WO2021059545A1 - 電気刺激治療器および電気刺激治療方法 - Google Patents

電気刺激治療器および電気刺激治療方法 Download PDF

Info

Publication number
WO2021059545A1
WO2021059545A1 PCT/JP2019/051118 JP2019051118W WO2021059545A1 WO 2021059545 A1 WO2021059545 A1 WO 2021059545A1 JP 2019051118 W JP2019051118 W JP 2019051118W WO 2021059545 A1 WO2021059545 A1 WO 2021059545A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
myoelectric
myoelectric signal
sacrum
electrical stimulation
Prior art date
Application number
PCT/JP2019/051118
Other languages
English (en)
French (fr)
Inventor
隆 久本
洋一 向井
増田 哲也
大貴 隔山
康至 前田
上田 修平
Original Assignee
大塚テクノ株式会社
伊藤超短波株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚テクノ株式会社, 伊藤超短波株式会社 filed Critical 大塚テクノ株式会社
Priority to EP19946283.9A priority Critical patent/EP4035726A4/en
Priority to US17/762,933 priority patent/US20220339449A1/en
Publication of WO2021059545A1 publication Critical patent/WO2021059545A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • A61B5/202Assessing bladder functions, e.g. incontinence assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/395Details of stimulation, e.g. nerve stimulation to elicit EMG response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7217Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36132Control systems using patient feedback

Definitions

  • the present invention relates to a device used for electrical stimulation therapy and an electrical stimulation treatment method using this device.
  • a device for treating dysuria has been proposed as an example of a device used for electrical stimulation therapy.
  • Patent Document 1 discloses a dysuria treatment device including a pair of application electrodes and a detection electrode.
  • the stimulation pulse by the pair of applied electrodes is compared with the detection pulse of the toe, and it is determined whether the nerve passing through the sacrum or the vicinity of the sacrum is appropriately stimulated by the stimulation pulse.
  • the detection pulse is generated by the reaction of the tibial nerve and / or the peroneal nerve, which connects to the sacrum or nerves passing near the sacrum via the sciatic nerve and extends to the tip of the toe.
  • Patent Document 2 describes a surface electrode that detects a myoelectric potential, an amplifier that amplifies a myoelectric potential signal detected by the surface electrode, and a bandpass filter that extracts a myoelectric potential component to be monitored from the amplified waveform.
  • a rectifier that rectifies the components that have passed through the bandpass filter, a level setter provided in the rectifier, an integrator that integrates the rectified signal for a certain sampling time, and a digital signal that converts the integrated signal.
  • a myoelectric potential monitoring device including a controller for controlling operation timing is disclosed.
  • the dysuria treatment device of Patent Document 1 it is confirmed based on the electromyographic data of the toes whether or not the stimulation signal is appropriately transmitted from the applied electrode to the sacrum or the nerve passing near the sacrum. Can be done.
  • the stimulation voltage may be transmitted to the toes as noise, and a large noise may be superimposed on the myoelectric data of the toes. Therefore, it is desired that the myoelectric data of the toes can be detected more accurately.
  • an object of the present invention is an electric stimulation treatment device capable of accurately confirming whether or not an application electrode to be arranged on the back surface of the sacrum is properly attached, and an electric stimulation treatment method using this device. To provide.
  • the electrical stimulation treatment device is arranged on the back surface of the sacral bone of the subject, and has a pair of application electrodes that supply an electrical stimulation signal from the back surface of the sacral bone, and the toes of the subject.
  • a detection electrode arranged on the surface for detecting the myoelectric signal of the toe, a display unit for determining whether or not the myoelectric signal of the toe is generated in response to the stimulation signal, and the above.
  • the myoelectric signal processing unit includes a myoelectric signal processing unit that processes the myoelectric signal detected by the detection electrode and visually displays it on the display unit, and the myoelectric signal processing unit has a predetermined detection stop period from the output of the stimulation signal.
  • the detection stop period is the distance (x) from the sacral bone of the human body to the surface of the toe, and the transmission speed of the nerve passing through the sacral bone of the human body or the vicinity of the sacral bone ( It is set based on the quotient (x / v) when divided by v).
  • the distance (x) from the sacrum of the human body to the surface of the toes is divided by the transmission rate (v) of the nerve passing through the sacrum of the human body or the vicinity of the sacrum.
  • the myoelectric signal of the toes is not detected by the myoelectric signal processing unit.
  • the stimulus signal given to the human body did not reach the toes via nerves. That is, the myoelectric signal detected in the time from the application of the electric stimulus to the time when the stimulus signal reaches the toes via the nerve is not a signal carrying information necessary for myoelectric monitoring but noise. Therefore, the noise of the myoelectric signal can be eliminated by not detecting the myoelectric signal of the toes in the myoelectric signal processing unit during the detection stop period. As a result, it is possible to accurately detect the myoelectric signal generated in response to the signal carrying the information necessary for myoelectric monitoring, which reaches the toes via the sacrum or the nerve passing through the vicinity of the sacrum.
  • the electrical stimulation therapy device determines whether or not the stimulation signal is appropriately transmitted from the applied electrode to the sacrum or the nerve passing near the sacrum. Can be confirmed accurately based on.
  • FIG. 1 is a side sectional view of the human body for explaining the innervation of urination.
  • FIG. 2 is a rear view of the human body for explaining the innervation of urination.
  • FIG. 3A is a diagram for explaining the mechanism of urination.
  • FIG. 3B is a diagram for explaining the mechanism of urination.
  • FIG. 4 is a schematic view of an electrical stimulation therapy device according to an embodiment of the present invention.
  • FIG. 5 is a front view of the electrode pad of the electrical stimulation therapy device.
  • FIG. 6 is a rear view of the electrode pad of the electrical stimulation therapy device.
  • FIG. 7 is a cross-sectional view of the electrode pad of the electrical stimulation therapy device, and shows a cross section of VII-VII of FIG. FIG.
  • FIG. 8 is a diagram showing an attached state of the electrode pad.
  • FIG. 9 is a diagram showing the arrangement of detection electrodes when monitoring myoelectric data.
  • FIG. 10 is a block diagram showing an electrical configuration of the electrical stimulation therapy device.
  • FIG. 11 is a flowchart for monitoring myoelectric data of the electrostimulation therapy device.
  • FIG. 12 is a diagram for explaining an example of a pattern of stimulation pulses and myoelectric signals.
  • FIG. 13 is a diagram showing a pattern of myoelectric signals before masking processing.
  • FIG. 14 is a diagram showing a pattern of myoelectric signals (first example) after masking processing.
  • FIG. 15 is a diagram showing a pattern of myoelectric signals (second example) after masking processing.
  • FIG. 16 is a diagram for explaining the integration of the myoelectric signal by the integrator.
  • FIG. 17 is a diagram for explaining the elimination of baseline fluctuations in the electromyogram.
  • FIG. 18 is a diagram for explaining the level display of the electromyogram.
  • FIG. 19 is a schematic view of an electrical stimulation therapy device according to another embodiment of the present invention.
  • the electrical stimulation treatment device is arranged on the back surface of the sacral bone of the treated person, and has a pair of application electrodes for supplying an electrical stimulation signal from the back surface of the sacral bone, and the toes of the treated person.
  • a detection electrode arranged on the surface for detecting the myoelectric signal of the toe, a display unit for determining whether or not the myoelectric signal of the toe is generated in response to the stimulation signal, and the above.
  • the myoelectric signal processing unit includes a myoelectric signal processing unit that processes the myoelectric signal detected by the detection electrode and visually displays it on the display unit, and the myoelectric signal processing unit has a predetermined detection stop period from the output of the stimulation signal.
  • the detection stop period is the distance (x) from the sacral bone of the human body to the surface of the toe, and the transmission speed of the nerve passing through the sacral bone of the human body or the vicinity of the sacral bone ( It is set based on the quotient (x / v) when divided by v).
  • this configuration it is based on the quotient (x / v) when the distance (x) from the sacrum of the human body to the surface of the toes is divided by the transmission velocity (v) of the nerve passing through the sacrum of the human body or the vicinity of the sacrum. During the detection stop period set in the above, the myoelectric signal of the toes is not detected by the myoelectric signal processing unit.
  • the stimulus signal given to the human body did not reach the toes via nerves. That is, the myoelectric signal detected in the time from the application of the electric stimulus to the time when the stimulus signal reaches the toes via the nerve is not a signal carrying information necessary for myoelectric monitoring but noise. Therefore, the noise of the myoelectric signal can be eliminated by not detecting the myoelectric signal of the toes in the myoelectric signal processing unit during the detection stop period. As a result, it is possible to accurately detect the myoelectric signal generated in response to the signal carrying the information necessary for myoelectric monitoring, which reaches the toes via the sacrum or the nerve passing through the vicinity of the sacrum.
  • the electrical stimulation therapy device determines whether or not the stimulation signal is appropriately transmitted from the applied electrode to the sacrum or the nerve passing near the sacrum. Can be confirmed accurately based on.
  • the detection electrode and the myo-telegraph are provided during the detection stop period and the switching unit for turning on / off the connection between the detection electrode and the myoelectric signal processing unit.
  • the potential of the myoelectric signal at the end of the detection stop period can be stabilized by turning on the connection between the detection electrode and the myoelectric signal processing unit at the end of the detection stop period.
  • the myoelectric signal selection unit sets the potential of the switching unit to a reference potential or a pre-held drift potential during the detection stop period, or the above-mentioned.
  • the switching unit may be in the open state.
  • the electric stimulation treatment device integrates the myoelectric signal detected by the detection electrode for a predetermined sampling time before processing the myoelectric signal in the myoelectric signal processing unit.
  • the integrator that outputs the integrated signal as the first signal to the myoelectric signal processing unit may be included.
  • the amplitude, peak, etc. of the myoelectric signal (first signal) can be easily detected, so that the myoelectric signal processing unit can efficiently process the myoelectric signal.
  • the myoelectric signal processing unit has the average value of the first portion of the first signal in a predetermined first period and the first signal.
  • the amplitude of the first signal may be determined based on the difference from the averaged value of the second part in a predetermined second period before and after the time of the first part.
  • the first portion and the second portion of the first signal may be averaged by addition averaging processing or moving averaging processing.
  • the stimulation signal is supplied to the pair of applied electrodes, the amplitude of the stimulation signal is divided stepwise, and the amplitude of the stimulation signal is displayed on the display unit.
  • the myoelectric signal processing unit includes a stimulus signal output unit that displays a level in the above, and the myoelectric signal processing unit divides the first portion of the first signal having a predetermined amplitude or more in a stepwise manner, and displays the amplitude of the first portion.
  • the level may be displayed on the part.
  • the relationship between the stimulus signal and the myoelectric signal generated in response to the stimulation signal can be easily confirmed by eliminating the display of the myoelectric signal having an amplitude smaller than a predetermined magnitude.
  • the electrical stimulation treatment method is arranged on the back surface of the sacral bone of the treated person, and has a pair of applied electrodes that supply an electrical stimulation signal from the back surface of the sacral bone, and the toes of the treated person.
  • a detection electrode arranged on the surface for detecting the myoelectric signal of the toe, a display unit for determining whether or not the myoelectric signal of the toe is generated in response to the stimulation signal, and the above.
  • the myoelectric signal processing unit includes a myoelectric signal processing unit that processes the myoelectric signal detected by the detection electrode and visually displays it on the display unit, and the myoelectric signal processing unit has a predetermined detection stop period from the output of the stimulation signal.
  • the myoelectric signal of the toe is not detected, and the detection stop period is the distance (x) from the sacral bone of the human body to the surface of the toe, and the transmission speed of the nerve passing through the sacral bone of the human body or the vicinity of the sacral bone ( It is an electric stimulation treatment method using an electric stimulation treatment device, which is set based on the quotient (x / v) when divided by v), and the pair of applied electrodes are arranged on the back surface of the sacral bone of the person to be treated.
  • the step includes visually determining whether or not the myoelectric signal of the toes is generated in response to the stimulus signal while the stimulus signal is being supplied by visually recognizing the display unit.
  • the pair It may include a step of stopping the supply of the stimulus signal from the application electrode.
  • FIG. 1 is a side sectional view of the human body 1 for explaining the innervation of urination.
  • FIG. 2 is a rear view of the human body 1 for explaining the innervation of urination.
  • 3A and 3B are diagrams for explaining the mechanism of urination. 1 to 3A and 3B show only the parts of the human body 1 necessary for the explanation of the treatment by the electric stimulation treatment device 31 according to the embodiment of the present invention, and the description of the other parts is omitted. To do.
  • the human body 1 includes a spine 4 including a lumbar spine 2, a sacrum 3, and the like.
  • the sacrum 3 has a substantially inverted triangular shape, and usually, four sacrums are symmetrically formed, and the first sacrum hole 5, the second sacral hole 6, the third sacral hole 7, and the fourth sacral hole 8 are arranged in this order from the top. have.
  • the human body 1 includes a bladder 9, an internal urethral sphincter muscle 10, and an external urethral sphincter muscle 11 as sites (organs, muscles) involved in urination and urination.
  • the storage and urination of the human body 1 is performed by controlling these sites 9 to 11 by nerves.
  • the human body 1 As the main nerves that contribute to urination, the human body 1 has a lower abdominal nerve (sympathetic nerve) 12, a pelvic nerve (parasympathetic nerve) 13, and a pudendal nerve (somatic nerve) 14.
  • the lower abdominal nerve 12 contributes to the suppression of urination (urinary storage) and is connected to the bladder 9 and the internal urethral sphincter muscle 10.
  • the pelvic nerve 13 contributes to the initiation of urination and connects to the bladder 9 and the internal urethral sphincter muscle 10.
  • the pudendal nerve 14 is connected to the external urethral sphincter muscle 11.
  • the signal from the lower abdominal nerve 12 relaxes the bladder 9 (detrusor muscle), makes it easier for urine to collect in the bladder 9, and contracts the internal urethral sphincter muscle 10. As a result, excretion of urine is stopped and urine is stored in the bladder 9.
  • the signal from the pelvic nerve 13 causes the bladder 9 (detrusor muscle) to contract and the internal urethral sphincter muscle 10 to relax. As a result, urine is excreted outside the bladder 9.
  • the external urethral sphincter muscle 11 as a voluntary muscle is relaxed via the pudendal nerve 14 which is a somatic nerve, and urination is performed by applying abdominal pressure.
  • both the lower abdominal nerve 12 and the pelvic nerve 13 are normally active and the bladder 9 and the internal urethral sphincter muscle 10 are appropriately contracted and relaxed, urination is appropriately performed.
  • the bladder 9 tends to contract and the internal urethral sphincter muscle 10 tends to relax.
  • urinary disorders such as urinary storage disorder (overactive bladder).
  • the sacral plexus is stimulated by giving an electrical stimulation signal from the back side of the sacrum 3 to the skin on the sacrum 3. More specifically, as shown in FIG. 2, the first sacral nerve S1 passing through the first sacral foramen 5, the second sacral nerve S2 passing through the second sacral foramen 6, and the third sacral nerve passing through the third sacral foramen 7.
  • the fourth sacral nerve S4, which passes through S3 and the fourth sacral foramen 8 is stimulated.
  • the third sacral nerve S3 is stimulated, and the innervation of contracting the bladder 9 by the pelvic nerve 13 is suppressed.
  • This electrical stimulus is also transmitted to the lower abdominal nerve 12, which promotes innervation to relax the bladder 9 by the lower abdominal nerve 12.
  • the suppression of the pelvic nerve 13 and the facilitation of the lower abdominal nerve 12 are maintained in a well-balanced manner, the bladder 9 is moderately relaxed, and the overactive bladder is improved.
  • the above electrical stimulation is also transmitted to nerves other than the buttocks where the sacral plexus exists and its surroundings.
  • a part of the sacral spinal nerve S3 descends the thigh as the sciatic nerve 15 and is finally divided into the peroneal nerve 16 and the tibial nerve 17.
  • the peroneal nerve 16 and the tibial nerve 17 are the terminals of the sciatic nerve 15 and are the toes of the human body 1 (first finger 18 (mother finger), second finger 19, third finger 20, fourth finger 21 and fifth finger. It extends to 22 (pinkie)). That is, the peroneal nerve 16 and the tibial nerve 17 of the toes 18 to 22 are connected to the lower abdominal nerve 12, the pelvic nerve 13, and the pudendal nerve 14 via the sciatic nerve 15 and the sacral plexus S3.
  • FIG. 4 is a schematic view of the electrical stimulation therapy device 31 according to the embodiment of the present invention.
  • the electrical stimulation treatment device 31 has, as a physical configuration, a housing 32 (treatment device main body), a monitor 33 provided on the front surface of the housing 32, a start / stop button 34 provided below the monitor 33, and a start / stop button 34.
  • the housing 32 is formed in a substantially elliptical shape, and may be made of, for example, a plastic case. Further, although not shown, a removable back cover may be provided on the back surface of the housing 32 for accommodating a battery for power supply of the electric stimulation treatment device 31.
  • the power source of the electric stimulation treatment device 31 does not have to be a battery, and may be obtained from an outlet via an AC adapter, or may be a combination of a battery and an outlet.
  • the monitor 33 may be formed in a long rectangular shape along the longitudinal direction of the housing 32 and may be arranged near one end in the longitudinal direction of the housing 32. Further, the monitor 33 may be, for example, a monochrome or color liquid crystal monitor.
  • the monitor 33 can display, for example, the pulse waveform and frequency of the electrical stimulation signal by the electrode pad 37, the electrocardiographic waveform and heart rate of the person to be treated, an error message, and the like. As a result, the person to be treated can easily know the operating state of the electric stimulation treatment device 31. Further, the monitor 33 may be, for example, a touch panel on which a predetermined operation screen is displayed and the screen can be operated.
  • the start / stop button 34 and the plurality of operation buttons 35, 35 may be arranged on the other end side of the housing 32 in the longitudinal direction with respect to the monitor 33.
  • the operation button 35 may have various functions depending on the model of the electrical stimulation treatment device 31.
  • a treatment menu including a pulse wave width (pulse width), frequency, etc. of a stimulation signal suitable for each of a plurality of patients is stored in the electric stimulation treatment device 31.
  • It may be a button or the like to be operated when reading it. It may also be used to push when the stimulus is felt to be strong in the treatment session described later.
  • the wiring 36 is composed of, for example, a conducting wire covered with a protective insulating coating.
  • FIG. 5 is a front view of the electrode pad 37 of the electrical stimulation therapy device 31.
  • FIG. 6 is a rear view of the electrode pad 37 of the electrical stimulation therapy device 31.
  • FIG. 7 is a cross-sectional view of the electrode pad 37 of the electrical stimulation therapy device 31, showing a cross-sectional view of VII-VII of FIG.
  • the electrode pad 37 includes an unrelated electrode 38 and a pair of applied electrodes 39A and 39B.
  • the unrelated electrode 38 and the pair of application electrodes 39A and 39B have flexibility that allows the human body 1 to bend in accordance with the bending (movable).
  • the unrelated electrode 38 and the pair of applied electrodes 39A, 39B are the first surfaces 40, 42A, 42B and the first surfaces 40, 42A, 42B facing the skin of the human body 1, respectively. It is composed of a sheet-shaped (plate-shaped) rubber base material 44 having two surfaces 41, 43A, and 43B.
  • the "sheet-shaped rubber base material 44" means, for example, a member in which a region having a thickness of 0.5 mm to 2.0 mm occupies most of the material.
  • the rubber base material 44 may have a structure that partially exceeds the thickness in the above range. Examples of such a structure include the first terminal 90 and the second terminals 92A and 92B, which will be described later.
  • the irrelevant electrode 38 has a horizontally long substantially square shape in this embodiment.
  • the irrelevant electrode 38 has a first end portion 45, a second end portion 46, a third end portion 47, and a fourth end portion 48 that form a quadrangular side.
  • the first end portion 45 is, for example, the upper end portion of the unrelated electrode 38 when the unrelated electrode 38 is attached to the human body 1, and faces the third end portion 47. That is, the third end portion 47 is the lower end portion of the irrelevant electrode 38 when the irrelevant electrode 38 is attached to the human body 1.
  • the second end 46 and the fourth end 48 connect the first end 45 and the third end 47 and face each other.
  • the unrelated electrode 38 has, for example, a length of about 9.5 cm in the lateral direction B along the first end portion 45 and the third end portion 47, and is in the vertical direction along the second end portion 46 and the fourth end portion 48.
  • the length of A is about 5.3 cm.
  • the pair of application electrodes 39A and 39B are vertically elongated substantially square shapes in this embodiment, respectively.
  • Each of the applied electrodes 39A and 39B has first end portions 86A and 86B, second end portions 87A and 87B, third end portions 88A and 88B and fourth end portions 89A and 89B, respectively, which form the sides of the quadrangle. ing.
  • the first end portions 86A and 86B are, for example, the upper end portions of the applied electrodes 39A and 39B when the applied electrodes 39A and 39B are attached to the human body 1, and face the third end portions 88A and 88B. .. That is, the third end portions 88A and 88B are the lower end portions of the applied electrodes 39A and 39B when the applied electrodes 39A and 39B are attached to the human body 1.
  • the second end portions 87A and 87B and the fourth end portions 89A and 89B connect the first end portions 86A and 86B and the third end portions 88A and 88B and face each other.
  • Each of the applied electrodes 39A and 39B has, for example, a length of about 5.3 cm in the lateral direction B along the first end portions 86A and 86B and the third end portions 88A and 88B, and the second end portions 87A and 87B and the second end portions 87A and 87B.
  • the length of the vertical direction A along the four ends 89A and 89B is about 9.5 cm. That is, the total length of the pair of applied electrodes 39A and 39B in the lateral direction B is longer than the length of the indifferent electrode 38 in the lateral direction B.
  • the first terminal 90 is integrally provided on the second surface 41 of the unrelated electrode 38.
  • the first terminal 90 projects from the second surface 41 of the indifferent electrode 38.
  • the first terminal 90 has a first insertion port 91 facing one side (upper side in FIG. 5), and is formed in a tubular shape in which the other side (lower side in FIG. 5) is closed.
  • the first insertion port 91 is flush with the first end portion 45 of the indifferent electrode 38.
  • Second terminals 92A and 92B are integrally provided on the second surfaces 43A and 43B of the pair of application electrodes 39A and 39B, respectively.
  • the second terminals 92A and 92B project from the second surfaces 43A and 43B of the pair of application electrodes 39A and 39B.
  • the second terminals 92A and 92B have second outlets 93A and 93B facing in the same direction as the first outlet 91, and the other side (lower side of FIG. 5) is formed in a closed tubular shape. There is.
  • the second outlets 93A and 93B are flush with the first ends 86A and 86B of the pair of application electrodes 39A and 39B, respectively.
  • a thin-walled portion 94 is formed on the second surface 41 of the indifferent electrode 38.
  • the thin-walled portion 94 is a portion formed relatively thin in the indifferent electrode 38, and has a thickness of, for example, 0.3 mm to 2.0 mm.
  • the thin-walled portion 94 includes a pair of thin-walled portions 94 that are linear regions (for example, having a width of about 53 mm) along the second end portion 46 and the fourth end portion 48.
  • the pair of thin-walled portions 94 extend in parallel with each other from the first end portion 45 to the third end portion 47 of the indifferent electrode 38, and are arranged with the first terminal 90 in between. Both of the pair of thin-walled portions 94 are separated from the first terminal 90 in the direction B along the first end portion 45 and the third end portion 47. Since the pair of thin-walled portions 94 are formed, the irrelevant electrode 38 is formed so as to be easily bent with the thin-walled portion 94 as a crease. As a result, the indifferent electrode 38 can be satisfactorily attached according to the curvature of the skin of the human body 1.
  • Thin-walled portions 95A and 95B are formed on the second surfaces 43A and 43B of the applied electrodes 39A and 39B.
  • the thin-walled portions 95A and 95B are portions that are relatively thinly formed in each of the applied electrodes 39A and 39B, and have a thickness of, for example, 0.3 mm to 2.0 mm.
  • the thin portions 95A and 95B are formed from the ends of the application electrodes 39A and 39B (for example, the second ends 87A and 87B of the application electrodes 39A and 39B and the fourth ends 89A and 89B of the application electrodes 39A and 39B), respectively. It includes a plurality of thin-walled portions 95A and 95B which are linear regions (for example, having a width of about 53 mm) extending to the third end portions 88A and 88B.
  • the plurality of thin-walled portions 95A and 95B are parallel to each other from the second ends 87A and 87B of the applied electrodes 39A and 39B and the fourth ends 89A and 89B of the applied electrodes 39A and 39B to the third ends 88A and 88B. It is extending.
  • three thin-walled portions 95A and 95B are formed in a striped shape.
  • Each of the applied electrodes 39A and 39B is formed so that a plurality of thin-walled portions 95A and 95B are formed so that the thin-walled portions 95A and 95B can be easily bent with the thin-walled portions 95A and 95B as creases.
  • the applied electrodes 39A and 39B can be satisfactorily attached according to the curvature of the skin of the human body 1.
  • linear thin-walled portions 95A and 95B are formed by connecting the adjacent ends of the applied electrodes 39A and 39B with the corner portions 96A and 96B as boundaries, and further, in this embodiment, the corner portions 96A and 96B are formed inward. It is formed in a striped shape in order toward the region. Therefore, for example, after the treatment, the corner portions 96A and 96B can be easily peeled off from the corner portions 96A and 96B by pinching the corner portions 96A and 96B with fingers.
  • the unrelated electrode 38 and the pair of applied electrodes 39A and 39B are both composed of a conductive rubber sheet composed of a rubber base material 44 and a conductive sheet 97 embedded in the rubber base material 44.
  • the rubber base material 44 forms the outer shape of the unrelated electrode 38 and the pair of applied electrodes 39A and 39B.
  • the conductive sheet 97 is embedded in the rubber base material 44 by being covered with the rubber base material 44.
  • FIGS. 5 and 6 the region where the conductive sheet 97 is embedded is shown by a broken line in each of the unrelated electrode 38 and the pair of applied electrodes 39A and 39B.
  • the rubber base material 44 is composed of a sheet made of silicone rubber containing carbon black.
  • the material of the rubber base material 44 is not limited to silicone rubber containing carbon black as long as it is a conductive rubber.
  • the conductor (conductive filler) mixed in the silicone rubber may be silver powder, gold-plated silica or graphite, conductive zinc oxide, or the like, in addition to carbon black.
  • the ion conductive silicone rubber may be used as the material of the rubber base material 44.
  • the conductive sheet 97 is made of a conductive mesh.
  • the conductive mesh include a mesh formed of conductive fibers such as silver thread. As shown in FIG. 7, the conductive sheet 97 has a large number of openings 49 (window portions of the lattice) in its plane.
  • the conductive sheet 97 is embedded over almost the entire sheet-shaped rubber base material 44.
  • "almost the entire” means the peripheral edge of the conductive sheet 97 and the peripheral edge of the rubber base material 44 (in this embodiment, the ends 45 to 48 and 86A of the unrelated electrode 38 and the pair of applied electrodes 39A and 39B).
  • , 86B to 89A, 89B) may be provided with a small margin (a portion 98 in which the entire thickness direction is composed of only the rubber base material 44).
  • the entire circumference of the conductive sheet 97 is surrounded by the portion 98 of the rubber base material 44.
  • the size of the margin may be, for example, a size set in consideration of the positional deviation of the conductive sheet 97 during manufacturing.
  • the conductive sheet 97 is provided with the first terminal 90 and the second terminal provided at the first ends 45, 86A, 86B of the unrelated electrode 38 and the pair of applied electrodes 39A, 39B, respectively. It may overlap with 92A and 92B. In other words, in the indifferent electrode 38 and the pair of application electrodes 39A, 39B, the conductive sheet 97 may be embedded in the first terminal 90 and the second terminals 92A, 92B.
  • the conductive sheet 97 is biased toward the second surfaces 41, 43A, 43B (the surfaces of the human body 1 that do not come into contact with the skin) of the rubber base material 44 in the thickness direction of the rubber base material 44. Have been placed. As a result, the thickness T 1 from the conductive sheet 97 to the first surfaces 40, 42A, 42B (the surface of the human body 1 in contact with the skin) of the rubber base material 44, and the first surface of the rubber base material 44 from the conductive sheet 97. Comparing with the thickness T 2 up to the two surfaces 41, 43A, 43B, the thickness T 1 is larger than the thickness T 2.
  • indifferent electrode 38 and the pair of applying electrodes 39A, 39B has a first surface 40,42A, from 42B side in this order, the first portion 99 of the rubber base material 44 having a relatively large thickness T 1, conductive
  • the sheet 97 may have a second portion 100 of a rubber substrate 44 having a relatively small thickness T 2.
  • indifferent electrode 38 and the pair of applying electrodes 39A, 39B has a first surface 40,42A, from 42B side in this order, the first rubber layer 99 having a relatively large thickness T 1, a conductive sheet 97, it may have a three-layer structure of a second rubber layer 100 having a relatively small thickness T 2.
  • a rubber sheet as a material for the conductive sheet 97 and the rubber base material 44 is prepared.
  • the mold is preheated to a predetermined temperature which is equal to or higher than the temperature at which the rubber sheet softens, and then the conductive sheet 97 and the rubber sheet are laminated in this order in the mold.
  • the conductive sheet 97 and the rubber sheet are press-molded by pressing the surface of the rubber sheet.
  • the softened rubber sheet material spreads to the shape of the mold and spreads through the opening 49 of the conductive sheet 97 to both the front surface and the back surface of the conductive sheet 97.
  • the conductive sheet 97 is embedded in the material of the rubber sheet in the shape of the rubber base material 44. After that, the mold is cooled and the rubber base material 44 is removed from the mold to obtain the unrelated electrode 38 and the pair of application electrodes 39A and 39B.
  • a wiring plug (not shown) connected to the tip of the wiring 36 is connected to the first terminal 90 and the second terminals 92A and 92B. Then, it may be attached to the skin directly above the back surface of the sacrum via a separately prepared conductive adhesive pad (for example, a conductive adhesive gel or the like).
  • the toe electrode 61 may include a first electrode 63, a second electrode 64, and a third electrode 65.
  • the third electrode 65 may be a reference electrode
  • the first electrode 63 may be a negative electrode (negative electrode) with respect to the third electrode 65.
  • the second electrode 64 may be an electrode (positive electrode) having a positive potential with respect to the third electrode 65.
  • the first electrode 63, the second electrode 64 and the third electrode 65 are attached to, for example, the muscles of the toe abductor muscle 27 of the foot.
  • the electrodes may be attached in this order from the toe side so as to face the muscle fibers of the abductor muscle 27 of the toe along the direction in which the fibers travel.
  • the toe abductor muscle 27 is a muscle fiber controlled by nerves (for example, medial plantar nerves (L5 to S2)) that connect to the peroneal nerve 16 and the tibial nerve 17 described above.
  • the first electrode 63 and the second electrode 64 for example, the first electrode 63 is located at the base of the ball (ball hill) and the second electrode 64 is located between the heel and the base of the ball (ball hill). It is preferable to attach to the electrode and widen the distance between the electrodes.
  • FIG. 10 is a block diagram showing the electrical configuration of the electrical stimulation therapy device 31.
  • a wiring board (not shown) is built in the housing 32 of the electrical stimulation treatment device 31, and a controller 50 is provided on the wiring board.
  • a monitor 33 display unit
  • the above-mentioned start / stop button 34, an operation button 35 (input unit), a pair of application electrodes 39, and a toe electrode 61 are electrically connected to the controller 50.
  • the input signals from the start / stop buttons 34 and the operation buttons 35 are input to the controller 50, and the output signals from the controller 50 are output to the pair of application electrodes 39. Further, the myoelectric signal detected by the toe electrode 61 is input to the controller 50 and processed by the controller 50.
  • the controller 50 may be composed of a semiconductor chip.
  • the controller 50 includes a stimulation signal output unit 51, a myoelectric signal processing unit 52, a switching unit 53, a myoelectric signal selection unit 54, a storage unit 55, and a filter circuit 56.
  • the stimulation signal output unit 51 may be composed of, for example, a semiconductor integrated circuit (IC: Integrated Circuit) including a CPU, a memory such as a ROM or RAM, a timer, and the like.
  • the stimulus signal output unit 51 may be referred to as a stimulus signal output circuit.
  • the stimulation signal output unit 51 outputs the stimulation voltage stored in advance in the storage unit 55 to the pair of application electrodes 39. Examples of the stimulus voltage information stored in the storage unit 55 include the width (pulse width) and frequency of the pulse wave of the stimulus signal suitable for each patient to be treated.
  • the stimulation signal output unit 51 displays the information (pulse width, frequency, etc.) of the electrical stimulation given to the subject on the monitor 33.
  • the magnitude of the amplitude of the pulse of electrical stimulation is divided into a plurality of steps (for example, 5 steps) in advance, and the number of steps of the amplitude is determined according to the magnitude of the output amplitude. May be displayed on the monitor 33.
  • the stimulus signal output unit 51 is shown as a configuration independent of the storage unit 55.
  • the information related to the stimulus signal output unit 51 is stored. It may have a built-in part.
  • the myoelectric signal processing unit 52 may be composed of, for example, a semiconductor integrated circuit (IC: Integrated Circuit) including a CPU, a memory such as a ROM or RAM, a timer, and the like.
  • the myoelectric signal processing unit 52 may be referred to as a myoelectric signal processing circuit.
  • the myoelectric signal processing unit 52 processes the myoelectric signal detected by the toe electrode 61 and displays it on the monitor 33.
  • the myoelectric signal processing unit 52 may quantitatively calculate the amplitude of the myoelectric signal detected by the toe electrode 61, and visually display the result on the monitor 33.
  • the magnitude of the amplitude is divided into a plurality of steps (for example, 5 steps) in advance, and the number of steps of the amplitude is displayed on the monitor 33 according to the calculated magnitude of the amplitude. You may.
  • the myoelectric signal processing unit 52 does not detect and process the myoelectric signal under the conditions stored in the storage unit 55 in advance.
  • the distance (x) from the sacrum 3 of the human body 1 to the surface of the toes 18 to 22 is divided by the transmission speed (v) of the nerve S3 or the like passing through the sacrum 3 of the human body 1 or the vicinity of the sacrum 3.
  • the detection stop period 25 set based on the quotient (x / v) of the time, the myoelectric signal is not detected and processed.
  • the myoelectric signal processing unit 52 is shown as a configuration independent of the storage unit 55.
  • the information related to the myoelectric signal processing unit 52 may have a built-in part that stores.
  • the switching unit 53 is for turning on / off the connection between the toe electrode 61 (detection electrode) and the myoelectric signal processing unit 52.
  • the switching unit 53 may be composed of, for example, an analog switch (for example, an analog switch composed of a CMOS, a bipolar transistor, a relay, or the like), or a part or all of the switching unit 53 operates by digital signal processing. May be good.
  • the myoelectric signal selection unit 54 may be composed of, for example, a semiconductor integrated circuit (IC: Integrated Circuit) including a CPU, a memory such as a ROM or RAM, a timer, and the like.
  • the myoelectric signal selection unit 54 may be referred to as a myoelectric signal selection circuit.
  • the myoelectric signal selection unit 54 detects and turns off the connection between the toe electrode 61 and the myoelectric signal processing unit 52 during the detection stop period 25 (described later) set in the storage unit 55. At the end of the stop period 25, the switching unit 53 is controlled so that the connection between the toe electrode 61 and the myoelectric signal processing unit 52 is turned on.
  • the myoelectric signal selection unit 54 is shown as a configuration independent of the storage unit 55.
  • the information related to the myoelectric signal selection unit 54 may have a built-in part that stores.
  • the storage unit 55 is composed of, for example, a memory such as a ROM or a RAM.
  • the storage unit 55 stores, for example, the above-mentioned information on the stimulation voltage, the detection stop period 25, and the like.
  • the filter circuit 56 includes a notch filter 57, a full-wave / half-wave rectifier 58, and an integrator 59. This makes it possible to reduce the noise of the myoelectric signal input to the myoelectric signal processing unit 52. Further, since the integrator 59 is provided, the amplitude, peak, etc. of the myoelectric signal can be easily detected, so that the myoelectric signal processing unit 52 can efficiently process the myoelectric signal.
  • the integrator 59 may be referred to as an integrator circuit.
  • the filter circuit 56 is not limited to the configuration shown in FIG. 10, and may have a configuration adopted in a known filter circuit.
  • a low-pass filter, a high-pass filter, a band-pass filter, or the like may be adopted instead of the notch filter 57.
  • the filter circuit 56 may be entirely composed of analog circuits, or may be partially or completely operated by digital signal processing.
  • the analog circuit portion in the previous stage may be insulated from other digital circuits in order to further reduce noise.
  • an amplifier 60 for amplifying the myoelectric signal detected by the toe electrode 61 is provided between the toe electrode 61 and the switching unit 53.
  • FIG. 11 is a flowchart of monitoring the myoelectric data of the electrical stimulation therapy device 31.
  • the person to be treated first attaches the electrode pad 37 to his / her body as shown in FIG.
  • an electrical stimulation signal is output from the electrode pad 37 to stimulate the sacral spinal nerve S3, and treatment with the electrical stimulation treatment device 31 can be started (step S1).
  • the condition of the stimulation signal is, for example, a pulse width of 1 ⁇ s (seconds) to 500 ⁇ s (seconds).
  • the output pulse is continuously output at a frequency of 1 Hz to 50 Hz to form a stimulus signal pulse 66 having one cycle as T.
  • the lengths of t 1 , t 2 , t 3 and t 4 , the magnitude of the voltage, and the like can be appropriately changed according to the size of the user's body and the like.
  • the rising portion t 1 and the falling portion t 3 may be set at the same time.
  • the toe electrode 61 should be attached to the toe as a detection electrode for confirming (monitoring) whether the stimulation signal from the electrode pad 37 is properly transmitted to the pelvic nerve 13 and the pudendal nerve 14. Just do it.
  • the toes to which the toe electrodes 61 are attached may be any of the first to fifth fingers 18 to 22, but the first toe 18 is preferable from the viewpoint of ease of attachment.
  • the first electrode 63, the second electrode 64, and the third electrode 65 are, for example, along the direction in which the muscle fibers of the toe abduction muscle 27 of the foot travel.
  • the electrodes may be attached in this order from the toe side so as to face the muscle fibers of the abductor muscle 27 of the toe.
  • the measured data for example, 40 to 60 pulses
  • the measured data for example, 40 to 60 pulses
  • the waveform of the telegraph 67 is created.
  • the waveform of the myoelectric signal 67 and the waveform of the stimulation signal pulse 66 are compared. If the waveform of the myoelectric signal 67 is generated in synchronization with the waveform of the stimulation signal pulse 66, it means that the pair of application electrodes 39 are attached at appropriate positions and electrical stimulation is applied. There is.
  • the myoelectric signal processing unit 52 continues from the start of the stimulation output (the start of the electrical stimulation by the pair of applied electrodes 39), and the myoelectric telegraph detected by the toe electrodes 61.
  • the myoelectric signal processing unit 52 does not provide the detection stop period 25 that does not detect and process the myoelectric signal (the detection stop period 25 is off).
  • the stimulation voltage is transmitted to the toes 18 to 22 as noise, and a large noise is transmitted to the myoelectric data of the toes 18 to 22. 68 is superimposed and generated. Therefore, the electromyogram unit 69 required for myoelectric monitoring, which corresponds to the waveform of the myoelectric signal 67 in FIG. 12, may not be detected accurately.
  • the detection stop period 25 in which the myoelectric signal processing unit 52 does not detect and process the myoelectric signal is turned on for a certain period including the stimulus output period 24 from the start of the stimulus output. (Step S2).
  • the detection stop period 25 is the distance (x) from the sacrum 3 of the human body 1 to the surface of the toes 18 to 22, and the nerve S3 passing through the sacrum 3 of the human body 1 or the vicinity of the sacrum 3.
  • the stimulus signal given to the human body 1 did not reach the toes 18 to 22 via the nerve S3 or the like. That is, the myoelectric signal detected in the time from the application of the electric stimulus to the time when the stimulus signal reaches the toes 18 to 22 via the nerve S3 or the like is a signal carrying the information necessary for myoelectric monitoring. There is no noise 68. Therefore, the noise 68 of the myoelectric signal can be eliminated by not detecting the myoelectric signal of the toes 18 to 22 by the myoelectric signal processing unit 52 during the detection stop period 25. As a result, the electromyogram unit 69 required for myoelectric monitoring, which reaches the toes 18 to 22 via the sacrum 3 or the nerve S3 passing through the vicinity of the sacrum 3, can be accurately detected.
  • the detection stop period 25 is set to, for example, 25 ms, but the detection stop period 25 can be set to, for example, 15 ms to 25 ms.
  • the detection arrest period 25 is not limited to this range, but some patterns based on the distance from the sacrum of the human body to the surface of the toes from the sample data of the patient's age and gender, and the sacrum of the human body or the relevant pattern. It may be determined based on the transmission rate of nerves passing near the sacrum.
  • the accuracy of myoelectric monitoring can be improved only by providing the detection stop period 25 as shown in FIG. 14, the accuracy of myoelectric monitoring can be further improved by performing the control after step S3 in FIG.
  • the myoelectric signal processing unit 52 does not detect the myoelectric signal, but the filter between the myoelectric signal processing unit 52 and the toe electrode 61 (amplifier 60). It is continuously connected via the circuit 56. Therefore, the potential of the myoelectric signal input to the myoelectric signal processing unit 52 changes with time. Therefore, at the end of the detection stop period 25, a peak-like portion 70 may occur in the waveform of the myoelectric signal 72 due to the influence of the time constant of the filter circuit 56, and the myoelectric signal 72 at the end may become slightly unstable. There is sex.
  • the connection between the toe electrode 61 and the myoelectric signal processing unit 52 is turned off at the start of the detection stop period 25.
  • the myoelectric signal selection unit 54 sets the potential of the switching unit 53 to the reference potential 71 or the drift potential pre-held based on the output of the stimulation signal (start of the detection stop period 25).
  • the switching unit 53 is set to the open state (open) (step S3).
  • the potential of the myoelectric signal processing unit 52 with respect to the switching unit 53 is fixed to the reference potential 71 or the drift potential pre-held, or when the stimulation signal is input (at the start of the detection stop period 25). Is fixed at the potential of.
  • the reference potential 71 is, for example, a neutral voltage which is an operation reference point of the amplifier 60, a neutral voltage of ⁇ power supply of 0 volt, or a neutral voltage which is an operation reference point of the circuit used in the filter circuit 56, and the amplifier 60.
  • the voltage or ground potential when the output of is not amplifying the myoelectric signal may be set as the reference potential.
  • step S4 it is determined whether or not the detection stop period 25 has ended.
  • the myoelectric signal selection unit 54 switches the switching unit 53 to turn on the connection between the toe electrode 61 and the myoelectric signal processing unit 52.
  • Step S5 the connection between the toe electrode 61 and the myoelectric signal processing unit 52 is turned off at the start of the detection stop period 25 and turned on at the end of the detection stop period 25, as shown in FIG.
  • the peak-like portion 70 does not occur, and the potential of the myoelectric signal 72 can be stabilized.
  • the myoelectric signal is filtered by passing through the notch filter 57 and the full-wave / half-wave rectifier 58, and the integrator 59 generates a collective signal (step S6). More specifically, a plurality of myoelectric signals 73 detected by the toe electrode 61 are integrated for a predetermined sampling time, and are integrated into the myoelectric signal processing unit 52 as an integrated collective signal 74 (first signal). It is output.
  • the sampling time may be, for example, a stimulus output period t 1 + t 2 + t 3 seconds to T seconds.
  • the amplitude of the collective signal 74 is calculated based on the difference from the averaged value of the second part 77 in the two periods. More specifically, the first portion 76 and the second portion 77 of the collective signal 74 are averaged by performing an averaging process such as an addition averaging process or a moving averaging process (step S7). As a result, as shown in FIG. 17, the average value of the first portion 76 (first average value 78) and the average value of the second portion 77 (second average value 79) are calculated.
  • the first portion 76 may set a period including , for example, ⁇ t 2 seconds before and after the peak portion 80 of the collective signal 74.
  • the second portion 77 may be set to 0 seconds period ⁇ t 4 seconds the foot portion 81 of the aggregate signal 74.
  • the drift 75 of the collective signal 74 can be eliminated.
  • the amplitude A, peak, etc. of the collective signal 74 can be detected with high accuracy. If there is a signal input above a certain level in the second part 77, it is determined that a normal myoelectric signal cannot be obtained, and an error is displayed on the monitor 33 (for example, the second level gauge 83 described later is usually displayed. (For example, lighting in a different color from) may be displayed.
  • the strength of the processed collective signal 74 is output to the monitor 33 (display unit) (step S8).
  • the monitor 33 has a first level gauge 82 indicating the intensity of stimulation output (STIM: stimulation) and an electromyographic signal (electromyography EMG: electromyography) intensity.
  • the second level gauge 83 is displayed.
  • the first level gauge 82 is divided into five stages in this embodiment. Each lighting unit 84 of the first level gauge 82 lights up in order from the bottom according to the magnitude of the amplitude of the output stimulation pulse. When the first level gauge 82 swings so that all five lighting units 84 are lit, it means that the amplitude of the output stimulation pulse is maximum.
  • the second level gauge 83 is divided into five stages in this embodiment. Each lighting unit 85 of the second level gauge 83 lights up in order from the bottom according to the magnitude of the amplitude A of the myoelectric signal calculated by the myoelectric signal processing unit 52. When the second level gauge 83 swings so that all five lighting units 85 are lit, it means that the myoelectric signal is the maximum.
  • the muscles are synchronized with the interval of the waveform of the stimulation signal pulse 66.
  • the waveform of the telegraph 67 is generated. Therefore, in the monitor 33 of FIG. 18, after the first level gauge 82 swings (the lighting unit 84 lights up in order from the bottom and reaches the lighting unit 84 according to the magnitude of the stimulation pulse, the lighting disappears. After that), the second level gauge 83 swings. If the level display of the second level gauge 83 swings in synchronization with the level display of the first level gauge 82, the pair of application electrodes 39 are attached at appropriate positions and electrical stimulation is applied. It means that.
  • the level display of the first level gauge 82 and the level display of the second level gauge 83 occur alternately at predetermined intervals is applicable. Therefore, the person to be treated or a medical person can easily check whether or not the pair of application electrodes 39 are attached at appropriate positions simply by visually observing the first level gauge 82 and the second level gauge 83 of the monitor 33. Can be confirmed in. Based on this confirmation, if it is determined that the pair of application electrodes 39 are not attached at appropriate positions, the supply of the stimulus signal from the pair of application electrodes 39 may be stopped.
  • the amplitude A excluding the drift 75 exceeds 0, if it is less than a predetermined magnitude, it is not displayed on the second level gauge 83.
  • the relationship between the stimulus signal and the myoelectric signal generated in response to the stimulus signal can be easily confirmed.
  • the dysuria treatment device (fecal incontinence treatment device) is taken up as an example of the electrical stimulation treatment device, but the present invention is not limited to the dysuria treatment device and the fecal incontinence treatment device, and other than these. It can be applied to all devices used for electrical stimulation therapy for other diseases.
  • the configuration of the portable electrical stimulation therapy device 31 has been described, but the electrical configuration of the electrical stimulation therapy device 31 and its control are stationary (stationary) as shown in FIG. It may be applied to the electric stimulation therapy device 23 of the type).
  • Such a stationary electrical stimulation therapy device 23 is shared by a plurality of patients in a medical institution. Therefore, it may be provided with a memory for storing the past treatment data of each patient.
  • the myoelectric signal is not detected by the operation in the myoelectric signal processing unit 52 during the detection stop period 25.
  • the switching unit 53 or the filter circuit 56 is configured by digital signal processing, for example, as shown in FIG. 10, between the toe electrode 61 and the switching unit 53, or between the switching unit 53 and the filter circuit.
  • An A / D converter 26 may be provided between the 56 and the 56.
  • sampling is not always performed at the sampling time, and sampling time may be used, or the sampling time may be, for example, a configuration in which sampling is performed only at the time of the continuous portion t 2.
  • the detection stop period 25 instead of the detection stop period 25 than a constant value, to always sufficiently large so as not to be detected at the rising portion t 1 and falling portion t 3, i.e., using a plurality of detection stop period 25 This can be easily realized.
  • the detection signal is sampled for each individual output pulse constituting the stimulation signal pulse, but is not limited to this, and for each specific number of output pulses, for example, every two pulses or three. It may be sampled every pulse. Also in this case, it can be easily realized by preparing a plurality of detection stop periods 25 and setting one detection stop period 25 to, for example, two output pulses. Such processing is effective when the processing related to drift, the processing related to amplitude A, and the like are performed using digital data, and the usable memory capacity and CPU processing capacity are limited.
  • the level display of the first level gauge 82, the second level gauge 83, or the like as in the above-described embodiment is not performed.
  • a method of displaying the waveform of the signal as shown in FIG. 12 on the monitor 33 may be used.
  • a liquid crystal monitor 33 for displaying a message or an image to the user is shown as an example of the display unit of the present invention, but the operating state of the electrical stimulation treatment device 31 is shown to the user.
  • the means does not have to be the monitor 33.
  • items to be communicated to the person to be treated for example, an error message, a first level gauge 82, a second level gauge 83, etc.
  • the person to be treated may be notified by turning on the lamp.
  • the noise 68 due to the stimulus signal and the electromyogram unit 69 can be separated and the electromyogram unit 69 can be reliably detected.
  • the detection stop period 25 it is possible to accurately detect only the myoelectric signal after the lapse of.

Abstract

電気刺激治療器は、被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される。

Description

電気刺激治療器および電気刺激治療方法
 本発明は、電気刺激療法に使用する機器、およびこの機器を用いた電気刺激治療方法に関する。
 従来、電気刺激療法に使用される機器の一例として、排尿障害を治療するための機器が提案されている。
 例えば、特許文献1は、一対の印加電極と、検出電極とを含む、排尿障害治療器を開示している。この排尿障害治療器では、一対の印加電極による刺激パルスと足趾の検出パルスとを比較し、仙骨または仙骨近傍を通る神経が刺激パルスによって適切に刺激されているかを判別している。検出パルスは、仙骨または仙骨近傍を通る神経に、坐骨神経を介してつながり、足趾の先まで延びる脛骨神経および/または腓骨神経の反応によって発生するものである。
 また、例えば、特許文献2は、筋電位を検出する表面電極と、表面電極で検出された筋電位信号を増幅する増幅器と、増幅された波形よりモニタすべき筋電位成分を抽出するバンドパスフィルタと、バンドパスフィルタを経た成分を整流する整流器と、整流器に設けたレベル設定器と、整流された信号を一定のサンプリング時間の間積分する積分器と、積分された信号をデジタル信号に変換するAD変換器と、変換されたデジタル信号を計数するカウンタと、計数されたデジタル信号を保持し表示器を駆動するラッチ/ドライバと、積分器、AD変換器、カウンタ、ラッチ/ドライバ、表示器の動作タイミングを制御する制御器とを含む、筋電位モニタ装置を開示している。
特許第6488498号公報 実開昭58-10704号公報
 特許文献1の排尿障害治療器によれば、印加電極から仙骨または仙骨近傍を通る神経に対して刺激信号が適切に伝達されているか否かを、足趾の筋電データに基づいて確認することができる。
 しかしながら、印加電極から人体の仙骨の背面に電気刺激を与えたときに、刺激電圧が足趾にノイズとして伝わり、足趾の筋電データに大きなノイズが重畳して発生する場合がある。したがって、足趾の筋電データを、より精度よく検出できることが望まれる。
 例えば、印加電極から電気刺激が人体に与えられている期間、足趾の筋電データの検出を停止することによって、刺激電圧に起因するノイズを排除する方法が検討されるが、この方法では不十分である。なぜなら、当該期間における筋電データの検出停止によってノイズは検出されにくくなるが、筋電データの信号処理回路には、一般的には時定数を持つデジタルフィルタやアナログフィルタが設けられている(例えば、特許文献2参照)。そのため、単純に電気刺激のパルス幅の間だけ筋電データの検出を停止しても、時定数の影響により、当該停止期間の経過後にノイズが検出される場合がある。
 そこで、本発明の目的は、仙骨の背面に配置すべき印加電極が適切に取り付けられているか否かを精度よく確認することができる電気刺激治療器、およびこの機器を用いた電気刺激治療方法を提供することである。
 本発明の一の局面に係る電気刺激治療器は、被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される。
 本発明の一の局面に係る電気刺激治療器によれば、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される検出停止期間の間、足趾の筋電信号が筋電信号処理部で検出されない。
 当該検出停止期間の間、人体に与えられた刺激信号は、神経を介して足趾まで到達していない。つまり、電気刺激の印加後、その刺激信号が神経を介して足趾に到達するまでの時間に検出される筋電信号は、筋電モニタリングに必要な情報を乗せた信号ではなくノイズである。そのため、当該検出停止期間の間、足趾の筋電信号を筋電信号処理部で検出しないことによって、筋電信号のノイズを排除することができる。これにより、仙骨または当該仙骨近傍を通る神経を介して足趾に到達する、筋電モニタリングに必要な情報を乗せた信号に応答して発生する筋電信号を、精度よく検出することができる。したがって、本発明の一の局面に係る電気刺激治療器によれば、印加電極から仙骨または仙骨近傍を通る神経に対して刺激信号が適切に伝達されているか否かを、足趾の筋電データに基づいて精度よく確認することができる。
図1は、排尿の神経支配を説明するための人体の側断面図である。 図2は、排尿の神経支配を説明するための人体の背面図である。 図3Aは、排尿のメカニズムを説明するための図である。 図3Bは、排尿のメカニズムを説明するための図である。 図4は、本発明の一実施形態に係る電気刺激治療器の概略図である。 図5は、前記電気刺激治療器の電極パッドの正面図である。 図6は、前記電気刺激治療器の電極パッドの背面図である。 図7は、前記電気刺激治療器の電極パッドの断面図であって、図5のVII-VII断面を示している。 図8は、前記電極パッドの取り付け状態を示す図である。 図9は、筋電データをモニタリングする際の検出電極の配置を示す図である。 図10は、前記電気刺激治療器の電気的構成を示すブロック図である。 図11は、前記電気刺激治療器の筋電データのモニタリングのフローチャートである。 図12は、刺激パルスと筋電信号のパターンの一例を説明するための図である。 図13は、マスキング処理前の筋電信号のパターンを示す図である。 図14は、マスキング処理後の筋電信号のパターン(第1例)を示す図である。 図15は、マスキング処理後の筋電信号のパターン(第2例)を示す図である。 図16は、積分器による筋電信号の積分を説明するための図である。 図17は、筋電図の基線変動の排除を説明するための図である。 図18は、筋電図のレベル表示を説明するための図である。 図19は、本発明の他の実施形態に係る電気刺激治療器の概略図である。
<本発明の実施形態>
 まず、本発明の実施形態を列記して説明する。
 本発明の一実施形態に係る電気刺激治療器は、被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される。
 この構成によれば、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される検出停止期間の間、足趾の筋電信号が筋電信号処理部で検出されない。
 当該検出停止期間の間、人体に与えられた刺激信号は、神経を介して足趾まで到達していない。つまり、電気刺激の印加後、その刺激信号が神経を介して足趾に到達するまでの時間に検出される筋電信号は、筋電モニタリングに必要な情報を乗せた信号ではなくノイズである。そのため、当該検出停止期間の間、足趾の筋電信号を筋電信号処理部で検出しないことによって、筋電信号のノイズを排除することができる。これにより、仙骨または当該仙骨近傍を通る神経を介して足趾に到達する、筋電モニタリングに必要な情報を乗せた信号に応答して発生する筋電信号を、精度よく検出することができる。したがって、本発明の一の局面に係る電気刺激治療器によれば、印加電極から仙骨または仙骨近傍を通る神経に対して刺激信号が適切に伝達されているか否かを、足趾の筋電データに基づいて精度よく確認することができる。
 本発明の一実施形態に係る電気刺激治療器では、前記検出電極と前記筋電信号処理部との接続をオン/オフする切替部と、前記検出停止期間の間、前記検出電極と前記筋電信号処理部との接続がオフとなるように、かつ、前記検出停止期間の終了時に、前記検出電極と前記筋電信号処理部との接続がオンとなるように、前記切替部を制御する筋電信号選択部とを含んでいてもよい。
 この構成によれば、検出停止期間の終了時に検出電極と筋電信号処理部との接続をオンにすることによって、検出停止期間の終了時の筋電信号の電位を安定させることができる。
 本発明の一実施形態に係る電気刺激治療器では、前記筋電信号選択部は、前記検出停止期間の間、前記切替部の電位を基準電位もしくは前置ホールドしたドリフト電位にするか、または前記切替部を開放状態にしてもよい。
 本発明の一実施形態に係る電気刺激治療器は、前記筋電信号処理部における前記筋電信号の処理の前に、前記検出電極で検出された筋電信号を所定のサンプリング時間の間積分し、積分された信号を第1信号として前記筋電信号処理部に出力する積分器を含んでいてもよい。
 この構成によれば、筋電信号(第1信号)の振幅、ピーク等を容易に検出できるので、筋電信号処理部において筋電信号を効率よく処理することができる。
 本発明の一実施形態に係る電気刺激治療器では、前記筋電信号処理部は、前記第1信号のうち所定の第1期間における第1部分を平均化した値と、前記第1信号のうち前記第1部分の時間的前後にある所定の第2期間における第2部分を平均化した値との差に基づいて、前記第1信号の振幅を判別してもよい。
 この構成によれば、例えば、人体の体動等に起因する変動、商用交流の混入による変動、人体周辺の電気機器からのノイズ混入等による基線変動(ドリフト)を排除することができる。その結果、筋電信号(第1信号)の振幅、ピーク等を精度よく検出することができる。
 本発明の一実施形態に係る電気刺激治療器では、前記第1信号の前記第1部分および前記第2部分は、加算平均処理または移動平均処理することによって平均化されてもよい。
 本発明の一実施形態に係る電気刺激治療器は、前記一対の印加電極に前記刺激信号を供給し、かつ当該刺激信号の振幅を段階的に区分して、前記刺激信号の振幅を前記表示部にレベル表示する刺激信号出力部を含み、前記筋電信号処理部は、所定の振幅以上の前記第1信号の前記第1部分を段階的に区分して、前記第1部分の振幅を前記表示部にレベル表示してもよい。
 この構成によれば、所定の大きさ未満の振幅の筋電信号の表示を排除することによって、刺激信号と、それに応答して発生する筋電信号との関係を容易に確認することができる。
 本発明の一実施形態に係る電気刺激治療方法は、被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される、電気刺激治療器を用いる電気刺激治療方法であって、前記一対の印加電極を、被治療者の仙骨の背面に配置するステップと、被治療者の足趾表面に検出電極を配置するステップと、前記一対の印加電極から前記仙骨の背面に電気的な刺激信号を供給するステップと、前記一対の印加電極からの前記刺激信号の供給中、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを、前記表示部を視認して判別するステップとを含む。
 本発明の一実施形態に係る電気刺激治療方法は、前記表示部を視認して、前記足趾の筋電信号が前記刺激信号に応答して発生したものでないと判別された場合、前記一対の印加電極からの前記刺激信号の供給を停止するステップを含んでいてもよい。
<本発明の実施形態の詳細な説明>
 次に、本発明の実施形態を、添付図面を参照して詳細に説明する。
 図1は、排尿の神経支配を説明するための人体1の側断面図である。図2は、排尿の神経支配を説明するための人体1の背面図である。図3Aおよび図3Bは、排尿のメカニズムを説明するための図である。図1~図3A,Bでは、人体1の各部位のうち、本発明の一実施形態に係る電気刺激治療器31による治療の説明に必要な部位のみを示し、その他の部位については説明を省略する。
 人体1は、腰椎2、仙骨3等を含む脊椎4を備えている。仙骨3は、略逆三角形の形状を有しており、通常、左右対称に4つずつ、上から順に第1仙骨孔5、第2仙骨孔6、第3仙骨孔7および第4仙骨孔8を有している。
 また、人体1は、蓄排尿に関わる部位(器官、筋肉)として、膀胱9と、内尿道括約筋10と、外尿道括約筋11とを備えている。人体1の蓄排尿は、これらの部位9~11が神経に制御されることによって行われる。
 蓄排尿に寄与する主な神経として、人体1には、下腹神経(交感神経)12、骨盤神経(副交感神経)13および陰部神経(体性神経)14が存在している。
 下腹神経12は、排尿の抑制(蓄尿)に寄与するもので、膀胱9および内尿道括約筋10につながっている。骨盤神経13は、排尿の開始に寄与するもので、膀胱9および内尿道括約筋10につながっている。陰部神経14は、外尿道括約筋11につながっている。
 図3Aに示すように、人体1では、まず、下腹神経12からの信号によって、膀胱9(排尿筋)が弛緩して膀胱9に尿が溜まりやすくなるとともに、内尿道括約筋10が収縮する。これにより、尿の排泄が止められ、膀胱9内に蓄尿される。一方、図3Bに示すように、骨盤神経13からの信号によって、膀胱9(排尿筋)が収縮するとともに、内尿道括約筋10が弛緩する。これにより、尿が膀胱9外に排泄される。そして、人体1の脳からの指令(自らの意志)により、体性神経である陰部神経14を介して、随意筋としての外尿道括約筋11を弛緩させ、腹圧をかけることによって排尿が行われる。
 上記のように、下腹神経12および骨盤神経13のいずれもが正常に活動することによって、膀胱9および内尿道括約筋10が適切に収縮・弛緩していれば、蓄排尿が適切に行われる。しかしながら、例えば、下腹神経12が低活動になったり、骨盤神経13が過活動になったりすると、膀胱9が収縮しやすく、内尿道括約筋10が弛緩しやすくなる。その結果、膀胱9に尿を溜め難くなり、蓄尿障害(過活動膀胱)といった排尿障害を引き起こす場合がある。
 そこで、この実施形態では、図3Aに示すように、仙骨3の背面側から仙骨3上の皮膚に電気的な刺激信号を与えることによって、仙骨神経叢が刺激される。より具体的には、図2に示すように、第1仙骨孔5を通る第1仙骨神経S1、第2仙骨孔6を通る第2仙骨神経S2、第3仙骨孔7を通る第3仙骨神経S3および第4仙骨孔8を通る第4仙骨神経S4が刺激される。これにより、例えば図3Aに示すように、第3仙骨神経S3が刺激され、骨盤神経13による膀胱9を収縮させるという神経支配が抑制される。また、この電気的な刺激は下腹神経12にも伝達され、これにより、下腹神経12による膀胱9を緩和させるという神経支配が促通される。その結果、骨盤神経13の抑制および下腹神経12の促通がバランスよく保たれ、膀胱9が適度に弛緩することになり、過活動膀胱が改善する。
 そして、上記の電気的な刺激は、仙骨神経叢が存在する臀部およびその周辺部以外に存在する神経にも伝達される。例えば、図2に示すように、第3仙骨神経S3の一部は、坐骨神経15として大腿部を下行し、最終的に、腓骨神経16および脛骨神経17に分かれる。腓骨神経16および脛骨神経17は、坐骨神経15の末端部として、人体1の足趾(第1指18(母指)、第2指19、第3指20、第4指21および第5指22(小指))まで延びている。すなわち、足趾18~22の腓骨神経16および脛骨神経17は、坐骨神経15および仙骨神経叢S3を介して、下腹神経12、骨盤神経13および陰部神経14につながっている。
 次に、本発明の一実施形態に係る電気刺激治療器31の構成およびその動作について説明する。
 図4は、本発明の一実施形態に係る電気刺激治療器31の概略図である。
 電気刺激治療器31は、物理的な構成として、筐体32(治療器本体)と、筐体32の前面に設けられたモニタ33と、モニタ33の下方に設けられたスタート/ストップボタン34および複数の操作ボタン35,35と、筐体32に配線36を介して接続された電極パッド37と、筐体32に足趾用配線62を介して接続された本発明の検出電極の一例としての足趾用電極61とを備えている。
 筐体32は、この実施形態では、略楕円形状に形成され、例えば、プラスチック製のケースからなっていてもよい。また、図示しないが、筐体32の背面には、電気刺激治療器31の電源用の電池を収容するための取り外し可能な裏蓋が設けられていてもよい。なお、電気刺激治療器31の電源は、電池である必要はなく、例えば、ACアダプタを介してコンセントから得てもよいし、電池およびコンセントの併用であってもよい。
 モニタ33は、筐体32の長手方向に沿って長い長方形状に形成され、筐体32の長手方向の一端部寄りに配置されていてもよい。また、モニタ33は、例えば、モノクロもしくはカラーの液晶モニタであってよい。モニタ33には、例えば、電極パッド37による電気的な刺激信号のパルス波形や周波数、被治療者の心電波形および心拍数、エラーメッセージ等を表示することができる。これにより、被治療者は、電気刺激治療器31の動作状態を簡単に知ることができる。また、モニタ33は、例えば、所定の操作画面が表示され、当該画面を操作可能なタッチパネルであってもよい。
 スタート/ストップボタン34および複数の操作ボタン35,35は、モニタ33に対して、筐体32の長手方向他端部側に配置されていてもよい。
 また、操作ボタン35は、電気刺激治療器31の機種によって、様々な機能を有していてもよい。例えば、電気刺激治療器31のメモリ機能として、複数の被治療者それぞれに適した刺激信号のパルス波の幅(パルス幅)、周波数等を含む治療メニューを電気刺激治療器31に記憶させておき、それを読み出す際に操作するボタン等であってもよい。また、後述する治療セッションにおいて、刺激が強いと感じたときに押すためのものであってもよい。配線36は、例えば、保護用の絶縁被膜で覆われた導線で構成されている。
 図5は、電気刺激治療器31の電極パッド37の正面図である。図6は、電気刺激治療器31の電極パッド37の背面図である。図7は、電気刺激治療器31の電極パッド37の断面図であって、図5のVII-VII断面を示している。
 電極パッド37は、不関電極38と、一対の印加電極39A,39Bとを含む。
 不関電極38および一対の印加電極39A,39Bは、人体1が屈曲(可動)したときに、その屈曲に合わせて湾曲可能な可撓性を有している。この実施形態では、不関電極38および一対の印加電極39A,39Bは、それぞれ、人体1の皮膚に面する第1面40,42A,42Bおよび第1面40,42A,42Bの反対側の第2面41,43A,43Bを有するシート状(板状)のゴム基材44で構成されている。
 ここで、「シート状のゴム基材44」とは、例えば、厚さが0.5mm~2.0mmの領域が大部分を占める部材を意味している。むろん、当該ゴム基材44は、部分的に、上記範囲の厚さを超える構造を有していてもよい。そのような構造としては、例えば、後述する第1端子90、第2端子92A,92B等が挙げられる。
 不関電極38は、この実施形態では横長な略四角形状である。不関電極38は、四角形の辺を構成する第1端部45、第2端部46、第3端部47および第4端部48を有している。
 第1端部45は、例えば、不関電極38が人体1に取り付けられた際の不関電極38の上端部であり、第3端部47と対向している。つまり、第3端部47は、不関電極38が人体1に取り付けられた際の不関電極38の下端部である。第2端部46および第4端部48は、第1端部45と第3端部47とを連結しており、互いに対向している。
 不関電極38は、例えば、第1端部45および第3端部47に沿う横方向Bの長さが9.5cm程度であり、第2端部46および第4端部48に沿う縦方向Aの長さが5.3cm程度である。
 一対の印加電極39A,39Bは、それぞれ、この実施形態では縦長な略四角形状である。各印加電極39A,39Bは、それぞれ、四角形の辺を構成する第1端部86A,86B、第2端部87A,87B、第3端部88A,88Bおよび第4端部89A,89Bを有している。
 第1端部86A,86Bは、例えば、各印加電極39A,39Bが人体1に取り付けられた際の各印加電極39A,39Bの上端部であり、第3端部88A,88Bと対向している。つまり、第3端部88A,88Bは、各印加電極39A,39Bが人体1に取り付けられた際の各印加電極39A,39Bの下端部である。第2端部87A,87Bおよび第4端部89A,89Bは、第1端部86A,86Bと第3端部88A,88Bとを連結しており、互いに対向している。
 各印加電極39A,39Bは、例えば、第1端部86A,86Bおよび第3端部88A,88Bに沿う横方向Bの長さが5.3cm程度であり、第2端部87A,87Bおよび第4端部89A,89Bに沿う縦方向Aの長さが9.5cm程度である。つまり、一対の印加電極39A,39Bの横方向Bのトータルの長さは、不関電極38の横方向Bの長さよりも長くなっている。
 不関電極38の第2面41には、第1端子90が一体的に設けられている。第1端子90は、不関電極38の第2面41から突出している。第1端子90は、一方側(図5の上側)に向く第1差込口91を有し、他方側(図5の下側)が閉塞された筒状に形成されている。この実施形態では、第1差込口91は、不関電極38の第1端部45と面一である。
 一対の印加電極39A,39Bの第2面43A,43Bには、それぞれ、第2端子92A,92Bが一体的に設けられている。第2端子92A,92Bは、一対の印加電極39A,39Bの第2面43A,43Bから突出している。第2端子92A,92Bは、第1差込口91と同じ方向に向く第2差込口93A,93Bを有し、他方側(図5の下側)が閉塞された筒状に形成されている。この実施形態では、第2差込口93A,93Bは、それぞれ、一対の印加電極39A,39Bの第1端部86A,86Bと面一である。
 また、不関電極38の第2面41には、薄肉部94が形成されている。薄肉部94は、不関電極38において比較的薄く形成された部分であり、例えば、0.3mm~2.0mmの厚さを有している。薄肉部94は、第2端部46および第4端部48に沿う直線状の領域(例えば、53mm程度の幅を有している)である一対の薄肉部94を含んでいる。
 一対の薄肉部94は、不関電極38の第1端部45から第3端部47に至るまで互いに平行に延び、かつ第1端子90を間に挟んで配置されている。なお、一対の薄肉部94は、いずれも、第1端部45および第3端部47に沿う方向Bにおいて、第1端子90から離れている。不関電極38は、一対の薄肉部94が形成されていることによって、薄肉部94を折り目として折り曲げやすく形成されている。これにより、不関電極38を、人体1の皮膚の湾曲に合わせて良好に貼着することができる。
 各印加電極39A,39Bの第2面43A,43Bには、薄肉部95A,95Bが形成されている。薄肉部95A,95Bは、各印加電極39A,39Bにおいて比較的薄く形成された部分であり、例えば、0.3mm~2.0mmの厚さを有している。薄肉部95A,95Bは、それぞれ、各印加電極39A,39Bの端部(例えば、印加電極39A,39Bの第2端部87A,87Bおよび印加電極39A,39Bの第4端部89A,89B)から第3端部88A,88Bに延びる直線状の領域(例えば、53mm程度の幅を有している)である複数の薄肉部95A,95Bを含んでいる。
 複数の薄肉部95A,95Bは、印加電極39A,39Bの第2端部87A,87Bおよび印加電極39A,39Bの第4端部89A,89Bから第3端部88A,88Bに至るまで互いに平行に延びている。この実施形態では、3本の薄肉部95A,95Bが、ストライプ状に形成されている。
 各印加電極39A,39Bは、複数の薄肉部95A,95Bが形成されていることによって、薄肉部95A,95Bを折り目として折り曲げやすく形成されている。これにより、各印加電極39A,39Bを、人体1の皮膚の湾曲に合わせて良好に貼着することができる。また、各印加電極39A,39Bの角部96A,96Bを境に隣り合う端部同士を繋ぐ直線状の薄肉部95A,95Bが形成され、さらにこの実施形態では、角部96A,96Bから内方領域に向かって順にストライプ状に形成されている。そのため、例えば治療後に、角部96A,96Bを指で摘まむことによって、各印加電極39A,39Bを角部96A,96Bから剥がしやすくすることができる。
 そして、不関電極38および一対の印加電極39A,39Bは、いずれも、ゴム基材44と、ゴム基材44に埋め込まれた導電性シート97とからなる導電性ゴムシートによって構成されている。
 ゴム基材44は、不関電極38および一対の印加電極39A,39Bの外形を形成している。一方、導電性シート97は、ゴム基材44に覆われることによって、ゴム基材44に埋め込まれている。図5および図6では、不関電極38および一対の印加電極39A,39Bのそれぞれにおいて、導電性シート97が埋め込まれた領域を破線で示している。
 ゴム基材44は、この実施形態では、カーボンブラックを含有するシリコーンゴムからなるシートで構成されている。ゴム基材44の材料としては、導電性を有するゴムであれば、カーボンブラックを含有するシリコーンゴムに限らない。例えば、シリコーンゴムに混入する導体(導電性充填剤)としては、カーボンブラックの他、銀粉末、金メッキされたシリカやグラファイト、導電性酸化亜鉛等であってもよい。また、イオン導電性シリコーンゴムを、ゴム基材44の材料として使用してもよい。
 導電性シート97は、この実施形態では、導電性メッシュで構成されている。導電性メッシュとしては、例えば、銀糸等の導電性繊維で形成されたメッシュが挙げられる。導電性シート97は、図7に示すように、その面内に多数の開口49(格子の窓部分)を有している。
 導電性シート97は、シート状のゴム基材44のほぼ全体にわたって埋め込まれている。ここで、「ほぼ全体」とは、導電性シート97の周縁とゴム基材44の周縁(この実施形態では、不関電極38および一対の印加電極39A,39Bの各端部45~48および86A,86B~89A,89B)との間に、少しのマージン(厚さ方向全体がゴム基材44のみからなる部分98)が設けられていてもよいということである。この実施形態では、導電性シート97は、その全周がゴム基材44の当該部分98に取り囲まれている。マージンの大きさは、例えば、製造時の導電性シート97の位置ズレを考慮して設定された大きさであってもよい。
 したがって、図5に示すように、導電性シート97は、不関電極38および一対の印加電極39A,39Bの各第1端部45,86A,86Bに設けられた第1端子90および第2端子92A,92Bにオーバーラップしていてもよい。言い換えれば、不関電極38および一対の印加電極39A,39Bにおいて、導電性シート97は、第1端子90および第2端子92A,92Bに埋め込まれていてもよい。
 また、この実施形態では、導電性シート97は、ゴム基材44の厚さ方向において、ゴム基材44の第2面41,43A,43B(人体1の皮膚に接触しない面)側に偏って配置されている。これにより、導電性シート97からゴム基材44の第1面40,42A,42B(人体1の皮膚に接触する面)までの厚さTと、導電性シート97からゴム基材44の第2面41,43A,43Bまでの厚さTとを比べると、厚さTが厚さTよりも大きくなっている。
 つまり、不関電極38および一対の印加電極39A,39Bは、第1面40,42A,42B側から順に、相対的に大きな厚さTを有するゴム基材44の第1部分99、導電性シート97、相対的に小さな厚さTを有するゴム基材44の第2部分100を有していてもよい。他の言い方で、不関電極38および一対の印加電極39A,39Bは、第1面40,42A,42B側から順に、相対的に大きな厚さTを有する第1ゴム層99、導電性シート97、相対的に小さな厚さTを有する第2ゴム層100の3層構造を有していてもよい。
 以上のような電極パッド37を作製するには、例えば、まず、導電性シート97およびゴム基材44の材料としてのゴムシートが準備される。次に、ゴムシートが軟化する温度以上である所定の温度まで金型が事前に加熱された後、金型内に、導電性シート97とゴムシートとがこの順に積層される。次に、ゴムシートの表面を押圧することによって、導電性シート97およびゴムシートをプレス成形する。これにより、軟化したゴムシートの材料が金型の形状まで広がると共に、導電性シート97の開口49を通って、導電性シート97の表面および裏面の両面に行き渡る。その結果、導電性シート97が、ゴム基材44の形状となったゴムシートの材料に埋め込まれた状態となる。その後、金型が冷却され、金型からゴム基材44を取り外すことによって、不関電極38および一対の印加電極39A,39Bが得られる。
 そして、電極パッド37を人体1に取り付けるには、図8に示すように、第1端子90および第2端子92A,92Bに、配線36の先端に接続された配線プラグ(図示せず)を接続し、別途準備した導電性粘着パッド(例えば、導電性の粘着ゲル等)を介して、自分の仙骨の背面直上の皮膚に貼り付ければよい。
 一方、足趾用電極61は、第1電極63、第2電極64および第3電極65を含んでいてもよい。この実施形態では、第3電極65が基準電極(Reference electrode)であってもよく、第1電極63は、第3電極65に対して負電位の電極(負電極)であってもよい。第2電極64は、第3電極65に対して正電位の電極(正電極)であってもよい。
 そして、足趾用電極61を人体1に取り付けるには、図9に示すように、第1電極63、第2電極64および第3電極65を、例えば、足の母趾外転筋27の筋線維が走行する方向に沿って、母趾外転筋27の筋線維に対向するように、つま先側からこの順に貼り付ければよい。この母趾外転筋27は、前述の腓骨神経16および脛骨神経17につながる神経(例えば、内側足底神経(L5~S2))によって支配される筋線維である。また、第1電極63と第2電極64は、例えば、第1電極63を母趾の根本(母趾丘)に、第2電極64を踵と母趾の根本(母趾丘)との中間に取付け、相互の電極間距離を広くとることが好ましい。
 図10は、電気刺激治療器31の電気的構成を示すブロック図である。
 電気刺激治療器31の筐体32には、配線基板(図示せず)が内蔵されており、配線基板には、コントローラ50が設けられている。コントローラ50には、モニタ33(表示部)前述のスタート/ストップボタン34、操作ボタン35(入力部)、一対の印加電極39および足趾用電極61が電気的に接続されている。スタート/ストップボタン34、操作ボタン35からの入力信号がコントローラ50に入力され、コントローラ50からの出力信号が一対の印加電極39に出力される。また、足趾用電極61で検出された筋電信号は、コントローラ50に入力され、コントローラ50で処理される。
 コントローラ50は、半導体チップから構成されていてもよい。この実施形態では、コントローラ50は、刺激信号出力部51、筋電信号処理部52、切替部53、筋電信号選択部54、記憶部55およびフィルタ回路56を含んでいる。
 刺激信号出力部51は、例えば、CPU、ROMやRAM等のメモリ、タイマー等を含む半導体集積回路(IC:Integrated Circuit)で構成されていてもよい。刺激信号出力部51は、刺激信号出力回路と称してもよい。刺激信号出力部51は、記憶部55に予め記憶された刺激電圧を一対の印加電極39に出力する。記憶部55に記憶される刺激電圧の情報としては、例えば、被治療者それぞれに適した刺激信号のパルス波の幅(パルス幅)、周波数等が挙げられる。
 また、刺激信号出力部51は、被治療者に与えた電気刺激の情報(パルス幅、周波数等)を、モニタ33に表示する。この実施形態では、電気刺激のパルスの振幅の大きさを予め段階的に複数(例えば、5段階)に区分し、出力された振幅の大きさに応じて、当該振幅が何段目であるのかをモニタ33に表示してもよい。
 なお、図10では、刺激信号出力部51は、記憶部55から独立した構成として示されているが、例えば、記憶部55に記憶された情報のうち刺激信号出力部51に関連する情報を記憶した部分を内蔵していてもよい。
 筋電信号処理部52は、例えば、CPU、ROMやRAM等のメモリ、タイマー等を含む半導体集積回路(IC:Integrated Circuit)で構成されていてもよい。筋電信号処理部52は、筋電信号処理回路と称してもよい。筋電信号処理部52は、足趾用電極61で検出された筋電信号を処理し、モニタ33に表示する。例えば、筋電信号処理部52は、足趾用電極61で検出された筋電信号の振幅を定量的に算出し、その結果を、視覚的にモニタ33に表示してもよい。この実施形態では、振幅の大きさを予め段階的に複数(例えば、5段階)に区分し、算出された振幅の大きさに応じて、当該振幅が何段目であるのかをモニタ33に表示してもよい。
 また、筋電信号処理部52は、予め記憶部55に記憶された条件のときに、筋電信号を検出および処理しないようになっている。この実施形態では、人体1の仙骨3から足趾18~22の表面までの距離(x)を、人体1の仙骨3または当該仙骨3近傍を通る神経S3等の伝達速度(v)で除したときの商(x/v)に基づいて設定された検出停止期間25(後述)の間、筋電信号を検出および処理しないようになっている。
 なお、図10では、筋電信号処理部52は、記憶部55から独立した構成として示されているが、例えば、記憶部55に記憶された情報のうち筋電信号処理部52に関連する情報を記憶した部分を内蔵していてもよい。
 切替部53は、足趾用電極61(検出電極)と筋電信号処理部52との接続をオン/オフするためのものである。切替部53は、例えば、アナログスイッチ(例えば、CMOS、バイポーラトランジスタ、リレー等で構成されたアナログスイッチ)で構成されていてもよいし、一部もしくは全てがデジタル信号処理で動作する構成であってもよい。
 筋電信号選択部54は、例えば、CPU、ROMやRAM等のメモリ、タイマー等を含む半導体集積回路(IC:Integrated Circuit)で構成されていてもよい。筋電信号選択部54は、筋電信号選択回路と称してもよい。筋電信号選択部54は、記憶部55に設定された検出停止期間25(後述)の間、足趾用電極61と筋電信号処理部52との接続がオフとなるように、かつ、検出停止期間25の終了時に、足趾用電極61と筋電信号処理部52との接続がオンとなるように、切替部53を制御する。
 なお、図10では、筋電信号選択部54は、記憶部55から独立した構成として示されているが、例えば、記憶部55に記憶された情報のうち筋電信号選択部54に関連する情報を記憶した部分を内蔵していてもよい。
 記憶部55は、例えば、ROMやRAM等のメモリで構成されている。記憶部55には、例えば、前述の刺激電圧の情報、検出停止期間25等が記憶されている。
 フィルタ回路56は、この実施形態では、ノッチフィルタ57、全波/半波整流器58および積分器59を含んでいる。これにより、筋電信号処理部52に入力される筋電信号のノイズを低減することができる。また、積分器59が設けられていることによって、筋電信号の振幅、ピーク等を容易に検出できるので、筋電信号処理部52において筋電信号を効率よく処理することができる。なお、積分器59は、積分回路と称してもよい。
 なお、フィルタ回路56は、図10の構成に限らず、公知のフィルタ回路に採用される構成であってもよい。例えば、ノッチフィルタ57に代えてローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ等が採用されてもよい。
 また、フィルタ回路56は、全てアナログ回路で構成されていてもよいし、一部もしくは全てがデジタル信号処理で動作する構成であってもよい。
 また、フィルタ回路56を全てアナログ回路で構成した場合、ノイズをより低減するために、前段のアナログ回路部分を他のデジタル回路から絶縁したブロック構成にしてもよい。
 また、足趾用電極61と切替部53との間には、足趾用電極61で検出された筋電信号を増幅するための増幅器60が設けられている。
 図11は、電気刺激治療器31の筋電データのモニタリングのフローチャートである。
 電気刺激治療器31を使用して治療を行うには、例えば、被治療者は、図8に示すように、まず電極パッド37を自身の体に取り付ける。
 電極パッド37の取り付け後、操作ボタン35を操作して、自分に適した治療メニューを選択し、スタート/ストップボタン34を押す。これにより、電極パッド37から電気的な刺激信号が出力されて第3仙骨神経S3が刺激され、電気刺激治療器31による治療を開始することができる(ステップS1)。刺激信号(出力パルス)の条件は、例えば、パルス幅が1μs(秒)~500μs(秒)である。この出力パルスが、1Hz~50Hzの周波数で連続して出力されることによって1周期をTとする刺激信号パルス66が構成される。
 より具体的には、図12に示すように、刺激信号パルス66は、立ち上がり部分t=2秒、継続部分t=2秒、立ち下り部分t=1秒および次のパルスまでの間隔t=1秒の合計6秒のパターンで継続的に印加されてもよい。むろん、t、t、tおよびtの長さや、電圧の大きさ等は、使用者の体の大きさ等に合わせて適宜変更することができる。例えば、立ち上がり部分tと立ち下り部分tとを同じ時間に設定してもよい。
 一方、足趾用電極61は、電極パッド37からの刺激信号が骨盤神経13および陰部神経14に適切に伝達されているかどうかを確認(モニタリング)するための検出電極として、足趾に取り付けておけばよい。足趾用電極61が取り付けられる足趾は、第1指~第5指18~22のいずれであってもよいが、取り付やすさの観点から、第1指18が好ましい。
 より具体的には、図9に示すように、第1電極63、第2電極64および第3電極65を、例えば、足の母趾外転筋27の筋線維が走行する方向に沿って、母趾外転筋27の筋線維に対向するように、つま先側からこの順に貼り付ければよい。
 そして、電極パッド37からの刺激に伴って起こる筋肉の収縮によって得られた実測データ(例えば、40~60パルス分)をアベレージングしてノイズ等を除去し、筋電データ波形(図12の筋電信号67の波形)が作成される。そして、この筋電信号67の波形と刺激信号パルス66の波形とが比較される。筋電信号67の波形が刺激信号パルス66の波形に同調して発生していれば、一対の印加電極39が適切な位置に取り付けられて電気的な刺激が与えられていることを意味している。
 ここで、図13に示すように、筋電信号処理部52が、刺激出力の開始(一対の印加電極39による電気刺激の開始)から継続して、足趾用電極61で検出された筋電信号を検出および処理する場合を考える。つまり、刺激出力期間24の間、筋電信号処理部52が筋電信号を検出および処理しない検出停止期間25を設けない(検出停止期間25がオフ)場合である。
 この場合、一対の印加電極39から人体1の仙骨3の背面に電気刺激を与えたときに、刺激電圧が足趾18~22にノイズとして伝わり、足趾18~22の筋電データに大きなノイズ68が重畳して発生する。そのため、図12の筋電信号67の波形に対応する、筋電モニタリングに必要な筋電図部69を精度よく検出できない場合がある。
 そこで、この実施形態では、図14に示すように、刺激出力の開始から、刺激出力期間24を含む一定期間、筋電信号処理部52が筋電信号を検出および処理しない検出停止期間25がオンになる(ステップS2)。これにより、刺激出力開始時に発生する大きなノイズ68を排除でき、検出停止期間25においては、ノイズの少ない筋電信号72の波形にすることができる。この点、この実施形態では、当該検出停止期間25が、人体1の仙骨3から足趾18~22の表面までの距離(x)を、人体1の仙骨3または当該仙骨3近傍を通る神経S3等の伝達速度(v)で除したときの商(x/v)に基づいて設定されている。つまり、この検出停止期間25の間、足趾18~22の筋電信号が筋電信号処理部52で検出されない。
 当該検出停止期間25の間、人体1に与えられた刺激信号は、神経S3等を介して足趾18~22まで到達していない。つまり、電気刺激の印加後、その刺激信号が神経S3等を介して足趾18~22に到達するまでの時間に検出される筋電信号は、筋電モニタリングに必要な情報を乗せた信号ではなくノイズ68である。そのため、当該検出停止期間25の間、足趾18~22の筋電信号を筋電信号処理部52で検出しないことによって、筋電信号のノイズ68を排除することができる。これにより、仙骨3または当該仙骨3近傍を通る神経S3等を介して足趾18~22に到達する、筋電モニタリングに必要な筋電図部69を精度よく検出することができる。
 この実施形態では、検出停止期間25は、例えば、25msとしているが、検出停止期間25として、例えば、15ms~25msで設定可能である。むろん、検出停止期間25は、この範囲に限定するのではなく、患者の年齢や性別のサンプルデータから人体の仙骨から足趾表面までの距離に基づいたいくつかのパターンと、人体の仙骨または当該仙骨近傍を通る神経の伝達速度とに基づいて決定されてもよい。
 図14のように検出停止期間25を設けるだけでも筋電モニタリングの精度を向上できるが、図11のステップS3以降の制御を行うことによって、筋電モニタリングの精度をさらに向上させることができる。
 つまり、図14では、検出停止期間25の間、筋電信号処理部52で筋電信号は検出されないが、筋電信号処理部52と足趾用電極61(増幅器60)との間が、フィルタ回路56を介して継続して接続されている。したがって、筋電信号処理部52に入力される筋電信号の電位が経時的に変化している。そのため、検出停止期間25の終了時に、フィルタ回路56の時定数の影響等により、筋電信号72の波形にピークらしき部分70が発生し、終了時の筋電信号72が若干不安定になる可能性がある。
 そこで、この実施形態では、検出停止期間25の開始時に、足趾用電極61と筋電信号処理部52との接続がオフとされる。より具体的には、筋電信号選択部54が、刺激信号の出力(検出停止期間25の開始)に基づいて、切替部53の電位を基準電位71もしくは前置ホールドしたドリフト電位にするか、または切替部53を開放状態(オープン)にする(ステップS3)。これにより、切替部53に対して筋電信号処理部52の電位が、基準電位71もしくは前置ホールドしたドリフト電位に固定されるか、または刺激信号の入力時(検出停止期間25の開始時)の電位に固定される。なお、基準電位71は、例えば、増幅器60の動作基準点である中立電圧であり、±の電源の中立電圧0ボルト、あるいはフィルタ回路56で使用する回路の動作基準点である中立電圧、増幅器60の出力が筋電信号を増幅していない時の電圧もしくは接地電位等を、基準電位と設定すればよい。
 その後、検出停止期間25が終了したか否か判別される(ステップS4)。検出停止期間25が終了すると(ステップS4のYES)、筋電信号選択部54が、切替部53を切り替えることによって、足趾用電極61と筋電信号処理部52との接続がオンとされる(ステップS5)。このように、足趾用電極61と筋電信号処理部52との接続を、検出停止期間25の開始時にオフとし、検出停止期間25の終了時にオンとすることによって、図15に示すように、検出停止期間25の終了時にピークらしき部分70が発生せず、筋電信号72の電位を安定させることができる。
 そして、フィルタ回路56では、ノッチフィルタ57および全波/半波整流器58を筋電信号が通過することによってフィルタリングされ、積分器59で集合信号が生成される(ステップS6)。より具体的には、足趾用電極61で検出された複数の筋電信号73が所定のサンプリング時間の間積分され、積分された集合信号74(第1信号)として筋電信号処理部52に出力される。サンプリング時間は、例えば、刺激出力期間t+t+t秒~T秒間であってもよい。
 ここで、図16に示すように、電気刺激治療器31による治療中、人体1の体動等に起因する変動、商用交流の混入による変動、人体1の周辺の電気機器(例えば、スマートフォン等)からのノイズ混入等によって、筋電図に基線変動(ドリフト75)が発生する場合がある。
 そこで、筋電信号処理部52では、集合信号74のうち所定の第1期間における第1部分76を平均化した値と、集合信号74のうち第1部分76の時間的前後にある所定の第2期間における第2部分77を平均化した値との差に基づいて、集合信号74の振幅が算出される。より具体的には、集合信号74の第1部分76および第2部分77は、加算平均処理または移動平均処理等の平均化処理することによって平均化される(ステップS7)。これにより、図17に示すように、第1部分76の平均値(第1平均値78)および第2部分77の平均値(第2平均値79)が算出される。
 第1部分76は、例えば、集合信号74のピーク部80の前後±t秒を含む期間を設定すればよい。一方、第2部分77は、集合信号74の裾野部81の0秒~t秒の期間を設定すればよい。
 そして、第1平均値78から第2平均値79を差し引くことによって、集合信号74のドリフト75を排除することができる。その結果、集合信号74の振幅A、ピーク等を精度よく検出することができる。なお、第2部分77で一定以上の信号入力があった場合は、正常な筋電信号が取得できない状況と判断して、モニタ33にエラー表示(例えば、後述する第2レベルゲージ83を、通常とは異なる色で点灯させる等)を表示させてもよい。
 次に、処理された集合信号74の強度がモニタ33(表示部)に出力される(ステップS8)。まず、この実施形態では、図18に示すように、モニタ33には、刺激出力(STIM:stimulation)の強度を示す第1レベルゲージ82と、筋電信号(筋電図 EMG:electromyography)の強度を示す第2レベルゲージ83とが表示されている。
 第1レベルゲージ82は、この実施形態では、5段階に区分されている。出力された刺激パルスの振幅の大きさに応じて、第1レベルゲージ82の各点灯部84が下から順に点灯する。5つ全ての点灯部84が点灯するように第1レベルゲージ82が振れると、出力された刺激パルスの振幅が最大ということを意味している。
 同様に、第2レベルゲージ83は、この実施形態では、5段階に区分されている。筋電信号処理部52で算出された筋電信号の振幅Aの大きさに応じて、第2レベルゲージ83の各点灯部85が下から順に点灯する。5つ全ての点灯部85が点灯するように第2レベルゲージ83が振れると、筋電信号が最大ということを意味している。
 そして、この実施形態では、図12に示したように、一対の印加電極39が適切な位置に取り付けられて治療が行われていれば、刺激信号パルス66の波形の間隔に同調して、筋電信号67の波形が発生する。したがって、図18のモニタ33では、まず第1レベルゲージ82が振れた後(点灯部84が下から順に点灯し、刺激パルスの大きさに応じた点灯部84まで到達した時点で、点灯が消失した後)、第2レベルゲージ83が振れる。この第2レベルゲージ83のレベル表示が、第1レベルゲージ82のレベル表示に同調して振れていれば、一対の印加電極39が適切な位置に取り付けられて電気的な刺激が与えられていることを意味している。
 例えば、第1レベルゲージ82のレベル表示と、第2レベルゲージ83のレベル表示とが、所定の間隔で交互に発生する場合が該当する。したがって、被治療者や医療関係者は、モニタ33の第1レベルゲージ82および第2レベルゲージ83を目視するだけで、一対の印加電極39が適切な位置に取り付けられているか否かを、容易に確認することができる。この確認に基づき、一対の印加電極39が適切な位置に取り付けられていないと判別される場合、一対の印加電極39からの刺激信号の供給を停止してもよい。
 また、この実施形態では、ドリフト75を排除した振幅Aが0を超えていても、所定の大きさ未満であれば、第2レベルゲージ83に表示させない。これにより、所定の大きさ未満の振幅Aの筋電信号の表示を排除し、不要なノイズに起因する筋電信号が第2レベルゲージ83に表示されることを防止することができる。その結果、刺激信号と、それに応答して発生する筋電信号との関係を容易に確認することができる。
 以上、本発明の一実施形態を説明したが、本発明は、他の形態で実施することもできる。
 例えば、前述の実施形態では、電気刺激治療器の一例として排尿障害治療器(便失禁治療器)を取り上げたが、本発明は、排尿障害治療器や便失禁治療器に限らず、これら以外の他の疾患を対象とした電気刺激療法に使用される機器全般に適用することができる。
 また、例えば、前述の実施形態では、携帯型の電気刺激治療器31の構成について説明したが、電気刺激治療器31の電気的構成およびその制御は、図19に示すように、設置型(据え置き型)の電気刺激治療器23に適用されてもよい。このような設置型の電気刺激治療器23は、医療機関において複数の患者で共用される。そのため、患者一人一人の過去の治療データを記憶するメモリを備えていてもよい。
 また、例えば、前述の実施形態では、検出停止期間25の間、筋電信号処理部52内の動作によって筋電信号を検出しないようにしている。これに対し、切替部53もしくはフィルタ回路56をデジタル信号処理で構成する場合には、例えば図10に示すように、足趾用電極61と切替部53との間、もしくは切替部53とフィルタ回路56との間にA/D変換器26を設けてもよい。これにより、検出停止期間25の間、当該A/D変換器26によるアナログ/デジタル変換を中止することによって、筋電信号処理部52による筋電信号の検出を止めることができる。
 なお、サンプリング時間において常にサンプリングを行うのではなく、サンプリング時間であっても、例えば継続部分tの時間のみでサンプリングするような構成であってもよい。この場合、検出停止期間25を一定値とするのではなく、立ち上がり部分tや立ち下り部分tにおいて常に検出がされないように十分に大きくすること、即ち、複数の検出停止期間25を使用することによって容易に実現することができる。
 さらに、この実施形態では、検出信号は刺激信号パルスを構成する個々の出力パルスごとにサンプリングされているが、これに限定されず、特定の出力パルスの個数ごと、例えば、2パルスおきや、3パルスおきにサンプリングされてもよい。この場合も、複数の検出停止期間25を用意し、1つの検出停止期間25を、例えば2出力パルス分等に設定することよって容易に実現することができる。このような処理は、上記のドリフトに関する処理や振幅Aに関する処理等を、デジタルデータを使用して行うに際し、使用可能なメモリ容量やCPU処理能力に制限が発生する場合に効果的である。
 また、例えば、一対の印加電極39が適切な位置に取り付けられているか否かの確認手段として、前述の実施形態のような第1レベルゲージ82や第2レベルゲージ83等のレベル表示ではなく、図12に示すような信号の波形をモニタ33に表示する方法であってもよい。
 また、例えば、前述の実施形態では、本発明の表示部の一例として、使用者にメッセージや画像を表示する液晶のモニタ33を示したが、電気刺激治療器31の動作状態を使用者に示す手段は、モニタ33でなくてもよい。例えば、被治療者への伝達事項(例えば、エラーメッセージ、第1レベルゲージ82、第2レベルゲージ83等)を予め筐体32の前面パネルに設け、LED等で点灯させたり、そのメッセージ近傍のランプを点灯させたりすることで被治療者に知らせてもよい。
 また、前述の実施形態では、筋電図部69を効率よく検出するための例を挙げている。ただし、刺激信号によるノイズ68と筋電図部69とを分離して確実に筋電図部69を検出できればよい。例えば、検出停止期間25におけるノイズ68の振幅レベルを筋電図部69に比較して極めて小さくなるように処理(例えば、振幅を1/100にするような処理)することによって、検出停止期間25の経過後の筋電信号のみを的確に検出することができる。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 本出願は、2019年9月24日に日本国特許庁に提出された特願2019-173397号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1 人体
 3 仙骨
 12 下腹神経
 13 骨盤神経
 14 陰部神経
 15 坐骨神経
 16 腓骨神経
 17 脛骨神経
 18 第1指(母指)
 19 第2指
 20 第3指
 21 第4指
 22 第5指(小指)
 23 電気刺激治療器
 25 検出停止期間
 31 電気刺激治療器
 33 モニタ
 37 電極パッド
 39 印加電極
 50 コントローラ
 51 刺激信号出力部
 52 筋電信号処理部
 53 切替部
 54 筋電信号選択部
 55 記憶部
 56 フィルタ回路
 57 ノッチフィルタ
 58 全波/半波整流器
 59 積分器
 60 増幅器
 61 足趾用電極
 62 足趾用配線
 63 第1電極
 64 第2電極
 65 第3電極
 66 刺激信号パルス
 67 筋電信号
 68 ノイズ
 69 筋電図部
 71 基準電位
 74 集合信号
 76 第1部分
 77 第2部分
 78 第1平均値
 79 第2平均値
 82 第1レベルゲージ
 83 第2レベルゲージ
 A 振幅
 

Claims (10)

  1.  被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、
     被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、
     前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、
     前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、
     前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、
     前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される、電気刺激治療器。
  2.  前記検出電極と前記筋電信号処理部との接続をオン/オフする切替部と、
     前記検出停止期間の間、前記検出電極と前記筋電信号処理部との接続がオフとなるように、かつ、前記検出停止期間の終了時に、前記検出電極と前記筋電信号処理部との接続がオンとなるように、前記切替部を制御する筋電信号選択部とを含む、請求項1に記載の電気刺激治療器。
  3.  前記筋電信号選択部は、前記検出停止期間の間、前記切替部の電位を基準電位もしくは前置ホールドしたドリフト電位にするか、または前記切替部を開放状態にする、請求項2に記載の電気刺激治療器。
  4.  前記筋電信号処理部における前記筋電信号の処理の前に、前記検出電極で検出された筋電信号を所定のサンプリング時間の間積分し、積分された信号を第1信号として前記筋電信号処理部に出力する積分器を含む、請求項1~3のいずれか一項に記載の電気刺激治療器。
  5.  前記筋電信号処理部は、前記第1信号のうち所定の第1期間における第1部分を平均化した値と、前記第1信号のうち前記第1部分の時間的前後にある所定の第2期間における第2部分を平均化した値との差に基づいて、前記第1信号の振幅を判別する、請求項4に記載の電気刺激治療器。
  6.  前記第1信号の前記第1部分および前記第2部分は、加算平均処理または移動平均処理することによって平均化される、請求項5に記載の電気刺激治療器。
  7.  前記一対の印加電極に前記刺激信号を供給し、かつ当該刺激信号の振幅を段階的に区分して、前記刺激信号の振幅を前記表示部にレベル表示する刺激信号出力部を含み、
     前記筋電信号処理部は、所定の振幅以上の前記第1信号の前記第1部分を段階的に区分して、前記第1部分の振幅を前記表示部にレベル表示する、請求項5または6に記載の電気刺激治療器。
  8.  排尿障害治療器を含む、請求項1~7のいずれか一項に記載の電気刺激治療器。
  9.  被治療者の仙骨の背面に配置され、前記仙骨の背面から電気的な刺激信号を供給する一対の印加電極と、
     被治療者の足趾表面に配置され、前記足趾の筋電信号を検出する検出電極と、
     前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを判別するための表示部と、
     前記検出電極で検出された筋電信号を処理して前記表示部に視覚的に表示する筋電信号処理部とを含み、
     前記筋電信号処理部は、前記刺激信号の出力から所定の検出停止期間の間、前記足趾の筋電信号を検出せず、
     前記検出停止期間は、人体の仙骨から足趾表面までの距離(x)を、人体の仙骨または当該仙骨近傍を通る神経の伝達速度(v)で除したときの商(x/v)に基づいて設定される、電気刺激治療器を用いる電気刺激治療方法であって、
     前記一対の印加電極を、被治療者の仙骨の背面に配置するステップと、
     被治療者の足趾表面に検出電極を配置するステップと、
     前記一対の印加電極から前記仙骨の背面に電気的な刺激信号を供給するステップと、
     前記一対の印加電極からの前記刺激信号の供給中、前記足趾の筋電信号が前記刺激信号に応答して発生したものか否かを、前記表示部を視認して判別するステップとを含む、電気刺激治療方法。
  10.  前記表示部を視認して、前記足趾の筋電信号が前記刺激信号に応答して発生したものでないと判別された場合、前記一対の印加電極からの前記刺激信号の供給を停止するステップを含む、請求項9に記載の電気刺激治療方法。
     
PCT/JP2019/051118 2019-09-24 2019-12-26 電気刺激治療器および電気刺激治療方法 WO2021059545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19946283.9A EP4035726A4 (en) 2019-09-24 2019-12-26 THERAPEUTIC DEVICE FOR ELECTRICAL STIMULATION AND THERAPEUTIC METHOD FOR ELECTRICAL STIMULATION
US17/762,933 US20220339449A1 (en) 2019-09-24 2019-12-26 Electrical stimulation therapeutic device and electrical stimulation therapeutic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173397 2019-09-24
JP2019173397A JP7465496B2 (ja) 2019-09-24 2019-09-24 電気刺激治療器

Publications (1)

Publication Number Publication Date
WO2021059545A1 true WO2021059545A1 (ja) 2021-04-01

Family

ID=75154978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051118 WO2021059545A1 (ja) 2019-09-24 2019-12-26 電気刺激治療器および電気刺激治療方法

Country Status (4)

Country Link
US (1) US20220339449A1 (ja)
EP (1) EP4035726A4 (ja)
JP (1) JP7465496B2 (ja)
WO (1) WO2021059545A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810704U (ja) 1981-07-10 1983-01-24 島津理化器械株式会社 筋電位モニタ装置
JPH04197367A (ja) * 1990-11-29 1992-07-16 Nippon Zeon Co Ltd ペースメーカー
US20090054804A1 (en) * 2007-04-03 2009-02-26 Nuvasive Inc. Neurophysiologic monitoring system
US20090171417A1 (en) * 2008-01-02 2009-07-02 Philipson Benjamin J System and methods for emg-triggered neuromuscular electrical stimulation
JP2013526962A (ja) * 2010-05-27 2013-06-27 エヌディーアイ メディカル, エルエルシー エネルギー効率について最適化された神経学的障害治療用の波形形状
JP2014525288A (ja) * 2011-08-23 2014-09-29 カーディアック ペースメイカーズ, インコーポレイテッド 迷走神経の捕捉を検出するシステムおよび方法
JP6488498B1 (ja) 2017-09-06 2019-03-27 大塚テクノ株式会社 排尿障害治療器
JP2019515732A (ja) * 2016-04-19 2019-06-13 ブレイン センティネル インコーポレイテッドBrain Sentinel,Inc. 発作の特徴付けのためのシステムおよび方法
JP2019173397A (ja) 2018-03-28 2019-10-10 株式会社熊谷組 土壌固化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120197339A1 (en) * 2009-09-17 2012-08-02 Panasonic Corporation Treatment device for urination disorders

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810704U (ja) 1981-07-10 1983-01-24 島津理化器械株式会社 筋電位モニタ装置
JPH04197367A (ja) * 1990-11-29 1992-07-16 Nippon Zeon Co Ltd ペースメーカー
US20090054804A1 (en) * 2007-04-03 2009-02-26 Nuvasive Inc. Neurophysiologic monitoring system
US20090171417A1 (en) * 2008-01-02 2009-07-02 Philipson Benjamin J System and methods for emg-triggered neuromuscular electrical stimulation
JP2013526962A (ja) * 2010-05-27 2013-06-27 エヌディーアイ メディカル, エルエルシー エネルギー効率について最適化された神経学的障害治療用の波形形状
JP2014525288A (ja) * 2011-08-23 2014-09-29 カーディアック ペースメイカーズ, インコーポレイテッド 迷走神経の捕捉を検出するシステムおよび方法
JP2019515732A (ja) * 2016-04-19 2019-06-13 ブレイン センティネル インコーポレイテッドBrain Sentinel,Inc. 発作の特徴付けのためのシステムおよび方法
JP6488498B1 (ja) 2017-09-06 2019-03-27 大塚テクノ株式会社 排尿障害治療器
JP2019173397A (ja) 2018-03-28 2019-10-10 株式会社熊谷組 土壌固化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4035726A4

Also Published As

Publication number Publication date
EP4035726A1 (en) 2022-08-03
EP4035726A4 (en) 2023-11-01
JP2021049070A (ja) 2021-04-01
US20220339449A1 (en) 2022-10-27
JP7465496B2 (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
Marsolais et al. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient
JP6911108B2 (ja) 定量的神経筋系遮断検知システム及び方法
WO2007019491A2 (en) Method and apparatus for producing therapeutic and diagnostic stimulation
KR20150062905A (ko) 메쉬 구조를 이용한 생체신호 측정 및 전기자극 장치
JP6488498B1 (ja) 排尿障害治療器
JP6531246B1 (ja) 電気刺激治療器
WO2019126340A1 (en) Disposable sensor for neuromuscular transmission measurement
CA2484880A1 (en) Electrical stimulation apparatus and method
CN109475739B (zh) 电刺激治疗仪
WO2021059545A1 (ja) 電気刺激治療器および電気刺激治療方法
CA2398530A1 (en) Electrical stimulation apparatus and method
KR20230012285A (ko) 표면 근전도 측정이 가능한 웨어러블 디바이스
WO2022130958A1 (ja) 電気刺激治療器
KR100328483B1 (ko) 근전도신호의포락선을이용한전기치료장치
RU103733U1 (ru) Установка для диагностики и лечения пациента
WO2022118823A1 (ja) 電気刺激装置、患者管理システムおよび患者の治療情報管理方法
CN204864546U (zh) 用于慢性病辅助诊疗的穴位电刺激装置
US11911613B2 (en) Electrical stimulation treatment device
KR20140000048A (ko) 스캐닝 방식의 저주파 자극기
KR102553071B1 (ko) 경혈점에 대응하는 대상 부위의 생체 전위를 이용한 진단 및 치료 장치
JP6140911B1 (ja) 家庭用電気治療器
Ali et al. Design and implementation of an electrical muscle stimulator for clinically and physical treatment application
PAŞA DEVELOPMENT OF WIRELESS MICROCONTROLLER BASED FUNCTIONAL ELECTRONIC STIMULATION DEVICE FOR DROP FOOT CORRECTION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946283

Country of ref document: EP

Effective date: 20220425