WO2021057490A1 - 一种信息传输方法、装置及系统 - Google Patents
一种信息传输方法、装置及系统 Download PDFInfo
- Publication number
- WO2021057490A1 WO2021057490A1 PCT/CN2020/114469 CN2020114469W WO2021057490A1 WO 2021057490 A1 WO2021057490 A1 WO 2021057490A1 CN 2020114469 W CN2020114469 W CN 2020114469W WO 2021057490 A1 WO2021057490 A1 WO 2021057490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user equipment
- indication information
- polarization
- cell
- polarization mode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 113
- 230000005540 biological transmission Effects 0.000 title claims abstract description 37
- 230000010287 polarization Effects 0.000 claims abstract description 445
- 238000012545 processing Methods 0.000 claims description 27
- 238000004590 computer program Methods 0.000 claims description 13
- 238000005259 measurement Methods 0.000 abstract description 34
- 238000005265 energy consumption Methods 0.000 abstract description 16
- 210000004027 cell Anatomy 0.000 description 423
- 238000004891 communication Methods 0.000 description 79
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 57
- 238000010586 diagram Methods 0.000 description 36
- 238000010295 mobile communication Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 230000007774 longterm Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000034964 establishment of cell polarity Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 101150096310 SIB1 gene Proteins 0.000 description 2
- 101150039363 SIB2 gene Proteins 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
- H04B7/18541—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/10—Polarisation diversity; Directional diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0061—Transmission or use of information for re-establishing the radio link of neighbour cell information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0072—Transmission or use of information for re-establishing the radio link of resource information of target access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/12—Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- This application relates to the field of wireless communication technology, and in particular to an information transmission method, device and system.
- Satellite communication refers to the technology that uses artificial earth satellites as relay stations to forward radio waves to achieve communication between two or more network devices. Compared with traditional land-based communication, satellite communication has the characteristics of wide coverage, long transmission distance, flexible networking, and convenient deployment. The convergence of satellite communication networks and the 5th generation mobile networks new radio (5G NR), long term evolution (LTE) and other land-based communications, can greatly expand the coverage of wireless communication networks range.
- 5G NR 5th generation mobile networks new radio
- LTE long term evolution
- LTE long term evolution
- the satellite Since the satellite is far away from the ground, the distance between the user equipment (UE) and the satellite in the satellite cell does not change much. Therefore, the signal strength received by the UE at the cell edge and the cell center is not much different. As a result, when the UE is located at the edge of a cell, the signal interference intensity from neighboring cells is relatively high.
- satellites use polarization multiplexing for signal transmission, that is, different satellite cells use different polarization methods for signal transmission.
- the UE when the UE switches from one cell to another target cell, or when the UE selects or reselects the target cell, the UE does not know in advance which polarization method the target cell uses, so the UE It is necessary to turn on ports corresponding to various polarization modes to measure the target cell, which leads to high energy consumption of the UE during cell handover, cell selection, or cell reselection.
- the embodiments of the present application provide an information transmission method, device, and system, which can reduce UE energy consumption during cell handover, cell selection, or cell reselection.
- this application provides an information transmission method, which can be applied to user equipment.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the method may include: the user equipment obtains first indication information, where the first indication information includes the polarization mode of the target cell; and the user equipment receives the cell signal of the target cell according to the polarization mode of the target cell.
- the user equipment can obtain the polarization mode of the target cell before entering the target cell.
- the user equipment can only open the port corresponding to the polarization mode of the target cell to receive satellite signals during cell handover and reselection according to the polarization mode of the target cell, and perform small measurements on the target cell to complete the cell handover and cell reselection. Re-election process. Therefore, the method provided in the embodiments of the present application can reduce the energy consumption of the user equipment during cell handover, cell selection, and cell reselection, and avoid signal interference from other neighboring cells.
- the user equipment obtains first indication information, where the first indication information includes a polarization mode of a partial bandwidth BWP, and the user equipment communicates with the target cell according to the first indication information. Therefore, an embodiment of the present application provides a method for adding a polarization indication in a BWP to support different beams or user equipment in a given partial bandwidth BWP to instruct the user equipment to communicate with the target cell through the indicated polarization mode. Perform communication transmission.
- the user equipment receives a radio resource control RRC message, and the radio resource control message includes the first indication information.
- an embodiment of the present application provides a method for increasing the polarization indication of the BWP in the RRC connected state (RRC_CONNECTED) to support different beams or user equipment in a given part of the bandwidth BWP to instruct the user equipment to pass the indicated polarity. Complete communication and transmission in a way. Thus, the energy consumption of the user equipment during cell handover is reduced, and the signal interference of other neighboring cells is avoided.
- the user equipment receives a system broadcast message SIB sent by the first network device, and the system broadcast message includes the first indication information.
- the user equipment can obtain the polarization mode of the target cell in the RRC idle state (RRC_IDLE), so that when cell selection or cell reselection is performed, the corresponding port is opened according to the polarization mode of the target cell to perform cell measurement on the target cell. There is no need to open multiple ports. Thus, the energy consumption of the user equipment during cell selection or cell reselection is reduced, and the signal interference of other neighboring cells is avoided.
- RRC_IDLE RRC idle state
- the user equipment receives a downlink control message DCI, and the downlink control message includes the first indication information.
- the user equipment learns the polarization mode for receiving the cell signal from the downlink control message, and opens the port corresponding to the polarization mode to receive the signal sent by the cell to the current user equipment without opening multiple ports.
- the polarization multiplexing and throughput capabilities of the network are improved, and the user equipment can also be prevented from being interfered by other cells.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- this application provides an information transmission method, which can be applied to user equipment.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the method includes: the user equipment turns on the ports corresponding to all polarization modes, and the user equipment receives cell signals; and the user equipment determines additional third indication information according to the polarization modes of the received cell signals.
- the polarization mode of the cell signal can also be used to indicate other information, such as broadcast messages or data messages. Therefore, the user equipment does not need to send this information additionally, which is beneficial to improve the throughput of information transmission between the user equipment and the base station. rate.
- this application provides an information transmission method, which can be applied to a first network device.
- the first network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the method may include: the first network device obtains the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP; the first network device generates first indication information, the first indication information includes the polarization mode of the target cell Or the polarization mode of the partial bandwidth BWP, and then send the first indication information to the user equipment, where the first indication information includes the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP.
- the first network device sends the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP to the user equipment.
- the user equipment can only open the port corresponding to the polarization mode of the target cell to receive satellite signals during cell handover and reselection according to the polarization mode of the target cell, and perform small measurements on the target cell to complete the cell handover and cell reselection. Re-election process. Therefore, the method provided in the embodiments of the present application can reduce the energy consumption of the user equipment during cell handover, cell selection, and cell reselection, and avoid signal interference from other neighboring cells.
- an embodiment of the present application provides a method for indicating polarization in a BWP to support different beams or user equipment in a given partial bandwidth BWP to instruct the user equipment to complete communication transmission through the indicated polarization mode.
- the first network device sends a radio resource control RRC message to the user equipment, and the radio resource control message includes the first indication information.
- the first network device can send the polarization mode of the target cell to the user equipment in the RRC connected state (RRC_CONNECTED), so that when the user equipment performs cell handover, it can open the corresponding port to the target cell according to the polarization mode of the target cell. Perform cell measurement without opening multiple ports.
- RRC_CONNECTED the RRC connected state
- an embodiment of the present application provides a method for increasing the polarization indication of the BWP in the RRC connected state (RRC_CONNECTED) to support different beams or user equipment in a given part of the bandwidth BWP to instruct the user equipment to pass the indicated polarity. Complete communication and transmission in a way.
- the first network device sends a system broadcast message SIB to the user equipment, and the system broadcast message includes the first indication information.
- the first network device can send the polarization mode of the target cell to the user equipment in the RRC idle state (RRC_IDLE), so that the user equipment can turn on the corresponding polarization mode according to the polarization mode of the target cell when performing cell selection or cell reselection.
- the port performs cell measurement on the target cell without opening multiple ports.
- the first network device sends a downlink control message DCI to the user equipment, and the system broadcast message includes the first indication information.
- the user equipment can learn the polarization mode used to receive the cell signal or the polarization mode of the partial bandwidth BWP from the downlink control message, and enable the port corresponding to the polarization mode to receive the signal sent by the cell to the current user equipment without the need Open multiple ports.
- the polarization multiplexing and throughput capabilities of the network are improved, and the user equipment can also be prevented from being interfered by other cells.
- the first network device receives the second indication information sent by the second network device, the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network device .
- network devices can share the polarization modes of their respective cells, so that the network devices can reasonably determine the polarization modes of their own cells according to the polarization modes of neighboring cells, thereby improving the interference coordination capability between cells.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- this application provides an information transmission method, which can be applied to a second network device.
- the second network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the method may include: the second network device sends second indication information to the first network device, the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network device.
- eNB evolved base station
- gNB 5G base station
- network devices can share the polarization modes of their respective cells, so that the network devices can reasonably determine the polarization modes of their own cells according to the polarization modes of neighboring cells, thereby improving the interference coordination capability between cells.
- this application provides a user equipment.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the user equipment includes: a receiving unit, configured to receive first indication information sent by a first network device, where the first indication information includes a polarization mode of a target cell; and a processing unit, configured to compare the first indication information with the target cell The cell communicates.
- the receiving unit is specifically configured to receive a radio resource control RRC message sent by the first network device, where the radio resource control message includes the first indication information.
- the receiving unit is specifically configured to receive a system broadcast message SIB, and the system broadcast message includes the first indication information.
- the receiving unit is specifically configured to receive the downlink control message DCI, and the system broadcast message includes the first indication information.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- this application provides a user equipment.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the user equipment includes: a receiving unit, configured to enable ports corresponding to all polarization modes, and the user equipment receives a cell signal; a processing unit, configured to determine additional third indication information according to the polarization mode of the received cell signal.
- this application provides a first network device.
- the first network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the first network device includes: an obtaining unit for obtaining the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP; and a processing unit for obtaining the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP , Generate first indication information, where the first indication information includes the polarization mode of the target cell; and the transmission unit is configured to send the first indication information.
- the processing unit is specifically configured to generate a radio resource control RRC message, and the radio resource control message includes the first indication information.
- the processing unit is specifically configured to generate a system broadcast message SIB, and the system broadcast message includes the first indication information.
- the processing unit is specifically configured to generate a downlink control message DCI, and the system broadcast message includes the first indication information.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- the acquiring unit is specifically configured to receive second indication information sent by the second network device, where the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network. equipment.
- this application provides a second network device.
- the first network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the second network device includes: a processing unit configured to send second indication information to the first network device, where the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network device.
- the present application provides a communication system that includes user equipment, a first network device, and a second network device, where the user equipment is the first aspect and any of its implementations, or the second aspect and any of them
- the first network device is the first network device of the third aspect and any implementation manner thereof
- the second network device is the second network device of the fourth aspect and any implementation manner thereof.
- the present application provides a computer storage medium, which may be non-volatile.
- the computer storage medium stores computer readable instructions, and when the computer readable instructions are executed by the processor, the method provided by any of the foregoing implementation manners is implemented.
- this application provides a computer program product that contains computer-readable instructions, and when the computer-readable instructions are executed by a processor, the method provided by any of the foregoing implementations is implemented.
- this application provides a user equipment.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the user equipment includes a processor and a memory.
- the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the foregoing aspects related to the user equipment and the methods provided by any implementation manner thereof.
- the user equipment further includes a transceiver for receiving and sending data.
- the first network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the user equipment includes a processor and a memory.
- the memory is used to store computer-readable instructions (or referred to as computer programs), and the processor is used to read the computer-readable instructions to implement the foregoing aspects related to the first network device or the second network device and the method provided by any implementation manner thereof.
- the network device further includes a transceiver for receiving and sending data.
- the user equipment of the fifth aspect and the sixth aspect provided above, the first network device of the seventh aspect, the second network device of the eighth aspect, the communication system of the ninth aspect, and the computer storage medium of the tenth aspect please refer to the beneficial effects in the first to fourth aspects and any one of the possible implementation manners, which will not be repeated here.
- Figure 1 is an architecture diagram of the current satellite communication system
- FIG. 2 is a schematic structural diagram of a user equipment 100 provided by an embodiment of the present application.
- FIG. 3 is a scene diagram of the position change of the user equipment relative to the satellite cell in the satellite communication system
- Figure 4 is a schematic diagram of the distance between the user equipment and the satellite base station in different positions of the satellite cell
- Fig. 5 is a schematic diagram of four-color multiplexing of frequency/polarization mode of satellite communication
- Fig. 6 is a schematic diagram of electromagnetic wave polarization mode
- Fig. 7 is a schematic diagram of a user equipment receiving satellite signals in a polarization multiplexing scenario
- FIG. 8 is a flowchart of the information transmission method provided by the first embodiment of the present application.
- FIG. 9 is a schematic diagram of a scenario where a user equipment performs a cell handover provided by the first implementation of this application.
- FIG. 10 is a flowchart of the information transmission method provided by the second embodiment of the present application.
- FIG. 11 is a schematic diagram of a scenario in which a user equipment performs cell reselection according to the second implementation of the present application.
- FIG. 12 is a flowchart of the information transmission method provided by the third embodiment of the present application.
- FIG. 13 is a schematic diagram of a message format of downlink paging information provided by the third embodiment of the present application.
- Fig. 14 is a scene diagram of sharing cell polarization modes between base stations
- Fig. 15 is a schematic diagram of a satellite base station indicating cell barred parameters through polarization
- FIG. 16 is a schematic structural diagram of a user equipment provided by an embodiment of the present application.
- FIG. 17 is a schematic structural diagram of a first network device provided by an embodiment of the present application.
- FIG. 18 is a schematic structural diagram of a second network device provided by an embodiment of the present application.
- FIG. 19 is a schematic structural diagram of a user equipment provided by an embodiment of the present application.
- FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of the present application.
- FIG. 21 is a flowchart of an information transmission method provided by an embodiment of the present application.
- satellite communication refers to the use of artificial earth satellites as relay stations to forward radio waves to achieve communication between two or more network devices.
- satellite communication Compared with traditional land-based communication, satellite communication has the characteristics of wide coverage, long transmission distance, flexible networking, convenient deployment, and freedom from geographical conditions. It can be widely used in maritime communication, positioning and navigation, rescue and disaster relief, and scientific experiments. , Video broadcasting and earth observation.
- the satellite communication system can be compatible with the 5th generation mobile networks new radio (5G NR), long term evolution (LTE), and global system for mobile communication (GSM).
- 5G NR 5th generation mobile networks new radio
- LTE long term evolution
- GSM global system for mobile communication
- UMTS universal mobile telecommunications system
- UMTS universal mobile telecommunications system
- other land-based wireless communication systems to realize the interconnection and intercommunication of data transmission. Therefore, it can greatly expand the coverage of the land-based wireless communication network and complement each other with the land-based wireless communication system. Together they form an integrated network communication system integrating sea, land, air and space with seamless global coverage.
- FIG. 1 is a diagram of the current satellite communication system architecture.
- a satellite communication network may include one or more satellite base stations, one or more user equipment (UE), and one or more core network (core network) equipment.
- UE user equipment
- core network core network
- the satellite base stations in the embodiments of the present application refer to artificial earth satellites and high-altitude aircraft, etc., which can be used as base stations for various wireless communication systems (for example, evolved base stations (eNB) and 5G base stations (gNB), etc.). It connects to the core network equipment in a wireless connection through the NG interface and provides wireless communication services to the user equipment.
- the NG interface refers to the interface between the satellite base station and the core network, which mainly interacts with the core network's NAS and other signaling, as well as user service data.
- each satellite base station can cover a limited geographic area, and can provide wireless communication services for user equipment in the geographic area; such a geographic area can be divided into one or more A location area with a unique identifier.
- a location area can be called a cell.
- the unique identifier of the location area is the cell ID of the cell.
- this application implements Example In the following description, the cell of the satellite base station is called the satellite cell.
- one satellite base station may include one or more satellite cells.
- the satellite base station 1 includes a cell 1, a cell 2 and a cell 3, the satellite base station 2 includes a cell 4, and the satellite base station 3 includes a cell 5 and a cell 6.
- the satellite cell can be determined according to the beam of the satellite base station.
- the coverage of each beam is regarded as a cell, and the satellite cell can also be divided according to some rules.
- the satellite cell can be divided according to some rules.
- the coverage area of the base station is divided into several adjacent cells and so on.
- the satellite base stations in the embodiments of the present application are classified from the perspective of orbit type, and may include geostationary (geostationary earth orbit, GEO) satellites, non-geostationary earth orbit (NGEO) medium earth orbit , MEO) satellites, low earth orbit (LEO) satellites, and high altitude communication platforms (HAPS); from the perspective of communication capabilities, satellite base stations can include conventional communication satellites and high-throughput satellites (high-throughput satellites). throughput satellite, HTS), etc.
- GEO geostationary earth orbit
- NGEO non-geostationary earth orbit
- MEO medium earth orbit
- LEO low earth orbit
- HAPS high altitude communication platforms
- satellite base stations can include conventional communication satellites and high-throughput satellites (high-throughput satellites). throughput satellite, HTS), etc.
- the embodiment of the present application does not impose special restrictions on the specific form of the satellite base station.
- the core network equipment of the embodiments of the present application may include access and mobility management function (AMF) or mobility management (mobility management, MME), etc.
- AMF access and mobility management function
- MME mobility management
- the user equipment in the embodiments of the present application may be a mobile phone, a tablet computer, a desktop computer, a laptop, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, and a cellular phone.
- PDA personal digital assistant
- wireless modem wireless modem
- AR augmented reality
- VR virtual reality
- the embodiments of this application do not impose special restrictions on the specific form of the user equipment.
- FIG. 2 is a schematic structural diagram of a user equipment 100 provided by an embodiment of the present application.
- the user equipment 100 may include a processor 110, a memory 120, an antenna 130, and a mobile communication module 140.
- the processor 110 may include one or more processing units.
- the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal.
- AP application processor
- GPU graphics processing unit
- ISP image signal processor
- controller video codec
- digital signal processor digital signal processor
- DSP digital signal processor
- NPU neural-network processing unit
- the different processing units may be independent devices or integrated in one or more processors.
- the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
- a memory may also be provided in the processor 110 to store instructions and data.
- the memory in the processor 110 is a cache memory.
- the memory can store instructions or data that the processor 110 has just used or used cyclically. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
- the wireless communication function of the user equipment 100 can be implemented by the antenna 130, the mobile communication module 140, the modem processor, and the baseband processor.
- the antenna 130 includes at least one antenna panel, each antenna panel can be used to transmit and receive electromagnetic wave signals, and the antenna 130 can be used to cover a single or multiple communication frequency bands.
- the antenna 103 can be used in combination with a tuning switch.
- the mobile communication module 140 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the user equipment 100.
- the mobile communication module 140 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
- the mobile communication module 140 can receive electromagnetic waves by the antenna 130, filter and amplify the received electromagnetic waves, and transmit them to the modem processor for demodulation.
- the mobile communication module 140 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation by the antenna 130.
- at least part of the functional modules of the mobile communication module 140 may be provided in the processor 110.
- at least part of the functional modules of the mobile communication module 140 and at least part of the modules of the processor 110 may be provided in the same device.
- the modem processor may include a modulator and a demodulator.
- the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
- the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing. After the low-frequency baseband signal is processed by the baseband processor, it is passed to the application processor.
- the application processor outputs sound signals through audio equipment, or displays images or videos on the display screen.
- the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 140 or other functional modules.
- Wireless communication technologies may include the 5th generation mobile networks new radio (5G NR), global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS). ), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA) , Long Term Evolution (LTE), etc.
- 5G NR 5th generation mobile networks new radio
- GSM global system for mobile communications
- GPRS general packet radio service
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- TD-SCDMA time-division code division multiple access
- LTE Long Term Evolution
- the memory 120 may be used to store computer executable program code, and the executable program code includes instructions.
- the memory 120 may include a program storage area and a data storage area.
- the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
- the data storage area can store data (such as audio data, phone book, etc.) created during the use of the user equipment 100.
- the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
- the processor 110 executes various functional applications and data processing of the user equipment 100 by running instructions stored in the memory 120 and/or instructions stored in a memory provided in the processor.
- the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the user equipment 100.
- the user equipment 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
- the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
- Fig. 3 is a scene diagram of the position change of the user equipment relative to the satellite cell in the satellite communication system.
- the position of the user equipment relative to the satellite base station will change, resulting in a change in the position of the user equipment relative to the satellite cell, for example: The center of the cell is shifted to the edge of the satellite cell, or from one satellite cell (for example: satellite cell 1) to another satellite cell (for example: satellite cell 2); on the other hand, when the satellite base station is a non-geostationary orbit satellite, The satellite base station will revolve around the earth, so the position of the satellite cell will change continuously with the rotation of the satellite base station.
- the embodiments of the present application may distinguish the satellite cells as follows: In the process of "user equipment enters from one satellite cell to another satellite cell”
- the “one satellite cell” is a source cell or a serving cell
- the “another satellite cell” is a target cell.
- the base station to which the serving cell belongs may be referred to as the source base station or the serving base station
- the base station to which the target cell belongs may be referred to as the target base station.
- the satellite base station may include one or more cells
- the serving cell and the target cell may belong to the same satellite base station, such as satellite cell 1.
- the satellite cell 2 belongs to the satellite base station 1; the serving cell and the target cell may also belong to different satellite base stations.
- the satellite cell 2 belongs to the satellite base station 1, and the satellite cell 3 belongs to the satellite base station 2. Therefore, in the process of "user equipment entering from one satellite cell to another satellite cell", the serving base station and the target base station may be the same satellite base station, or they may be different satellite base stations.
- Figure 4 is a schematic diagram of the distance between the user equipment and the satellite base station in different positions of the satellite cell.
- the distance difference between the user equipment and the satellite base station at different positions in the satellite cell occupies a different proportion of the distance h between the user equipment and the satellite base station.
- Large, resulting in the near-far effect of the satellite signal in the satellite cell that is, the effect of the change of the satellite signal strength caused by the distance difference) is not obvious.
- the strength of the satellite signal received by the user equipment at each location in the satellite cell is not much different (according to the known data, the strength difference between the satellite signal received by the user equipment at the cell edge and the cell center is about 3dB).
- the user equipment if the user equipment is located at the edge of the serving cell, it will receive high-intensity signal interference from neighboring cells.
- Fig. 5 is a schematic diagram of the frequency/polarization mode four-color multiplexing of satellite communication.
- each hexagon represents a satellite cell, and the hexagon
- the filling pattern of indicates the frequency (freq) and/or polarization mode of the satellite cell, and different filling patterns correspond to different signal frequencies and/or polarization modes.
- the signal frequency and/or polarization mode of any satellite cell and all its neighboring cells are different.
- Fig. 6 is a schematic diagram of electromagnetic wave polarization.
- the left-hand circular polarization and the left-hand circular polarization involved in the embodiments of the present application will be further elaborated below in conjunction with FIG. 6.
- Polarization also called polarization, refers to the property that transverse waves (such as electromagnetic waves propagating in space) can oscillate in different directions.
- the electric and magnetic fields of electromagnetic waves are perpendicular to each other.
- the polarization direction of electromagnetic waves refers to the polarization direction of the electric field.
- electromagnetic waves propagate in the form of transverse waves, that is, both electric and magnetic fields are perpendicular to the propagation direction of electromagnetic waves.
- Fig. 7 is a schematic diagram of a user equipment receiving satellite signals in a polarization multiplexing scenario.
- the user equipment in order to ensure that the user equipment can correctly receive and demodulate the satellite signals sent by the satellite base station in various polarization modes, the user equipment needs to configure the corresponding receiving port for each polarization mode, so that it can be based on the serving base station.
- the polarization mode of the satellite signal selects the corresponding receiving port to receive and demodulate the satellite signal. In other words, only when the polarization mode of the satellite signal is the same as the polarization mode of the receiving port, the user equipment can correctly receive and demodulate the satellite signal.
- the user equipment may obtain the polarization mode of the target cell before the user equipment enters the target cell from the source cell. In this way, the user equipment can only open the port corresponding to the polarization mode of the target cell to receive satellite signals during cell handover and reselection according to the polarization mode of the target cell, and perform small measurements on the target cell to complete the cell handover and cell reselection. Re-election process. Therefore, the method provided in the embodiments of the present application can reduce the energy consumption of the user equipment during cell handover and avoid signal interference from other neighboring cells.
- the information transmission method provided by the embodiments of this application can be applied to wireless communication systems, which include but are not limited to: satellite communication systems, fifth-generation mobile communication systems, new air interface technology 5G NR, long-term evolution technology LTE, Global System for Mobile Communications GSM, Universal Mobile Communications System UMTS, and wireless local area network Wi-Fi, etc.
- wireless communication systems include but are not limited to: satellite communication systems, fifth-generation mobile communication systems, new air interface technology 5G NR, long-term evolution technology LTE, Global System for Mobile Communications GSM, Universal Mobile Communications System UMTS, and wireless local area network Wi-Fi, etc.
- the implementation subject of the cell polarization mode in the wireless network may include any user equipment on the user side of the wireless communication system (for example, user equipment 100), and any of the foregoing
- the network equipment on the network side of the communication system for example: satellite base station (including evolved base station eNB, 5G base station gNB, etc.), as well as evolved base station eNB, 5G base station gNB, wireless AP (Access Point) and user premise equipment ( customer-premises equipment, CPE), etc.).
- satellite base station including evolved base station eNB, 5G base station gNB, etc.
- evolved base station eNB evolved base station
- 5G base station gNB wireless AP (Access Point)
- user premise equipment customer-premises equipment, CPE
- the embodiment of the present application provides an information transmission method. As shown in Fig. 8, the method may include steps S201-S203.
- Step S201 The serving base station configures first indication information in a radio resource control (Radio Resource Control, RRC) message, where the first indication information is polarization mode indication information, and the polarization mode indication information is used to indicate the polarization of the target cell.
- RRC Radio Resource Control
- Mode or polarization mode of partial bandwidth BWP The specific message format of the polarization mode of the partial bandwidth BWP is described in detail in the sixth embodiment.
- the polarization mode indication information may be configured in the mobility control information message element (Mobility Control Info information element) field of the RRC message, for example.
- the mobile control information message element containing the polarization mode indication information may have the following message format:
- MeasurementConfig Sequence (Sequence) ⁇ Polarization example (ENUMERATED) ⁇ Left-hand circular polarization (LHCP), Right-hand circular polarization (RHCP) ⁇
- the content of the Polarization field in the above mobile control information message element can be implemented with reference to the method described in Table 1:
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value of 1 bit (bit) in the RRC message.
- the corresponding target cell may use, for example, left-hand circular polarization or right-hand circular polarization.
- bit value 1 can be used to indicate left-hand circular polarization
- bit value 0 can be used to indicate right-hand circular polarization
- bit value 1 can be used to indicate right-hand circular polarization
- bit value 1 can be used to indicate left-handed circular polarization.
- the polarization mode of the target cell specifically indicated by the bit value 1 and the bit value 0 can be determined through negotiation between the serving base station and the user equipment, or can be determined according to the corresponding configuration and protocol.
- the corresponding relationship between the special value and the polarization mode is not specifically limited.
- the content of the Polarization field in the above mobile control information message element can be implemented with reference to the method described in Table 2:
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value sequence with a length of 2 bits (bits) in the RRC message. There may be two or more polarizations corresponding to the target cell. Way of the situation.
- the bit value sequence 00 can be used to represent left-hand circular polarization
- the bit value sequence 01 can be used to represent
- a bit value sequence of 10 is used to represent left-handed elliptical polarization
- a bit value sequence of 11 is used to represent right-handed elliptical polarization.
- the polarization mode of the target cell specifically indicated by the different values of the bit value sequence can be determined through negotiation between the serving base station and the user equipment, or can be determined according to the corresponding configuration and protocol, and configured in the user equipment and the service.
- the corresponding relationship between the bit value sequence and the polarization mode is not specifically limited in the embodiment of the present application.
- the length of the bit value or bit value sequence added in the RRC message to indicate the polarization mode of the target cell in the embodiment of the present application can be determined according to the number of polarization modes that the target cell may use. Therefore, the length of the aforementioned bit value or bit value sequence may not be limited to 1 bit or 2 bits.
- the target cell may use more polarization modes to transmit satellite signals, those skilled in the art can easily think of continuing to increase the length of the above-mentioned bit value sequence, such as 3bit, 4bit, etc., to indicate more These polarization modes do not exceed the protection scope of the embodiments of this application.
- the polarization mode indication information may be used to indicate the polarization modes of multiple neighboring cells of the serving cell, where the target cell for handover of the user equipment is multiple neighboring cells.
- the polarization mode indication information may specifically include the cell ID (Cell ID, CID) of the neighboring cell and the corresponding bit value or bit value sequence used to indicate the polarization mode.
- Step S202 The serving base station sends an RRC message containing the polarization mode indication information to the user equipment.
- RRC new air interface technology
- 5G NR new air interface technology
- LTE long term evolution technology
- RRC new air interface technology
- user equipment and serving base station in 5G NR can include three RRC states, namely: RRC connected state (RRC_CONNECTED), RRC idle state (RRC_IDLE) and RRC inactive state (RRC_INACTIVE); user equipment and service in LTE
- the base station may include two RRC states, namely: RRC connected state (RRC_CONNECTED) and RRC idle state (RRC_IDLE).
- an RRC connection is established between the user equipment and the serving base station, the user equipment can exchange signaling or data with the serving base station, and when the UE moves between cells, the network side will control the user equipment to perform cell handover ( For example, the user equipment switches from the serving cell to the target cell), that is, the network side controls the mobility of the user equipment.
- the RRC idle state there is no RRC connection between the user equipment and the base station.
- the user equipment needs to exchange signaling or data with the base station, it needs to initiate an RRC connection to the base station to enter the RRC connected state from the RRC idle state; the user equipment In the RRC idle state, it monitors the paging information of the base station; when the user equipment moves between cells, it performs cell reselection, that is, the user equipment controls its own mobility.
- the RRC standby state there is no RRC connection between the user equipment and the base station, but the last serving base station of the user equipment saves the context information of the user equipment to quickly transfer from the RRC standby state to the RRC connected state; the user equipment is in the cell When moving between time, cell reselection is performed, that is, the user equipment controls its own mobility.
- step S202 can be implemented in the RRC connected state.
- an RRC connection is established between the serving base station and the user equipment, and the serving base station can send an RRC message containing polarization mode indication information to the user equipment through the RRC connection.
- the serving base station may actively send the RRC message containing the polarization mode indication information to the user equipment without receiving any request from the user equipment; or the user equipment may also Actively initiate a request message for obtaining polarization indication information to the serving base station, so that the serving base station, upon receiving the request message, sends an RRC message containing the polarization indication information to the user equipment according to the request message.
- the user equipment may also send an acknowledgment message, such as an ACK message (acknowledgment), to the serving base station to indicate that the serving base station does not require Continue to send RRC messages containing polarization indication information to the user equipment to reduce signaling overhead.
- an acknowledgment message such as an ACK message (acknowledgment)
- Step S203 The user equipment communicates with the target cell according to the polarization mode of the target cell or the polarization mode of the BWP.
- the device for use in the target cell opens a corresponding port to measure the target cell according to the polarization mode of the target cell.
- FIG. 9 is a schematic diagram of a scenario where a user equipment performs a cell handover provided by the implementation of this application.
- a user equipment performs a cell handover provided by the implementation of this application.
- the cell handover procedure can generally include the following 3 steps:
- Step 1 Measurement; the user equipment performs cell measurement on the target cell and reports the measurement result to the serving base station.
- Step 2 Judgment; the serving base station evaluates the measurement result, and considers the area limitation of the user equipment to determine whether to perform cell handover.
- Step 3 Handover; when the serving base station determines to perform cell handover, it performs RRC connection reconfiguration on the user equipment so that the user equipment executes a random access procedure to the target cell and establishes an RRC connection with the target cell.
- Step S203 in the embodiment of the present application can at least reduce the energy consumption of the cell measurement step (ie, step 1) of the user equipment in the cell handover process, and improve the accuracy of the cell measurement result.
- the serving base station can notify the user equipment of the objects to be measured (for example: signal to interference plus noise ratio (SINR), reference signal receiving quality (RSRQ), reference signal receiving Power (reference signal receiving power, RSRP, etc.), cell list, measurement result report mode, measurement identification and other parameters; the user equipment determines the target cell to be measured according to the above parameters, and according to the target cell indicated by the polarization mode indication information In the polarization mode, the corresponding port is opened to measure the target cell, and the measurement result is reported to the serving base station.
- SINR signal to interference plus noise ratio
- RSRQ reference signal receiving quality
- RSRP reference signal receiving Power
- the user equipment receives the polarization mode indication information from the serving base station before moving to the target cell; if the polarization mode indication information indicates that the polarization mode of the target cell is right-hand circular polarization, Then, when the user equipment moves to the target cell, the user equipment can only turn on the port corresponding to the right-handed circular polarization to measure the target cell without turning on all the ports, thereby reducing the user equipment's performance in cell measurement. Moreover, since the user equipment does not open the ports corresponding to other polarization modes, the user equipment will not demodulate the electromagnetic wave signals transmitted through other polarization modes, which prevents the user equipment from being interfered during the measurement of the target cell and improves the measurement results Accuracy.
- the port corresponding to the polarization mode in the embodiment of the present application may be a physical port or a logical port.
- the physical port may be, for example, the antenna port of the user equipment; the logical port may be, for example, a logical port distinguished by a reference signal (reference signal) or a link distinguished.
- reference signal reference signal
- the embodiment of the present application does not limit the specific form of the port corresponding to the polarization mode.
- the serving base station configures the polarization mode indication information in the RRC message, so that the user equipment knows the polarization mode of the target cell in advance before the cell handover, so that when the cell handover is performed , The corresponding port can be opened according to the polarization mode of the target cell to perform cell measurement on the target cell without opening multiple ports. Therefore, the method provided in the embodiments of the present application can reduce the energy consumption of the user equipment during cell handover, and prevent the user equipment from being interfered by other cells during cell measurement, and improve the accuracy of the measurement result.
- the embodiment of the present application provides an information transmission method. As shown in Fig. 10, the method may include steps S301-S303.
- Step S301 The serving base station configures polarization mode indication information in the system information block (SIB) of the serving cell, where the polarization mode indication information is used to indicate the polarization mode of the target cell or the polarization mode of the BWP .
- SIB system information block
- the system broadcast message SIB usually contains multiple types, such as SIB1 to SIBx (where x is a positive integer greater than 1), and the polarization mode indication information can be configured in one or more types of the system broadcast message SIB .
- some SIB types include cell reselection related information, such as:
- ⁇ SIB2 contains cell reselection information, which is mainly related to the serving cell
- ⁇ SIB3 contains information about the service frequency and intra-frequency neighboring cells related to cell reselection
- ⁇ SIB4 contains information about other NR frequencies and inter-frequency neighboring cells related to cell reselection
- the serving base station may preferably configure the polarization mode indication information in the SIB type containing cell reselection related information, such as SIB2, SIB3, or SIB4.
- the system broadcast message SIBx containing the polarization mode indication information may have the following message format:
- the content of the Polarization field in the above system broadcast message SIBx can be implemented with reference to the method described in Table 4:
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value with a length of 1 bit in the system broadcast message SIBx.
- the bit value 1 can be used to indicate left-hand circular polarization
- the bit value 0 can be used to indicate right-hand circular polarization
- the bit value 1 can be used to indicate right-hand circular polarization
- the bit value 1 can be used to indicate left-hand circular polarization.
- the polarization mode of the target cell specifically indicated by the bit value 1 and the bit value 0 can be determined through negotiation between the serving base station and the user equipment, or can be determined according to the corresponding configuration and protocol.
- the corresponding relationship between the special value and the polarization mode is not specifically limited.
- the content of the Polarization field in the above system broadcast message SIBx can be implemented with reference to the method described in Table 5.
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value sequence with a length of 2 bits to the system broadcast message SIBx to indicate the possible existence of more polarization in the target cell the way.
- a 2-bit length bit value sequence to indicate the polarization mode please refer to Embodiment (1) of the present application, which will not be repeated here.
- bit value or the length of the bit value sequence added to the system broadcast message SIBx in the system broadcast message SIBx in the embodiment of the present application can be determined according to the number of polarization modes that the target cell may use. . Therefore, the length of the aforementioned bit value or bit value sequence may not be limited to 1 bit or 2 bits.
- the target cell may use more polarization modes to transmit satellite signals, those skilled in the art can easily think of continuing to increase the length of the above-mentioned bit value sequence, such as 3bit, 4bit, etc., to indicate more These polarization modes do not exceed the protection scope of the embodiments of this application.
- the polarization mode indication information may be used to indicate the serving cell and the polarization mode of multiple neighboring cells of the serving cell; wherein, the user equipment performs cell selection or cell
- the target cell for reselection may be the serving cell or one of multiple neighboring cells.
- the polarization mode indication information is used to indicate a specific example of the polarization mode of multiple cells, which can be implemented with reference to Table 3 of the embodiment (1), which will not be repeated here.
- Step S302 The serving base station sends a system broadcast message containing the polarization mode indication information to the user equipment.
- the user equipment may include three RRC states, namely: RRC connected state, RRC idle state, and RRC standby state.
- Step S302 can be implemented in the RRC idle state or the RRC standby state.
- the serving base station may send the polarization mode indication information to the user equipment through the system broadcast message SIBx.
- the serving base station can periodically send the system broadcast message SIBx in a specific SI (System Information) window. Therefore, the user equipment can periodically receive and decode the system broadcast message SIBx in the corresponding SI window, thereby obtaining the polarization mode Instructions.
- SI System Information
- Step S303 The user equipment communicates with the target cell according to the first indication information.
- the user equipment may open a corresponding port to measure the target cell according to the polarization mode of the target cell indicated by the polarization mode indication information.
- the user equipment will perform the cell selection process after powering on, so as to select a cell with the channel quality meeting the conditions for camping as soon as possible; after the user equipment performs the cell selection process, in the RRC idle state (RRC_IDLE) state, the user equipment The cell reselection needs to be continuously performed in order to camp in a cell with a higher priority or a better channel quality.
- RRC_IDLE RRC idle state
- Step S304 in the embodiment of the present application can reduce the energy consumption of the cell measurement of the user equipment in the cell selection or cell reselection process, and improve the accuracy of the cell measurement result.
- FIG. 11 is a schematic diagram of a scenario in which a user equipment performs cell reselection provided by the implementation of this application.
- the user equipment in the RRC idle state, receives the system broadcast message containing the polarization mode indication information of the serving cell where it resides, and if the polarization mode indication information indicates the polarization mode of the target cell
- the polarization mode indication information indicates the polarization mode of the target cell
- the user equipment can only enable the port corresponding to the right-hand circular polarization to measure the target cell without turning on all Therefore, it is possible to reduce the energy consumption of the user equipment during cell measurement; and because the user equipment does not open the ports corresponding to other polarization modes, the user equipment will not demodulate the electromagnetic wave signals transmitted through other polarization modes, avoiding Therefore, the user equipment is interfered during the measurement of the target cell, and the accuracy of the measurement result is improved.
- the cells where the user equipment resides before and after may be the same cell, that is, the serving cell and the target cell are the same cell; the cells where the user equipment resides before and after are also It may not be the same cell, that is, the serving cell and the target cell are different cells.
- the serving cell and target cell in the embodiment of this application are defined according to the cell that the user equipment accesses before and after the cell handover, reselection, and selection process. It does not constitute a division or isolation of the community at the geographic level.
- the serving base station configures the polarization mode indication information in the system broadcast message of the serving cell, so that the user equipment can learn the polarization mode of the target cell, so that when cell selection and reselection are performed ,
- the corresponding port can be opened according to the polarization mode of the target cell to perform cell measurement on the target cell without opening multiple ports. Therefore, the method provided by the embodiments of the present application can reduce the energy consumption of the user equipment during cell selection and reselection, and prevent the user equipment from being interfered by other cells when performing cell measurement, and improve the accuracy of the measurement result.
- the embodiment of the present application provides a method for indicating a polarization mode in a wireless network. As shown in Fig. 12, the method may include steps S401-S403.
- Step S401 The satellite base station configures polarization mode indication information in a downlink control information (DCI).
- DCI downlink control information
- the polarization mode indication information is used to indicate the polarization mode of the user equipment to receive the current cell signal or the polarization mode of the BWP.
- the current cell refers to the satellite cell currently accessed by the user equipment, including the above-mentioned serving cell and target cell
- the satellite base station refers to the base station to which the current cell belongs, including the above-mentioned serving base station and the target base station.
- a satellite cell can have cell signals of multiple polarization modes at the same time.
- the satellite base station can use different polarization modes to send the cell signal for each user equipment, and connect each user equipment to the cell signal.
- the polarization mode that the device should use when receiving the cell signal is configured in the downlink control message corresponding to the user equipment.
- Fig. 13 is a schematic diagram of a message format of downlink paging information.
- a downlink control message may be a sequence of bit values with a length of N bits, where N is a positive integer greater than or equal to 1.
- the polarization mode indication information can be a bit value with a length of 1 bit or a length of 2 bits. , 3bit and other length bit value sequences. Then, in combination with the message format of the downlink control message, one or more bit values of the downlink control message may be used as the polarization mode indication information.
- the polarization mode indication information is a bit value with a length of 1 bit.
- a bit value of 1 can be used to indicate left-hand circular polarization.
- Use bit value 0 to indicate right-hand circular polarization.
- the 1-bit bit value as shown in FIG. 12 may be the first bit value of the downlink control message, or it may be the bit value of other positions. Therefore, when the value of the first bit of the downlink control message is 1, it instructs the user equipment to use left-handed circular polarization to receive cell signals, and when the value of the first bit of the downlink control message is 0, it instructs the user equipment to use the right-handed circle. Polarized reception of cell signals.
- Step S402 The satellite base station sends a downlink control message containing the polarization mode indication information to the user equipment.
- the satellite base station transmits the downlink control message DCI on the physical downlink control channel (PDCCH). Therefore, the user equipment can receive the downlink control message DCI on the physical downlink control channel PDCCH to obtain the polarization mode indication information.
- PDCCH physical downlink control channel
- the satellite base station may periodically send the downlink control message DCI on the PDCCH, and the user equipment may periodically monitor the PDCCH in the downlink control message DCI sending window to receive the downlink control message DCI.
- the specific method for the satellite base station and the user equipment to send and receive the downlink control message DCI can be implemented according to existing technical specifications or standards, and is not specifically limited in the embodiment of the present application.
- Step S403 The user equipment communicates with the target cell according to the polarization mode indication information. For example, it is used for the device to turn on the corresponding port to receive the cell signal according to the indicated polarization mode of the target cell.
- the user equipment may only enable the port corresponding to the left-hand circular polarization to receive the cell signal without opening other ports.
- the user equipment receiving the cell signal may be, for example, receiving and demodulating the cell signal at the location of the physical downlink shared channel (PDSCH) indicated by the downlink control message DCI.
- PDSCH physical downlink shared channel
- the satellite base station configures the polarization mode indication information in the downlink control message DCI, so that the user equipment knows the polarization mode for receiving cell signals, and opens the port corresponding to the polarization mode Receive cell signals without opening multiple ports. Therefore, the method provided by the embodiment of the present application can reduce the energy consumption when the user equipment communicates with the base station, and can also prevent the user equipment from being interfered by other cells.
- the embodiment of the present application provides an information transmission method. This method can realize the sharing of the polarization mode of each cell between two or more adjacent base stations, so that the base station can reasonably determine the polarization mode of its own cell according to the polarization mode of the adjacent cell, thereby improving the inter-cell polarization. Interference coordination capabilities.
- Fig. 14 is a scene diagram of sharing cell polarization modes between base stations.
- the base stations can transmit the polarization mode of the cell through the Xn interface application process protocol (XnAP) message.
- XnAP application process protocol
- the Xn interface refers to the interface between the satellite base station and the satellite base station, and is mainly used for signaling interaction such as handover.
- the following uses the sender of the XnAP message as the source base station, the receiver of the XnAP message as the neighboring base station, the cell of the source base station as the source cell, and the cell of the neighboring base station as the neighboring cell.
- the process is a scene diagram of sharing cell polarization modes between base stations.
- the base stations can transmit the polarization mode of the cell through the Xn interface application process protocol (XnAP) message.
- the Xn interface refers to the interface between the satellite base station and the satellite base station, and is mainly used for signaling interaction such as handover.
- the following uses
- the source base station may define a new polarization status message (Polarization Status) in the XnAP message, where the polarization status message includes the polarization mode of the source cell.
- the source base station sends a polarization status message to the neighboring base station so that the neighboring base station can obtain the latest polarization mode of the source cell, or when the neighboring base station has recorded the active
- the neighboring base station can update the polarization mode of the source cell according to the latest information about the polar state.
- the polarization status message may have a message format as shown in Table 6 below:
- the source base station adds a polarization status message to the XnAP message sent to the neighboring cell to indicate the polarization mode of the source cell to the neighboring cell, so that the neighboring base station can be based on the source cell's
- the polarization mode reasonably determines the polarization mode of its neighboring cells, thereby improving the interference coordination capability between cells.
- the embodiment of the present application provides an information transmission method. This method associates the different polarization modes of the cell signal with different indication information. Then, if the user equipment determines the polarization mode of the received cell signal, it means that the user equipment has received the polarization mode associated with the cell signal. Indication information, therefore, the user equipment does not need to send this additional indication information, which is beneficial to improve the throughput of information transmission between the user equipment and the base station.
- the polarization mode can be associated with a piece of information with a length of 1 bit, and different polarization modes correspond to different information values.
- left-hand circular polarization can correspond to a bit value of 0
- right-hand circular polarization can correspond to a bit value of 1.
- the user equipment receives a cell signal with left-hand circular polarization, it means that the user equipment has received a bit value of 0.
- the user equipment receives a right-handed circularly polarized cell signal, it indicates that the user equipment has received a bit value of 1.
- left-hand circular polarization can correspond to a bit value of 1
- right-hand circular polarization can correspond to a bit value of 0.
- the user equipment when the user equipment receives a cell signal of left-hand circular polarization, it means that the user equipment has received a bit value of 1.
- the user equipment receives a right-hand circularly polarized cell signal, it means that the user equipment has received a bit value of 0.
- the polarization mode can be used to indicate broadcast messages, such as: master information block (MIB), system information block (SIB), etc.; the information associated with the polarization mode can also be used as a base station Data message transmitted to user equipment.
- MIB master information block
- SIB system information block
- the information associated with the polarization mode can also be used as a base station Data message transmitted to user equipment.
- the polarization mode may be used to indicate the cell barred parameter in the main system broadcast message MIB, and the cell barred parameter indicates whether the cell is barred from access. For example: when the cell barred parameter value is 1, it means that the cell is barred from accessing, and when the cell barred parameter value is 0, it means that the cell is not barred from accessing.
- Fig. 15 is a schematic diagram of a satellite base station indicating cell barred parameters in a polarization manner. As shown in FIG. 15, the user equipment can enable all ports corresponding to the polarization mode to receive cell signals during cell handover, cell selection, or cell reselection.
- the cell signal is left-hand circular polarization, and the corresponding cell barred parameter value is 0, indicating that the cell is not barred from access; if the user equipment is in the right-hand circular polarization
- the cell signal is right-handed circular polarization, and the corresponding cell barred parameter value is 1, indicating that the cell is barred from access.
- the user equipment may close ports corresponding to other polarization modes to reduce power consumption.
- the correspondence between different polarization modes and different indication information, as well as the definition of different information values, can be determined through negotiation between the base station and the user equipment, or can be determined according to the corresponding configuration and protocol. There is no specific limitation.
- the method provided by the embodiments of the present application uses the polarization of the cell signal to indicate other information, such as broadcast messages or data messages. Therefore, the user equipment does not need to send additional information, which is beneficial to improve the user equipment and the base station. Throughput rate of information transmission between.
- FIG. 16 is a schematic structural diagram of a user equipment provided by an embodiment of the present application.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an on-board communication device, a wearable device, and the like. As shown in Figure 16, the user equipment includes:
- the receiving unit 501 is configured to receive first indication information, where the first indication information includes the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP;
- the processing unit 502 is configured to communicate with the target cell according to the first indication information.
- the first network device may be, for example, a satellite base station, including evolved base station (eNB) and 5G base station (gNB), etc.
- the satellite base station is connected to the core network device through wireless connection and provides wireless communication services to user equipment.
- the target cell refers to the satellite cell to be accessed when the user equipment sends cell handover, cell selection, or cell reselection.
- the target cell can belong to the first network device or other network devices.
- the receiving unit 501 is specifically configured to receive a radio resource control RRC message sent by the first network device, where the radio resource control message includes the first indication information.
- the receiving unit 501 is specifically configured to receive a system broadcast message SIB, where the system broadcast message includes the first indication information.
- the receiving unit 501 is specifically configured to receive a downlink control message DCI, and the system broadcast message includes the first indication information.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- the receiving unit 501 is configured to enable the port user equipment corresponding to all polarization modes to receive cell signals; the processing unit 502 is configured to determine additional third indication information according to the polarization modes of the received cell signals.
- FIG. 17 is a schematic structural diagram of a first network device provided by an embodiment of the present application.
- the first network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the first network device includes:
- the obtaining unit 601 is configured to obtain the polarization mode of the target cell
- the processing unit 602 is configured to send first indication information to the user equipment, where the first indication information includes the polarization mode of the target cell.
- the processing unit 602 is specifically configured to generate a radio resource control RRC message, where the radio resource control message includes the first indication information.
- the processing unit 602 is specifically configured to generate a system broadcast message SIB, where the system broadcast message includes the first indication information.
- the processing unit 602 is specifically configured to generate a downlink control message DCI, and the system broadcast message includes the first indication information.
- the polarization mode includes one or more of left-hand circular polarization, right-hand circular polarization, linear polarization, or elliptical polarization.
- the acquiring unit 601 is specifically configured to receive second indication information, where the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network device.
- FIG. 18 is a schematic structural diagram of a second network device provided by an embodiment of the present application.
- the second network device may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the second network device includes:
- the processing unit 701 is configured to send second indication information to the first network device, where the second indication information includes the polarization mode of the target cell, and the target cell belongs to the second network device.
- the first network device or the second network device in the embodiment of the present application may have some units (or devices) implemented by hardware circuits and another part of the units (or devices) may be implemented by software, or all of the units (or devices) may be implemented by software. ) Are implemented by hardware circuits, and it is also possible that all units (or devices) are implemented by software.
- FIG. 19 is a schematic structural diagram of a user equipment provided by an embodiment of the present application.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, and the like.
- the user equipment includes:
- the storage 802 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
- the memory 802 is used to store computer readable instructions (or called computer programs),
- the processor 801 is configured to read computer-readable instructions to implement the foregoing aspects related to user equipment and the methods provided in any implementation manner thereof.
- the user equipment further includes a transceiver 803 for receiving and sending data.
- FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of the present application.
- the network equipment may be, for example, a satellite base station, including an evolved base station (eNB), a 5G base station (gNB), and so on.
- the network device includes: a processor 901 and a memory 902, where the memory 902 can be independent of the processor 901 or independent of the network device (Memory #3), and can also be within the processor 901 or the network device (Memory #1 and Memory #2).
- the storage 902 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
- the memory 902 is used to store computer readable instructions (or called computer programs),
- the processor 901 is configured to read computer-readable instructions to implement the foregoing aspects related to the first network device or the second network device and the method provided in any implementation manner thereof.
- the network device further includes a transceiver 903 for receiving and sending data.
- the processor 801 or 901 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof . It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
- the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
- the memory 802 or 902 may include: volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as Flash memory, hard disk drive (HDD) or solid-state drive (SSD), cloud storage, network attached storage (NAS: network attached Storage), network disk ( network drive), etc.; the memory may also include a combination of the above-mentioned types of memory or any other medium or product with storage function.
- volatile memory volatile memory
- RAM random-access memory
- non-volatile memory such as Flash memory, hard disk drive (HDD) or solid-state drive (SSD), cloud storage, network attached storage (NAS: network attached Storage), network disk ( network drive), etc.
- non-volatile memory such as Flash memory, hard disk drive (HDD) or solid-state drive (SSD), cloud storage, network attached storage (NAS: network attached Storage), network disk ( network drive), etc.
- the memory may also include a combination of the above-mentioned types of memory or
- An embodiment of the present application also provides a communication system with user equipment, a first network device, and a second network device, wherein: the user equipment is the user equipment described in the embodiment corresponding to FIG. 16, and the first network device is a diagram 17 corresponds to the first network device described in the embodiment, and the second network device is the second network device described in the embodiment corresponding to FIG. 18.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, etc.
- the first network device and the second network device may be, for example, a satellite base station, including an evolved base station (eNB). And 5G base station (gNB), etc.
- eNB evolved base station
- gNB 5G base station
- An embodiment of the present application also provides a communication system with user equipment, a first network device, and a second network device, wherein: the user equipment is the user equipment described in the embodiment corresponding to FIG. 19, and the first network device is a diagram 20 corresponds to the network device described in the embodiment, and the second network device is the network device described in the embodiment corresponding to FIG. 20.
- the user equipment may be, for example, a mobile phone, a tablet computer, a vehicle-mounted communication device, an airborne communication device, a wearable device, etc.
- the first network device and the second network device may be, for example, a satellite base station, including an evolved base station (eNB). And 5G base station (gNB), etc.
- eNB evolved base station
- gNB 5G base station
- the embodiments of the present application also provide a computer-readable medium on which computer program instructions are stored, and when the computer program instructions are executed by a computer, the method in any of the foregoing embodiments is implemented.
- the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the method in any of the above-mentioned embodiments.
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is realized in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
- Step S501 The network device obtains the polarization mode of the bandwidth part (BWP) where the user equipment is located, and generates first indication information, where the first indication information includes the polarization mode of the target cell or the polarization mode of the partial bandwidth BWP.
- BWP bandwidth part
- the first indication information including the polarization mode of the target cell has been specifically introduced in the above embodiment.
- the first indication information includes the polarization of the partial bandwidth BWP. Way to make a specific introduction.
- the first indication information may be carried in a radio resource control (RRC) message or a system information block (SIB) in the serving cell, here Taking the polarization mode indication information for configuring the BWP in the RRC as an example for description, the polarization mode indication information for configuring the BWP in the RRC or SIB message can be used in the foregoing embodiment.
- RRC radio resource control
- SIB system information block
- the polarization mode indication information may be configured in the BWP Info information element field of the RRC message, for example.
- the system broadcast message SIB usually contains multiple types, such as SIB1 to SIBx (where x is a positive integer greater than 1), and the polarization mode indication information can be configured in one or more types of the system broadcast message SIB .
- the polarization mode of the BWP where the user equipment is located may specifically include: the polarization mode of the public BWP of the target cell where the user equipment is located and the polarization mode of the BWP specific to the user equipment.
- the mobile control information message element containing the polarization mode indication information may have the following message format:
- the specific BWP information element message format is as follows:
- the content of the Polarization field in the above partial bandwidth message element can be implemented with reference to Table 7 below:
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value of 1 bit (bit) in the RRC message.
- the corresponding target cell may use, for example, left-hand circular polarization or right-hand circular polarization.
- bit value 1 can be used to indicate left-hand circular polarization
- bit value 0 can be used to indicate right-hand circular polarization
- bit value 1 can be used to indicate right-hand circular polarization
- bit value 1 can be used to indicate left-handed circular polarization.
- the polarization mode of the target cell specifically indicated by the bit value 1 and the bit value 0 can be determined through negotiation between the serving base station and the user equipment, or can be determined according to the corresponding configuration and protocol.
- the corresponding relationship between the special value and the polarization mode is not specifically limited.
- the content of the Polarization field in the above mobile control information message element can be implemented with reference to the method described in Table 8:
- the polarization mode (Polarization) of the target cell can be indicated by adding a bit value sequence with a length of 2 bits in the RRC message. There may be two or more polarizations corresponding to the target cell. The situation of chemical methods.
- the bit value sequence 00 can be used to represent left-hand circular polarization
- the bit value sequence 01 can be used to represent
- a bit value sequence of 10 is used to represent left-handed elliptical polarization
- a bit value sequence of 11 is used to represent right-handed elliptical polarization.
- the polarization mode of the target cell specifically indicated by the different values of the bit value sequence can be determined through negotiation between the serving base station and the user equipment, or can be determined according to the corresponding configuration and protocol, and configured in the user equipment and the service.
- the corresponding relationship between the bit value sequence and the polarization mode is not specifically limited in the embodiment of the present application.
- the length of the bit value or bit value sequence added in the RRC message to indicate the polarization mode of the target cell in the embodiment of the present application can be determined according to the number of polarization modes that the target cell may use. Therefore, the length of the aforementioned bit value or bit value sequence may not be limited to 1 bit or 2 bits.
- the target cell may use more polarization modes to transmit satellite signals, those skilled in the art can easily think of continuing to increase the length of the above-mentioned bit value sequence, such as 3bit, 4bit, etc., to indicate more These polarization modes do not exceed the protection scope of the embodiments of this application.
- the polarization mode indication information may be used to indicate the polarization mode of multiple BWPs of the target cell, where the BWP of the target cell of the user equipment is one of the multiple BWPs.
- the polarization mode indication information is shown in Table 9, which may specifically include a target cell ID (Cell ID, CID), a partial bandwidth ID (BWP ID), and a bit value or bit value sequence corresponding to the BWP indicating the polarization mode.
- the target cell with a CID of 4600012345 contains multiple BWP IDs of 00, 01, 10, and 11, among which the polarization mode corresponding to BWP 00 is left-hand circular polarization, with a bit value of 0 To indicate, the polarization mode corresponding to BWP 01 is right-hand circular polarization, which is indicated by a bit value of 1.
- Step S502 The network equipment sends an RRC message containing the polarization mode indication information to the user equipment.
- RRC new air interface technology
- 5G NR new air interface technology
- LTE long term evolution technology
- RRC new air interface technology
- user equipment and serving base station in 5G NR can include three RRC states, namely: RRC connected state (RRC_CONNECTED), RRC idle state (RRC_IDLE) and RRC inactive state (RRC_INACTIVE); user equipment and service in LTE
- the base station may include two RRC states, namely: RRC connected state (RRC_CONNECTED) and RRC idle state (RRC_IDLE).
- an RRC connection is established between the user equipment and the serving base station, the user equipment can exchange signaling or data with the serving base station, and when the UE moves between cells, the network side will control the user equipment to perform cell handover ( For example, the user equipment switches from the serving cell to the target cell), that is, the network side controls the mobility of the user equipment.
- the RRC idle state there is no RRC connection between the user equipment and the base station.
- the user equipment needs to exchange signaling or data with the base station, it needs to initiate an RRC connection to the base station to enter the RRC connected state from the RRC idle state; the user equipment In the RRC idle state, it monitors the paging information of the base station; when the user equipment moves between cells, it performs cell reselection, that is, the user equipment controls its own mobility.
- the RRC standby state there is no RRC connection between the user equipment and the base station, but the last serving base station of the user equipment saves the context information of the user equipment to quickly transfer from the RRC standby state to the RRC connected state; the user equipment is in the cell When moving between time, cell reselection is performed, that is, the user equipment controls its own mobility.
- step S502 can be implemented in the RRC connected state.
- an RRC connection is established between the serving base station and the user equipment, and the serving base station can send an RRC message containing polarization mode indication information to the user equipment through the RRC connection.
- the serving base station may actively send the RRC message containing the polarization mode indication information to the user equipment without receiving any request from the user equipment; or the user equipment may also Actively initiate a request message for obtaining polarization indication information to the serving base station, so that the serving base station, upon receiving the request message, sends an RRC message containing the polarization indication information to the user equipment according to the request message.
- the user equipment may also send an acknowledgment message, such as an ACK message (acknowledgment), to the serving base station to indicate that the serving base station does not require Continue to send RRC messages containing polarization indication information to the user equipment to reduce signaling overhead.
- an acknowledgment message such as an ACK message (acknowledgment)
- Step S503 The user equipment communicates with the target cell according to the first indication information.
- the user equipment obtains first indication information, where the first indication information includes the polarization mode of the partial bandwidth BWP, and the user equipment sends or receives the target cell according to the first indication information.
- Cell signal the above-mentioned method for adding polarization indication in BWP can support different beams or user equipment in a given part of bandwidth BWP to instruct the user equipment to complete the communication transmission through the indicated polarization mode, and at the same time reduce the exposure. Signal interference from other neighboring cells.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种信息传输方法、装置及系统。该方法包括:用户设备接收第一网络设备发送的第一指示信息,第一指示信息包括目标小区的极化方式;用户设备根据目标小区的极化方式对目标小区进行小区测量。根据上述方法,用户设备能够在进入到目标小区之前,获取到目标小区的极化方式。这样,用户设备就可以在进行小区切换和重选时,根据目标小区的极化方式,仅开启目标小区的极化方式对应的端口接收卫星信号,并对目标小区进行小区测量,完成小区切换和重选流程。由此,本申请实施例提供的技术方案,可以降低用户设备在进行小区切换、小区选择和小区重选时的能耗,以及避免受到其他相邻小区的信号干扰。 [附图9]
Description
本申请涉及无线通信技术领域,尤其涉及一种信息传输方法、装置及系统。
卫星通信是指利用人造地球卫星作为中继站来转发无线电波,实现两个或多个网络设备之间通信的技术。与传统的陆基通信相比,卫星通信具有覆盖范围广、传输距离远、组网灵活、部署方便等特点。卫星通信网络与第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、长期演进技术(long term evolution,LTE)等陆基通信融合,能够极大扩展无线通信网络的覆盖范围。
由于卫星距离地面的距离较远,用户设备(user equipment,UE)在卫星小区内各个位置相对于卫星的距离变化不大,因此UE在小区边缘和小区中心接收到的信号强度差别不大,这就导致了当UE位于小区边缘时,受到相邻小区的信号干扰强度较大。为了克服干扰,卫星采用极化复用方式进行信号传输,即不同的卫星小区采用不同的极化方式进行信号传输。在这种方式下,当UE从一个小区切换至另一个目标小区,或者当UE进行目标小区的选择或重选时,由于UE预先不知道目标小区采用的是哪一种极化方式,因此UE需要开启各种极化方式对应的端口对目标小区进行测量,导致UE在进行小区切换、小区选择或者小区重选时的能耗较高。
发明内容
本申请实施例提供一种信息传输方法、装置及系统,可以降低UE在小区切换、小区选择或者小区重选时的能耗。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供一种信息传输方法,该方法可以应用于用户设备。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。该方法可以包括:用户设备获取第一指示信息,第一指示信息包括目标小区的极化方式;用户设备根据目标小区的极化方式接收目标小区的小区信号。
根据上述方法,用户设备能够在进入到目标小区之前,获取到目标小区的极化方式。这样,用户设备就可以在进行小区切换和重选时,根据目标小区的极化方式,仅开启目标小区的极化方式对应的端口接收卫星信号,并对目标小区进行小测量,完成小区切换和重选流程。由此,本申请实施例提供的方法,可以降低用户设备在进行小区切换、小区选择和小区重选时的能耗,以及避免受到其他相邻小区的信号干扰。或者,用户设备获取第一指示信息,所述第一指示信息包括部分带宽BWP的极化方式,所述用户设备根据所述第一指示信息与所述目标小区进行通信。由此,本申请实施例提供的一种在BWP中增加极化指示的方法,以支持不同波束或用户设备在给定部分带宽BWP中以指示用户设备通过指示的极化方式与所述目标小区进行通信传输。
结合第一方面,在一种可能的实现方式中,用户设备接收无线资源控制RRC消息,无线资源控制消息包括第一指示信息。
这样,用户设备能够在RRC连接态(RRC_CONNECTED)下获取目标小区的极化方式, 从而在进行小区切换时,根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。以及,本申请实施例提供的一种在在RRC连接态(RRC_CONNECTED)下增加BWP的极化指示的方法,以支持不同波束或用户设备在给定部分带宽BWP中以指示用户设备通过指示的极化方式完成通信传输。由此,降低用户设备在进行小区切换时的能耗,以及避免受到其他相邻小区的信号干扰。
结合第一方面,在一种可能的实现方式中,用户设备接收第一网络设备发送的系统广播消息SIB,系统广播消息包括第一指示信息。
这样,用户设备能够在RRC空闲态(RRC_IDLE)下获取目标小区的极化方式,从而在进行小区选择或者小区重选时,根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。由此,降低用户设备在进行小区选择或者小区重选时的能耗,以及避免受到其他相邻小区的信号干扰。
结合第一方面,在一种可能的实现方式中,用户设备接收下行控制消息DCI,下行控制消息包括第一指示信息。
这样,用户设备从下行控制消息中获知用于接收小区信号的极化方式,并开启极化方式对应的端口接收小区发送给当前用户设备的信号,而不需要开启多个端口。由此,提升网络的极化复用和吞吐能力,还能避免用户设备受到来自其他小区的干扰。
结合第一方面,在一种可能的实现方式中,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
第二方面,本申请提供了一种信息传输方法,该方法可以应用于用户设备。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。该方法包括:用户设备开启全部极化方式对应的端口用户设备接收小区信号;用户设备根据接收到的小区信号的极化方式确定额外的第三指示信息。
根据上述方法,小区信号的极化方式还可以用于指示其他信息,例如广播消息或者数据消息,由此,用户设备无需额外发送这一信息,有利于提高用户设备与基站之间信息传输的吞吐率。
第三方面,本申请提供一种信息传输方法,该方法可以应用于第一网络设备。该第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该方法可以包括:第一网络设备获取目标小区的极化方式或者部分带宽BWP的极化方式;第一网络设备生成第一指示信息,所述第一指示信息包括所述目标小区的极化方式或者部分带宽BWP的极化方式,然后向用户设备发送第一指示信息,第一指示信息包括目标小区的极化方式或者部分带宽BWP的极化方式。
根据上述方法,第一网络设备将目标小区的极化方式或者部分带宽BWP的极化方式发送给用户设备。这样,用户设备就可以在进行小区切换和重选时,根据目标小区的极化方式,仅开启目标小区的极化方式对应的端口接收卫星信号,并对目标小区进行小测量,完成小区切换和重选流程。由此,本申请实施例提供的方法,可以降低用户设备在进行小区切换、小区选择和小区重选时的能耗,以及避免受到其他相邻小区的信号干扰。另外,本申请实施例提供的一种在BWP的极化指示的方法,以支持不同波束或用户设备在给定部分带宽BWP中以指示用户设备通过指示的极化方式完成通信传输。
结合第三方面,在一种可能的实现方式中,第一网络设备向用户设备发送无线资源控制 RRC消息,无线资源控制消息包括第一指示信息。
这样,第一网络设备能够在RRC连接态(RRC_CONNECTED)下将目标小区的极化方式发送给用户设备,使用户设备在进行小区切换时,根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。由此,降低用户设备在进行小区切换时的能耗,以及避免受到其他相邻小区的信号干扰。另外,本申请实施例提供的一种在在RRC连接态(RRC_CONNECTED)下增加BWP的极化指示的方法,以支持不同波束或用户设备在给定部分带宽BWP中以指示用户设备通过指示的极化方式完成通信传输。
结合第三方面,在一种可能的实现方式中,第一网络设备向用户设备发送系统广播消息SIB,系统广播消息包括第一指示信息。
这样,第一网络设备能够在RRC空闲态(RRC_IDLE)下将目标小区的极化方式发送给用户设备,使用户设备在进行小区选择或者小区重选时,根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。由此,降低用户设备在进行小区选择或者小区重选时的能耗,以及避免受到其他相邻小区的信号干扰。
结合第三方面,在一种可能的实现方式中,第一网络设备向用户设备发送下行控制消息DCI,系统广播消息包括第一指示信息。
这样,用户设备能够从下行控制消息中获知用于接收小区信号的极化方式或者部分带宽BWP的极化方式,并开启极化方式对应的端口接收小区发送给当前用户设备的信号,而不需要开启多个端口。由此,提升网络的极化复用和吞吐能力,还能避免用户设备受到来自其他小区的干扰。
结合第三方面,在一种可能的实现方式中,第一网络设备接收第二网络设备发送的第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
这样,网络设备之间可以共享各自小区的极化方式,使网络设备能够根据相邻小区的极化方式合理确定自身小区的极化方式,由此提升小区之间的干扰协调能力。
结合第三方面,在一种可能的实现方式中,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
第四方面,本申请提供了一种信息传输方法,该方法可以应用于第二网络设备。该第二网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该方法可以包括:第二网络设备向第一网络设备发送第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
根据上述方法,网络设备之间可以共享各自小区的极化方式,使网络设备能够根据相邻小区的极化方式合理确定自身小区的极化方式,由此提升小区之间的干扰协调能力。
第五方面,本申请提供了一种用户设备。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。该用户设备包括:接收单元,用于接收第一网络设备发送的第一指示信息,第一指示信息包括目标小区的极化方式;处理单元,用于根据所述第一指示信息与所述目标小区进行通信。
结合第五方面,在一种可能的实现方式中,接收单元具体用于接收第一网络设备发送的无线资源控制RRC消息,无线资源控制消息包括第一指示信息。
结合第五方面,在一种可能的实现方式中,接收单元具体用于接收系统广播消息SIB,系统广播消息包括第一指示信息。
结合第五方面,在一种可能的实现方式中,接收单元具体用于接收下行控制消息DCI,系统广播消息包括第一指示信息。
结合第五方面,在一种可能的实现方式中,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
第六方面,本申请提供了一种用户设备。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。该用户设备包括:接收单元,用于开启全部极化方式对应的端口用户设备接收小区信号;处理单元,用于根据接收到的小区信号的极化方式确定额外的第三指示信息。
第七方面,本申请提供了一种第一网络设备。该第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该第一网络设备包括:获取单元,用于获取目标小区的极化方式或者部分带宽BWP的极化方式;处理单元,用于根据所述目标小区的极化方式或者部分带宽BWP的极化方式,生成第一指示信息,所述第一指示信息包括所述目标小区的极化方式;传输单元,用于发送第一指示信息。
结合第七方面,在一种可能的实现方式中,处理单元具体用于生成无线资源控制RRC消息,无线资源控制消息包括第一指示信息。
结合第七方面,在一种可能的实现方式中,处理单元具体用于生成系统广播消息SIB,系统广播消息包括第一指示信息。
结合第七方面,在一种可能的实现方式中,处理单元具体用于生成下行控制消息DCI,系统广播消息包括第一指示信息。
结合第七方面,在一种可能的实现方式中,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
结合第七方面,在一种可能的实现方式中,获取单元具体用于接收第二网络设备发送的第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
第八方面,本申请提供了一种第二网络设备。该第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。第二网络设备包括:处理单元,用于向第一网络设备发送第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
第九方面,本申请提供了一种通信系统,该通信系统包括用户设备、第一网络设备和第二网络设备,其中,用户设备为第一方面及其任意实现方式或者第二方面及其任意实现方式的用户设备,第一网络设备为第三方面及其任意实现方式的第一网络设备,第二网络设备为第四方面及其任意实现方式的第二网络设备。
第十方面,本申请提供一种计算机存储介质,该计算机存储介质可以是非易失性的。该计算机存储介质中存储有计算机可读指令,当该计算机可读指令被处理器执行时实现前述任意实现方式提供的方法。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品中包含计算机可读指 令,当该计算机可读指令被处理器执行时实现前述任意实现方式提供的方法。
第十二方面,本申请提供了一种用户设备。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。该用户设备包括:处理器,存储器。存储器用于存储计算机可读指令(或者称之为计算机程序),处理器用于读取计算机可读指令以实现前述有关用户设备的方面及其任意实现方式提供的方法。
在一些实现方式中,该用户设备还包括收发器,用于接收和发送数据。
第十三方面,本申请提供了一种网络设备。该第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该用户设备包括:处理器,存储器。存储器用于存储计算机可读指令(或者称之为计算机程序),处理器用于读取计算机可读指令以实现前述有关第一网络设备或者第二网络设备的方面及其任意实现方式提供的方法。
在一些实现方式中,该网络设备还包括收发器,用于接收和发送数据。
可以理解地,上述提供的第五方面和第六方面的用户设备,第七方面的第一网络设备,第八方面的第二网络设备,第九方面的通信系统,第十方面的计算机存储介质,第十一方面的计算机程序产品所能达到的有益效果,可参考第一方面至第四方面及其任一种可能的实现方式中的有益效果,此处不再赘述。
为了更清楚地说明本发明的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。显而易见地,下面附图中描述的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图和描述得到其他的附图或实施例,而本发明旨在涵盖所有这些衍生的附图或实施例。
图1是目前的卫星通信系统的架构图;
图2是本申请实施例提供的用户设备100的结构示意图;
图3是卫星通信系统中的用户设备相对于卫星小区的位置变化场景图;
图4是用户设备在卫星小区的不同位置与卫星基站的距离示意图;
图5是卫星通信的频率/极化方式四色复用的示意图;
图6是电磁波极化方式的示意图;
图7是极化复用场景中用户设备接收卫星信号的示意图;
图8是本申请第一实施例提供的信息传输方法的流程图;
图9是本申请第一实施提供的用户设备进行小区切换的场景示意图;
图10是本申请第二实施例提供的信息传输方法的流程图;
图11是本申请第二实施提供的用户设备进行小区重选的场景示意图;
图12是本申请第三实施例提供的信息传输方法的流程图;
图13是本申请第三实施例提供的下行寻呼信息的消息格式示意图;
图14是基站之间共享小区极化方式的场景图;
图15是卫星基站通过极化方式指示cell barred参数的示意图;
图16是本申请实施例提供的一种用户设备的结构示意图;
图17是本申请实施例提供的一种第一网络设备的结构示意图;
图18是本申请实施例提供的一种第二网络设备的结构示意图;
图19是本申请实施例提供的一种用户设备的结构示意图;
图20是本申请实施例提供的一种网络设备的结构示意图;
图21是本申请实施例提供的信息传输方法的流程图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。
在对本申请实施例的技术方案说明之前,首先对本申请实施例的技术场景进行说明。
本申请实施例提供的技术方案可以应用于卫星通信系统中。其中,卫星通信是指利用人造地球卫星作为中继站来转发无线电波,实现两个或多个网络设备之间通信的技术。与传统的陆基通信相比,卫星通信具有覆盖范围广、传输距离远、组网灵活、部署方便和不受地理条件限制等特点,可以广泛应用到海上通信、定位导航、抢险救灾、科学实验、视频广播和对地观测等诸多领域。卫星通信系统可以与第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、长期演进技术(long term evolution,LTE)、全球移动通信系统(global system for mobile communication,GSM)和通用移动通信系统(universal mobile telecommunications system,UMTS)等陆基无线通信系统融合,实现数据传输的互联互通,因此能够极大地扩展陆基无线通信网络的覆盖范围,与陆基无线通信系统取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化的综合网络通信系统。
图1是目前的卫星通信系统的架构图。如图1所示,卫星通信网络可以包括一个或者多个卫星基站、一个或者多个用户设备(user equipment,UE),以及一个或者多个核心网(core network)设备组成。
示例性地,本申请实施例的卫星基站指的是可以作为各类无线通信系统基站(例如:演进型基站(eNB)和5G基站(gNB)等)的人造地球卫星和高空飞行器等,卫星基站通过NG接口以无线连接的方式连接到核心网设备,并向用户设备提供无线通信服务。NG接口是指卫星基站和核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。容易理解的是,在卫星通信系统中,每个卫星基站可以覆盖一个有限的地理区域,并可以为该地理区域内的用户设备提供无线通信服务;这样的地理区域可以被划分成一个或者多个具有唯一标识的位置区(location area),这样的位置区可被称作小区(cell),位置区的唯一标识即作为小区的小区ID;为了便于描述本申请实施例的技术方案,本申请实施例在后续的描述中将卫星基站的小区称为卫星小区。
示例性地,一个卫星基站可以包括一个或者多个卫星小区。例如,如图1所示,卫星基站1包括小区1、小区2和小区3,卫星基站2包括小区4,卫星基站3包括小区5和小区6。其中,当卫星基站包括多个卫星小区时,卫星小区可以是根据卫星基站的波束确定的,例如:每个波束的覆盖范围作为一个小区,卫星小区也可以是根据一些规则划分的,例如将卫星基站的覆盖范围划分成相邻的几个小区等。
示例性地,本申请实施例的卫星基站从轨道类型的角度划分,可以包括静止轨道(geostationary earth orbit,GEO)卫星、非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,以及高 空通信平台(high altitude platform station,HAPS)等;从通信能力角度划分,卫星基站可以包括常规通信卫星和高通量卫星(high throughput satellite,HTS)等。本申请实施例对该卫星基站的具体形态不作特殊限制。
示例性地,本申请实施例的核心网设备可以包括接入和移动性管理功能网元(access and mobility management function,AMF)或者移动性管理网元(mobility management,MME)等。
示例性地,本申请实施例的用户设备可以是手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、无线调制解调器、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等包括触摸屏的设备、车载通信设备、机载通信设备、可穿戴设备等。本申请实施例对该用户设备的具体形态不作特殊限制。
图2是本申请实施例提供的用户设备100的结构示意图。如图2所示,用户设备100可以包括处理器110,存储器120,天线130和移动通信模块140。其中,处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
用户设备100的无线通信功能可以通过天线130,移动通信模块140,调制解调处理器以及基带处理器等实现。其中,天线130包括至少一个天线面板,每个天线面板均可用于发射和接收电磁波信号,天线130可用于覆盖单个或多个通信频带。在另外一些实施例中,天线103可以和调谐开关结合使用。
移动通信模块140可以提供应用在用户设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块140可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块140可以由天线130接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块140还可以对经调制解调处理器调制后的信号放大,经天线130转为电磁波辐射出去。在一些实施例中,移动通信模块140的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块140的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备输出声音信号,或通过显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块140或其他功能模块设置在同一个器件中。
在一些实施例中,用户设备100的天线130和移动通信模块140耦合,使得用户设备100 可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括第五代移动通信技术新空口(5th generation mobile networks new radio,5G NR),全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进技术(long term evolution,LTE)等。
存储器120可以用于存储计算机可执行程序代码,可执行程序代码包括指令。存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储用户设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行用户设备100的各种功能应用以及数据处理。
可以理解的是,本申请实施例示意的结构并不构成对用户设备100的具体限定。在本申请另一些实施例中,用户设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
图3是卫星通信系统中的用户设备相对于卫星小区的位置变化场景图。
如图3所示,在卫星通信系统中,一方面,由于用户设备可能产生位移,用户设备相对于卫星基站的位置会发生改变,导致用户设备相对卫星小区的位置会发生变化,例如:从卫星小区的中心位移到了卫星小区的边缘,或者,从一个卫星小区(例如:卫星小区1)位移到了另一个卫星小区(例如:卫星小区2);另一方面,当卫星基站是非静止轨道卫星时,卫星基站会围绕地球旋转,因此卫星小区的位置也会随着卫星基站的旋转而不断变化,在这种情况下,即使用户设备的位置没有发生变化,用户设备相对卫星小区的位置也会发生变化,因此同样会导致上述用户设备从一个卫星小区(例如:卫星小区1)进入到另一个卫星小区(例如:卫星小区2)。
为了便于描述本申请实施例的技术方案,结合图3所示的场景,本申请实施例可对卫星小区进行以下命名区分:在“用户设备从一个卫星小区进入到另一个卫星小区”这一过程中,所述“一个卫星小区”为源小区或者服务小区,所述“另一个卫星小区”为目标小区。例如:如果用户设备从卫星小区1进入到卫星小区2,那么卫星小区1为源小区或者服务小区,卫星小区2为目标小区;如果用户设备从卫星小区2进入到卫星小区3,那么卫星小区2是源小区或者服务小区,卫星小区3为目标小区。进一步地,在本申请实施例中,服务小区归属的基站可以称作源基站或者服务基站,目标小区归属的基站可以称作目标基站。
进一步结合图3所示的场景,由于卫星基站可以包括一个或者多个小区,因此,当用户设备从服务小区进入到目标小区时,服务小区和目标小区可能属于同一个卫星基站,例如卫星小区1和卫星小区2同属于卫星基站1;服务小区和目标小区也可能属于不同的卫星基站,例如卫星小区2属于卫星基站1,而卫星小区3属于卫星基站2。因此,在“用户设备从一个卫星小区进入到另一个卫星小区”这一过程中,服务基站和目标基站可能是同一个卫星基站,也可能是不同的卫星基站。
图4是用户设备在卫星小区的不同位置与卫星基站的距离示意图。如图4所示,在卫星通信系统中,由于卫星基站相对于地面的高度较高,用户设备在卫星小区的不同位置与卫星 基站的距离差△h占据用户设备与卫星基站距离h的比例不大,导致卫星小区内的卫星信号的远近效应(即:由距离差导致的卫星信号强度的变化效应)不明显。因此,用户设备在卫星小区内的各个位置接收到的卫星信号的强度差别不大(根据已知的数据,用户设备在小区边缘和小区中心接收到的卫星信号的强度差在3dB左右),在这种情况下,如果用户设备位于服务小区的边缘,就会收到相邻小区的高强度的信号干扰。
为了克服相邻小区的干扰,卫星通信系统使用对不同的卫星小区使用了频率复用和极化复用等技术。示例性地,图5是卫星通信的频率/极化方式四色复用的示意图,如图5所示,在四色复用的图谱中,每个六边形表示一个卫星小区,六边形的填充样式表示卫星小区的频率(freq)和/或极化方式,不同的填充样式对应的信号频率和/或极化方式不同。在图5所示的四色复用方案中,任意一个卫星小区与其所有相邻小区的信号频率和/或极化方式都是不同的。示例地,当四色复用采用频率四等分的方式实现时,需要配置四个不同频率f1、f2、f3和f4,此时,相邻的卫星小区的信号频率不同。又例如,当四色复用采用频率二等分加极化复用的方式实现时,可以使用两个不同的信号频率f1和f3(此时,图5中的f1=f2,f3=f4),以及两种不同的极化方式,例如左旋圆极化(left hand circular polarization,LHCP)和左旋圆极化(right hand circular polarization,DHCP),得到频率和极化方式的四种组合,并配置相邻的卫星小区采用不同的组合方式。
图6是电磁波极化方式的示意图。下面将结合图6对本申请实施例中涉及到的左旋圆极化和左旋圆极化做进一步阐述说明。极化(polarization)也称偏振,指的是横波(例如在空间中传播的电磁波)能够朝着不同方向振荡的性质。电磁波的电场与磁场彼此相互垂直。按照常规,电磁波的偏振方向指的是电场的偏振方向。在自由空间里,电磁波是以横波方式传播,即电场与磁场都垂直于电磁波的传播方向。如果电场的振荡只朝着单独一个方向,则称此为“线极化”或“平面极化”;如果电场的振荡方向是以电磁波的波频率进行旋转动作,并且电场矢量随着时间变化勾绘出圆型,则称此为“圆极化”,如果勾绘出椭圆形,则称此为“椭圆极化”;对于“圆极化”来说,从电磁波的源头向电磁波的传播方向望去,如果电场随时间的变化呈现逆时针方向旋转,则电磁波的极化方式为左旋圆极化,如果电场随时间的变化呈现顺时针方向旋转,则电磁波的极化方式为右旋圆极化;对于“椭圆极化”来说,从电磁波的源头向电磁波的传播方向望去,如果电场随时间的变化呈现逆时针方向旋转,则电磁波的极化方式为左旋椭圆极化,如果电场随时间的变化呈现顺时针方向旋转,则电磁波的极化方式为右旋椭圆极化。
图7是极化复用场景中用户设备接收卫星信号的示意图。如图7所示,为了保证用户设备能够正确接收并解调卫星基站以各种极化方式发送的卫星信号,用户设备需要为每一种极化方式配置相应的接收端口,从而能够根据服务基站的卫星信号的极化方式选择对应的接收端口进行卫星信号的接收和解调。也就是说,只有卫星信号的极化方式与接收端口的极化方式相同时,用户设备才能够正确接收并解调卫星信号。进一步如图7所示,在极化复用场景中,当用户设备从源小区进入到目标小区时,由于用户设备预先不知道目标小区采用的是哪一种极化方式,用户设备需要同时开启所有极化方式对应的端口,以此保证能够正确接收并解调目标小区的卫星信号。但是,同时开启所有极化方式对应的端口会增加用户设备的功耗,并且,还可能使用户设备接收并解调到其他相邻小区的卫星信号,从而对目标小区的信号接收和解调造成干扰。
本申请实施例提供的方法中,可以在用户设备从源小区进入到目标小区之前,使用户设备获取到目标小区的极化方式。这样,用户设备就可以在进行小区切换和重选时,根据目标 小区的极化方式,仅开启目标小区的极化方式对应的端口接收卫星信号,并对目标小区进行小测量,完成小区切换和重选流程。由此,本申请实施例提供的方法,可以降低用户设备在进行小区切换时的能耗,以及避免受到其他相邻小区的信号干扰。
本申请实施例提供的一种信息传输方法可以应用到无线通信系统中,所述无线通信系统包括但不限于:卫星通信系统、第五代移动通信系统新空口技5G NR、长期演进技术LTE、全球移动通信系统GSM、通用移动通信系统UMTS和无线局域网Wi-Fi等。基于上述各类无线通信系统,本申请实施例提供的一种无线网络中的小区极化方式的执行主体可以包括上述任意无线通信系统用户侧的用户设备(例如:用户设备100),以及上述任意通信系统网络侧的网络设备(例如:卫星基站(包括演进型基站eNB、5G基站gNB等),以及在地面建设的演进型基站eNB、5G基站gNB、无线AP(Access Point)和用户驻地设备(customer-premises equipment,CPE)等)。下面以卫星通信系统为例,对本申请实施例提供的一种信息传输方法进行具体地阐述说明。
实施例(一)
本申请实施例提供了一种信息传输方法。如图8所示,该方法可以包括步骤S201-S203。
步骤S201,服务基站在无线资源控制(radio resource control,RRC)消息中配置第一指示信息,所述第一指示信息为极化方式指示信息,极化方式指示信息用于指示目标小区的极化方式或者部分带宽BWP的极化方式。其中,所述部分带宽BWP的极化方式的具体消息格式在实施例六中具体描述。
具体实现中,极化方式指示信息例如可以配置在RRC消息的移动控制信息消息元素(MobilityControlInfo information element)字段中。作为示例地,包含有极化方式指示信息的移动控制信息消息元素可以具有以下的消息格式:
MobilityControlInfo information element
--ASN1开始(--ASN1START)
--标签-测量-配置-开始(--TAG-MEAS-CONFIG-START)
测量配置(MeasureConfig)::=序列(Sequence){极化方式(Polarization)示例(ENUMERATED){左旋圆极化(LHCP),右旋圆极化(RHCP)}}
--标签-测量-配置-结束(--TAG-MEAS-CONFIG-STOP)
--ASN1结束(--ASN1STOP)
示例性地,上述移动控制信息消息元素中的极化方式(Polarization)字段的内容可以参照表1描述的方式实现:
表1
根据表1的描述,目标小区的极化方式(Polarization)可以通过在RRC消息中增加一个长度为1bit(比特)的比特值来指示,对应目标小区可能使用例如左旋圆极化或右旋圆极化这两种极化方式的情况。此时,可以使用比特值1来指示左旋圆极化,使用比特值0来指示右旋圆极化,或者,也可以使用比特值1来指示右旋圆极化,使用比特值1来指示左旋圆极化。这里需要补充说明的是,比特值1和比特值0具体指示的目标小区的极化方式可以由服务基站和用户设备通过协商确定,也可以根据相应的配置和协议确定,本申请实施例中对比 特值和极化方式的对应关系不做具体限定。
示例性地,上述移动控制信息消息元素中的极化方式(Polarization)字段的内容可以参照表2描述的方式实现:
表2
根据表2的描述,目标小区的极化方式(Polarization)可以通过在RRC消息中增加一个长度为2bit(比特)的比特值序列来指示,对应目标小区可能存两种或者多于两种极化方式的情况。例如,当目标小区可能使用左旋圆极化、右旋圆极化、左旋椭圆极化或者右旋椭圆极化时,可以使用比特值序列00来表示左旋圆极化,使用比特值序列01来表示右旋圆极化,使用比特值序列10来表示左旋椭圆极化,使用比特值序列11来表示右旋椭圆极化。这里需要补充说明的是,比特值序列的不同值具体指示的目标小区的极化方式可以由服务基站和用户设备通过协商确定,也可以根据相应的配置和协议确定,并配置在用户设备和服务基站中,本申请实施例中对比特值序列和极化方式的对应关系不做具体限定。
容易理解的是,本申请实施例在RRC消息中增加的用于指示目标小区的极化方式的比特值或比特值序列的长度是可以根据目标小区可能使用的极化方式的数量确定的。因此,上述比特值或比特值序列的长度可以不局限于1bit或者2bit。当目标小区可能使用更多的极化方式传输卫星信号时,本领域技术人员在本申请实施例公开的基础上容易想到继续增加上述比特值序列的长度,例如3bit、4bit等,以指示更多的极化方式,这些都没有超出本申请实施例的保护范围。
需要补充说明的是,在步骤S201的具体实现方式中,极化方式指示信息可以用于指示服务小区的多个相邻小区的极化方式,其中,用户设备切换的目标小区是多个相邻小区中的一个。极化方式指示信息如表3所示具体可以包括相邻小区的小区ID(Cell ID,CID)和对应用于指示极化方式的比特值或比特值序列。
小区ID | 极化方式 |
4600012345 | 0 |
4600012346 | 1 |
4600012347 | 1 |
4600012348 | 0 |
…… | …… |
表3
步骤S202,服务基站向用户设备发送包含极化方式指示信息的RRC消息。
以第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)和长期演进技术(long term evolution,LTE)为例,用户设备和服务基站之间可以包括两种或者三种RRC状态。具体来说:5G NR中用户设备和服务基站可以包括三种RRC状态,分别为:RRC连接态(RRC_CONNECTED)、RRC空闲态(RRC_IDLE)和RRC待用态(RRC_INACTIVE);LTE中用户设备和服务基站可以包括两种RRC状态,分别为:RRC连接态(RRC_CONNECTED)和RRC空闲态(RRC_IDLE)。
其中,在RRC连接态中,用户设备和服务基站之间建立有RRC连接,用户设备可以与服务基站交互信令或者数据,并且当UE小区间移动时,网络侧会控制用户设备进行小区切 换(例如用户设备从服务小区切换到目标小区),即网络侧控制用户设备的移动性。在RRC空闲态中,用户设备和基站之间没有RRC连接,如果用户设备需要和基站之间交互信令或者数据,需要向基站发起RRC连接,以从RRC空闲态进入到RRC连接态;用户设备在RRC空闲态会监听基站的寻呼信息;用户设备在小区间移动时,会进行小区重选,即用户设备控制自身的移动性。在RRC待用态中,用户设备和基站之间没有RRC连接,但是用户设备的最后一个服务基站保存有用户设备的上下文信息,以快速从RRC待用态转移到RRC连接态;用户设备在小区间移动时,会进行小区重选,即用户设备控制自身的移动性。
根据上述可能的RRC状态,步骤S202可以选择在RRC连接态中实现。当用户设备和服务基站处于RRC连接态时,服务基站和用户设备之间建立有RRC连接,服务基站可以通过RRC连接向用户设备发送包含极化方式指示信息的RRC消息。
需要补充说明的是,在步骤S202的具体实现方式中:服务基站可以主动向用户设备发送包含极化方式指示信息的RRC消息,而不需要收到用户设备的任何请求;或者,用户设备也可以主动向服务基站发起用于获取极化指示信息的请求消息,使服务基站在接收到该请求消息的情况下,根据该请求消息向用户设备发送包含极化方式指示信息的RRC消息。
可选的,当用户设备从服务基站的RRC消息中解调得到上述极化指示信息时,用户设备还可以向服务基站发送一个确认消息,例如ACK消息(message acknowledgment),以指示服务基站不需要继续向用户设备发送包含极化指示信息的RRC消息,降低信令开销。
步骤S203,用户设备根据所述目标小区的极化方式或者BWP的极化方式与所述目标小区进行通信。
进一步地,所述用于设备根据所述目标小区的极化方式,开启对应的端口对目标小区进行测量。
图9是本申请实施提供的用户设备进行小区切换的场景示意图。如图9所示,在RRC连接态下,当用户设备从服务小区移动到目标小区时,用户设备可以执行小区切换流程。小区切换流程一般可以包括以下3个步骤:
步骤一:测量;用户设备对目标小区进行小区测量,并向服务基站上报测量结果。
步骤二:判决;服务基站评估测量结果,并考虑用户设备的区域限制情况,判定是否进行小区切换。
步骤三:切换;当服务基站确定进行小区切换时,对用户设备进行RRC连接重新配置,使用户设备对目标小区执行随机接入流程,并与目标小区建立RRC连接。
本申请实施例的步骤S203,至少能够降低用户设备在小区切换流程中的小区测量步骤(即步骤一)的能耗,并且提高小区测量结果的准确性。具体实现中,服务基站可以通知用户设备需要测量的对象(例如:信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、参考信号接收质量(reference signal receiving quality,RSRQ)、参考信号接收功率(reference signal receiving power,RSRP)等)、小区列表、测量结果报告方式、测量标识等参数;用户设备根据上述参数确定要测量的目标小区,并根据极化方式指示信息所指示的目标小区的极化方式,开启对应的端口对目标小区进行测量,并将测量结果上报给服务基站。
示例地,如图9所示,用户设备在移动到目标小区之前,从服务基站接收到极化方式指示信息;如果该极化方式指示信息指示目标小区的极化方式为右旋圆极化,那么,当用户设备移动到目标小区时,用户设备可以仅开启右旋圆极化对应的端口对目标小区进行测量,而无需开启所有的端口,由此,能够降低用户设备在小区测量时的能耗;并且,由于用户设备不开启其他极化方式对应的端口,用户设备不会解调到通过其他极化方式传输的电磁波信号, 避免了用户设备在进行目标小区测量时受到干扰,提高测量结果的准确性。
需要补充说明的是,本申请实施例中的极化方式对应的端口,可以是物理端口,也可以是逻辑端口。其中,物理端口例如可以是用户设备的天线端口;逻辑端口例如可以是通过参考信号区分的(reference signal)或链路区分的逻辑端口,具体来说,当多个物理天线用于传输一个参考信号时,这些物理天线就可以对应同一个逻辑端口,当不同链路的参考信号通过同一个物理天线传输时,这个物理天线就可以对应多个逻辑端口。本申请实施例对极化方式对应的端口的具体形式不做限定。
由以上描述可知,本申请实施例提供的方法,服务基站在RRC消息中配置极化方式指示信息,使用户设备在进行小区切换之前,提前获知目标小区的极化方式,从而在进行小区切换时,可以根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。由此,本申请实施例提供的方法能够降低用户设备在小区切换时的能耗,并且避免用户设备在进行小区测量时受到来自其他小区的干扰,提高测量结果的准确性。
实施例(二)
本申请实施例提供了一种信息传输方法。如图10所示,该方法可以包括步骤S301-S303。
步骤S301,服务基站在服务小区的系统广播消息(system information block,SIB)中配置极化方式指示信息,极化方式指示信息用于指示目标小区的极化方式或者用于指示BWP的极化方式。
具体实现中,系统广播消息SIB通常包含多个类型,例如SIB1~SIBx(其中,x为大于1的正整数),极化方式指示信息可以配置在系统广播消息SIB的某一个或者多个类型中。
作为示例地,在5G NR和LTE系统中,一些SIB类型包含小区重选相关的信息,例如:
●SIB2包含小区重选信息,主要与服务小区有关;
●SIB3包含关于与小区重选相关的服务频率和频内相邻小区的信息;
●SIB4包含关于与小区重选相关的其他NR频率和频率间相邻小区的信息;
因此,服务基站可以优选将极化方式指示信息配置在SIB2、SIB3或者SIB4等包含小区重选相关信息的SIB类型中。
作为示例地,包含有极化方式指示信息的系统广播消息SIBx可以具有以下的消息格式:
SIBx message
--ASN1开始(--ASN1START)
--标签-测量-配置-开始(--TAG-MEAS-CONFIG-START)
系统广播消息(SIBx)::=序列(Sequence){极化方式(Polarization)示例(ENUMERATED){左旋圆极化(LHCP),右旋圆极化(RHCP)}}
--标签-测量-配置-结束(--TAG-MEAS-CONFIG-STOP)
--ASN1结束(--ASN1STOP)
示例性地,上述系统广播消息SIBx中的极化方式(Polarization)字段的内容可以参照表4描述的方式实现:
表4
根据表4的描述,目标小区的极化方式(Polarization)可以通过在系统广播消息SIBx中 增加一个长度为1bit(比特)的比特值来指示。例如,当目标小区可能使用左旋圆极化或右旋圆极化这两种极化方式时,可以使用比特值1来指示左旋圆极化,使用比特值0来指示右旋圆极化,或者,可以使用比特值1来指示右旋圆极化,使用比特值1来指示左旋圆极化。这里需要补充说明的是,比特值1和比特值0具体指示的目标小区的极化方式可以由服务基站和用户设备通过协商确定,也可以根据相应的配置和协议确定,本申请实施例中对比特值和极化方式的对应关系不做具体限定。
示例性地,上述系统广播消息SIBx中的极化方式(Polarization)字段的内容可以参照表5描述的方式实现:
表5
根据表2的描述,目标小区的极化方式(Polarization)可以通过在系统广播消息SIBx中增加一个长度为2bit(比特)的比特值序列来指示,以指示目标小区可能存在的更多的极化方式。使用2bit长度的比特值序列指示极化方式的具体示例,请参照本申请的实施例(一),此处不再赘述。
容易理解的是,本申请实施例在系统广播消息SIBx中增加的用于指示目标小区的极化方式的比特值或比特值序列的长度是可以根据目标小区可能使用的极化方式的数量确定的。因此,上述比特值或比特值序列的长度可以不局限于1bit或者2bit。当目标小区可能使用更多的极化方式传输卫星信号时,本领域技术人员在本申请实施例公开的基础上容易想到继续增加上述比特值序列的长度,例如3bit、4bit等,以指示更多的极化方式,这些都没有超出本申请实施例的保护范围。
需要补充说明的是,在步骤S301的具体实现方式中,极化方式指示信息可以用于指示服务小区,以及服务小区的多个相邻小区的极化方式;其中,用户设备进行小区选择或者小区重选的目标小区可以是服务小区,也可以是多个相邻小区中的一个。极化方式指示信息用于指示多个小区的极化方式的具体示例,可以参照实施例(一)的表3实现,此处不再赘述。
步骤S302,服务基站向用户设备发送包含极化方式指示信息的系统广播消息。
根据实施例(一)描述的内容,用户设备可以包括三种RRC状态,分别为:RRC连接态、RRC空闲态和RRC待用态。步骤S302可以选择在RRC空闲态或RRC待用态中实现。例如,当用户设备和服务基站处于RRC空闲态时,服务基站和用户设备之间没有RRC连接,服务基站可以通过系统广播消息SIBx向用户设备发送极化方式指示信息。
具体实现中,服务基站可以周期性地在特定SI(SystemInformation)窗口发送系统广播消息SIBx,因此,用户设备可以周期性地在对应地SI窗口接收并解码系统广播消息SIBx,由此获得极化方式指示信息。
步骤S303,用户设备根据第一指示信息与所述目标小区进行通信。
进一步地,用户设备可以根据极化方式指示信息所指示的目标小区的极化方式,开启对应的端口对目标小区进行测量。
一般来说,用户设备在开机后会执行小区选择流程,以便尽快选择一个信道质量满足条件的小区进行驻留;在用户设备执行小区选择流程之后,在RRC空闲态(RRC_IDLE)状态下,用户设备需要持续地进行小区重选,以便驻留在优先级更高或者信道质量更好的小区。
类似于小区切换流程,用户设备在执行小区选择或者小区重选流程时,同样需要对目标 小区进行小区测量。本申请实施例的步骤S304,能够降低用户设备在小区选择或者小区重选流程中的小区测量的能耗,并且提高小区测量结果的准确性。
图11是本申请实施提供的用户设备进行小区重选的场景示意图。示例地,如图11所示,在RRC空闲态下,用户设备接收其驻留的服务小区的包含极化方式指示信息的系统广播消息,如果该极化方式指示信息指示目标小区的极化方式为右旋圆极化,那么,当用户设备位于目标小区时,如果要进行小区选择或重选,用户设备可以仅开启右旋圆极化对应的端口对目标小区进行测量,而无需开启所有的端口,由此,能够降低用户设备在小区测量时的能耗;并且,由于用户设备不开启其他极化方式对应的端口,用户设备不会解调到通过其他极化方式传输的电磁波信号,避免了用户设备在进行目标小区测量时受到干扰,提高测量结果的准确性。
需要补充说明的是,在用户设备执行小区重选或者选择流程前后,用户设备前后驻留的小区可能是同一个小区,即服务小区和目标小区是同一个小区;用户设备前后驻留的小区也可能不是同一个小区,即服务小区和目标小区是不同的小区。由此可见,结合实施例(一)和实施例(二),本申请实施例中的服务小区和目标小区,是根据用户设备在小区切换、重选、选择流程前后接入的小区定义的,不构成对小区在地理层面的划分或者隔离。
由以上描述可知,本申请实施例提供的方法,服务基站在服务小区的系统广播消息中配置极化方式指示信息,使用户设备获知目标小区的极化方式,从而在进行小区选择和重选时,可以根据目标小区的极化方式开启对应的端口对目标小区进行小区测量,而不需要开启多个端口。由此,本申请实施例提供的方法能够降低用户设备在小区选择和重选时的能耗,并且避免用户设备在进行小区测量时受到来自其他小区的干扰,提高测量结果的准确性。
实施例(三)
本申请实施例提供了一种无线网络中的极化方式指示方法。如图12所示,该方法可以包括步骤S401-S403。
步骤S401,卫星基站在下行控制消息(downlink control information,DCI)中配置极化方式指示信息,极化方式指示信息用于指示用户设备接收当前小区信号的极化方式或者BWP的极化方式。
具体实现中,当前小区是指用户设备当前接入的卫星小区,包括上述服务小区和目标小区,卫星基站是指当前小区归属的基站,包括上述服务基站和目标基站。一个卫星小区可以同时存在多种极化方式的小区信号,当卫星小区接入了多个用户设备时,卫星基站可以针对每个用户设备使用不同的极化方式发送小区信号,并将每个用户设备接收小区信号时应该采用的极化方式配置在该用户设备对应的下行控制消息中。
图13是下行寻呼信息的消息格式示意图。如图13所示,一般来说,下行控制消息可以是长度为N bit的比特值序列,N为大于或者等于1的正整数。根据实施例(一)和实施例(二)对极化方式指示信息的描述,根据小区可能使用的极化方式的数量,极化方式指示信息可以是长度为1bit的比特值、或者长度为2bit、3bit以及其他长度的比特值序列。那么,结合下行控制消息的消息格式,可以将下行控制消息的某一个或者多个比特值作为极化方式指示信息。
示例地,当卫星小区包括左旋圆极化或右旋圆极化这两种极化方式时,极化方式指示信息是长度为1bit的比特值,例如,可以使用比特值1来指示左旋圆极化,使用比特值0来指示右旋圆极化。该1bit的比特值如图12所示可以是下行控制消息的第一个比特值,也可以是其他位置的比特值。由此,当下行控制消息的第一个比特值为1时,指示用户设备使用左 旋圆极化接收小区信号,当下行控制消息的第一个比特值为0时,指示用户设备使用右旋圆极化接收小区信号。
步骤S402,卫星基站向用户设备发送包含极化方式指示信息的下行控制消息。
具体实现中,卫星基站在物理下行控制信道(physical downlink control channel,PDCCH)传输下行控制消息DCI,因此,用户设备可以在物理下行控制信道PDCCH接收下行控制消息DCI,以获取极化方式指示信息。
卫星基站可以在PDCCH周期性地发送下行控制消息DCI,用户设备可以周期性地在下行控制消息DCI发送窗口监听PDCCH,以接收到下行控制消息DCI。卫星基站和用户设备发送和接收下行控制消息DCI的具体方式可以根据现有的技术规范或标准实施,本申请实施例中不做具体限定。
步骤S403,用户设备根据极化方式指示信息,与所述目标小区进行通信。例如,用于设备根据指示的目标小区的极化方式,开启对应的端口接收小区信号。
示例地,如果极化方式指示信息指示用户设备应该使用左旋圆极化接收小区信号,则用户设备可以仅开启左旋圆极化对应的端口接收小区信号,而不需要开启其他的端口。其中,用户设备接收小区信号例如可以是在下行控制消息DCI指示的物理下行共享信道(physical downlink shared channel,PDSCH)所在位置进行小区信号的接收和解调等。
由以上描述可知,本申请实施例提供的方法,卫星基站在下行控制消息DCI中配置极化方式指示信息,使用户设备获知用于接收小区信号的极化方式,并开启极化方式对应的端口接收小区信号,而不需要开启多个端口。由此,本申请实施例提供的方法能够降低用户设备与基站通信时的能耗,还能避免用户设备受到来自其他小区的干扰。
实施例(四)
本申请实施例提供了一种信息传输方法。该方法能够实现在相邻的两个或者多个基站之间共享各自小区的极化方式,使基站能够根据相邻小区的极化方式合理确定自身小区的极化方式,由此提升小区之间的干扰协调能力。
图14是基站之间共享小区极化方式的场景图。如图14所示,基站之间可以通过Xn接口应用流程协议(XnAP)消息传输小区的极化方式。Xn接口是指卫星基站和卫星基站之间的接口,主要用于切换等信令交互。下面以XnAP消息的发送方作为源基站,以XnAP消息的接收方作为邻基站,以源基站的小区作为源小区,以邻基站的小区作为邻小区,对基站之间传输小区的极化方式的过程进行阐述说明:
具体实现中,源基站可以在XnAP消息中定义新的极化状态消息(Polarization Status),其中,该极化状态消息包含源小区的极化方式。当源基站上电使能或者源小区的极化方式变化时,源基站将极化状态消息发送给邻基站,使邻基站获取源小区最新的极化方式,或者,当邻基站已经记录有源小区的极化方式时,邻基站可以根据最新获取的极状态的信息更新源小区的极化方式。
作为示例地,极化状态消息可以具有如以下表6的消息格式:
表6
由以上描述可知,本申请实施例提供的方法,源基站在发给邻小区的XnAP消息中增加极化状态消息,以向邻小区指示源小区的极化方式,使邻基站能够根据源小区的极化方式合理确定自身邻小区的极化方式,由此提升小区之间的干扰协调能力。
实施例(五)
本申请实施例提供了一种信息传输方法。该方法将小区信号不同的极化方式与不同的指示信息建立关联,那么,如果用户设备确定了其接收到的小区信号的极化方式,则意味着用户设备接收到了该极化方式所关联的指示信息,由此,用户设备无需额外发送这一指示信息,有利于提高用户设备与基站之间信息传输的吞吐率。
具体实现中,极化方式可以关联一个长度为1bit的信息,不同的极化方式对应不同的信息值。例如,左旋圆极化可以对应比特值0,右旋圆极化可以对应比特值1,此时,当用户设备接收到左旋圆极化的小区信号时,说明用户设备接收到了比特值0,当用户设备接收到右旋圆极化的小区信号时,说明用户设备接收到了比特值1。又例如,左旋圆极化可以对应比特值1,右旋圆极化可以对应比特值0,此时,当用户设备接收到左旋圆极化的小区信号时,说明用户设备接收到了比特值1,当用户设备接收到右旋圆极化的小区信号时,说明用户设备接收到了比特值0。
具体实现中,极化方式可以用于指示广播消息,例如:主系统广播消息(master information block,MIB)、系统广播消息(system information block,SIB)等;极化方式关联的信息还可以作为基站向用户设备传输的数据消息。
示例地,极化方式可以用于指示主系统广播消息MIB中的cell barred参数,该cell barred参数指示小区是否被禁止接入。例如:当cell barred参数值为1时,表示小区被禁止接入,当cell barred参数值为0时,表示小区未被禁止接入。图15是卫星基站通过极化方式指示cell barred参数的示意图。如图15所示,用户设备可以小区切换、小区选择或者小区重选时,开启全部极化方式对应的端口用户设备接收小区信号。如果用户设备在左旋圆极化对应的端口接收到小区信号,则小区信号为左旋圆极化,对应cell barred参数值为0,表示小区未被禁止接入;如果用户设备在右旋圆极化对应的端口接收到小区信号,则小区信号为右旋圆极化,对应cell barred参数值为1,表示小区被禁止接入。
进一步地,用户设备在确定了小区信号的极化方式和极化方式所指示的广播消息或者数据消息之后,可以关闭其他极化方式对应的端口,以降低功耗。
本申请实施例中,不同极化方式与不同指示信息的对应关系,以及对不同信息值的定义可以由基站和用户设备协商确定,也可以根据相应的配置和协议确定,本申请实施例对此不做具体限定。
由以上描述可知,本申请实施例提供的方法,利用小区信号的极化方式指示其他信息,例如广播消息或者数据消息,由此,用户设备无需额外发送这一信息,有利于提高用户设备与基站之间信息传输的吞吐率。
图16是本申请实施例提供的一种用户设备的结构示意图。该用户设备例如可以是手机、 平板电脑、车载通信设备、机载通信设备、可穿戴设备等。如图16所示,该用户设备包括:
接收单元501,用于接收第一指示信息,第一指示信息包括目标小区的极化方式或者部分带宽BWP的极化方式;
处理单元502,用于根据所述第一指示信息与所述目标小区进行通信。
具体实现中,第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等,卫星基站通过无线连接的方式连接到核心网设备,并向用户设备提供无线通信服务。目标小区是指用户设备发送小区切换、小区选择或者小区重选时要接入的卫星小区、目标小区可以归属于第一网络设备,也可以归属于其他网络设备。
可选的,接收单元501,具体用于接收第一网络设备发送的无线资源控制RRC消息,无线资源控制消息包括第一指示信息。
可选的,接收单元501,具体用于接收系统广播消息SIB,系统广播消息包括第一指示信息。
可选的,接收单元501,具体用于接收下行控制消息DCI,系统广播消息包括第一指示信息。
可选的,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
可选的,接收单元501,用于开启全部极化方式对应的端口用户设备接收小区信号;处理单元502,用于根据接收到的小区信号的极化方式确定额外的第三指示信息。
图17是本申请实施例提供的一种第一网络设备的结构示意图。该第一网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该第一网络设备包括:
获取单元601,用于获取目标小区的极化方式;
处理单元602,用于向用户设备发送第一指示信息,第一指示信息包括目标小区的极化方式。
可选的,处理单元602,具体用于生成无线资源控制RRC消息,无线资源控制消息包括第一指示信息。
可选的,处理单元602,具体用于生成系统广播消息SIB,系统广播消息包括第一指示信息。
可选的,处理单元602,具体用于生成下行控制消息DCI,系统广播消息包括第一指示信息。
可选的,极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
可选的,获取单元601,具体用于接收第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
图18是本申请实施例提供的一种第二网络设备的结构示意图。该第二网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该第二网络设备包括:
处理单元701,用于向第一网络设备发送第二指示信息,第二指示信息包括目标小区的极化方式,目标小区归属于第二网络设备。
本申请实施例中的第一网络设备或者第二网络设备可能有部分单元(或器件)为通过硬件电路来实现而另一部分单元(或器件)通过软件来实现,也可能其中所有单元(或器件)都通过硬件电路来实现,还可能其中所有单元(或器件)都通过软件来实现。
图19是本申请实施例提供的一种用户设备的结构示意图。该用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等。如图16所示,该用户设备包括:
处理器801,存储器802,其中,存储器802可以独立于处理器801之外或独立于用户设备之外(Memory #3),也可以在处理器801或用户设备之内(Memory #1和Memory #2)。存储器802可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
存储器802用于存储计算机可读指令(或者称之为计算机程序),
处理器801用于读取计算机可读指令以实现前述有关用户设备的方面及其任意实现方式提供的方法。
可选的,该用户设备还包括收发器803,用于接收和发送数据。
图20是本申请实施例提供的一种网络设备的结构示意图。该网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。该网络设备包括:处理器901,存储器902,其中,存储器902可以独立于处理器901之外或独立于网络设备之外(Memory #3),也可以在处理器901或网络设备之内(Memory #1和Memory #2)。存储器902可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
存储器902用于存储计算机可读指令(或者称之为计算机程序),
处理器901用于读取计算机可读指令以实现前述有关第一网络设备或者第二网络设备的方面及其任意实现方式提供的方法。
可选的,该网络设备还包括收发器903,用于接收和发送数据。
另外,该处理器801或901可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。另外,该存储器802或902可以包括:易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、云存储(cloud storage)、网络附接存储(NAS:network attached Storage)、网盘(network drive)等;存储器还可以包括上述种类的存储器的组合或者其他具有存储功能的任意形态的介质或产品。
本申请实施例还提供一种通信系统,该系统用户设备、第一网络设备、第二网络设备,其中:用户设备为图16对应的实施例中所描述的用户设备,第一网络设备为图17对应的实施例中所描述的第一网络设备,第二网络设备为图18对应的实施例中所描述的第二网络设备。具体地,用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等,该第一网络设备和第二网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。
本申请实施例还提供一种通信系统,该系统用户设备、第一网络设备、第二网络设备,其中:用户设备为图19对应的实施例中所描述的用户设备,第一网络设备为图20对应的实施例中所描述的网络设备,第二网络设备为图20对应的实施例中所描述的网络设备。具体地,用户设备例如可以是手机、平板电脑、车载通信设备、机载通信设备、可穿戴设备等,该第一网络设备和第二网络设备例如可以是卫星基站,包括演进型基站(eNB)和5G基站(gNB)等。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序指令,该计算机程序指令被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上 述任一实施例中的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
实施例(六)
如图21,提供的另一种方法的实施例,具体如下:
步骤S501,网络设备获取用户设备所在部分带宽(bandwidth part,BWP)的极化方式,生成第一指示信息,所述第一指示信息包括目标小区的极化方式或者部分带宽BWP的极化方式。
其中,所述第一指示信息包括目标小区的极化方式已经在上面实施例中做了具体介绍,具体请参见上面实施例的描述,这里对所述第一指示信息包括部分带宽BWP的极化方式做具体介绍。
所述网络设备以服务基站为例,所述第一指示信息可以承载在所述在服务小区的无线资源控制(radio resource control,RRC)消息中或者系统广播消息(system information block,SIB),这里以所述RRC中配置BWP的极化方式指示信息为例进行说明,上述实施例中以RRC或者SIB消息中配置BWP的极化方式指示信息均可以使用。
具体实现中,极化方式指示信息例如可以配置在RRC消息的BWP信息消息元素(BWP Info information element)字段中。
也可以为:系统广播消息SIB通常包含多个类型,例如SIB1~SIBx(其中,x为大于1的正整数),极化方式指示信息可以配置在系统广播消息SIB的某一个或者多个类型中。
用户设备所在BWP的极化方式具体可以包括:用户设备所在的目标小区公共BWP的极化方式以及用户设备特有的BWP的极化方式。
作为示例地,包含有极化方式指示信息的移动控制信息消息元素可以具有以下的消息格式:
具体BWP information element消息格式如下:
示例性地,上述部分带宽消息元素中的极化方式(Polarization)字段的内容可以参照下面表7实现:
表7
根据表7的描述,目标小区的极化方式(Polarization)可以通过在RRC消息中增加一个长度为1bit(比特)的比特值来指示,对应目标小区可能使用例如左旋圆极化或右旋圆极化这两种极化方式的情况。此时,可以使用比特值1来指示左旋圆极化,使用比特值0来指示右旋圆极化,或者,也可以使用比特值1来指示右旋圆极化,使用比特值1来指示左旋圆极化。这里需要补充说明的是,比特值1和比特值0具体指示的目标小区的极化方式可以由服务基站和用户设备通过协商确定,也可以根据相应的配置和协议确定,本申请实施例中对比特值和极化方式的对应关系不做具体限定。
示例性地,上述移动控制信息消息元素中的极化方式(Polarization)字段的内容可以参照表8描述的方式实现:
表8
根据上面表8的描述,目标小区的极化方式(Polarization)可以通过在RRC消息中增加一个长度为2bit(比特)的比特值序列来指示,对应目标小区可能存两种或者多于两种极化方式的情况。例如,当目标小区可能使用左旋圆极化、右旋圆极化、左旋椭圆极化或者右旋椭圆极化时,可以使用比特值序列00来表示左旋圆极化,使用比特值序列01来表示右旋圆极化,使用比特值序列10来表示左旋椭圆极化,使用比特值序列11来表示右旋椭圆极化。这里需要补充说明的是,比特值序列的不同值具体指示的目标小区的极化方式可以由服务基站和用户设备通过协商确定,也可以根据相应的配置和协议确定,并配置在用户设备和服务 基站中,本申请实施例中对比特值序列和极化方式的对应关系不做具体限定。
容易理解的是,本申请实施例在RRC消息中增加的用于指示目标小区的极化方式的比特值或比特值序列的长度是可以根据目标小区可能使用的极化方式的数量确定的。因此,上述比特值或比特值序列的长度可以不局限于1bit或者2bit。当目标小区可能使用更多的极化方式传输卫星信号时,本领域技术人员在本申请实施例公开的基础上容易想到继续增加上述比特值序列的长度,例如3bit、4bit等,以指示更多的极化方式,这些都没有超出本申请实施例的保护范围。
需要补充说明的是,在步骤S501的具体实现方式中,极化方式指示信息可以用于指示目标小区的多个BWP的极化方式,其中,用户设备的目标小区的BWP是多个BWP中的一个。极化方式指示信息如表9所示,具体可以包括目标小区ID(Cell ID,CID)、部分带宽ID(BWP ID)和对应用于BWP的指示极化方式的比特值或比特值序列。
根据表9的描述,在CID为4600012345的目标小区中,包含BWP ID为00、01、10和11等多个BWP,其中,BWP 00对应的极化方式为左旋圆极化,用比特值0来指示,BWP 01对应的极化方式为右旋圆极化,用比特值1来指示。
小区ID | BWP ID | 极化方式 |
4600012345 | 00 | 0 |
4600012345 | 01 | 1 |
4600012345 | 10 | 1 |
4600012345 | 11 | 0 |
…… | …… | …… |
表9
步骤S502,网络设备向用户设备发送包含极化方式指示信息的RRC消息。
以第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)和长期演进技术(long term evolution,LTE)为例,用户设备和服务基站之间可以包括两种或者三种RRC状态。具体来说:5G NR中用户设备和服务基站可以包括三种RRC状态,分别为:RRC连接态(RRC_CONNECTED)、RRC空闲态(RRC_IDLE)和RRC待用态(RRC_INACTIVE);LTE中用户设备和服务基站可以包括两种RRC状态,分别为:RRC连接态(RRC_CONNECTED)和RRC空闲态(RRC_IDLE)。
其中,在RRC连接态中,用户设备和服务基站之间建立有RRC连接,用户设备可以与服务基站交互信令或者数据,并且当UE小区间移动时,网络侧会控制用户设备进行小区切换(例如用户设备从服务小区切换到目标小区),即网络侧控制用户设备的移动性。在RRC空闲态中,用户设备和基站之间没有RRC连接,如果用户设备需要和基站之间交互信令或者数据,需要向基站发起RRC连接,以从RRC空闲态进入到RRC连接态;用户设备在RRC空闲态会监听基站的寻呼信息;用户设备在小区间移动时,会进行小区重选,即用户设备控制自身的移动性。在RRC待用态中,用户设备和基站之间没有RRC连接,但是用户设备的最后一个服务基站保存有用户设备的上下文信息,以快速从RRC待用态转移到RRC连接态;用户设备在小区间移动时,会进行小区重选,即用户设备控制自身的移动性。
根据上述可能的RRC状态,步骤S502可以选择在RRC连接态中实现。当用户设备和服务基站处于RRC连接态时,服务基站和用户设备之间建立有RRC连接,服务基站可以通过RRC连接向用户设备发送包含极化方式指示信息的RRC消息。
需要补充说明的是,在步骤S502的具体实现方式中:服务基站可以主动向用户设备发送包含极化方式指示信息的RRC消息,而不需要收到用户设备的任何请求;或者,用户设备也可以主动向服务基站发起用于获取极化指示信息的请求消息,使服务基站在接收到该请求消息的情况下,根据该请求消息向用户设备发送包含极化方式指示信息的RRC消息。
可选的,当用户设备从服务基站的RRC消息中解调得到上述极化指示信息时,用户设备还可以向服务基站发送一个确认消息,例如ACK消息(message acknowledgment),以指示服务基站不需要继续向用户设备发送包含极化指示信息的RRC消息,降低信令开销。
步骤S503,用户设备根据所述第一指示信息与所述目标小区进行通信。
上述实施例中提供的方法中,用户设备获取第一指示信息,所述第一指示信息包括部分带宽BWP的极化方式,所述用户设备根据所述第一指示信息发送或者接收所述目标小区的小区信号。由此,上述提供的一种在BWP中增加极化指示的方法,可以支持不同波束或用户设备在给定部分带宽BWP中以指示用户设备通过指示的极化方式完成通信传输,同时降低了受到其他相邻小区的信号干扰。
另外,上述实施例中装置部分的描述均是用于实施例六的描述,这里就不再赘述。
Claims (26)
- 一种信息传输方法,其特征在于,所述方法包括:用户设备获取第一指示信息,所述第一指示信息包括目标小区的极化方式或者部分带宽BWP的极化方式;所述用户设备根据所述第一指示信息与所述目标小区进行通信。
- 根据权利要求1所述的方法,其特征在于,所述用户设备获得第一指示信息,包括:所述用户设备接收无线资源控制RRC消息,所述无线资源控制消息包括所述第一指示信息。
- 根据权利要求1所述的方法,其特征在于,所述用户设备获得第一指示信息,包括:所述用户设备接收系统广播消息SIB,所述系统广播消息包括所述第一指示信息。
- 根据权利要求1所述的方法,其特征在于,所述用户设备获得第一指示信息,包括:所述用户设备接收下行控制消息DCI,所述下行控制消息包括所述第一指示信息。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
- 一种信息传输方法,其特征在于,所述方法包括:第一网络设备获取目标小区的极化方式或者部分带宽BWP的极化方式;所述第一网络设备生成第一指示信息,所述第一指示信息包括所述目标小区的极化方式或者部分带宽BWP的极化方式;所述第一网络设备发送第一指示信息。
- 根据权利要求6所述的方法,其特征在于,所述第一网络设备生成第一指示信息,包括:所述第一网络设备生成无线资源控制RRC消息,所述无线资源控制消息包括所述第一指示信息。
- 根据权利要求6所述的方法,其特征在于,所述第一网络设备生成第一指示信息,包括:所述第一网络设备生成系统广播消息SIB,所述系统广播消息包括所述第一指示信息。
- 根据权利要求6所述的方法,其特征在于,所述第一网络设备生成第一指示信息,包括:所述第一网络设备生成下行控制消息DCI,所述下行控制消息包括所述第一指示信息。
- 根据权利要求6-9任一项所述的方法,其特征在于,所述极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
- 根据权利要求6所述的方法,其特征在于,所述第一网络设备获取目标小区的极化方式或者部分带宽BWP的极化方式,包括:所述第一网络设备获得第二指示信息,所述第二指示信息包括所述目标小区的极化方式或者部分带宽BWP的极化方式,所述目标小区归属于所述第二网络设备。
- 一种用户设备,其特征在于,包括:接收单元,用于接收第一指示信息,所述第一指示信息包括目标小区的极化方式或者部分带宽BWP的极化方式;处理单元,用于根据所述第一指示信息与目标小区进行通信。
- 根据权利要求12所述的用户设备,其特征在于,所述接收单元,具体用于接收无线资源控制RRC消息,所述无线资源控制消息包括所述第一指示信息。
- 根据权利要求12所述的用户设备,其特征在于,所述接收单元,具体用于接收系统广播消息SIB,所述系统广播消息包括所述第一指示信息。
- 根据权利要求12所述的用户设备,其特征在于,所述接收单元,具体用于接收下行控制消息DCI,所述下行控制消息包括所述第一指示信息。
- 根据权利要求12-15任一项所述的用户设备,其特征在于,所述极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
- 一种第一网络设备,其特征在于,包括:获取单元,用于获取目标小区的极化方式或者部分带宽BWP的极化方式;处理单元,用于根据所述目标小区的极化方式或者部分带宽BWP的极化方式,生成第一指示信息,所述第一指示信息包括所述目标小区的极化方式或者部分带宽BWP的极化方式;传输单元,用于传输所述第一指示信息。
- 根据权利要求17所述的第一网络设备,其特征在于,所述处理单元,具体用于生成无线资源控制RRC消息,所述无线资源控制消息包括所述第一指示信息。
- 根据权利要求17所述的第一网络设备,其特征在于,所述处理单元,具体用于生成系统广播消息SIB,所述系统广播消息包括所述第一指示信息。
- 根据权利要求17所述的第一网络设备,其特征在于,所述处理单元,具体用于生成下行控制消息DCI,所述下行控制消息包括所述第一指示信息。
- 根据权利要求17-20任一项所述的第一网络设备,其特征在于,所述极化方式包括左旋圆极化、右旋圆极化、线极化或椭圆极化的一种或多种。
- 根据权利要求17所述的第一网络设备,其特征在于,所述获取单元,具体用于接收第二指示信息,所述第二指示信息包括所述目标小区的极化方式,所述目标小区归属于所述第二网络设备。
- 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-5中任意一项所述的信息传输方法。
- 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得所述计算机执行如权利要求6-11中任意一项所述的信息传输方法。
- 一种用户设备,其特征在于,包括:处理器,存储器;所述存储器用于存储计算机可读指令或者计算机程序,所述处理器用于读取所述计算机可读指令以实现如权利要求1-5中任意一项所述的信息传输方法。
- 一种网络设备,其特征在于,包括:处理器,存储器;所述存储器用于存储计算机可读指令或者计算机程序,所述处理器用于读取所述计算机可读指令以实现如权利要求6-11中任意一项所述的信息传输方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022519310A JP7512376B2 (ja) | 2019-09-25 | 2020-09-10 | 情報伝送方法、装置、およびシステム |
EP20868649.3A EP4030855A4 (en) | 2019-09-25 | 2020-09-10 | METHOD, APPARATUS, AND INFORMATION TRANSMISSION SYSTEM |
US17/702,958 US12101669B2 (en) | 2019-09-25 | 2022-03-24 | Information transmission method, apparatus, and system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910908756 | 2019-09-25 | ||
CN201910908756.9 | 2019-09-25 | ||
CN201911151266.5 | 2019-11-21 | ||
CN201911151266.5A CN112566195B (zh) | 2019-09-25 | 2019-11-21 | 一种信息传输方法、装置及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/702,958 Continuation US12101669B2 (en) | 2019-09-25 | 2022-03-24 | Information transmission method, apparatus, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021057490A1 true WO2021057490A1 (zh) | 2021-04-01 |
Family
ID=75030290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/114469 WO2021057490A1 (zh) | 2019-09-25 | 2020-09-10 | 一种信息传输方法、装置及系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12101669B2 (zh) |
EP (1) | EP4030855A4 (zh) |
JP (1) | JP7512376B2 (zh) |
CN (2) | CN115134882A (zh) |
WO (1) | WO2021057490A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022153074A1 (en) * | 2021-01-15 | 2022-07-21 | Orope France Sarl | Apparatus and method of wireless communication |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113891405A (zh) * | 2020-07-03 | 2022-01-04 | 华为技术有限公司 | 一种小区选择方法及装置 |
US11700050B2 (en) * | 2020-10-02 | 2023-07-11 | Qualcomm Incorporated | Polarization indication signaling |
CN115443682A (zh) * | 2021-04-02 | 2022-12-06 | 苹果公司 | Ntn移动性的增强 |
WO2022236624A1 (zh) * | 2021-05-10 | 2022-11-17 | 北京小米移动软件有限公司 | 一种通信方法及其装置 |
CN115918169A (zh) * | 2021-06-25 | 2023-04-04 | 北京小米移动软件有限公司 | 极化指示、极化确定方法和装置、通信装置和存储介质 |
CN115915444A (zh) * | 2021-09-30 | 2023-04-04 | 华为技术有限公司 | 一种通信方法及装置 |
KR20240007621A (ko) * | 2022-07-08 | 2024-01-16 | 현대자동차주식회사 | 비-지상 네트워크에서 편파 다중 신호 전송을 위한 방법 및 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105471484A (zh) * | 2014-09-12 | 2016-04-06 | 索尼公司 | 无线通信设备和无线通信方法 |
CN108988925A (zh) * | 2017-05-05 | 2018-12-11 | 华为技术有限公司 | 无线网络中天线极化方向的指示方法和装置 |
CN109392044A (zh) * | 2017-08-10 | 2019-02-26 | 华为技术有限公司 | 小区切换的方法和装置 |
US20190132041A1 (en) * | 2017-10-31 | 2019-05-02 | Hitachi, Ltd. | Radio Communication System and Radio Monitoring Control System |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6086997B2 (ja) * | 2013-02-14 | 2017-03-01 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて大規模mimoのためのアンテナ構成情報の提供方法及びそのための装置 |
EP3066862B1 (en) * | 2013-11-07 | 2017-09-13 | Telefonaktiebolaget LM Ericsson (publ) | A network node and method for adjusting antenna parameters in a wireless communications system |
CN104955054A (zh) * | 2014-03-26 | 2015-09-30 | 普天信息技术有限公司 | 一种基站和终端天线极化方向配置方法 |
CN104244276A (zh) * | 2014-07-25 | 2014-12-24 | 中兴通讯股份有限公司 | 重配置请求方法、重配置方法及装置 |
JP2016080710A (ja) | 2014-10-21 | 2016-05-16 | 国立大学法人 千葉大学 | 楕円・円偏波合成開口レーダ並びにこれを搭載した航空機、人工衛星、車両、固定地上プラットフォーム及び成層圏プラットフォーム |
US10135521B2 (en) * | 2015-12-16 | 2018-11-20 | Hughes Network Systems, Llc | System and method of predictive satellite spot beam selection |
US11411694B2 (en) * | 2016-03-31 | 2022-08-09 | Ntt Docomo, Inc. | Method of aperiodic signal transmission, base station, and user equipment |
EP3319351B1 (en) * | 2016-11-04 | 2023-09-13 | Peraso Technologies Inc. | Method, system and apparatus for signaling station capabilities to establish wireless connections |
WO2018126474A1 (en) | 2017-01-09 | 2018-07-12 | Qualcomm Incorporated | Transmitting multiplexed sounding reference signal ports in new radio |
CN108183740B (zh) * | 2017-12-26 | 2020-09-11 | 北京邮电大学 | 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法 |
JP2019134249A (ja) | 2018-01-30 | 2019-08-08 | シャープ株式会社 | 基地局装置および端末装置 |
US11622338B2 (en) * | 2019-03-26 | 2023-04-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmission of synchronization signals |
MX2022003482A (es) | 2019-09-25 | 2022-04-25 | Ericsson Telefon Ab L M | Metodos para configurar modos de polarizacion en una red no terrestre (ntn). |
-
2019
- 2019-11-21 CN CN202210681726.0A patent/CN115134882A/zh active Pending
- 2019-11-21 CN CN201911151266.5A patent/CN112566195B/zh active Active
-
2020
- 2020-09-10 WO PCT/CN2020/114469 patent/WO2021057490A1/zh unknown
- 2020-09-10 JP JP2022519310A patent/JP7512376B2/ja active Active
- 2020-09-10 EP EP20868649.3A patent/EP4030855A4/en active Pending
-
2022
- 2022-03-24 US US17/702,958 patent/US12101669B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105471484A (zh) * | 2014-09-12 | 2016-04-06 | 索尼公司 | 无线通信设备和无线通信方法 |
CN108988925A (zh) * | 2017-05-05 | 2018-12-11 | 华为技术有限公司 | 无线网络中天线极化方向的指示方法和装置 |
CN109392044A (zh) * | 2017-08-10 | 2019-02-26 | 华为技术有限公司 | 小区切换的方法和装置 |
US20190132041A1 (en) * | 2017-10-31 | 2019-05-02 | Hitachi, Ltd. | Radio Communication System and Radio Monitoring Control System |
Non-Patent Citations (1)
Title |
---|
See also references of EP4030855A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022153074A1 (en) * | 2021-01-15 | 2022-07-21 | Orope France Sarl | Apparatus and method of wireless communication |
Also Published As
Publication number | Publication date |
---|---|
EP4030855A1 (en) | 2022-07-20 |
US20220217589A1 (en) | 2022-07-07 |
JP7512376B2 (ja) | 2024-07-08 |
CN112566195B (zh) | 2022-07-12 |
JP2022549702A (ja) | 2022-11-28 |
EP4030855A4 (en) | 2022-11-16 |
CN112566195A (zh) | 2021-03-26 |
US12101669B2 (en) | 2024-09-24 |
CN115134882A (zh) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057490A1 (zh) | 一种信息传输方法、装置及系统 | |
US20220217602A1 (en) | Cell reselection method and apparatus | |
US20230254801A1 (en) | Tracking area code transmission in non-terrestrial networks | |
US20230209526A1 (en) | Method for selecting initial bandwidth part (bwp), terminal device and network device | |
CN113923741A (zh) | 一种小区接入方法、装置、介质及终端 | |
WO2022032586A1 (en) | Coordinated cellular coverage by mobile base stations | |
US20240089873A1 (en) | User equipment for satellite communication | |
WO2022021131A1 (zh) | 重选初始带宽部分bwp的方法、终端设备和网络设备 | |
US11863291B2 (en) | Management of cell measurement | |
WO2023116335A1 (zh) | 一种通信方法及装置 | |
WO2023004532A1 (zh) | 接入控制方法、终端及网络设备 | |
WO2022028296A1 (zh) | 通信方法、装置及设备 | |
JP7394856B2 (ja) | 端末装置、基地局装置、及び無線通信方法 | |
US20240314882A1 (en) | Communication method, terminal device, and network device | |
FI130385B (en) | Polarization adjustment | |
WO2023201489A1 (zh) | 通信方法、终端设备和网络设备 | |
WO2023092456A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024070555A1 (ja) | 情報処理装置、及び情報処理方法 | |
WO2023133832A1 (zh) | 无线通信的方法和装置 | |
WO2024159830A1 (en) | Operations associated with ntn cell information | |
JP2024155575A (ja) | 中継装置、通信装置および通信方法 | |
JP2024155574A (ja) | 中継装置、通信装置および通信方法 | |
WO2023144447A1 (en) | Polarization switching | |
KR20240028419A (ko) | 측정 갭의 구성 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20868649 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022519310 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020868649 Country of ref document: EP Effective date: 20220412 |