WO2021059724A1 - Purge control valve device - Google Patents

Purge control valve device Download PDF

Info

Publication number
WO2021059724A1
WO2021059724A1 PCT/JP2020/028787 JP2020028787W WO2021059724A1 WO 2021059724 A1 WO2021059724 A1 WO 2021059724A1 JP 2020028787 W JP2020028787 W JP 2020028787W WO 2021059724 A1 WO2021059724 A1 WO 2021059724A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
internal passage
mode
mover
passage
Prior art date
Application number
PCT/JP2020/028787
Other languages
French (fr)
Japanese (ja)
Inventor
康規 小林
曄楠 李
雅明 平野
Original Assignee
浜名湖電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜名湖電装株式会社 filed Critical 浜名湖電装株式会社
Publication of WO2021059724A1 publication Critical patent/WO2021059724A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the disclosure in this specification relates to a purge control valve device.
  • Patent Document 1 discloses an electromagnetic valve device that individually drives each of two movers according to a magnetic field formed by separate solenoid coils. This solenoid valve device has a separate electrical circuit for each of the two movers.
  • the solenoid valve device of Patent Document 1 requires two electric circuits in order to electromagnetically drive two movers.
  • the solenoid valve device of Patent Document 1 has room for improvement in terms of the number of parts.
  • An object disclosed in this specification is to provide a purge control valve device capable of driving two movers by one electric circuit.
  • One of the disclosed purge control valve devices is an inflow port into which the evaporated fuel spilled from the canister flows in, an outflow port in which the evaporative fuel flows out toward the engine, and a passage inside the housing connecting the inflow port and the outflow port.
  • a housing having a housing, a first valve provided inside the housing and having a first valve body for controlling the flow rate of fuel vapor flowing down the internal passage of the housing, and a first valve provided inside the housing and flowing down the internal passage of the housing.
  • a second valve having a second valve body that controls the flow rate of the evaporative fuel, one solenoid unit that is energized to form one electric circuit, and the first valve according to the electromagnetic force generated by one electric circuit.
  • first mover that is driven together with the body and a second mover that is driven together with the second valve body in response to an electromagnetic force generated by one electric circuit.
  • first mover and the second mover one mover is formed containing a hard magnetic material, and the other mover contains a soft magnetic material whose magnetization is more easily changed by an external magnetic field than one mover. It is formed.
  • the electromagnetic force generated by one electric circuit formed by energizing one solenoid unit drives the first mover and the second mover.
  • a purge control valve device in which two movers can be driven by one electric circuit, and it is possible to reduce the number of parts.
  • one of the two movers is formed by containing a hard magnetic material, it has a property of being less susceptible to electromagnetic force than the other mover. Therefore, since the first mover and the second mover can be driven individually, the opening degree of the first valve body and the second valve body with respect to the internal passages can be different from each other. As a result, this device can control the opening degree of each of the two valve bodies individually, and can adjust the purge flow rate of the evaporated fuel.
  • the purge control valve device is used in the evaporative fuel processing device 1 which is an evaporative fuel purging system mounted on a vehicle.
  • the purge valve 3 is an example of a purge control valve device.
  • the evaporative fuel processing device 1 supplies HC gas or the like in the fuel adsorbed on the canister 13 to the intake passage of the engine 2. This makes it possible to prevent the evaporated fuel from the fuel tank 10 from being released into the atmosphere.
  • the evaporative fuel processing device 1 includes an intake system of the engine 2 that constitutes an intake passage of the engine 2 that is an internal combustion engine, and an evaporative fuel purge system that supplies the evaporated fuel to the intake system of the engine 2.
  • the evaporated fuel introduced into the intake passage by the intake pressure of the engine 2 is mixed with the combustion fuel supplied to the engine 2 from the injector or the like and burned in the combustion chamber of the engine 2.
  • the engine 2 mixes and burns at least the evaporated fuel desorbed from the canister 13 and the combustion fuel.
  • the intake pipe 21 constituting the intake passage is connected to the intake manifold 20.
  • This intake system is further configured by providing a throttle valve 25, an air filter 24, and the like in the middle of the intake pipe 21.
  • the fuel tank 10 and the canister 13 are connected by a pipe 11 constituting a vapor passage.
  • the canister 13 and the intake pipe 21 are connected to each other via a pipe 14 constituting a purge passage and a purge valve 3.
  • a purge pump may be provided in the middle of the purge passage.
  • the air filter 24 is provided in the upstream portion of the intake pipe 21 and captures dust, dust, etc. in the intake pipe.
  • the throttle valve 25 is an intake air amount adjusting valve that adjusts the opening degree of the inlet portion of the intake manifold 20 to adjust the amount of intake air flowing into the intake manifold 20.
  • the intake air passes through the intake air passage, flows into the intake manifold 20, is mixed with the combustion fuel injected from the injector or the like so as to have a predetermined air-fuel ratio, and is burned in the combustion chamber.
  • the fuel tank 10 is a container for storing fuel such as gasoline.
  • the fuel tank 10 is connected to the inflow portion of the canister 13 by a pipe 11 forming a vapor passage.
  • the ORVR valve 15 is provided in the fuel tank 10.
  • the ORVR valve 15 prevents the evaporated fuel in the fuel tank 10 from being discharged into the atmosphere from the fuel filler port during fuel refueling.
  • the ORVR valve 15 is a float valve whose position is displaced according to the liquid level of the fuel. When the fuel in the fuel tank 10 is low, the ORVR valve 15 is opened, and the paper is discharged from the fuel tank 10 to the canister 13 by the pressure at the time of refueling. When a predetermined amount or more of fuel is present in the fuel tank 10, the ORVR valve 15 is closed by the buoyancy of the fuel to prevent the evaporated fuel from flowing out to the canister 13.
  • the canister 13 is a container in which an adsorbent such as activated carbon is sealed.
  • the canister 13 takes in the evaporated fuel generated in the fuel tank 10 through the vapor passage and temporarily adsorbs it to the adsorbent.
  • the canister 13 is provided with a valve module 12 integrally or via a duct portion.
  • the valve module 12 includes a canister closed valve and an internal pump.
  • the canister close valve opens and closes the suction section for sucking in fresh air from the outside.
  • atmospheric pressure can be applied to the inside of the canister 13.
  • the canister 13 can easily desorb, that is, purge the evaporated fuel adsorbed on the adsorbent by the sucked fresh air.
  • the purge valve 3 is a purge control valve device including a plurality of valve bodies that open and close the passage inside the housing in the housing that is a part of the purge passage.
  • the purge control valve device has a plurality of solenoid valves inside. The purge valve 3 can allow and block the supply of evaporative fuel from the canister 13 to the engine 2.
  • the control device 50 controls the inflow port 31a and the outflow port 33a so as to communicate with each other when the vehicle is traveling, the negative pressure in the intake manifold 20 generated by the suction action of the piston and the atmospheric pressure applied to the canister 13 There is a difference. Due to this pressure difference, the vapor fuel adsorbed in the canister 13 flows through the purge passage and the purge valve 3 and is sucked into the intake manifold 20 through the intake pipe 21.
  • the evaporated fuel sucked into the intake manifold 20 is mixed with the original combustion fuel supplied from the injector or the like to the engine 2 and burned in the cylinder of the engine 2.
  • the air-fuel ratio which is the mixing ratio of the combustion fuel and the intake air, is controlled to be a predetermined air-fuel ratio.
  • the control device 50 controls the operation of the first valve 34 and the second valve 35 by controlling the applied voltage.
  • the purge valve 3 has one solenoid unit 36, and energizes the solenoid unit 36 to form one electric circuit.
  • the first valve 34 and the second valve 35 are driven in the axial direction by using an electromagnetic driving force generated by a magnetic flux generated by a common electric circuit to open the valves, and open their respective passages.
  • the control device 50 is configured to control the electric power supplied from the power supply unit 51 such as a battery and apply it to the solenoid unit 36.
  • the control device 50 can control the duty ratio of the positive side voltage, which is the ratio of the on-time to the unit time of the total on and off of the positive side voltage, to energize the coil unit 360.
  • the energization control in which the positive side voltage is applied is an energization control in which the application of the positive side voltage and the non-application of the positive side voltage are alternately repeated. As shown in FIG. 6, the control device 50 controls the duty ratio of the positive side voltage application in the range of 0% to 100%.
  • the control device 50 has an inverter device that controls the AC signal voltage, and can control the AC signal voltage to energize the coil unit 360. As shown in FIG. 6, the control device 50 controls the duty ratio of the positive side voltage application or the duty ratio of the negative side voltage application in the range of 0% to 100% by controlling the AC signal voltage.
  • the control device 50 appropriately controls the first valve 34 and the second valve 35 by controlling the energization, and adjusts the purge amount of the evaporated fuel so that a predetermined air-fuel ratio is maintained.
  • the control device 50 has at least one arithmetic processing unit (CPU) and at least one memory device as a storage medium for storing programs and data.
  • the control device 50 is provided, for example, by a microcomputer having a storage medium that can be read by a computer.
  • a storage medium is a non-transitional substantive storage medium that stores a computer-readable program non-temporarily.
  • the storage medium may be provided by a semiconductor memory, a magnetic disk, or the like.
  • the control device 50 may be provided by a single computer, or a set of computer resources linked by a data communication device.
  • the program when executed by the control device 50, causes the control device 50 to function as the device described herein and to perform the method described herein.
  • control device 50 can be provided by software recorded in a substantive memory device and a computer, software only, hardware only, or a combination thereof that executes the software.
  • control device 50 can be provided by an electronic circuit that is hardware, it can be provided by a digital circuit or an analog circuit that includes a large number of logic circuits.
  • the purge valve 3 is required to have a performance capable of adjusting a large flow rate. If an attempt is made to increase the flow rate of the purge valve 3, the fluctuation range of the pressure in the flow path connecting the purge valve 3 and the canister 13 may become large. The increase in the pressure fluctuation range causes vibration of the piping due to pulsation, which causes noise in the vehicle. Further, as the flow rate of the purge valve 3 is increased, a fluttering noise of the ORVR valve 15 may be generated.
  • the pipe 14 connecting the purge valve 3 and the canister 13 is provided, for example, under the floor in the vehicle interior.
  • the evaporative fuel processing device 1 has an effect of suppressing the pressure fluctuation width in the flow path on the canister side and the fluttering noise of the ORVR valve 15. Further, when trying to increase the flow rate of the purge valve 3, the accuracy of the flow rate control is lowered, so that the accuracy of the concentration learning of the evaporated fuel tends to be lowered. Therefore, the evaporative fuel processing device 1 has an effect of ensuring the accuracy of learning the concentration of the evaporative fuel.
  • the purge valve 3 has a first valve 34 and a second valve 35 provided inside the housing.
  • the first valve 34 and the second valve 35 are arranged in parallel in the housing internal passage of the purge valve 3.
  • the first valve 34 and the second valve 35 are arranged so that the first valve body 340 and the second valve body 350 are aligned in the axial direction of the purge valve 3 or the displacement direction of the valve body.
  • FIG. 2 shows that the first valve 34 and the second valve 35 are controlled in a closed state.
  • the first valve 34 opens and closes the first internal passage 34a2 provided in the purge valve 3.
  • the second valve 35 opens and closes the second internal passage 35a2 provided in the purge valve 3.
  • the first internal passage 34a2 is a passage in the first duct 34a integrally provided in the first housing 31.
  • the second internal passage 35a2 is a passage in the second duct 35a integrally provided in the first housing 31.
  • the first internal passage 34a2 and the second internal passage 35a2 are arranged in parallel in the internal passage in the housing.
  • the second internal passage 35a2 is a passage having a passage crossing area larger than that of the first internal passage 34a2.
  • the purge valve 3 includes a first valve 34 capable of adjusting a small flow rate and a second valve 35 capable of adjusting a large flow rate as compared with the first valve 34.
  • the first duct 34a is provided with a first valve seat portion 34a1 on which the first valve body 340 is seated at the upstream end portion.
  • the second duct 35a includes a second valve seat portion 35a1 on which the second valve body 350 is seated at the upstream end portion.
  • Each of the first duct 34a and the second duct 35a forms an internal passage in which the passage crossing area is larger in the downstream end passage than in the upstream end passage.
  • the cross-sectional area of the first internal passage 34a2 becomes smaller toward the upstream end.
  • the cross-sectional area of the second internal passage 35a2 becomes smaller toward the upstream end.
  • the purge valve 3 includes a first housing 31 and a second housing 33 as housings.
  • the first housing 31 and the second housing 33 are made of, for example, a resin material.
  • the first housing 31 includes an inflow port 31a into which the evaporated fuel from the canister 13 flows in.
  • the inflow port 31a is connected to a pipe 14 forming a purge passage in the evaporative fuel processing device 1.
  • the inflow port 31a communicates with the canister 13 via the connected pipe 14.
  • the housing is provided with a connector 37 containing a terminal 371 for energizing the solenoid unit 36.
  • the terminal 371 is an energizing terminal that is electrically connected to the coil portion 360.
  • a power supply side connector for supplying electric power from the power supply unit 51 or the current control device is connected to the connector 37.
  • the current that energizes the coil unit 360 can be controlled by the configuration in which the connector 37 and the power supply side connector are connected and the terminal 371 is electrically connected to the control device 50 or the like.
  • the inflow port 31a is a part of a tubular portion having a fluid inflow passage 31a1 inside, and is located at an upstream end portion in the first housing 31.
  • the downstream end of the inflow passage 31a1 is connected to the inflow side chamber chamber in the first housing 31.
  • the inflow side chamber chamber has a larger passage crossing area than the inflow passage 31a1, and is provided around the solenoid portion 36 inside the first housing 31.
  • the inflow side chamber chamber is connected to the upstream end of the first internal passage 34a2 and the upstream end of the second internal passage 35a2.
  • the inflow side chamber chamber includes a first inflow side chamber chamber and a second inflow side chamber chamber communicating with each other through the communication passage 321.
  • the upstream end of the first internal passage 34a2 is located in the first inflow side chamber chamber and communicates with the first inflow side chamber chamber.
  • the upstream end of the second internal passage 35a2 is located in the second inflow side chamber chamber and communicates with the second inflow side chamber chamber.
  • the first housing 31 accommodates the first valve 34 and the second valve 35. Inside the first housing 31, a first valve 34 and a second valve 35 are coaxially provided.
  • the solenoid portion 36 is surrounded by the resin mold portion 32 inside the first housing 31.
  • the solenoid unit 36 includes a coil unit 360, a bobbin 361, a core stator 362, a yoke 363, and the like.
  • the communication passage 321 is a passage that penetrates the resin mold portion 32.
  • the first valve 34 and the second valve 35 are provided coaxially with the solenoid portion 36.
  • the second housing 33 includes an outflow port 33a that allows evaporated fuel to flow out toward the intake pipe 21.
  • the outflow port 33a communicates with the intake pipe 21 via a connected pipe.
  • the outflow port 33a is a tubular portion having a fluid outflow passage 33a1 inside, and is located at the downstream end of the second housing 33.
  • the downstream end of the outflow passage 33a1 is connected to the outflow side chamber chamber 331 in the second housing 33.
  • the outflow side chamber chamber has a larger passage crossing area than the outflow passage 33a1, and is connected to the downstream end of the first internal passage 34a2 and the downstream end of the second internal passage 35a2.
  • the first internal passage 34a2 and the second internal passage 35a2 communicate with the outflow passage 33a1 via the outflow side chamber chamber 331.
  • the purge valve 3 includes one inflow port 31a into which the fluid flows in from the outside and one outflow port 33a in which the fluid flows out to the outside.
  • the fluid flowing into the purge valve 3 flows down from the inflow side chamber chamber in the order of the outflow side chamber chamber 331 and the outflow passage 33a1 via at least one of the first internal passage 34a2 and the second internal passage 35a2.
  • An electromagnetic force generated by a common magnetic circuit formed by applying a voltage to a common solenoid portion 36 is applied to the first valve 34 and the second valve 35.
  • the first mover 341 of the first valve 34 and the second mover 351 of the second valve 35 have a configuration in which they are easily magnetized with respect to an external magnetic field.
  • the operation of the first mover 341 and the operation of the second mover 351 are different because there is a difference in the electromagnetic force received by the mover due to the common magnetic circuit.
  • the first valve 34 and the second valve 35 do not operate in the same manner but operate individually.
  • the first valve 34 includes a first mover 341, a first shaft portion 342, a first spring 343, and the like.
  • the central axis of the first mover 341 corresponds to the central axis of the first valve 34 and the central axis of the purge valve 3.
  • the first mover 341 is a bottomed cup-shaped body.
  • the first mover 341 is provided so as to surround the first spring 343.
  • the first spring 343 is provided between the first shaft portion 342 and the first mover 341.
  • the first spring 343 provides an urging force that moves the first mover 341 away from the first shaft portion 342.
  • the first spring 343 provides an urging force for moving the first mover 341 toward the first valve seat portion 34a1.
  • the first valve body 340 is made of an elastically deformable material such as rubber.
  • the first valve body 340 is integrally provided at the axial end portion of the first mover 341.
  • the second valve 35 includes a second mover 351 and a second shaft portion 352, a second spring 353, and the like.
  • the central axis of the second mover 351 corresponds to the central axis of the second valve 35 and the central axis of the purge valve 3.
  • the second mover 351 is a bottomed cup-shaped body.
  • the second mover 351 is provided so as to surround the second spring 353.
  • the second spring 353 is provided between the second shaft portion 352 and the second mover 351.
  • the second spring 353 provides an urging force that moves the second mover 351 away from the second shaft portion 352.
  • the second spring 353 provides an urging force for moving the second mover 351 toward the second valve seat portion 35a1.
  • the second valve body 350 is made of an elastically deformable material such as rubber.
  • the second valve body 350 is integrally provided at the axial end portion of the second mover 351.
  • one mover may be formed to include a hard magnetic material.
  • the other mover is formed to contain a softer magnetic material than one mover.
  • the soft magnetic material is a material whose magnetization is more easily changed by an external magnetic field than the hard magnetic material.
  • the hard magnetic material is a magnetic material having a high coercive force and does not easily demagnetize with respect to an external magnetic field.
  • a permanent magnet, a ferrite magnet, an NdFeB-based magnet, platinum iron, platinum cobalt, or the like can be adopted.
  • a soft magnetic material is a magnetic material that has a large magnetization and magnetic permeability and changes its magnetization according to the direction and magnitude of an external magnetic field.
  • the soft magnetic material for example, pure electromagnetic iron, ferrite, silica iron and the like can be adopted.
  • the case where the first mover 341 contains a soft magnetic material and the second mover 351 contains a hard magnetic material will be described.
  • the coil portion 360 When the coil portion 360 is energized, a magnetic circuit is formed.
  • the magnetic circuit forms a first magnetic path through the yoke 363, core stator 362, and first mover 341 and a second magnetic path through the yoke 363, core stator 362, and second mover 351.
  • the first path generates an electromagnetic force that attracts the first mover 341 to the first shaft portion 342 against the urging force of the first spring 343.
  • the first valve body 340 switches from the valve closed state to the valve open state by this electromagnetic force.
  • the magnetic flux generated by the second path repels the magnetic flux extending from the north pole of the second mover 351.
  • the second valve body 350 remains urged by the second spring 353 and is closed.
  • the magnetic flux generated by the second path attracts the magnetic flux extending from the north pole of the second mover 351.
  • the second valve body 350 generates an electromagnetic force that attracts the second mover 351 to the second shaft portion 352 against the urging force of the second spring 353.
  • the second valve body 350 switches from the valve closed state to the valve open state by this electromagnetic force.
  • FIG. 3 shows that the first valve 34 is in the valve open state separated from the first valve seat portion 34a1, and the second valve 35 is in the valve closed state in which the second valve 35 is seated on the second valve seat portion 35a1.
  • the purge valve 3 is controlled to the state shown in FIG. 3 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 6 is executed.
  • the control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the positive side voltage.
  • the purge valve 3 is configured so that the magnetic flux generated by the solenoid unit 36 when a positive voltage is applied repels the magnetic flux of the mover containing the hard magnetic material.
  • the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit repel each other
  • the second mover 351 is the second valve seat.
  • the valve closed state seated on the portion 35a1 is maintained. Since the first mover 341 contains a soft magnetic material, the first valve 34 is opened at a ratio corresponding to the duty ratio of the applied voltage. In the mode of the first increase rate region, as shown in FIG.
  • the first valve 34 is opened at a ratio corresponding to the duty ratio of the positive side voltage, and the second valve 35 is closed regardless of the duty ratio.
  • the control device 50 executes energization control in which the duty ratio of the positive side voltage application is gradually increased from 0% to 100% as in the mode of the first increase rate region shown in FIG. As a result, the valve opening rate of the first valve 34 increases, and the flow rate flowing down the first internal passage 34a2 increases.
  • FIG. 4 shows that the first valve 34 is in the valve open state and the second valve 35 is in the valve open state separated from the second valve seat portion 35a1.
  • the purge valve 3 is controlled to the state shown in FIG. 4 when the mode of the second increase rate region in which the flow rate increase rate as shown in the graph of FIG. 6 is larger than the first increase rate region is executed.
  • the control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the AC signal voltage.
  • the energization control in which the AC signal voltage is applied is an energization control in which the positive side voltage and the negative side voltage are alternately applied.
  • the duty ratio of the AC signal voltage is the ratio of the application time of the negative voltage to the unit time.
  • the purge valve 3 is configured so that the magnetic flux generated by the solenoid unit 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material.
  • the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit attract each other
  • the second mover 351 is the second valve seat portion.
  • the valve is opened apart from 35a1. Since the first mover 341 contains a soft magnetic material, the first valve 34 opens at both the positive voltage application time and the negative voltage application time. Therefore, the first valve 34 is opened as shown in FIG. carry on. In the mode of the second increase rate region, as shown in FIG.
  • the first valve 34 keeps opening, and the second valve 35 opens at a rate corresponding to the duty ratio of the negative voltage.
  • the control device 50 executes energization control in which the duty ratio of the negative side voltage application in the AC signal voltage application is gradually increased from 0% to 100% as in the mode of the second increase rate region.
  • the valve opening rate of the second valve 35 increases while the first valve 34 is fully opened, and the flow rate flowing down the second internal passage 35a2 increases.
  • the flow rate flowing out from the purge valve 3 does not change significantly and continues to increase continuously.
  • the control device 50 executes the process according to the flowchart of FIG. This flowchart starts when the evaporated fuel flows down toward the engine 2.
  • the control device 50 determines whether or not the concentration of the evaporated fuel is learned in step S100. If it is determined in step S100 that the concentration learning is being performed, the control device 50 determines in step S120 whether or not the second valve 35 is in the closed state. If it is determined in step S120 that the second valve 35 is in the closed state, the process returns to step S100 and the determination process of step S100 is executed. When it is determined in step S120 that the second valve 35 is not in the closed state, a positive voltage is applied to the coil portion 360 in step S125, and the determination process of step S100 is executed. The control device 50 executes control in which the duty ratio of the positive side voltage is gradually increased from 0% to 100%.
  • the control device 50 determines whether or not the noise generation condition is satisfied in step S110.
  • the noise generation condition is a preset condition that can be assumed to generate noise due to pressure fluctuation in the passage through which the evaporated fuel flows and the generation of the fluttering noise of the ORVR valve 15.
  • the noise generation condition can be set, for example, to be satisfied when the current vehicle speed is equal to or lower than a predetermined speed. In this case, the control device 50 acquires the current vehicle speed based on the vehicle speed information detected by the vehicle speed sensor 61.
  • the vehicle speed sensor 61 outputs vehicle speed information to the vehicle ECU 60 that controls the traveling of the vehicle and the cooling system necessary for the traveling of the vehicle, and the vehicle speed information is output from the vehicle ECU 60 to the control device 50.
  • the predetermined speed is preferably set based on experimental results or empirical rules, and is set to a vehicle speed at which the noise is drowned out by the running noise and is difficult for the occupants in the vehicle interior to recognize. By setting the noise generation condition to be satisfied when the current vehicle speed is lower than the predetermined speed, it is possible to suppress the noise that tends to be generated when the vehicle speed is low and the running noise is low.
  • step S110 when the vehicle is stopped, running at a low speed, or when the engine 2 is idling, the control device 50 determines that the noise generation condition is satisfied in step S110. If it is determined in step S110 that the noise generation condition is satisfied, the process proceeds to step S120, and the determination process of step S120 is executed.
  • the flow of returning from step S120 to step S100 and the flow of returning to step S100 after executing step S125 implement the mode of the first increase rate range of FIG.
  • the flow rate increase rate of the fluid is small, so that the concentration learning accuracy of the evaporated fuel can be improved.
  • the flow rate change in the small flow rate region can be made smaller than that of the solenoid valve in which the flow rate increase rate is constant.
  • the flow rate is suppressed, so that the effect of reducing the pulsation and suppressing the noise can be obtained.
  • the fluid flow rate is suppressed, so that the effect of reducing the fluttering of the ORVR valve 15 and suppressing the noise can be obtained.
  • step S110 determines whether or not the noise generation condition is not satisfied. If it is determined in step S110 that the noise generation condition is not satisfied, the control device 50 determines whether or not the duty ratio of the positive side voltage has reached 100% in step S130. If it is determined in step S130 that the duty ratio of the positive voltage has not reached 100%, the process returns to step S100 and the determination process of step S100 is executed. When it is determined in step S130 that the duty ratio of the positive voltage has reached 100%, it is determined in step S140 whether or not the second valve 35 is in the closed state.
  • step S140 If it is determined in step S140 that the second valve 35 is not in the closed state, the process returns to step S100 and the determination process of step S100 is executed.
  • the control device 50 applies an AC signal voltage to the coil unit 360 in step S150.
  • the control device 50 executes control in step S160 to gradually increase the duty ratio of the negative side voltage in the AC signal voltage from 0% to 100%, and returns to step S100.
  • steps S150 and S160 the fluid flow rate controlled by the purge valve 3 can be smoothly shifted from the first increase rate region to the second increase rate region as shown in FIG.
  • the mode of the second increase rate range shown in FIG. 6 is executed.
  • the valve opening rate of the second valve 35 whose large flow rate can be adjusted is increased, so that the large flow rate can be promoted.
  • the flow rate change in a large flow rate region can be made larger than that of the solenoid valve in which the flow rate increase rate is constant. Therefore, the fluid flow rate can be increased quickly in a state where noise is unlikely to be generated, and the operation satisfying the output requirement of the engine 2 can be realized.
  • the control according to the flowchart of FIG. 5, as shown in FIG. 6, it is possible to provide the flow rate control capable of suppressing the noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
  • control device 50 may determine in step S110 that the noise generation condition is satisfied when the current rotation speed of the engine 2 is lower than the predetermined rotation speed.
  • the predetermined number of revolutions is preferably set based on experimental results or empirical rules, and is set to such a number of revolutions that the noise is drowned out by the engine sound and is difficult for the occupant to recognize. And.
  • the condition for generating noise when the current engine speed is lower than the predetermined engine speed the noise caused by pressure fluctuations and the like becomes noise when the engine speed is small and quiet. It can be suppressed.
  • the purge control valve device includes a first valve 34 and a second valve 35 provided inside the housing, and one solenoid unit 36 that is energized to form one electric circuit.
  • the purge control valve device includes a first mover 341 and a second mover 351 that are driven in response to an electromagnetic force generated by one electric circuit.
  • the first mover 341 and the second mover 351 one mover is formed containing a hard magnetic material, and the other mover is made of a soft magnetic material whose magnetization is more easily changed by an external magnetic field than one mover. It is formed by including.
  • the electromagnetic force generated by one electric circuit formed by energizing one solenoid unit 36 drives the first mover 341 and the second mover 351. Since the purge control valve device can drive two movers by one electric circuit, it is possible to provide a device that reduces the number of parts. Further, since one of the two movers is formed by containing a hard magnetic material, it has a property of being less susceptible to electromagnetic force than the other mover. Therefore, since the first mover 341 and the second mover 351 can be driven individually, the first valve body 340 and the second valve body 350 can have different opening degrees with respect to their respective internal passages. As a result, the purge valve 3 can control the opening degree of each of the two valve bodies individually, and can adjust the purge flow rate of the evaporated fuel.
  • the housing internal passage includes a first internal passage 34a2 opened and closed by the first valve body 340 and a second internal passage 35a2 opened and closed by the second valve body 350.
  • the evaporative fuel flowing down the first internal passage 34a2 and the evaporative fuel flowing down the second internal passage 35a2 are configured to merge upstream of the outflow port 33a.
  • the first mover 341 and the second mover 351 are provided side by side so that the movable directions are coaxial. According to this configuration, it is possible to suppress the physique of the device in the direction orthogonal to the movable direction or the axial direction, and it is possible to provide the device in which the mounting space in the direction is suppressed.
  • first mover 341 and the second mover 351 are configured to operate in opposite directions in the valve closing operation. According to this configuration, the first valve 34 and the second valve 35 are loaded in opposite directions when the valves are closed. According to this load direction, the load related to the first valve 34 and the load related to the second valve 35 are likely to cancel each other out, which contributes to suppressing the vibration of the device.
  • one internal passage is a passage having a larger passage crossing area than the other internal passage.
  • the control device 50 controls the voltage applied to the solenoid unit 36 so as to execute the mode in the first increase rate region and the mode in the second increase rate region with respect to the increase in the flow rate of the evaporated fuel.
  • the other internal passage is opened in the mode of the first increase rate region, and the other internal passage and one internal passage are opened in the mode of the second increase rate region. According to this, it is possible to provide a flow rate control capable of suppressing noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
  • the control device 50 controls the flow rate of the evaporated fuel flowing out from the outflow port 33a by executing the mode of the first increase rate region from the zero state and then executing the mode of the second increase rate region. According to this control, it is possible to provide a purge control valve device capable of learning the concentration of the evaporated fuel from the start of purging, suppressing the fluttering of the ORVR valve 15, and further exhibiting the large flow rate performance of purging thereafter.
  • the control device 50 controls the applied voltage to the solenoid unit 36 so that the mode of the first increase rate region is executed when the concentration learning of the evaporated fuel is performed. According to this control, the concentration learning of the evaporated fuel can be carried out in a state where the change in the flow rate is small. As a result, it is possible to provide a purge control valve device that can both suppress fluttering of the ORVR valve 15 and secure a large flow rate, and further improve the accuracy of concentration learning.
  • the control device 50 controls the voltage applied to the solenoid unit 36 so that the mode in the first increase rate range is executed when the noise generation condition in which noise can be assumed is satisfied. According to this control, the mode of the first increase rate region can be executed in a state where noise due to the fluttering of the ORVR valve 15 can be generated. As a result, it is possible to provide a purge control valve device that can suppress noise more efficiently and can also secure a large flow rate.
  • the control device 50 does not control in the first mode, which controls the duty ratio of the positive side voltage application or the negative side voltage application, and the positive side voltage application and the negative side voltage application in the AC signal voltage application. It switches over to a second mode that controls the duty ratio of the voltage application.
  • the first mode of increasing the duty ratio of voltage application to a valve having a mover containing a soft magnetic material and the duty ratio of voltage application to a valve having a mover containing a hard magnetic material are increased. It is possible to carry out the second mode to be carried out.
  • the valve opening rate can be increased for a valve having a mover containing a hard magnetic material, while the valve opening state can be maintained for a valve having a mover containing a soft magnetic material.
  • one internal passage is a passage formed with a passage crossing area larger than that of the other internal passage.
  • the purge valve 3 opens the other small internal passage in the first mode, and opens the other internal passage and one internal passage in the second mode. According to this, the mode of the first increase rate region can be executed in the first mode, and the mode of the second increase rate region can be executed in the second mode. Therefore, when shifting from the mode in the first increase rate region to the mode in the second increase rate region, it is possible to carry out purge flow rate control in which the flow rate of the evaporated fuel flowing out from the outflow port 33a does not fluctuate significantly.
  • the second embodiment will be described with reference to FIGS. 7 and 8.
  • the second embodiment differs from the first embodiment in the energization control applied to the solenoid unit 36.
  • the configurations, actions, and effects that are not particularly described in the second embodiment are the same as those in the first embodiment, and only the differences will be described below.
  • the purge valve 3 is controlled to the state shown in FIG. 3 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 8 is executed.
  • the purge valve 3 is configured so that the magnetic flux generated by the solenoid portion 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material.
  • the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit attract each other, the second mover 351 is the second valve seat.
  • the valve is opened apart from the portion 35a1.
  • the first valve 34 is opened at a ratio corresponding to the duty ratio of the positive side voltage, and the second valve 35 is closed regardless of the duty ratio.
  • the control device 50 executes energization control in which the duty ratio of the positive side voltage application is gradually increased from 0% to 100% as in the mode of the first increase rate region shown in FIG.
  • the valve opening rate of the first valve 34 increases, and the flow rate flowing down the first internal passage 34a2 increases.
  • the purge valve 3 is controlled to the state shown in FIG. 4 when the mode of the second increase rate region in which the flow rate increase rate is larger than the first increase rate region as shown in the graph of FIG. 8 is executed.
  • the control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the negative voltage.
  • the energization control in which the negative side voltage is applied is an energization control in which the application of the negative side voltage and the non-application of the negative side voltage are alternately repeated.
  • the second embodiment is configured so that the magnetic flux generated by the solenoid unit 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material. Since the first mover 341 contains a soft magnetic material, the first valve 34 opens at both the application time of the positive side voltage and the application time of the negative side voltage. Therefore, as shown in FIG. 8, the first valve 34 opens at the same timing as the second valve in the mode of the second increase rate region. The second valve 35 opens at a rate corresponding to the duty ratio of the negative voltage.
  • the control device 50 executes energization control in which the duty ratio of the negative voltage application is gradually increased from a predetermined value of X% to 100%, as in the mode of the second increase rate region. By this control, when the mode shifts to the second increase rate region mode after the first increase rate region mode, the flow rate flowing out from the purge valve 3 does not change significantly and continues to increase continuously.
  • the control device 50 executes the process according to the flowchart of FIG.
  • the flowchart shown in FIG. 7 starts when the evaporated fuel flows down toward the engine 2.
  • the control device 50 determines whether or not the concentration of the evaporated fuel is learned in step S200. If it is determined in step S200 that the concentration learning is being performed, the control device 50 determines in step S220 whether or not the second valve 35 is in the closed state. When it is determined in step S220 that the second valve 35 is in the closed state, the process returns to step S200 and the determination process of step S200 is executed. When it is determined in step S220 that the second valve 35 is not in the closed state, a positive voltage is applied to the coil portion 360 in step S225, and the determination process of step S200 is executed. The control device 50 executes a control in which the duty ratio of the positive voltage applied in step S225 is gradually increased from 0% to 100%.
  • step S210 determines whether or not the noise generation condition is satisfied in step S210.
  • the process in step S210 is the same as the process in step S110 of the first embodiment. For example, when the vehicle is stopped, the vehicle is running at a low speed, the engine 2 is idling, or the like, the control device 50 determines that the noise generation condition is satisfied in step S210. If it is determined in step S210 that the noise generation condition is satisfied, the process proceeds to step S220, and the determination process of step S220 is executed.
  • step S220 The flow of returning from step S220 to step S200 and the flow of returning to step S200 after executing step S225 implement the mode of the first increase rate range of FIG.
  • the mode of the first increase rate region it is possible to improve the concentration learning accuracy of the evaporated fuel, reduce the pulsation, reduce the fluttering of the ORVR valve 15, and the like, as in the first embodiment.
  • step S210 determines whether or not the noise generation condition is not satisfied. If it is determined in step S210 that the noise generation condition is not satisfied, the control device 50 determines whether or not the duty ratio of the positive side voltage has reached 100% in step S230. If it is determined in step S230 that the duty ratio of the positive voltage has not reached 100%, the process returns to step S200 and the determination process of step S200 is executed. When it is determined in step S230 that the duty ratio of the positive side voltage has reached 100%, it is determined in step S240 whether or not the second valve 35 is in the closed state.
  • step S240 If it is determined in step S240 that the second valve 35 is not in the closed state, the process returns to step S200 and the determination process of step S200 is executed.
  • the control device 50 applies a negative side voltage having a predetermined duty ratio to the coil portion 360 in step S250.
  • step S250 the control device 50 starts applying a negative voltage according to a duty ratio of X%, which is a predetermined value.
  • the control device 50 executes control in step S260 to gradually increase the duty ratio of the negative voltage from a predetermined value toward 100%, and returns to step S200.
  • steps S250 and S260 the fluid flow rate controlled by the purge valve 3 can be smoothly shifted from the first increase rate region to the second increase rate region as shown in FIG.
  • the mode of the second increase rate range shown in FIG. 8 is executed. Similar to the first embodiment, in the mode of the second increase rate range, in addition to the valve open state of the first valve 34, the valve open rate of the second valve 35 whose large flow rate can be adjusted is increased, so that the large flow rate is increased. Can be promoted. According to the control according to the flowchart of FIG. 7, as shown in FIG. 8, it is possible to provide the flow rate control capable of suppressing the noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
  • the control device 50 switches between a positive voltage mode that controls the duty ratio of the positive voltage application and a negative voltage mode that controls the duty ratio of the negative voltage application.
  • the positive side voltage mode that increases the duty ratio of voltage application to the valve having the mover containing the soft magnetic material and the duty ratio of the voltage application to the valve having the mover containing the hard magnetic material are set. It is possible to carry out an increasing negative voltage mode.
  • the valve opening rate can be increased for a valve having a mover containing a hard magnetic material, while the valve opening state can be maintained for a valve having a mover containing a soft magnetic material.
  • the control device 50 controls so that the duty ratio of the applied voltage is increased in one of the positive side voltage mode and the negative side voltage mode.
  • the control device 50 controls the duty ratio of the applied voltage to increase from a predetermined value, which is a value larger than 0%, in the other mode. According to this, when shifting from the mode of the first increase rate region to the mode of the second increase rate region, it is possible to carry out purge flow rate control in which the flow rate of the evaporated fuel flowing out from the outflow port 33a does not fluctuate significantly.
  • the third embodiment will be described with reference to FIGS. 9 to 11.
  • the purge valve 103 of the third embodiment is different from the first embodiment in the first valve 134 and the second valve 135.
  • the configurations, actions, and effects that are not particularly described in the third embodiment are the same as those in the first embodiment, and only the differences will be described below.
  • the purge valve 103 includes a first valve 134 and a second valve 135 provided inside the housing.
  • the first valve 134 and the second valve 135 are arranged in parallel in the housing internal passage of the purge valve 103.
  • the first valve 134 and the second valve 135 are arranged so that the axial direction of the first valve body 340 and the axial direction of the second valve body 350 are aligned in the radial direction.
  • FIG. 9 shows that the first valve 134 and the second valve 135 are controlled in the closed state.
  • the purge valve 103 includes a first valve 134 that can adjust a small flow rate, and a second valve 135 that can adjust a large flow rate as compared with the first valve 134.
  • the control device 50 controls the operation of the first valve 134 and the second valve 135 by controlling the applied voltage.
  • the purge valve 103 has one solenoid unit 36, and energizes the solenoid unit 36 to form one electric circuit.
  • the first valve 134 and the second valve 135 are driven in the axial direction by using an electromagnetic driving force generated by a magnetic flux generated by a common electric circuit to open the valves, and open their respective passages.
  • the solenoid portion 36 includes a coil portion 360a and a coil portion 360b.
  • the coil portion 360a and the coil portion 360b are connected in series by a connecting portion 360c.
  • the solenoid unit 36 includes a coil unit 360, a bobbin 361a, a bobbin 361b, a core stator 362a, a core stator 362b, a yoke 1342, a yoke 1352, and the like.
  • the first valve 134 includes a coil portion 360a, a first mover 1341, a core stator 362a, a first spring 1343, a link portion 1344, and the like.
  • the coil portion 360a is wound around the bobbin 361a.
  • the central axis of the first mover 1341 corresponds to the central axis of the first valve 134.
  • the first mover 1341 and the yoke 1342 are connected by a link portion 1344.
  • the first spring 1343 provides an urging force that moves the first mover 1341 away from the core stator 362a.
  • the first spring 1343 provides an urging force that attempts to move the first mover 1341 toward the first valve seat portion 34a1.
  • the first valve body 340 is integrally provided at the axial end portion of the first mover 1341.
  • the second valve 135 includes a coil portion 360b, a second mover 1351, a core stator 362b, a second spring 1353, a link portion 1354, and the like.
  • the coil portion 360b is wound around the bobbin 361b.
  • the central axis of the second mover 1351 corresponds to the central axis of the second valve 135.
  • the second mover 1351 and the yoke 1352 are connected by a link portion 1354.
  • the second spring 1353 provides an urging force that moves the second mover 1351 away from the core stator 362b.
  • the second spring 1353 provides an urging force for moving the second mover 1351 toward the second valve seat portion 35a1.
  • the second valve body 350 is integrally provided at the axial end portion of the second mover 1351.
  • FIG. 10 shows that the first valve 134 is in the valve open state separated from the first valve seat portion 34a1, and the second valve 135 is in the valve closed state in which the second valve seat portion 35a1 is seated.
  • the broken line shown in FIG. 10 shows the magnetic circuit formed in the first valve 134.
  • the non-support portion 1341b located on one end side of the first mover 1341 is located closer to the core stator 362a than the support portion 1341a located on the other end side. This is because the non-support portion 1341b is attracted to the core stator 362a side by the electromagnetic force.
  • the purge valve 103 is controlled to the state shown in FIG. 10 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 6 is executed.
  • FIG. 11 shows that the first valve 134 is in the valve open state, and the second valve 135 is in the valve open state separated from the second valve seat portion 35a1.
  • the non-support portion 1351b located on one end side of the second mover 1351 is located closer to the core stator 362b than the support portion 1351a located on the other end side. This is because the non-support portion 1351b is attracted to the core stator 362b side by the electromagnetic force.
  • the purge valve 103 is controlled to the state shown in FIG. 11 when the mode of the second increase rate region in which the flow rate increase rate as shown in the graph of FIG. 6 is larger than that of the first increase rate region is executed.
  • Disclosure of this specification is not limited to the illustrated embodiments.
  • the disclosure includes exemplary embodiments and modifications by those skilled in the art based on them.
  • the disclosure is not limited to the combination of parts and elements shown in the embodiment, and can be implemented in various modifications. Disclosure can be carried out in various combinations.
  • the disclosure can have additional parts that can be added to the embodiment.
  • the disclosure includes parts and elements of the embodiment omitted. Disclosures include replacements or combinations of parts, elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments.
  • the energization control described in the second embodiment can be applied to the purge valve 103 of the third embodiment.
  • the operation and effect of the purge valve 103 are the same as those described in the second embodiment.
  • the first internal passage and the second internal passage may have a configuration in which the passage crossing areas are the same.
  • the first increase rate region and the second increase rate region shown in FIG. 6 and the like have a relationship in which the flow rate change rates are the same.
  • the first internal passage may have a larger passage crossing area than the second internal passage.
  • the flow rate change rate is larger in the first increase rate region.
  • the mover containing the hard magnetic material may be the first mover, and the mover containing the soft magnetic material may be the second mover.
  • the description in the above-described embodiment shall be read by exchanging the first mover and the second mover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

A purge valve (3) of a purge control valve device comprises a first valve (34) that is provided inside a housing and that has a first valve body (340), and a second valve (35) having a second valve body (350). The purge valve (3) comprises one solenoid section (36) that is energized to form one electric circuit. The first valve (34) includes a first needle (341) driven along with the first valve body (340) in accordance with electromagnetic force generated by the one electric circuit. The second valve (35) includes a second needle (351) driven along with the second valve body (350) in accordance with electromagnetic force generated by the one electric circuit. Of the first needle (341) and the second needle (351), one needle is formed including a hard magnetic material, and the other needle is formed including a soft magnetic material. The two needles can thereby be driven by one electric circuit.

Description

パージ制御弁装置Purge control valve device 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2019年9月23日に出願された日本特許出願2019ー172397号を基にしている。 This application is based on Japanese Patent Application No. 2019-172397 filed on September 23, 2019, the disclosure of which is incorporated into this application by reference.
 この明細書における開示は、パージ制御弁装置に関する。 The disclosure in this specification relates to a purge control valve device.
 特許文献1は、二つの可動子のそれぞれを、別々のソレノイドコイルによって形成した磁界に応じて個別に駆動する電磁バルブ装置が開示されている。この電磁バルブ装置は、二つの可動子のそれぞれについて、個別の電気回路を有している。 Patent Document 1 discloses an electromagnetic valve device that individually drives each of two movers according to a magnetic field formed by separate solenoid coils. This solenoid valve device has a separate electrical circuit for each of the two movers.
特許第4611384号公報Japanese Patent No. 461184
 特許文献1の電磁バルブ装置は、二つの可動子を電磁的に駆動するために、二つの電気回路が必要である。特許文献1の電磁バルブ装置は、部品点数の点で改善の余地がある。 The solenoid valve device of Patent Document 1 requires two electric circuits in order to electromagnetically drive two movers. The solenoid valve device of Patent Document 1 has room for improvement in terms of the number of parts.
 この明細書に開示する目的は、二つの可動子を一つの電気回路によって駆動可能なパージ制御弁装置を提供することである。 An object disclosed in this specification is to provide a purge control valve device capable of driving two movers by one electric circuit.
 開示されたパージ制御弁装置の一つは、キャニスタから流出した蒸発燃料が流入する流入ポートと、蒸発燃料がエンジンに向けて流出する流出ポートと、流入ポートと流出ポートとを連絡するハウジング内部通路を有するハウジングと、ハウジングの内部に設けられて、ハウジング内部通路を流下する蒸発燃料の流量を制御する第1弁体を有する第1バルブと、ハウジングの内部に設けられて、ハウジング内部通路を流下する蒸発燃料の流量を制御する第2弁体を有する第2バルブと、通電されて一つの電気回路を形成する一つのソレノイド部と、一つの電気回路によって発生する電磁力に応じて第1弁体とともに駆動する第1可動子と、一つの電気回路によって発生する電磁力に応じて第2弁体とともに駆動する第2可動子と、を備える。第1可動子と第2可動子のうち、一方の可動子は硬質磁性材料を含んで形成され、他方の可動子は一方の可動子よりも外部磁場によって磁化が変わりやすい軟質磁性材料を含んで形成されている。 One of the disclosed purge control valve devices is an inflow port into which the evaporated fuel spilled from the canister flows in, an outflow port in which the evaporative fuel flows out toward the engine, and a passage inside the housing connecting the inflow port and the outflow port. A housing having a housing, a first valve provided inside the housing and having a first valve body for controlling the flow rate of fuel vapor flowing down the internal passage of the housing, and a first valve provided inside the housing and flowing down the internal passage of the housing. A second valve having a second valve body that controls the flow rate of the evaporative fuel, one solenoid unit that is energized to form one electric circuit, and the first valve according to the electromagnetic force generated by one electric circuit. It includes a first mover that is driven together with the body and a second mover that is driven together with the second valve body in response to an electromagnetic force generated by one electric circuit. Of the first mover and the second mover, one mover is formed containing a hard magnetic material, and the other mover contains a soft magnetic material whose magnetization is more easily changed by an external magnetic field than one mover. It is formed.
 この装置によれば、一つのソレノイド部への通電によって形成される一つの電気回路がもたらす電磁力が第1可動子と第2可動子とを駆動する。これによれば、二つの可動子を一つの電気回路によって駆動可能なパージ制御弁装置を提供でき、部品点数の低減を図ることができる。さらに、この二つの可動子の一方は、硬質磁性材料を含んで形成されているので、他方の可動子よりも電磁力の影響を受けにくい特性を有する。このため、第1可動子と第2可動子を個別に駆動できるので、第1弁体と第2弁体はそれぞれの内部通路に対する開度を異なる状態にできる。これにより、この装置は、二つの弁体について個別の開度制御が可能であり、蒸発燃料のパージ流量を調整することができる。 According to this device, the electromagnetic force generated by one electric circuit formed by energizing one solenoid unit drives the first mover and the second mover. According to this, it is possible to provide a purge control valve device in which two movers can be driven by one electric circuit, and it is possible to reduce the number of parts. Further, since one of the two movers is formed by containing a hard magnetic material, it has a property of being less susceptible to electromagnetic force than the other mover. Therefore, since the first mover and the second mover can be driven individually, the opening degree of the first valve body and the second valve body with respect to the internal passages can be different from each other. As a result, this device can control the opening degree of each of the two valve bodies individually, and can adjust the purge flow rate of the evaporated fuel.
明細書に開示するパージ制御弁装置を含む蒸発燃料処理装置の構成図である。It is a block diagram of the evaporative fuel processing apparatus including the purge control valve apparatus disclosed in the specification. 第1実施形態のパージ制御弁装置の概要構成を示す断面図である。It is sectional drawing which shows the schematic structure of the purge control valve device of 1st Embodiment. 第1増加率域におけるパージ制御弁装置の動作を示す断面図である。It is sectional drawing which shows the operation of the purge control valve device in the 1st increase rate region. 第2増加率域におけるパージ制御弁装置の動作を示す断面図である。It is sectional drawing which shows the operation of the purge control valve device in the 2nd increase rate region. パージ制御弁装置の制御に係るフローチャートである。It is a flowchart which concerns on the control of a purge control valve device. パージ制御弁装置に係る制御と流量特性との関係を示した図である。It is a figure which showed the relationship between the control which concerns on the purge control valve device, and the flow rate characteristic. 第2実施形態の制御に係るフローチャートである。It is a flowchart which concerns on the control of 2nd Embodiment. 第2実施形態に係る制御と流量特性と関係を示した図である。It is a figure which showed the relationship between the control and the flow rate characteristic which concerns on 2nd Embodiment. 第3実施形態のパージ制御弁装置の概要構成を示す断面図である。It is sectional drawing which shows the schematic structure of the purge control valve device of 3rd Embodiment. 第1増加率域におけるパージ制御弁装置の動作を示す断面図である。It is sectional drawing which shows the operation of the purge control valve device in the 1st increase rate region. 第2増加率域におけるパージ制御弁装置の動作を示す断面図である。It is sectional drawing which shows the operation of the purge control valve device in the 2nd increase rate region.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each form, the same reference numerals may be attached to the parts corresponding to the items described in the preceding forms, and duplicate explanations may be omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the combination of the embodiments even if it is not specified if there is no particular problem in the combination. It is also possible.
 (第1実施形態)
 第1実施形態について図1~図6を参照しながら説明する。パージ制御弁装置は、車両に搭載される蒸発燃料パージシステムである蒸発燃料処理装置1に用いられる。パージバルブ3は、パージ制御弁装置の一例である。蒸発燃料処理装置1は、図1に示すように、キャニスタ13に吸着した燃料中のHCガス等をエンジン2の吸気通路に供給する。これにより、燃料タンク10からの蒸発燃料が大気に放出されることを防止できる。蒸発燃料処理装置1は、内燃機関であるエンジン2の吸気通路を構成するエンジン2の吸気系と、蒸発燃料をエンジン2の吸気系に供給する蒸発燃料パージ系とを備える。
(First Embodiment)
The first embodiment will be described with reference to FIGS. 1 to 6. The purge control valve device is used in the evaporative fuel processing device 1 which is an evaporative fuel purging system mounted on a vehicle. The purge valve 3 is an example of a purge control valve device. As shown in FIG. 1, the evaporative fuel processing device 1 supplies HC gas or the like in the fuel adsorbed on the canister 13 to the intake passage of the engine 2. This makes it possible to prevent the evaporated fuel from the fuel tank 10 from being released into the atmosphere. The evaporative fuel processing device 1 includes an intake system of the engine 2 that constitutes an intake passage of the engine 2 that is an internal combustion engine, and an evaporative fuel purge system that supplies the evaporated fuel to the intake system of the engine 2.
 エンジン2の吸気圧によって吸気通路に導入された蒸発燃料は、インジェクタ等からエンジン2に供給される燃焼用燃料と混合されてエンジン2の燃焼室で燃焼される。エンジン2は少なくともキャニスタ13から脱離された蒸発燃料と燃焼用燃料とを混合して燃焼する。エンジン2の吸気系は、吸気通路を構成する吸気管21が吸気マニホールド20に接続されている。この吸気系は、さらに吸気管21の途中にスロットルバルブ25、エアフィルタ24等が設けられて構成されている。 The evaporated fuel introduced into the intake passage by the intake pressure of the engine 2 is mixed with the combustion fuel supplied to the engine 2 from the injector or the like and burned in the combustion chamber of the engine 2. The engine 2 mixes and burns at least the evaporated fuel desorbed from the canister 13 and the combustion fuel. In the intake system of the engine 2, the intake pipe 21 constituting the intake passage is connected to the intake manifold 20. This intake system is further configured by providing a throttle valve 25, an air filter 24, and the like in the middle of the intake pipe 21.
 蒸発燃料パージ系において燃料タンク10とキャニスタ13は、ベーパ通路を構成する配管11によって接続されている。蒸発燃料パージ系においてキャニスタ13と吸気管21は、パージ通路を構成する配管14とパージバルブ3とを介して接続されている。また、パージ通路の途中には、パージポンプを設けるように構成してもよい。エアフィルタ24は、吸気管21の上流部に設けられ、吸気中の塵や埃等を捕捉する。スロットルバルブ25は、吸気マニホールド20の入口部の開度を調節して、吸気マニホールド20内に流入する吸気量を調節する吸気量調節弁である。吸気は、吸気通路を通過して吸気マニホールド20内に流入し、インジェクタ等から噴射される燃焼用燃料と所定の空燃比となるように混合されて燃焼室で燃焼される。 In the evaporated fuel purge system, the fuel tank 10 and the canister 13 are connected by a pipe 11 constituting a vapor passage. In the evaporative fuel purge system, the canister 13 and the intake pipe 21 are connected to each other via a pipe 14 constituting a purge passage and a purge valve 3. Further, a purge pump may be provided in the middle of the purge passage. The air filter 24 is provided in the upstream portion of the intake pipe 21 and captures dust, dust, etc. in the intake pipe. The throttle valve 25 is an intake air amount adjusting valve that adjusts the opening degree of the inlet portion of the intake manifold 20 to adjust the amount of intake air flowing into the intake manifold 20. The intake air passes through the intake air passage, flows into the intake manifold 20, is mixed with the combustion fuel injected from the injector or the like so as to have a predetermined air-fuel ratio, and is burned in the combustion chamber.
 燃料タンク10は、例えばガソリン等の燃料を貯留する容器である。燃料タンク10は、ベーパ通路を形成する配管11によってキャニスタ13の流入部に接続されている。ORVRバルブ15は、燃料タンク10に設けられている。ORVRバルブ15は、燃料給油中に燃料タンク10内の蒸発燃料が給油口から大気中に排出されることを防止する。ORVRバルブ15は、燃料の液面高さに応じて位置が変位するフロート弁である。燃料タンク10内の燃料が少ない場合は、ORVRバルブ15は開弁し、給油時の圧力によってペーパを燃料タンク10からキャニスタ13へ排出する。燃料タンク10内に所定量以上の燃料が存在する場合は、ORVRバルブ15が燃料による浮力によって閉弁し、蒸発燃料がキャニスタ13へ流出することを防止する。 The fuel tank 10 is a container for storing fuel such as gasoline. The fuel tank 10 is connected to the inflow portion of the canister 13 by a pipe 11 forming a vapor passage. The ORVR valve 15 is provided in the fuel tank 10. The ORVR valve 15 prevents the evaporated fuel in the fuel tank 10 from being discharged into the atmosphere from the fuel filler port during fuel refueling. The ORVR valve 15 is a float valve whose position is displaced according to the liquid level of the fuel. When the fuel in the fuel tank 10 is low, the ORVR valve 15 is opened, and the paper is discharged from the fuel tank 10 to the canister 13 by the pressure at the time of refueling. When a predetermined amount or more of fuel is present in the fuel tank 10, the ORVR valve 15 is closed by the buoyancy of the fuel to prevent the evaporated fuel from flowing out to the canister 13.
 キャニスタ13は、内部に活性炭等の吸着材が封入された容器である。キャニスタ13は、燃料タンク10内で発生する蒸発燃料を、ベーパ通路を介して取り入れて吸着材に一時的に吸着する。キャニスタ13には、バルブモジュール12が、一体に設けられまたはダクト部を介して設けられている。バルブモジュール12には、キャニスタクローズバルブと内部ポンプとを含んでいる。キャニスタクローズバルブは、外部の新鮮な空気を吸入するための吸入部を開閉する。キャニスタ13はキャニスタクローズバルブを備えることにより、キャニスタ13内に大気圧を作用させることができる。キャニスタ13は、吸入された新鮮な空気によって吸着材に吸着した蒸発燃料を容易に脱離可能、すなわちパージすることができる。 The canister 13 is a container in which an adsorbent such as activated carbon is sealed. The canister 13 takes in the evaporated fuel generated in the fuel tank 10 through the vapor passage and temporarily adsorbs it to the adsorbent. The canister 13 is provided with a valve module 12 integrally or via a duct portion. The valve module 12 includes a canister closed valve and an internal pump. The canister close valve opens and closes the suction section for sucking in fresh air from the outside. By providing the canister 13 with a canister close valve, atmospheric pressure can be applied to the inside of the canister 13. The canister 13 can easily desorb, that is, purge the evaporated fuel adsorbed on the adsorbent by the sucked fresh air.
 パージバルブ3は、パージ通路の一部であるハウジング内のハウジング内部通路を開閉する複数の弁体を備えたパージ制御弁装置である。パージ制御弁装置は、複数の電磁弁を内部に有する。パージバルブ3は、キャニスタ13からの蒸発燃料をエンジン2へ供給することを許可および阻止できる。 The purge valve 3 is a purge control valve device including a plurality of valve bodies that open and close the passage inside the housing in the housing that is a part of the purge passage. The purge control valve device has a plurality of solenoid valves inside. The purge valve 3 can allow and block the supply of evaporative fuel from the canister 13 to the engine 2.
 車両の走行時に、制御装置50によって流入ポート31aと流出ポート33aとが連通する状態に制御されると、ピストンの吸入作用によって発生する吸気マニホールド20内の負圧とキャニスタ13にかかる大気圧との差が生じる。この圧力差によって、キャニスタ13内に吸着された蒸気燃料は、パージ通路、パージバルブ3を流れ、吸気管21内を通じて吸気マニホールド20内に吸引される。 When the control device 50 controls the inflow port 31a and the outflow port 33a so as to communicate with each other when the vehicle is traveling, the negative pressure in the intake manifold 20 generated by the suction action of the piston and the atmospheric pressure applied to the canister 13 There is a difference. Due to this pressure difference, the vapor fuel adsorbed in the canister 13 flows through the purge passage and the purge valve 3 and is sucked into the intake manifold 20 through the intake pipe 21.
 吸気マニホールド20内に吸引された蒸発燃料は、インジェクタ等からエンジン2に供給される本来の燃焼用燃料と混合されて、エンジン2のシリンダ内で燃焼される。エンジン2のシリンダ内においては、燃焼用燃料と吸気との混合割合である空燃比が予め定めた所定の空燃比となるように制御される。制御装置50は、印加電圧の制御により、第1バルブ34と第2バルブ35の作動を制御する。パージバルブ3は、一つのソレノイド部36を有し、ソレノイド部36への通電により一つの電気回路を構成する。第1バルブ34と第2バルブ35は、共通の電気回路が発生する磁束による電磁駆動力を用いて軸方向に駆動して開弁し、それぞれの通路を開放する。 The evaporated fuel sucked into the intake manifold 20 is mixed with the original combustion fuel supplied from the injector or the like to the engine 2 and burned in the cylinder of the engine 2. In the cylinder of the engine 2, the air-fuel ratio, which is the mixing ratio of the combustion fuel and the intake air, is controlled to be a predetermined air-fuel ratio. The control device 50 controls the operation of the first valve 34 and the second valve 35 by controlling the applied voltage. The purge valve 3 has one solenoid unit 36, and energizes the solenoid unit 36 to form one electric circuit. The first valve 34 and the second valve 35 are driven in the axial direction by using an electromagnetic driving force generated by a magnetic flux generated by a common electric circuit to open the valves, and open their respective passages.
 制御装置50は、バッテリなどの電源部51から供給される電力を制御して、ソレノイド部36に印加するように構成されている。制御装置50は、正側電圧のオン、オフ合計の単位時間に対するオン時間の比率である正側電圧のデューティ比を制御して、コイル部360に通電を行うことができる。正側電圧を印加する通電制御は、正側電圧の印加と非印加とを交互に繰り返す形態の通電制御である。制御装置50は、図6に示すように正側電圧印加のデューティ比を0%~100%の範囲に制御する。このような正側電圧のデューティ通電制御により、パージバルブ3内の下流側通路を流通する蒸発燃料の流量は、デューティ比に比例して変化する。制御装置50は、交流信号電圧を制御するインバータ装置を有し、交流信号電圧を制御してコイル部360に通電を行うことができる。制御装置50は、図6に示すように、交流信号電圧の制御によって、正側電圧印加のデューティ比または負側電圧印加のデューティ比とを0%~100%の範囲に制御する。制御装置50は、通電を制御することによって第1バルブ34と第2バルブ35とを適正に制御し、所定の空燃比が維持されるように蒸発燃料のパージ量を調節する。 The control device 50 is configured to control the electric power supplied from the power supply unit 51 such as a battery and apply it to the solenoid unit 36. The control device 50 can control the duty ratio of the positive side voltage, which is the ratio of the on-time to the unit time of the total on and off of the positive side voltage, to energize the coil unit 360. The energization control in which the positive side voltage is applied is an energization control in which the application of the positive side voltage and the non-application of the positive side voltage are alternately repeated. As shown in FIG. 6, the control device 50 controls the duty ratio of the positive side voltage application in the range of 0% to 100%. Due to the duty energization control of the positive voltage, the flow rate of the evaporated fuel flowing through the downstream passage in the purge valve 3 changes in proportion to the duty ratio. The control device 50 has an inverter device that controls the AC signal voltage, and can control the AC signal voltage to energize the coil unit 360. As shown in FIG. 6, the control device 50 controls the duty ratio of the positive side voltage application or the duty ratio of the negative side voltage application in the range of 0% to 100% by controlling the AC signal voltage. The control device 50 appropriately controls the first valve 34 and the second valve 35 by controlling the energization, and adjusts the purge amount of the evaporated fuel so that a predetermined air-fuel ratio is maintained.
 制御装置50は、少なくとも一つの演算処理装置(CPU)と、プログラムとデータとを記憶する記憶媒体としての少なくとも一つのメモリ装置とを有する。制御装置50は、例えばコンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御装置50は、一つのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供されうる。プログラムは、制御装置50によって実行されることにより、制御装置50をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置50を機能させる。 The control device 50 has at least one arithmetic processing unit (CPU) and at least one memory device as a storage medium for storing programs and data. The control device 50 is provided, for example, by a microcomputer having a storage medium that can be read by a computer. A storage medium is a non-transitional substantive storage medium that stores a computer-readable program non-temporarily. The storage medium may be provided by a semiconductor memory, a magnetic disk, or the like. The control device 50 may be provided by a single computer, or a set of computer resources linked by a data communication device. The program, when executed by the control device 50, causes the control device 50 to function as the device described herein and to perform the method described herein.
 制御装置50が提供する手段および/または機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置50がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 The means and / or functions provided by the control device 50 can be provided by software recorded in a substantive memory device and a computer, software only, hardware only, or a combination thereof that executes the software. For example, if the control device 50 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or an analog circuit that includes a large number of logic circuits.
 近年、低燃費化によるエンジン負圧の減少傾向やハイブリッド車などのエンジン稼働時間の減少傾向により、パージバルブ3には大流量を調整可能な性能が要求されている。パージバルブ3の大流量化を実現しようとすると、パージバルブ3とキャニスタ13とを連結する流路において圧力の変動幅が大きくなりうる。圧力変動幅の増大は、脈動による配管の振動をもたらし車両における騒音の要因になる。また、パージバルブ3の大流量化に伴い、ORVRバルブ15のばたつき音が発生しうる。パージバルブ3とキャニスタ13とを接続する配管14は、例えば車室内の床下に設けられている。このため、配管の振動による騒音、ORVRバルブ15のばたつき音は、車室内に伝わりやすい。このため、蒸発燃料処理装置1はキャニスタ側の流路における圧力変動幅やORVRバルブ15のばたつき音を抑制する効果を奏する。また、パージバルブ3の大流量化を実現しようとすると、流量制御の精度が低下するため、蒸発燃料の濃度学習の精度が低下する傾向になる。このため、蒸発燃料処理装置1は、蒸発燃料の濃度学習の精度を確保する効果を奏する。 In recent years, due to the decreasing tendency of engine negative pressure due to fuel efficiency and the decreasing tendency of engine operating time of hybrid vehicles, the purge valve 3 is required to have a performance capable of adjusting a large flow rate. If an attempt is made to increase the flow rate of the purge valve 3, the fluctuation range of the pressure in the flow path connecting the purge valve 3 and the canister 13 may become large. The increase in the pressure fluctuation range causes vibration of the piping due to pulsation, which causes noise in the vehicle. Further, as the flow rate of the purge valve 3 is increased, a fluttering noise of the ORVR valve 15 may be generated. The pipe 14 connecting the purge valve 3 and the canister 13 is provided, for example, under the floor in the vehicle interior. Therefore, the noise caused by the vibration of the piping and the fluttering sound of the ORVR valve 15 are easily transmitted to the vehicle interior. Therefore, the evaporative fuel processing device 1 has an effect of suppressing the pressure fluctuation width in the flow path on the canister side and the fluttering noise of the ORVR valve 15. Further, when trying to increase the flow rate of the purge valve 3, the accuracy of the flow rate control is lowered, so that the accuracy of the concentration learning of the evaporated fuel tends to be lowered. Therefore, the evaporative fuel processing device 1 has an effect of ensuring the accuracy of learning the concentration of the evaporative fuel.
 パージバルブ3の構成について説明する。図2に示すように、パージバルブ3はハウジングの内部に設けられた第1バルブ34と第2バルブ35とを有している。第1バルブ34と第2バルブ35は、パージバルブ3のハウジング内部通路において、並列に配置されている構成である。この構成により、第1バルブ34と第2バルブ35のうち、いずれか一方を開弁状態に制御し他方を閉弁状態に制御しても、吸気管21へ蒸発燃料を供給できる。第1バルブ34と第2バルブ35は、第1弁体340と第2弁体350がパージバルブ3の軸方向、または弁体の変位方向に沿うように、並んでいる。図2は、第1バルブ34と第2バルブ35とが閉弁状態に制御されていることを示している。 The configuration of the purge valve 3 will be described. As shown in FIG. 2, the purge valve 3 has a first valve 34 and a second valve 35 provided inside the housing. The first valve 34 and the second valve 35 are arranged in parallel in the housing internal passage of the purge valve 3. With this configuration, even if one of the first valve 34 and the second valve 35 is controlled to be in the valve open state and the other is controlled to be in the valve closed state, the evaporated fuel can be supplied to the intake pipe 21. The first valve 34 and the second valve 35 are arranged so that the first valve body 340 and the second valve body 350 are aligned in the axial direction of the purge valve 3 or the displacement direction of the valve body. FIG. 2 shows that the first valve 34 and the second valve 35 are controlled in a closed state.
 第1バルブ34は、パージバルブ3内に設けられた第1内部通路34a2を開閉する。第2バルブ35は、パージバルブ3内に設けられた第2内部通路35a2を開閉する。第1内部通路34a2は、第1ハウジング31に一体に設けられた第1ダクト34a内の通路である。第2内部通路35a2は、第1ハウジング31に一体に設けられた第2ダクト35a内の通路である。第1内部通路34a2と第2内部通路35a2は、ハウジング内の内部通路において、並列に配置されている。第2内部通路35a2は、通路横断面積が第1内部通路34a2よりも大きい通路である。この構成を採用する場合、パージバルブ3は、小流量を調整可能とする第1バルブ34と、第1バルブ34に比べて大流量を調整可能な第2バルブ35とを備える。 The first valve 34 opens and closes the first internal passage 34a2 provided in the purge valve 3. The second valve 35 opens and closes the second internal passage 35a2 provided in the purge valve 3. The first internal passage 34a2 is a passage in the first duct 34a integrally provided in the first housing 31. The second internal passage 35a2 is a passage in the second duct 35a integrally provided in the first housing 31. The first internal passage 34a2 and the second internal passage 35a2 are arranged in parallel in the internal passage in the housing. The second internal passage 35a2 is a passage having a passage crossing area larger than that of the first internal passage 34a2. When this configuration is adopted, the purge valve 3 includes a first valve 34 capable of adjusting a small flow rate and a second valve 35 capable of adjusting a large flow rate as compared with the first valve 34.
 第1ダクト34aは、第1弁体340が着座する第1弁座部34a1を上流端部に備える。第2ダクト35aは、第2弁体350が着座する第2弁座部35a1を上流端部に備える。第1ダクト34a、第2ダクト35aのそれぞれは、通路横断面積が上流端通路よりも下流端通路の方が大きい内部通路を形成している。第1内部通路34a2は上流端に向かうほど通路横断面積が小さくなっている。第2内部通路35a2は上流端に向かうほど通路横断面積が小さくなっている。 The first duct 34a is provided with a first valve seat portion 34a1 on which the first valve body 340 is seated at the upstream end portion. The second duct 35a includes a second valve seat portion 35a1 on which the second valve body 350 is seated at the upstream end portion. Each of the first duct 34a and the second duct 35a forms an internal passage in which the passage crossing area is larger in the downstream end passage than in the upstream end passage. The cross-sectional area of the first internal passage 34a2 becomes smaller toward the upstream end. The cross-sectional area of the second internal passage 35a2 becomes smaller toward the upstream end.
 パージバルブ3は、ハウジングとして、第1ハウジング31と、第2ハウジング33とを備えている。第1ハウジング31、第2ハウジング33は、例えば樹脂材料によって形成されている。第1ハウジング31は、キャニスタ13からの蒸発燃料が流入する流入ポート31aを備える。流入ポート31aは、蒸発燃料処理装置1においてパージ通路を形成する配管14に接続されている。流入ポート31aは、接続された配管14を介してキャニスタ13に連通している。 The purge valve 3 includes a first housing 31 and a second housing 33 as housings. The first housing 31 and the second housing 33 are made of, for example, a resin material. The first housing 31 includes an inflow port 31a into which the evaporated fuel from the canister 13 flows in. The inflow port 31a is connected to a pipe 14 forming a purge passage in the evaporative fuel processing device 1. The inflow port 31a communicates with the canister 13 via the connected pipe 14.
 ハウジングには、ソレノイド部36に通電するためのターミナル371を内蔵するコネクタ37が設けられている。ターミナル371は、コイル部360と電気的に接続されている通電用端子である。コネクタ37には、電源部51や電流制御装置からの電力を供給するための電源側コネクタが接続される。コネクタ37と電源側コネクタとが接続されてターミナル371が制御装置50等に電気的に接続される構成により、コイル部360に通電する電流を制御できる。 The housing is provided with a connector 37 containing a terminal 371 for energizing the solenoid unit 36. The terminal 371 is an energizing terminal that is electrically connected to the coil portion 360. A power supply side connector for supplying electric power from the power supply unit 51 or the current control device is connected to the connector 37. The current that energizes the coil unit 360 can be controlled by the configuration in which the connector 37 and the power supply side connector are connected and the terminal 371 is electrically connected to the control device 50 or the like.
 流入ポート31aは、内部に流体の流入通路31a1を有する管状部の一部であり、第1ハウジング31における上流端部に位置する。流入通路31a1の下流端部は、第1ハウジング31内の流入側チャンバ室に繋がっている。流入側チャンバ室は、流入通路31a1よりも通路横断面積が大きく、第1ハウジング31の内部においてソレノイド部36の周囲に設けられている。流入側チャンバ室は、第1内部通路34a2の上流側端部と第2内部通路35a2の上流側端部とに繋がっている。流入側チャンバ室は、連通通路321を介して連通する第1流入側チャンバ室と第2流入側チャンバ室とを含んでいる。第1内部通路34a2の上流側端部は、第1流入側チャンバ室に位置し、第1流入側チャンバ室に連通している。第2内部通路35a2の上流側端部は、第2流入側チャンバ室に位置し、第2流入側チャンバ室に連通している。 The inflow port 31a is a part of a tubular portion having a fluid inflow passage 31a1 inside, and is located at an upstream end portion in the first housing 31. The downstream end of the inflow passage 31a1 is connected to the inflow side chamber chamber in the first housing 31. The inflow side chamber chamber has a larger passage crossing area than the inflow passage 31a1, and is provided around the solenoid portion 36 inside the first housing 31. The inflow side chamber chamber is connected to the upstream end of the first internal passage 34a2 and the upstream end of the second internal passage 35a2. The inflow side chamber chamber includes a first inflow side chamber chamber and a second inflow side chamber chamber communicating with each other through the communication passage 321. The upstream end of the first internal passage 34a2 is located in the first inflow side chamber chamber and communicates with the first inflow side chamber chamber. The upstream end of the second internal passage 35a2 is located in the second inflow side chamber chamber and communicates with the second inflow side chamber chamber.
 第1ハウジング31は、第1バルブ34および第2バルブ35を収容している。第1ハウジング31の内部には、第1バルブ34と第2バルブ35が同軸に設けられている。ソレノイド部36は、第1ハウジング31の内部において、樹脂モールド部32によって囲まれている。ソレノイド部36は、コイル部360、ボビン361、コアステータ362、ヨーク363等を備えている。連通通路321は樹脂モールド部32を貫通する通路である。第1バルブ34と第2バルブ35はソレノイド部36と同軸に設けられている。 The first housing 31 accommodates the first valve 34 and the second valve 35. Inside the first housing 31, a first valve 34 and a second valve 35 are coaxially provided. The solenoid portion 36 is surrounded by the resin mold portion 32 inside the first housing 31. The solenoid unit 36 includes a coil unit 360, a bobbin 361, a core stator 362, a yoke 363, and the like. The communication passage 321 is a passage that penetrates the resin mold portion 32. The first valve 34 and the second valve 35 are provided coaxially with the solenoid portion 36.
 第2ハウジング33は、吸気管21へ向けて蒸発燃料を流出する流出ポート33aを備える。流出ポート33aは、接続される配管を介して吸気管21内に連通している。流出ポート33aは、内部に流体の流出通路33a1を有する管状部であり、第2ハウジング33の下流端部に位置する。流出通路33a1の下流端部は、第2ハウジング33内の流出側チャンバ室331に繋がっている。流出側チャンバ室は、流出通路33a1よりも通路横断面積が大きく、第1内部通路34a2の下流側端部と第2内部通路35a2の下流側端部とに繋がっている。第1内部通路34a2と第2内部通路35a2は、流出側チャンバ室331を介して流出通路33a1に連通している。 The second housing 33 includes an outflow port 33a that allows evaporated fuel to flow out toward the intake pipe 21. The outflow port 33a communicates with the intake pipe 21 via a connected pipe. The outflow port 33a is a tubular portion having a fluid outflow passage 33a1 inside, and is located at the downstream end of the second housing 33. The downstream end of the outflow passage 33a1 is connected to the outflow side chamber chamber 331 in the second housing 33. The outflow side chamber chamber has a larger passage crossing area than the outflow passage 33a1, and is connected to the downstream end of the first internal passage 34a2 and the downstream end of the second internal passage 35a2. The first internal passage 34a2 and the second internal passage 35a2 communicate with the outflow passage 33a1 via the outflow side chamber chamber 331.
 パージバルブ3は、外部から流体が流入する1個の流入ポート31aと、流体が外部へ流出する1個の流出ポート33aとを備える。パージバルブ3に流入した流体は、流入側チャンバ室から、第1内部通路34a2と第2内部通路35a2の少なくとも一つを経由して流出側チャンバ室331、流出通路33a1の順に流下する。第1バルブ34と第2バルブ35には、共通のソレノイド部36への電圧印加により形成される共通の磁気回路によって発生する電磁力が与えられる。第1バルブ34の第1可動子341と第2バルブ35の第2可動子351は、外部磁場に対する磁化しやすさに違いがある構成を備える。この構成により、共通の磁気回路によって可動子が受ける電磁力に差があるため、第1可動子341の動作と第2可動子351の動作とが異なる。これにより、第1バルブ34と第2バルブ35は、同様に動作せず個別に動作する。 The purge valve 3 includes one inflow port 31a into which the fluid flows in from the outside and one outflow port 33a in which the fluid flows out to the outside. The fluid flowing into the purge valve 3 flows down from the inflow side chamber chamber in the order of the outflow side chamber chamber 331 and the outflow passage 33a1 via at least one of the first internal passage 34a2 and the second internal passage 35a2. An electromagnetic force generated by a common magnetic circuit formed by applying a voltage to a common solenoid portion 36 is applied to the first valve 34 and the second valve 35. The first mover 341 of the first valve 34 and the second mover 351 of the second valve 35 have a configuration in which they are easily magnetized with respect to an external magnetic field. Due to this configuration, the operation of the first mover 341 and the operation of the second mover 351 are different because there is a difference in the electromagnetic force received by the mover due to the common magnetic circuit. As a result, the first valve 34 and the second valve 35 do not operate in the same manner but operate individually.
 第1バルブ34は、第1可動子341、第1シャフト部342、第1スプリング343等を備えている。第1可動子341の中心軸は、第1バルブ34の中心軸やパージバルブ3の中心軸に相当する。第1可動子341は有底のカップ状体である。第1可動子341は、第1スプリング343を取り囲むように設けられている。第1スプリング343は、第1シャフト部342と第1可動子341との間に設けられている。第1スプリング343は、第1可動子341を第1シャフト部342から離れる方向に移動させる付勢力を提供する。第1スプリング343は、第1可動子341を第1弁座部34a1側へ移動させようとする付勢力を提供する。第1弁体340は、ゴム等の弾性変形可能な材質で形成されている。第1弁体340は、第1可動子341の軸方向端部に一体に設けられている。 The first valve 34 includes a first mover 341, a first shaft portion 342, a first spring 343, and the like. The central axis of the first mover 341 corresponds to the central axis of the first valve 34 and the central axis of the purge valve 3. The first mover 341 is a bottomed cup-shaped body. The first mover 341 is provided so as to surround the first spring 343. The first spring 343 is provided between the first shaft portion 342 and the first mover 341. The first spring 343 provides an urging force that moves the first mover 341 away from the first shaft portion 342. The first spring 343 provides an urging force for moving the first mover 341 toward the first valve seat portion 34a1. The first valve body 340 is made of an elastically deformable material such as rubber. The first valve body 340 is integrally provided at the axial end portion of the first mover 341.
 第2バルブ35は、第2可動子351、第2シャフト部352、第2スプリング353等を備えている。第2可動子351の中心軸は、第2バルブ35の中心軸やパージバルブ3の中心軸に相当する。第2可動子351は有底のカップ状体である。第2可動子351は、第2スプリング353を取り囲むように設けられている。第2スプリング353は、第2シャフト部352と第2可動子351との間に設けられている。第2スプリング353は、第2可動子351を第2シャフト部352から離れる方向に移動させる付勢力を提供する。第2スプリング353は、第2可動子351を第2弁座部35a1側へ移動させようとする付勢力を提供する。第2弁体350は、ゴム等の弾性変形可能な材質で形成されている。第2弁体350は、第2可動子351の軸方向端部に一体に設けられている。 The second valve 35 includes a second mover 351 and a second shaft portion 352, a second spring 353, and the like. The central axis of the second mover 351 corresponds to the central axis of the second valve 35 and the central axis of the purge valve 3. The second mover 351 is a bottomed cup-shaped body. The second mover 351 is provided so as to surround the second spring 353. The second spring 353 is provided between the second shaft portion 352 and the second mover 351. The second spring 353 provides an urging force that moves the second mover 351 away from the second shaft portion 352. The second spring 353 provides an urging force for moving the second mover 351 toward the second valve seat portion 35a1. The second valve body 350 is made of an elastically deformable material such as rubber. The second valve body 350 is integrally provided at the axial end portion of the second mover 351.
 第1可動子341と第2可動子351のうち、一方の可動子は硬質磁性材料を含んで形成されている構成でもよい。他方の可動子は一方の可動子よりも軟質磁性材料を含んで形成されている。軟質磁性材料は、硬質磁性材料よりも、外部磁場によって磁化が変わりやすい材料である。硬質磁性材料は、保磁力が高く、外部磁場に対して容易に減磁しない磁性材料である。硬質磁性材料には、例えば、永久磁石、フェライト磁石、NdFeB系磁石、白金鉄、白金コバルトなどを採用することができる。軟質磁性材料は、磁化と透磁率が大きく、外部磁場の方向や大きさに対応して磁化を変化させる磁性材料である。軟質磁性材料には、例えば、電磁純鉄、フェライト、けい素鉄などを採用することができる。 Of the first mover 341 and the second mover 351, one mover may be formed to include a hard magnetic material. The other mover is formed to contain a softer magnetic material than one mover. The soft magnetic material is a material whose magnetization is more easily changed by an external magnetic field than the hard magnetic material. The hard magnetic material is a magnetic material having a high coercive force and does not easily demagnetize with respect to an external magnetic field. As the hard magnetic material, for example, a permanent magnet, a ferrite magnet, an NdFeB-based magnet, platinum iron, platinum cobalt, or the like can be adopted. A soft magnetic material is a magnetic material that has a large magnetization and magnetic permeability and changes its magnetization according to the direction and magnitude of an external magnetic field. As the soft magnetic material, for example, pure electromagnetic iron, ferrite, silica iron and the like can be adopted.
 第1可動子341が軟質磁性材料を含み、第2可動子351が硬質磁性材料を含む構成である場合について説明する。コイル部360の通電時には、磁気回路が形成される。磁気回路は、ヨーク363、コアステータ362、第1可動子341を通る磁気の第1経路と、ヨーク363、コアステータ362、第2可動子351を通る磁気の第2経路とを形成する。第1経路は、第1スプリング343の付勢力に抗して第1可動子341を第1シャフト部342に吸引する電磁力を発生させる。第1弁体340は、この電磁力によって、閉弁状態から開弁状態に切り換わる。正側電圧が印加された場合、第2経路によって発生する磁束は、第2可動子351が有するN極から延びる磁束と反発し合うようになる。このとき、第2弁体350は、第2スプリング353に付勢されたままであり閉弁状態となる。負側電圧が印加された場合、第2経路によって発生する磁束は、第2可動子351が有するN極から延びる磁束と引き合うようになる。このとき、第2弁体350は、第2スプリング353の付勢力に抗して第2可動子351を第2シャフト部352に吸引する電磁力を発生させる。第2弁体350は、この電磁力によって、閉弁状態から開弁状態に切り換わる。 The case where the first mover 341 contains a soft magnetic material and the second mover 351 contains a hard magnetic material will be described. When the coil portion 360 is energized, a magnetic circuit is formed. The magnetic circuit forms a first magnetic path through the yoke 363, core stator 362, and first mover 341 and a second magnetic path through the yoke 363, core stator 362, and second mover 351. The first path generates an electromagnetic force that attracts the first mover 341 to the first shaft portion 342 against the urging force of the first spring 343. The first valve body 340 switches from the valve closed state to the valve open state by this electromagnetic force. When a positive voltage is applied, the magnetic flux generated by the second path repels the magnetic flux extending from the north pole of the second mover 351. At this time, the second valve body 350 remains urged by the second spring 353 and is closed. When a negative voltage is applied, the magnetic flux generated by the second path attracts the magnetic flux extending from the north pole of the second mover 351. At this time, the second valve body 350 generates an electromagnetic force that attracts the second mover 351 to the second shaft portion 352 against the urging force of the second spring 353. The second valve body 350 switches from the valve closed state to the valve open state by this electromagnetic force.
 図3は、第1バルブ34が第1弁座部34a1から離間する開弁状態であり、第2バルブ35が第2弁座部35a1に着座する閉弁状態であることを示している。パージバルブ3は、図6のグラフに示すような流量増加率が小さい第1増加率域のモードを実施するときに、図3に示す状態に制御される。制御装置50は、電源部51から供給される電力を、正側電圧のデューティ比を制御してコイル部360に印加する。 FIG. 3 shows that the first valve 34 is in the valve open state separated from the first valve seat portion 34a1, and the second valve 35 is in the valve closed state in which the second valve 35 is seated on the second valve seat portion 35a1. The purge valve 3 is controlled to the state shown in FIG. 3 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 6 is executed. The control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the positive side voltage.
 パージバルブ3は、正側電圧印加のときにソレノイド部36によって発生する磁束が硬質磁性材料を含む可動子が有する磁束と反発し合うように、構成されている。例えば、永久磁石である第2可動子351が発生する磁束と、磁気回路によってコアステータ362と第2可動子351に作用する磁束とが反発する場合には、第2可動子351が第2弁座部35a1に着座した閉弁状態が維持されることになる。第1バルブ34は、第1可動子341が軟質磁性材料を含むために、印加電圧のデューティ比に応じた割合で開弁することになる。第1増加率域のモードでは、図6に示すように、第1バルブ34は正側電圧のデューティ比に応じた割合で開弁し、第2バルブ35はデューティ比に関わらず閉弁状態になる。制御装置50は、図6に示す第1増加率域のモードのように、正側電圧印加のデューティ比を0%から100%へ徐々に増加させていく通電制御を実行する。これにより、第1バルブ34の開弁率が増加していき、第1内部通路34a2を流下する流量が増加していく。 The purge valve 3 is configured so that the magnetic flux generated by the solenoid unit 36 when a positive voltage is applied repels the magnetic flux of the mover containing the hard magnetic material. For example, when the magnetic flux generated by the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit repel each other, the second mover 351 is the second valve seat. The valve closed state seated on the portion 35a1 is maintained. Since the first mover 341 contains a soft magnetic material, the first valve 34 is opened at a ratio corresponding to the duty ratio of the applied voltage. In the mode of the first increase rate region, as shown in FIG. 6, the first valve 34 is opened at a ratio corresponding to the duty ratio of the positive side voltage, and the second valve 35 is closed regardless of the duty ratio. Become. The control device 50 executes energization control in which the duty ratio of the positive side voltage application is gradually increased from 0% to 100% as in the mode of the first increase rate region shown in FIG. As a result, the valve opening rate of the first valve 34 increases, and the flow rate flowing down the first internal passage 34a2 increases.
 図4は、第1バルブ34が開弁状態であり、第2バルブ35が第2弁座部35a1から離間する開弁状態であることを示している。パージバルブ3は、図6のグラフに示すような流量増加率が第1増加率域よりも大きい第2増加率域のモードを実施するときに、図4に示す状態に制御される。制御装置50は、電源部51から供給される電力を、交流信号電圧のデューティ比を制御してコイル部360に印加する。交流信号電圧を印加する通電制御は、正側電圧と負側電圧とを交互に印加する形態の通電制御である。交流信号電圧のデューティ比は、単位時間に対する負側電圧の印加時間の比率である。 FIG. 4 shows that the first valve 34 is in the valve open state and the second valve 35 is in the valve open state separated from the second valve seat portion 35a1. The purge valve 3 is controlled to the state shown in FIG. 4 when the mode of the second increase rate region in which the flow rate increase rate as shown in the graph of FIG. 6 is larger than the first increase rate region is executed. The control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the AC signal voltage. The energization control in which the AC signal voltage is applied is an energization control in which the positive side voltage and the negative side voltage are alternately applied. The duty ratio of the AC signal voltage is the ratio of the application time of the negative voltage to the unit time.
 パージバルブ3は、負側電圧印加のときにソレノイド部36によって発生する磁束が硬質磁性材料を含む可動子が有する磁束と引きつけ合うように、構成されている。例えば、永久磁石である第2可動子351が発生する磁束と、磁気回路によってコアステータ362と第2可動子351に作用する磁束とが引き合う場合には、第2可動子351が第2弁座部35a1から離間する開弁状態になる。第1バルブ34は、第1可動子341が軟質磁性材料を含むために、正側電圧の印加時間と負側電圧の印加時間の両方で開弁するので、図6に示すように開弁し続ける。第2増加率域のモードでは、図6に示すように、第1バルブ34は開弁し続ける状態になり、第2バルブ35は負側電圧のデューティ比に応じた割合で開弁する。制御装置50は、第2増加率域のモードのように、交流信号電圧印加における負側電圧印加のデューティ比を0%から100%へ徐々に増加させていく通電制御を実行する。この制御により、第1バルブ34は全開した状態で、第2バルブ35の開弁率が増加していき、第2内部通路35a2を流下する流量が増加していく。第1増加率域のモードの後に第2増加率域のモードに移行する場合は、パージバルブ3から流出する流量が大きく変化しないで連続的に増加し続ける。 The purge valve 3 is configured so that the magnetic flux generated by the solenoid unit 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material. For example, when the magnetic flux generated by the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit attract each other, the second mover 351 is the second valve seat portion. The valve is opened apart from 35a1. Since the first mover 341 contains a soft magnetic material, the first valve 34 opens at both the positive voltage application time and the negative voltage application time. Therefore, the first valve 34 is opened as shown in FIG. carry on. In the mode of the second increase rate region, as shown in FIG. 6, the first valve 34 keeps opening, and the second valve 35 opens at a rate corresponding to the duty ratio of the negative voltage. The control device 50 executes energization control in which the duty ratio of the negative side voltage application in the AC signal voltage application is gradually increased from 0% to 100% as in the mode of the second increase rate region. By this control, the valve opening rate of the second valve 35 increases while the first valve 34 is fully opened, and the flow rate flowing down the second internal passage 35a2 increases. When shifting to the mode of the second increase rate region after the mode of the first increase rate region, the flow rate flowing out from the purge valve 3 does not change significantly and continues to increase continuously.
 図5のフローチャートを参照してパージ弁制御装置の作動を説明する。制御装置50は、図5のフローチャートにしたがった処理を実行する。本フローチャートは、蒸発燃料をエンジン2へ向けて流下させる場合に開始する。 The operation of the purge valve control device will be described with reference to the flowchart of FIG. The control device 50 executes the process according to the flowchart of FIG. This flowchart starts when the evaporated fuel flows down toward the engine 2.
 本フローチャートが開始されると、制御装置50は、ステップS100で蒸発燃料の濃度学習を行う状態か否かを判定する。ステップS100で濃度学習を行う状態であると判定すると、制御装置50は、ステップS120で第2バルブ35が閉弁状態であるか否かを判定する。ステップS120で第2バルブ35が閉弁状態であると判定すると、再びステップS100に戻り、ステップS100の判定処理を実行する。ステップS120で第2バルブ35が閉弁状態でないと判定すると、ステップS125でコイル部360に正側電圧を印加し、ステップS100の判定処理を実行する。制御装置50は、正側電圧のデューティ比を0%から100%になるまで徐々に増加していく制御を実行する。 When this flowchart is started, the control device 50 determines whether or not the concentration of the evaporated fuel is learned in step S100. If it is determined in step S100 that the concentration learning is being performed, the control device 50 determines in step S120 whether or not the second valve 35 is in the closed state. If it is determined in step S120 that the second valve 35 is in the closed state, the process returns to step S100 and the determination process of step S100 is executed. When it is determined in step S120 that the second valve 35 is not in the closed state, a positive voltage is applied to the coil portion 360 in step S125, and the determination process of step S100 is executed. The control device 50 executes control in which the duty ratio of the positive side voltage is gradually increased from 0% to 100%.
 ステップS100で濃度学習を行う状態でないと判定すると、制御装置50は、ステップS110で騒音発生条件が成立するか否かを判定する。騒音発生条件は、蒸発燃料が流れる通路における圧力変動やORVRバルブ15のばたつき音の発生に伴って騒音の発生が想定できる、予め設定された条件である。騒音発生条件は、例えば、現在の車速が所定速度以下である場合に成立すると設定することができる。この場合、制御装置50は、車速センサ61によって検出される車速情報に基づいて現在の車速を取得する。車速センサ61は、車両の走行制御や車両の走行に必要な冷却系統などの制御を行う車両ECU60に車速情報を出力し、車速情報は車両ECU60から制御装置50に出力される。所定速度は、実験結果または経験則に基づいて設定されることが好ましく、騒音が走行音にかき消されて車室内の乗員に認識しにくいような車速に設定されるものとする。現在の車速が所定速度を下回っている場合に騒音発生条件成立を設定することにより、車速が小さく走行音が小さいときに発生しやすい騒音を抑えることができる。 If it is determined in step S100 that the concentration learning is not performed, the control device 50 determines whether or not the noise generation condition is satisfied in step S110. The noise generation condition is a preset condition that can be assumed to generate noise due to pressure fluctuation in the passage through which the evaporated fuel flows and the generation of the fluttering noise of the ORVR valve 15. The noise generation condition can be set, for example, to be satisfied when the current vehicle speed is equal to or lower than a predetermined speed. In this case, the control device 50 acquires the current vehicle speed based on the vehicle speed information detected by the vehicle speed sensor 61. The vehicle speed sensor 61 outputs vehicle speed information to the vehicle ECU 60 that controls the traveling of the vehicle and the cooling system necessary for the traveling of the vehicle, and the vehicle speed information is output from the vehicle ECU 60 to the control device 50. The predetermined speed is preferably set based on experimental results or empirical rules, and is set to a vehicle speed at which the noise is drowned out by the running noise and is difficult for the occupants in the vehicle interior to recognize. By setting the noise generation condition to be satisfied when the current vehicle speed is lower than the predetermined speed, it is possible to suppress the noise that tends to be generated when the vehicle speed is low and the running noise is low.
 例えば、車両の停止時、低速走行時、エンジン2のアイドリング状態などに該当すると、制御装置50は、ステップS110で騒音発生条件が成立すると判定する。ステップS110で騒音発生条件が成立すると判定すると、ステップS120に進み、ステップS120の判定処理を実行する。 For example, when the vehicle is stopped, running at a low speed, or when the engine 2 is idling, the control device 50 determines that the noise generation condition is satisfied in step S110. If it is determined in step S110 that the noise generation condition is satisfied, the process proceeds to step S120, and the determination process of step S120 is executed.
 ステップS120からステップS100に戻る流れ、ステップS125を実行後にステップS100に戻る流れは、図6の第1増加率域のモードを実施する。第1増加率域のモード時は、流体の流量増加率が小さいため、蒸発燃料の濃度学習精度の向上を図ることができる。第1増加率域のモードによれば、流量増加率が一定である電磁弁に比べて、小流量域における流量変化を小さくすることができる。さらに第1増加率域のモード時は、流量が抑えられるため、脈動の低減を図り、騒音を抑制する効果が得られる。さらに第1増加率域のモード時は、流体流量が抑えられるため、ORVRバルブ15のばたつき低減を図り、騒音を抑制する効果が得られる。 The flow of returning from step S120 to step S100 and the flow of returning to step S100 after executing step S125 implement the mode of the first increase rate range of FIG. In the mode of the first increase rate range, the flow rate increase rate of the fluid is small, so that the concentration learning accuracy of the evaporated fuel can be improved. According to the mode of the first increase rate region, the flow rate change in the small flow rate region can be made smaller than that of the solenoid valve in which the flow rate increase rate is constant. Further, in the mode of the first increase rate range, the flow rate is suppressed, so that the effect of reducing the pulsation and suppressing the noise can be obtained. Further, in the mode of the first increase rate range, the fluid flow rate is suppressed, so that the effect of reducing the fluttering of the ORVR valve 15 and suppressing the noise can be obtained.
 ステップS110で騒音発生条件が成立しないと判定すると、制御装置50は、ステップS130で正側電圧のデューティ比が100%に達したか否かを判定する。ステップS130で正側電圧のデューティ比が100%に達していないと判定すると、ステップS100に戻り、ステップS100の判定処理を実行する。ステップS130で正側電圧のデューティ比が100%に達していると判定すると、ステップS140で第2バルブ35が閉弁状態であるか否かを判定する。 If it is determined in step S110 that the noise generation condition is not satisfied, the control device 50 determines whether or not the duty ratio of the positive side voltage has reached 100% in step S130. If it is determined in step S130 that the duty ratio of the positive voltage has not reached 100%, the process returns to step S100 and the determination process of step S100 is executed. When it is determined in step S130 that the duty ratio of the positive voltage has reached 100%, it is determined in step S140 whether or not the second valve 35 is in the closed state.
 ステップS140で第2バルブ35が閉弁状態でないと判定すると、ステップS100に戻り、ステップS100の判定処理を実行する。ステップS140で第2バルブ35が閉弁状態であると判定すると、制御装置50は、ステップS150でコイル部360に交流信号電圧を印加する。制御装置50は、ステップS160で交流信号電圧における負側電圧のデューティ比を0%から100%になるまで徐々に増加していく制御を実行し、ステップS100に戻る。ステップS150、S160の処理により、パージバルブ3が制御する流体流量を図6に示すように第1増加率域から第2増加率域へ滑らかに移行させることができる。 If it is determined in step S140 that the second valve 35 is not in the closed state, the process returns to step S100 and the determination process of step S100 is executed. When it is determined in step S140 that the second valve 35 is in the closed state, the control device 50 applies an AC signal voltage to the coil unit 360 in step S150. The control device 50 executes control in step S160 to gradually increase the duty ratio of the negative side voltage in the AC signal voltage from 0% to 100%, and returns to step S100. By the processing of steps S150 and S160, the fluid flow rate controlled by the purge valve 3 can be smoothly shifted from the first increase rate region to the second increase rate region as shown in FIG.
 交流信号電圧の印加によって第2バルブ35が開弁している状態は、図6に図示する第2増加率域のモードを実施している。第2増加率域のモード時は、第1バルブ34の開弁状態に加え、大流量を調整可能な第2バルブ35の開弁率を増加させていくため、大流量化を促進できる。第2増加率域のモードによれば、流量増加率が一定である電磁弁に比べて、大きな流量域における流量変化を大きくすることができる。このため、騒音が発生しにくい状態において迅速に流体流量を増加でき、エンジン2の出力要求を満たす運転を実現できる。図5のフローチャートに従った制御によれば、図6のように、ORVRバルブ15のばたつきに起因する騒音を抑制するとともに、大流量化も図れる流量制御を提供できる。 In the state where the second valve 35 is opened by applying the AC signal voltage, the mode of the second increase rate range shown in FIG. 6 is executed. In the mode of the second increase rate range, in addition to the valve open state of the first valve 34, the valve opening rate of the second valve 35 whose large flow rate can be adjusted is increased, so that the large flow rate can be promoted. According to the mode of the second increase rate region, the flow rate change in a large flow rate region can be made larger than that of the solenoid valve in which the flow rate increase rate is constant. Therefore, the fluid flow rate can be increased quickly in a state where noise is unlikely to be generated, and the operation satisfying the output requirement of the engine 2 can be realized. According to the control according to the flowchart of FIG. 5, as shown in FIG. 6, it is possible to provide the flow rate control capable of suppressing the noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
 また、制御装置50は、ステップS110で現在のエンジン2の回転数が所定回転数を下回っている場合に騒音発生条件が成立すると判定してもよい。この判定処理を採用する場合、所定回転数は、実験結果または経験則に基づいて設定されることが好ましく、騒音がエンジン音にかき消されて乗員に認識されにくいような回転数に設定されるものとする。現在のエンジン2の回転数が所定回転数を下回っている場合に騒音発生条件の成立を設定することにより、エンジン回転数が小さく静かなときに、圧力変動等に伴う音が騒音になることを抑えることができる。 Further, the control device 50 may determine in step S110 that the noise generation condition is satisfied when the current rotation speed of the engine 2 is lower than the predetermined rotation speed. When this determination process is adopted, the predetermined number of revolutions is preferably set based on experimental results or empirical rules, and is set to such a number of revolutions that the noise is drowned out by the engine sound and is difficult for the occupant to recognize. And. By setting the condition for generating noise when the current engine speed is lower than the predetermined engine speed, the noise caused by pressure fluctuations and the like becomes noise when the engine speed is small and quiet. It can be suppressed.
 第1実施形態のパージバルブ3によって例示されたパージ制御弁装置がもたらす作用効果について説明する。パージ制御弁装置は、ハウジングの内部に設けられる第1バルブ34および第2バルブ35と、通電されて一つの電気回路を形成する一つのソレノイド部36とを備える。パージ制御弁装置は、一つの電気回路によって発生する電磁力に応じて駆動する、第1可動子341および第2可動子351を備える。第1可動子341と第2可動子351のうち、一方の可動子は硬質磁性材料を含んで形成され、他方の可動子は一方の可動子よりも外部磁場によって磁化が変わりやすい軟質磁性材料を含んで形成されている。 The operation and effect brought about by the purge control valve device exemplified by the purge valve 3 of the first embodiment will be described. The purge control valve device includes a first valve 34 and a second valve 35 provided inside the housing, and one solenoid unit 36 that is energized to form one electric circuit. The purge control valve device includes a first mover 341 and a second mover 351 that are driven in response to an electromagnetic force generated by one electric circuit. Of the first mover 341 and the second mover 351, one mover is formed containing a hard magnetic material, and the other mover is made of a soft magnetic material whose magnetization is more easily changed by an external magnetic field than one mover. It is formed by including.
 この装置によれば、一つのソレノイド部36への通電により形成される一つの電気回路がもたらす電磁力が第1可動子341と第2可動子351とを駆動する。パージ制御弁装置は、二つの可動子を一つの電気回路によって駆動可能であるので、部品点数を抑える装置を提供できる。さらに、この二つの可動子の一方は硬質磁性材料を含んで形成されているため、他方の可動子よりも電磁力の影響を受けにくい特性を有する。このため、第1可動子341と第2可動子351を個別に駆動できるので、第1弁体340と第2弁体350はそれぞれの内部通路に対する開度を異なる状態にできる。これにより、パージバルブ3は、二つの弁体について個別の開度制御が可能であり、蒸発燃料のパージ流量を調整することができる。 According to this device, the electromagnetic force generated by one electric circuit formed by energizing one solenoid unit 36 drives the first mover 341 and the second mover 351. Since the purge control valve device can drive two movers by one electric circuit, it is possible to provide a device that reduces the number of parts. Further, since one of the two movers is formed by containing a hard magnetic material, it has a property of being less susceptible to electromagnetic force than the other mover. Therefore, since the first mover 341 and the second mover 351 can be driven individually, the first valve body 340 and the second valve body 350 can have different opening degrees with respect to their respective internal passages. As a result, the purge valve 3 can control the opening degree of each of the two valve bodies individually, and can adjust the purge flow rate of the evaporated fuel.
 ハウジング内部通路は、第1弁体340によって開閉される第1内部通路34a2と、第2弁体350によって開閉される第2内部通路35a2とを含む。第1内部通路34a2を流下する蒸発燃料と第2内部通路35a2を流下する蒸発燃料は、流出ポート33aよりも上流において合流するように構成されている。第1可動子341と第2可動子351は、可動方向が同軸になるように並んで設けられている。この構成によれば、可動方向または軸方向に対して直交する方向の装置の体格を抑えることができ、当該方向の搭載スペースを抑えた装置を提供できる。 The housing internal passage includes a first internal passage 34a2 opened and closed by the first valve body 340 and a second internal passage 35a2 opened and closed by the second valve body 350. The evaporative fuel flowing down the first internal passage 34a2 and the evaporative fuel flowing down the second internal passage 35a2 are configured to merge upstream of the outflow port 33a. The first mover 341 and the second mover 351 are provided side by side so that the movable directions are coaxial. According to this configuration, it is possible to suppress the physique of the device in the direction orthogonal to the movable direction or the axial direction, and it is possible to provide the device in which the mounting space in the direction is suppressed.
 さらに第1可動子341と第2可動子351は、閉弁動作において、互いに逆向きに動作するように構成されている。この構成によれば、第1バルブ34と第2バルブ35には閉弁時に逆向きの荷重がかかるようになる。この荷重方向によれば、第1バルブ34に係る荷重と第2バルブ35に係る荷重とが相殺されやすく、装置の振動を抑制することに寄与する。 Further, the first mover 341 and the second mover 351 are configured to operate in opposite directions in the valve closing operation. According to this configuration, the first valve 34 and the second valve 35 are loaded in opposite directions when the valves are closed. According to this load direction, the load related to the first valve 34 and the load related to the second valve 35 are likely to cancel each other out, which contributes to suppressing the vibration of the device.
 第1内部通路34a2と第2内部通路35a2のうち、一方の内部通路は他方の内部通路よりも通路横断面積が大きく形成された通路である。制御装置50は、蒸発燃料の流量増加に関して、第1増加率域のモードと第2増加率域のモードとを実施するように、ソレノイド部36に対する印加電圧を制御する。第1増加率域のモード時に他方の内部通路を開放し、第2増加率域のモード時に他方の内部通路と一方の内部通路とを開放する。これによれば、ORVRバルブ15のばたつきに起因する騒音の抑制と大流量化とが図れる流量制御を提供できる。 Of the first internal passage 34a2 and the second internal passage 35a2, one internal passage is a passage having a larger passage crossing area than the other internal passage. The control device 50 controls the voltage applied to the solenoid unit 36 so as to execute the mode in the first increase rate region and the mode in the second increase rate region with respect to the increase in the flow rate of the evaporated fuel. The other internal passage is opened in the mode of the first increase rate region, and the other internal passage and one internal passage are opened in the mode of the second increase rate region. According to this, it is possible to provide a flow rate control capable of suppressing noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
 制御装置50は、流出ポート33aから流出する蒸発燃料の流量を、ゼロ状態から第1増加率域のモードを実施した後、第2増加率域のモードを実施する流量増加制御を行う。この制御によれば、パージ開始時から、蒸発燃料の濃度学習を実施でき、またはORVRバルブ15のばたつきを抑制でき、さらにその後にパージの大流量性能を発揮できるパージ制御弁装置を提供できる。 The control device 50 controls the flow rate of the evaporated fuel flowing out from the outflow port 33a by executing the mode of the first increase rate region from the zero state and then executing the mode of the second increase rate region. According to this control, it is possible to provide a purge control valve device capable of learning the concentration of the evaporated fuel from the start of purging, suppressing the fluttering of the ORVR valve 15, and further exhibiting the large flow rate performance of purging thereafter.
 制御装置50は、蒸発燃料の濃度学習を実施するときに第1増加率域のモードを実施するように、ソレノイド部36に対する印加電圧を制御する。この制御によれば、流量変化が小さい状態で蒸発燃料の濃度学習を実施できる。これにより、ORVRバルブ15のばたつき抑制と大流量の確保とを両立でき、さらに濃度学習の精度を向上できるパージ制御弁装置を提供できる。 The control device 50 controls the applied voltage to the solenoid unit 36 so that the mode of the first increase rate region is executed when the concentration learning of the evaporated fuel is performed. According to this control, the concentration learning of the evaporated fuel can be carried out in a state where the change in the flow rate is small. As a result, it is possible to provide a purge control valve device that can both suppress fluttering of the ORVR valve 15 and secure a large flow rate, and further improve the accuracy of concentration learning.
 制御装置50は、騒音が想定可能な騒音発生条件が成立する場合に第1増加率域のモードを実施するように、ソレノイド部36に対する印加電圧を制御する。この制御によれば、ORVRバルブ15のばたつきに起因する騒音が発生し得る状態で第1増加率域のモードを実施できる。これにより、より効率的に騒音抑制が図れるとともに、大流量の確保にも対応できるパージ制御弁装置を提供できる。 The control device 50 controls the voltage applied to the solenoid unit 36 so that the mode in the first increase rate range is executed when the noise generation condition in which noise can be assumed is satisfied. According to this control, the mode of the first increase rate region can be executed in a state where noise due to the fluttering of the ORVR valve 15 can be generated. As a result, it is possible to provide a purge control valve device that can suppress noise more efficiently and can also secure a large flow rate.
 制御装置50は、正側電圧印加または負側電圧印加のデューティ比を制御する第1モードと、交流信号電圧印加における正側電圧印加と負側電圧印加のうち、第1モードにおいて制御していない方の電圧印加のデューティ比を制御する第2モードとにわたって切り換える。この制御によれば、軟質磁性材料を含む可動子を有するバルブに対する電圧印加のデューティ比を増加させていく第1モードと、硬質磁性材料を含む可動子を有するバルブに対する電圧印加のデューティ比を増加させていく第2モードとを実施することができる。第2モードでは、硬質磁性材料を含む可動子を有するバルブについて開弁率を増加させながら、軟質磁性材料を含む可動子を有するバルブについて開弁状態を維持することができる。 The control device 50 does not control in the first mode, which controls the duty ratio of the positive side voltage application or the negative side voltage application, and the positive side voltage application and the negative side voltage application in the AC signal voltage application. It switches over to a second mode that controls the duty ratio of the voltage application. According to this control, the first mode of increasing the duty ratio of voltage application to a valve having a mover containing a soft magnetic material and the duty ratio of voltage application to a valve having a mover containing a hard magnetic material are increased. It is possible to carry out the second mode to be carried out. In the second mode, the valve opening rate can be increased for a valve having a mover containing a hard magnetic material, while the valve opening state can be maintained for a valve having a mover containing a soft magnetic material.
 第1内部通路と第2内部通路のうち、一方の内部通路は他方の内部通路よりも通路横断面積が大きく形成された通路である。さらにパージバルブ3は、第1モードでは小さい他方の内部通路を開放し、第2モードでは他方の内部通路と一方の内部通路とを開放する。これによれば、第1モードにおいて第1増加率域のモードを実施でき、第2モードにおいて第2増加率域のモードを実施できる。したがって、第1増加率域のモードから第2増加率域のモードへの移行の際に、流出ポート33aから流出する蒸発燃料の流量が大きく変動しないパージ流量制御を実施できる。 Of the first internal passage and the second internal passage, one internal passage is a passage formed with a passage crossing area larger than that of the other internal passage. Further, the purge valve 3 opens the other small internal passage in the first mode, and opens the other internal passage and one internal passage in the second mode. According to this, the mode of the first increase rate region can be executed in the first mode, and the mode of the second increase rate region can be executed in the second mode. Therefore, when shifting from the mode in the first increase rate region to the mode in the second increase rate region, it is possible to carry out purge flow rate control in which the flow rate of the evaporated fuel flowing out from the outflow port 33a does not fluctuate significantly.
 (第2実施形態)
 第2実施形態について図7および図8を参照して説明する。第2実施形態は、第1実施形態に対して、ソレノイド部36に印加する通電制御が相違する。第2実施形態において特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下、異なる点についてのみ説明する。
(Second Embodiment)
The second embodiment will be described with reference to FIGS. 7 and 8. The second embodiment differs from the first embodiment in the energization control applied to the solenoid unit 36. The configurations, actions, and effects that are not particularly described in the second embodiment are the same as those in the first embodiment, and only the differences will be described below.
 第2実施形態においてパージバルブ3は、図8のグラフに示すような流量増加率が小さい第1増加率域のモードを実施するときに、図3に示す状態に制御される。パージバルブ3は、負側電圧印加のときにソレノイド部36によって発生する磁束が硬質磁性材料を含む可動子が有する磁束と引きつけ合うように、構成されている。例えば、永久磁石である第2可動子351が発生する磁束と、磁気回路によってコアステータ362と第2可動子351に作用する磁束とが引きつけ合う場合には、第2可動子351が第2弁座部35a1に対して離間した開弁状態になる。 In the second embodiment, the purge valve 3 is controlled to the state shown in FIG. 3 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 8 is executed. The purge valve 3 is configured so that the magnetic flux generated by the solenoid portion 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material. For example, when the magnetic flux generated by the second mover 351 which is a permanent magnet and the magnetic flux acting on the core stator 362 and the second mover 351 by the magnetic circuit attract each other, the second mover 351 is the second valve seat. The valve is opened apart from the portion 35a1.
 第1増加率域のモードでは、図8に示すように、第1バルブ34は正側電圧のデューティ比に応じた割合で開弁し、第2バルブ35はデューティ比に関わらず閉弁状態になる。制御装置50は、図8に示す第1増加率域のモードのように、正側電圧印加のデューティ比を0%から100%へ徐々に増加させていく通電制御を実行する。この通電制御により、第1バルブ34の開弁率が増加していき、第1内部通路34a2を流下する流量が増加していく。 In the mode of the first increase rate region, as shown in FIG. 8, the first valve 34 is opened at a ratio corresponding to the duty ratio of the positive side voltage, and the second valve 35 is closed regardless of the duty ratio. Become. The control device 50 executes energization control in which the duty ratio of the positive side voltage application is gradually increased from 0% to 100% as in the mode of the first increase rate region shown in FIG. By this energization control, the valve opening rate of the first valve 34 increases, and the flow rate flowing down the first internal passage 34a2 increases.
 パージバルブ3は、図8のグラフに示すような流量増加率が第1増加率域よりも大きい第2増加率域のモードを実施するときに、図4に示す状態に制御される。制御装置50は、電源部51から供給される電力を、負側電圧のデューティ比を制御してコイル部360に印加する。負側電圧を印加する通電制御は、負側電圧の印加と非印加とを交互に繰り返す形態の通電制御である。 The purge valve 3 is controlled to the state shown in FIG. 4 when the mode of the second increase rate region in which the flow rate increase rate is larger than the first increase rate region as shown in the graph of FIG. 8 is executed. The control device 50 applies the electric power supplied from the power supply unit 51 to the coil unit 360 by controlling the duty ratio of the negative voltage. The energization control in which the negative side voltage is applied is an energization control in which the application of the negative side voltage and the non-application of the negative side voltage are alternately repeated.
 第2実施形態は、負側電圧印加のときにソレノイド部36によって発生する磁束が、硬質磁性材料を含む可動子が有する磁束と引きつけ合うように、構成されている。第1バルブ34は、第1可動子341が軟質磁性材料を含むために、正側電圧の印加時間と負側電圧の印加時間の両方で開弁する。このため、第1バルブ34は、図8に示すように第2増加率域のモードにおいて第2バルブと同じタイミングで開弁する。第2バルブ35は負側電圧のデューティ比に応じた割合で開弁する。制御装置50は、第2増加率域のモードのように、負側電圧印加のデューティ比を所定値であるX%から100%へ徐々に増加させていく通電制御を実行する。この制御により、第1増加率域のモードの後に第2増加率域のモードに移行するときに、パージバルブ3から流出する流量が大きく変化しないで連続的に増加し続ける。 The second embodiment is configured so that the magnetic flux generated by the solenoid unit 36 when a negative voltage is applied attracts the magnetic flux of the mover containing the hard magnetic material. Since the first mover 341 contains a soft magnetic material, the first valve 34 opens at both the application time of the positive side voltage and the application time of the negative side voltage. Therefore, as shown in FIG. 8, the first valve 34 opens at the same timing as the second valve in the mode of the second increase rate region. The second valve 35 opens at a rate corresponding to the duty ratio of the negative voltage. The control device 50 executes energization control in which the duty ratio of the negative voltage application is gradually increased from a predetermined value of X% to 100%, as in the mode of the second increase rate region. By this control, when the mode shifts to the second increase rate region mode after the first increase rate region mode, the flow rate flowing out from the purge valve 3 does not change significantly and continues to increase continuously.
 図7のフローチャートを参照してパージ弁制御装置の作動を説明する。制御装置50は、図7のフローチャートにしたがった処理を実行する。図7に示すフローチャートは、蒸発燃料をエンジン2へ向けて流下させる場合に開始する。 The operation of the purge valve control device will be described with reference to the flowchart of FIG. The control device 50 executes the process according to the flowchart of FIG. The flowchart shown in FIG. 7 starts when the evaporated fuel flows down toward the engine 2.
 本フローチャートが開始されると、制御装置50は、ステップS200で蒸発燃料の濃度学習を行う状態か否かを判定する。ステップS200で濃度学習を行う状態であると判定すると、制御装置50は、ステップS220で第2バルブ35が閉弁状態であるか否かを判定する。ステップS220で第2バルブ35が閉弁状態であると判定すると、再びステップS200に戻り、ステップS200の判定処理を実行する。ステップS220で第2バルブ35が閉弁状態でないと判定すると、ステップS225でコイル部360に正側電圧を印加し、ステップS200の判定処理を実行する。制御装置50は、ステップS225において印加した正側電圧のデューティ比を0%から100%になるまで徐々に増加していく制御を実行する。 When this flowchart is started, the control device 50 determines whether or not the concentration of the evaporated fuel is learned in step S200. If it is determined in step S200 that the concentration learning is being performed, the control device 50 determines in step S220 whether or not the second valve 35 is in the closed state. When it is determined in step S220 that the second valve 35 is in the closed state, the process returns to step S200 and the determination process of step S200 is executed. When it is determined in step S220 that the second valve 35 is not in the closed state, a positive voltage is applied to the coil portion 360 in step S225, and the determination process of step S200 is executed. The control device 50 executes a control in which the duty ratio of the positive voltage applied in step S225 is gradually increased from 0% to 100%.
 ステップS200で濃度学習を行う状態でないと判定すると、制御装置50は、ステップS210で騒音発生条件が成立するか否かを判定する。ステップS210における処理は第1実施形態のステップS110と同様の処理である。例えば、車両の停止時、低速走行時、エンジン2のアイドリング状態などに該当すると、制御装置50は、ステップS210で騒音発生条件が成立すると判定する。ステップS210で騒音発生条件が成立すると判定すると、ステップS220に進み、ステップS220の判定処理を実行する。 If it is determined in step S200 that the concentration learning is not performed, the control device 50 determines whether or not the noise generation condition is satisfied in step S210. The process in step S210 is the same as the process in step S110 of the first embodiment. For example, when the vehicle is stopped, the vehicle is running at a low speed, the engine 2 is idling, or the like, the control device 50 determines that the noise generation condition is satisfied in step S210. If it is determined in step S210 that the noise generation condition is satisfied, the process proceeds to step S220, and the determination process of step S220 is executed.
 ステップS220からステップS200に戻る流れ、ステップS225を実行後にステップS200に戻る流れは、図8の第1増加率域のモードを実施する。第1増加率域のモード時は、第1実施形態と同様に、蒸発燃料の濃度学習精度の向上、脈動の低減、ORVRバルブ15のばたつき低減などを図ることができる。 The flow of returning from step S220 to step S200 and the flow of returning to step S200 after executing step S225 implement the mode of the first increase rate range of FIG. In the mode of the first increase rate region, it is possible to improve the concentration learning accuracy of the evaporated fuel, reduce the pulsation, reduce the fluttering of the ORVR valve 15, and the like, as in the first embodiment.
 ステップS210で騒音発生条件が成立しないと判定すると、制御装置50は、ステップS230で正側電圧のデューティ比が100%に達したか否かを判定する。ステップS230で正側電圧のデューティ比が100%に達していないと判定すると、ステップS200に戻り、ステップS200の判定処理を実行する。ステップS230で正側電圧のデューティ比が100%に達していると判定すると、ステップS240で第2バルブ35が閉弁状態であるか否かを判定する。 If it is determined in step S210 that the noise generation condition is not satisfied, the control device 50 determines whether or not the duty ratio of the positive side voltage has reached 100% in step S230. If it is determined in step S230 that the duty ratio of the positive voltage has not reached 100%, the process returns to step S200 and the determination process of step S200 is executed. When it is determined in step S230 that the duty ratio of the positive side voltage has reached 100%, it is determined in step S240 whether or not the second valve 35 is in the closed state.
 ステップS240で第2バルブ35が閉弁状態でないと判定すると、ステップS200に戻り、ステップS200の判定処理を実行する。ステップS240で第2バルブ35が閉弁状態であると判定すると、制御装置50は、ステップS250でコイル部360に、所定のデューティ比である負側電圧を印加する。 If it is determined in step S240 that the second valve 35 is not in the closed state, the process returns to step S200 and the determination process of step S200 is executed. When it is determined in step S240 that the second valve 35 is in the closed state, the control device 50 applies a negative side voltage having a predetermined duty ratio to the coil portion 360 in step S250.
 制御装置50は、ステップS250において、所定値であるX%のデューティ比によって、負側電圧印加を開始する。制御装置50は、ステップS260において負側電圧のデューティ比を所定値から100%に向けて徐々に増加していく制御を実行し、ステップS200に戻る。ステップS250、S260の処理により、パージバルブ3が制御する流体流量を図8に示すように第1増加率域から第2増加率域へ滑らかに移行させることができる。 In step S250, the control device 50 starts applying a negative voltage according to a duty ratio of X%, which is a predetermined value. The control device 50 executes control in step S260 to gradually increase the duty ratio of the negative voltage from a predetermined value toward 100%, and returns to step S200. By the processing of steps S250 and S260, the fluid flow rate controlled by the purge valve 3 can be smoothly shifted from the first increase rate region to the second increase rate region as shown in FIG.
 第2バルブ35が開弁している状態は、図8に図示する第2増加率域のモードを実施している。第1実施形態同様に第2増加率域のモード時は、第1バルブ34の開弁状態に加え、大流量を調整可能な第2バルブ35の開弁率を増加させていくため、大流量化を促進できる。図7のフローチャートに従った制御によれば、図8のように、ORVRバルブ15のばたつきに起因する騒音を抑制するとともに、大流量化も図れる流量制御を提供できる。 In the state where the second valve 35 is open, the mode of the second increase rate range shown in FIG. 8 is executed. Similar to the first embodiment, in the mode of the second increase rate range, in addition to the valve open state of the first valve 34, the valve open rate of the second valve 35 whose large flow rate can be adjusted is increased, so that the large flow rate is increased. Can be promoted. According to the control according to the flowchart of FIG. 7, as shown in FIG. 8, it is possible to provide the flow rate control capable of suppressing the noise caused by the fluttering of the ORVR valve 15 and increasing the flow rate.
 次に第2実施形態がもたらす効果について述べる。制御装置50は、正側電圧印加のデューティ比を制御する正側電圧モードと、負側電圧印加のデューティ比を制御する負側電圧モードとにわたって切り換える。この制御によれば、軟質磁性材料を含む可動子を有するバルブに対する電圧印加のデューティ比を増加させていく正側電圧モードと、硬質磁性材料を含む可動子を有するバルブに対する電圧印加のデューティ比を増加させていく負側電圧モードとを実施できる。負側電圧モードでは、硬質磁性材料を含む可動子を有するバルブについて開弁率を増加させながら、軟質磁性材料を含む可動子を有するバルブについて開弁状態を維持できる。 Next, the effect brought about by the second embodiment will be described. The control device 50 switches between a positive voltage mode that controls the duty ratio of the positive voltage application and a negative voltage mode that controls the duty ratio of the negative voltage application. According to this control, the positive side voltage mode that increases the duty ratio of voltage application to the valve having the mover containing the soft magnetic material and the duty ratio of the voltage application to the valve having the mover containing the hard magnetic material are set. It is possible to carry out an increasing negative voltage mode. In the negative voltage mode, the valve opening rate can be increased for a valve having a mover containing a hard magnetic material, while the valve opening state can be maintained for a valve having a mover containing a soft magnetic material.
 制御装置50は、正側電圧モードと負側電圧モードのうち一方のモードにおいて、印加電圧のデューティ比を上昇していくように制御する。制御装置50は、一方のモードから他方のモードに移行するときに、他方のモードにおいて印加電圧のデューティ比を0%よりも大きい値である所定値から上昇していくように制御する。これによれば、第1増加率域のモードから第2増加率域のモードへの移行の際に、流出ポート33aから流出する蒸発燃料の流量が大きく変動しないパージ流量制御を実施できる。 The control device 50 controls so that the duty ratio of the applied voltage is increased in one of the positive side voltage mode and the negative side voltage mode. When shifting from one mode to the other mode, the control device 50 controls the duty ratio of the applied voltage to increase from a predetermined value, which is a value larger than 0%, in the other mode. According to this, when shifting from the mode of the first increase rate region to the mode of the second increase rate region, it is possible to carry out purge flow rate control in which the flow rate of the evaporated fuel flowing out from the outflow port 33a does not fluctuate significantly.
 (第3実施形態)
 第3実施形態について図9~図11を参照して説明する。第3実施形態のパージバルブ103は、第1実施形態に対して第1バルブ134と第2バルブ135が相違する。第3実施形態において特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下、異なる点についてのみ説明する。
(Third Embodiment)
The third embodiment will be described with reference to FIGS. 9 to 11. The purge valve 103 of the third embodiment is different from the first embodiment in the first valve 134 and the second valve 135. The configurations, actions, and effects that are not particularly described in the third embodiment are the same as those in the first embodiment, and only the differences will be described below.
 図9に示すように、パージバルブ103は、ハウジングの内部に設けられた、第1バルブ134と第2バルブ135とを備える。第1バルブ134と第2バルブ135は、パージバルブ103のハウジング内部通路において、並列に配置されている構成である。この構成により、第1バルブ134と第2バルブ135のうち、いずれか一方を開弁状態に制御し他方を閉弁状態に制御しても、吸気管21へ蒸発燃料を供給できる。第1バルブ134と第2バルブ135は、第1弁体340の軸方向と第2弁体350の軸方向が径方向に並ぶように配置されている。図9は、第1バルブ134と第2バルブ135とが閉弁状態に制御されていることを示している。パージバルブ103は、小流量を調整可能とする第1バルブ134と、第1バルブ134に比べて大流量を調整可能な第2バルブ135とを備える。 As shown in FIG. 9, the purge valve 103 includes a first valve 134 and a second valve 135 provided inside the housing. The first valve 134 and the second valve 135 are arranged in parallel in the housing internal passage of the purge valve 103. With this configuration, even if one of the first valve 134 and the second valve 135 is controlled to be in the valve open state and the other is controlled to be in the valve closed state, the evaporated fuel can be supplied to the intake pipe 21. The first valve 134 and the second valve 135 are arranged so that the axial direction of the first valve body 340 and the axial direction of the second valve body 350 are aligned in the radial direction. FIG. 9 shows that the first valve 134 and the second valve 135 are controlled in the closed state. The purge valve 103 includes a first valve 134 that can adjust a small flow rate, and a second valve 135 that can adjust a large flow rate as compared with the first valve 134.
 制御装置50は、印加電圧の制御により、第1バルブ134と第2バルブ135の作動を制御する。パージバルブ103は、一つのソレノイド部36を有し、ソレノイド部36への通電により一つの電気回路を構成する。第1バルブ134と第2バルブ135は、共通の電気回路が発生する磁束による電磁駆動力を用いて軸方向に駆動して開弁し、それぞれの通路を開放する。ソレノイド部36は、コイル部360aとコイル部360bとを備える。コイル部360aとコイル部360bは、連結部360cによって直列接続されている。 The control device 50 controls the operation of the first valve 134 and the second valve 135 by controlling the applied voltage. The purge valve 103 has one solenoid unit 36, and energizes the solenoid unit 36 to form one electric circuit. The first valve 134 and the second valve 135 are driven in the axial direction by using an electromagnetic driving force generated by a magnetic flux generated by a common electric circuit to open the valves, and open their respective passages. The solenoid portion 36 includes a coil portion 360a and a coil portion 360b. The coil portion 360a and the coil portion 360b are connected in series by a connecting portion 360c.
 ソレノイド部36は、コイル部360、ボビン361a、ボビン361b、コアステータ362a、コアステータ362b、ヨーク1342、ヨーク1352等を備える。第1バルブ134は、コイル部360a、第1可動子1341、コアステータ362a、第1スプリング1343、リンク部1344等を備えている。コイル部360aはボビン361aに巻回されている。第1可動子1341の中心軸は、第1バルブ134の中心軸に相当する。第1可動子1341とヨーク1342はリンク部1344によって連結されている。第1スプリング1343は、第1可動子1341をコアステータ362aから離れる方向に移動させる付勢力を提供する。第1スプリング1343は、第1可動子1341を第1弁座部34a1側へ移動させようとする付勢力を提供する。第1弁体340は、第1可動子1341の軸方向端部に一体に設けられている。 The solenoid unit 36 includes a coil unit 360, a bobbin 361a, a bobbin 361b, a core stator 362a, a core stator 362b, a yoke 1342, a yoke 1352, and the like. The first valve 134 includes a coil portion 360a, a first mover 1341, a core stator 362a, a first spring 1343, a link portion 1344, and the like. The coil portion 360a is wound around the bobbin 361a. The central axis of the first mover 1341 corresponds to the central axis of the first valve 134. The first mover 1341 and the yoke 1342 are connected by a link portion 1344. The first spring 1343 provides an urging force that moves the first mover 1341 away from the core stator 362a. The first spring 1343 provides an urging force that attempts to move the first mover 1341 toward the first valve seat portion 34a1. The first valve body 340 is integrally provided at the axial end portion of the first mover 1341.
 第2バルブ135は、コイル部360b、第2可動子1351、コアステータ362b、第2スプリング1353、リンク部1354等を備えている。コイル部360bはボビン361bに巻回されている。第2可動子1351の中心軸は、第2バルブ135の中心軸に相当する。第2可動子1351とヨーク1352はリンク部1354によって連結されている。第2スプリング1353は、第2可動子1351をコアステータ362bから離れる方向に移動させる付勢力を提供する。第2スプリング1353は、第2可動子1351を第2弁座部35a1側へ移動させようとする付勢力を提供する。第2弁体350は、第2可動子1351の軸方向端部に一体に設けられている。 The second valve 135 includes a coil portion 360b, a second mover 1351, a core stator 362b, a second spring 1353, a link portion 1354, and the like. The coil portion 360b is wound around the bobbin 361b. The central axis of the second mover 1351 corresponds to the central axis of the second valve 135. The second mover 1351 and the yoke 1352 are connected by a link portion 1354. The second spring 1353 provides an urging force that moves the second mover 1351 away from the core stator 362b. The second spring 1353 provides an urging force for moving the second mover 1351 toward the second valve seat portion 35a1. The second valve body 350 is integrally provided at the axial end portion of the second mover 1351.
 図10は、第1バルブ134が第1弁座部34a1から離間する開弁状態であり、第2バルブ135が第2弁座部35a1に着座する閉弁状態であることを示している。図10に示す破線は、第1バルブ134において形成される磁気回路を示している。第1バルブ134の開弁状態では、第1可動子1341における一端側に位置する非支持部1341bが他端側に位置する支持部1341aよりもコアステータ362a寄りに位置する。これは、非支持部1341bが電磁力によってコアステータ362a側に引きつけられるからである。パージバルブ103は、図6のグラフに示すような流量増加率が小さい第1増加率域のモードを実施するときに、図10に示す状態に制御される。 FIG. 10 shows that the first valve 134 is in the valve open state separated from the first valve seat portion 34a1, and the second valve 135 is in the valve closed state in which the second valve seat portion 35a1 is seated. The broken line shown in FIG. 10 shows the magnetic circuit formed in the first valve 134. In the valve open state of the first valve 134, the non-support portion 1341b located on one end side of the first mover 1341 is located closer to the core stator 362a than the support portion 1341a located on the other end side. This is because the non-support portion 1341b is attracted to the core stator 362a side by the electromagnetic force. The purge valve 103 is controlled to the state shown in FIG. 10 when the mode of the first increase rate region in which the flow rate increase rate is small as shown in the graph of FIG. 6 is executed.
 図11は、第1バルブ134が開弁状態であり、さらに第2バルブ135が第2弁座部35a1から離間する開弁状態であることを示している。第2バルブ135の開弁状態では、第2可動子1351における一端側に位置する非支持部1351bが他端側に位置する支持部1351aよりもコアステータ362b寄りに位置する。これは、非支持部1351bが電磁力によってコアステータ362b側に引きつけられるからである。パージバルブ103は、図6のグラフに示すような流量増加率が第1増加率域よりも大きい第2増加率域のモードを実施するときに、図11に示す状態に制御される。 FIG. 11 shows that the first valve 134 is in the valve open state, and the second valve 135 is in the valve open state separated from the second valve seat portion 35a1. In the valve open state of the second valve 135, the non-support portion 1351b located on one end side of the second mover 1351 is located closer to the core stator 362b than the support portion 1351a located on the other end side. This is because the non-support portion 1351b is attracted to the core stator 362b side by the electromagnetic force. The purge valve 103 is controlled to the state shown in FIG. 11 when the mode of the second increase rate region in which the flow rate increase rate as shown in the graph of FIG. 6 is larger than that of the first increase rate region is executed.
 (他の実施形態)
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。
(Other embodiments)
Disclosure of this specification is not limited to the illustrated embodiments. The disclosure includes exemplary embodiments and modifications by those skilled in the art based on them. For example, the disclosure is not limited to the combination of parts and elements shown in the embodiment, and can be implemented in various modifications. Disclosure can be carried out in various combinations. The disclosure can have additional parts that can be added to the embodiment. The disclosure includes parts and elements of the embodiment omitted. Disclosures include replacements or combinations of parts, elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments.
 第2実施形態において説明した通電制御は、第3実施形態のパージバルブ103に、適用することができる。この場合、パージバルブ103の作動や作用効果は、第2実施形態において説明した作用効果と同様である。 The energization control described in the second embodiment can be applied to the purge valve 103 of the third embodiment. In this case, the operation and effect of the purge valve 103 are the same as those described in the second embodiment.
 前述の実施形態において、第1内部通路と第2内部通路は、通路横断面積が同等である構成でもよい。この場合、図6等に示す第1増加率域と第2増加率域は、流量変化率が同等である関係になる。 In the above-described embodiment, the first internal passage and the second internal passage may have a configuration in which the passage crossing areas are the same. In this case, the first increase rate region and the second increase rate region shown in FIG. 6 and the like have a relationship in which the flow rate change rates are the same.
 前述の実施形態において、第1内部通路は通路横断面積が第2内部通路よりも大きい構成でもよい。この場合、図6等に示す第1増加率域と第2増加率域は、流量変化率が第1増加率域の方が大きい関係になる。 In the above-described embodiment, the first internal passage may have a larger passage crossing area than the second internal passage. In this case, in the first increase rate region and the second increase rate region shown in FIG. 6 and the like, the flow rate change rate is larger in the first increase rate region.
 前述の実施形態において、硬質磁性材料を含む可動子が第1可動子であり、軟質磁性材料を含む可動子が第2可動子である構成でもよい。この場合、前述の実施形態における記載は、第1可動子と第2可動子とを入れ替えて読み替えるものとする。 In the above-described embodiment, the mover containing the hard magnetic material may be the first mover, and the mover containing the soft magnetic material may be the second mover. In this case, the description in the above-described embodiment shall be read by exchanging the first mover and the second mover.
 本開示は実施例を参照して記載されているが、本開示は開示された上記実施例や構造に限定されるものではないと理解される。寧ろ、本開示は、様々な変形例や均等範囲内の変形を包含する。加えて、本開示の様々な要素が、様々な組み合わせや形態によって示されているが、それら要素よりも多くの要素、あるいは少ない要素、またはそのうちの1つだけの要素を含む他の組み合わせや形態も、本開示の範疇や思想範囲に入るものである。 Although this disclosure is described with reference to examples, it is understood that this disclosure is not limited to the above disclosed examples and structures. Rather, the present disclosure includes various modifications and variations within a uniform range. In addition, the various elements of the present disclosure are represented by various combinations and forms, but other combinations and forms that include more or fewer elements than those elements, or only one of them. Also falls within the scope and ideology of this disclosure.

Claims (11)

  1.  キャニスタ(13)から流出した蒸発燃料が流入する流入ポート(31a)と、
     蒸発燃料がエンジン(2)に向けて流出する流出ポート(33a)と、
     前記流入ポートと前記流出ポートとを連絡するハウジング内部通路を有するハウジング(31)と、
     前記ハウジングの内部に設けられて、前記ハウジング内部通路を流下する蒸発燃料の流量を制御する第1弁体(340)を有する第1バルブ(34;134)と、
     前記ハウジングの内部に設けられて、前記ハウジング内部通路を流下する蒸発燃料の流量を制御する第2弁体(350)を有する第2バルブ(35;135)と、
     通電されて一つの電気回路を形成する一つのソレノイド部(36)と、
     一つの前記電気回路によって発生する電磁力に応じて前記第1弁体とともに駆動する第1可動子(341;1341)と、
     一つの前記電気回路によって発生する電磁力に応じて前記第2弁体とともに駆動する第2可動子(351;1351)と、
     を備え、
     前記第1可動子と前記第2可動子のうち、一方の可動子は硬質磁性材料を含んで形成され、他方の可動子は一方の前記可動子よりも外部磁場によって磁化が変わりやすい軟質磁性材料を含んで形成されているパージ制御弁装置。
    The inflow port (31a) into which the evaporated fuel spilled from the canister (13) flows in, and
    An outflow port (33a) through which evaporative fuel flows toward the engine (2),
    A housing (31) having a housing internal passage connecting the inflow port and the outflow port,
    A first valve (34; 134) provided inside the housing and having a first valve body (340) that controls the flow rate of the evaporated fuel flowing down the passage inside the housing.
    A second valve (35; 135) provided inside the housing and having a second valve body (350) that controls the flow rate of the evaporated fuel flowing down the passage inside the housing.
    One solenoid unit (36) that is energized to form one electric circuit,
    A first mover (341; 1341) that is driven together with the first valve body in response to an electromagnetic force generated by one of the electric circuits.
    A second mover (351; 1351) that is driven together with the second valve body in response to an electromagnetic force generated by one of the electric circuits.
    With
    Of the first mover and the second mover, one mover is formed containing a hard magnetic material, and the other mover is a soft magnetic material whose magnetization is more easily changed by an external magnetic field than the one mover. A purge control valve device that is formed including.
  2.  前記ハウジング内部通路は、前記第1弁体によって開閉される第1内部通路(34a2)と、前記第2弁体によって開閉される第2内部通路(35a2)とを含み、
     前記第1内部通路を流下する蒸発燃料と前記第2内部通路を流下する蒸発燃料は、前記流出ポートよりも上流において合流するように構成されており、
     前記第1可動子と前記第2可動子は、可動方向が同軸になるように並んで設けられている請求項1に記載のパージ制御弁装置。
    The housing internal passage includes a first internal passage (34a2) opened and closed by the first valve body and a second internal passage (35a2) opened and closed by the second valve body.
    The evaporative fuel flowing down the first internal passage and the evaporative fuel flowing down the second internal passage are configured to merge upstream from the outflow port.
    The purge control valve device according to claim 1, wherein the first mover and the second mover are provided side by side so that the movable directions are coaxial.
  3.  前記第1可動子と前記第2可動子は、閉弁動作において、互いに逆向きに動作するように構成されている請求項2に記載のパージ制御弁装置。 The purge control valve device according to claim 2, wherein the first mover and the second mover are configured to operate in opposite directions in a valve closing operation.
  4.  前記ハウジング内部通路は、前記第1弁体によって開閉される第1内部通路(34a2)と、前記第2弁体によって開閉される第2内部通路(35a2)とを含み、
     前記第1内部通路と前記第2内部通路のうち、一方の内部通路は他方の内部通路よりも通路横断面積が大きく形成された通路であり、
     蒸発燃料の流量増加に関して、第1増加率域のモードと前記第1増加率域よりも流量増加率が大きい第2増加率域のモードとを実施するように、前記ソレノイド部に対する印加電圧を制御する制御装置(50)を備え、
     前記第1増加率域のモード時に前記他方の内部通路を開放し、前記第2増加率域のモード時に前記他方の内部通路と前記一方の内部通路とを開放する請求項1から請求項3のいずれか一項に記載のパージ制御弁装置。
    The housing internal passage includes a first internal passage (34a2) opened and closed by the first valve body and a second internal passage (35a2) opened and closed by the second valve body.
    Of the first internal passage and the second internal passage, one internal passage is a passage formed with a passage crossing area larger than that of the other internal passage.
    Regarding the increase in the flow rate of the evaporated fuel, the voltage applied to the solenoid unit is controlled so as to execute the mode in the first increase rate region and the mode in the second increase rate region in which the flow rate increase rate is larger than the first increase rate region. Equipped with a control device (50)
    The first to third claims, wherein the other internal passage is opened in the mode of the first increase rate region, and the other internal passage and the one internal passage are opened in the mode of the second increase rate region. The purge control valve device according to any one item.
  5.  前記制御装置は、前記流出ポートから流出する蒸発燃料の流量をゼロである状態から前記第1増加率域のモードを実施した後、前記第2増加率域のモードを実施する流量増加制御を行う請求項4に記載のパージ制御弁装置。 The control device executes the mode of the first increase rate region from the state where the flow rate of the evaporated fuel flowing out from the outflow port is zero, and then performs the flow rate increase control to execute the mode of the second increase rate region. The purge control valve device according to claim 4.
  6.  前記制御装置は、蒸発燃料の濃度学習を実施するときに前記第1増加率域のモードを実施するように、前記ソレノイド部に対する印加電圧を制御する請求項4または請求項5に記載のパージ制御弁装置。 The purge control according to claim 4 or 5, wherein the control device controls the applied voltage to the solenoid unit so that the mode of the first increase rate region is executed when the concentration learning of the evaporated fuel is performed. Valve device.
  7.  前記制御装置は、騒音が想定可能な騒音発生条件が成立する場合に前記第1増加率域のモードを実施するように、前記ソレノイド部に対する印加電圧を制御する請求項4または請求項5に記載のパージ制御弁装置。 The fourth or fifth aspect of the present invention, wherein the control device controls the voltage applied to the solenoid unit so that the mode of the first increase rate region is executed when the noise generation condition in which noise can be assumed is satisfied. Purge control valve device.
  8.  前記ソレノイド部に対する印加電圧を制御する制御装置(50)を備え、
     前記制御装置は、正側電圧印加または負側電圧印加のデューティ比を制御する第1モードと、交流信号電圧印加における正側電圧印加と負側電圧印加のうち、前記第1モードにおいて制御していない方の電圧印加のデューティ比を制御する第2モードとにわたって切り換える請求項1から請求項3のいずれか一項に記載のパージ制御弁装置。
    A control device (50) for controlling the voltage applied to the solenoid unit is provided.
    The control device controls in the first mode, which controls the duty ratio of the positive side voltage application or the negative side voltage application, and the positive side voltage application and the negative side voltage application in the AC signal voltage application. The purge control valve device according to any one of claims 1 to 3, which switches over to a second mode for controlling the duty ratio of voltage application whichever is not present.
  9.  前記ハウジング内部通路は、前記第1弁体によって開閉される第1内部通路(34a2)と、前記第2弁体によって開閉される第2内部通路(35a2)とを含み、
     前記第1内部通路と前記第2内部通路のうち、一方の内部通路は他方の内部通路よりも通路横断面積が大きく形成された通路であり、
     前記第1モードでは他方の前記内部通路を開放し、前記第2モードでは他方の前記内部通路と一方の前記内部通路とを開放する請求項8に記載のパージ制御弁装置。
    The housing internal passage includes a first internal passage (34a2) opened and closed by the first valve body and a second internal passage (35a2) opened and closed by the second valve body.
    Of the first internal passage and the second internal passage, one internal passage is a passage formed with a passage crossing area larger than that of the other internal passage.
    The purge control valve device according to claim 8, wherein in the first mode, the other internal passage is opened, and in the second mode, the other internal passage and one of the internal passages are opened.
  10.  前記ソレノイド部に対する印加電圧を制御する制御装置(50)を備え、
     前記制御装置は、正側電圧印加のデューティ比を制御する正側電圧モードと、負側電圧印加のデューティ比を制御する負側電圧モードとにわたって切り換える請求項1から請求項3のいずれか一項に記載のパージ制御弁装置。
    A control device (50) for controlling the voltage applied to the solenoid unit is provided.
    The control device is any one of claims 1 to 3, which switches between a positive voltage mode for controlling the duty ratio of the positive voltage application and a negative voltage mode for controlling the duty ratio of the negative voltage application. Purge control valve device according to.
  11.  前記制御装置は、前記正側電圧モードと前記負側電圧モードのうち一方のモードにおいて、印加電圧のデューティ比を上昇していくように制御し、一方の前記モードから他方のモードに移行するときに、他方の前記モードにおいて印加電圧のデューティ比を0%よりも大きい値である所定値から上昇していくように制御する請求項10に記載のパージ制御弁装置。 When the control device controls the duty ratio of the applied voltage to increase in one of the positive voltage mode and the negative voltage mode, and shifts from the one mode to the other mode. The purge control valve device according to claim 10, wherein the duty ratio of the applied voltage is controlled to increase from a predetermined value which is a value larger than 0% in the other mode.
PCT/JP2020/028787 2019-09-23 2020-07-28 Purge control valve device WO2021059724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-172397 2019-09-23
JP2019172397A JP7172933B2 (en) 2019-09-23 2019-09-23 Purge control valve device

Publications (1)

Publication Number Publication Date
WO2021059724A1 true WO2021059724A1 (en) 2021-04-01

Family

ID=75157335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028787 WO2021059724A1 (en) 2019-09-23 2020-07-28 Purge control valve device

Country Status (2)

Country Link
JP (1) JP7172933B2 (en)
WO (1) WO2021059724A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299936A (en) * 1997-04-22 1998-11-13 Smc Corp Three-position valve
JP4611384B2 (en) * 2005-08-12 2011-01-12 三菱電機株式会社 Fuel evaporative gas processing device and electromagnetic valve device
WO2016106310A1 (en) * 2014-12-22 2016-06-30 Eaton Corporation In-line valve
US20170067572A1 (en) * 2014-03-19 2017-03-09 Bitron S.P.A. Bistable electric valve, in particular for a system for recovering petrol vapours in a motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299936A (en) * 1997-04-22 1998-11-13 Smc Corp Three-position valve
JP4611384B2 (en) * 2005-08-12 2011-01-12 三菱電機株式会社 Fuel evaporative gas processing device and electromagnetic valve device
US20170067572A1 (en) * 2014-03-19 2017-03-09 Bitron S.P.A. Bistable electric valve, in particular for a system for recovering petrol vapours in a motor vehicle
WO2016106310A1 (en) * 2014-12-22 2016-06-30 Eaton Corporation In-line valve

Also Published As

Publication number Publication date
JP7172933B2 (en) 2022-11-16
JP2021050625A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US7011076B1 (en) Bipolar valve having permanent magnet
JP4203906B2 (en) Solenoid valve and evaporative fuel processing system using the same
US9068667B2 (en) Electromagnetic valve
JP2000283315A (en) Solenoid valve
US20080000456A1 (en) Cost-optimized canister purge valve
JP5689983B2 (en) solenoid valve
JP2003148647A (en) Solenoid valve
WO2021059724A1 (en) Purge control valve device
US6814061B2 (en) Unipolar canister purge valve
JP6977797B2 (en) Purge control valve device
JP5952067B2 (en) Fluid control valve device
JP6919459B2 (en) Flow control device
US11028790B2 (en) Purge control valve device
JP2020133540A (en) Flow control device
JPH10281329A (en) Solenoid valve and electronic control engine mount device using the solenoid valve
JP2007162588A (en) Evaporated fuel treatment device
JP6930438B2 (en) Flow control device
JP2022101153A (en) Flow control valve
JP2019060287A (en) Purge valve and evaporated fuel processing device
JP2007040423A (en) Valve device
JP7205431B2 (en) Flow regulator
JP7205432B2 (en) Purge control valve device
JP2022151120A (en) flow control valve
JP7192727B2 (en) Purge control valve device
JPH11132354A (en) Multistage switching solenoid valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869319

Country of ref document: EP

Kind code of ref document: A1