総塩素含有量が500ppmを超える場合には、発生ガス量が増加しモールドデポジットが増え剥離性を悪化させる場合がある。
The total chlorine content of the polyarylene sulfide resin used as the component A of the present invention is preferably 500 ppm or less, more preferably 450 ppm or less, still more preferably 300 ppm or less, and particularly preferably 50 ppm or less. When the total chlorine content exceeds 500 ppm, the amount of generated gas increases, the mold deposit increases, and the peelability may deteriorate.
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総ナトリウム含有量は、好ましくは39ppm以下、より好ましくは30ppm以下、さらに好ましくは10ppm以下、特に好ましくは8ppm以下である。39ppmを超える場合には、樹脂の分解の促進による物性低下だけではなく、高温高湿環境下において、ナトリウム金属と水分子の配位結合による樹脂の吸水量の増加によって耐湿熱性を低下させる場合がある。なお、総ナトリウム含有量はICP発光分析法(ICP-AES法)により測定した。
The total sodium content of the polyarylene sulfide resin used as the component A of the present invention is preferably 39 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and particularly preferably 8 ppm or less. If it exceeds 39 ppm, not only the physical properties are lowered by promoting the decomposition of the resin, but also the moisture and heat resistance may be lowered by increasing the water absorption amount of the resin due to the coordination bond between the sodium metal and the water molecule in a high temperature and high humidity environment. is there. The total sodium content was measured by ICP emission spectrometry (ICP-AES method).
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は好ましくは2.7以上、より好ましくは2.8以上、さらに好ましくは2.9以上である。分散度が2.7未満の場合は、成形時のバリ発生が多くなる場合がある。なお、分散度(Mw/Mn)の上限は特に規定されないが、10以下であることが好ましい。ここで、重量平均分子量(Mw)および数平均分子量(Mn)はゲルパーミネーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出された値である。なお、溶媒には1-クロロナフタレンを使用し、カラム温度は210℃とした。
The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyarylene sulfide resin used as the component A of the present invention is preferably 2.7 or more, more preferably 2 It is 8.8 or more, more preferably 2.9 or more. If the degree of dispersion is less than 2.7, burrs may be generated during molding. The upper limit of the degree of dispersion (Mw / Mn) is not particularly specified, but is preferably 10 or less. Here, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values calculated in terms of polystyrene by gel permeation chromatography (GPC). 1-Chloronaphthalene was used as a solvent, and the column temperature was 210 ° C.
ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されるものではなく、既知の方法で重合されるが、特に好適な重合方法としては、米国登録特許第4,746,758号、第4,786,713号、特表2013-522385、特開2012-233210および特許5167276等に記載された製造方法が挙げられる。これらの製造方法は、ジヨードアリール化合物と固体硫黄を、極性溶媒なしに直接加熱して重合させる方法である。
The method for producing the polyarylene sulfide resin is not particularly limited, and polymerization is carried out by a known method. Particularly suitable polymerization methods are US Registered Patent Nos. 4,746,758 and 4,786. , 713, Japanese Patent Application Laid-Open No. 2013-522385, Japanese Patent Application Laid-Open No. 2012-233210, Japanese Patent No. 5167276, and the like. These production methods are methods in which a diiodoaryl compound and solid sulfur are directly heated and polymerized without a polar solvent.
前記製造方法はヨウ化工程および重合工程を含む。該ヨウ化工程ではアリール化合物をヨードと反応させて、ジヨードアリール化合物を得る。続く重合工程で、重合停止剤を用いてジヨードアリール化合物を固体硫黄と重合反応させてポリアリーレンスルフィド樹脂を製造する。ヨードはこの工程で気体状で発生し、これを回収して再びヨウ化工程に用いられる。実質的にヨードは触媒である。
The production method includes an iodide step and a polymerization step. In the iodination step, the aryl compound is reacted with iodine to obtain a diiodoaryl compound. In the subsequent polymerization step, a polyallylene sulfide resin is produced by polymerizing a diiodoaryl compound with solid sulfur using a polymerization terminator. Iodine is generated in the form of gas in this step, and it is recovered and used again in the iodination step. Iodine is essentially a catalyst.
前記製造方法で用いられる代表的な固体硫黄としては、室温で8個の原子が連結されたシクロオクタ硫黄形態(S8)が挙げられる。しかしながら重合反応に用いられる硫黄化合物は限定されるものではなく、常温で固体または液体であればいずれの形態でも使用し得る。
As a typical solid sulfur used in the above-mentioned production method, a cyclooctasulfur form (S8 ) in which eight atoms are linked at room temperature can be mentioned. However, the sulfur compound used in the polymerization reaction is not limited, and any form can be used as long as it is solid or liquid at room temperature.
前記製造方法で用いられる代表的なジヨードアリール化合物としては、ジヨードベンゼン、ジヨードナフタレン、ジヨードビフェニル、ジヨードビスフェノールおよびジヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられ、またアルキル基やスルホン基が結合していたり、酸素や窒素が導入されたりしているヨードアリール化合物の誘導体も使用される。ヨードアリール化合物はそのヨード原子の結合位置によって異なる異性体に分類され、これらの異性体のうち好ましい例は、p-ジヨードベンゼン、2,6-ジヨードナフタレン、及びp,p’-ジヨードビフェニルのようにヨードがアリール化合物の分子両端に対称的に位置する化合物である。該ヨードアリール化合物の含有量は前記固体硫黄100重量部に対し500~10,000重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
Typical diiodoaryl compounds used in the above-mentioned production method include at least one selected from the group consisting of diiodobenzene, diiodonnaphthalene, diiodobiphenyl, diiodobisphenol and diiodobenzophenone, and alkyl. Derivatives of iodoaryl compounds to which groups or sulfone groups are bonded or oxygen or nitrogen is introduced are also used. Iodoaryl compounds are classified into different isomers depending on the bond position of the iodine atom, and preferred examples of these isomers are p-diiodobenzene, 2,6-diiodonaphthalene, and p, p'-diiode. Iodo is a compound such as biphenyl that is symmetrically located at both ends of the molecule of the aryl compound. The content of the iodoaryl compound is preferably 500 to 10,000 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
前記製造方法で用いられる代表的な重合停止剤としては、モノヨードアリール化合物、ベンゾチアゾール類、ベンゾチアゾールスルフェンアミド類、チウラム類、ジチオカルバメート類、芳香族スルフィド化合物などが挙げられる。モノヨードアリール化合物のうち好ましい例としては、ヨードビフェニル、ヨードフェノール、ヨードアニリン、ヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾール類のうち好ましい例としては、2-メルカプトベンゾチアゾール、2,2’-ジチオビスベンゾチアゾールからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾールスルフェンアミド類のうち好ましい例としては、N-シクロヘキシルベンゾチアゾール2-スルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾールスルフェンアミド、2-モルホリノチオベンゾチアゾール、ベンゾチアゾールスルフェンアミド、ジベンゾチアゾールジスルファイド、N-ジシクロヘキシルベンゾチアゾール2-スルフェンアミドからなる群より選ばれる少なくとも1種が挙げられる。チウラム類のうち好ましい例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドからなる群より選ばれる少なくとも1種が挙げられる。ジチオカルバメート類のうち好ましい例としては、ジメチルジチオカルバメート酸亜鉛、ジエチルジチオカルバメート酸亜鉛からなる群より選ばれる少なくとも1種が挙げられる。芳香族スルフィド化合物のうち好ましい例としては、ジフェニルスルフィド、ジフェニルジスルフィド、ジフェニルエーテル、ビフェニル、ベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。またいずれの重合停止剤においても、共役芳香環骨格上に一つまたは複数の官能基が置換されていてもよい。前記官能基の例としては、ヒドロキシ基、カルボキシ基、メルカプト基、アミノ基、シアノ基、スルホ基、ニトロ基などが挙げられ、好ましい例としてはカルボキシ基、アミノ基が挙げられ、さらに好ましい例としてはFT-IRスペクトル上で、1600~1800cm-1または3300~3500cm-1のピークを示すカルボキシ基、アミノ基が挙げられる。重合停止剤の含有量は前記固体硫黄100重量部に対し1~30重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
Typical polymerization inhibitors used in the above production method include monoiodoaryl compounds, benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates, aromatic sulfide compounds and the like. Preferred examples of the monoiodoaryl compound include at least one selected from the group consisting of iodobiphenyl, iodophenol, iodoaniline, and iodobenzophenone. Preferred examples of the benzothiazoles include at least one selected from the group consisting of 2-mercaptobenzothiazole and 2,2'-dithiobisbenzothiazole. Preferred examples of the benzothiazole sulfenamides are N-cyclohexylbenzothiazole2-sulfenamide, N, N-dicyclohexyl-2-benzothiazolesulfenamide, 2-morpholinothiobenzothiazole, benzothiazolesulfenamide. , Dibenzothiazole disulfide, N-dicyclohexylbenzothiazole 2-sulfenamide, at least one selected from the group. Preferred examples of thiurams include at least one selected from the group consisting of tetramethylthiuram monosulfide and tetramethylthiuram disulfide. Preferred examples of the dithiocarbamates include at least one selected from the group consisting of zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate. Preferred examples of the aromatic sulfide compound include at least one selected from the group consisting of diphenyl sulfide, diphenyl disulfide, diphenyl ether, biphenyl and benzophenone. Further, in any of the polymerization inhibitors, one or more functional groups may be substituted on the conjugated aromatic ring skeleton. Examples of the functional group include a hydroxy group, a carboxy group, a mercapto group, an amino group, a cyano group, a sulfo group, a nitro group and the like, and preferred examples include a carboxy group and an amino group, with more preferred examples thereof. Examples include a carboxy group and an amino group showing a peak of 1600 to 1800 cm -1 or 3300 to 3500 cm -1 on the FT-IR spectrum. The content of the polymerization inhibitor is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
また本発明のA成分として使用されるポリアリーレンスルフィド樹脂として、より高い相溶化を得ることを目的に、カルボキシ基やカルボキシ基誘導体基、チオール基、スルホン基、ヒドロキシ基、アミノ基、エポキシ基、メルカプト基、シアノ基、ニトロ基等の反応性官能基を末端に有するポリアリーレンスルフィド樹脂を用いることもできる。該反応性官能基を末端に有するポリアリーレンスルフィド樹脂を用いることで、他の高分子素材や、炭素繊維などとの優れた相溶性を示し、剥離性に優れ、より高い機械的強度を有する樹脂組成物を得ることができる。該反応性官能基を末端に有するポリアリーレンスルフィド樹脂のうちより好ましい例としては、カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂が挙げられる。前記カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂とは、FT-IR分光法のFT-IRスペクトルにて、カルボキシ基由来の約1600~1800cm-1またはアミノ基由来の約3300~3500cm-1のピークを示し、かつ1400~1600cm-1で現れる芳香環伸縮ピークの高さ強度を100%としたとき、前記約1600~1800cm-1または約3300~3500cm-1のピークの相対的高さ強度が0.001~10%であるポリアリーレンスルフィド樹脂である。
Further, as the polyarylene sulfide resin used as the component A of the present invention, a carboxy group, a carboxy group derivative group, a thiol group, a sulfone group, a hydroxy group, an amino group, an epoxy group, and the like, for the purpose of obtaining higher compatibility. A polyarylene sulfide resin having a reactive functional group such as a mercapto group, a cyano group or a nitro group at the end can also be used. By using a polyarylene sulfide resin having the reactive functional group at the end, a resin that exhibits excellent compatibility with other polymer materials, carbon fibers, etc., has excellent peelability, and has higher mechanical strength. The composition can be obtained. A more preferable example of the polyarylene sulfide resin having the reactive functional group at the terminal is a polyarylene sulfide resin having at least one terminal group structure selected from a carboxy group and an amino group. The polyarylene sulfide resin having at least one terminal group structure selected from the carboxy group and the amino group is about 1600 to 1800 cm -1 or amino derived from the carboxy group in the FT-IR spectrum of FT-IR spectroscopy. a peak of about 3300 ~ 3500 cm -1 derived from a group, and is taken as 100% the height strength aromatic ring stretching peak appearing at 1400 ~ 1600 cm -1, wherein about 1600 ~ 1800 cm -1 or about 3300 ~ 3500 cm - It is a polyarylene sulfide resin having a relative height intensity of 1 peak of 0.001 to 10%.
前記カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂のうち特に好ましい例としては、カルボキシ基の末端基構造を有するポリアリーレンスルフィド樹脂であり、下記一般式(1)で表される構造単位で示される。
A particularly preferable example of the polyarylene sulfide resin having at least one terminal group structure selected from the carboxy group and the amino group is a polyarylene sulfide resin having a terminal group structure of a carboxy group, which has the following general formula (1). ) Is indicated by the structural unit.
(式中、Ar基はアリーレン基であり、nは繰り返し単位数である。)
ここで、前記アリーレン基は、p-フェニレン基、m-フェニレン基、o-フェニレン基、および、置換されたフェニレン基などを使用することができる。具体的に、置換されたフェニレン基は、一つ以上のF、Cl、Br、C1~C3のアルキル、トリフルオロメチル、C1~C3のアルコキシ、トリフルオロメトキシ、トリフルオロメチルチオ、ジメチルアミノ、シアノ、(C1~C3アルキル)SO2-、(C1~C3アルキル)NHSO2-、(C1~C3アルキル)2NSO2-、NH2SO2-により任意に置換されたフェニレン基である。 (In the formula, the Ar group is an arylene group and n is the number of repeating units.)
Here, as the arylene group, a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, or the like can be used. Specifically, the substituted phenylene group is one or more F, Cl, Br, C1-C3 alkyl, trifluoromethyl, C1-C3 alkoxy, trifluoromethoxy, trifluoromethylthio, dimethylamino, cyano, A phenylene group optionally substituted with (C1-C3 alkyl) SO 2- , (C1-C3 alkyl) NHSO 2- , (C1-C3 alkyl) 2NSO 2- , NH 2 SO 2-.
ここで、前記アリーレン基は、p-フェニレン基、m-フェニレン基、o-フェニレン基、および、置換されたフェニレン基などを使用することができる。具体的に、置換されたフェニレン基は、一つ以上のF、Cl、Br、C1~C3のアルキル、トリフルオロメチル、C1~C3のアルコキシ、トリフルオロメトキシ、トリフルオロメチルチオ、ジメチルアミノ、シアノ、(C1~C3アルキル)SO2-、(C1~C3アルキル)NHSO2-、(C1~C3アルキル)2NSO2-、NH2SO2-により任意に置換されたフェニレン基である。 (In the formula, the Ar group is an arylene group and n is the number of repeating units.)
Here, as the arylene group, a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, or the like can be used. Specifically, the substituted phenylene group is one or more F, Cl, Br, C1-C3 alkyl, trifluoromethyl, C1-C3 alkoxy, trifluoromethoxy, trifluoromethylthio, dimethylamino, cyano, A phenylene group optionally substituted with (C1-C3 alkyl) SO 2- , (C1-C3 alkyl) NHSO 2- , (C1-C3 alkyl) 2NSO 2- , NH 2 SO 2-.
ポリアリーレンスルフィド樹脂に前記反応性官能基を導入する方法としては特に限定されるものではなく、既知の方法で重合されるが、共役芳香環骨格上に一つまたは複数の一般式(2)で表される基を有する重合停止剤を使用する方法が挙げられる。前記重合停止剤で用いられる共役芳香環骨格としては、例えば、ジフェニルジスルフィド、モノヨードベンゼン、チオフェノール、2,2’-ジベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、2-(モルホリノチオ)ベンゾチアゾール、N,N’-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミドなどが挙げられる。
The method for introducing the reactive functional group into the polyarylene sulfide resin is not particularly limited, and polymerization is carried out by a known method, but one or a plurality of general formulas (2) can be used on the conjugated aromatic ring skeleton. Examples thereof include a method of using a polymerization terminator having a represented group. Examples of the conjugated aromatic ring skeleton used in the polymerization terminator include diphenyldisulfide, monoiodobenzene, thiophenol, 2,2'-dibenzothiazolyl disulfide, 2-mercaptobenzothiazole, and N-cyclohexyl-2-benzo. Examples thereof include thiazolyl sulfenamide, 2- (morpholinothio) benzothiazole, N, N'-dicyclohexyl-1,3-benzothiazole-2-sulfenamide and the like.
(式中、Rは水素原子またはアルカリ金属原子である)
カルボキシ基の末端基構造を有するポリアリーレンスルフィド樹脂の製造方法の好適な重合方法としては、ジヨード芳香族化合物と硫黄元素を含む反応物を重合反応させる段階、前記重合反応段階を進行しながら、カルボキシ基を有する化合物を添加してポリアリーレンスルフィド主鎖の末端基中をカルボキシ基で置換する製造方法が挙げられる。前記カルボキシ基を有する化合物で用いられる代表的な例は、2-ヨード安息香酸、3-ヨード安息香酸、4-ヨード安息香酸、および2,2’-ジチオ安息香酸からなる群より選ばれる少なくとも1種が挙げられる。前記カルボキシ基を有する化合物は、ジヨード芳香族化合物100重量部を基準に約0.0001~5重量部添加することができる。 (In the formula, R is a hydrogen atom or an alkali metal atom)
As a preferable polymerization method of the method for producing a polyarylene sulfide resin having a terminal group structure of a carboxy group, a step of polymerizing a reactant containing a diiodose aromatic compound and a sulfur element, and a step of carrying out the polymerization reaction step, carboxy Examples thereof include a production method in which a compound having a group is added to replace the terminal group of the polyarylene sulfide main chain with a carboxy group. A representative example used in the compound having a carboxy group is at least one selected from the group consisting of 2-iodobenzoic acid, 3-iodobenzoic acid, 4-iodobenzoic acid, and 2,2'-dithiobenzoic acid. Seeds are mentioned. The compound having a carboxy group can be added in an amount of about 0.0001 to 5 parts by weight based on 100 parts by weight of the diiodot aromatic compound.
カルボキシ基の末端基構造を有するポリアリーレンスルフィド樹脂の製造方法の好適な重合方法としては、ジヨード芳香族化合物と硫黄元素を含む反応物を重合反応させる段階、前記重合反応段階を進行しながら、カルボキシ基を有する化合物を添加してポリアリーレンスルフィド主鎖の末端基中をカルボキシ基で置換する製造方法が挙げられる。前記カルボキシ基を有する化合物で用いられる代表的な例は、2-ヨード安息香酸、3-ヨード安息香酸、4-ヨード安息香酸、および2,2’-ジチオ安息香酸からなる群より選ばれる少なくとも1種が挙げられる。前記カルボキシ基を有する化合物は、ジヨード芳香族化合物100重量部を基準に約0.0001~5重量部添加することができる。 (In the formula, R is a hydrogen atom or an alkali metal atom)
As a preferable polymerization method of the method for producing a polyarylene sulfide resin having a terminal group structure of a carboxy group, a step of polymerizing a reactant containing a diiodose aromatic compound and a sulfur element, and a step of carrying out the polymerization reaction step, carboxy Examples thereof include a production method in which a compound having a group is added to replace the terminal group of the polyarylene sulfide main chain with a carboxy group. A representative example used in the compound having a carboxy group is at least one selected from the group consisting of 2-iodobenzoic acid, 3-iodobenzoic acid, 4-iodobenzoic acid, and 2,2'-dithiobenzoic acid. Seeds are mentioned. The compound having a carboxy group can be added in an amount of about 0.0001 to 5 parts by weight based on 100 parts by weight of the diiodot aromatic compound.
前記製造方法では重合反応触媒を使用しても良く、代表的な重合反応触媒としては、ニトロベンゼン系触媒が上げられる。ニトロベンゼン系触媒のうち好ましい例としては、1,3-ジヨード-4-ニトロベンゼン、1-ヨード-4-ニトロベンゼン、2,6-ジヨード-4-ニトロフェノール、ヨードニトロベンゼン、2,6-ジヨード-4-ニトロアミンからなる群より選ばれる少なくとも1種が挙げられる。重合反応触媒の含有量は前記固体硫黄100重量部に対し0.01~20重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
A polymerization reaction catalyst may be used in the above-mentioned production method, and a nitrobenzene-based catalyst can be mentioned as a typical polymerization reaction catalyst. Preferred examples of nitrobenzene-based catalysts are 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol, iodonitrobenzene, and 2,6-diiodo-4-. At least one selected from the group consisting of nitroamines can be mentioned. The content of the polymerization reaction catalyst is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
該製造方法の反応条件の代表的な例は、温度180~250℃および圧力50~450Torr(6.7~60kPa)の初期反応条件から、温度270~350℃および圧力0.001~20Torr(0.00013~2.7kPa)の最終反応条件まで、温度を上昇させると共に圧力を降下させながら、1~30時間進行させる。好ましくは前記初期反応条件は反応速度を考慮して、温度180℃以上、圧力450Torr(60kPa)以下とし、最終反応条件は高分子の熱分解を考慮して温度350℃以下、圧力20Torr(2.7kPa)以下が挙げられる。
Typical examples of the reaction conditions of the production method are from the initial reaction conditions of a temperature of 180 to 250 ° C. and a pressure of 50 to 450 Torr (6.7 to 60 kPa), a temperature of 270 to 350 ° C. and a pressure of 0.001 to 20 Torr (0). The process is carried out for 1 to 30 hours while raising the temperature and lowering the pressure until the final reaction condition of .00013 to 2.7 kPa). Preferably, the initial reaction conditions are a temperature of 180 ° C. or higher and a pressure of 450 Torr (60 kPa) or less in consideration of the reaction rate, and the final reaction conditions are a temperature of 350 ° C. or lower and a pressure of 20 Torr (2. 7 kPa) The following can be mentioned.
但し、重合反応の条件は、反応器の構造設計および生産速度に依存し、当業者に知られているため、特に制限されない。反応条件は、当業者がプロセス条件を考慮して適宜設定することができる。
However, the conditions of the polymerization reaction are not particularly limited because they depend on the structural design and production rate of the reactor and are known to those skilled in the art. The reaction conditions can be appropriately set by those skilled in the art in consideration of the process conditions.
この重合方法を使うことにより、実質的にナトリウム含有量を低減させる必要が無く、コストパフォーマンスに優れたポリフェニレンスルフィド樹脂を得ることができる。
By using this polymerization method, it is not necessary to substantially reduce the sodium content, and a polyphenylene sulfide resin having excellent cost performance can be obtained.
また本発明のポリフェニレンスルフィド樹脂は、その他の重合方法によって得られたポリフェニレンスルフィド樹脂を含んでいてもよい。
(B成分:ポリカーボネート樹脂)
本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができるが、溶融エステル交換法が好ましい。ポリカーボネート樹脂はまた3官能フェノール類を重合させた分岐ポリカーボネート樹脂であってもよく、更に脂肪族ジカルボン酸や芳香族ジカルボン酸、または二価の脂肪族または脂環族アルコールを共重合させた共重合ポリカーボネートであってもよい。 Further, the polyphenylene sulfide resin of the present invention may contain a polyphenylene sulfide resin obtained by another polymerization method.
(B component: polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a divalent phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a molten transesterification method, a solid phase transesterification method of a carbonate prepolymer, a ring-opening polymerization method of a cyclic carbonate compound, and the like, but the molten transesterification method is preferable. The polycarbonate resin may also be a branched polycarbonate resin obtained by polymerizing trifunctional phenols, and further copolymerized by copolymerizing an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, or a divalent aliphatic or alicyclic alcohol. It may be polycarbonate.
(B成分:ポリカーボネート樹脂)
本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができるが、溶融エステル交換法が好ましい。ポリカーボネート樹脂はまた3官能フェノール類を重合させた分岐ポリカーボネート樹脂であってもよく、更に脂肪族ジカルボン酸や芳香族ジカルボン酸、または二価の脂肪族または脂環族アルコールを共重合させた共重合ポリカーボネートであってもよい。 Further, the polyphenylene sulfide resin of the present invention may contain a polyphenylene sulfide resin obtained by another polymerization method.
(B component: polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a divalent phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a molten transesterification method, a solid phase transesterification method of a carbonate prepolymer, a ring-opening polymerization method of a cyclic carbonate compound, and the like, but the molten transesterification method is preferable. The polycarbonate resin may also be a branched polycarbonate resin obtained by polymerizing trifunctional phenols, and further copolymerized by copolymerizing an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, or a divalent aliphatic or alicyclic alcohol. It may be polycarbonate.
ポリカーボネート樹脂の粘度平均分子量は、好ましくは1.3×104~4.0×104、より好ましくは1.5×104~3.8×104である。芳香族ポリカーボネート樹脂の粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を次式に挿入して求めたものである。かかるポリカーボネート樹脂の詳細については、特開2002-129003号公報に記載されている。
The viscosity average molecular weight of the polycarbonate resin is preferably 1.3 × 10 4 to 4.0 × 10 4 , more preferably 1.5 × 10 4 to 3.8 × 10 4 . The viscosity average molecular weight (M) of the aromatic polycarbonate resin was obtained by inserting the specific viscosity (η sp ) obtained at 20 ° C. from a solution of 0.7 g of the polycarbonate resin in 100 ml of methylene chloride into the following formula. Details of such a polycarbonate resin are described in JP-A-2002-129003.
ηsp/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10-4M0.83
c=0.7
本発明で使用されるポリカーボネート樹脂は、通常使用されるビスフェノールA型ポリカーボネート以外にも、他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂であってもよい。他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂の具体例としては、下記のものが好適に例示される。
(1)該ポリカーボネートを構成する二価フェノール成分100モル%中、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称)成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称)成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する二価フェノール成分100モル%中、ビスフェノールA成分が10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCF成分が5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPM成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。 η sp / c = [η] + 0.45 × [η] 2 c (where [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 M 0.83
c = 0.7
The polycarbonate resin used in the present invention may be various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other dihydric phenols, in addition to the commonly used bisphenol A type polycarbonate. Good. The following are preferably exemplified as specific examples of various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other divalent phenols.
(1) Of 100 mol% of the dihydric phenol component constituting the polycarbonate, 20 to 80 mol% (more preferable) of 4,4'-(m-phenylenediisopropyridene) diphenol (hereinafter abbreviated as "BPM") component. 40-75 mol%, more preferably 45-65 mol%), and 20 to 9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter abbreviated as "BCF") component. Copolymerized polycarbonate of 80 mol% (more preferably 25-60 mol%, even more preferably 35-55 mol%).
(2) The bisphenol A component is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate. A copolymerized polycarbonate having a BCF component of 5 to 90 mol% (more preferably 10 to 50 mol%, still more preferably 15 to 40 mol%).
(3) The BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate, and The 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane component is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%). Copolymerized polycarbonate.
[η]=1.23×10-4M0.83
c=0.7
本発明で使用されるポリカーボネート樹脂は、通常使用されるビスフェノールA型ポリカーボネート以外にも、他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂であってもよい。他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂の具体例としては、下記のものが好適に例示される。
(1)該ポリカーボネートを構成する二価フェノール成分100モル%中、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称)成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称)成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する二価フェノール成分100モル%中、ビスフェノールA成分が10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCF成分が5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPM成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。 η sp / c = [η] + 0.45 × [η] 2 c (where [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 M 0.83
c = 0.7
The polycarbonate resin used in the present invention may be various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other dihydric phenols, in addition to the commonly used bisphenol A type polycarbonate. Good. The following are preferably exemplified as specific examples of various polycarbonate resins having high heat resistance or low water absorption, which are polymerized using other divalent phenols.
(1) Of 100 mol% of the dihydric phenol component constituting the polycarbonate, 20 to 80 mol% (more preferable) of 4,4'-(m-phenylenediisopropyridene) diphenol (hereinafter abbreviated as "BPM") component. 40-75 mol%, more preferably 45-65 mol%), and 20 to 9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter abbreviated as "BCF") component. Copolymerized polycarbonate of 80 mol% (more preferably 25-60 mol%, even more preferably 35-55 mol%).
(2) The bisphenol A component is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate. A copolymerized polycarbonate having a BCF component of 5 to 90 mol% (more preferably 10 to 50 mol%, still more preferably 15 to 40 mol%).
(3) The BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the divalent phenol component constituting the polycarbonate, and The 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane component is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%). Copolymerized polycarbonate.
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。これらの特殊なポリカーボネートの製法および特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報および特開2002-117580号公報等に詳しく記載されている。さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート-ポリオルガノシロキサン共重合体の使用も可能である。
These special polycarbonates may be used alone or in admixture of two or more. Further, these can also be used by mixing them with a widely used bisphenol A type polycarbonate. The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, JP-A-2002-117580 and the like. ing. Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing a polyorganosiloxane unit can also be used.
ポリカーボネート樹脂はバージン原料のみならず、使用済みの製品から再生されたポリカーボネート樹脂を利用することが可能である。その使用済みの製品としては、水ボトルに代表される容器、光学ディスクおよび自動車ヘッドランプなどが例示される。
As the polycarbonate resin, it is possible to use not only the virgin raw material but also the polycarbonate resin regenerated from the used product. Examples of the used products include containers typified by water bottles, optical discs, and automobile headlamps.
B成分の含有量は、A成分とB成分との合計100重量部中、1~99重量部であり、5~95重量部が好ましく、5~30重量部および70~95重量部がより好ましい。含有量が5~30重量部の場合には、よりポリフェニレンスルフィド樹脂の優れた特性を生かした樹脂設計が可能である場合があり、一方、70~95重量部の場合はよりポリカーボネート樹脂の優れた特性を生かした樹脂設計が可能となる場合がある。含有量が1重量部未満ではポリカーボネート樹脂の特徴が発現されずバリの発生が抑えられない。一方、99重量部より多いとポリフェニレンスルフィド樹脂の特徴が発現されず機械的強度が低下し、耐熱性も悪化する。
(C成分:官能基を含有するメルカプタン類またはジスルフィド化合物)
本発明において使用される官能基を含有するメルカプタン類またはジスルフィド化合物は、下記一般式(3)または下記一般式(4)で表される化合物であることが好ましい。 The content of the B component is 1 to 99 parts by weight, preferably 5 to 95 parts by weight, more preferably 5 to 30 parts by weight and 70 to 95 parts by weight, out of 100 parts by weight of the total of the A component and the B component. .. When the content is 5 to 30 parts by weight, it may be possible to design a resin that makes the best use of the excellent properties of the polyphenylene sulfide resin, while when the content is 70 to 95 parts by weight, the polycarbonate resin is more excellent. It may be possible to design a resin that takes advantage of its characteristics. If the content is less than 1 part by weight, the characteristics of the polycarbonate resin are not exhibited and the generation of burrs cannot be suppressed. On the other hand, if it is more than 99 parts by weight, the characteristics of the polyphenylene sulfide resin are not exhibited, the mechanical strength is lowered, and the heat resistance is also deteriorated.
(C component: mercaptans or disulfide compounds containing functional groups)
The functional group-containing mercaptans or disulfide compounds used in the present invention are preferably compounds represented by the following general formula (3) or the following general formula (4).
(C成分:官能基を含有するメルカプタン類またはジスルフィド化合物)
本発明において使用される官能基を含有するメルカプタン類またはジスルフィド化合物は、下記一般式(3)または下記一般式(4)で表される化合物であることが好ましい。 The content of the B component is 1 to 99 parts by weight, preferably 5 to 95 parts by weight, more preferably 5 to 30 parts by weight and 70 to 95 parts by weight, out of 100 parts by weight of the total of the A component and the B component. .. When the content is 5 to 30 parts by weight, it may be possible to design a resin that makes the best use of the excellent properties of the polyphenylene sulfide resin, while when the content is 70 to 95 parts by weight, the polycarbonate resin is more excellent. It may be possible to design a resin that takes advantage of its characteristics. If the content is less than 1 part by weight, the characteristics of the polycarbonate resin are not exhibited and the generation of burrs cannot be suppressed. On the other hand, if it is more than 99 parts by weight, the characteristics of the polyphenylene sulfide resin are not exhibited, the mechanical strength is lowered, and the heat resistance is also deteriorated.
(C component: mercaptans or disulfide compounds containing functional groups)
The functional group-containing mercaptans or disulfide compounds used in the present invention are preferably compounds represented by the following general formula (3) or the following general formula (4).
(式(3)中、R1は、20個までの炭素原子を含み、末端にカルボキシ基、アミノ基、ヒドロキシ基およびエポキシ基からなる群より選ばれる少なくとも1種の基を含むシクロアルキル基、アリール基または複素環式炭化水素基である。)
In formula (3), R 1 is a cycloalkyl group containing up to 20 carbon atoms and at least one group selected from the group consisting of a carboxy group, an amino group, a hydroxy group and an epoxy group at the end. It is an aryl group or a heterocyclic hydrocarbon group.)
(式(4)中、R2,R3は、同一または異なっていてよく、独立して20個までの炭素原子を含み、末端にカルボキシ基、アミノ基、ヒドロキシ基およびエポキシ基からなる群より選ばれる少なくとも1種の基を含むシクロアルキル基、アリール基または複素環式炭化水素基である。)
官能基を含有するジスルフィド化合物の例としては、2,2’-ジチオ二安息香酸、ジチオグリコール酸、α,α’-ジチオジ乳酸、β,β’-ジチオジ乳酸、2,2’-ジチオジアニリン、3,3’-ジチオジアニリン、4,4’-ジチオジアニリン、3,3’-ジチオジピリジン、2,2’-ジチオビス(ベンゾチアゾール)、2,2’-ジチオビス(ベンズイミダゾール)、2,2’-ジチオビス(ベンゾオキサゾール)、及び2-(4’-モルホリノジチオ)ベンゾチアゾール等を挙げることができる。 (In formula (4), R 2 and R 3 may be the same or different, and independently contain up to 20 carbon atoms, and are composed of a group consisting of a carboxy group, an amino group, a hydroxy group and an epoxy group at the end. A cycloalkyl group, an aryl group or a heterocyclic hydrocarbon group containing at least one selected group.)
Examples of functional group-containing disulfide compounds include 2,2'-benzimidazole, dithioglycolic acid, α, α'-dithiodilactic acid, β, β'-dithiodilactic acid, 2,2'-dithiodianiline. , 3,3'-dithiodianiline, 4,4'-dithiodianiline, 3,3'-dithiodipyridine, 2,2'-dithiobis (benzothiazole), 2,2'-dithiobis (benzimidazole), Examples thereof include 2,2'-dithiobis (benzoxazole) and 2- (4'-morpholinodithio) benzothiazole.
官能基を含有するジスルフィド化合物の例としては、2,2’-ジチオ二安息香酸、ジチオグリコール酸、α,α’-ジチオジ乳酸、β,β’-ジチオジ乳酸、2,2’-ジチオジアニリン、3,3’-ジチオジアニリン、4,4’-ジチオジアニリン、3,3’-ジチオジピリジン、2,2’-ジチオビス(ベンゾチアゾール)、2,2’-ジチオビス(ベンズイミダゾール)、2,2’-ジチオビス(ベンゾオキサゾール)、及び2-(4’-モルホリノジチオ)ベンゾチアゾール等を挙げることができる。 (In formula (4), R 2 and R 3 may be the same or different, and independently contain up to 20 carbon atoms, and are composed of a group consisting of a carboxy group, an amino group, a hydroxy group and an epoxy group at the end. A cycloalkyl group, an aryl group or a heterocyclic hydrocarbon group containing at least one selected group.)
Examples of functional group-containing disulfide compounds include 2,2'-benzimidazole, dithioglycolic acid, α, α'-dithiodilactic acid, β, β'-dithiodilactic acid, 2,2'-dithiodianiline. , 3,3'-dithiodianiline, 4,4'-dithiodianiline, 3,3'-dithiodipyridine, 2,2'-dithiobis (benzothiazole), 2,2'-dithiobis (benzimidazole), Examples thereof include 2,2'-dithiobis (benzoxazole) and 2- (4'-morpholinodithio) benzothiazole.
また、官能基を含有するメルカプタン類の例としては、2-メルカプト安息香酸、3-メルカプト安息香酸、4-メルカプト安息香酸、チオグリコール酸、チオ乳酸、2-メルカプトアニリン、3-メルカプトアニリン、4-メルカプトアニリン、2-メルカプトピリジン、4-メルカプトピリジン、2-メルカプトベンゾチアゾールが挙げられる。
Examples of mercaptans containing functional groups include 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercaptobenzoic acid, thioglycolic acid, thiolactic acid, 2-mercaptoaniline, 3-mercaptoaniline, 4 -Mercaptoaniline, 2-mercaptopyridine, 4-mercaptopyridine, 2-mercaptobenzothiazole can be mentioned.
なお、官能基を含有しないメルカプタン類またはジスルフィド化合物を使用した場合、樹脂の粘度が下がりバリが悪化する。
When mercaptans or disulfide compounds that do not contain functional groups are used, the viscosity of the resin decreases and burrs worsen.
C成分の含有量は、A成分とB成分との合計100重量部に対し、0.001~10重量部であり、好ましくは0.005~5重量部、より好ましくは0.05~1重量部である。C成分の含有量が0.001重量部未満では機械的強度および耐熱性が劣り、10重量部を超えると機械的強度が低下し、樹脂の可塑化が起こりバリも悪化する。
(D成分:強化材)
本発明において使用される強化材は、特に限定されるものではないが、繊維状、板状、粉末状、粒状などの強化材を使用することができる。具体的には、ガラス繊維、ガラスミルドファイバー、ワラストナイト、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの無機繊維および全芳香族ポリアミド繊維などの有機繊維などが挙げられ、ガラス繊維、ガラスミルドファイバー、ワラストナイト、炭素繊維、全芳香族ポリアミド繊維が好ましく用いられる。また、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスフレーク、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどが挙げられ、ガラスフレーク、マイカ、タルク、ガラスビーズが好ましく用いられる。これらは中空であってもよく、さらにはこれら強化材を2種類以上併用することも可能である。 The content of the C component is 0.001 to 10 parts by weight, preferably 0.005 to 5 parts by weight, and more preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the total of the A component and the B component. It is a department. If the content of the C component is less than 0.001 part by weight, the mechanical strength and heat resistance are inferior, and if it exceeds 10 parts by weight, the mechanical strength is lowered, the resin is plasticized, and the burr is also deteriorated.
(D component: Reinforcement material)
The reinforcing material used in the present invention is not particularly limited, but reinforcing materials such as fibrous, plate-shaped, powder-shaped, and granular can be used. Specifically, inorganic fibers such as glass fiber, glass milled fiber, wallastnite, carbon fiber, potassium titanate, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, and metal fiber. Examples thereof include organic fibers such as total aromatic polyamide fibers, and glass fibers, glass milled fibers, wallastonite, carbon fibers, and total aromatic polyamide fibers are preferably used. In addition, silicates such as sericite, kaolin, mica, clay, bentonite, asbestos, talc, and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina, silicon oxide, magnesium oxide, zirconium oxide, and titanium oxide. , Metal compounds such as iron oxide, carbonates such as magnesium oxide and dolomite, sulfates such as calcium sulfate and barium sulfate, glass flakes, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica, etc. However, glass flakes, mica, talc, and glass beads are preferably used. These may be hollow, and it is also possible to use two or more kinds of these reinforcing materials in combination.
(D成分:強化材)
本発明において使用される強化材は、特に限定されるものではないが、繊維状、板状、粉末状、粒状などの強化材を使用することができる。具体的には、ガラス繊維、ガラスミルドファイバー、ワラストナイト、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの無機繊維および全芳香族ポリアミド繊維などの有機繊維などが挙げられ、ガラス繊維、ガラスミルドファイバー、ワラストナイト、炭素繊維、全芳香族ポリアミド繊維が好ましく用いられる。また、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスフレーク、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどが挙げられ、ガラスフレーク、マイカ、タルク、ガラスビーズが好ましく用いられる。これらは中空であってもよく、さらにはこれら強化材を2種類以上併用することも可能である。 The content of the C component is 0.001 to 10 parts by weight, preferably 0.005 to 5 parts by weight, and more preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the total of the A component and the B component. It is a department. If the content of the C component is less than 0.001 part by weight, the mechanical strength and heat resistance are inferior, and if it exceeds 10 parts by weight, the mechanical strength is lowered, the resin is plasticized, and the burr is also deteriorated.
(D component: Reinforcement material)
The reinforcing material used in the present invention is not particularly limited, but reinforcing materials such as fibrous, plate-shaped, powder-shaped, and granular can be used. Specifically, inorganic fibers such as glass fiber, glass milled fiber, wallastnite, carbon fiber, potassium titanate, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, and metal fiber. Examples thereof include organic fibers such as total aromatic polyamide fibers, and glass fibers, glass milled fibers, wallastonite, carbon fibers, and total aromatic polyamide fibers are preferably used. In addition, silicates such as sericite, kaolin, mica, clay, bentonite, asbestos, talc, and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina, silicon oxide, magnesium oxide, zirconium oxide, and titanium oxide. , Metal compounds such as iron oxide, carbonates such as magnesium oxide and dolomite, sulfates such as calcium sulfate and barium sulfate, glass flakes, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica, etc. However, glass flakes, mica, talc, and glass beads are preferably used. These may be hollow, and it is also possible to use two or more kinds of these reinforcing materials in combination.
また、これら強化材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で、膨潤性の層状珪酸塩では有機化オニウムイオンで予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
In addition, these reinforcing materials are pretreated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound, and a swellable layered silicate with an organic onium ion. Use is preferred in the sense of obtaining better mechanical strength.
本発明の樹脂組成物に導電性を付与するために強化材として、導電性フィラーが挙げられる。導電性フィラーは、通常樹脂の導電化に用いられる導電性フィラーであれば特に制限は無く、その具体例としては、金属粉、金属フレーク、金属リボン、金属繊維、金属酸化物、導電性物質で被覆された無機フィラー、カーボン粉末、黒鉛、炭素繊維、カーボンフレーク、鱗片状カーボンなどが挙げられる。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。金属繊維の金属種の具体例としては鉄、銅、ステンレス、アルミニウム、黄銅などが例示できる。かかる金属粉、金属フレーク、金属リボン、金属繊維はチタネート系、アルミ系、シラン系などの表面処理剤で表面処理を施されていてもよい。
As a reinforcing material for imparting conductivity to the resin composition of the present invention, a conductive filler can be mentioned. The conductive filler is not particularly limited as long as it is a conductive filler usually used for making a resin conductive, and specific examples thereof include metal powder, metal flakes, metal ribbons, metal fibers, metal oxides, and conductive substances. Examples include coated inorganic fillers, carbon powders, graphite, carbon fibers, carbon flakes, scaly carbon and the like. Specific examples of metal powders, metal flakes, and metal types of metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin. Specific examples of the metal type of the metal fiber include iron, copper, stainless steel, aluminum, brass and the like. The metal powder, metal flakes, metal ribbon, and metal fiber may be surface-treated with a surface treatment agent such as titanate-based, aluminum-based, or silane-based.
金属酸化物の具体例としてはSnO2(アンチモンドープ)、In2O3(アンチモンドープ)、ZnO(アルミニウムドープ)などが例示でき、これらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
Specific examples of the metal oxide include SnO 2 (antimony doping), In 2 O 3 (antimony doping), ZnO (aluminum doping), and the like, and these are surfaces of titanate-based, aluminum-based, silane-based coupling agents, and the like. The surface may be treated with a treatment agent.
導電性物質で被覆された無機フィラーにおける導電性物質の具体例としてはアルミニウム、ニッケル、銀、カーボン、SnO2(アンチモンドープ)、In2O3(アンチモンドープ)などが例示できる。また被覆される無機フィラーとしては、マイカ、ガラスビーズ、ガラス繊維、炭素繊維、チタン酸カリウムウィスカー、硫酸バリウム、酸化亜鉛、酸化チタン、ホウ酸アルミニウムウィスカー、酸化亜鉛系ウィスカー、チタン酸系ウィスカー、炭化珪素ウィスカーなどが例示できる。被覆方法としては真空蒸着法、スパッタリング法、無電解メッキ法、焼き付け法などが挙げられる。またこれらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
Specific examples of the conductive substance in the inorganic filler coated with the conductive substance include aluminum, nickel, silver, carbon, SnO 2 (antimony doping), and In 2 O 3 (antimony doping). The inorganic fillers to be coated include mica, glass beads, glass fiber, carbon fiber, potassium titanate whiskers, barium sulfate, zinc oxide, titanium oxide, aluminum borate whiskers, zinc oxide whiskers, titanic acid whiskers, and charcoal. An example is a silicon whisker. Examples of the coating method include a vacuum vapor deposition method, a sputtering method, an electroless plating method, and a baking method. Further, these may be surface-treated with a surface treatment agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
カーボン粉末はその原料、製造法からアセチレンブラック、ガスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラックなどに分類される。本発明で用いることのできるカーボン粉末は、その原料、製造法は特に限定されないが、アセチレンブラック、ファーネスブラックが特に好適に用いられる。
Carbon powder is classified into acetylene black, gas black, oil black, naphthaline black, thermal black, furnace black, lamp black, channel black, roll black, disc black, etc. according to its raw material and manufacturing method. The raw material and production method of the carbon powder that can be used in the present invention are not particularly limited, but acetylene black and furnace black are particularly preferably used.
D成分の含有量は、A成分とB成分との合計100重量部に対し、10~350重量部であり、好ましくは20~300重量部、より好ましくは60~200重量部である。D成分の含有量が10重量部未満では機械的強度、耐熱性が劣り、バリも悪化する。350重量部を超えると成形加工性が低下する。
The content of the D component is 10 to 350 parts by weight, preferably 20 to 300 parts by weight, and more preferably 60 to 200 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. If the content of the D component is less than 10 parts by weight, the mechanical strength and heat resistance are inferior, and the burr also deteriorates. If it exceeds 350 parts by weight, the molding processability is lowered.
ところで、本発明におけるD成分としては、JIS R7608により測定された引張弾性率が250GPa以上の炭素繊維が本発明の効果の点から好ましい。具体的な炭素繊維としては、カーボンファイバー、カーボンミルドファイバーおよびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003~0.1μmであることが好ましい。またそれらは単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。カーボンミルドファイバーは平均繊維長0.05~0.2mmであることが好ましい。これらの中でも機械的強度に優れる点において、カーボンファイバーが好ましい。カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、およびピッチ系などのいずれも使用可能である。また芳香族スルホン酸類またはそれらの塩のメチレン型結合による重合体と溶媒よりなる原料組成を紡糸または成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。但し、カーボンファイバーの引張弾性率が600GPaを超えるとカーボンファイバーが非常に高価となり、かつ原料供給面から汎用性が低下するため、使用するカーボンファイバーの引張弾性率の好ましい範囲は250~600GPaであり、より好ましくは260~500GPaである。また、JIS R7608により測定されたカーボンファイバーの引張強度は3,000MPa以上が好ましい。但し、カーボンファイバーの引張強度が7,000MPa超えると引張弾性率と同様にカーボンファイバーが非常に高価となり、かつ原料供給面から汎用性が低下するため、使用するカーボンファイバーの引張強度の好ましい範囲は3,000~7,000MPaであり、より好ましくは5,000~6,500MPaである。カーボンファイバーの平均繊維径は特に限定されないが、3~15μmが好ましく、より好ましくは4~13μmである。かかる範囲の平均繊維径を持つカーボンファイバーは、成形品外観を損なうことなく良好な機械的強度および疲労特性を発現することができる。また、カーボンファイバーの好ましい繊維長は、樹脂組成物中における数平均繊維長として60~500μmが好ましく、より好ましくは80~400μm、特に好ましくは100~300μmである。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、および薬品による分解等の処理で採取されるカーボンファイバーの残さから光学顕微鏡観察などから画像解析装置により算出される値である。また、かかる値の算出に際しては繊維長以下の長さのものはカウントしない方法による値である。
By the way, as the D component in the present invention, a carbon fiber having a tensile elastic modulus of 250 GPa or more measured by JIS R7608 is preferable from the viewpoint of the effect of the present invention. Specific examples of carbon fibers include carbon fibers, carbon milled fibers, carbon nanotubes, and the like. The carbon nanotubes preferably have a fiber diameter of 0.003 to 0.1 μm. Further, they may be single-layer, two-layer, or multi-layer, and multi-layer (so-called MWCNT) is preferable. The carbon milled fiber preferably has an average fiber length of 0.05 to 0.2 mm. Among these, carbon fiber is preferable in terms of excellent mechanical strength. As the carbon fiber, any of cellulosic type, polyacrylonitrile type, pitch type and the like can be used. Further, it is obtained by spinning or molding a raw material composition consisting of a polymer and a solvent by a methylene-type bond of aromatic sulfonic acids or salts thereof, and then spinning without undergoing an infusibilization step represented by a method such as carbonization. Can also be used. Among these, a polyacrylonitrile-based high elastic modulus type is particularly preferable. However, if the tensile elastic modulus of the carbon fiber exceeds 600 GPa, the carbon fiber becomes very expensive and the versatility is lowered from the viewpoint of raw material supply. Therefore, the preferable range of the tensile elastic modulus of the carbon fiber used is 250 to 600 GPa. , More preferably 260-500 GPa. The tensile strength of the carbon fiber measured by JIS R7608 is preferably 3,000 MPa or more. However, if the tensile strength of the carbon fiber exceeds 7,000 MPa, the carbon fiber becomes very expensive as well as the tensile elastic modulus, and the versatility is lowered from the viewpoint of raw material supply. Therefore, the preferable range of the tensile strength of the carbon fiber to be used is It is 3,000 to 7,000 MPa, more preferably 5,000 to 6,500 MPa. The average fiber diameter of the carbon fiber is not particularly limited, but is preferably 3 to 15 μm, and more preferably 4 to 13 μm. A carbon fiber having an average fiber diameter in such a range can exhibit good mechanical strength and fatigue characteristics without impairing the appearance of the molded product. The fiber length of the carbon fiber is preferably 60 to 500 μm, more preferably 80 to 400 μm, and particularly preferably 100 to 300 μm as the number average fiber length in the resin composition. The number average fiber length is a value calculated by an image analyzer from the residue of carbon fibers collected by high-temperature ashing of the molded product, dissolution with a solvent, decomposition with chemicals, etc. from observation with an optical microscope. is there. Further, when calculating such a value, a value having a length shorter than or equal to the fiber length is a value obtained by a method that does not count.
上記のカーボンファイバーは、カーボンファイバーの表面に金属層をコートしてもよい。金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、先にガラス強化材における異種材料による表面被覆で述べた各種の方法が採用できる。中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1~1μm、より好ましくは0.15~0.5μmである。更に好ましくは0.2~0.35μmである。かかる金属未コートのカーボンファイバー、金属コートカーボンファイバーは、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理されたカーボンファイバーは、機械的強度に優れることから本発明において好適である。また金属未コートのカーボンファイバー、金属コートカーボンファイバーの集束剤量に特に限定はないが、ウエルド強度向上させる点おいて集束剤量は少ない方が好ましい。好ましい集束剤量は0~4%であり、より好ましくは0.1~3%である。
The above carbon fiber may be coated with a metal layer on the surface of the carbon fiber. Examples of the metal include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of corrosion resistance of the metal layer. As the metal coating method, various methods described above for surface coating with different materials in the glass reinforcing material can be adopted. Above all, the plating method is preferably used. Further, also in the case of such a metal-coated carbon fiber, the carbon fiber mentioned above can be used as the original carbon fiber. The thickness of the metal coating layer is preferably 0.1 to 1 μm, more preferably 0.15 to 0.5 μm. More preferably, it is 0.2 to 0.35 μm. The metal-uncoated carbon fiber and the metal-coated carbon fiber are preferably those which have been focused with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like. In particular, urethane-based resin and carbon fiber treated with epoxy-based resin are suitable in the present invention because of their excellent mechanical strength. The amount of the uncoated carbon fiber and the amount of the metal-coated carbon fiber is not particularly limited, but it is preferable that the amount of the sizing agent is small in terms of improving the weld strength. The preferred amount of sizing agent is 0 to 4%, more preferably 0.1 to 3%.
D成分として炭素繊維または全芳香族ポリアミド繊維を用いる場合の含有量は、A成分とB成分の合計100重量部に対し、15~180重量部が好ましく、より好ましくは18~150重量部、さらに好ましくは20~140重量部である。
(その他の成分)
本発明における樹脂組成物中には本発明の効果を損なわない範囲で、エラストマー成分を含むことができる。好適なエラストマー成分としては、アクリロニトリル・ブタジエン・スチレン系共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)およびシリコーン・アクリル複合ゴム系グラフト共重合体などのコア-シェルグラフト共重合体樹脂、あるいはシリコーン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。 When carbon fiber or total aromatic polyamide fiber is used as the D component, the content is preferably 15 to 180 parts by weight, more preferably 18 to 150 parts by weight, and further preferably 18 to 150 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. It is preferably 20 to 140 parts by weight.
(Other ingredients)
The resin composition in the present invention may contain an elastomer component as long as the effects of the present invention are not impaired. Suitable elastomer components include core-shells such as acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate / butadiene-styrene copolymer (MBS resin) and silicone-acrylic composite rubber-based graft copolymer. Examples thereof include graft copolymer resins, and thermoplastic elastomers such as silicone-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers.
(その他の成分)
本発明における樹脂組成物中には本発明の効果を損なわない範囲で、エラストマー成分を含むことができる。好適なエラストマー成分としては、アクリロニトリル・ブタジエン・スチレン系共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)およびシリコーン・アクリル複合ゴム系グラフト共重合体などのコア-シェルグラフト共重合体樹脂、あるいはシリコーン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。 When carbon fiber or total aromatic polyamide fiber is used as the D component, the content is preferably 15 to 180 parts by weight, more preferably 18 to 150 parts by weight, and further preferably 18 to 150 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. It is preferably 20 to 140 parts by weight.
(Other ingredients)
The resin composition in the present invention may contain an elastomer component as long as the effects of the present invention are not impaired. Suitable elastomer components include core-shells such as acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate / butadiene-styrene copolymer (MBS resin) and silicone-acrylic composite rubber-based graft copolymer. Examples thereof include graft copolymer resins, and thermoplastic elastomers such as silicone-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers.
本発明における樹脂組成物中は本発明の効果を損なわない範囲で、他の熱可塑性樹脂を含むことができる。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、芳香族ポリエステル樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、などのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。
The resin composition of the present invention may contain other thermoplastic resins as long as the effects of the present invention are not impaired. Examples of other thermoplastic resins include general-purpose plastics typified by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, aromatic polyester resin, liquid crystal polyester resin, polyamide resin, and cyclic resin. Engineering plastics typified by polyolefin resins, polyarylate resins (acrystalline polyarylate, liquid crystal polyarylate), etc., polytetrafluoroethylene, polyether ether ketone, polyetherimide, polysulfone, polyether sulfone, etc. The so-called super engineering plastics can be mentioned.
本発明における樹脂組成物中は本発明の効果を損なわない範囲で、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン等)、結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(赤燐、リン酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)および他の重合体を添加することができる。
(樹脂組成物の製造)
本発明の樹脂組成物は上記各成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは二軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第二供給口より、溶融混合された他の成分中に供給することが好ましい。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 The resin composition of the present invention contains an antioxidant, a heat-resistant stabilizer (hindered phenol-based, hydroquinone-based, phosphite-based and substitutes thereof, etc.) and a weather-resistant agent (resorcinol-based) as long as the effects of the present invention are not impaired. , Salicylate type, benzotriazole type, benzophenone type, hindered amine type, etc.), antistatic agent and antistatic agent (montanoic acid and its metal salt, its ester, its half ester, stearyl alcohol, stearamide, various bisamides, bisurea and polyethylene wax, etc. ), Pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (niglosin, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plastic agents (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.) Etc.), antistatic agents (alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agents Etc.), flame retardant (red phosphorus, phosphate ester, melamine cyanurate, magnesium hydroxide, hydroxides such as aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy Resins or combinations of these bromine-based flame retardants and antimony trioxide, etc.) and other polymers can be added.
(Manufacturing of resin composition)
The resin composition of the present invention can be produced by mixing the above components simultaneously or in any order with a mixer such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. Melt-kneading with a twin-screw extruder is preferable, and if necessary, any component is preferably supplied from the second supply port into the other components melt-mixed by using a side feeder or the like. As the extruder, one having a vent capable of degassing the moisture in the raw material and the volatile gas generated from the melt-kneaded resin can be preferably used. A vacuum pump is preferably installed from the vent to efficiently discharge the generated water and volatile gas to the outside of the extruder. It is also possible to install a screen for removing foreign substances and the like mixed in the extruded raw material in the zone in front of the die portion of the extruder to remove the foreign substances from the resin composition. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (disc filter, etc.) and the like.
(樹脂組成物の製造)
本発明の樹脂組成物は上記各成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは二軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第二供給口より、溶融混合された他の成分中に供給することが好ましい。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 The resin composition of the present invention contains an antioxidant, a heat-resistant stabilizer (hindered phenol-based, hydroquinone-based, phosphite-based and substitutes thereof, etc.) and a weather-resistant agent (resorcinol-based) as long as the effects of the present invention are not impaired. , Salicylate type, benzotriazole type, benzophenone type, hindered amine type, etc.), antistatic agent and antistatic agent (montanoic acid and its metal salt, its ester, its half ester, stearyl alcohol, stearamide, various bisamides, bisurea and polyethylene wax, etc. ), Pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (niglosin, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plastic agents (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.) Etc.), antistatic agents (alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agents Etc.), flame retardant (red phosphorus, phosphate ester, melamine cyanurate, magnesium hydroxide, hydroxides such as aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy Resins or combinations of these bromine-based flame retardants and antimony trioxide, etc.) and other polymers can be added.
(Manufacturing of resin composition)
The resin composition of the present invention can be produced by mixing the above components simultaneously or in any order with a mixer such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. Melt-kneading with a twin-screw extruder is preferable, and if necessary, any component is preferably supplied from the second supply port into the other components melt-mixed by using a side feeder or the like. As the extruder, one having a vent capable of degassing the moisture in the raw material and the volatile gas generated from the melt-kneaded resin can be preferably used. A vacuum pump is preferably installed from the vent to efficiently discharge the generated water and volatile gas to the outside of the extruder. It is also possible to install a screen for removing foreign substances and the like mixed in the extruded raw material in the zone in front of the die portion of the extruder to remove the foreign substances from the resin composition. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (disc filter, etc.) and the like.
二軸押出機に使用するスクリューは、輸送用順フライトピースの間に多種多様な形状のスクリュピースを挿入して複雑に組合せ、一体化して一本のスクリューとして構成されており、順フライトピース、順ニーディングピース、逆ニーディングピース、逆フライトピース、切り欠きを有する順フライトピース、逆フライトピースなどのスクリュピースを処理対象原材料の特性を考慮して、適宜の順序および位置に配置して組み合わせたものなどを挙げることができる。溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
The screws used in the twin-screw extruder are made up of a single screw by inserting screw pieces of various shapes between the forward flight pieces for transportation, combining them in a complicated manner, and integrating them into a single screw. Screw pieces such as forward kneading pieces, reverse kneading pieces, reverse flight pieces, forward flight pieces with notches, and reverse flight pieces are arranged and combined in an appropriate order and position in consideration of the characteristics of the raw materials to be processed. You can mention things like screws. Examples of the melt kneader include a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts, in addition to the twin-screw extruder.
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.5mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~4mmである。
The resin extruded as described above is directly cut and pelletized, or after forming the strand, the such strand is cut with a pelletizer and pelletized. When it is necessary to reduce the influence of external dust and the like during pelletization, it is preferable to clean the atmosphere around the extruder. The shape of the obtained pellet can take a general shape such as a cylinder, a prism, and a sphere, but more preferably a cylinder. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, still more preferably 2 to 3.5 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, still more preferably 2.5 to 4 mm.
本発明の樹脂組成物の総ナトリウム含有量は39ppm以下であることが好ましく、より好ましくは30ppm以下、さらに好ましくは10ppm以下、特に好ましくは8ppm以下である。総ナトリウム量が39ppmを超える場合、ポリカーボネート樹脂の分解を抑制できず、そのため、ポリカーボネート樹脂によるバリ抑制効果が発現されないばかりか、よりひどい場合にはペレット化が困難となる場合がある。
(成形品について)
本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。 The total sodium content of the resin composition of the present invention is preferably 39 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and particularly preferably 8 ppm or less. When the total amount of sodium exceeds 39 ppm, the decomposition of the polycarbonate resin cannot be suppressed, so that the effect of suppressing burrs by the polycarbonate resin is not exhibited, and in the worse case, pelletization may be difficult.
(About molded products)
A molded product using the resin composition of the present invention can be obtained by molding pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding. In injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulating metal. Examples thereof include mold molding, rapid heating and cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultra-high-speed injection molding. Further, either a cold runner method or a hot runner method can be selected for molding. Further, in extrusion molding, various deformed extrusion molded products, sheets, films and the like can be obtained. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the resin composition of the present invention can be made into a molded product by rotary molding, blow molding or the like.
(成形品について)
本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。 The total sodium content of the resin composition of the present invention is preferably 39 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and particularly preferably 8 ppm or less. When the total amount of sodium exceeds 39 ppm, the decomposition of the polycarbonate resin cannot be suppressed, so that the effect of suppressing burrs by the polycarbonate resin is not exhibited, and in the worse case, pelletization may be difficult.
(About molded products)
A molded product using the resin composition of the present invention can be obtained by molding pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding. In injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulating metal. Examples thereof include mold molding, rapid heating and cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultra-high-speed injection molding. Further, either a cold runner method or a hot runner method can be selected for molding. Further, in extrusion molding, various deformed extrusion molded products, sheets, films and the like can be obtained. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the resin composition of the present invention can be made into a molded product by rotary molding, blow molding or the like.
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
The embodiment of the present invention, which the present inventor considers to be the best at present, is a collection of preferable ranges of each of the above requirements. For example, a representative example thereof will be described in the following examples. Of course, the present invention is not limited to these forms.
[樹脂組成物の評価]
(1)機械的強度評価
ISO527-1およびISO527-2(測定条件23℃)に準拠し引張破断強度を測定した。試験片は得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度150℃の条件で成形した。この数値が大きいほど樹脂組成物の機械的強度が優れていることを意味する。
(2)耐熱性評価
ISO規格のISO75-1および2に従って作成された厚み4mmの試験片を用い、1.80MPaの荷重で荷重たわみ温度を測定した。
(3)バリ評価
バリの評価は、上記のISO527-1およびISO527-2に準拠した試験片のガスベントに接触する部分のバリの長さを測定することにより実施した。なお、ガスベントの厚みは10μm、幅5mmとした。
[実施例1~22、比較例1~7]
ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、官能基を有するメルカプタン類またはジスルフィド化合物および強化材を表1および表2記載の各配合量で、ベント式二軸押出機を用いて溶融混練してペレットを得た。ベント式二軸押出機は(株)日本製鋼所製:TEX-30XSST(完全かみ合い、同方向回転)を使用した。押出条件は吐出量12kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口からダイス部分まで300℃とした。なお、強化材は上記押出機のサイドフィーダーを使用し、第二供給口から供給し、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂および官能基を有するメルカプタン類またはジスルフィド化合物は第一供給口から押出機に供給した。なお、ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度150℃の条件で、評価用の試験片を成形した。
<A成分>
A-1:製造方法1で得られたポリフェニレンスルフィド樹脂
[製造方法1]
パラジヨードベンゼン300.00g及び硫黄27.00gに、重合停止剤としてジフェニルジスルフィド0.60g(最終的に重合されたPPSの重量に基づいて0.65重量%の含量)を投入して180℃に加熱して完全にそれらを溶融及び混合した後、温度を220℃に昇温し、且つ、圧力を200Torrに降圧した。得られた混合物を、最終温度及び圧力が夫々320℃及び1Torrとなるように温度及び圧力を段階的に変化させつつ、8時間重合反応させてポリフェニレンスルフィド樹脂を製造した。総ナトリウム含有量は7ppmであった。また、重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は4.7であった。
A-2:製造方法2で得られたポリフェニレンスルフィド樹脂
[製造方法2]
パラジヨードベンゼン5130g及び硫黄450gに、反応開始剤としてメルカプトベンゾチアゾール4gを含む反応物を180℃に加熱して完全に溶融および混合した後、温度を220℃に昇温し、且つ、圧力を350Torrに降圧した。得られた混合物を、最終温度および圧力が各々300℃および1Torr以下となるように温度及び圧力を段階的に変化させつつ、重合反応を進行した。前記重合反応が80%進行した時(重合反応の進行程度は粘度による相対比率((現在粘度/目標粘度)×100%)の方法で確認した。)、重合停止剤としてメルカプトベンゾチアゾールを25g添加して反応を行った。1時間後、4-ヨード安息香酸51g添加して窒素雰囲気下で10分間反応を行い、0.5Torr以下に徐々に真空度を上げてさらに1時間反応を行った後反応を終了し、カルボキシ基を主鎖末端に含むポリアリーレンスルフィド樹脂を製造した。得られたポリアリーレンスルフィドのFT-IRスペクトルにて、1600~1800cm-1のカルボキシ基ピークの存在を確認した。また、1400~1600cm-1で現れる芳香環伸縮ピークの高さ強度を100%としたとき、前記1600~1800cm-1のピークの相対的高さ強度は3.4%であった。総ナトリウム含有量は7ppmであった。また、重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は4.11であった。
<B成分>
B-1:製造方法3で得られたポリカーボネート樹脂(粘度平均分子量12500、水酸基量13eq/t)
[製造方法3]
温度計、撹拌機及び還流冷却器付き反応器にイオン交換水219.4部、48%水酸化ナトリウム水溶液40.2部を仕込み、これに2,2-ビス(4-ヒドロキシフェニル)プロパン57.5部およびハイドロサルファイト0.12部を加えて25分間で溶解した後、塩化メチレン181部を5分間で加え、撹拌下15~25℃でホスゲン27.8部を40分要して吹込んだ。ホスゲン吹き込み終了後、48%水酸化ナトリウム水溶液7.2部およびp-tert-ブチルフェノール3.10部と7.4%水酸化ナトリウム水溶液1部に対し2,2-ビス(4-ヒドロキシフェニル)プロパン0.20部を溶解した溶液0.65部を加え、ホモミキサーで乳化せしめた後攪拌を停止し28~33℃で2.5時間静置して反応を終了した。反応終了後生成物に塩化メチレン200部を加え混合した後、攪拌を停止し、水相と有機相を分離して、ポリカーボネート樹脂濃度15重量%有機溶媒溶液を得た。この有機溶媒溶液にイオン交換水200部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。この操作を水相の導電率がイオン交換水と殆ど同じになるまで(4回)繰返した。得られた精製ポリカーボネート樹脂溶液をSUS304製の濾過精度1μmフィルターで濾過した。次に、該有機溶媒溶液を軸受け部に異物取出口を有する隔離室を設けた内壁の材質がSUS316L製の1000Lニーダーにイオン交換水100Lを投入し、水温42℃にて塩化メチレンを蒸発させて粉粒体とし、該粉粒体と水の混合物を水温95℃にコントロールされた攪拌機付熱水処理槽を有した熱水処理工程の熱水処理槽に投入し、粉粒体25部、水75部の混合比で30分間攪拌機混合した。この粉粒体と水の混合物を遠心分離機で分離して塩化メチレン0.5重量%、水45重量%の含有粉粒体を得た。次に、この粉粒体を140℃にコントロールされているSUS316L製伝導受熱式溝型2軸攪拌連続乾燥機に50kg/Hr(ポリカーボネート樹脂換算)で連続供給して、平均乾燥時間6時間の条件で乾燥し、粘度平均分子量11800の粉粒体を得た。得られた粉粒体をアセトン中に投入し、30分攪拌後粉粒体スラリー溶液を取り出し、固液分離後窒素雰囲気下で140℃、4時間乾燥し、アセトン抽出した粘度平均分子量12500、水酸基量13eq/tonの粉粒体(パウダー)を得た。
<C成分>
C-1:2,2’-ジチオ二安息香酸(東京化成工業(株)製)
C-2:4-メルカプト安息香酸(東京化成工業(株)製)
C-3:4,4’-ジチオジアニリン(東京化成工業(株)製)
C-4:4-メルカプトアニリン(東京化成工業(株)製)
C-5:ジフェニルジスルフィド(東京化成工業(株)製)
<D成分>
D-1:円形断面チョップドガラス繊維(日本電気硝子(株)製 T-732H 直径:10.5μm、カット長:3mm、エポキシ系集束剤)
D-2:マイカ(キンセイマテック(株) GM-201)
D-3:炭素繊維(帝人(株)製 IM702 6mm 長径:6μm、カット長:6mm、引張弾性率:282GPa、引張強度:5,490MPa、ウレタン系集束剤))
D-4:全芳香族ポリアミド繊維 (帝人(株)製 パラ系全芳香族ポリアミド繊維 T322EH 3-12 長径:12μm、カット長:3mm) [Evaluation of resin composition]
(1) Mechanical Strength Evaluation The tensile strength at break was measured in accordance with ISO527-1 and ISO527-2 (measurement conditions 23 ° C.). The test piece was obtained by drying the obtained pellets at 130 ° C. for 6 hours in a hot air circulation type dryer, and then using an injection molding machine (SG-150U manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature. It was molded under the condition of 150 ° C. The larger this value is, the more excellent the mechanical strength of the resin composition is.
(2) Heat resistance evaluation Using a test piece having a thickness of 4 mm prepared in accordance with ISO 75-1 and 2 of the ISO standard, the deflection temperature under load was measured with a load of 1.80 MPa.
(3) Evaluation of burrs The evaluation of burrs was carried out by measuring the length of burrs at the portion of the test piece conforming to the above ISO527-1 and ISO527-2 in contact with the gas vent. The thickness of the gas vent was 10 μm and the width was 5 mm.
[Examples 1 to 22, Comparative Examples 1 to 7]
Pellets were obtained by melt-kneading a polyarylene sulfide resin, a polycarbonate resin, a mercaptan having a functional group or a disulfide compound, and a reinforcing material at the respective blending amounts shown in Tables 1 and 2 using a bent twin-screw extruder. .. As the vent type twin-screw extruder, the Japan Steel Works, Ltd .: TEX-30XSST (complete meshing, rotating in the same direction) was used. The extrusion conditions were a discharge rate of 12 kg / h, a screw rotation speed of 150 rpm, a degree of vacuum of the vent of 3 kPa, and an extrusion temperature of 300 ° C. from the first supply port to the die portion. The reinforcing material is supplied from the second supply port using the side feeder of the extruder, and the polyarylene sulfide resin, polycarbonate resin and mercaptans having functional groups or disulfide compounds are supplied to the extruder from the first supply port. did. The first supply port referred to here is the supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port. The obtained pellets are dried at 130 ° C. for 6 hours in a hot air circulation type dryer, and then by an injection molding machine (SG-150U manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature of 150 ° C. Under the conditions, a test piece for evaluation was molded.
<Component A>
A-1: Polyphenylene sulfide resin obtained in Production Method 1 [Production Method 1]
To 300.00 g of paradiiodobenzene and 27.00 g of sulfur, 0.60 g of diphenyl disulfide (content of 0.65% by weight based on the weight of finally polymerized PPS) was added as a polymerization inhibitor to 180 ° C. After heating to completely melt and mix them, the temperature was raised to 220 ° C. and the pressure was lowered to 200 Torr. The obtained mixture was polymerized for 8 hours while gradually changing the temperature and pressure so that the final temperature and pressure were 320 ° C. and 1 Torr, respectively, to produce a polyphenylene sulfide resin. The total sodium content was 7 ppm. The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.7.
A-2: Polyphenylene sulfide resin obtained in Production Method 2 [Production Method 2]
A reactant containing 5130 g of paradiiodobenzene and 450 g of sulfur and 4 g of mercaptobenzothiazole as a reaction initiator is heated to 180 ° C. to completely melt and mix, then the temperature is raised to 220 ° C. and the pressure is 350 Torr. The pressure was lowered. The polymerization reaction of the obtained mixture proceeded while gradually changing the temperature and pressure so that the final temperature and pressure were 300 ° C. and 1 Torr or less, respectively. When the polymerization reaction proceeded by 80% (the degree of progress of the polymerization reaction was confirmed by the method of relative ratio by viscosity ((current viscosity / target viscosity) × 100%)), 25 g of mercaptobenzothiazole was added as a polymerization terminator. And reacted. After 1 hour, 51 g of 4-iodobenzoic acid was added and the reaction was carried out in a nitrogen atmosphere for 10 minutes, the degree of vacuum was gradually increased to 0.5 Torr or less, the reaction was carried out for another 1 hour, and then the reaction was terminated to complete the carboxy group. Was produced at the end of the main chain. In the FT-IR spectrum of the obtained polyarylene sulfide, the presence of a carboxy group peak of 1600 to 1800 cm -1 was confirmed. Further, when the height intensity of the aromatic ring expansion / contraction peak appearing at 1400 to 1600 cm -1 was 100%, the relative height intensity of the peak at 1600 to 1800 cm -1 was 3.4%. The total sodium content was 7 ppm. The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.11.
<B component>
B-1: Polycarbonate resin obtained in Production Method 3 (viscosity average molecular weight 12500, hydroxyl group amount 13 eq / t)
[Manufacturing method 3]
219.4 parts of ion-exchanged water and 40.2 parts of 48% sodium hydroxide aqueous solution were charged into a reactor with a thermometer, agitator and a reflux condenser, and 2,2-bis (4-hydroxyphenyl) propane 57. After adding 5 parts and 0.12 parts of hydroxide and dissolving in 25 minutes, add 181 parts of methylene chloride in 5 minutes and blow in 27.8 parts of phosgen at 15 to 25 ° C. for 40 minutes with stirring. It is. After blowing phosgen, 7.2 parts of 48% sodium hydroxide aqueous solution, 3.10 parts of p-tert-butylphenol and 1 part of 7.4% sodium hydroxide aqueous solution of 2,2-bis (4-hydroxyphenyl) propane 0.65 part of a solution in which 0.20 part was dissolved was added, emulsified with a homomixer, stirring was stopped, and the mixture was allowed to stand at 28 to 33 ° C. for 2.5 hours to complete the reaction. After completion of the reaction, 200 parts of methylene chloride was added to the product and mixed, the stirring was stopped, and the aqueous phase and the organic phase were separated to obtain an organic solvent solution having a polycarbonate resin concentration of 15% by weight. After adding 200 parts of ion-exchanged water to this organic solvent solution and stirring and mixing, the stirring was stopped and the aqueous phase and the organic phase were separated. This operation was repeated (4 times) until the conductivity of the aqueous phase became almost the same as that of the ion-exchanged water. The obtained purified polycarbonate resin solution was filtered through a SUS304 filter having a filtration accuracy of 1 μm. Next, 100 L of ion-exchanged water was put into a 1000 L kneader made of SUS316 L as the material of the inner wall provided with an isolation chamber having a foreign matter outlet in the bearing portion of the organic solvent solution, and methylene chloride was evaporated at a water temperature of 42 ° C. The powder and granules were prepared, and a mixture of the powder and granules and water was put into a hot water treatment tank in a hot water treatment step having a hot water treatment tank with a stirrer whose water temperature was controlled to 95 ° C. The mixture was mixed with a stirrer for 30 minutes at a mixing ratio of 75 parts. The mixture of the powder or granular material and water was separated by a centrifuge to obtain a powder or granular material containing 0.5% by weight of methylene chloride and 45% by weight of water. Next, the powder or granular material was continuously supplied at 50 kg / Hr (polycarbonate resin equivalent) to a SUS316L conduction heat receiving groove type twin-screw continuous dryer controlled at 140 ° C., and the condition was that the average drying time was 6 hours. To obtain a powder or granular material having a viscosity average molecular weight of 11800. The obtained powder or granular material was put into acetone, stirred for 30 minutes, the powder or granular material slurry solution was taken out, and after solid-liquid separation, it was dried at 140 ° C. for 4 hours in a nitrogen atmosphere, and the viscosity average molecular weight was 12500 and the hydroxyl group was extracted with acetone. A powder or granular material (powder) having an amount of 13 eq / ton was obtained.
<C component>
C-1: 2,2'-dithiodibenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-2: 4-Mercaptobenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-3: 4,4'-dithiodianiline (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-4: 4-Mercaptoaniline (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-5: Diphenyl disulfide (manufactured by Tokyo Chemical Industry Co., Ltd.)
<D component>
D-1: Circular cross-section chopped glass fiber (T-732H, manufactured by Nippon Electric Glass Co., Ltd., diameter: 10.5 μm, cut length: 3 mm, epoxy-based sizing agent)
D-2: Mica (Kinsei Matek Co., Ltd. GM-201)
D-3: Carbon fiber (IM702 6 mm major axis: 6 μm, cut length: 6 mm, tensile elastic modulus: 282 GPa, tensile strength: 5,490 MPa, urethane-based focusing agent manufactured by Teijin Limited))
D-4: Total Aromatic Polyamide Fiber (Teijin Co., Ltd. Para-Aromatic Polyamide Fiber T322EH 3-12 Major Diameter: 12 μm, Cut Length: 3 mm)
(1)機械的強度評価
ISO527-1およびISO527-2(測定条件23℃)に準拠し引張破断強度を測定した。試験片は得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度150℃の条件で成形した。この数値が大きいほど樹脂組成物の機械的強度が優れていることを意味する。
(2)耐熱性評価
ISO規格のISO75-1および2に従って作成された厚み4mmの試験片を用い、1.80MPaの荷重で荷重たわみ温度を測定した。
(3)バリ評価
バリの評価は、上記のISO527-1およびISO527-2に準拠した試験片のガスベントに接触する部分のバリの長さを測定することにより実施した。なお、ガスベントの厚みは10μm、幅5mmとした。
[実施例1~22、比較例1~7]
ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、官能基を有するメルカプタン類またはジスルフィド化合物および強化材を表1および表2記載の各配合量で、ベント式二軸押出機を用いて溶融混練してペレットを得た。ベント式二軸押出機は(株)日本製鋼所製:TEX-30XSST(完全かみ合い、同方向回転)を使用した。押出条件は吐出量12kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口からダイス部分まで300℃とした。なお、強化材は上記押出機のサイドフィーダーを使用し、第二供給口から供給し、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂および官能基を有するメルカプタン類またはジスルフィド化合物は第一供給口から押出機に供給した。なお、ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(住友重機械工業(株)製 SG-150U)によりシリンダー温度300℃、金型温度150℃の条件で、評価用の試験片を成形した。
<A成分>
A-1:製造方法1で得られたポリフェニレンスルフィド樹脂
[製造方法1]
パラジヨードベンゼン300.00g及び硫黄27.00gに、重合停止剤としてジフェニルジスルフィド0.60g(最終的に重合されたPPSの重量に基づいて0.65重量%の含量)を投入して180℃に加熱して完全にそれらを溶融及び混合した後、温度を220℃に昇温し、且つ、圧力を200Torrに降圧した。得られた混合物を、最終温度及び圧力が夫々320℃及び1Torrとなるように温度及び圧力を段階的に変化させつつ、8時間重合反応させてポリフェニレンスルフィド樹脂を製造した。総ナトリウム含有量は7ppmであった。また、重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は4.7であった。
A-2:製造方法2で得られたポリフェニレンスルフィド樹脂
[製造方法2]
パラジヨードベンゼン5130g及び硫黄450gに、反応開始剤としてメルカプトベンゾチアゾール4gを含む反応物を180℃に加熱して完全に溶融および混合した後、温度を220℃に昇温し、且つ、圧力を350Torrに降圧した。得られた混合物を、最終温度および圧力が各々300℃および1Torr以下となるように温度及び圧力を段階的に変化させつつ、重合反応を進行した。前記重合反応が80%進行した時(重合反応の進行程度は粘度による相対比率((現在粘度/目標粘度)×100%)の方法で確認した。)、重合停止剤としてメルカプトベンゾチアゾールを25g添加して反応を行った。1時間後、4-ヨード安息香酸51g添加して窒素雰囲気下で10分間反応を行い、0.5Torr以下に徐々に真空度を上げてさらに1時間反応を行った後反応を終了し、カルボキシ基を主鎖末端に含むポリアリーレンスルフィド樹脂を製造した。得られたポリアリーレンスルフィドのFT-IRスペクトルにて、1600~1800cm-1のカルボキシ基ピークの存在を確認した。また、1400~1600cm-1で現れる芳香環伸縮ピークの高さ強度を100%としたとき、前記1600~1800cm-1のピークの相対的高さ強度は3.4%であった。総ナトリウム含有量は7ppmであった。また、重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は4.11であった。
<B成分>
B-1:製造方法3で得られたポリカーボネート樹脂(粘度平均分子量12500、水酸基量13eq/t)
[製造方法3]
温度計、撹拌機及び還流冷却器付き反応器にイオン交換水219.4部、48%水酸化ナトリウム水溶液40.2部を仕込み、これに2,2-ビス(4-ヒドロキシフェニル)プロパン57.5部およびハイドロサルファイト0.12部を加えて25分間で溶解した後、塩化メチレン181部を5分間で加え、撹拌下15~25℃でホスゲン27.8部を40分要して吹込んだ。ホスゲン吹き込み終了後、48%水酸化ナトリウム水溶液7.2部およびp-tert-ブチルフェノール3.10部と7.4%水酸化ナトリウム水溶液1部に対し2,2-ビス(4-ヒドロキシフェニル)プロパン0.20部を溶解した溶液0.65部を加え、ホモミキサーで乳化せしめた後攪拌を停止し28~33℃で2.5時間静置して反応を終了した。反応終了後生成物に塩化メチレン200部を加え混合した後、攪拌を停止し、水相と有機相を分離して、ポリカーボネート樹脂濃度15重量%有機溶媒溶液を得た。この有機溶媒溶液にイオン交換水200部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。この操作を水相の導電率がイオン交換水と殆ど同じになるまで(4回)繰返した。得られた精製ポリカーボネート樹脂溶液をSUS304製の濾過精度1μmフィルターで濾過した。次に、該有機溶媒溶液を軸受け部に異物取出口を有する隔離室を設けた内壁の材質がSUS316L製の1000Lニーダーにイオン交換水100Lを投入し、水温42℃にて塩化メチレンを蒸発させて粉粒体とし、該粉粒体と水の混合物を水温95℃にコントロールされた攪拌機付熱水処理槽を有した熱水処理工程の熱水処理槽に投入し、粉粒体25部、水75部の混合比で30分間攪拌機混合した。この粉粒体と水の混合物を遠心分離機で分離して塩化メチレン0.5重量%、水45重量%の含有粉粒体を得た。次に、この粉粒体を140℃にコントロールされているSUS316L製伝導受熱式溝型2軸攪拌連続乾燥機に50kg/Hr(ポリカーボネート樹脂換算)で連続供給して、平均乾燥時間6時間の条件で乾燥し、粘度平均分子量11800の粉粒体を得た。得られた粉粒体をアセトン中に投入し、30分攪拌後粉粒体スラリー溶液を取り出し、固液分離後窒素雰囲気下で140℃、4時間乾燥し、アセトン抽出した粘度平均分子量12500、水酸基量13eq/tonの粉粒体(パウダー)を得た。
<C成分>
C-1:2,2’-ジチオ二安息香酸(東京化成工業(株)製)
C-2:4-メルカプト安息香酸(東京化成工業(株)製)
C-3:4,4’-ジチオジアニリン(東京化成工業(株)製)
C-4:4-メルカプトアニリン(東京化成工業(株)製)
C-5:ジフェニルジスルフィド(東京化成工業(株)製)
<D成分>
D-1:円形断面チョップドガラス繊維(日本電気硝子(株)製 T-732H 直径:10.5μm、カット長:3mm、エポキシ系集束剤)
D-2:マイカ(キンセイマテック(株) GM-201)
D-3:炭素繊維(帝人(株)製 IM702 6mm 長径:6μm、カット長:6mm、引張弾性率:282GPa、引張強度:5,490MPa、ウレタン系集束剤))
D-4:全芳香族ポリアミド繊維 (帝人(株)製 パラ系全芳香族ポリアミド繊維 T322EH 3-12 長径:12μm、カット長:3mm) [Evaluation of resin composition]
(1) Mechanical Strength Evaluation The tensile strength at break was measured in accordance with ISO527-1 and ISO527-2 (measurement conditions 23 ° C.). The test piece was obtained by drying the obtained pellets at 130 ° C. for 6 hours in a hot air circulation type dryer, and then using an injection molding machine (SG-150U manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature. It was molded under the condition of 150 ° C. The larger this value is, the more excellent the mechanical strength of the resin composition is.
(2) Heat resistance evaluation Using a test piece having a thickness of 4 mm prepared in accordance with ISO 75-1 and 2 of the ISO standard, the deflection temperature under load was measured with a load of 1.80 MPa.
(3) Evaluation of burrs The evaluation of burrs was carried out by measuring the length of burrs at the portion of the test piece conforming to the above ISO527-1 and ISO527-2 in contact with the gas vent. The thickness of the gas vent was 10 μm and the width was 5 mm.
[Examples 1 to 22, Comparative Examples 1 to 7]
Pellets were obtained by melt-kneading a polyarylene sulfide resin, a polycarbonate resin, a mercaptan having a functional group or a disulfide compound, and a reinforcing material at the respective blending amounts shown in Tables 1 and 2 using a bent twin-screw extruder. .. As the vent type twin-screw extruder, the Japan Steel Works, Ltd .: TEX-30XSST (complete meshing, rotating in the same direction) was used. The extrusion conditions were a discharge rate of 12 kg / h, a screw rotation speed of 150 rpm, a degree of vacuum of the vent of 3 kPa, and an extrusion temperature of 300 ° C. from the first supply port to the die portion. The reinforcing material is supplied from the second supply port using the side feeder of the extruder, and the polyarylene sulfide resin, polycarbonate resin and mercaptans having functional groups or disulfide compounds are supplied to the extruder from the first supply port. did. The first supply port referred to here is the supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port. The obtained pellets are dried at 130 ° C. for 6 hours in a hot air circulation type dryer, and then by an injection molding machine (SG-150U manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature of 150 ° C. Under the conditions, a test piece for evaluation was molded.
<Component A>
A-1: Polyphenylene sulfide resin obtained in Production Method 1 [Production Method 1]
To 300.00 g of paradiiodobenzene and 27.00 g of sulfur, 0.60 g of diphenyl disulfide (content of 0.65% by weight based on the weight of finally polymerized PPS) was added as a polymerization inhibitor to 180 ° C. After heating to completely melt and mix them, the temperature was raised to 220 ° C. and the pressure was lowered to 200 Torr. The obtained mixture was polymerized for 8 hours while gradually changing the temperature and pressure so that the final temperature and pressure were 320 ° C. and 1 Torr, respectively, to produce a polyphenylene sulfide resin. The total sodium content was 7 ppm. The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.7.
A-2: Polyphenylene sulfide resin obtained in Production Method 2 [Production Method 2]
A reactant containing 5130 g of paradiiodobenzene and 450 g of sulfur and 4 g of mercaptobenzothiazole as a reaction initiator is heated to 180 ° C. to completely melt and mix, then the temperature is raised to 220 ° C. and the pressure is 350 Torr. The pressure was lowered. The polymerization reaction of the obtained mixture proceeded while gradually changing the temperature and pressure so that the final temperature and pressure were 300 ° C. and 1 Torr or less, respectively. When the polymerization reaction proceeded by 80% (the degree of progress of the polymerization reaction was confirmed by the method of relative ratio by viscosity ((current viscosity / target viscosity) × 100%)), 25 g of mercaptobenzothiazole was added as a polymerization terminator. And reacted. After 1 hour, 51 g of 4-iodobenzoic acid was added and the reaction was carried out in a nitrogen atmosphere for 10 minutes, the degree of vacuum was gradually increased to 0.5 Torr or less, the reaction was carried out for another 1 hour, and then the reaction was terminated to complete the carboxy group. Was produced at the end of the main chain. In the FT-IR spectrum of the obtained polyarylene sulfide, the presence of a carboxy group peak of 1600 to 1800 cm -1 was confirmed. Further, when the height intensity of the aromatic ring expansion / contraction peak appearing at 1400 to 1600 cm -1 was 100%, the relative height intensity of the peak at 1600 to 1800 cm -1 was 3.4%. The total sodium content was 7 ppm. The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.11.
<B component>
B-1: Polycarbonate resin obtained in Production Method 3 (viscosity average molecular weight 12500, hydroxyl group amount 13 eq / t)
[Manufacturing method 3]
219.4 parts of ion-exchanged water and 40.2 parts of 48% sodium hydroxide aqueous solution were charged into a reactor with a thermometer, agitator and a reflux condenser, and 2,2-bis (4-hydroxyphenyl) propane 57. After adding 5 parts and 0.12 parts of hydroxide and dissolving in 25 minutes, add 181 parts of methylene chloride in 5 minutes and blow in 27.8 parts of phosgen at 15 to 25 ° C. for 40 minutes with stirring. It is. After blowing phosgen, 7.2 parts of 48% sodium hydroxide aqueous solution, 3.10 parts of p-tert-butylphenol and 1 part of 7.4% sodium hydroxide aqueous solution of 2,2-bis (4-hydroxyphenyl) propane 0.65 part of a solution in which 0.20 part was dissolved was added, emulsified with a homomixer, stirring was stopped, and the mixture was allowed to stand at 28 to 33 ° C. for 2.5 hours to complete the reaction. After completion of the reaction, 200 parts of methylene chloride was added to the product and mixed, the stirring was stopped, and the aqueous phase and the organic phase were separated to obtain an organic solvent solution having a polycarbonate resin concentration of 15% by weight. After adding 200 parts of ion-exchanged water to this organic solvent solution and stirring and mixing, the stirring was stopped and the aqueous phase and the organic phase were separated. This operation was repeated (4 times) until the conductivity of the aqueous phase became almost the same as that of the ion-exchanged water. The obtained purified polycarbonate resin solution was filtered through a SUS304 filter having a filtration accuracy of 1 μm. Next, 100 L of ion-exchanged water was put into a 1000 L kneader made of SUS316 L as the material of the inner wall provided with an isolation chamber having a foreign matter outlet in the bearing portion of the organic solvent solution, and methylene chloride was evaporated at a water temperature of 42 ° C. The powder and granules were prepared, and a mixture of the powder and granules and water was put into a hot water treatment tank in a hot water treatment step having a hot water treatment tank with a stirrer whose water temperature was controlled to 95 ° C. The mixture was mixed with a stirrer for 30 minutes at a mixing ratio of 75 parts. The mixture of the powder or granular material and water was separated by a centrifuge to obtain a powder or granular material containing 0.5% by weight of methylene chloride and 45% by weight of water. Next, the powder or granular material was continuously supplied at 50 kg / Hr (polycarbonate resin equivalent) to a SUS316L conduction heat receiving groove type twin-screw continuous dryer controlled at 140 ° C., and the condition was that the average drying time was 6 hours. To obtain a powder or granular material having a viscosity average molecular weight of 11800. The obtained powder or granular material was put into acetone, stirred for 30 minutes, the powder or granular material slurry solution was taken out, and after solid-liquid separation, it was dried at 140 ° C. for 4 hours in a nitrogen atmosphere, and the viscosity average molecular weight was 12500 and the hydroxyl group was extracted with acetone. A powder or granular material (powder) having an amount of 13 eq / ton was obtained.
<C component>
C-1: 2,2'-dithiodibenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-2: 4-Mercaptobenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-3: 4,4'-dithiodianiline (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-4: 4-Mercaptoaniline (manufactured by Tokyo Chemical Industry Co., Ltd.)
C-5: Diphenyl disulfide (manufactured by Tokyo Chemical Industry Co., Ltd.)
<D component>
D-1: Circular cross-section chopped glass fiber (T-732H, manufactured by Nippon Electric Glass Co., Ltd., diameter: 10.5 μm, cut length: 3 mm, epoxy-based sizing agent)
D-2: Mica (Kinsei Matek Co., Ltd. GM-201)
D-3: Carbon fiber (IM702 6 mm major axis: 6 μm, cut length: 6 mm, tensile elastic modulus: 282 GPa, tensile strength: 5,490 MPa, urethane-based focusing agent manufactured by Teijin Limited))
D-4: Total Aromatic Polyamide Fiber (Teijin Co., Ltd. Para-Aromatic Polyamide Fiber T322EH 3-12 Major Diameter: 12 μm, Cut Length: 3 mm)
Claims (5)
- (A)ポリアリーレンスルフィド樹脂(A成分)99~1重量部および(B)ポリカーボネート樹脂(B成分)1~99重量部の合計100重量部に対し、(C)官能基を含有するメルカプタン類またはジスルフィド化合物(C成分)0.001~10重量部並びに(D)強化材(D成分)10~350重量部を含有する樹脂組成物。 With respect to a total of 100 parts by weight of (A) polyarylene sulfide resin (A component) of 99 to 1 part by weight and (B) polycarbonate resin (B component) of 1 to 99 parts by weight, (C) mercaptans containing a functional group or A resin composition containing 0.001 to 10 parts by weight of a disulfide compound (C component) and 10 to 350 parts by weight of a reinforcing material (D component).
- C成分が、下記一般式(3)で表されるメルカプタン類または下記一般式(4)で表されるジスルフィド化合物であることを特徴とする請求項1に記載の樹脂組成物。
- D成分が無機充填材および有機繊維からなる群より選ばれる少なくとも一種の強化材であることを特徴とする請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the D component is at least one kind of reinforcing material selected from the group consisting of an inorganic filler and an organic fiber.
- D成分が、珪酸塩、ガラス繊維および炭素繊維からなる群より選ばれる少なくとも一種の無機充填材であることを特徴とする請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the D component is at least one kind of inorganic filler selected from the group consisting of silicates, glass fibers and carbon fibers.
- 請求項1~4のいずれかに記載の樹脂組成物からなる成形品。 A molded product made of the resin composition according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548443A JPWO2021059841A1 (en) | 2019-09-26 | 2020-08-27 | Polyarylene sulfide resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019175508 | 2019-09-26 | ||
JP2019-175508 | 2019-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021059841A1 true WO2021059841A1 (en) | 2021-04-01 |
Family
ID=75166084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032280 WO2021059841A1 (en) | 2019-09-26 | 2020-08-27 | Polyarylene sulfide resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021059841A1 (en) |
WO (1) | WO2021059841A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7560289B2 (en) | 2020-08-04 | 2024-10-02 | 帝人株式会社 | Polyarylene sulfide resin composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05230369A (en) * | 1992-02-19 | 1993-09-07 | Dainippon Ink & Chem Inc | Thermoplastic resin composition |
JP2005290328A (en) * | 2004-04-05 | 2005-10-20 | Kureha Chem Ind Co Ltd | Low-contaminated injection-molded form |
JP2014526601A (en) * | 2011-09-20 | 2014-10-06 | ティコナ・エルエルシー | Low chlorine filled melt processed polyarylene sulfide composition |
JP2014231583A (en) * | 2013-05-30 | 2014-12-11 | 帝人株式会社 | Resin composition |
WO2015125974A1 (en) * | 2014-02-24 | 2015-08-27 | 帝人株式会社 | Resin composition |
JP2016079305A (en) * | 2014-10-17 | 2016-05-16 | 住友精化株式会社 | Polyarylene sulfide-based resin composition |
-
2020
- 2020-08-27 JP JP2021548443A patent/JPWO2021059841A1/en active Pending
- 2020-08-27 WO PCT/JP2020/032280 patent/WO2021059841A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05230369A (en) * | 1992-02-19 | 1993-09-07 | Dainippon Ink & Chem Inc | Thermoplastic resin composition |
JP2005290328A (en) * | 2004-04-05 | 2005-10-20 | Kureha Chem Ind Co Ltd | Low-contaminated injection-molded form |
JP2014526601A (en) * | 2011-09-20 | 2014-10-06 | ティコナ・エルエルシー | Low chlorine filled melt processed polyarylene sulfide composition |
JP2014231583A (en) * | 2013-05-30 | 2014-12-11 | 帝人株式会社 | Resin composition |
WO2015125974A1 (en) * | 2014-02-24 | 2015-08-27 | 帝人株式会社 | Resin composition |
JP2016079305A (en) * | 2014-10-17 | 2016-05-16 | 住友精化株式会社 | Polyarylene sulfide-based resin composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7560289B2 (en) | 2020-08-04 | 2024-10-02 | 帝人株式会社 | Polyarylene sulfide resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021059841A1 (en) | 2021-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6825916B2 (en) | Resin composition | |
KR101934139B1 (en) | Polyarylene sulfide/liquid crystal polymer alloy and compositions including same | |
JP6326431B2 (en) | Polyarylene sulfide resin composition | |
EP2631274B1 (en) | Method for producing thermoplastic resin composition, thermoplastic resin composition, and molded product | |
JP7092573B2 (en) | Resin composition | |
JP6982961B2 (en) | Resin composition | |
JP6742132B2 (en) | Resin composition and method for producing the same | |
WO2017131028A1 (en) | Polyphenylene sulfide resin composition and method for producing same | |
JP6943730B2 (en) | Polyarylene sulfide resin composition | |
WO2021059841A1 (en) | Polyarylene sulfide resin composition | |
JP2019156987A (en) | Resin composition | |
JP7560289B2 (en) | Polyarylene sulfide resin composition | |
JP7233962B2 (en) | Polyarylene sulfide resin composition | |
JP7156872B2 (en) | resin composition | |
JP2019065071A (en) | Polyarylene sulfide resin composition | |
JP7428537B2 (en) | Resin composition for polyarylene sulfide composite | |
JP6742109B2 (en) | Resin composition | |
JP7372077B2 (en) | resin composition | |
JP2021017493A (en) | Resin composition | |
JP7260317B2 (en) | resin composition | |
JP7074584B2 (en) | Film insert molded body | |
JP2021116355A (en) | Polyarylene sulfide resin composition | |
JP2023063213A (en) | Polyarylene sulfide resin composition and molded article made of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869535 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548443 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20869535 Country of ref document: EP Kind code of ref document: A1 |