WO2021057860A1 - 基于置障条件下天然气长输管道喷射火研究的实验装置 - Google Patents

基于置障条件下天然气长输管道喷射火研究的实验装置 Download PDF

Info

Publication number
WO2021057860A1
WO2021057860A1 PCT/CN2020/117518 CN2020117518W WO2021057860A1 WO 2021057860 A1 WO2021057860 A1 WO 2021057860A1 CN 2020117518 W CN2020117518 W CN 2020117518W WO 2021057860 A1 WO2021057860 A1 WO 2021057860A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
experimental
combustion
experimental device
obstacle
Prior art date
Application number
PCT/CN2020/117518
Other languages
English (en)
French (fr)
Inventor
田中山
李玉星
赖少川
林武斌
杨文�
刘翠伟
刘刚
李苗
Original Assignee
国家石油天然气管网集团有限公司华南分公司
中国石油大学(华东)
广东华南智慧管道研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家石油天然气管网集团有限公司华南分公司, 中国石油大学(华东), 广东华南智慧管道研究院 filed Critical 国家石油天然气管网集团有限公司华南分公司
Publication of WO2021057860A1 publication Critical patent/WO2021057860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Definitions

  • the present disclosure belongs to the technical field of safety evaluation of natural gas long-distance pipelines, and in particular relates to an experimental device based on the research of jet fire of natural gas long-distance pipelines under barrier conditions.
  • the inventor found that the research on natural gas leakage combustion technology, especially natural gas combustion flame under obstacle conditions, is basically in a blank state.
  • the current research is mainly used to study the natural gas combustion experiment under a single situation, and there is no general small-scale experimental platform. It can simulate the fire characteristics and the mechanism of natural gas combustion by different factors.
  • the purpose of the present disclosure is to provide an experimental device based on the research of the jet fire of the natural gas long-distance pipeline under barrier setting conditions.
  • An experimental device based on the research of the jet fire of the natural gas long-distance pipeline under the condition of barrier setting including
  • Natural gas supply system which is used to provide gas source and pressure for the experimental device
  • Obstacle test experiment system which is used to set obstacles with different parameters at the natural gas combustion outlet
  • the experimental measurement device system includes an array of monitoring points arranged on one side of the experimental device, which is used to detect the temperature and radiation of the monitoring points in the process of natural gas leakage and combustion;
  • the control system is used to control the general experimental wind tunnel system and the data acquisition and processing system.
  • the natural gas supply system includes a natural gas cylinder, a pressure gauge and a pressure reducing valve installed at the outlet of the natural gas cylinder.
  • the experimental combustion system includes an ignition system, a combustion nozzle, and a nozzle tripod for placing the combustion nozzle, wherein the combustion nozzle is used to simulate a leakage hole of natural gas.
  • the obstacle test experiment system includes various experimental obstacles and an obstacle tripod for placing obstacles.
  • the universal experimental wind tunnel system is used to simulate the evaporation, diffusion and leakage of natural gas in the near-surface boundary layer of the atmosphere, to achieve controllable humidity, temperature, radiation and wind speed, and the experimental wind tunnel system is transparent in the adjustment test section.
  • the monitoring point array is composed of a series of monitoring points distributed on the obstacle surface and in different horizontal areas around it, and each monitoring point is simultaneously arranged with thermocouples, radiometers and corresponding thermocouple positions
  • the regulator and the radiometer position regulator, the detection signals of each monitoring point are collected to the data acquisition and processing system for data recording and storage.
  • thermocouple position adjuster and the radiometer position adjuster adopt a rotating lifting platform for adjusting the position and height of the placed object.
  • the data acquisition and processing system includes a signal processor, an acquisition card and a high-speed camera connected to the signal processor, wherein the acquisition card is used to collect experimental parameters of a general experimental wind tunnel system, and the high-speed camera The instrument is used to shoot flame images under various experimental adjustments.
  • control system includes a control valve, a display instrument, a display instrument, and a control terminal.
  • the display instrument displays the parameter data transmitted by the data acquisition and processing system in real time, and is connected to the control terminal.
  • the experimental device is provided with a methane concentration detector, and the fuel of the methane concentration detector is added with odorant ethyl mercaptan.
  • leakage amount, leakage hole parameters, and wind speed parameters of the natural gas can be independently adjusted arbitrarily.
  • This device can perform controllable and quantitative simulation experiments on natural gas leakage and combustion under different conditions such as natural environment, pipeline pressure, gas release rate, leakage hole shape and size, ignition time, various obstacle sizes, positions, and quantities. .
  • thermocouple In this device, the temperature field, radiation field and flame geometry after combustion can be monitored by thermocouple, radiometer and high-speed camera, and the experimental data can be analyzed through the measurement system and data acquisition and processing system.
  • the gas cylinder of this device is mixed with odorant ethanethiol, that is, if the natural gas leaks, it can be found in time, which increases the safety of the device and equipment.
  • Fig. 1 is a schematic structural diagram of an embodiment of the disclosed natural gas leakage combustion experiment platform.
  • Figure 1 1-methane gas cylinder; 2-methane pressure reducing valve; 3- glass rotor flow meter; 4- burner nozzle; 5- obstacle; 6-thermocouple I; 7-thermocouple II; 8-thermoelectric Even III; 9-thermocouple IV; 10-radiometer I; 11-radiometer II; 12-radiometer III; 13-radiometer IV; 14-thermocouple position regulator; 15-radiometer position regulator; 16 -Combustion platform; 17- Acquisition card; 18- High-speed camera; 19- Data acquisition and processing system; 20- Computer; 21- Pipeline.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure, and cannot be understood as a reference to the present disclosure. Disclosure restrictions.
  • an experimental device based on the research of the jet fire of the natural gas long-distance pipeline under the condition of barrier setting includes
  • Natural gas supply system which is used to provide gas source and pressure for the experimental device
  • Obstacle test experiment system which is used to set obstacles with different parameters at the natural gas combustion outlet
  • the experimental measurement device system including monitoring points set around the experimental device, is used to detect the temperature and radiation in the process of natural gas leakage and combustion;
  • the control system is used to control the general experimental wind tunnel system and the data acquisition and processing system.
  • the natural gas supply system includes a natural gas cylinder, a pressure gauge and a pressure reducing valve installed at the outlet of the natural gas cylinder, and a flow meter is connected to the output pipeline of the pressure reducing valve.
  • the experimental combustion system is connected to a natural gas supply system.
  • the experimental combustion system includes an ignition system, a combustion nozzle, and a nozzle tripod for placing the combustion nozzle, wherein the combustion nozzle is used to simulate a leak hole of natural gas.
  • the obstacle test experiment system includes various experimental obstacles and an obstacle tripod for placing obstacles.
  • the distance between the obstacles and the position of the obstacles from the flame can be adjusted by moving a tripod.
  • the tripod is also provided with a rotating lifting platform for adjusting the placement height of obstacles.
  • the experimental wind tunnel system is used to simulate the evaporation, diffusion and leakage of natural gas in the near-surface boundary layer of the atmosphere, to achieve controllable humidity, temperature, radiation and wind speed, and the experimental wind tunnel system to adjust the test section is transparent, which is convenient for observation and data of experimental phenomena recording.
  • the monitoring point array is composed of a series of monitoring points distributed in the same horizontal area on one side of the obstacle, and each monitoring point is simultaneously arranged with thermocouples, radiometers, and corresponding thermocouple position regulators and radiometer positions
  • the regulator, the detection signal of each monitoring point is collected to the data acquisition and processing system to record and save the data, and is connected to the control terminal to display the changes of the physical parameters of each monitoring point in real time.
  • thermocouple position adjuster and the radiometer position adjuster adopt a rotating lifting platform for adjusting the position and height of the placed object.
  • the data acquisition and processing system includes a signal processor, an acquisition card and a high-speed camera connected to the signal processor, wherein the acquisition card is used to collect experimental parameters of a general experimental wind tunnel system, and the high-speed camera is used for Take the flame images under each experimental adjustment.
  • the control system includes a control valve, a display instrument, a display instrument and a control terminal.
  • the display instrument displays the parameter data transmitted by the data acquisition and processing system in real time, and is connected to the control terminal.
  • the control terminal includes but is not limited to a computer.
  • the experimental device is equipped with a methane concentration detector, and the fuel of the methane concentration detector is added with the odorant ethanethiol, that is, the leakage of natural gas can be detected in time, which improves the safety of the device.
  • the natural gas leakage amount, leakage hole parameters and wind speed parameters can be adjusted independently at will.
  • an experimental device based on the study of jet fire in a long-distance natural gas pipeline under barrier conditions is shown in Figure 1. It includes a methane gas cylinder 1, and a pressure relief valve 2 is installed on the connecting pipe at the output end of the methane gas cylinder 1. , The output pipe of the pressure reducing valve 2 is connected with a glass rotor flowmeter 3, the output end of the flowmeter 3 is connected to the input end of the combustion nozzle 4 through the pipe 21, the combustion nozzle 4 is arranged on the combustion platform 16, and the output end of the combustion nozzle 4 Obstacle 5 is arranged at a certain distance, and multiple monitoring points are arranged on one side of obstacle 5. Each monitoring point is equipped with thermocouple and radiometer.
  • thermocouple I 6 thermocouple II 7 thermocouple III 8
  • thermocouple IV 9 thermocouple IV 9
  • the thermocouple is installed on the thermocouple position regulator 14;
  • the pyrometer I 10, the pyrometer II 11, the pyrometer III 12, and the pyrometer IV 13 are arranged in order at a position 1 m on the side of the nozzle.
  • the pyrometer spacing is the same as the thermocouple spacing, and the pyrometer is installed in the radiation.
  • the test section of the experimental wind tunnel system of the experimental device is equipped with a capture card 17 and a high-speed camera 18, the capture card 17 and the high-speed camera 18 are connected to the data acquisition and processing system 19, and the data acquisition and processing system 19 is connected to the computer.
  • the methane gas cylinder 1 provides the gas source and pressure for the system, and is used to adjust the gas source pressure to the pressure required for the experiment. Its outlet is connected to the gas pipeline to supply gas to the flowmeter 3 after two-stage pressure reduction through the gas cylinder valve pressure reducing valve 2 , The gas flow meter 3 is used to measure the gas injection volume and transport it to the combustion nozzle 4 through the gas pipeline;
  • the obstacles in the experiment are designed as cubes, and the side lengths are divided into four situations, including 70mm, 120mm, 170mm and 220mm.
  • the cube obstacles with different side lengths are placed at the output end of the nozzle, and the experiment results are measured and the experiments are analyzed.
  • Data obtain the temperature, thermal radiation and other parameters to be characterized by the experiment; take the appropriate side length of the obstacle, and change the height of the obstacle.
  • the height of the obstacle is increased every 30mm.
  • the number of times of increase is determined by the side length, and the increase is at least twice. .
  • the distance between the obstacle and the leakage hole is changed to study the influence of the jet flame on the obstacle.
  • the height of the obstacle is based on the previous analysis of the obstacle size It has been obtained, and then moved the position of the obstacle from the distance from the leak hole to the distance from near to far, with an interval of 200mm, and analyze the difference of the data.
  • the influence of the number of obstacles on the spray fire is analyzed. For example, when there are two, one of the obstacles is set 200mm directly in front of the spray hole. Change the position of another obstacle, the spacing is 200mm, 300mm, 400mm.
  • the experimental results show that different degrees of deformation will occur during the action of the flame and the obstacle, which reduces the burning area of the flame and effectively prevents the flame from spreading in the horizontal direction; the higher the height of the obstacle, the better the effect of controlling the flame propagation.
  • the decrease in rear temperature and radiation decreases; the smaller the width of the obstacle, the greater the concentration of combustible gas that diffuses to the rear of the obstacle, and it is easy to intensify the combustion in the rear and increase the temperature.
  • the temperature behind the object is lower and less than that without obstacles; as the distance between the obstacle and the leak hole increases, the temperature change in the axial direction first increases and then decreases.
  • the highest temperature distribution area is about the length of the flame. 40%-50%.
  • the temperature in front of the obstacles increases by 40% compared to when they are placed in parallel, and the temperature behind the obstacles increases by 53.2%.
  • the staggered obstacles greatly increase the intensity of flame turbulence, and increase the temperature and radiation of the surrounding flames, so In the actual environment, the staggered arrangement of obstacles in the environment should be avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种基于置障条件下天然气长输管道喷射火研究的实验装置,包括天然气供给系统、实验燃烧系统、障碍物测试实验系统、通用实验风洞系统、实验测量装置系统、数据采集及处理系统和控制系统。本公开通过改变障碍物的相关参数,来研究障碍物对火焰传播的影响,分析火灾危害范围,进而求出火灾安全距离,该方法用于天然气泄漏点火燃烧实验中,具有多变量可单独控制、可远程控制、数据自动采集、实验时间短、实验可重复性高、费用低、安全性高的优点。

Description

基于置障条件下天然气长输管道喷射火研究的实验装置 技术领域
本公开属于天然气长输管道安全评价技术领域,尤其涉及一种基于置障条件下天然气长输管道喷射火研究的实验装置。
背景技术
现有的天然气长输管道火灾安全技术的研究中,由于天然气长输管道的铺设地点往往存在着植被、房屋和设备等障碍物,或者地处山区、沟壑,这种情况下火焰的传播十分复杂。因此,对障碍物存在条件下天然气管道泄漏燃烧的研究更接近实际,更具有重要的现实意义,已成为国内外研究者关注的重点。
根据对国内外现行的天然气泄漏燃烧研究装置的调研发明人发现,国内外研究在天然气泄漏燃烧技术尤其是在有障碍物条件下天然气燃烧火焰的研究基本上处于空白的状态。目前研究主要用于研究单一情况下天然气燃烧实验,没有形成通用小型实验平台,可对不同因素对天然气燃烧火灾特性以及作用机理进行模拟研究。
总之,目前研究对天然气泄漏燃烧的小型实验研究并不全面,因此本公开设计了一种用于在障碍物条件下天然气管道燃烧的实验装置。
发明内容
本公开的目的在于提供一种基于置障条件下天然气长输管道喷射火研究的实验装置。
为了实现上述目的,本公开的技术方案如下:
一种基于置障条件下天然气长输管道喷射火研究的实验装置,包括
天然气供给系统,其用于为实验装置提供气源与压力;
实验燃烧系统,其用于模拟天然气的泄漏燃烧;
障碍物测试实验系统,其用于在天然气燃烧出口设置具有不同参数的障碍物;
通用实验风洞系统,其用于模拟自然环境,为天然气的泄漏燃烧提供外部条件;
实验测量装置系统,包括设置于实验装置一侧的监测点阵列,其用于检测天然气泄漏燃烧过程中监测点的温度及辐射;
数据采集及处理系统,其用于实时采集天然气泄漏燃烧过程中的相关参数并进行数据分析;和
控制系统,其用于控制所述通用实验风洞系统和数据采集及处理系统。
进一步的,所述天然气供给系统包括天然气气瓶以及安装于天然气气瓶出口的压力表和减压阀。
进一步的,所述实验燃烧系统包括点火系统、燃烧喷嘴以及用于放置燃烧喷嘴的喷嘴三脚架,其中所述燃烧喷嘴用于模拟天然气的泄漏孔。
进一步的,所述障碍物测试实验系统包括各种实验用障碍物以及用于放置障碍物的障碍物三脚架。
进一步的,所述通用实验风洞系统用于模拟天然气在大气近地面边界层中的蒸发扩散泄漏,实现湿度、温度、辐射和风速可控,且实验风洞系统调节试验段透明。
进一步的,所述监测点阵列由一系列的分布在障碍物面上以及周围的不同的水平区域内的监测点组成,每个监测点上同时布置了热电偶、辐射计以及相 应的热电偶位置调节器和辐射计位置调节器,各个监测点的检测信号汇集到数据采集及处理系统进行数据的记录并保存。
进一步的,所述热电偶位置调节器和辐射计位置调节器采用带旋转升降平台,用于调节放置物的位置及高度。
进一步的,所述数据采集及处理系统包括信号处理器以及分别与信号处理器相连的采集卡和高速摄像仪,其中所述采集卡用于采集通用实验风洞系统的实验参数,所述高速摄像仪用于拍摄各实验调件下的火焰图像。
进一步的,所述控制系统包括控制阀门、显示仪表、显示仪器和控制终端,显示仪器实时显示数据采集及处理系统传输来的参数数据,并连接到控制终端。
进一步的,所述实验装置设有甲烷浓度检测仪,所述甲烷浓度检测仪燃料中添加有臭味剂乙硫醇。
进一步的,所述天然气的泄漏量、泄漏孔参数和风速参数能任意单独调节。
与现有技术相比,本公开的有益效果是:
(1)本装置可以对自然环境、管道压力、气体释放率、泄漏孔形状及大小、点火时间、各种障碍物尺寸、位置、数量等不同的情况下天然气泄漏燃烧进行可控、量化模拟实验。
(2)在本装置中通过热电偶和辐射计以及高速摄像机可实现对燃烧后温度场、辐射场以及火焰几何形状的监测,通过测量系统和数据采集及处理系统对实验数据进行分析。
(3)本装置中可以很容易改变障碍物的相关参数来进行障碍物对火焰的影响实验。
(4)本装置气瓶中掺有臭味剂乙硫醇,即若天然气发生泄漏后可及时发现, 增加装置设备的安全性。
附图说明
图1为本公开天然气泄漏燃烧实验平台的某一实施例的结构示意图。
图1中:1-甲烷气体钢瓶;2-甲烷减压阀;3-玻璃转子流量计;4-燃烧器喷嘴;5-障碍物;6-热电偶I;7-热电偶II;8-热电偶III;9-热电偶IV;10-辐射计I;11-辐射计II;12-辐射计III;13-辐射计IV;14-热电偶位置调节器;15-辐射计位置调节器;16-燃烧平台;17-采集卡;18-高速摄像仪;19-数据采集及处理系统;20-计算机;21-管道。
具体实施方式
下面结合附图与具体实施例对本公开做进一步的说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
作为一种或多种实施例,一种基于置障条件下天然气长输管道喷射火研究的实验装置,包括
天然气供给系统,其用于为实验装置提供气源与压力;
实验燃烧系统,其用于模拟天然气的泄漏燃烧;
障碍物测试实验系统,其用于在天然气燃烧出口设置具有不同参数的障碍物;
通用实验风洞系统,其用于模拟自然环境,为天然气的泄漏燃烧提供外部条件;
实验测量装置系统,包括设置于实验装置周围的监测点,其用于检测天然气泄漏燃烧过程中的温度及辐射;
数据采集及处理系统,其用于实时采集天然气泄漏燃烧过程中的相关参数并进行数据分析;和
控制系统,其用于控制所述通用实验风洞系统和数据采集及处理系统。
所述天然气供给系统包括天然气气瓶以及安装于天然气气瓶出口的压力表和减压阀,所述减压阀的输出管道上连接有流量计。
所述实验燃烧系统与天然气供给系统相连。
所述实验燃烧系统包括点火系统、燃烧喷嘴以及用于放置燃烧喷嘴的喷嘴三脚架,其中所述燃烧喷嘴用于模拟天然气的泄漏孔。
所述障碍物测试实验系统包括各种实验用障碍物以及用于放置障碍物的障碍物三脚架。
具体实施中,所述障碍物间的距离及障碍物距离火焰的位置可通过移动三角架进行调节。
所述三角架还带有旋转升降平台,用于调节障碍物的放置高度。
所述实验风洞系统用于模拟天然气在大气近地面边界层中的蒸发扩散泄漏,实现湿度、温度、辐射和风速可控,且实验风洞系统调节试验段透明,便于实验现象的观察与数据记录。
所述监测点阵列由一系列分布在障碍物一侧的相同的水平区域内的监测点组成,每个监测点上同时布置了热电偶、辐射计以及相应的热电偶位置调节器和辐射计位置调节器,各个监测点的检测信号汇集到数据采集及处理系统进行数据的记录并保存,并连接到控制终端,实时显示各监测点物理参数的变化。
所述热电偶位置调节器和辐射计位置调节器采用带旋转升降平台,用于调节放置物的位置及高度。
所述数据采集及处理系统包括信号处理器以及分别与信号处理器相连的采集卡和高速摄像仪,其中所述采集卡用于采集通用实验风洞系统的实验参数,所述高速摄像仪用于拍摄各实验调件下的火焰图像。
所述控制系统包括控制阀门、显示仪表、显示仪器和控制终端,显示仪器实时显示数据采集及处理系统传输来的参数数据,并连接到控制终端。所述控制终端包括但不限于计算机。
所述实验装置设有甲烷浓度检测仪,所述甲烷浓度检测仪燃料中添加有臭味剂乙硫醇,即天然气发生泄漏后可及时发现,提高了装置的安全性。
所述天然气泄漏量、泄漏孔参数和风速参数可任意单独调节。
在具体实施中,一种基于置障条件下天然气长输管道喷射火研究的实验装置如图1所示,包括甲烷气体钢瓶1,甲烷气体钢瓶1的输出端连接管道上安装有减压阀2,减压阀2的输出管道上连接有玻璃转子流量计3,流量计3输出端通过管道21与燃烧喷嘴4的输入端连接,燃烧喷嘴4设置于燃烧平台16上,燃烧喷嘴4的输出端一定距离处布置有障碍物5,障碍物5一侧布置有多个监测点,每个监测点均设有热电偶和辐射计,具体的,距离燃烧喷嘴0.3m处喷嘴前方0.15m、0.3m、0.45m和0.6m四个不同的水平距离处,分别设有热电偶I 6、热电偶II 7、热电偶III 8和热电偶IV 9,热电偶安装于热电偶位置调节器14上;距离喷嘴一侧1m位置的喷嘴前方依次布置热辐射计I 10、热辐射计II 11、热辐射计III 12和热辐射计IV 13,热辐射计间距与热电偶间距相同,热辐射计安装于辐射计位置调节器15上,实验装置实验风洞系统调节试验段处设有采集卡17和高速摄像仪18,采集卡17和高速摄像仪18与数据采集及处理系统19相连,数据采集及处理系统19与计算机相连。
基于上述实验装置的工作原理为:
甲烷气体钢瓶1为系统提供气源与压力,用于调节气源压力至实验所需压力,其出口通过气瓶阀门减压阀2两级减压后连接到输气管道给流量计3供气,气体流量计3用于计量气体注入量,并通过输气管道输送至燃烧喷嘴4;
实验中的变量有三个:障碍物的尺寸、障碍物距喷嘴的长度及障碍物的数量。
实验中的障碍物设计为正方体,边长分四种情况,包括70mm、120mm、170mm和220mm,在实验过程中,分别将不同边长的正方体障碍物置于喷嘴输出端,测 量实验结果,分析实验数据,得到实验所要表征的温度、热辐射等参数;取合适的障碍物边长,进行障碍物高度的改变,障碍物高度以每隔30mm进行增加,增加次数根据边长确定,最少增加两次。
在泄漏孔径、喷射速度以及障碍物尺寸不变的情况下,改变障碍物与泄漏孔的间距来研究喷射火焰对障碍物的影响,此时,障碍物的高度根据前面对障碍物尺寸的分析已得到,然后从离泄漏孔的距离由近及远移动障碍物的位置,间隔200mm,分析数据的变化差距。
在喷射速度和障碍物与泄漏孔间距不变的情况下,分析障碍物数量对喷射火的影响,如2个时,其中一个障碍物设置在喷射孔正前方200mm处。改变另一个障碍物的位置,间距分别为200mm,300mm,400mm。
实验结果显示,火焰与障碍物作用过程中,会出现不同程度的形变,减小火焰的燃烧面积,有效阻挡火焰在水平方向的传播;障碍物高度越高,对控制火焰传播的效果越好,但随着障碍物高度的增加,后方温度和辐射下降幅度减小;障碍物宽度越小,可燃气体扩散到障碍物后方的涡团浓度越大,容易在后方加剧燃烧使温度升高,而障碍物后方温度较低,并且小于没有障碍物的情况;随着障碍物与泄漏孔间距的增加,在轴线方向的温度变化呈先增大后减小的规律,最高温度分布区域约为火焰长度的40%~50%。障碍物交错布置时,障碍物前方所产生的温度比平行放置时增加40%,障碍物后方温度增加53.2%,交错障碍物大大提高了火焰湍流强度,并且增加了周围火焰的温度和辐射,所以在实际环境中,应该避免环境中的障碍物交错布置。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则 之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于:包括
    天然气供给系统,其用于为实验装置提供气源与压力;
    实验燃烧系统,其用于模拟天然气的泄漏燃烧;
    障碍物测试实验系统,其用于在天然气燃烧出口设置具有不同参数的障碍物;
    通用实验风洞系统,其用于模拟自然环境,为天然气的泄漏燃烧提供外部条件;
    实验测量装置系统,包括设置于实验装置四周的监测点阵列,其用于检测天然气泄漏燃烧过程中的温度及辐射;
    数据采集及处理系统,其用于实时采集天然气泄漏燃烧过程中的相关参数并进行数据分析;和
    控制系统,其用于控制所述通用实验风洞系统和数据采集及处理系统。
  2. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述天然气供给系统包括天然气气瓶以及安装于天然气气瓶出口的压力表和减压阀。
  3. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述实验燃烧系统包括点火系统、燃烧喷嘴以及用于放置燃烧喷嘴的喷嘴三脚架,其中所述燃烧喷嘴用于模拟天然气的泄漏孔。
  4. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述障碍物测试实验系统包括各种实验用障碍物以及用于放置障碍物的障碍物三脚架。
  5. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述实验风洞系统用于模拟天然气在大气近地面边界层中的蒸发扩散泄漏,实现湿度、温度、辐射和风速可控,且实验风洞系统调节试验段透明。
  6. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述监测点阵列由一系列的分布在障碍物面上以及周围的不同的水平区域内的监测点组成,每个监测点上同时布置了热电偶、辐射计以及相应的热电偶位置调节器和辐射计位置调节器,各个监测点的检测信号汇集到数据采集及处理系统进行数据的记录并保存。
  7. 如权利要求6所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述热电偶位置调节器和辐射计位置调节器采用带旋转升降平台,用于调节放置物的位置及高度。
  8. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述数据采集及处理系统包括信号处理器以及分别与信号处理器相连的采集卡和高速摄像仪,其中所述采集卡用于采集通用实验风洞系统的实验参数,所述高速摄像仪用于拍摄各实验调件下的火焰图像。
  9. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述控制系统包括控制阀门、显示仪表、显示仪器和控制终端,显示仪器实时显示数据采集及处理系统传输来的参数数据,并连接到控制终端。
  10. 如权利要求1所述的一种基于置障条件下天然气长输管道喷射火研究的实验装置,其特征在于,所述实验装置设有甲烷浓度检测仪,所述甲烷浓度 检测仪燃料中添加有臭味剂乙硫醇。
PCT/CN2020/117518 2019-09-27 2020-09-24 基于置障条件下天然气长输管道喷射火研究的实验装置 WO2021057860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910926804.7A CN110554137A (zh) 2019-09-27 2019-09-27 基于置障条件下天然气长输管道喷射火研究的实验装置
CN201910926804.7 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021057860A1 true WO2021057860A1 (zh) 2021-04-01

Family

ID=68741731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117518 WO2021057860A1 (zh) 2019-09-27 2020-09-24 基于置障条件下天然气长输管道喷射火研究的实验装置

Country Status (2)

Country Link
CN (1) CN110554137A (zh)
WO (1) WO2021057860A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501452A (zh) * 2019-09-27 2019-11-26 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验方法及系统
CN110554137A (zh) * 2019-09-27 2019-12-10 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验装置
CN111983133B (zh) * 2020-08-24 2022-05-10 常州大学 一种模拟管廊管道火灾实验平台及其实验方法
CN112879947B (zh) * 2021-01-21 2022-05-13 天津大学 封闭式五自由度物件干扰的气体火焰观测设备
CN112924489B (zh) * 2021-02-05 2022-04-12 西南石油大学 一种低温危险液体事故泄漏射流实验装置
CN113252452B (zh) * 2021-06-01 2023-05-23 中国石油大学(华东) 一种高压掺氢天然气环境中测量不同高度位置氢气浓度的实验方法
CN114441593B (zh) * 2021-12-31 2023-12-15 南京工业大学 一种掺氢天然气管道泄漏点火燃烧试验装置
CN114544690A (zh) * 2022-01-05 2022-05-27 国家石油天然气管网集团有限公司 模拟山区天然气管道喷射火对油管影响的环道系统和方法
CN115326345B (zh) * 2022-10-17 2022-12-20 中国空气动力研究与发展中心高速空气动力研究所 一种曳光管尾焰辐射特性风洞试验装置及试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038749A (ja) * 1996-07-22 1998-02-13 Mitsubishi Heavy Ind Ltd Lng基地における防災評価用風洞試験装置
CN106840588A (zh) * 2017-03-10 2017-06-13 中国石油大学(华东) 一种重气泄漏扩散模拟及抑制控制试验系统
CN109632880A (zh) * 2018-12-07 2019-04-16 中国石油大学(华东) 一种用于水下气体泄漏扩散及燃烧的试验系统
CN110501452A (zh) * 2019-09-27 2019-11-26 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验方法及系统
CN110554137A (zh) * 2019-09-27 2019-12-10 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297006B (zh) * 2014-09-25 2017-05-17 中国石油化工股份有限公司青岛安全工程研究院 Lng泄漏水幕抑制实验装置
CN109682924B (zh) * 2018-12-27 2024-04-09 南京工业大学 高压燃气管道泄漏点燃形成喷射火试验装置及其试验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038749A (ja) * 1996-07-22 1998-02-13 Mitsubishi Heavy Ind Ltd Lng基地における防災評価用風洞試験装置
CN106840588A (zh) * 2017-03-10 2017-06-13 中国石油大学(华东) 一种重气泄漏扩散模拟及抑制控制试验系统
CN109632880A (zh) * 2018-12-07 2019-04-16 中国石油大学(华东) 一种用于水下气体泄漏扩散及燃烧的试验系统
CN110501452A (zh) * 2019-09-27 2019-11-26 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验方法及系统
CN110554137A (zh) * 2019-09-27 2019-12-10 中国石油大学(华东) 基于置障条件下天然气长输管道喷射火研究的实验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG YIXIANG , LI YUXING , LIU CUIWEI ,WANG WUCHANG , ZHU JIANLU: "The Influence of Obstacles on the Horizontal Methane Jet Fire and the Analysis of the Accident Consequences", PROCEEDINGS OF THE 2018 NATIONAL NATURAL GAS ACADEMIC ANNUAL CONFERENCE (05 STORAGE AND TRANSPORTATION, SAFETY, ENVIRONMENTAL PROTECTION AND COMPREHENSIVE), 30 November 2018 (2018-11-30), pages 1 - 6, XP055794698, DOI: 10.26914/c.cnkihy.2018.002403 *

Also Published As

Publication number Publication date
CN110554137A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021057860A1 (zh) 基于置障条件下天然气长输管道喷射火研究的实验装置
WO2021057859A1 (zh) 基于置障条件下天然气长输管道喷射火研究的实验方法及系统
CN109682924B (zh) 高压燃气管道泄漏点燃形成喷射火试验装置及其试验方法
CN102331440B (zh) 一种测量可燃物燃烧性质的装置和方法
CN108168896B (zh) 一种飞机发动机舱火灾实验设备
CN104764609A (zh) 一种航空发动机主燃烧室的综合光学测量平台
CN101581609A (zh) 一种测量炉膛出口截面温度场的方法及装置系统
CN107014445A (zh) 一种气体射流特性综合测量装置及方法
CN107121238A (zh) 一种用于高温气体管道的高处气体泄漏检测方法
CN210863655U (zh) 一种环境风作用下固体燃料变角度火灾蔓延实验装置
CN104697665B (zh) 一种基于分布式光纤的高炉热风炉温度监测方法
CN105067026A (zh) 用于研究外界风速对火焰传播及稳定性影响的装置及方法
CN108931499B (zh) 一种煤自燃氧气浓度实验测试装置及实验测试方法
Miao et al. Simultaneous visualization of density and pressure in hydrogen leakage based on self-imaging via dual-channel interference
CN103994825A (zh) 红外测温设备离线比对装置及其比对方法
CN203672406U (zh) 用于锅炉的风粉在线监测系统
Chen et al. Experimental study on prediction models of diffusion flame geometry in moving fires
CN204594847U (zh) 燃煤发电厂湿烟气颗粒物浓度连续在线测量的装置
CN102288632B (zh) 燃煤锅炉中风粉混合物着火点的测量方法
CN203455178U (zh) 垂直构件耐火检测控制系统
CN207095739U (zh) 液体火箭发动机短型热电偶稳态校准装置
CN113624907B (zh) 一种点燃实验模拟装置
CN206832296U (zh) 一种气体射流特性综合测量装置
Huang et al. Flame-splitting mechanism of buoyancy-controlled diffusion plumes generated by a rectangular fire source attached to a sidewall
KR102338478B1 (ko) 표면 형상 조절 장치 및 그를 이용한 산불 예측 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868369

Country of ref document: EP

Kind code of ref document: A1