JP5689983B2 - solenoid valve - Google Patents

solenoid valve Download PDF

Info

Publication number
JP5689983B2
JP5689983B2 JP2013549940A JP2013549940A JP5689983B2 JP 5689983 B2 JP5689983 B2 JP 5689983B2 JP 2013549940 A JP2013549940 A JP 2013549940A JP 2013549940 A JP2013549940 A JP 2013549940A JP 5689983 B2 JP5689983 B2 JP 5689983B2
Authority
JP
Japan
Prior art keywords
valve
port
movable element
valve seat
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013549940A
Other languages
Japanese (ja)
Other versions
JPWO2013093955A1 (en
Inventor
雅俊 上田
雅俊 上田
和晃 鶴
和晃 鶴
伊藤 貴幸
貴幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5689983B2 publication Critical patent/JP5689983B2/en
Publication of JPWO2013093955A1 publication Critical patent/JPWO2013093955A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Fluid-Driven Valves (AREA)

Description

この発明は、別々に開閉動作可能な二段の弁部材を有する電磁弁に関する。   The present invention relates to an electromagnetic valve having two-stage valve members that can be opened and closed separately.

車輌に搭載される蒸発ガス処理システムは、燃料タンク内で揮発した蒸発ガスをキャニスタで一時的に回収し、インテークマニホールド(エンジン)負圧を利用してキャニスタからエンジンへ引き込んで再燃焼させる。近年、自動車の燃費規制等によって、エンジン作動頻度が低下したため、エンジンへ引き込み可能な蒸発ガス量も低下傾向にあり、パージ収支に限界があった。   In an evaporative gas processing system mounted on a vehicle, evaporative gas volatilized in a fuel tank is temporarily collected by a canister and drawn into the engine from the canister using an intake manifold (engine) negative pressure to be reburned. In recent years, the frequency of engine operation has decreased due to automobile fuel efficiency regulations and the like, and the amount of evaporative gas that can be drawn into the engine tends to decrease, and the purge balance has been limited.

そこで、燃料タンクに耐圧タンク等を使用し、このタンクを密閉することで、キャニスタ側へ流れる蒸発ガス量を抑制するシステムが車輌へ搭載されつつある。このシステムにおいては、燃料タンクを開閉する電磁弁がタンク口を確実にシールする必要がある。また、給油時に燃料タンクから給油口への蒸発ガスの逆流を防止するための圧抜き、および走行時に燃料タンク内圧を調整するためにキャニスタ側へ放出する流量制御も必要となるため、複数の駆動パターンで開閉動作する必要がある。よって、燃料タンクを密閉するための電磁弁として、別々に開閉動作が可能な二段の弁部材を有する二段弁機構を採用し、上記駆動パターンを一つの電磁弁で行う(例えば、特許文献1,2参照)。   Therefore, a system that suppresses the amount of evaporative gas flowing to the canister side by using a pressure tank or the like as the fuel tank and sealing the tank is being mounted on the vehicle. In this system, an electromagnetic valve for opening and closing the fuel tank needs to securely seal the tank opening. In addition, it is necessary to release pressure to prevent the backflow of evaporative gas from the fuel tank to the fuel filler port when refueling, and to control the flow rate discharged to the canister side to adjust the fuel tank internal pressure during traveling. It is necessary to open and close with a pattern. Therefore, a two-stage valve mechanism having a two-stage valve member that can be opened and closed separately is employed as an electromagnetic valve for sealing the fuel tank, and the above drive pattern is performed with a single electromagnetic valve (for example, Patent Documents). 1 and 2).

上記特許文献1,2に係る電磁弁は、電磁駆動部により往復駆動される第1弁部材と、第1弁部材が着座する第1弁座を有する第2弁部材と、第2弁部材が着座可能な第2弁座とから構成される二段弁機構を備え、燃料タンクとキャニスタを連通する連通路を第2弁部材に形成して、この連通路を第1弁部材で開閉する構成である。そして、第1弁部材と第2弁部材をそれぞれ着座させて燃料タンクを密閉する。また、第1弁部材を開弁した状態で、燃料タンクとキャニスタの差圧により第2弁部材を開閉する。   The electromagnetic valves according to Patent Documents 1 and 2 include a first valve member that is reciprocally driven by an electromagnetic drive unit, a second valve member having a first valve seat on which the first valve member is seated, and a second valve member. A structure having a two-stage valve mechanism composed of a seatable second valve seat, a communication path communicating with the fuel tank and the canister is formed in the second valve member, and the communication path is opened and closed by the first valve member It is. Then, the fuel valve is sealed by seating the first valve member and the second valve member, respectively. Further, the second valve member is opened and closed by the differential pressure between the fuel tank and the canister while the first valve member is opened.

特開2005−291241号公報JP 2005-291241 A 特開2006−258283号公報JP 2006-258283 A

上記特許文献1,2に係る電磁弁は、ベローズで保護したシャフトを第1弁部材、このシャフトの先端を挿入する流路孔を第1弁座にし、リターンスプリングがシャフトを付勢してベローズ端面を流路孔周縁に当接して閉弁し、電磁駆動部がシャフト先端の流路孔への挿入量を制御することで流量調整を行う構成であり、構造が複雑であった。また、流体による抵抗が大きいベローズを吸引するために、電磁駆動部のコイルを大型化する必要があった。さらに、吸引力の増加に比例してリターンスプリングを大型化し、閉弁時のシール性を確保する必要があった。そのため、電磁弁が大型化するという課題があった。   In the electromagnetic valves according to Patent Documents 1 and 2, the shaft protected by the bellows is the first valve member, the flow passage hole into which the tip of the shaft is inserted is the first valve seat, and the return spring urges the shaft to bellows. The end face abuts on the periphery of the flow path hole to close the valve, and the electromagnetic drive unit adjusts the flow rate by controlling the amount of insertion of the shaft tip into the flow path hole, and the structure is complicated. Moreover, in order to attract the bellows having a large resistance due to the fluid, it is necessary to enlarge the coil of the electromagnetic drive unit. In addition, it is necessary to increase the size of the return spring in proportion to the increase in suction force and to ensure the sealing performance when the valve is closed. Therefore, there has been a problem that the solenoid valve is increased in size.

また、上記特許文献2に係る電磁弁は、第1弁部材を樹脂、第1弁座をダイヤモンド・ライク・カーボン(以下、DLC)被膜でコーティングしたゴム系弾性体で構成している。また、第2弁部材をDLC被膜でコーティングした金属、第2弁座をDLC被膜でコーティングしたゴム系弾性体で構成している。このように、ゴム系弾性体の耐久性および耐粘着性を確保するためにコーティングしているが、コーティングによりシール面のゴムが硬化し、ゴム本来の性質が損なわれ、シール性が悪化してしまう。そのため、閉弁時のシール性が悪化し、燃料タンクの密閉性が損なわれるという課題があった。   Further, the electromagnetic valve according to Patent Document 2 is composed of a rubber-based elastic body in which the first valve member is coated with resin and the first valve seat is coated with a diamond-like carbon (hereinafter, DLC) film. Further, the second valve member is made of a metal coated with a DLC film, and the second valve seat is made of a rubber-based elastic body coated with a DLC film. In this way, the rubber-based elastic body is coated to ensure the durability and anti-adhesion properties, but the rubber on the sealing surface is cured by the coating, the original properties of the rubber are impaired, and the sealing performance deteriorates. End up. Therefore, the sealing performance at the time of valve closing deteriorates, and there is a problem that the sealing performance of the fuel tank is impaired.

この発明は、上記のような課題を解決するためになされたもので、構造を簡素化して、小型化および軽量化を図ると共に、閉弁時のシール性を確保した電磁弁を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a solenoid valve that simplifies the structure, reduces the size and weight, and ensures the sealing performance when the valve is closed. Objective.

この発明の電磁弁は、第一弁体を有する第一可動子と、流体を導入する第一ポート、当該流体を導出する第二ポート、および当該第一ポートと当該第二ポートを連通する流路に形成された第二弁座を有し、当該流路内に前記第一可動子を収容したハウジングと、第二弁座より上流側で第一ポートと第二ポートを連通する、流路より小径の連通路、当該連通路の第一ポート連通側に形成され第一弁体に接離して第一ポートと当該連通路の間を開閉する第一弁座、および当該連通路の第二ポート連通側に形成され第二弁座に接離して流路を開閉する第二弁体を有し、第一可動子と同軸上に可動可能に保持された第二可動子と、第一可動子を開弁側へ吸引する電磁力を発生するソレノイド部と、第一可動子を閉弁側へ付勢して、第一可動子に第二可動子を付勢させる付勢部材と、筒体の内面で第一可動子を摺動させ、外面で第二可動子を摺動させて、第一可動子および第二可動子の同軸上での可動をガイドするガイド部材とを備え、第一弁体と第一弁座は電磁力による開閉動作特性であって、第一弁体は弾性部材で形成され、第一弁座の第一弁体が当接する面は非粘着部材で形成され、第一弁体と第一弁座が当接する各面の平行度はガイド部材により確保され、第二弁体と第二弁座は差圧による開閉動作特性であって、第二弁体および第二弁座が当接する各面の少なくとも一方は非粘着部材で形成されているものである。 The electromagnetic valve of the present invention includes a first mover having a first valve body, a first port for introducing a fluid, a second port for deriving the fluid, and a flow communicating the first port and the second port. A flow path having a second valve seat formed in the path and communicating the first port and the second port on the upstream side of the second valve seat with a housing accommodating the first mover in the flow path A communication passage having a smaller diameter, a first valve seat that is formed on the first port communication side of the communication passage and that opens and closes between the first port and the communication passage, and a second of the communication passage. A second movable element that is formed on the port communication side and has a second valve body that opens and closes the flow path by contacting and separating from the second valve seat, and is movably held coaxially with the first movable element; and a first movable element A solenoid part that generates an electromagnetic force that attracts the child toward the valve opening side, and a first movable element that urges the first movable element toward the valve closing side, A biasing member for biasing the child, is slid first movable element in the inner surface of the cylindrical body, by sliding the second movable member in the outer surface, on the coaxial first mover and the second mover and a guide member for guiding the movable, first valve body and the first valve seat is a opening and closing operation characteristics of the electromagnetic force, the first valve body formed of an elastic member, a first valve body of the first valve seat The contact surface is made of a non-adhesive member, the parallelism of each surface where the first valve body and the first valve seat contact is secured by the guide member, and the second valve body and the second valve seat are opened and closed by differential pressure It is an operation characteristic, Comprising: At least one of each surface which a 2nd valve body and a 2nd valve seat contact | abut is formed with the non-adhesive member .

この発明によれば、電磁力で駆動する第一可動子と差圧に応じて開弁する第二可動子とを同軸上に設置し、流路径の小さい第一弁体および第一弁座と流路径の大きい第二弁体および第二弁座のシール構造と開閉動作特性が異なるように構成したので、構造を簡素化して、小型化および軽量化を図ることができると共に、閉弁時のシール性を確保することができる。   According to this invention, the first movable element driven by electromagnetic force and the second movable element that opens according to the differential pressure are installed on the same axis, and the first valve body and the first valve seat having a small flow path diameter are provided. Since the opening and closing operation characteristics of the second valve body and the second valve seat having a large flow path diameter are different from each other, the structure can be simplified, and the size and weight can be reduced. Sealability can be secured.

この発明の実施の形態1に係る燃料タンク封鎖用電磁弁の構成を示す断面図であり、タンク接続ポートとキャニスタ接続ポートの間の流路が閉じた状態を示す。It is sectional drawing which shows the structure of the solenoid valve for fuel tank sealing concerning Embodiment 1 of this invention, and shows the state which the flow path between a tank connection port and a canister connection port closed. 実施の形態1に係る燃料タンク封鎖用電磁弁を適用した蒸発ガス処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the evaporative gas processing system to which the solenoid valve for fuel tank sealing which concerns on Embodiment 1 is applied. 実施の形態1に係る燃料タンク封鎖用電磁弁の構成を示す断面図であり、タンク接続ポートとキャニスタ接続ポートの間が小径の連通路で連通した状態を示す。It is sectional drawing which shows the structure of the solenoid valve for fuel tank sealing which concerns on Embodiment 1, and shows the state which connected between the tank connection port and the canister connection port by the small diameter communicating path. 実施の形態1に係る燃料タンク封鎖用電磁弁の構成を示す断面図であり、タンク接続ポートとキャニスタ接続ポートの間の流路が連通した状態を示す。It is sectional drawing which shows the structure of the solenoid valve for fuel tank sealing which concerns on Embodiment 1, and shows the state which the flow path between the tank connection port and the canister connection port connected. 実施の形態1に係る燃料タンク封鎖用電磁弁の第一可動子と第二可動子を拡大した断面図である。3 is an enlarged cross-sectional view of a first mover and a second mover of a fuel tank sealing solenoid valve according to Embodiment 1. FIG. ECUが燃料タンク封鎖用電磁弁に対して行う過励磁駆動の制御例を示すグラフである。It is a graph which shows the example of control of the overexcitation drive which ECU performs with respect to the solenoid valve for fuel tank sealing. この発明の実施の形態2に係る燃料タンク封鎖用電磁弁の構成を示す断面図であり、タンク接続ポートとキャニスタ接続ポートの間の流路が閉じた状態を示す。It is sectional drawing which shows the structure of the solenoid valve for fuel tank sealing concerning Embodiment 2 of this invention, and shows the state which the flow path between a tank connection port and a canister connection port closed.

以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、二段弁機構を採用した電磁弁の構成を示す断面図である。図2は、この電磁弁を燃料タンク封鎖のために用いた蒸発ガス処理システム1の構成を示すブロック図である。車輌に搭載される蒸発ガス処理システム1は、耐圧性の燃料タンク2と、燃料タンク2で蒸発した蒸発ガスを一時的に吸着するキャニスタ3と、キャニスタ3から放出された蒸発ガスを作動中のエンジンの吸気系負圧を利用して吸引するインテークマニホールド4とを備えている。また、キャニスタ3とインテークマニホールド4とを連通した配管には、キャニスタ3からインテークマニホールド4へ蒸発ガスをパージ(導入)するパージ用電磁弁5が設置されている。キャニスタ3の大気開放側の配管には、大気開放用電磁弁6とフィルタ7が設置されている。また、燃料タンク2に連通した配管には燃料タンク2の内圧調整および封鎖のための電磁弁10(図1に示す)が設置されており、さらに、燃料タンク2と大気を連通するバイパス配管にリリーフ弁8が設置されている。各電磁弁5,6,10の開閉動作はECU(電子制御ユニット)9が制御する。
なお、図2に示すバイパス配管とリリーフ弁8は下記実施の形態2で詳述する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the configuration of a solenoid valve employing a two-stage valve mechanism. FIG. 2 is a block diagram showing a configuration of an evaporative gas treatment system 1 using this electromagnetic valve for sealing a fuel tank. An evaporative gas treatment system 1 mounted on a vehicle is operating a pressure-resistant fuel tank 2, a canister 3 that temporarily adsorbs evaporative gas evaporated in the fuel tank 2, and an evaporative gas released from the canister 3. And an intake manifold 4 for suctioning by using the intake system negative pressure of the engine. In addition, a purge solenoid valve 5 that purges (introduces) evaporative gas from the canister 3 to the intake manifold 4 is installed in a pipe that communicates the canister 3 and the intake manifold 4. An air release electromagnetic valve 6 and a filter 7 are installed in the pipe on the atmosphere release side of the canister 3. In addition, a solenoid valve 10 (shown in FIG. 1) for adjusting the internal pressure of the fuel tank 2 and sealing the fuel tank 2 is installed in the pipe communicating with the fuel tank 2, and further, a bypass pipe communicating with the fuel tank 2 and the atmosphere. A relief valve 8 is installed. The opening / closing operation of each solenoid valve 5, 6, 10 is controlled by an ECU (Electronic Control Unit) 9.
The bypass piping and the relief valve 8 shown in FIG. 2 will be described in detail in the second embodiment below.

通常時、ECU9は、燃料タンク封鎖用電磁弁10を閉弁させて燃料タンク2とキャニスタ3を接続する配管を閉じ、燃料タンク2を封鎖することによって、燃料タンク2からキャニスタ3側への蒸発ガスの流入を阻止する。
給油時、ECU9は、圧抜き動作として、燃料タンク封鎖用電磁弁10を開弁させて、燃料タンク2内の蒸発ガスをキャニスタ3側へ流して内圧を低下させる。給油時の蒸発ガスの流れを、図2に一点鎖線で示す。
走行時、ECU9は、パージ用電磁弁5をDuty駆動して流量制御を行い、キャニスタ3からインテークマニホールド4へ、エンジン負圧を利用して蒸発ガスを引き込み、燃焼させる。パージ時の蒸発ガスの流れは、図2に破線で示す。また、ECU9は、燃料タンク封鎖用電磁弁10をDuty駆動して流量制御を行って燃料タンク2からインテークマニホールド4へエンジン負圧を利用して蒸発ガスを流し、燃料タンク2の内圧を調整する。内圧調整時の蒸発ガスの流れは、図2に二点鎖線で示す。
Normally, the ECU 9 closes the fuel tank sealing solenoid valve 10 to close the pipe connecting the fuel tank 2 and the canister 3, and seals the fuel tank 2, thereby evaporating from the fuel tank 2 to the canister 3 side. Prevent gas inflow.
At the time of refueling, the ECU 9 opens the fuel tank sealing electromagnetic valve 10 as a pressure releasing operation, and causes the evaporated gas in the fuel tank 2 to flow toward the canister 3 to reduce the internal pressure. The flow of the evaporating gas at the time of refueling is shown by a one-dot chain line in FIG.
During traveling, the ECU 9 performs duty control by driving the purge solenoid valve 5 to perform duty control, draws evaporative gas from the canister 3 to the intake manifold 4 using engine negative pressure, and burns it. The flow of the evaporating gas at the time of purging is indicated by a broken line in FIG. The ECU 9 also controls the flow rate by driving the solenoid valve 10 for sealing the fuel tank in a Duty manner to flow evaporative gas from the fuel tank 2 to the intake manifold 4 using the engine negative pressure, thereby adjusting the internal pressure of the fuel tank 2. . The flow of the evaporating gas at the time of adjusting the internal pressure is indicated by a two-dot chain line in FIG.

例えばプラグイン・ハイブリッド自動車(P−HEV)においては、燃料タンク2からキャニスタ3への燃料ガス吸着を給油時のみ行う(図2に一点鎖線で示す給油時の経路)。そして、給油時以外に、キャニスタ3からインテークマニホールド4側へパージして(図2に破線で示すパージ時の経路および二点鎖線で示す内圧調整時の経路)、燃料タンク2の内圧を調整(低く)し、給油時の蒸発量を極力少なくする。   For example, in a plug-in hybrid vehicle (P-HEV), fuel gas adsorption from the fuel tank 2 to the canister 3 is performed only during refueling (the refueling route indicated by the one-dot chain line in FIG. 2). In addition to the time of refueling, purging from the canister 3 to the intake manifold 4 side (the path at the time of purge indicated by the broken line in FIG. 2 and the path at the time of adjusting the internal pressure indicated by the two-dot chain line) to adjust the internal pressure of the fuel tank 2 ( Reduce the amount of evaporation during refueling as much as possible.

図1に示すように、燃料タンク封鎖用電磁弁10は、燃料タンク2側の配管に連結して蒸発ガスを導入するタンク接続ポート11(第一ポート)と、キャニスタ3側の配管に連結して蒸発ガスを導出するキャニスタ接続ポート12(第二ポート)と、これらのポートに連通する流路(後述する第一流路31および第二流路32)を形成したハウジング13と、第一可動子20を可動させてタンク接続ポート11とキャニスタ接続ポート12の間の流路を開閉するソレノイド部14とを備える。   As shown in FIG. 1, a fuel tank sealing solenoid valve 10 is connected to a fuel tank 2 side pipe and a tank connection port 11 (first port) for introducing evaporative gas, and to a canister 3 side pipe. A canister connection port 12 (second port) through which evaporative gas is led out, a housing 13 in which flow paths (first flow path 31 and second flow path 32 described later) communicating with these ports are formed, and the first movable element And a solenoid portion 14 that opens and closes a flow path between the tank connection port 11 and the canister connection port 12 by moving the nozzle 20.

ソレノイド部14は、樹脂部材を一体成形してなり、ボビンに導線を巻回してなるコイル15と、コイル15へ通電する給電端子16と、コイル15への通電により励磁される固定鉄心17と、固定鉄心17と共に磁気回路を構成する外鉄ヨーク部18およびプレート19と、固定鉄心17に吸引される第一可動子(プランジャ)20と、固定鉄心17内に固定されて第一可動子20のストッパになるピン21と、第一可動子20を固定鉄心17の吸引方向(開弁方向)とは反対の方向(閉弁方向)へ付勢する第一スプリング(付勢部材)22とを備える。第一可動子20の先端には第一弁体23が形成されている。   The solenoid unit 14 is formed by integrally molding a resin member, a coil 15 formed by winding a conductive wire around a bobbin, a power supply terminal 16 that energizes the coil 15, a fixed iron core 17 that is excited by energization of the coil 15, The outer iron yoke portion 18 and the plate 19 that form a magnetic circuit together with the fixed iron core 17, the first mover (plunger) 20 attracted to the fixed iron core 17, and the first mover 20 fixed in the fixed iron core 17. A pin 21 that serves as a stopper and a first spring (biasing member) 22 that biases the first armature 20 in a direction (valve closing direction) opposite to the suction direction (valve opening direction) of the fixed iron core 17 are provided. . A first valve body 23 is formed at the tip of the first movable element 20.

本実施の形態1に係る燃料タンク封鎖用電磁弁10は、磁性部材で構成されて電磁吸引力を受けて開閉する第一可動子20に加え、非磁性部材で構成されて第一可動子20の開閉動作に連動して開閉する大径の第二可動子24を備える二段弁構造とする。
第二可動子24は、円柱形状の中心を貫通する連通路25と、この連通路25の一端部であって第一可動子20の第一弁体23が接離する第一弁座26と、この連通路25の他端部であって後述する第二弁座33に接離する第二弁体27とを備える。また、第二可動子24の一端面に、後述するガイド部材29の一端部を挿入するための凹部28が形成されている。
The fuel tank sealing solenoid valve 10 according to the first embodiment is made up of a nonmagnetic member in addition to the first mover 20 made of a magnetic member that opens and closes by receiving an electromagnetic attraction force. It is set as the two-stage valve structure provided with the large diameter 2nd needle | mover 24 opened and closed in conjunction with opening and closing operation of.
The second mover 24 includes a communication passage 25 that penetrates the center of the columnar shape, and a first valve seat 26 that is one end of the communication passage 25 and that the first valve body 23 of the first mover 20 contacts and separates. The second valve element 27 is provided at the other end of the communication passage 25 and contacts and separates from a second valve seat 33 described later. Further, a concave portion 28 for inserting one end portion of a guide member 29 described later is formed on one end surface of the second mover 24.

ソレノイド部14とハウジング13の間に挟みこまれたプレート19に、樹脂製のガイド部材29が一体形成されている。このガイド部材29は円筒形状であってその内周面を第一可動子20の外周面に当接させて、第一可動子20が可動するときの摺動ガイドにする。また、ガイド部材29の下端部を第二可動子24の凹部28に挿入して、ガイド部材29の外周面を第二可動子24の凹部28の内周面に当接させて、第二可動子24が可動するときの摺動ガイドにする。なお、図示例では凹部28に凹凸形状を形成して、その凸部分にガイド部材29の外周面を当接させている。
第一可動子20および第二可動子24の摺動ガイドを同一部品(ガイド部材29)の内周面および外周面で構成することにより、各可動子が同軸上で可動し、各可動子の弁体−弁座間の位置ずれを抑制できる。また、燃料タンク封鎖用電磁弁10の組み立て時に、他部品の精度および軸ずれ等に影響されることがなく、弁体−弁座間のシール性を安定させることができる。
A resin guide member 29 is integrally formed on a plate 19 sandwiched between the solenoid portion 14 and the housing 13. The guide member 29 has a cylindrical shape, and an inner peripheral surface thereof is brought into contact with an outer peripheral surface of the first movable element 20 to form a sliding guide when the first movable element 20 moves. Further, the lower end portion of the guide member 29 is inserted into the concave portion 28 of the second movable element 24, and the outer peripheral surface of the guide member 29 is brought into contact with the inner peripheral surface of the concave portion 28 of the second movable element 24. A sliding guide for moving the child 24 is used. In the illustrated example, an uneven shape is formed in the concave portion 28, and the outer peripheral surface of the guide member 29 is brought into contact with the convex portion.
By configuring the sliding guides of the first movable element 20 and the second movable element 24 with the inner peripheral surface and the outer peripheral surface of the same component (guide member 29), each movable element can move on the same axis. The positional deviation between the valve body and the valve seat can be suppressed. Further, when assembling the electromagnetic valve 10 for sealing the fuel tank, the sealing performance between the valve body and the valve seat can be stabilized without being affected by the accuracy of other components, the shaft misalignment, and the like.

ハウジング13の内側に、連通路25より大径の円筒部30が形成され、この円筒部30の開口端は、第二可動子24の第二弁体27が接離する第二弁座33となる。また、ハウジング13と円筒部30の間の空間(円筒部30の外側空間)がタンク接続ポート11に連通して第一流路31となり、一方、円筒部30の内側空間がキャニスタ接続ポート12に連通して第二流路32となる。第二流路32のもう一方側は連通路25に連通している。よって、第一流路31と第二流路32が直接連通した場合の流量に比べ、第一流路31と第二流路32が連通路25を経由して連通した場合の流量は少ない。
この第一流路31には、第二可動子24を第一可動子20へ押付ける方向(開弁方向)へ付勢する第二スプリング34が設置されている。なお、第一スプリング22と第二スプリング34の付勢方向は逆を向き、かつ、第一スプリング22の付勢力に比べ第二スプリング34の付勢力は小さい。
A cylindrical portion 30 having a diameter larger than that of the communication passage 25 is formed inside the housing 13, and an opening end of the cylindrical portion 30 is connected to a second valve seat 33 to which the second valve body 27 of the second movable element 24 contacts and separates. Become. Further, the space between the housing 13 and the cylindrical portion 30 (the outer space of the cylindrical portion 30) communicates with the tank connection port 11 to become the first flow path 31, while the inner space of the cylindrical portion 30 communicates with the canister connection port 12. Thus, the second flow path 32 is obtained. The other side of the second flow path 32 communicates with the communication path 25. Therefore, the flow rate when the first flow channel 31 and the second flow channel 32 communicate with each other via the communication passage 25 is smaller than the flow rate when the first flow channel 31 and the second flow channel 32 communicate directly.
The first flow path 31 is provided with a second spring 34 that urges the second movable element 24 in a direction in which the second movable element 24 is pressed against the first movable element 20 (the valve opening direction). The urging directions of the first spring 22 and the second spring 34 are opposite to each other, and the urging force of the second spring 34 is smaller than the urging force of the first spring 22.

次に、燃料タンク封鎖用電磁弁10の動作と蒸発ガスの流れを説明する。
(1)通常時
通常時は、ECU9が燃料タンク封鎖用電磁弁10を閉弁させ、燃料タンク2を封鎖する。このとき、図1に示すように、第一可動子20は、第一スプリング22の付勢力により第二可動子24の方向へ可動し、第一弁体23が第一弁座26に当接する。これにより、第一流路31と連通路25の連通が遮断される。他方の第二可動子24は、第一弁体23と第一弁座26の当接を介して第一スプリング22の大きな付勢力を受け、第二スプリング28の付勢力に抗して第二弁座33の方向へ可動し、第二弁体27が第二弁座33に当接する。これにより、第一流路31と第二流路32の連通が遮断される。
従って、タンク接続ポート11とキャニスタ接続ポート12の連通が遮断された状態となり、燃料タンク2が閉鎖される。
Next, the operation of the fuel tank sealing solenoid valve 10 and the flow of evaporative gas will be described.
(1) Normal time In normal times, the ECU 9 closes the fuel tank sealing electromagnetic valve 10 and closes the fuel tank 2. At this time, as shown in FIG. 1, the first movable element 20 is moved in the direction of the second movable element 24 by the urging force of the first spring 22, and the first valve body 23 comes into contact with the first valve seat 26. . Thereby, the communication between the first flow path 31 and the communication path 25 is blocked. The other second mover 24 receives a large biasing force of the first spring 22 through the contact between the first valve body 23 and the first valve seat 26, and resists the biasing force of the second spring 28. It moves in the direction of the valve seat 33, and the second valve body 27 comes into contact with the second valve seat 33. Thereby, the communication between the first flow path 31 and the second flow path 32 is blocked.
Accordingly, the communication between the tank connection port 11 and the canister connection port 12 is cut off, and the fuel tank 2 is closed.

(2)給油時
図3および図4は燃料タンク封鎖用電磁弁10の断面図であり、図3は、タンク接続ポート11(第一流路31)とキャニスタ接続ポート12(第二流路32)が連通路25を介して連通した状態を示す。図4は、タンク接続ポート11(第一流路31)とキャニスタ接続ポート12(第二流路32)が直接連通した状態を示す。
給油前は、ECU9が燃料タンク封鎖用電磁弁10を開弁させ、燃料タンク2の圧抜き動作を行う。このとき、図3に示すように、第一可動子20は、ソレノイド部14の電磁吸引力により、第一スプリング22の付勢力に抗して固定鉄心17の方向へ可動し、第一弁体23が第一弁座26から離間する。これにより、第一流路31と第二流路32の間が小径の連通路25によって連通した状態となり、タンク接続ポート11からキャニスタ接続ポート12へ小流量の蒸発ガスが流れる。
よって、給油前に燃料タンク2の内圧を低下でき、燃料タンク2から給油口へ蒸発ガスが流出することを防止できる。
(2) During refueling FIGS. 3 and 4 are cross-sectional views of the solenoid valve 10 for sealing the fuel tank, and FIG. 3 shows the tank connection port 11 (first flow path 31) and the canister connection port 12 (second flow path 32). Shows a state of communication through the communication path 25. FIG. 4 shows a state where the tank connection port 11 (first flow path 31) and the canister connection port 12 (second flow path 32) are in direct communication.
Before refueling, the ECU 9 opens the solenoid valve 10 for sealing the fuel tank and performs the pressure relief operation of the fuel tank 2. At this time, as shown in FIG. 3, the first movable element 20 is moved in the direction of the fixed iron core 17 against the urging force of the first spring 22 by the electromagnetic attractive force of the solenoid portion 14, and the first valve body 23 is separated from the first valve seat 26. As a result, the first flow path 31 and the second flow path 32 communicate with each other through the small-diameter communication path 25, and a small flow rate of evaporating gas flows from the tank connection port 11 to the canister connection port 12.
Therefore, the internal pressure of the fuel tank 2 can be reduced before refueling, and evaporative gas can be prevented from flowing out from the fuel tank 2 to the refueling port.

また、第一可動子20が開弁した状態において、給油によって燃料タンク2の内圧が上昇すると、第二可動子24の受ける圧力が上昇する。すると、第二可動子24は、第二スプリング34の補助的な付勢力により第一可動子20の方向へ可動し、図4に示すように、第一弁座26が第一弁体23に当接すると共に第二弁体27が第二弁座33から離間する。これにより、第一流路31が第二流路32に直接連通した状態となり、タンク接続ポート11からキャニスタ接続ポート12へ大流量の蒸発ガスが流れる。
よって、燃料タンク2の内圧により給油が妨げられることを防止でき、低圧力損失での給油が可能となる。
Further, when the internal pressure of the fuel tank 2 is increased by refueling in a state where the first movable element 20 is opened, the pressure received by the second movable element 24 is increased. Then, the second armature 24 is moved in the direction of the first armature 20 by the auxiliary biasing force of the second spring 34, and the first valve seat 26 is moved to the first valve body 23 as shown in FIG. At the same time, the second valve element 27 is separated from the second valve seat 33. As a result, the first flow path 31 is in direct communication with the second flow path 32, and a large flow rate of evaporating gas flows from the tank connection port 11 to the canister connection port 12.
Therefore, it is possible to prevent the fuel supply from being hindered by the internal pressure of the fuel tank 2 and to perform the fuel supply with a low pressure loss.

(3)走行時
走行時は、ECU9がパージ用電磁弁5を開弁して内圧調整時の配管にエンジン負圧を生じさせると共に、燃料タンク封鎖用電磁弁10をDuty駆動により開閉動作させ、エンジン負圧で燃料タンク2内の蒸発ガスを吸引して内圧を調整する。このとき、第一可動子20は、Dutyのオン・オフに応じた通電を受けてソレノイド部14が断続的な電磁吸引力を発生させ、第一スプリング22の付勢力に抗した開弁方向への可動(図3に示す状態)と、第一スプリング22の付勢力による閉弁方向への可動(図1に示す状態)とを繰り返し、第一弁体23と第一弁座26の接離を繰り返す。これにより、第一流路31と第二流路32の間が小径の連通路25を介して連通と遮断を繰り返し、連通時間に略比例した流量の蒸発ガスがタンク接続ポート11からキャニスタ接続ポート12へ流れる。
よって、燃料タンク2の過度な圧力上昇を抑制でき、燃料タンク2の変形および破損を防止できる。
(3) During traveling During traveling, the ECU 9 opens the purge solenoid valve 5 to generate engine negative pressure in the pipe for adjusting the internal pressure, and opens and closes the fuel tank sealing solenoid valve 10 by duty drive. The internal pressure is adjusted by sucking the evaporated gas in the fuel tank 2 with the engine negative pressure. At this time, the first armature 20 is energized in accordance with the duty on / off state, and the solenoid portion 14 generates an intermittent electromagnetic attractive force in the valve opening direction against the urging force of the first spring 22. The first valve body 23 and the first valve seat 26 are moved away from each other (the state shown in FIG. 3) and the movement in the valve closing direction by the urging force of the first spring 22 (the state shown in FIG. 1) are repeated. repeat. As a result, the communication between the first flow path 31 and the second flow path 32 is repeatedly communicated and shut off via the small-diameter communication path 25, and evaporative gas having a flow rate substantially proportional to the communication time flows from the tank connection port 11 to the canister connection port 12. To flow.
Therefore, an excessive pressure increase in the fuel tank 2 can be suppressed, and deformation and breakage of the fuel tank 2 can be prevented.

ここで、Duty駆動にて蒸発ガス流量を制御する第一可動子20は、従来、その第一弁体23をゴム等の弾性部材で形成して第一弁座26との密着性を高めつつ、耐久性および耐粘着性を確保するために、第一弁体23のゴム面上に非粘着部材を塗布していた。しかし、非粘着部材の塗布により、ゴムが硬化し、ゴム本来の性質が損なわれ、シール性が悪化してしまう。
一方、燃料タンク封鎖用電磁弁10は、燃料タンク2内で発生する蒸発ガスを封鎖することがメインであり、第一可動子20は大部分の時間、閉弁状態にある。そのため、通常用途の電磁弁(例えば、図2のパージ用電磁弁5)の可動子に比べて、燃料タンク封鎖用電磁弁10の第一可動子20は開閉動作の頻度が少なく、第一弁体23と第一弁座26との接離回数も少ない。
そこで、Duty駆動にて動作する第一可動子20への非粘着部材の塗布を廃止する。詳細を、図5に示す。
Here, the first movable element 20 that controls the flow rate of the evaporative gas by duty driving has conventionally improved its adhesion to the first valve seat 26 by forming the first valve body 23 by an elastic member such as rubber. In order to ensure durability and adhesion resistance, a non-adhesive member was applied on the rubber surface of the first valve body 23. However, application of the non-adhesive member cures the rubber, impairs the original properties of the rubber, and deteriorates the sealing performance.
On the other hand, the solenoid valve 10 for sealing the fuel tank is mainly used to seal the evaporated gas generated in the fuel tank 2, and the first movable element 20 is in the closed state for most of the time. Therefore, the first movable element 20 of the fuel tank sealing electromagnetic valve 10 is less frequently opened and closed compared to the movable element of a normal use electromagnetic valve (for example, the purge electromagnetic valve 5 in FIG. 2). The contact / separation frequency between the body 23 and the first valve seat 26 is also small.
Therefore, the application of the non-adhesive member to the first movable element 20 that operates by duty driving is abolished. Details are shown in FIG.

図5は、本実施の形態1に係る燃料タンク封鎖用電磁弁10のうち、第一可動子20と第二可動子24を拡大した断面図であり、紙面上側はタンク接続ポート11(第一流路31)とキャニスタ接続ポート12(第二流路32)が直接連通した状態、紙面下側はタンク接続ポート11(第一流路31)とキャニスタ接続ポート12(第二流路32)の間が遮断した状態を示す。
鉄等の磁性部材である第一可動子20の先端には、ゴム等の弾性部材である第一弁体23が焼き付けられている。この第一弁体23の、第一弁座26と当接する面には、フッ素樹脂等の塗布を行わず、ゴム面のままとする。他方、樹脂等の非磁性部材である第二可動子24の第一弁座26には、非粘着機能を有するフッ素樹脂、モリブデン等の非粘着部材を塗布して、非粘着性被膜Aを形成する。これにより、第一可動子20の第一弁体23の面粗度向上と撓み量向上が可能となり、第一弁体23と第一弁座26の間の閉弁シール性の確保が可能となる。
FIG. 5 is an enlarged cross-sectional view of the first mover 20 and the second mover 24 in the fuel tank sealing electromagnetic valve 10 according to the first embodiment, and the upper side of the drawing is the tank connection port 11 (first flow In the state where the channel 31) and the canister connection port 12 (second flow path 32) are in direct communication, the lower side of the page is between the tank connection port 11 (first flow path 31) and the canister connection port 12 (second flow path 32). Shows the shut off state.
A first valve body 23, which is an elastic member such as rubber, is baked on the tip of the first movable element 20 that is a magnetic member such as iron. The surface of the first valve body 23 that comes into contact with the first valve seat 26 is not coated with fluororesin or the like and remains a rubber surface. On the other hand, a non-adhesive coating A is formed by applying a non-adhesive member such as a fluororesin or molybdenum having a non-adhesive function to the first valve seat 26 of the second mover 24 that is a non-magnetic member such as a resin. To do. Thereby, the surface roughness of the first valve body 23 of the first mover 20 and the amount of deflection can be improved, and the valve-closing sealability between the first valve body 23 and the first valve seat 26 can be ensured. Become.

他方、第二弁体27と第二弁座33には非粘着部材を塗布して、耐久性を確保する等してもよい。   On the other hand, a non-adhesive member may be applied to the second valve body 27 and the second valve seat 33 to ensure durability.

また、燃料タンク封鎖用電磁弁10は、給油時等において第一可動子20を常時開状態にするため、連続通電で駆動する。そのため消費電力が大きくなる。他方、車輌搭載の蒸発ガス処理システムに適用する場合、バッテリへの負担を小さくするために省電力が要求される。
燃料タンク封鎖用電磁弁10において第一可動子20を開弁する場合、初期動作として閉弁位置から開弁方向へ第一可動子20を吸引するため、大きな電磁力が必要となる。しかし、初期動作後、第一可動子20をピン21の端面1で保持している間、初期動作相当の電磁力は必要ではなく保持電流でよいため、コイル15に通電する電流値を下げることが可能である。
そこで、常時開状態にする場合、ECU9は、燃料タンク封鎖用電磁弁10に対して過励磁駆動およびチョッパ駆動を実施するようにして、燃料タンク封鎖用電磁弁10の電流消費を抑制する。
In addition, the fuel tank sealing solenoid valve 10 is driven by continuous energization in order to keep the first movable element 20 in the normally open state during refueling or the like. Therefore, power consumption increases. On the other hand, when applied to a vehicle-mounted evaporative gas treatment system, power saving is required to reduce the burden on the battery.
When the first mover 20 is opened in the fuel tank sealing electromagnetic valve 10, a large electromagnetic force is required because the first mover 20 is attracted from the valve closing position to the valve opening direction as an initial operation. However, after the initial operation, while the first movable element 20 is held by the end face 1 of the pin 21, the electromagnetic force corresponding to the initial operation is not necessary and a holding current may be used. Is possible.
Therefore, in the case of the normally open state, the ECU 9 suppresses current consumption of the fuel tank sealing electromagnetic valve 10 by performing overexcitation driving and chopper driving on the fuel tank sealing electromagnetic valve 10.

図6は、ECU9が燃料タンク封鎖用電磁弁10に対して行う過励磁駆動およびチョッパ駆動の制御例を示すグラフである。グラフの横軸は通電時間、縦軸は電流および電圧である。燃料タンク封鎖用電磁弁10を常時開状態にする場合、ECU9は、所定期間コイル15に電圧を印加してソレノイド部14を過励磁させ、電流を素早く過励磁電流まで上昇させ、続けて印加電圧をDuty駆動時のオン・オフ周期(数十Hz)より短い周期でチョッピングして、過励磁電流より低い保持電流に保持する。よって、連続通電による駆動に比べて、燃料タンク封鎖用電磁弁10の電流消費を抑制できる。
これにより、燃料タンク封鎖用電磁弁10での消費電力と自己発熱を極力小さくできる。また、自己発熱によるコイル15の抵抗上昇を抑制することが可能となるため、開弁の初期動作時等における第一可動子20の再動作性を高める効果も期待できる。
FIG. 6 is a graph showing an example of overexcitation drive and chopper drive control performed by the ECU 9 for the solenoid valve 10 for sealing the fuel tank. The horizontal axis of the graph is the energization time, and the vertical axis is the current and voltage. When the solenoid valve 10 for sealing the fuel tank is normally opened, the ECU 9 applies a voltage to the coil 15 for a predetermined period to overexcite the solenoid unit 14 to quickly increase the current to the overexcitation current, and subsequently apply the applied voltage. Is chopped at a cycle shorter than the on / off cycle (several tens of Hz) at the time of duty driving, and held at a holding current lower than the overexcitation current. Therefore, current consumption of the solenoid valve 10 for blocking the fuel tank can be suppressed as compared with driving by continuous energization.
Thereby, power consumption and self-heating in the fuel tank sealing electromagnetic valve 10 can be minimized. In addition, since it is possible to suppress an increase in resistance of the coil 15 due to self-heating, an effect of improving the re-operability of the first mover 20 at the initial operation of the valve opening can be expected.

以上より、実施の形態1によれば、燃料タンク封鎖用電磁弁10は、第一弁体23を有する第一可動子20と、蒸発ガスを導入するタンク接続ポート11、蒸発ガスを導出するキャニスタ接続ポート12、およびタンク接続ポート11とキャニスタ接続ポート12を連通する第一流路31と第二流路32の途中に形成された第二弁座33を有するハウジング13と、第二弁座33より上流側でタンク接続ポート11とキャニスタ接続ポート12を連通する連通路25、連通路25のタンク接続ポート11連通側に形成され第一弁体23に接離してタンク接続ポート11と連通路25の間を開閉する第一弁座26、および連通路25のキャニスタ接続ポート12連通側に形成され第二弁座33に接離して第一流路31と第二流路32の間を開閉する第二弁体27を有し、第一可動子20と同軸上に可動可能に保持された第二可動子24と、第一可動子20を開弁側へ吸引する電磁力を発生するソレノイド部14と、第一可動子20を閉弁側へ付勢して当該第一可動子20に第二可動子24を付勢させる第一スプリング22とを備え、第一弁体23と第一弁座26のシール構造および開閉動作特性と、第二弁体27と第二弁座33のシール構造および開閉動作特性とがそれぞれ異なるように構成した。このため、従来の電磁弁のようにコイルおよびスプリングを大型化する必要がなく、構造を簡素化して小型化および軽量化を図ることができると共に、閉弁時のシール性を確保することができる。   As described above, according to the first embodiment, the fuel tank sealing solenoid valve 10 includes the first movable element 20 having the first valve body 23, the tank connection port 11 for introducing the evaporated gas, and the canister for deriving the evaporated gas. From the connection port 12, the housing 13 having the second valve seat 33 formed in the middle of the first flow path 31 and the second flow path 32 communicating the tank connection port 11 and the canister connection port 12, and the second valve seat 33. A communication path 25 that communicates between the tank connection port 11 and the canister connection port 12 on the upstream side, and is formed on the tank connection port 11 communication side of the communication path 25, is contacted and separated from the first valve body 23, and is connected to the tank connection port 11 and the communication path 25. The first valve seat 26 that opens and closes and the canister connection port 12 communication side of the communication passage 25 is formed on the communication side of the second valve seat 33 and opens and closes between the first flow path 31 and the second flow path 32. A second mover 24 that is movably held coaxially with the first mover 20, and a solenoid that generates an electromagnetic force that attracts the first mover 20 toward the valve opening side. And a first spring 22 that urges the first movable element 20 toward the valve closing side and urges the first movable element 20 to urge the second movable element 24. The seal structure and opening / closing operation characteristics of the valve seat 26 and the sealing structure and opening / closing operation characteristics of the second valve body 27 and the second valve seat 33 are different from each other. Therefore, it is not necessary to increase the size of the coil and the spring as in the conventional solenoid valve, the structure can be simplified, the size and the weight can be reduced, and the sealing performance when the valve is closed can be ensured. .

また、実施の形態1によれば、第一弁体23は弾性部材で形成し、第一弁座26の第一弁体23が当接する面は非粘着部材の非粘着性被膜Aを形成するようにした。このため、第一弁体23の面粗度および撓み量を維持できるので、閉弁時のシール性を確保することができる。   Moreover, according to Embodiment 1, the 1st valve body 23 is formed with an elastic member, and the surface with which the 1st valve body 23 of the 1st valve seat 26 contacts forms the non-adhesive film A of a non-adhesive member. I did it. For this reason, since the surface roughness and the amount of deflection of the first valve body 23 can be maintained, the sealing performance when the valve is closed can be ensured.

また、実施の形態1によれば、燃料タンク封鎖用電磁弁10は、筒体の内面で第一可動子20を摺動させ、外面で第二可動子24を摺動させて、第一可動子20と第二可動子24の同軸上での可動をガイドするガイド部材29を備える構成にした。第一可動子20のガイドと第二可動子24のガイドを一部品のガイド部材29で行うようにしたので、このガイド部材29の寸法精度を向上することで、第一可動子20および第二可動子24のシール位置ずれ、およびシール面の傾きを低減することが可能となり、閉弁時のシール性が向上する。   In addition, according to the first embodiment, the fuel tank sealing electromagnetic valve 10 is configured such that the first movable element 20 is slid on the inner surface of the cylinder and the second movable element 24 is slid on the outer surface. A guide member 29 for guiding the movement of the child 20 and the second mover 24 on the same axis is provided. Since the guide of the first movable element 20 and the guide of the second movable element 24 are performed by the one-piece guide member 29, the first movable element 20 and the second movable element 20 are improved by improving the dimensional accuracy of the guide member 29. It is possible to reduce the seal position shift of the mover 24 and the inclination of the seal surface, and the sealing performance when the valve is closed is improved.

また、実施の形態1によれば、燃料タンク封鎖用電磁弁10のソレノイド部14は、常時開弁する場合、ECU9の制御により所定の期間を過励磁駆動し、続けてチョッパ駆動して過励磁電流より小さい保持電流で動作するように構成したので、連続通電で駆動する場合に比べて消費電流を低減できる。よって、燃料タンク封鎖用電磁弁10を車輌搭載の蒸発ガス処理システム1に適用した場合に、車載バッテリへの負担を小さくすることができる。   Further, according to the first embodiment, when the solenoid part 14 of the fuel tank sealing solenoid valve 10 is always opened, it is overexcited for a predetermined period under the control of the ECU 9, and is continuously overdriven by chopper driving. Since it is configured to operate with a holding current smaller than the current, current consumption can be reduced as compared with the case of driving with continuous energization. Therefore, when the fuel tank sealing electromagnetic valve 10 is applied to the vehicle-mounted evaporative gas treatment system 1, the burden on the in-vehicle battery can be reduced.

実施の形態2.
上記実施の形態1で説明した図2に示す蒸発ガス処理システム1において、燃料タンク封鎖用電磁弁10が故障した場合、燃料タンク2とキャニスタ3の間の配管が閉鎖され、燃料タンク2内で発生する蒸発ガスにより内圧が高まり、タンクが変形したり破損したりする可能性がある。そこで、フェールセーフとして、燃料タンク2とキャニスタ3の間の配管を分岐してバイパス配管を形成して圧力感応式のリリーフ弁8を設置する。例えば燃料タンク封鎖用電磁弁10の動作不能により配管内で過度な圧力が発生した場合はリリーフ弁8が開弁してバイパス配管が連通し、フィルタ7を経由して、蒸発ガスを大気側へ放出する。
Embodiment 2. FIG.
In the evaporative gas treatment system 1 shown in FIG. 2 described in the first embodiment, when the solenoid valve 10 for sealing the fuel tank breaks down, the piping between the fuel tank 2 and the canister 3 is closed, and the fuel tank 2 The evaporating gas generated increases the internal pressure, and the tank may be deformed or damaged. Therefore, as a fail safe, a pressure sensitive relief valve 8 is installed by branching a pipe between the fuel tank 2 and the canister 3 to form a bypass pipe. For example, when excessive pressure is generated in the piping due to the inoperability of the solenoid valve 10 for sealing the fuel tank, the relief valve 8 is opened and the bypass piping is communicated. discharge.

このように、燃料タンク2とキャニスタ3の間の配管を分岐してバイパス配管を形成する構成にしてもよいが、配管および接続部品が増えてしまう。そこで、本実施の形態2では、燃料タンク封鎖用電磁弁10にバイパス配管への分岐用ポートを設けて、配管側での分岐を不要にする。   As described above, the pipe between the fuel tank 2 and the canister 3 may be branched to form a bypass pipe, but the number of pipes and connecting parts increases. Therefore, in the second embodiment, a branch port to the bypass pipe is provided in the solenoid valve 10 for sealing the fuel tank so that branching on the pipe side is unnecessary.

図7は、本実施の形態2に係る燃料タンク封鎖用電磁弁10aの構成を示す断面図であり、タンク接続ポート11とキャニスタ接続ポート12の連通が遮断された状態を示す。なお、図7において図1と同一または相当の部分については同一の符号を付し説明を省略する。
この燃料タンク封鎖用電磁弁10aにおいて、ハウジング13にリリーフ弁接続ポート(第三ポート)40が形成されている。このリリーフ弁接続ポート40の一端側が第一流路31に連通し、他端側はバイパス配管を経由して大気側へ連通する。燃料タンク封鎖用電磁弁10aは常時閉弁するタイプのため、燃料タンク封鎖用電磁弁10aが故障等による動作不能となると、燃料タンク2の蒸発ガスが放出されず内圧が上昇する。このとき、燃料タンク2、タンク接続ポート11、第一流路31およびリリーフ弁接続ポート40は連通しているので、内圧でリリーフ弁8が開弁し、フィルタ7を介して大気側へ蒸発ガスを放出できる。
このリリーフ弁8は逆止弁等の圧力感応式の弁であり、リリーフ弁接続ポート40側の高い内圧を受けて開弁し、バイパス配管を連通する。なお、リリーフ弁8をリリーフ弁接続ポート40の内部に一体に設けてもよい。
FIG. 7 is a cross-sectional view showing the configuration of the fuel tank sealing electromagnetic valve 10a according to the second embodiment, and shows a state where communication between the tank connection port 11 and the canister connection port 12 is blocked. 7 that are the same as or equivalent to those in FIG. 1 are assigned the same reference numerals, and descriptions thereof are omitted.
In the fuel tank sealing electromagnetic valve 10 a, a relief valve connection port (third port) 40 is formed in the housing 13. One end side of the relief valve connection port 40 communicates with the first flow path 31, and the other end side communicates with the atmosphere side via a bypass pipe. Since the fuel tank sealing solenoid valve 10a is of a type that always closes, if the fuel tank sealing solenoid valve 10a becomes inoperable due to a failure or the like, the evaporative gas in the fuel tank 2 is not released and the internal pressure rises. At this time, since the fuel tank 2, the tank connection port 11, the first flow path 31 and the relief valve connection port 40 are in communication, the relief valve 8 is opened by the internal pressure, and evaporative gas is released to the atmosphere side through the filter 7. Can be released.
The relief valve 8 is a pressure sensitive valve such as a check valve, and is opened by receiving a high internal pressure on the relief valve connection port 40 side, and communicates with the bypass pipe. Note that the relief valve 8 may be integrally provided inside the relief valve connection port 40.

以上より、実施の形態2によれば、燃料タンク封鎖用電磁弁10aは、ハウジング13に、第一可動子20および第二可動子24の開閉状態によらずタンク接続ポート11の第一流路31に連通するリリーフ弁接続ポート40を形成する構成にした。このため、リリーフ弁8を設置したフェールセーフ用のバイパス配管に接続するための分岐用配管を、蒸発ガス処理システム1側に設置する必要がない。よって、配管および接続部品が省略でき、配管の簡素化が可能となる。   As described above, according to the second embodiment, the fuel tank sealing electromagnetic valve 10a is provided in the housing 13 in the first flow path 31 of the tank connection port 11 regardless of the open / closed state of the first mover 20 and the second mover 24. Relief valve connection port 40 communicating with is formed. For this reason, it is not necessary to install the branch pipe for connecting to the fail-safe bypass pipe provided with the relief valve 8 on the evaporative gas treatment system 1 side. Therefore, piping and connecting parts can be omitted, and piping can be simplified.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

1 蒸発ガス処理システム、2 燃料タンク、3 キャニスタ、4 インテークマニホールド、5 パージ用電磁弁、6 大気開放用電磁弁、7 フィルタ、8 リリーフ弁、9 ECU、10,10a 燃料タンク封鎖用電磁弁、11 タンク接続ポート(第一ポート)、12 キャニスタ接続ポート(第二ポート)、13 ハウジング、14 ソレノイド部、15 コイル、16 給電端子、17 固定鉄心、18 外鉄ヨーク部、19 プレート、20 第一可動子、21 ピン、22 第一スプリング(付勢部材)、23 第一弁体、24 第二可動子、25 連通路、26 第一弁座、27 第二弁体、28 凹部、29 ガイド部材、30 円筒部、31 第一流路、32 第二流路、33 第二弁座、34 第二スプリング、40 リリーフ弁接続ポート(第三ポート)。   1 Evaporative Gas Treatment System, 2 Fuel Tank, 3 Canister, 4 Intake Manifold, 5 Purge Solenoid Valve, 6 Air Solenoid Valve, 7 Filter, 8 Relief Valve, 9 ECU, 10, 10a Solenoid Valve for Fuel Tank Sealing, 11 Tank connection port (1st port), 12 Canister connection port (2nd port), 13 Housing, 14 Solenoid part, 15 Coil, 16 Feeding terminal, 17 Fixed iron core, 18 Outer iron yoke part, 19 Plate, 20 1st Movable element, 21 pin, 22 First spring (biasing member), 23 First valve element, 24 Second movable element, 25 Communication path, 26 First valve seat, 27 Second valve element, 28 Recessed part, 29 Guide member , 30 Cylindrical part, 31 First flow path, 32 Second flow path, 33 Second valve seat, 34 Second spring, 40 Relief valve connection port (Third port).

Claims (3)

第一弁体を有する第一可動子と、
流体を導入する第一ポート、当該流体を導出する第二ポート、および当該第一ポートと当該第二ポートを連通する流路に形成された第二弁座を有し、当該流路内に前記第一可動子を収容したハウジングと、
前記第二弁座より上流側で前記第一ポートと前記第二ポートを連通する、前記流路より小径の連通路、当該連通路の前記第一ポート連通側に形成され前記第一弁体に接離して前記第一ポートと当該連通路の間を開閉する第一弁座、および当該連通路の前記第二ポート連通側に形成され前記第二弁座に接離して前記流路を開閉する第二弁体を有し、前記第一可動子と同軸上に可動可能に保持された第二可動子と、
前記第一可動子を開弁側へ吸引する電磁力を発生するソレノイド部と、
前記第一可動子を閉弁側へ付勢して、前記第一可動子に前記第二可動子を付勢させる付勢部材と
筒体の内面で前記第一可動子を摺動させ、外面で前記第二可動子を摺動させて、前記第一可動子および前記第二可動子の同軸上での可動をガイドするガイド部材とを備え、
前記第一弁体と前記第一弁座は電磁力による開閉動作特性であって、前記第一弁体は弾性部材で形成され、前記第一弁座の前記第一弁体が当接する面は非粘着部材で形成され、前記第一弁体と前記第一弁座が当接する各面の平行度は前記ガイド部材により確保され、
前記第二弁体と前記第二弁座は差圧による開閉動作特性であって、前記第二弁体および前記第二弁座が当接する各面の少なくとも一方は非粘着部材で形成されていることを特徴とする電磁弁。
A first mover having a first valve body;
A first port for introducing a fluid, a second port for deriving the fluid, and a second valve seat formed in a flow path communicating the first port and the second port, A housing containing the first armature;
The first port and the second port communicate with each other upstream from the second valve seat, the communication passage having a smaller diameter than the flow path, and formed on the first port communication side of the communication passage. A first valve seat that opens and closes between the first port and the communication path, and is formed on the second port communication side of the communication path to open and close the flow path by contacting and separating from the second valve seat. A second mover having a second valve body, and movably held coaxially with the first mover;
A solenoid unit for generating an electromagnetic force for attracting the first movable element toward the valve opening side;
A biasing member that biases the first armature toward the valve closing side and biases the second armature to the first armature ;
A guide member for sliding the first movable element on the inner surface of the cylindrical body and sliding the second movable element on the outer surface to guide the coaxial movement of the first movable element and the second movable element. And
The first valve body and the first valve seat have an opening / closing operation characteristic by electromagnetic force, the first valve body is formed of an elastic member, and a surface of the first valve seat on which the first valve body abuts is Formed of a non-adhesive member, the parallelism of each surface where the first valve body and the first valve seat abut is ensured by the guide member,
The second valve body and the second valve seat have an opening / closing operation characteristic due to differential pressure, and at least one of the surfaces on which the second valve body and the second valve seat abut is formed of a non-adhesive member. A solenoid valve characterized by that.
前記ソレノイド部は、常時開弁する場合、所定の期間を過励磁駆動し、続けてチョッパ駆動して当該過励磁駆動の電流より小さい電流で動作することを特徴とする請求項1記載の電磁弁。 2. The solenoid valve according to claim 1, wherein when the solenoid portion is always opened, the solenoid valve is over-excited for a predetermined period, and subsequently operated with a chopper to operate with a current smaller than the current of the over-excitation drive. . 前記ハウジングは、前記第一可動子および前記第二可動子の開閉状態によらず、前記第一ポートに連通する第三ポートを有することを特徴とする請求項1記載の電磁弁。 Said housing, said first movable element and regardless of the open or closed state of said second movable member, the solenoid valve according to claim 1, characterized in that it has a third port communicating with the first port.
JP2013549940A 2011-12-19 2011-12-19 solenoid valve Active JP5689983B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007078 WO2013093955A1 (en) 2011-12-19 2011-12-19 Solenoid valve

Publications (2)

Publication Number Publication Date
JP5689983B2 true JP5689983B2 (en) 2015-03-25
JPWO2013093955A1 JPWO2013093955A1 (en) 2015-04-27

Family

ID=48667889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549940A Active JP5689983B2 (en) 2011-12-19 2011-12-19 solenoid valve

Country Status (2)

Country Link
JP (1) JP5689983B2 (en)
WO (1) WO2013093955A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397748A (en) * 2019-08-09 2019-11-01 东风富士汤姆森调温器有限公司 Canister ventilation magnetic valve
RU2760403C1 (en) * 2021-06-04 2021-11-24 Общество с ограниченной ответственностью "Центр Инновационных Технологий-Плюс" Gas shutoff valve with electromagnetic control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028748B2 (en) * 2014-02-13 2016-11-16 株式会社デンソー solenoid valve
RU2638122C1 (en) * 2017-02-07 2017-12-11 Общество с ограниченной ответственностью "Центр Инновационных Технологий-Плюс" Shut-off gas valve with electromagnetic control
RU2686892C1 (en) * 2018-04-09 2019-05-06 Александр Николаевич Хардин Shutoff valve with electromagnetic control
DE102019105708B4 (en) 2019-03-06 2022-05-05 Kendrion (Villingen) Gmbh Pressure control valve and device with such a pressure control valve for controlling or regulating a pressure of a pressure fluid in a pilot pressure chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258583A (en) * 1991-02-07 1992-09-14 Mitsubishi Electric Corp Flow control valve
JPH05215268A (en) * 1992-02-07 1993-08-24 Suzuki Motor Corp Hydraulic solenoid valve compensator
JPH05223183A (en) * 1992-02-13 1993-08-31 Toshiba Corp Electromagnetic valve
JPH09112733A (en) * 1995-10-19 1997-05-02 Ckd Corp Solenoid valve
JP2004060832A (en) * 2002-07-31 2004-02-26 Noritz Corp Valve device
JP2006226457A (en) * 2005-02-18 2006-08-31 Denso Corp Solenoid valve
JP2006258283A (en) * 2005-02-18 2006-09-28 Denso Corp Fluid control valve and solenoid valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258583A (en) * 1991-02-07 1992-09-14 Mitsubishi Electric Corp Flow control valve
JPH05215268A (en) * 1992-02-07 1993-08-24 Suzuki Motor Corp Hydraulic solenoid valve compensator
JPH05223183A (en) * 1992-02-13 1993-08-31 Toshiba Corp Electromagnetic valve
JPH09112733A (en) * 1995-10-19 1997-05-02 Ckd Corp Solenoid valve
JP2004060832A (en) * 2002-07-31 2004-02-26 Noritz Corp Valve device
JP2006226457A (en) * 2005-02-18 2006-08-31 Denso Corp Solenoid valve
JP2006258283A (en) * 2005-02-18 2006-09-28 Denso Corp Fluid control valve and solenoid valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397748A (en) * 2019-08-09 2019-11-01 东风富士汤姆森调温器有限公司 Canister ventilation magnetic valve
RU2760403C1 (en) * 2021-06-04 2021-11-24 Общество с ограниченной ответственностью "Центр Инновационных Технологий-Плюс" Gas shutoff valve with electromagnetic control

Also Published As

Publication number Publication date
JPWO2013093955A1 (en) 2015-04-27
WO2013093955A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5689983B2 (en) solenoid valve
US7270310B2 (en) Electromagnetic valve and vapor fuel treating system applying the same
US7591281B2 (en) Electromagnetic valve
US20060185735A1 (en) Electromagnetic combination valve
US6526951B2 (en) Electromagnetic valve for ORVR system
JP6028771B2 (en) Two-stage switching valve
US9683665B2 (en) Solenoid valve
JP2006258283A (en) Fluid control valve and solenoid valve
US9360125B2 (en) Turbo purge valve-check valve OBD vacuum relief
JP2015025488A (en) Fluid control valve device
JP6176215B2 (en) Two-stage switching valve
US9346351B2 (en) Valve device
JP2000283315A (en) Solenoid valve
US8707765B2 (en) Fuel vapor leak detection device
US7086383B2 (en) Permanent magnet digital purge valve
US11512655B2 (en) Fuel tank isolation valve
JP5333341B2 (en) Electromagnetic actuator
JP2006305517A (en) Filter apparatus
JP2009091934A (en) Negative pressure responding valve
JP2007040423A (en) Valve device
JP2002048258A (en) Magnetic valve device and vapor fuel process system using the same
JP7488475B2 (en) Flow Control Valve
JP2015007455A (en) Electromagnetic valve for flow control
KR20130046909A (en) Purge control solenoid valve with improve the performance
JP6252340B2 (en) Valve device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5689983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350