CN108183740B - 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法 - Google Patents

基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法 Download PDF

Info

Publication number
CN108183740B
CN108183740B CN201711432755.9A CN201711432755A CN108183740B CN 108183740 B CN108183740 B CN 108183740B CN 201711432755 A CN201711432755 A CN 201711432755A CN 108183740 B CN108183740 B CN 108183740B
Authority
CN
China
Prior art keywords
small cell
cross
user
polarization state
macro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711432755.9A
Other languages
English (en)
Other versions
CN108183740A (zh
Inventor
郭彩丽
高小芳
陈硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201711432755.9A priority Critical patent/CN108183740B/zh
Publication of CN108183740A publication Critical patent/CN108183740A/zh
Application granted granted Critical
Publication of CN108183740B publication Critical patent/CN108183740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法,其中利用极化信息处理和干扰对齐原理对认知异构蜂窝网络中两种跨层干扰进行了处理,实现了在不影响宏蜂窝内正常传输和保持最大的系统下行容量的同时,大幅度降低了小蜂窝内信号传输的差错率,提升了小蜂窝对抗多径衰落信道和跨层干扰的传输可靠性。本发明优化小蜂窝用户接收极化状态,实现了对齐宏蜂窝对小蜂窝用户的跨层干扰到目标信号的零空间的目的;优化小蜂窝基站发送极化状态,对齐了宏蜂窝用户受到来自小蜂窝的跨层干扰到目标信号零空间,确保宏蜂窝用户的正常传输,同时远远降低了小蜂窝网络的信号传输误差。

Description

基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法
技术领域
本发明属于无线通信领域,涉及认知异构蜂窝网络系统,具体涉及认知异构蜂窝网络中一种跨层干扰对齐的方法。
背景技术
随着无线通信技术的发展和无线通信设备的普及,无线移动通信网络面临着有限频谱资源无法满足大量业务需求的问题。为了能够大幅度提升蜂窝网络容量,革新传统的宏蜂窝网络架构,在其中部署低功率、频率复用的小蜂窝节点组成异构蜂窝网络成为未来主要的发展趋势。异构蜂窝网络一方面有效地提高网络容量,实现无缝覆盖和提升边缘用户性能,另一方面频率复用技术极大地提升了频谱资源的利用率。然而,这样带来了宏蜂窝与小蜂窝之间严重的跨层干扰问题,阻碍了网络容量的提升。认知无线电技术的引入使得小蜂窝具有随着周围环境改变发送状态的能力,成为解决异构网络中复杂干扰的有效途径。具体方法是将小蜂窝作为认知网络,在不对宏蜂窝即授权网络产生严重的跨层干扰的前提下,利用存在的频谱机会实现的频谱共享。这种抑制跨层干扰的技术成为认知异构蜂窝网络实现频谱共享的核心。
传统的异构蜂窝网络干扰抑制技术主要分为发射端的小区间协作多点传输技术、小区间干扰对齐技术和接收端的干扰抑制合并接收技术来实现,其中小区间干扰对齐技术由于其最大化系统的自由度和较好的性能成为研究的重点。并且随着多天线发送、多天线接收(MIMO)系统空时预编码技术的发展,采用干扰对齐技术来设计预编码矩阵成为抑制异构蜂窝网络干扰最有效的手段。然而,现有的MIMO系统中的天线部署具有较高的天线相关性,导致降低了系统容量和获取信道信息的准确性,并且随着天线数目的增加,MIMO天线的硬件实现也比较困难。因此具有体积小、天线相关性低等优势的正交双极化天线成为目前基站和终端的备受青睐的配置,同时虚拟变极化等极化信息处理方法的应用促进了信号极化信息的利用,涌现出一批基于极化信号处理的干扰抑制技术。
认知异构蜂窝网络环境下,根据干扰对齐准则在极化域对跨层干扰进行处理的研究有基于盲极化信号处理的干扰避免方法(BPIA,Interference Avoidance Scheme Basedon Blind Polarization Signal Processing)[1]和基于极化信息处理的认知异构蜂窝网络频谱共享方法(PSS-CHCN,Polarization-based spectrum sharing scheme incognitive heterogeneous cellular network)[2],前者只实现了抑制小蜂窝对宏蜂窝产生的干扰,后者既抑制了宏蜂窝对小蜂窝的干扰,同时降低小蜂窝对宏蜂窝的干扰功率保证宏蜂窝的正常工作,但是两者均不能满足降低小蜂窝网络的系统差错率,提升传输可靠性的要求。
[1]X.Lin,C.Guo,Z.Zeng,and D.Li,“A novel interference avoidance schemebased on blind polarization signal processing for cognitive femtocellnetwork,”in Proc.Int.Symp.Wireless Pers.Multimedia Commun.,pp.40-44,2012.
[2]S.Chen,Z.Zeng,and C.Guo,“Exploiting polarization for underlayspectrum sharing in cognitive heterogeneous cellular network,”in Proc.IEEEGLOBECOM,pp.1-6,2016.
发明内容
本发明的目的是为了解决上述问题,根据干扰对齐技术原理,利用极化信息处理实现对网络中跨层干扰的抑制,提供一种基于极化信息处理的跨层干扰对齐方法(PXIA,Polarization-based cross-tier interference alignment scheme in cognitiveheterogeneous cellular network),应用于认知异构蜂窝网络。本发明优化了小蜂窝的发送和接收极化状态,实现了小蜂窝下行传输误码率最小化,提高了小蜂窝对抗跨层干扰和多径衰落信道的传输可靠性,并且保证了宏蜂窝网络的正常工作和最大化的系统总容量。
为了达到上述技术效果,本发明的一种基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法的实现步骤包括:
小蜂窝基站通过双极化天线向小蜂窝用户发送信号,小蜂窝用户同时接收到小蜂窝基站发送的目标信号和宏蜂窝基站发送的干扰信号;
小蜂窝基站利用宏蜂窝基站的发送极化状态和宏蜂窝基站到小蜂窝用户的干扰信道的信道状态信息(CSI,Channel state information),根据干扰对齐原理计算出小蜂窝用户不受宏蜂窝干扰信号的最优接收极化状态;
小蜂窝用户通过虚拟变极化方法产生最优接收极化状态;
约束宏蜂窝用户受到的所有小蜂窝基站发送给小蜂窝用户的干扰信号功率低于宏蜂窝的干扰门限,同时根据均方误差准则建立每个小蜂窝用户接收信号与目标信号的均方误差表达式;
以最小化小蜂窝所有用户的均方误差为优化目标,以小蜂窝基站对宏蜂窝用户的总干扰功率低于干扰功率约束、对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件和极化状态信号的模约束为优化条件,构建基于极化信息处理的认知异构蜂窝网络干扰对齐优化模型;
根据小蜂窝基站到宏蜂窝用户的干扰信道的信道状态信息和小蜂窝基站到小蜂窝用户的目标信道的信道状态信息,并利用拉格朗日乘子法等方法,求解出小蜂窝用户的最优发送极化状态。小蜂窝基站通过虚拟变极化方法产生最优发送极化状态。
本发明的优点在于:
(1)优化小蜂窝用户接收极化状态,实现了对齐宏蜂窝对小蜂窝用户的跨层干扰的目的;
(2)优化小蜂窝基站发送极化状态,对齐了宏蜂窝用户受到来自小蜂窝的跨层干扰,确保宏蜂窝用户的正常传输的同时,降低小蜂窝网络的下行信号传输误差;
(3)在不影响宏蜂窝正常传输的同时,大幅度降低了小蜂窝内信号传输的差错率,提升了小蜂窝对抗多径衰落信道和跨层干扰的传输可靠性,同时保持了最大的下行系统总容量;
附图说明
图1:本发明实施例的认知异构蜂窝网络模型示意图;
图2:本发明实施例提供的认知异构蜂窝网络跨层干扰对齐方法流程图;
图3:本发明与背景技术中提到的BPIA和PSS-CHCN方法的小蜂窝下行信号传输误码率性能对比图(坐标图)。
图4:本发明与背景技术中提到的BPIA和PSS-CHCN方法的系统总容量性能对比图(坐标图)。
具体实施方式
为了使本发明能够更加清楚地理解其技术原理,下面结合附图具体、详细地阐述本发明实施例。
本发明的认知异构蜂窝网络模型由图1所示,该网络包含了一个宏蜂窝网络为授权网络,由一个宏蜂窝基站(MBS,Macro base station)和一个宏蜂窝用户(MUE,Macrocell user equipment)组成;宏蜂窝网络中包含了一个小蜂窝网络作为认知网络,其中包含了一个小蜂窝基站(SBS,Small cell base station)和若干个小蜂窝用户(SUEs,Smallcell user equipment),小蜂窝用户记作{SUE i},i=1,2,...,M,小蜂窝与宏蜂窝共享频谱;同时,SBS的发送天线和SUE i的接收天线均配置了正交双极化天线,分别记作A001和A002i,i=1,2,…,M。
本发明的一种基于极化信息处理的认知异构蜂窝网络跨层干扰对齐的方法流程参考图2,步骤包括:
干扰表征S1:作为调制后的无线电磁波信号,蜂窝网络中的用户信号具有明显的空间极化特性,这种特性会随着传输信道的去计划效应发生改变。因此针对任意形式的传输信号,本发明只提取信号和信道的极化状态信息。假设小蜂窝基站发送给每个小蜂窝用户的信号的发送极化状态为
Figure GDA0002488246780000051
每个小蜂窝用户的接收极化状态为
Figure GDA0002488246780000052
宏蜂窝的发射和接收极化状态记为
Figure GDA0002488246780000053
Figure GDA0002488246780000054
同时将宏蜂窝对小蜂窝的干扰信道记为HPi,将小蜂窝对宏蜂窝的干扰信道记为HiP,可以得到宏蜂窝基站对小蜂窝用户造成的含有极化状态信息的跨层干扰信号为
Figure GDA0002488246780000055
(·)H表示共轭转置。小蜂窝基站对宏蜂窝用户造成的含有极化状态信息的跨层干扰信号为
Figure GDA0002488246780000056
sp和si,i=1,2,…,M分别是宏蜂窝和小蜂窝调制后的发送信号;由上面两式可知跨层干扰有两类,下面将分步对二者进行处理。
干扰对齐表征S2:根据干扰对齐原理,得到对齐两类跨层干扰需要满足的极化条件:
Figure GDA0002488246780000057
Figure GDA0002488246780000058
Figure GDA0002488246780000059
Figure GDA00024882467800000510
dx表示第x用户的自由度;等式一表示对齐宏蜂窝对小蜂窝的跨层干扰,等式二表示对齐了小蜂窝对宏蜂窝的跨层干扰,后两个等式表示有效的通信链路,默认满足。
计算最优接收极化状态S3:在小蜂窝接收端对齐宏蜂窝基站对第i个小蜂窝用户的干扰,根据干扰对齐原理第一个等式,得到最优接收极化状态
Figure GDA00024882467800000511
其中,null(A)表示矩阵A的零空间。此时,最优接收极化状态将小蜂窝用户接收到的宏蜂窝干扰信号对齐到其零空间内,使得小蜂窝用户目标信号处于无干扰的极化空间。
计算最优发送极化状态S4:由于需要利用小蜂窝发送极化状态来对齐小蜂窝对宏蜂窝的跨层干扰,同时还要保证小蜂窝网络信号可靠传输的性能,所以以小蜂窝用户接收信号与目标接收信号的误差最小为原则,建立和求解优化模型,确定小蜂窝用户的最优发送极化状态,步骤如下:
干扰功率约束表征S41:为保证宏蜂窝用户的正常工作,小蜂窝对宏蜂窝总干扰需要低于宏蜂窝用户所能承受的最大干扰门限Gmax,则
Figure GDA0002488246780000061
其中,E{·}为取期望值,
Figure GDA0002488246780000062
为F-范数的平方。
均方误差表征S42:在处理干扰的同时,还要尽量降低小蜂窝用户接收到的信号与期望的目标信号之间的误差,才能保证小蜂窝内信号传输的可靠性。为了衡量这个性能,采用接收信号与目标信号的均方误差(MSE,mean square error)作为指标,根据定义,小蜂窝用户SUE i的信号均方误差表征为
Figure GDA0002488246780000063
其中,E{‖siF 2}=1,ri表示对齐了宏蜂窝干扰后的小蜂窝接收信号,即
Figure GDA0002488246780000064
ni表示第i个小蜂窝用户接收端受到的加性高斯白噪声。
建立优化模型S43:以小蜂窝发送极化状态为优化变量,最小化小蜂窝用户总均方误差为优化目标,以小蜂窝对宏蜂窝总的跨层干扰需要低于宏蜂窝用户所能承受的最大干扰门限Gmax、对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件和极化状态满足的模约束条件为优化条件,建立基于极化信息处理的认知异构网络跨层干扰对齐优化模型
Figure GDA0002488246780000065
Figure GDA0002488246780000071
Figure GDA0002488246780000072
Figure GDA0002488246780000073
MSE为所有小蜂窝用户的均方误差,MSEi为第i个小蜂窝用户的均方误差,C1为小蜂窝对宏蜂窝总跨层干扰需要低于宏蜂窝用户所能承受的最大干扰门限Gmax的约束条件,C2为对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件的约束条件,ε为对齐误差,C3是极化状态满足的模约束条件。
求解优化模型S44,求解过程如下:
拉格朗日求解S441:首先利用拉格朗日乘子法,构造拉格朗日对偶函数为
Figure GDA0002488246780000074
其中λi为拉格朗日乘子,根据KKT条件,得
Figure GDA0002488246780000075
求解得到
Figure GDA0002488246780000076
Figure GDA0002488246780000077
假设所有小蜂窝基站与小蜂窝用户之间的通信链路对宏蜂窝用户产生的干扰功率是一样的,由第二个约束条件C2可得,若ε→0成立,则
Figure GDA0002488246780000078
成立,即满足C1。将
Figure GDA0002488246780000079
的表达式代入C2得
Figure GDA00024882467800000710
其中,
Figure GDA00024882467800000711
表示矩阵的伪逆;
化简表达式S442:根据C3可知极化状态矩阵为酉矩阵,模恒定为1,只有相位变化,因此提取表达式中的相位信息,化简得到λi和最优发送极化状态
Figure GDA0002488246780000081
的最简表达式
Figure GDA0002488246780000082
Figure GDA0002488246780000083
‖A‖表示矩阵A的模。
图3和图4表示了本发明的认知异构蜂窝网络跨层干扰对齐方法的使用效果图。其中PXIA表示本发明的跨层干扰对齐方法,BPIA表示基于盲极化信号处理的干扰避免方法,PSS-CHCN表示基于极化信息处理的认知异构蜂窝网络频谱共享方法。
图3比较了三种方法对小蜂窝网络内信号传输的误码率性能的影响,由图可知,随着信道的信噪比(SNR,signal-to-noise ratio)的增长,采用PXIA的小蜂窝误码率远远低于BPIA和PSS-CHCN;图4则比较了三种方法对系统的总容量的影响,图中PXIA和PSS-CHCN对系统总容量影响相同,仿真曲线重叠,可知随着信道的信噪比的增加,采用PXIA和PSS-CHCN两种方法的系统总容量比采用BPIA方法的系统总容量提升了两倍。由此可以得出结论:PXIA可以在保持与PSS-CHCN相同的最大系统总容量的同时,实现比BPIA和PSS-CHCN更低的小蜂窝误码率。
综上所述,通过实施本发明实施例的一种基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法,可以在极化的维度上实现宏蜂窝和小蜂窝的共存,同时在保证宏蜂窝用户正常工作和系统最大容量的前提下,极大地提升系统对抗干扰、信道衰落的传输可靠性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (1)

1.基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法,包括以下几个步骤:
步骤1:根据电磁波信号的极化特征和信道的去极化效应表征宏蜂窝用户和小蜂窝用户接收到的干扰信号,基于干扰对齐原理建立跨层干扰对齐需要满足的极化条件表达式;
表征认知异构蜂窝网络中由宏蜂窝网络对小蜂窝网络造成的跨层干扰为
Figure FDA0002488246770000011
其中,Ipi为宏蜂窝基站对小蜂窝用户产生的跨层干扰,
Figure FDA0002488246770000012
为小蜂窝用户接收极化状态的共轭转置,HPi为宏蜂窝基站到小蜂窝用户的干扰信道,
Figure FDA0002488246770000013
为宏蜂窝基站的发送极化状态,sp为宏蜂窝基站未加发送极化状态的发送信号,M为小蜂窝网络的用户数目;
表征小蜂窝网络对宏蜂窝网络造成的跨层干扰为
Figure FDA0002488246770000014
其中,Iip为小蜂窝基站发送给第i小蜂窝用户的信号造成的对宏蜂窝用户跨层干扰,
Figure FDA0002488246770000015
为宏蜂窝用户接收极化状态的共轭转置,Hip为小蜂窝基站到宏蜂窝用户的干扰信道,
Figure FDA0002488246770000016
为小蜂窝基站发送给第i个小蜂窝用户的信号的发送极化状态,si为小蜂窝基站发送给第i个小蜂窝用户的未加发送极化状态的发送信号;
根据干扰对齐原理,得到对齐两类跨层干扰需要满足的极化条件
Figure FDA0002488246770000017
Figure FDA0002488246770000018
步骤2:根据小蜂窝用户跨层干扰对齐的极化条件,确定最优接收极化状态为:
Figure FDA0002488246770000019
其中,
Figure FDA00024882467700000110
为第i个小蜂窝用户的接收极化状态,null为零空间,HPi H为宏蜂窝基站到第i个小蜂窝用户的干扰信道的共轭转置,
Figure FDA00024882467700000111
为宏蜂窝基站的发送极化状态的共轭转置;
步骤3:根据小蜂窝用户接收信号与目标接收信号的误差最小为原则,建立以小蜂窝用户发送极化状态为优化变量的优化模型;
首先表征小蜂窝对宏蜂窝总的跨层干扰功率需要低于宏蜂窝用户所能承受的最大干扰门限Gmax
Figure FDA00024882467700000112
其中,E{·}为取期望值,
Figure FDA00024882467700000113
为F-范数的平方,
Figure FDA00024882467700000114
为宏蜂窝用户的接收极化状态的共轭转置,Hip为小蜂窝基站到宏蜂窝用户的干扰信道,
Figure FDA00024882467700000115
为小蜂窝基站发送给第i个小蜂窝用户的信号的发送极化状态;
其次,根据均方误差定义,表征第i个小蜂窝用户接收信号ri和目标信号si的均方误差MSEi
Figure FDA0002488246770000021
其中,E{‖siF 2}=1;
最后,以小蜂窝基站的发送极化状态为优化变量,以最小化所有小蜂窝用户的均方误差为优化目标,以小蜂窝对宏蜂窝总的跨层干扰功率需要低于宏蜂窝用户所能承受的最大干扰门限Gmax、对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件和极化状态满足的功率条件为约束条件建立优化模型为:
Figure FDA0002488246770000022
subject to C1:
Figure FDA0002488246770000023
C2:
Figure FDA0002488246770000024
C3:
Figure FDA0002488246770000025
其中,
Figure FDA0002488246770000026
为小蜂窝基站发送给第i个小蜂窝用户信号的发送极化状态,MSE为所有小蜂窝用户的均方误差,MSEi为第i个小蜂窝用户的均方误差,C1为小蜂窝对宏蜂窝总的跨层干扰功率需要低于宏蜂窝用户所能承受的最大干扰门限Gmax的约束条件,C2为对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件的约束条件,ε为对齐误差,C3是极化状态满足的模约束条件;
步骤4:通过求解优化模型确定小蜂窝用户的最优发送极化状态;
首先利用格朗日乘子法求得
Figure FDA0002488246770000027
Figure FDA0002488246770000028
其中,
Figure FDA0002488246770000029
为发送极化状态,Hii为小蜂窝基站到第i个小蜂窝用户的目标信道,
Figure FDA00024882467700000210
为第i个小蜂窝用户的信号的接收极化状态,HiP为小蜂窝基站对宏蜂窝用户的干扰信道,
Figure FDA00024882467700000211
为宏蜂窝用户的接收极化状态,Gmax为宏蜂窝用户干扰功率门限,λi为拉格朗日乘子;
其次根据对齐小蜂窝网络对宏蜂窝用户的跨层干扰需要满足的极化条件的约束条件,得
Figure FDA00024882467700000212
其中,ε为对齐误差,
Figure FDA00024882467700000213
为伪逆;
最后根据极化状态满足的模约束条件化简表达式,得
Figure FDA00024882467700000214
Figure FDA0002488246770000031
λi为最简的拉格朗日乘子,
Figure FDA0002488246770000032
为确定的小蜂窝发送极化状态。
CN201711432755.9A 2017-12-26 2017-12-26 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法 Active CN108183740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711432755.9A CN108183740B (zh) 2017-12-26 2017-12-26 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711432755.9A CN108183740B (zh) 2017-12-26 2017-12-26 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法

Publications (2)

Publication Number Publication Date
CN108183740A CN108183740A (zh) 2018-06-19
CN108183740B true CN108183740B (zh) 2020-09-11

Family

ID=62547169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711432755.9A Active CN108183740B (zh) 2017-12-26 2017-12-26 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法

Country Status (1)

Country Link
CN (1) CN108183740B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743092B (zh) * 2018-12-21 2021-05-07 北京邮电大学 一种基于极化-空域信息协同处理的认知异构蜂窝网络干扰对齐方法
CN109714085B (zh) * 2019-01-23 2021-02-02 哈尔滨工业大学(深圳) 一种基于双极化mimo的下行noma传输方法
CN115134882A (zh) * 2019-09-25 2022-09-30 华为技术有限公司 一种信息传输方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209059A (zh) * 2013-04-26 2013-07-17 哈尔滨工业大学 信道误差f-范数有界模型下mimo干扰对齐无线通信方法
CN106102073A (zh) * 2016-07-05 2016-11-09 重庆邮电大学 一种异构认知无线网络下行链路干扰对齐方法
CN106788819A (zh) * 2016-12-01 2017-05-31 北京邮电大学 一种基于极化信息处理的认知异构蜂窝网络频谱共享方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231795B2 (en) * 2010-01-18 2016-01-05 Samsung Electronics Co., Ltd. Communication apparatus and precoding method based on multiple cells and multiple users

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209059A (zh) * 2013-04-26 2013-07-17 哈尔滨工业大学 信道误差f-范数有界模型下mimo干扰对齐无线通信方法
CN106102073A (zh) * 2016-07-05 2016-11-09 重庆邮电大学 一种异构认知无线网络下行链路干扰对齐方法
CN106788819A (zh) * 2016-12-01 2017-05-31 北京邮电大学 一种基于极化信息处理的认知异构蜂窝网络频谱共享方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Exploiting Polarization for Underlay Spectrum Sharing in Cognitive Heterogeneous Cellular Network;Shuo Chen等;《IEEE Global Communications Conference》;20170206;全文 *
Feasibility analysis of polarimetric-interference alignment beamforming in rich-scattering indoor channels;Carlos A. Viteri-Mera等;《IEEE International Symposium on Antennas and Propagation》;20161027;全文 *
Polarization and Power Optimization for Spectrum Sharing in Cognitive Heterogeneous Cellular Network;Shuo Chen等;《IEEE Wireless Communications and Networking Conference》;20170511;全文 *
异构蜂窝网络中的干扰对齐技术研究;牛勤;《中国博士学位论文全文数据库》;20160315;全文 *

Also Published As

Publication number Publication date
CN108183740A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
EP3507917B1 (en) Ue capability reporting for dual-polarization wireless communication
Zheng et al. Survey of large-scale MIMO systems
Ng et al. Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer
Larsson et al. Massive MIMO for next generation wireless systems
Bartoli et al. Beamforming for small cell deployment in LTE-advanced and beyond
WO2014157824A1 (ko) 안테나 배열에서 채널 상태 정보 획득 방법 및 장치
Björnson et al. Cell-free versus cellular massive MIMO: What processing is needed for cell-free to win?
Nguyen et al. Power allocation schemes for wireless powered NOMA systems with imperfect CSI: An application in multiple antenna–based relay
US20150372737A1 (en) Method and apparatus for transmitting downlink data on basis of beam restricted sub-frame
CN108183740B (zh) 基于极化信息处理的认知异构蜂窝网络跨层干扰对齐方法
Zhang et al. Performance analysis of user pairing in cooperative NOMA networks
Ahmed et al. Performance analysis of full-duplex-MRC-MIMO with self-interference cancellation using null-space-projection
Xue et al. Performance analysis of interference and eavesdropping immunity in narrow beam mmWave networks
Li et al. Design and adaptation of multi-interference steering
CN109743092B (zh) 一种基于极化-空域信息协同处理的认知异构蜂窝网络干扰对齐方法
Mohammadi et al. A comprehensive survey on full-duplex communication: Current solutions, future trends, and open issues
KR101946218B1 (ko) 이기종 네트워크에서 셀간 간섭 완화를 위한 mimo-ofdm 기반의 협력 통신 시스템 및 그것을 이용한 협력 통신 방법
Atzeni et al. Optimal low-complexity self-interference cancellation for full-duplex MIMO small cells
Mali et al. Spectrally efficient multiple input multiple output (MIMO) non-orthogonal multiple access (NOMA) technique for future wireless communication
Xu et al. CoMP transmission for safeguarding dense heterogeneous networks with imperfect CSI
Chen et al. Polarization and power optimization for spectrum sharing in cognitive heterogeneous cellular network
Samy et al. Multiple RIS-assisted cooperative NOMA with user selection
Mahesh et al. Design and Performance Analysis of Massive MIMO Modeling with Reflected Intelligent Surface to Enhance the Capacity of 6G Networks
Chen et al. Exploiting polarization for underlay spectrum sharing in cognitive heterogeneous cellular network
CN106788819B (zh) 一种基于极化信息处理的认知异构蜂窝网络频谱共享方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant