WO2021059805A1 - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
WO2021059805A1
WO2021059805A1 PCT/JP2020/031365 JP2020031365W WO2021059805A1 WO 2021059805 A1 WO2021059805 A1 WO 2021059805A1 JP 2020031365 W JP2020031365 W JP 2020031365W WO 2021059805 A1 WO2021059805 A1 WO 2021059805A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
light emitting
emitting device
base
connection
Prior art date
Application number
PCT/JP2020/031365
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 田尻
秀之 内海
和剛 泉
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2021059805A1 publication Critical patent/WO2021059805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • This disclosure relates to a semiconductor light emitting device.
  • Patent Document 1 discloses an example of a conventional semiconductor laser device.
  • the semiconductor laser device disclosed in the document includes a stem and a semiconductor laser chip.
  • the stem is made of metal and has a plate-shaped base, a block that supports the semiconductor laser chip, and a plurality of leads fixed to the base. With such a configuration, when power is applied through the plurality of reeds, the laser beam from the semiconductor laser chip is emitted forward in the emission direction.
  • One of the plurality of leads is joined to the rear surface (rear surface) of the base in the exit direction.
  • This lead has an adhesive portion at the end, and the adhesive portion is joined to the rear surface by silver wax or welding.
  • This adhesive portion becomes a factor that lowers the stability at the time of mounting on the circuit board. For example, when mounting this semiconductor laser device on a mounting substrate, there is a risk that the semiconductor laser device will be mounted in a tilted state due to the adhesive portion. In order to improve the stability, it is necessary to take some measures in consideration of the bonded portion, which makes the mounting complicated.
  • An object of the present disclosure is to provide a semiconductor light emitting device that is easy to mount.
  • the semiconductor light emitting device includes a semiconductor light emitting element, a main surface and a back surface facing opposite sides, a through hole penetrating from the main surface to the back surface, and a connection recess formed on the back surface.
  • a base having a base, a first lead inserted through the through hole and supported by the base, and a second lead connected to the connection recess were provided.
  • the connecting portion of the second lead is housed in a connecting recess formed on the back surface of the base. Therefore, it is not necessary to support the semiconductor light emitting device so that it does not tilt, and a member such as a jig for suppressing the tilt of the semiconductor light emitting device is unnecessary, and the semiconductor light emitting device can be easily mounted.
  • this circuit it is possible to provide a semiconductor light emitting device capable of improving stability.
  • FIG. 2 is a sectional view taken along line 3-3 of FIG.
  • FIG. 2 is a sectional view taken along line 4-4 of FIG.
  • Explanatory drawing which shows the stem seen from the rear surface.
  • Partially enlarged cross-sectional view of the base and individual reeds Partially enlarged cross-sectional view of the base and common reed.
  • FIG. 5 is a cross-sectional view showing a mounting substrate and a semiconductor light emitting device.
  • FIG. 5 is a cross-sectional view showing a mounting substrate and a semiconductor light emitting device.
  • Top view of the semiconductor light emitting device of the modified example Sectional drawing of the semiconductor light emitting device of the modified example.
  • the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected. This includes the case of being indirectly connected via another member that does not affect the connection state.
  • a state in which the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and the member A. This includes the case where the member C and the member C, or the member B and the member C are indirectly connected via another member that does not affect the electrical connection state.
  • the semiconductor light emitting device A1 of the present embodiment includes a stem 10, a semiconductor light emitting element 40, and a wire 50.
  • the stem 10 supports the semiconductor light emitting element 40, and has a base 11, a heat sink 12, individual leads 13 and 14, common leads 15, and insulating materials 16 and 17.
  • the base 11 and the heat sink 12 are integrally formed.
  • the material of the stem 10 is not particularly limited, but is made of, for example, iron (Fe) or an Fe alloy.
  • the number of leads included in the stem 10 is not particularly limited. In the following description, a case where two individual leads 13 and 14 and one common lead 15 are provided will be described as an example.
  • the base 11 is a plate-shaped member.
  • the thickness direction of the base is defined as the thickness direction z.
  • the direction perpendicular to the thickness direction z is defined as the first direction x
  • the direction perpendicular to the thickness direction z and the first direction x is defined as the second direction y.
  • the base 11 has a substantially circular shape when viewed from the thickness direction z.
  • the base 11 has a main surface 111 and a back surface 112 facing opposite sides in the thickness direction z.
  • the base 11 is made of, for example, an Fe or Fe alloy. As an example of the size of the base 11, the diameter is about 5.6 mm and the thickness is about 1.2 mm.
  • the base 11 is formed with two through holes 21 and 22 that penetrate the base 11 in the thickness direction z.
  • the through holes 21 and 22 have a substantially circular shape when viewed from the thickness direction z, and the diameter thereof is the size through which the individual leads 13 and 14 are inserted.
  • the diameter of the through holes 21 and 22 is about 1.0 mm.
  • Through holes 21 and 22 are formed to fix the individual leads 13 and 14 to the base 11. As shown in FIG. 2, the through holes 21 and 22 of the present embodiment are arranged on a straight line passing through the center of a substantially circular base 11 when viewed from the thickness direction z.
  • the heat sink 12 is provided on the main surface 111 of the base 11.
  • the heat sink 12 is formed in a substantially fan shape, and a portion near the individual leads 14 projects along the first direction x.
  • the heat sink 12 has a support surface 121 at its center.
  • the heat sink 12 of the present embodiment has a connecting surface 122 at a protruding portion.
  • the support surface 121 is provided for mounting the semiconductor light emitting element 40, and the connection surface 122 is provided for connecting the wires.
  • the support surface 121 is a plane along the thickness direction z and the first direction x.
  • the heat sink 12 is made of, for example, an Fe, Fe alloy. In this embodiment, the heat sink 12 is integrally formed with the base 11.
  • a recess 23 is formed in the base 11.
  • the recess 23 is recessed from the main surface 111 in the thickness direction z.
  • the bottom surface of the recess 23 is formed so as to become deeper as the distance from the heat sink 12 increases in the second direction y.
  • the base 11 is formed with a connection recess 24 recessed from the back surface 112 of the base 11 in the thickness direction z.
  • the connection recess 24 is formed at a position overlapping the heat sink 12 when viewed from the thickness direction z.
  • the formation position of the connection recess 24 can be changed as appropriate.
  • the connection recess 24 is used to connect the common lead 15.
  • the connection recess 24 has a bottom surface 241 facing in the thickness direction z, and an inner wall surface 242 between the back surface 112 and the bottom surface 241 of the base 11.
  • the bottom surface 241 is flat.
  • the inner wall surface 242 has a cross section perpendicular to the back surface 112 of the base 11, a first wall surface 243 extending from the back surface 112 of the base 11 in the thickness direction z, and a quarter arc-shaped second wall surface 243 between the first wall surface 243 and the bottom surface 241. It has a wall surface 244.
  • the individual leads 13 and 14 and the common lead 15 are provided to fix the semiconductor light emitting device A1 to a mounting substrate or the like, and form a power supply path to the semiconductor light emitting element 40.
  • the individual leads 13 and 14 and the common lead 15 are made of, for example, a Fe—Ni alloy.
  • the diameters of the individual leads 13 and 14 and the common lead 15 are rod-shaped members of about 0.45 mm.
  • the individual leads 13 and 14 as the first leads are inserted into the through holes 21 and 22, respectively.
  • Insulating materials 16 and 17 are filled between the individual leads 13 and 14 and the through holes 21 and 22, respectively.
  • the insulating materials 16 and 17 are made of a material having electrical insulating properties. This material is, for example, glass.
  • the individual leads 13 and 14 are supported by the insulating materials 16 and 17 in a state of being electrically insulated from the base 11.
  • the individual lead 13 has a connection portion 131 and a terminal portion 132.
  • the connecting portion 131 is a portion protruding from the main surface 111 of the base 11, and the terminal portion 132 is a portion protruding from the back surface 112 of the base 11.
  • the connecting portion 131 is a portion connected to the semiconductor light emitting element 40 via the wire 50.
  • the terminal portion 132 is used when the semiconductor light emitting device A1 is mounted on the mounting substrate.
  • the length of the individual lead 13 is about 9.0 mm.
  • the length of the connecting portion 131 is about 1.5 mm.
  • the length of the terminal portion 132 is about 6.5 mm.
  • the individual lead 14 has a connection portion 141 and a terminal portion 142.
  • the connecting portion 141 is a portion protruding from the main surface 111 of the base 11, and the terminal portion 142 is a portion protruding from the back surface 112 of the base 11.
  • the length of the connecting portion 141 of the individual leads 14 is smaller than the length of the connecting portion 131 of the individual leads 13.
  • the connection portion 141 is a portion that is connected to the light receiving element via a wire, for example, when the light receiving element is mounted.
  • the terminal portion 142 is used when the semiconductor light emitting device A1 is mounted on the mounting substrate.
  • the length of the individual lead 14 is about 8.0 mm.
  • the length of the connecting portion 141 is about 0 to 0.2 mm.
  • the length of the terminal portion 142 is about 6.5 mm.
  • the common lead 15 as the second lead is connected to the base 11.
  • the common lead 15 has a connection portion 151 and a terminal portion 152.
  • the connection portion 151 is provided at one end of the terminal portion 152.
  • the terminal portion 152 has the same thickness as the individual leads 13 and 14.
  • the connection portion 151 has a shape with a larger diameter than the terminal portion 152, that is, the connection portion 151 is thicker than the terminal portion 152.
  • the end face of the connecting portion 151 is a connecting surface 153.
  • the common lead 15 is arranged so that the connection surface 153 of the connection portion 151 faces the bottom surface 241 of the connection recess 24 of the base 11. Then, the connection surface 153 and the bottom surface 241 are joined. Therefore, as shown in FIG. 5, the common lead 15 is connected at a position overlapping the heat sink 12 when viewed from the thickness direction z.
  • a joining method between the connecting surface 153 and the bottom surface 241 for example, silver brazing, resistance welding, or the like is used.
  • connection recess 24 is set to a size corresponding to the connection portion 151 of the common lead 15.
  • the area of the bottom surface 241 of the connection recess 24 is set to be larger than the area of the connection surface 153 of the connection portion 151.
  • the depth H1 of the connection recess 24, that is, the distance from the back surface 112 of the base 11 to the bottom surface 241 is preferably set to the length H2 or more of the connection portion 151.
  • the length H2 of the connecting portion 151 is the length of the connecting portion 151 in the extending direction of the common lead 15 (thickness direction z in FIG. 3). Therefore, the connecting portion 151 is housed in the connecting recess 24 and does not protrude from the back surface 112 of the base 11 in the thickness direction z.
  • the length (total length) of the common lead 15 is about 6.8 mm.
  • the length H2 of the connecting portion 151 is about 0.2 mm.
  • the semiconductor light emitting element 40 is, for example, a semiconductor laser chip.
  • the semiconductor light emitting device 40 of this embodiment has a laser element 41 and a submount 42.
  • the submount 42 is connected to the support surface 121 of the heat sink 12. As a result, the semiconductor light emitting element 40 is mounted on the support surface 121 of the heat sink 12.
  • the submount 42 is a support and a radiator of the laser element 41.
  • the submount 42 is made of, for example, silicon (Si) or aluminum nitride (AlN).
  • the submount 42 is formed with a wiring pattern for conducting the semiconductor light emitting element 40 and the heat sink 12 and a conduction path (not shown) such as a through-hole electrode.
  • the semiconductor light emitting element 40 may be mounted directly on the heat sink 12.
  • the semiconductor light emitting element 40 is connected to the individual leads 13 by a wire 50. More specifically, the semiconductor light emitting device 40 has a pad electrode (not shown) serving as a cathode, the first end of the wire 50 is connected to the pad electrode, and the second end of the wire 50 is connected to the individual lead 13. Has been done.
  • the wire 50 is made of, for example, gold (Au).
  • the semiconductor light emitting device 40 has a back surface electrode (not shown) serving as an anode on a surface opposite to the surface on which the pad electrode is formed, and the back surface electrode is connected to the submount 42.
  • the semiconductor light emitting element 40 is electrically connected to the common lead 15 via the heat sink 12 and the base 11. With such a configuration, in the semiconductor light emitting device, the electrode supply path to the semiconductor light emitting element 40 is formed by the individual leads 13 and 14 and the common lead 15.
  • the base 11 includes a main body portion 11a and a metal layer 11b that covers the surface of the main body portion 11a.
  • the heat sink 12 shown in FIG. 1 and the like also includes a main body and a metal layer. That is, the stem 10 of the present embodiment includes a main body portion and a metal layer covering the surface of the main body portion.
  • the main body 11a is made of, for example, Fe or Fe alloy.
  • Examples of the metal layer 11b include a plating layer made of Ni.
  • the base 11, the individual leads 14, and the common leads 15 are covered with the metal layer 18. Since the individual leads 13 shown in FIG. 1 and the like are covered with the metal layer 18 like the individual leads 14, the drawings and the description thereof will be omitted.
  • the metal layer 18 includes a first layer 181 and a second layer 182.
  • the first layer 181 covers the base 11, the individual leads 14, and the common leads 15.
  • the second layer 182 covers the surface of the first layer 181.
  • the first layer 181 is in contact with the base 11, the individual leads 14, and the common leads 15.
  • the second layer 182 is in contact with the first layer 181.
  • first layer 181 is a plating layer made of Ni, for example.
  • second layer 182 is a plating layer made of Au, for example.
  • the thickness of the first layer 181 is, for example, about 2.0 ⁇ m to 5.0 ⁇ m.
  • the thickness of the second layer 182 is, for example, about 0.05 ⁇ m to 1.0 ⁇ m.
  • the metal layer 18 is formed in a region avoiding between the base 11 of the stem 10 and the insulating material 17. That is, the metal layer 18 is formed on the main surface 111 of the base 11, the back surface 112 facing the opposite side of the main surface 111, the peripheral end surface, and the inner surface of the connection recess 24, and is not formed in the through hole 22. .. Further, the metal layer 18 is formed in a region avoiding between the individual leads 14 and the insulating material 17. That is, the metal layer 18 is formed in a portion of the individual leads 14 exposed from the insulating material 17.
  • the metal layer 18 is formed in a region avoiding between the common lead 15 and the base 11. That is, the metal layer 18 is formed in a region of the common lead 15 excluding the region joined to the bottom surface 241 of the connection recess 24 of the base 11.
  • the first layer 181 and the second layer 182 are formed by, for example, barrel plating.
  • the individual leads 13 and 14 and the common lead 15 are attached to the base 11, and then the first layer 181 and the second layer 182 are formed in this order by, for example, barrel plating. ..
  • the semiconductor light emitting device A1 is mounted on the mounting substrate 90.
  • the mounting substrate 90 has a base material 91 having a through hole 92 and a land 93 on the back surface 912 of the base material 91.
  • the individual leads 13 and 14 and the common leads 15 of the semiconductor light emitting device A1 are inserted into the through holes 92 of the mounting substrate 90.
  • the terminal portions 132, 142, 152 of the individual leads 13, 14 and the common leads 15 are connected to the land 93 by the solder 95.
  • the terminal portions 132, 142, 152 of the individual leads 13, 14 and the common lead 15 are cut at the positions indicated by the alternate long and short dash lines shown in FIGS. 7 and 8, for example.
  • connection portion 151 of the common lead 15 is housed in the connection recess 24 formed on the back surface 112 of the base 11. Therefore, as shown in FIGS. 8 and 9, only the terminal portions 132 and 142 of the individual leads 13 and 14 and the terminal portion 152 of the common lead 15 project from the back surface 112 of the base 11 in the thickness direction z. Therefore, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting substrate 90, the semiconductor light emitting device A1 is supported so as not to be tilted, and a jig or the like for suppressing the tilting of the semiconductor light emitting device A1 is provided.
  • the inclination of the semiconductor light emitting device A1 with respect to the mounting substrate 90 can be suppressed without using a member. Therefore, the semiconductor light emitting device A1 can be easily mounted. Further, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90, heat dissipation can be improved.
  • the semiconductor light emitting device A1 can be mounted on the mounting board 90 so that the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90. Therefore, the power supply path to the semiconductor light emitting element 40 is shortened. Therefore, the parasitic inductance, resistance value, etc. in the feeding path can be reduced, so that the semiconductor light emitting element 40 can be switched at high speed.
  • the power supply path is shortened, it is not easily affected by external noise and the like, and malfunctions and the like are suppressed.
  • the base 11 and the heat sink 12 are obtained by preparing an Fe material or an Fe alloy material and cold forging these materials. By this cold forging, the base 11 and the heat sink 12 are integrally formed. Further, the connection recess 24 can be formed at the same time on the back surface 112 of the base 11. Further, through holes 21 and 22 penetrating the base 11 can be formed at the same time. Thereby, the base 11 having the connection recess 24 can be formed without increasing the number of steps.
  • connection portion 151 of the common lead 15 is housed in the connection recess 24 formed on the back surface 112 of the base 11. Therefore, the semiconductor light emitting device A1 can be easily mounted without supporting the semiconductor light emitting device A1 so as not to tilt and requiring a member such as a jig for suppressing the tilt of the semiconductor light emitting device A1. Further, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90, heat dissipation can be improved.
  • the semiconductor light emitting device A1 can be mounted on the mounting board 90 so that the back surface 112 of the base 11 is in contact with the mounting surface of the mounting board 90. Therefore, the power supply path to the semiconductor light emitting element 40 is shortened. Therefore, the parasitic inductance, resistance value, etc. in the feeding path can be reduced, so that the semiconductor light emitting element 40 can be switched at high speed. Further, since the power supply path is shortened, it is less likely to be affected by external noise and the like, and malfunction and the like can be suppressed.
  • the semiconductor light emitting device A2 shown in FIG. 10 has a connection recess 24 on the back surface 112 of the base 11.
  • the connection recess 24 has a bottom surface 241 facing in the thickness direction z, and an inner wall surface 242 between the back surface 112 and the bottom surface 241 of the base 11.
  • the inner wall surface 242 is inclined from the bottom surface 241 of the connection recess 24 toward the back surface 112 of the base 11 so that the inner dimension of the connection recess 24 gradually increases.
  • the semiconductor light emitting device A2 also has the same effect as that of the above embodiment.
  • the semiconductor light emitting device A3 shown in FIG. 11 includes a light receiving element 61.
  • the light receiving element 61 is mounted in the recess 23 of the base 11.
  • the light receiving element 61 is, for example, a photodiode.
  • the light receiving element 61 has a pad electrode (not shown) serving as an anode on the upper surface and a back electrode (not shown) serving as a cathode on the back surface.
  • the pad electrode is connected to the individual lead 14 via the wire 51, and the back electrode is connected to the base 11.
  • the light receiving element 61 detects light (leakage light) emitted from a surface of the semiconductor light emitting element 40 facing the base 11.
  • the semiconductor light emitting element 40 can be monitored by the light receiving element 61.
  • the semiconductor light emitting element 70 is connected to the individual leads 13 by the wire 52, and is also connected to the common lead 15 via the wire 53 and the stem 10. More specifically, the first end of the wire 52 is connected to the submount 72 and the second end of the wire 52 is connected to the individual leads 13. The first end of the wire 53 is connected to the laser element 71, and the second end of the wire 53 is connected to the connection surface 122 of the heat sink 12 of the stem 10.
  • the semiconductor light emitting device A5 shown in FIG. 13 includes a stem 10, a semiconductor light emitting element 40, a wire 50, a cap 81, and a cover 82.
  • the cap 81 covers the semiconductor light emitting element 40 and the heat sink 12, and is fixed to the base 11 of the stem 10.
  • the cap 81 is made of, for example, Fe or Fe alloy.
  • the cover 82 is transparent to the light from the semiconductor light emitting device 40.
  • the cover 82 is made of, for example, glass. The cover 82 may be omitted.
  • the cap 81 has a body portion 811 and a top portion 812, and a collar portion 813.
  • the body portion 811 surrounds the semiconductor light emitting element 40 and the heat sink 12 when viewed from the thickness direction z, and is, for example, cylindrical.
  • the top portion 812 is connected to the upper end of the body portion 811 and has a circular shape, for example.
  • the top 812 is formed with an opening 814.
  • the opening 814 is for passing light from the semiconductor light emitting device 40.
  • the opening 814 is, for example, circular.
  • the collar portion 813 is connected to the lower end of the body portion 811.
  • the collar portion 813 extends outward from the body portion.
  • the collar portion 813 has, for example, an annular shape.
  • the flange portion 813 is fixed to the main surface 111 of the base 11 by welding, a joining material, or the like.
  • the cover 82 is attached to the lower surface of the top portion 812 in the drawing, and the cover 82 closes the opening 814.
  • the semiconductor light emitting element 40 can be protected by such a cap 81 and a cover 82.
  • the heat sink 12 may have an arbitrary shape.
  • the heat sink 12 may have a rectangular parallelepiped shape.
  • A1 to A5 Semiconductor light emitting device 10 Stem 11 Base 111 Main surface 112 Back surface 12 Heat sink 121 Support surface 122 Connection surface 13, 14 Individual reed (first reed) 131 Connection part 132 Terminal part 141 Connection part 142 Terminal part 15 Common reed (second reed) 151 Connection part 152 Terminal part 153 Connection surface 16,17 Insulator 18 Metal layer 181 First layer 182 Second layer 21,22 Through hole 23 Recess 24 Connection recess 241 Bottom surface 242 Inner wall surface 243 First wall surface 244 Second wall surface 40 Semiconductor Light emitting element 41 Laser element 42 Submount 50 to 53 Wire 61 Light receiving element 70 Semiconductor light emitting element 71 Laser element 72 Submount 81 Cap 811 Body 812 Top 813 Flange 814 Opening 82 Cover 90 Mounting board 91 Base material 911 Mounting surface 912 Back side 92 Through hole 93 Land H1, H2 Depth

Abstract

Provided is a semiconductor light-emitting device comprising: a semiconductor light-emitting element; a base; a first lead; and a second lead. The base has a principal surface and a rear surface facing in the directions opposite to each other, a through-hole penetrating from the principal surface to the rear surface, and a connection recess part formed in the rear surface. The first lead is inserted into the through-hole to be supported by the base. The second lead is connected to the connection recess part.

Description

半導体発光装置Semiconductor light emitting device
 本開示は、半導体発光装置に関する。 This disclosure relates to a semiconductor light emitting device.
 様々な電子機器に搭載される光源装置として、半導体レーザ装置が広く採用されている。特許文献1は、従来の半導体レーザ装置の一例を開示している。同文献に開示された半導体レーザ装置は、ステム及び半導体レーザチップを備えている。ステムは、金属製であり、板状のベース、半導体レーザチップを支持するブロック、ベースに固定された複数のリードを有する。このような構成により、複数のリードを介して電力が投入されると、半導体レーザチップからのレーザ光が出射方向前方に出射される。 Semiconductor laser devices are widely used as light source devices installed in various electronic devices. Patent Document 1 discloses an example of a conventional semiconductor laser device. The semiconductor laser device disclosed in the document includes a stem and a semiconductor laser chip. The stem is made of metal and has a plate-shaped base, a block that supports the semiconductor laser chip, and a plurality of leads fixed to the base. With such a configuration, when power is applied through the plurality of reeds, the laser beam from the semiconductor laser chip is emitted forward in the emission direction.
特開2016-29718号公報Japanese Unexamined Patent Publication No. 2016-29718
 複数のリードのうちの1本のリードは、ベースの出射方向後方の面(後方面)に接合されている。このリードは、端部に接着部を有し、その接着部が銀ロウや溶接によって後方面に接合されている。この接着部は、回路基板への実装時の安定性を低下させる要因となる。例えば、この半導体レーザ装置を実装基板に実装する際、接着部によって半導体レーザ装置が傾いた状態で実装されてしまう虞がある。安定性の向上を図るためには、接着部を考慮した何らかの工夫が必要となり、実装が煩雑なものとなっていた。 One of the plurality of leads is joined to the rear surface (rear surface) of the base in the exit direction. This lead has an adhesive portion at the end, and the adhesive portion is joined to the rear surface by silver wax or welding. This adhesive portion becomes a factor that lowers the stability at the time of mounting on the circuit board. For example, when mounting this semiconductor laser device on a mounting substrate, there is a risk that the semiconductor laser device will be mounted in a tilted state due to the adhesive portion. In order to improve the stability, it is necessary to take some measures in consideration of the bonded portion, which makes the mounting complicated.
 本開示の目的は、実装を容易とした半導体発光装置を提供することにある。 An object of the present disclosure is to provide a semiconductor light emitting device that is easy to mount.
 本開示の一態様による半導体発光装置は、半導体発光素子と、互いに反対側を向く主面及び裏面と、前記主面から前記裏面まで貫通する貫通孔と、前記裏面に形成された接続凹部とを有するベースと、前記貫通孔に挿通されて前記ベースに支持された第1リードと、前記接続凹部に接続された第2リードと、を備えた。 The semiconductor light emitting device according to one aspect of the present disclosure includes a semiconductor light emitting element, a main surface and a back surface facing opposite sides, a through hole penetrating from the main surface to the back surface, and a connection recess formed on the back surface. A base having a base, a first lead inserted through the through hole and supported by the base, and a second lead connected to the connection recess were provided.
 この構成によれば、第2リードの接続部は、ベースの裏面に形成された接続凹部に収容されている。したがって、半導体発光装置が傾かないように支持することや、半導体発光装置の傾きを抑制するための治具等の部材が不要となり、半導体発光装置を容易に実装できる。 According to this configuration, the connecting portion of the second lead is housed in a connecting recess formed on the back surface of the base. Therefore, it is not necessary to support the semiconductor light emitting device so that it does not tilt, and a member such as a jig for suppressing the tilt of the semiconductor light emitting device is unnecessary, and the semiconductor light emitting device can be easily mounted.
 本回路に一態様によれば、安定性向上を可能とした半導体発光装置を提供できる。 According to one aspect of this circuit, it is possible to provide a semiconductor light emitting device capable of improving stability.
一実施形態の半導体発光装置の斜視図。The perspective view of the semiconductor light emitting device of one Embodiment. 一実施形態の半導体発光装置の平面図。Top view of the semiconductor light emitting device of one embodiment. 図2の3-3線断面図。FIG. 2 is a sectional view taken along line 3-3 of FIG. 図2の4-4線断面図。FIG. 2 is a sectional view taken along line 4-4 of FIG. 後方面から見たステムを示す説明図。Explanatory drawing which shows the stem seen from the rear surface. ベース及び個別リードの一部拡大断面図。Partially enlarged cross-sectional view of the base and individual reeds. ベース及び共通リードの一部拡大断面図。Partially enlarged cross-sectional view of the base and common reed. 実装基板及び半導体発光装置を示す断面図。FIG. 5 is a cross-sectional view showing a mounting substrate and a semiconductor light emitting device. 実装基板及び半導体発光装置を示す断面図。FIG. 5 is a cross-sectional view showing a mounting substrate and a semiconductor light emitting device. 変更例の半導体発光装置の断面図。Sectional drawing of the semiconductor light emitting device of the modified example. 変更例の半導体発光装置の斜視図。The perspective view of the semiconductor light emitting device of the modified example. 変更例の半導体発光装置の平面図。Top view of the semiconductor light emitting device of the modified example. 変更例の半導体発光装置の断面図。Sectional drawing of the semiconductor light emitting device of the modified example.
 以下、実施形態及び変形例について図面を参照して説明する。以下に示す実施形態及び変形例は、技術的思想を具体化するための構成や方法を例示するものであって、各構成部品の材質、形状、構造、配置、寸法等を下記のものに限定するものではない。以下の各実施形態及び変形例は、種々の変更を加えることができる。また、以下の実施形態及び変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 Hereinafter, embodiments and modifications will be described with reference to the drawings. The embodiments and modifications shown below exemplify configurations and methods for embodying the technical idea, and the materials, shapes, structures, arrangements, dimensions, etc. of each component are limited to the following. It's not something to do. Various changes can be made to each of the following embodiments and modifications. In addition, the following embodiments and modifications can be implemented in combination with each other within a technically consistent range.
 本明細書において、「部材Aが部材Bと接続された状態」とは、部材Aと部材Bとが物理的に直接的に接続される場合、並びに、部材A及び部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合を含む。 In the present specification, the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected. This includes the case of being indirectly connected via another member that does not affect the connection state.
 同様に、「部材Cが部材Aと部材Bとの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cとが直接的に接続される場合、並びに、部材Aと部材C、あるいは部材Bと部材Cとが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合を含む。 Similarly, "a state in which the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and the member A. This includes the case where the member C and the member C, or the member B and the member C are indirectly connected via another member that does not affect the electrical connection state.
 図1から図5は、本実施形態の半導体発光装置を示している。 1 to 5 show the semiconductor light emitting device of the present embodiment.
 本実施形態の半導体発光装置A1は、ステム10、半導体発光素子40、ワイヤ50を備えている。 The semiconductor light emitting device A1 of the present embodiment includes a stem 10, a semiconductor light emitting element 40, and a wire 50.
 ステム10は、半導体発光素子40を支持するものであり、ベース11、ヒートシンク12、個別リード13,14及び共通リード15、絶縁材16,17を有している。本実施形態のステム10は、ベース11及びヒートシンク12が一体的に形成されている。ステム10の材質は特に限定されないが、例えば鉄(Fe)またはFe合金からなる。また、ステム10が有するリードの本数は特に限定されない。以降の説明においては、2本の個別リード13,14と1本の共通リード15を有する場合を一例として説明する。 The stem 10 supports the semiconductor light emitting element 40, and has a base 11, a heat sink 12, individual leads 13 and 14, common leads 15, and insulating materials 16 and 17. In the stem 10 of this embodiment, the base 11 and the heat sink 12 are integrally formed. The material of the stem 10 is not particularly limited, but is made of, for example, iron (Fe) or an Fe alloy. Further, the number of leads included in the stem 10 is not particularly limited. In the following description, a case where two individual leads 13 and 14 and one common lead 15 are provided will be described as an example.
 ベース11は、板状の部材である。図1から図5において、ベースの厚さ方向を厚さ方向zとする。そして、厚さ方向zに対して直角な方向を第1方向xとし、厚さ方向z及び第1方向xに直角な方向を第2方向yとする。本実施形態において、ベース11は、厚さ方向zから視て略円形状である。ベース11は、厚さ方向zにおいて互いに反対側を向く主面111及び裏面112を有している。ベース11は、例えばFe、Fe合金からなる。ベース11の大きさの一例として、直径は5.6mm程度、厚さは1.2mm程度である。 The base 11 is a plate-shaped member. In FIGS. 1 to 5, the thickness direction of the base is defined as the thickness direction z. Then, the direction perpendicular to the thickness direction z is defined as the first direction x, and the direction perpendicular to the thickness direction z and the first direction x is defined as the second direction y. In the present embodiment, the base 11 has a substantially circular shape when viewed from the thickness direction z. The base 11 has a main surface 111 and a back surface 112 facing opposite sides in the thickness direction z. The base 11 is made of, for example, an Fe or Fe alloy. As an example of the size of the base 11, the diameter is about 5.6 mm and the thickness is about 1.2 mm.
 ベース11には、ベース11を厚さ方向zに貫通する2つの貫通孔21,22が形成されている。貫通孔21,22は、厚さ方向zから視て概略円形状であり、その直径は個別リード13,14が挿通される大きさである。貫通孔21,22の直径は、1.0mm程度である。 The base 11 is formed with two through holes 21 and 22 that penetrate the base 11 in the thickness direction z. The through holes 21 and 22 have a substantially circular shape when viewed from the thickness direction z, and the diameter thereof is the size through which the individual leads 13 and 14 are inserted. The diameter of the through holes 21 and 22 is about 1.0 mm.
 貫通孔21,22は、個別リード13,14をベース11に固定するために形成されている。図2に示すように、本実施形態の貫通孔21,22は、厚さ方向zから視て略円形状のベース11の中心を通る直線上に配置されている。 Through holes 21 and 22 are formed to fix the individual leads 13 and 14 to the base 11. As shown in FIG. 2, the through holes 21 and 22 of the present embodiment are arranged on a straight line passing through the center of a substantially circular base 11 when viewed from the thickness direction z.
 ヒートシンク12は、ベース11の主面111に設けられている。本実施形態において、ヒートシンク12は、概略扇型状に形成されるとともに、個別リード14寄りの部位が第1方向xに沿って突出している。ヒートシンク12は、その中心部に支持面121を有している。本実施形態のヒートシンク12は、突出した部分に接続面122を有している。支持面121は、半導体発光素子40を搭載するために設けられ、接続面122は、ワイヤの接続のために設けられている。支持面121は、厚さ方向z及び第1方向xに沿った平面である。ヒートシンク12は、例えばFe,Fe合金からなる。本実施形態において、ヒートシンク12は、ベース11と一体に形成されている。 The heat sink 12 is provided on the main surface 111 of the base 11. In the present embodiment, the heat sink 12 is formed in a substantially fan shape, and a portion near the individual leads 14 projects along the first direction x. The heat sink 12 has a support surface 121 at its center. The heat sink 12 of the present embodiment has a connecting surface 122 at a protruding portion. The support surface 121 is provided for mounting the semiconductor light emitting element 40, and the connection surface 122 is provided for connecting the wires. The support surface 121 is a plane along the thickness direction z and the first direction x. The heat sink 12 is made of, for example, an Fe, Fe alloy. In this embodiment, the heat sink 12 is integrally formed with the base 11.
 図1,図2及び図3に示すように、ベース11には凹部23が形成されている。凹部23は、主面111から厚さ方向zに凹んでいる。図3に示すように、凹部23は、第2方向yにおいて、ヒートシンク12から離れるにつれて深くなるように底面が形成されている。 As shown in FIGS. 1, 2 and 3, a recess 23 is formed in the base 11. The recess 23 is recessed from the main surface 111 in the thickness direction z. As shown in FIG. 3, the bottom surface of the recess 23 is formed so as to become deeper as the distance from the heat sink 12 increases in the second direction y.
 図3に示すように、ベース11には、ベース11の裏面112から厚さ方向zに窪む接続凹部24が形成されている。図5に示すように、厚さ方向zから視て、接続凹部24は、ヒートシンク12と重なる位置に形成されていることが好ましい。なお、接続凹部24の形成位置は、適宜変更できる。接続凹部24は、共通リード15の接続に用いられる。接続凹部24は、厚さ方向zに向く底面241と、ベース11の裏面112と底面241との間の内壁面242とを有している。底面241は平坦である。内壁面242は、ベース11の裏面112と垂直な断面において、ベース11の裏面112から厚さ方向zに向かう第1壁面243と、第1壁面243と底面241との間の四半弧状の第2壁面244とを有している。 As shown in FIG. 3, the base 11 is formed with a connection recess 24 recessed from the back surface 112 of the base 11 in the thickness direction z. As shown in FIG. 5, it is preferable that the connection recess 24 is formed at a position overlapping the heat sink 12 when viewed from the thickness direction z. The formation position of the connection recess 24 can be changed as appropriate. The connection recess 24 is used to connect the common lead 15. The connection recess 24 has a bottom surface 241 facing in the thickness direction z, and an inner wall surface 242 between the back surface 112 and the bottom surface 241 of the base 11. The bottom surface 241 is flat. The inner wall surface 242 has a cross section perpendicular to the back surface 112 of the base 11, a first wall surface 243 extending from the back surface 112 of the base 11 in the thickness direction z, and a quarter arc-shaped second wall surface 243 between the first wall surface 243 and the bottom surface 241. It has a wall surface 244.
 個別リード13,14及び共通リード15は、半導体発光装置A1を実装基板等に固定するために設けられ、かつ半導体発光素子40への電力供給経路をなす。個別リード13,14及び共通リード15は、例えばFe-Ni合金からなる。個別リード13,14及び共通リード15の直径は、0.45mm程度の棒状部材である。 The individual leads 13 and 14 and the common lead 15 are provided to fix the semiconductor light emitting device A1 to a mounting substrate or the like, and form a power supply path to the semiconductor light emitting element 40. The individual leads 13 and 14 and the common lead 15 are made of, for example, a Fe—Ni alloy. The diameters of the individual leads 13 and 14 and the common lead 15 are rod-shaped members of about 0.45 mm.
 第1リードとしての個別リード13,14は、貫通孔21,22にそれぞれ挿通されている。個別リード13,14と貫通孔21,22との間にはそれぞれ絶縁材16,17が充填されている。絶縁材16,17は、電気絶縁性を有する材料からなる。この材料は例えばガラスである。絶縁材16,17により、個別リード13,14は、ベース11に対して電気絶縁がなされた状態で支持されている。 The individual leads 13 and 14 as the first leads are inserted into the through holes 21 and 22, respectively. Insulating materials 16 and 17 are filled between the individual leads 13 and 14 and the through holes 21 and 22, respectively. The insulating materials 16 and 17 are made of a material having electrical insulating properties. This material is, for example, glass. The individual leads 13 and 14 are supported by the insulating materials 16 and 17 in a state of being electrically insulated from the base 11.
 図4に示すように、個別リード13は、接続部131と端子部132とを有している。接続部131は、ベース11の主面111から突出した部分であり、端子部132はベース11の裏面112から突出した部分である。接続部131は、ワイヤ50を介して半導体発光素子40と接続される部分である。端子部132は、半導体発光装置A1を実装基板に実装する際に用いられる。個別リード13の長さは9.0mm程度である。接続部131の長さは、1.5mm程度である。端子部132の長さは、6.5mm程度である。 As shown in FIG. 4, the individual lead 13 has a connection portion 131 and a terminal portion 132. The connecting portion 131 is a portion protruding from the main surface 111 of the base 11, and the terminal portion 132 is a portion protruding from the back surface 112 of the base 11. The connecting portion 131 is a portion connected to the semiconductor light emitting element 40 via the wire 50. The terminal portion 132 is used when the semiconductor light emitting device A1 is mounted on the mounting substrate. The length of the individual lead 13 is about 9.0 mm. The length of the connecting portion 131 is about 1.5 mm. The length of the terminal portion 132 is about 6.5 mm.
 個別リード14は、接続部141と端子部142とを有している。接続部141は、ベース11の主面111から突出した部分であり、端子部142は、ベース11の裏面112から突出した部分である。個別リード14の接続部141の長さは、個別リード13の接続部131の長さよりも小である。接続部141は、例えば受光素子を搭載した場合にワイヤを介して受光素子と接続される部分である。端子部142は、半導体発光装置A1を実装基板に実装する際に用いられる。個別リード14の長さは、8.0mm程度である。接続部141の長さは、0~0.2mm程度である。端子部142の長さは、6.5mm程度である。 The individual lead 14 has a connection portion 141 and a terminal portion 142. The connecting portion 141 is a portion protruding from the main surface 111 of the base 11, and the terminal portion 142 is a portion protruding from the back surface 112 of the base 11. The length of the connecting portion 141 of the individual leads 14 is smaller than the length of the connecting portion 131 of the individual leads 13. The connection portion 141 is a portion that is connected to the light receiving element via a wire, for example, when the light receiving element is mounted. The terminal portion 142 is used when the semiconductor light emitting device A1 is mounted on the mounting substrate. The length of the individual lead 14 is about 8.0 mm. The length of the connecting portion 141 is about 0 to 0.2 mm. The length of the terminal portion 142 is about 6.5 mm.
 図3に示すように、第2リードとしての共通リード15は、ベース11に接続されている。 As shown in FIG. 3, the common lead 15 as the second lead is connected to the base 11.
 共通リード15は、接続部151と端子部152とを有している。接続部151は、端子部152の一端に設けられている。端子部152は、個別リード13,14と同様の太さである。接続部151は、端子部152よりも拡径された形状、つまり接続部151は端子部152よりも太くなっている。その接続部151の端面は接続面153である。 The common lead 15 has a connection portion 151 and a terminal portion 152. The connection portion 151 is provided at one end of the terminal portion 152. The terminal portion 152 has the same thickness as the individual leads 13 and 14. The connection portion 151 has a shape with a larger diameter than the terminal portion 152, that is, the connection portion 151 is thicker than the terminal portion 152. The end face of the connecting portion 151 is a connecting surface 153.
 共通リード15は、接続部151の接続面153をベース11の接続凹部24の底面241と対向して配置される。そして、接続面153と底面241とが接合される。したがって、図5に示すように、共通リード15は、厚さ方向zから視て、ヒートシンク12と重なる位置に接続されている。接続面153と底面241との間の接合方法は、例えば銀ロウ付け、抵抗溶接、等が用いられる。 The common lead 15 is arranged so that the connection surface 153 of the connection portion 151 faces the bottom surface 241 of the connection recess 24 of the base 11. Then, the connection surface 153 and the bottom surface 241 are joined. Therefore, as shown in FIG. 5, the common lead 15 is connected at a position overlapping the heat sink 12 when viewed from the thickness direction z. As a joining method between the connecting surface 153 and the bottom surface 241, for example, silver brazing, resistance welding, or the like is used.
 接続凹部24は、共通リード15の接続部151に応じた大きさに設定されている。接続凹部24の底面241の面積は、接続部151の接続面153の面積よりも大きく設定されている。接続凹部24の深さH1、つまりベース11の裏面112から底面241までの距離は、接続部151の長さH2以上に設定されることが好ましい。接続部151の長さH2は、共通リード15の延びる方向(図3の厚さ方向z)における接続部151の長さである。従って、接続部151は、接続凹部24に収容され、ベース11の裏面112から厚さ方向zに突出しない。共通リード15の長さ(全長)は6.8mm程度である。接続部151の長さH2は、0.2mm程度である。 The connection recess 24 is set to a size corresponding to the connection portion 151 of the common lead 15. The area of the bottom surface 241 of the connection recess 24 is set to be larger than the area of the connection surface 153 of the connection portion 151. The depth H1 of the connection recess 24, that is, the distance from the back surface 112 of the base 11 to the bottom surface 241 is preferably set to the length H2 or more of the connection portion 151. The length H2 of the connecting portion 151 is the length of the connecting portion 151 in the extending direction of the common lead 15 (thickness direction z in FIG. 3). Therefore, the connecting portion 151 is housed in the connecting recess 24 and does not protrude from the back surface 112 of the base 11 in the thickness direction z. The length (total length) of the common lead 15 is about 6.8 mm. The length H2 of the connecting portion 151 is about 0.2 mm.
 半導体発光素子40は、例えば半導体レーザチップである。本実施形態の半導体発光素子40は、レーザ素子41とサブマウント42を有する。サブマウント42は、ヒートシンク12の支持面121に接続されている。これにより、半導体発光素子40は、ヒートシンク12の支持面121に搭載されている。 The semiconductor light emitting element 40 is, for example, a semiconductor laser chip. The semiconductor light emitting device 40 of this embodiment has a laser element 41 and a submount 42. The submount 42 is connected to the support surface 121 of the heat sink 12. As a result, the semiconductor light emitting element 40 is mounted on the support surface 121 of the heat sink 12.
 サブマウント42は、レーザ素子41の支持体かつ放熱体である。 The submount 42 is a support and a radiator of the laser element 41.
 サブマウント42は、例えばシリコン(Si)又は窒化アルミニウム(AlN)からなる。サブマウント42には、半導体発光素子40とヒートシンク12とを導通させるための配線パターンやスルーホール電極等の導通経路(図史略)が形成されている。なお、半導体発光素子40が直接ヒートシンク12に搭載される構成としてもよい。 The submount 42 is made of, for example, silicon (Si) or aluminum nitride (AlN). The submount 42 is formed with a wiring pattern for conducting the semiconductor light emitting element 40 and the heat sink 12 and a conduction path (not shown) such as a through-hole electrode. The semiconductor light emitting element 40 may be mounted directly on the heat sink 12.
 図1に示すように、半導体発光素子40は、ワイヤ50により個別リード13と接続されている。より具体的には、半導体発光素子40はカソードとなるパッド電極(図示略)を有し、そのパッド電極にワイヤ50の第1端が接続され、ワイヤ50の第2端が個別リード13に接続されている。ワイヤ50は、例えば金(Au)からなる。半導体発光素子40は、パッド電極が形成された面と反対側の面にアノードとなる裏面電極(図示略)を有し、その裏面電極はサブマウント42に接続されている。これにより、半導体発光素子40は、ヒートシンク12、及びベース11を介して共通リード15と導通している。このような構成によって、半導体発光装置においては、個別リード13,14及び共通リード15によって、半導体発光素子40への電極供給経路が形成されている。 As shown in FIG. 1, the semiconductor light emitting element 40 is connected to the individual leads 13 by a wire 50. More specifically, the semiconductor light emitting device 40 has a pad electrode (not shown) serving as a cathode, the first end of the wire 50 is connected to the pad electrode, and the second end of the wire 50 is connected to the individual lead 13. Has been done. The wire 50 is made of, for example, gold (Au). The semiconductor light emitting device 40 has a back surface electrode (not shown) serving as an anode on a surface opposite to the surface on which the pad electrode is formed, and the back surface electrode is connected to the submount 42. As a result, the semiconductor light emitting element 40 is electrically connected to the common lead 15 via the heat sink 12 and the base 11. With such a configuration, in the semiconductor light emitting device, the electrode supply path to the semiconductor light emitting element 40 is formed by the individual leads 13 and 14 and the common lead 15.
 図6及び図7に示すように、ベース11は、本体部11aと、本体部11aの表面を覆う金属層11bとを含む。なお、図示しないが、図1等に示すヒートシンク12も同様に本体部と金属層とを含む。つまり、本実施形態のステム10は、本体部と、本体部の表面を覆う金属層とを含む。本体部11aは、例えばFeまたはFe合金からなる。金属層11bは、たとえばNiからなるめっき層が挙げられる。 As shown in FIGS. 6 and 7, the base 11 includes a main body portion 11a and a metal layer 11b that covers the surface of the main body portion 11a. Although not shown, the heat sink 12 shown in FIG. 1 and the like also includes a main body and a metal layer. That is, the stem 10 of the present embodiment includes a main body portion and a metal layer covering the surface of the main body portion. The main body 11a is made of, for example, Fe or Fe alloy. Examples of the metal layer 11b include a plating layer made of Ni.
 図6及び図7に示すように、ベース11、個別リード14、及び共通リード15は、金属層18により覆われている。なお、図1等に示す個別リード13は、個別リード14と同様に金属層18により覆われているため、図面及び説明を省略する。 As shown in FIGS. 6 and 7, the base 11, the individual leads 14, and the common leads 15 are covered with the metal layer 18. Since the individual leads 13 shown in FIG. 1 and the like are covered with the metal layer 18 like the individual leads 14, the drawings and the description thereof will be omitted.
 金属層18は、第1層181及び第2層182を含む。第1層181は、ベース11、個別リード14、及び共通リード15を覆っている。第2層182は、第1層181の表面を覆っている。第1層181は、ベース11、個別リード14、及び共通リード15に接している。第2層182は、第1層181に接している。 The metal layer 18 includes a first layer 181 and a second layer 182. The first layer 181 covers the base 11, the individual leads 14, and the common leads 15. The second layer 182 covers the surface of the first layer 181. The first layer 181 is in contact with the base 11, the individual leads 14, and the common leads 15. The second layer 182 is in contact with the first layer 181.
 第1層181の一例としては、たとえばNiからなるめっき層が挙げられる。第2層182の一例としては、たとえばAuからなるめっき層が挙げられる。本実施形態においては、第1層181の厚さは、たとえば、2.0μm~5.0μm程度である。第2層182の厚さは、たとえば、0.05μm~1.0μm程度である。 An example of the first layer 181 is a plating layer made of Ni, for example. An example of the second layer 182 is a plating layer made of Au, for example. In the present embodiment, the thickness of the first layer 181 is, for example, about 2.0 μm to 5.0 μm. The thickness of the second layer 182 is, for example, about 0.05 μm to 1.0 μm.
 図6に示すように、図示された例においては、金属層18は、ステム10のベース11と絶縁材17との間を避けた領域に形成されている。すなわち、金属層18は、ベース11の主面111、主面111とは反対側を向く裏面112、周端面、及び接続凹部24の内面に形成されており、貫通孔22には形成されていない。また、金属層18は、個別リード14と絶縁材17との間を避けた領域に形成されている。すなわち、金属層18は、個別リード14のうち、絶縁材17から露出した部分に形成されている。 As shown in FIG. 6, in the illustrated example, the metal layer 18 is formed in a region avoiding between the base 11 of the stem 10 and the insulating material 17. That is, the metal layer 18 is formed on the main surface 111 of the base 11, the back surface 112 facing the opposite side of the main surface 111, the peripheral end surface, and the inner surface of the connection recess 24, and is not formed in the through hole 22. .. Further, the metal layer 18 is formed in a region avoiding between the individual leads 14 and the insulating material 17. That is, the metal layer 18 is formed in a portion of the individual leads 14 exposed from the insulating material 17.
 図7に示すように、図示された例においては、金属層18は、共通リード15とベース11との間を避けた領域に形成されている。すなわち、金属層18は、共通リード15のうちベース11の接続凹部24の底面241に接合された領域を除く領域に形成されている。 As shown in FIG. 7, in the illustrated example, the metal layer 18 is formed in a region avoiding between the common lead 15 and the base 11. That is, the metal layer 18 is formed in a region of the common lead 15 excluding the region joined to the bottom surface 241 of the connection recess 24 of the base 11.
 第1層181及び第2層182は、たとえばバレルめっきにより形成される。本実施形態の半導体発光装置A1の製造においては、たとえば、ベース11に個別リード13,14及び共通リード15を取り付けた後に、たとえばバレルめっきによって第1層181及び第2層182の順で形成する。 The first layer 181 and the second layer 182 are formed by, for example, barrel plating. In the manufacture of the semiconductor light emitting device A1 of the present embodiment, for example, the individual leads 13 and 14 and the common lead 15 are attached to the base 11, and then the first layer 181 and the second layer 182 are formed in this order by, for example, barrel plating. ..
 (作用)
 図8及び図9に示すように、半導体発光装置A1は、実装基板90に実装される。実装基板90は、貫通孔92を有する基材91と、基材91の裏面912のランド93とを有している。半導体発光装置A1の個別リード13,14及び共通リード15は、実装基板90の貫通孔92に挿入される。そして、個別リード13,14及び共通リード15の端子部132,142,152は、はんだ95によりランド93に接続される。個別リード13,14及び共通リード15の端子部132,142,152は、例えば、図7及び図8に示す一点鎖線にて示す位置にて切断される。
(Action)
As shown in FIGS. 8 and 9, the semiconductor light emitting device A1 is mounted on the mounting substrate 90. The mounting substrate 90 has a base material 91 having a through hole 92 and a land 93 on the back surface 912 of the base material 91. The individual leads 13 and 14 and the common leads 15 of the semiconductor light emitting device A1 are inserted into the through holes 92 of the mounting substrate 90. Then, the terminal portions 132, 142, 152 of the individual leads 13, 14 and the common leads 15 are connected to the land 93 by the solder 95. The terminal portions 132, 142, 152 of the individual leads 13, 14 and the common lead 15 are cut at the positions indicated by the alternate long and short dash lines shown in FIGS. 7 and 8, for example.
 図8に示すように、本実施形態の半導体発光装置A1において、共通リード15の接続部151は、ベース11の裏面112に形成された接続凹部24に収容されている。したがって、図8及び図9に示すように、ベース11の裏面112からは、個別リード13,14の端子部132,142と共通リード15の端子部152のみが厚さ方向zに突出する。このため、ベース11の裏面112は、実装基板90の実装面911に接するため、半導体発光装置A1が傾かないように支持することや、半導体発光装置A1の傾きを抑制するための治具等の部材を用いることなく、実装基板90に対する半導体発光装置A1の傾きを抑制できる。このため、半導体発光装置A1を容易に実装できる。また、ベース11の裏面112が実装基板90の実装面911に接するため、放熱性を向上できる。 As shown in FIG. 8, in the semiconductor light emitting device A1 of the present embodiment, the connection portion 151 of the common lead 15 is housed in the connection recess 24 formed on the back surface 112 of the base 11. Therefore, as shown in FIGS. 8 and 9, only the terminal portions 132 and 142 of the individual leads 13 and 14 and the terminal portion 152 of the common lead 15 project from the back surface 112 of the base 11 in the thickness direction z. Therefore, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting substrate 90, the semiconductor light emitting device A1 is supported so as not to be tilted, and a jig or the like for suppressing the tilting of the semiconductor light emitting device A1 is provided. The inclination of the semiconductor light emitting device A1 with respect to the mounting substrate 90 can be suppressed without using a member. Therefore, the semiconductor light emitting device A1 can be easily mounted. Further, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90, heat dissipation can be improved.
 例えば、ベース11の裏面112から共通リード15の接続部151が突出する半導体発光装置では、その接続部151が実装基板90と干渉しないように、実装基板90の実装面911からベース11の裏面112が離れる。これに対し、半導体発光装置A1は、ベース11の裏面112が実装基板90の実装面911に接するように、その実装基板90に実装できる。このため、半導体発光素子40までの給電経路が短くなる。このため、給電経路における寄生インダクタンス、抵抗値、等を低減できるため、半導体発光素子40の高速なスイッチングが可能となる。また、給電経路が短くなるため、外来ノイズ等の影響を受け難く、誤作動等が抑制される。 For example, in a semiconductor light emitting device in which the connecting portion 151 of the common lead 15 projects from the back surface 112 of the base 11, the mounting surface 911 of the mounting board 90 to the back surface 112 of the base 11 so that the connecting portion 151 does not interfere with the mounting board 90. Leaves. On the other hand, the semiconductor light emitting device A1 can be mounted on the mounting board 90 so that the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90. Therefore, the power supply path to the semiconductor light emitting element 40 is shortened. Therefore, the parasitic inductance, resistance value, etc. in the feeding path can be reduced, so that the semiconductor light emitting element 40 can be switched at high speed. In addition, since the power supply path is shortened, it is not easily affected by external noise and the like, and malfunctions and the like are suppressed.
 ベース11及びヒートシンク12は、Fe材料又はFe合金材料を準備し、これらの材料に冷間鍛造を施すことにより得られる。この冷間鍛造により、ベース11とヒートシンク12とが一体的に成形される。また、ベース11の裏面112に接続凹部24を同時に形成できる。さらに、ベース11を貫通する貫通孔21,22を同時に形成できる。これにより、工程を増やすことなく、接続凹部24を有するベース11を形成できる。 The base 11 and the heat sink 12 are obtained by preparing an Fe material or an Fe alloy material and cold forging these materials. By this cold forging, the base 11 and the heat sink 12 are integrally formed. Further, the connection recess 24 can be formed at the same time on the back surface 112 of the base 11. Further, through holes 21 and 22 penetrating the base 11 can be formed at the same time. Thereby, the base 11 having the connection recess 24 can be formed without increasing the number of steps.
 以上記述したように、本実施形態によれば、以下の効果を奏する。 As described above, according to this embodiment, the following effects are obtained.
 (1)本実施形態の半導体発光装置A1において、共通リード15の接続部151は、ベース11の裏面112に形成された接続凹部24に収容されている。したがって、半導体発光装置A1が傾かないように支持することや、半導体発光装置A1の傾きを抑制するための治具等の部材が不要となり、半導体発光装置A1を容易に実装できる。また、ベース11の裏面112が実装基板90の実装面911に接するため、放熱性を向上できる。 (1) In the semiconductor light emitting device A1 of the present embodiment, the connection portion 151 of the common lead 15 is housed in the connection recess 24 formed on the back surface 112 of the base 11. Therefore, the semiconductor light emitting device A1 can be easily mounted without supporting the semiconductor light emitting device A1 so as not to tilt and requiring a member such as a jig for suppressing the tilt of the semiconductor light emitting device A1. Further, since the back surface 112 of the base 11 is in contact with the mounting surface 911 of the mounting board 90, heat dissipation can be improved.
 (2)半導体発光装置A1は、ベース11の裏面112が実装基板90の実装面に接するように、その実装基板90に実装できる。このため、半導体発光素子40までの給電経路が短くなる。このため、給電経路における寄生インダクタンス、抵抗値、等を低減できるため、半導体発光素子40の高速なスイッチングが可能となる。また、給電経路が短くなるため、外来ノイズ等の影響を受け難くなり、誤作動等を抑制できる。 (2) The semiconductor light emitting device A1 can be mounted on the mounting board 90 so that the back surface 112 of the base 11 is in contact with the mounting surface of the mounting board 90. Therefore, the power supply path to the semiconductor light emitting element 40 is shortened. Therefore, the parasitic inductance, resistance value, etc. in the feeding path can be reduced, so that the semiconductor light emitting element 40 can be switched at high speed. Further, since the power supply path is shortened, it is less likely to be affected by external noise and the like, and malfunction and the like can be suppressed.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。
(Change example)
This embodiment can be modified and implemented as follows.
 ・図10に示す半導体発光装置A2は、ベース11の裏面112に接続凹部24を有している。接続凹部24は、厚さ方向zを向く底面241と、ベース11の裏面112と底面241との間の内壁面242とを有している。内壁面242は、接続凹部24の底面241からベース11の裏面112に向かって接続凹部24の内側寸法が徐々に大きくなるように傾斜している。この半導体発光装置A2についても、上記実施形態と同様の効果を奏する。 The semiconductor light emitting device A2 shown in FIG. 10 has a connection recess 24 on the back surface 112 of the base 11. The connection recess 24 has a bottom surface 241 facing in the thickness direction z, and an inner wall surface 242 between the back surface 112 and the bottom surface 241 of the base 11. The inner wall surface 242 is inclined from the bottom surface 241 of the connection recess 24 toward the back surface 112 of the base 11 so that the inner dimension of the connection recess 24 gradually increases. The semiconductor light emitting device A2 also has the same effect as that of the above embodiment.
 ・図11に示す半導体発光装置A3は、受光素子61を備えている。受光素子61は、ベース11の凹部23に搭載されている。この受光素子61は、例えばフォトダイオードである。この受光素子61は上面にアノードとなるパッド電極(図示略)を有し、裏面にカソードとなる裏面電極(図示略)を有している。パッド電極はワイヤ51を介して個別リード14に接続され、裏面電極はベース11に接続される。受光素子61は、半導体発光素子40のベース11と対向する面から出射される光(漏出光)を検出する。この受光素子61により、半導体発光素子40をモニタできる。 The semiconductor light emitting device A3 shown in FIG. 11 includes a light receiving element 61. The light receiving element 61 is mounted in the recess 23 of the base 11. The light receiving element 61 is, for example, a photodiode. The light receiving element 61 has a pad electrode (not shown) serving as an anode on the upper surface and a back electrode (not shown) serving as a cathode on the back surface. The pad electrode is connected to the individual lead 14 via the wire 51, and the back electrode is connected to the base 11. The light receiving element 61 detects light (leakage light) emitted from a surface of the semiconductor light emitting element 40 facing the base 11. The semiconductor light emitting element 40 can be monitored by the light receiving element 61.
 ・図12に示す半導体発光装置A4において、半導体発光素子70は、ワイヤ52により個別リード13と接続されるとともに、ワイヤ53とステム10とを介して共通リード15と接続される。詳述すると、ワイヤ52の第1端はサブマウント72に接続され、ワイヤ52の第2端は個別リード13に接続される。ワイヤ53の第1端はレーザ素子71に接続され、ワイヤ53の第2端はステム10のヒートシンク12の接続面122に接続される。 In the semiconductor light emitting device A4 shown in FIG. 12, the semiconductor light emitting element 70 is connected to the individual leads 13 by the wire 52, and is also connected to the common lead 15 via the wire 53 and the stem 10. More specifically, the first end of the wire 52 is connected to the submount 72 and the second end of the wire 52 is connected to the individual leads 13. The first end of the wire 53 is connected to the laser element 71, and the second end of the wire 53 is connected to the connection surface 122 of the heat sink 12 of the stem 10.
 ・図13に示す半導体発光装置A5は、ステム10、半導体発光素子40、ワイヤ50、キャップ81、及びカバー82を備えている。キャップ81は、半導体発光素子40及びヒートシンク12を覆っており、ステム10のベース11に固定されている。キャップ81は、例えばFe又はFe合金からなる。カバー82は、半導体発光素子40からの光に対して透過性を有する。カバー82は、例えばガラスからなる。なお、カバー82は省略されてもよい。 The semiconductor light emitting device A5 shown in FIG. 13 includes a stem 10, a semiconductor light emitting element 40, a wire 50, a cap 81, and a cover 82. The cap 81 covers the semiconductor light emitting element 40 and the heat sink 12, and is fixed to the base 11 of the stem 10. The cap 81 is made of, for example, Fe or Fe alloy. The cover 82 is transparent to the light from the semiconductor light emitting device 40. The cover 82 is made of, for example, glass. The cover 82 may be omitted.
 キャップ81は、胴部811、天部812、及び鍔部813を有する。胴部811は厚さ方向zから視て半導体発光素子40及びヒートシンク12を囲んでおり、例えば円筒状である。天部812は、胴部811の上端に繋がっており、例えば円形状である。天部812は、開口814が形成されている。開口814は、半導体発光素子40からの光を通過させるためのものである。開口814は、例えば円形状である。鍔部813は、胴部811の下端に繋がっている。鍔部813は、胴部から外側に向かって延出している。鍔部813は、例えば円環形状である。鍔部813は、ベース11の主面111に、溶接又は接合材等によって固定されている。カバー82は、天部812の図中下面に取付けられ、カバー82は開口814を塞いでいる。このようなキャップ81及びカバー82によって、半導体発光素子40を保護できる。 The cap 81 has a body portion 811 and a top portion 812, and a collar portion 813. The body portion 811 surrounds the semiconductor light emitting element 40 and the heat sink 12 when viewed from the thickness direction z, and is, for example, cylindrical. The top portion 812 is connected to the upper end of the body portion 811 and has a circular shape, for example. The top 812 is formed with an opening 814. The opening 814 is for passing light from the semiconductor light emitting device 40. The opening 814 is, for example, circular. The collar portion 813 is connected to the lower end of the body portion 811. The collar portion 813 extends outward from the body portion. The collar portion 813 has, for example, an annular shape. The flange portion 813 is fixed to the main surface 111 of the base 11 by welding, a joining material, or the like. The cover 82 is attached to the lower surface of the top portion 812 in the drawing, and the cover 82 closes the opening 814. The semiconductor light emitting element 40 can be protected by such a cap 81 and a cover 82.
 ・上記実施形態及び変更例において、ヒートシンク12を任意の形状としてもよい。例えば、ヒートシンク12を直方体状とすることもできる。 -In the above embodiment and modified examples, the heat sink 12 may have an arbitrary shape. For example, the heat sink 12 may have a rectangular parallelepiped shape.
 A1~A5 半導体発光装置
 10 ステム
 11 ベース
 111 主面
 112 裏面
 12 ヒートシンク
 121 支持面
 122 接続面
 13,14 個別リード(第1リード)
 131 接続部
 132 端子部
 141 接続部
 142 端子部
 15 共通リード(第2リード)
 151 接続部
 152 端子部
 153 接続面
 16,17 絶縁材
 18 金属層
 181 第1層
 182 第2層
 21,22 貫通孔
 23 凹部
 24 接続凹部
 241 底面
 242 内壁面
 243 第1壁面
 244 第2壁面
 40 半導体発光素子
 41 レーザ素子
 42 サブマウント
 50~53 ワイヤ
 61 受光素子
 70 半導体発光素子
 71 レーザ素子
 72 サブマウント
 81 キャップ
 811 胴部
 812 天部
 813 鍔部
 814 開口
 82 カバー
 90 実装基板
 91 基材
 911 実装面
 912 裏面
 92 貫通孔
 93 ランド
 H1,H2 深さ
A1 to A5 Semiconductor light emitting device 10 Stem 11 Base 111 Main surface 112 Back surface 12 Heat sink 121 Support surface 122 Connection surface 13, 14 Individual reed (first reed)
131 Connection part 132 Terminal part 141 Connection part 142 Terminal part 15 Common reed (second reed)
151 Connection part 152 Terminal part 153 Connection surface 16,17 Insulator 18 Metal layer 181 First layer 182 Second layer 21,22 Through hole 23 Recess 24 Connection recess 241 Bottom surface 242 Inner wall surface 243 First wall surface 244 Second wall surface 40 Semiconductor Light emitting element 41 Laser element 42 Submount 50 to 53 Wire 61 Light receiving element 70 Semiconductor light emitting element 71 Laser element 72 Submount 81 Cap 811 Body 812 Top 813 Flange 814 Opening 82 Cover 90 Mounting board 91 Base material 911 Mounting surface 912 Back side 92 Through hole 93 Land H1, H2 Depth

Claims (8)

  1.  半導体発光素子と、
     互いに反対側を向く主面及び裏面と、前記主面から前記裏面まで貫通する貫通孔と、前記裏面に形成された接続凹部とを有するベースと、
     前記貫通孔に挿通されて前記ベースに支持された第1リードと、
     前記接続凹部に接続された第2リードと、
     を備えた半導体発光装置。
    Semiconductor light emitting element and
    A base having a main surface and a back surface facing opposite sides, a through hole penetrating from the main surface to the back surface, and a connection recess formed on the back surface.
    A first reed inserted through the through hole and supported by the base,
    The second reed connected to the connection recess and
    A semiconductor light emitting device equipped with.
  2.  前記第2リードは、前記第1リードと同じ太さの端子部と、前記端子部より太い接続部と、を有し、
     前記接続部は、前記接続凹部の底面に接続されている、
     請求項1に記載の半導体発光装置。
    The second lead has a terminal portion having the same thickness as the first lead and a connection portion thicker than the terminal portion.
    The connection portion is connected to the bottom surface of the connection recess.
    The semiconductor light emitting device according to claim 1.
  3.  前記底面は平坦である、請求項2に記載の半導体発光装置。 The semiconductor light emitting device according to claim 2, wherein the bottom surface is flat.
  4.  前記接続部は前記底面と対向する接続面を有し、
     前記底面は前記接続面よりも広い、
     請求項2又は請求項3に記載の半導体発光装置。
    The connection portion has a connection surface facing the bottom surface and has a connection surface facing the bottom surface.
    The bottom surface is wider than the connection surface,
    The semiconductor light emitting device according to claim 2 or 3.
  5.  前記接続凹部の深さは、前記接続部の厚さ以上である、
     請求項2から請求項4のいずれか一項に記載の半導体発光装置。
    The depth of the connection recess is equal to or greater than the thickness of the connection portion.
    The semiconductor light emitting device according to any one of claims 2 to 4.
  6.  前記接続凹部は、前記底面と前記裏面との間の内壁面を有し、
     前記内壁面は、前記ベースの内部に向かって窪む弧状の面を有する、
     請求項1から請求項5のいずれか一項に記載の半導体発光装置。
    The connection recess has an inner wall surface between the bottom surface and the back surface.
    The inner wall surface has an arcuate surface that is recessed toward the inside of the base.
    The semiconductor light emitting device according to any one of claims 1 to 5.
  7.  前記主面に設けられ、前記半導体発光素子を支持するヒートシンクを備えた、
     請求項1から請求項6のいずれか一項に記載の半導体発光装置。
    A heat sink provided on the main surface and supporting the semiconductor light emitting device is provided.
    The semiconductor light emitting device according to any one of claims 1 to 6.
  8.  前記接続凹部は、前記主面と垂直な方向から視て前記ヒートシンクと重なる位置に形成されている、
     請求項7に記載の半導体発光装置。
    The connection recess is formed at a position overlapping the heat sink when viewed from a direction perpendicular to the main surface.
    The semiconductor light emitting device according to claim 7.
PCT/JP2020/031365 2019-09-25 2020-08-20 Semiconductor light-emitting device WO2021059805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173895 2019-09-25
JP2019-173895 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021059805A1 true WO2021059805A1 (en) 2021-04-01

Family

ID=75166083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031365 WO2021059805A1 (en) 2019-09-25 2020-08-20 Semiconductor light-emitting device

Country Status (1)

Country Link
WO (1) WO2021059805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210265812A1 (en) * 2018-09-26 2021-08-26 Rohm Co., Ltd. Semiconductor laser device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185247U (en) * 1987-05-22 1988-11-29
JP2001189515A (en) * 1999-12-28 2001-07-10 Oki Electric Ind Co Ltd Optical transmission module
JP2011119634A (en) * 2009-10-28 2011-06-16 Kyocera Corp Package for electronic component mounting, and electronic device using the same
WO2012060106A1 (en) * 2010-11-04 2012-05-10 パナソニック株式会社 Bulb-type lamp and illuminating device
JP2019129302A (en) * 2018-01-26 2019-08-01 ローム株式会社 Semiconductor laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185247U (en) * 1987-05-22 1988-11-29
JP2001189515A (en) * 1999-12-28 2001-07-10 Oki Electric Ind Co Ltd Optical transmission module
JP2011119634A (en) * 2009-10-28 2011-06-16 Kyocera Corp Package for electronic component mounting, and electronic device using the same
WO2012060106A1 (en) * 2010-11-04 2012-05-10 パナソニック株式会社 Bulb-type lamp and illuminating device
JP2019129302A (en) * 2018-01-26 2019-08-01 ローム株式会社 Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210265812A1 (en) * 2018-09-26 2021-08-26 Rohm Co., Ltd. Semiconductor laser device

Similar Documents

Publication Publication Date Title
TWI382559B (en) Led package assembly
JP2006313896A (en) Light emitting element package
JP6304282B2 (en) Semiconductor laser device
JP2004031900A (en) Semiconductor laser, manufacturing method thereof, and optical pickup device
JP7284424B2 (en) light emitting device
JP2013225654A (en) Semiconductor laser device
WO2021059805A1 (en) Semiconductor light-emitting device
US20210265812A1 (en) Semiconductor laser device
JP6225834B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2016029718A (en) Semiconductor laser device
US7567599B2 (en) Semiconductor laser diode device with thermal conductive encapsulating resin and method for manufacturing the same
US8237188B2 (en) Light source
JP3128613U (en) Light emitting diode
CN109314170B (en) LED metal pad configuration for optimized thermal resistance, solder reliability and SMT process yield
WO2020031589A1 (en) Semiconductor laser device
US11955769B2 (en) Optical element mounting package, electronic device, and electronic module
JP7329527B2 (en) Semiconductor laser device
JP7045204B2 (en) Semiconductor laser device
JP2007012718A (en) Electronic component housing package and electronic device
JP3157844U (en) Semiconductor element
JP6485518B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6892225B2 (en) Mounting structure of semiconductor laser device and semiconductor laser device
JP2007116078A (en) Housing of light emitting element
JP2005223083A (en) Semiconductor device
KR20070034251A (en) Light emitting device package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP