WO2021057287A1 - 一种高温管道周长在线监测系统及方法 - Google Patents

一种高温管道周长在线监测系统及方法 Download PDF

Info

Publication number
WO2021057287A1
WO2021057287A1 PCT/CN2020/108098 CN2020108098W WO2021057287A1 WO 2021057287 A1 WO2021057287 A1 WO 2021057287A1 CN 2020108098 W CN2020108098 W CN 2020108098W WO 2021057287 A1 WO2021057287 A1 WO 2021057287A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave guide
ultrasonic
cooling
pipeline
ultrasonic transducer
Prior art date
Application number
PCT/CN2020/108098
Other languages
English (en)
French (fr)
Inventor
张红军
李佼佼
寇媛媛
吕一楠
孙璞杰
孟永乐
高磊
高延忠
殷尊
朱婷
林琳
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021057287A1 publication Critical patent/WO2021057287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string

Definitions

  • the invention relates to an online monitoring system and method for the circumference of a pipeline, in particular to an online monitoring system and method for the circumference of a high-temperature pipeline.
  • Pressure pipes used in various industries have different working pressures and temperatures due to different transport media, and different requirements for safety technology.
  • the pipeline Under normal circumstances, when the pressure pipeline is operated under internal pressure, the pipeline will produce a certain amount of deformation; under the effect of temperature, the pipeline will produce a certain amount of thermal expansion and contraction deformation; for high-temperature pipelines, creepage will occur during long-term use. Change; for abnormal parts of the pipe material, additional deformation may occur. When the total deformation reaches a certain level, the strength of the pipeline cannot meet the load-bearing requirements and it will fail.
  • Thermal power generation companies use a large number of high-temperature pressure-bearing components, such as boiler heating surface tubes, four major pipes and various steam guide tubes. With the development of ultra-supercritical power generation technology, unit capacity and steam parameters have been greatly improved. The safety requirements of the pressure components, especially the main steam pipeline and the reheated steam hot section pipeline, have been greatly improved.
  • the creep endurance strength is used as the main design parameter, that is, the main failure mode considered is creep damage. Creep is a slow deformation process. When the damage accumulates to a certain extent, creep damage occurs.
  • DL/T 438 Metal Technology Supervision Regulations for Thermal Power Plants stipulates the supervision methods for high-temperature pipelines, focusing on non-destructive testing, using a certain number of random inspections on the pipelines during unit maintenance, and checking for creep The measurement is specified.
  • DL/T 441 The Supervision Regulations for Creep of High Temperature and High Pressure Steam Pipes in Thermal Power Plants stipulated the creep measurement method of pipelines when the unit was out of operation.
  • the measurement results are greatly affected by various factors, and it is difficult to obtain accurate creep.
  • creep is still one of the main failure modes of high-temperature pipelines.
  • High-temperature pipeline deformation measurement including creep deformation is very important for the health monitoring of pipeline operation.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide an online monitoring system and method for the circumference of a high-temperature pipeline, which can quickly, real-time and accurately monitor the circumference of a high-temperature pipeline.
  • the high-temperature pipeline perimeter online monitoring system of the present invention includes an upper computer, an ultrasonic module, a first ultrasonic transducer, a second ultrasonic transducer and a cooling wave guide.
  • the host computer is connected with the ultrasonic module, the output end of the ultrasonic module is connected with the first ultrasonic transducer, the second ultrasonic transducer is connected with the input end of the ultrasonic module, and the end of the cooling wave guide is fixed to the test
  • the ultrasonic waves emitted by the first ultrasonic transducer pass through the surface on the side of the cooling wave guide, the side where the cooling wave guide is connected to the pipeline to be measured, the circumferential surface of the pipeline to be measured, the cooling wave guide and the pipeline to be measured.
  • the other side of the connecting position of the measuring pipe and the surface of the other side of the cooling wave guide enter the second ultrasonic transducer.
  • the cooling wave guide is a flat plate structure.
  • connection position is a circular arc smooth transition structure.
  • the cooling wave guide includes a wave guide plate and a small diameter pipe. One end of the wave guide plate is fixed on the pipeline to be measured, and the other end is fixed on the small diameter pipe.
  • the first ultrasonic transducer and the second ultrasonic transducer are located on the small diameter pipe.
  • the ultrasonic waves emitted by the first ultrasonic transducer pass through the surface of the small-diameter tube, the surface of the wave guide, the surface of the connection position of the wave guide and the pipeline to be measured, the circumferential surface of the pipeline to be measured, the guide
  • the surface on the other side of the connection position of the wave plate and the pipeline to be measured, the surface on the other side of the wave guide and the surface on the other side of the small diameter pipe enter the second ultrasonic transducer.
  • the wave guide plate is connected with the pipeline to be tested and the small diameter pipe by fusion welding, and the connection position is a circular arc smooth transition structure.
  • the cooling wave guide includes a wave guide plate and a cooling component with a cooling joint. One end of the wave guide plate is fixed on the pipeline to be measured, and the other end is fixed on the cooling component.
  • the ultrasonic wave emitted by the first ultrasonic transducer is cooled The surface on one side of the component, the surface on the side of the wave guide, the surface on the side where the wave guide is connected to the pipeline to be measured, the circumferential surface of the pipeline to be measured, and the surface on the other side where the wave guide is connected to the pipeline to be measured.
  • the surface, the surface on the other side of the wave guide and the surface on the other side of the cooling component enter the second ultrasonic transducer.
  • the wave guide plate is connected with the pipeline to be tested and the cooling joint by fusion welding, and the connection position is a circular arc smooth transition structure.
  • Both the first ultrasonic transducer and the second ultrasonic transducer are connected to the ultrasonic module through a shielded cable.
  • the ultrasound module is connected to the host computer in a wireless or wired manner.
  • the host computer controls the ultrasonic module to transmit and receive pulse signals, and can collect, store, display, analyze and process echo data in real time.
  • the online monitoring method for the circumference of a high-temperature pipeline of the present invention includes the following steps: a host computer controls an ultrasonic module to generate a pulse signal, and sends the pulse signal to a first ultrasonic transducer, and the first ultrasonic transducer transmits the The pulse signal is converted into an ultrasonic signal.
  • the ultrasonic signal passes through the surface of the cooling wave guide, the surface of the connection position of the cooling wave guide and the pipeline to be measured, the circumferential surface of the pipeline to be measured, the cooling wave guide and the pipeline to be measured.
  • the surface on the other side of the connecting position of the measuring pipe and the surface on the other side of the cooling wave guide enter the second ultrasonic transducer, and the second ultrasonic transducer is converted into an electrical signal and sent to the ultrasonic module, the host computer According to the time interval between the pulse signal sent by the ultrasonic module and the pulse signal received, that is, the total ultrasonic wave propagation time, combined with the structural size of the cooling wave guide and the ultrasonic wave propagation time on its surface, the circumference of the pipeline to be measured is calculated.
  • the high-temperature pipeline is isolated from the first ultrasonic transducer and the second ultrasonic transducer through the cooling wave guide to avoid the influence of temperature on the monitoring.
  • the ultrasonic signal sent by the first ultrasonic transducer passes through the surface on the side of the cooling wave guide, the surface on the side where the cooling wave guide is connected to the pipeline to be measured, the circumferential surface of the pipeline to be measured, and the cooling wave guide.
  • the surface on the other side of the connection position with the pipeline to be measured and the surface on the other side of the cooling wave guide enter the second ultrasonic transducer, and calculate the distance of the ultrasonic signal based on the propagation time of the ultrasonic signal.
  • Measure the circumference of the pipeline the operation is simple, convenient, and the accuracy is high.
  • the creep deformation can be calculated based on the measured perimeter data.
  • the health status of the high-temperature pipeline can be evaluated according to the monitored circumference of the pipeline to be tested, which is extremely practical.
  • Figure 1 is a schematic diagram of the structure of the first embodiment
  • Figure 2 is a schematic diagram of the structure of the second embodiment
  • Fig. 3 is a schematic diagram of the structure of the third embodiment.
  • 1 is the pipeline to be tested
  • 2 is the cooling wave guide
  • 21 is the wave guide
  • 22 is the small diameter pipe
  • 23 is the cooling joint
  • 24 is the cooling component
  • 3 is the first ultrasonic transducer
  • 4 is the second ultrasonic The transducer
  • 5 is the ultrasonic module
  • 6 is the upper computer.
  • the high-temperature pipeline perimeter online monitoring system of the present invention includes a host computer 6, an ultrasonic module 5, a first ultrasonic transducer 3, a second ultrasonic transducer 4, and a cooling wave guide 2; the host computer 6 Connected to the ultrasonic module 5, the output end of the ultrasonic module 5 is connected to the first ultrasonic transducer 3, the second ultrasonic transducer 4 is connected to the input end of the ultrasonic module 5, and the end of the cooling wave guide 2 is fixed
  • the ultrasonic waves emitted by the first ultrasonic transducer 3 pass through the surface on the side of the cooling wave guide 2, the surface on the side where the cooling wave guide 2 is connected to the pipeline under test 1, and the pipeline under test 1.
  • the cooling wave guide 2 is a flat plate structure; the pipeline to be tested 1 and the cooling wave guide 2 are connected by fusion welding, and the connection position is a circular arc smooth transition structure.
  • the upper computer 6 calculates the time interval between the pulse signal sent by the ultrasonic module 5 and the pulse signal received, that is, the total ultrasonic propagation time, combined with the structural size of the cooling waveguide 2 and the ultrasonic propagation time on its surface, and calculates the time to be measured Circumference of pipe 1.
  • the circumferential creep of the high-temperature pipeline can be calculated based on the current measured perimeter of the high-temperature pipeline and the original perimeter and operating parameters of the high-temperature pipeline, and then the high-temperature pipeline can be judged according to the circumferential creep of the high-temperature pipeline
  • the state of health that is, when the circumferential creep of the high-temperature pipeline is greater than or equal to the preset value, an alarm occurs to avoid accidents.
  • the online monitoring system for the perimeter of the high-temperature pipeline includes a host computer 6, an ultrasonic module 5, a first ultrasonic transducer 3, a second ultrasonic transducer 4, and a cooling wave guide 2; the host computer 6 and The ultrasonic module 5 is connected, the output end of the ultrasonic module 5 is connected to the first ultrasonic transducer 3, the second ultrasonic transducer 4 is connected to the input end of the ultrasonic module 5, and the end of the cooling wave guide 2 is fixed to On the pipeline 1 to be tested, the ultrasonic waves emitted by the first ultrasonic transducer 3 pass through the surface on the side of the cooling wave guide 2, the surface of the side where the cooling wave guide 2 is connected to the pipeline under test 1, and the pipeline under test 1. The peripheral surface of the temperature-reducing wave guide 2 and the surface of the other side where the temperature-reducing wave guide 2 is connected to the pipeline 1 to be measured, and the surface of the other side of the temperature-reducing wave guide 2 enter the second ultrasonic transducer 4.
  • the cooling wave guide 2 includes a wave guide 21 and a small-diameter tube 22.
  • One end of the wave-guide plate 21 is fixed on the pipeline 1 to be measured, and the other end is fixed on the small-diameter tube 22.
  • the first ultrasonic transducer 3 and The second ultrasonic transducer 4 is located on the small-diameter tube 22, and the ultrasonic waves emitted by the first ultrasonic transducer 3 pass through the surface on the side of the small-diameter tube 22, the surface on the side of the wave guide 21, the wave guide 21 and the pipeline 1 to be measured.
  • the surface on one side of the connecting position, the circumferential surface of the pipe 1 to be tested, the surface on the other side of the connecting position of the wave guide 21 and the pipe 1 to be measured, the surface on the other side of the wave guide 21, and the other side of the small diameter pipe 22 The surface enters the second ultrasonic transducer 4.
  • the wave guide plate 21 is connected with the pipeline 1 to be tested and the small diameter pipe 22 by fusion welding, and the connection position is a circular arc smooth transition structure.
  • the upper computer 6 is based on the time interval between the pulse signal sent by the ultrasonic module 5 and the pulse signal received, that is, the total propagation time of the ultrasonic wave, combined with the structural size of the cooling waveguide 2 and the propagation of the ultrasonic wave on its surface Time, calculate the circumference of the pipeline 1 to be tested.
  • the high-temperature pipeline perimeter online monitoring system of the present invention includes an upper computer 6, an ultrasonic module 5, a first ultrasonic transducer 3, a second ultrasonic transducer 4, and a cooling wave guide 2; an upper computer 6 Connected to the ultrasonic module 5, the output end of the ultrasonic module 5 is connected to the first ultrasonic transducer 3, the second ultrasonic transducer 4 is connected to the input end of the ultrasonic module 5, and the end of the cooling wave guide 2 is fixed
  • the ultrasonic waves emitted by the first ultrasonic transducer 3 pass through the surface on the side of the cooling wave guide 2, the surface on the side where the cooling wave guide 2 is connected to the pipeline under test 1, and the pipeline under test 1.
  • the cooling wave guide 2 includes a wave guide 21 and a cooling component 24 with a cooling joint 23.
  • One end of the wave guide 21 is fixed on the pipeline 1 to be measured, and the other end is fixed to the cooling component 24.
  • the first ultrasonic transducer The ultrasonic waves emitted by the device 3 pass through the surface on the side of the cooling component 24, the surface on the side of the wave guide 21, the surface of the side where the wave guide 21 is connected to the pipe under test 1, the circumferential surface of the pipe under test 1, and the guided wave.
  • the surface on the other side of the connection position between the plate 21 and the pipeline 1 to be measured, the surface on the other side of the wave guide 21 and the surface on the other side of the cooling component 24 enter the second ultrasonic transducer 4.
  • the wave guide plate 21 is connected with the pipeline 1 to be tested and the cooling component 24 by fusion welding, and the connection position is a circular arc smooth transition structure.
  • the upper computer 6 is based on the time interval between the pulse signal sent by the ultrasonic module 5 and the pulse signal received, that is, the total propagation time of the ultrasonic wave, combined with the structural size of the cooling waveguide 2 and the propagation of the ultrasonic wave on its surface Time, calculate the circumference of the pipeline 1 to be tested.
  • the first ultrasonic transducer 3 and the second ultrasonic transducer 4 are both connected to the ultrasonic module 5 through shielded cables; the ultrasonic module 5 is connected to the host computer 6 in a wireless or wired manner. Phase connection.
  • the host computer 6 controls the ultrasonic module 5 to transmit and receive pulse signals, and can collect, store, display, analyze and process echo data in real time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种高温管道周长在线监测系统及方法,包括上位机(6)、超声模块(5)、第一超声波换能器(3)、第二超声波换能器(4)及降温导波件(2);上位机(6)与超声模块(5)相连接,超声模块(5)的输出端与第一超声波换能器(3)相连接,第二超声波换能器(4)与超声模块(5)的输入端相连接,降温导波件(2)的端部固定于待测管道(1)上,第一超声波换能器(3)发出的超声波经降温导波件(2)一侧的表面、降温导波件(2)与待测管道(1)相连接位置的一侧、待测管道(1)的一周表面、降温导波件(2)与待测管道(1)相连接位置的另一侧及降温导波件(2)另一侧的表面进入到第二超声波换能器(4)中,上位机(6)根据超声模块(5)发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件(2)的结构尺寸及超声波在其表面的传播时间,计算待测管道(1)的周长,能够快速、实时、准确的监测高温管道(1)的周长。

Description

一种高温管道周长在线监测系统及方法 技术领域
本发明涉及一种管道周长的在线监测系统及方法,具体涉及一种高温管道周长在线监测系统及方法。
背景技术
电力、化工、石油、制药、航空等各类企业都不同程度地用到压力管道,各行各业使用的压力管道由于输送的介质不同,工作压力、温度不同,对安全技术的要求也不同。一般情况下,压力管道在内压作用下运行,管道会产生一定量的形变;在温度作用下,管道会产生一定量的热胀冷缩形变;对于高温管道在长期使用过程中还会产生蠕变;对于管道材质异常部位,可能还会出现额外形变。总的形变量达到一定程度时,管道的强度不能够满足承载要求将会发生失效。
火力发电企业大量使用高温承压部件,例如锅炉受热面管子、四大管道和各种导汽管等,随着超超临界发电技术的发展,机组容量和蒸汽参数均大幅度得到提升,对承压部件尤其是主蒸汽管道和再热蒸汽热段管道等的安全性要求大大提高。对于主蒸汽管道和再热热段管道等高温管道,是以蠕变持久强度作为主要设计参数,即考虑到的失效模式主要为蠕变损伤,蠕变是一种缓慢的变形过程,当蠕变损伤累积到一定程度时,即发生蠕变破坏。为确保管道的安全运行,DL/T 438《火力发电厂金属技术监督规程》规定了高温管道的监督方法,以无损检测为主,利用机组检修期间对管道进行一定数量的抽检,并对蠕变测量进行了规定。 早期,DL/T 441《火力发电厂高温高压蒸汽管道蠕变监督规程》规定了机组停运状态下管道的蠕变测量方法,但测量结果受各种因素影响较大,难以获得准确的蠕变数据,甚至出现了蠕变量为负值的情况,使得蠕变测量失去应有的意义。因此,现在对管道的蠕变测量不作强制要求。但,蠕变仍然是高温管道的主要失效模式之一,包括蠕变变形在内的高温管道形变测量对于管道运行的健康状态监测是十分重要的。
通过在线测量管道的周向形变量,监测管道的健康状态意义重大,但截止到目前为止,对高温管道的周向形变在线监测没有一种行之有效的方法。鉴于现有测量手段的局限性,需要开发一种在高温运行状态下能够对管道周长进行在线测量的系统及方法,这将对测量高温管道的周向形变及高温管道健康状态的监测提供有力技术支持。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种高温管道周长在线监测系统及方法,该系统及方法能够快速、实时、准确的监测高温管道的周长。
为达到上述目的,本发明所述的高温管道周长在线监测系统包括上位机、超声模块、第一超声波换能器、第二超声波换能器及降温导波件。
上位机与超声模块相连接,超声模块的输出端与第一超声波换能器的相连接,第二超声波换能器与超声模块的输入端相连接,降温导波件的端部固定于待测管道上,第一超声波换能器发出的超声波经降温导波件一侧的表面、降温导波件与待测管道相连接位置的一侧、待测管道的一周表面、降温导波件与待测管道相连接位置的另一侧及降温导波件另 一侧的表面进入到第二超声波换能器中。
所述降温导波件为平板结构。
待测管道与降温导波件之间通过熔焊的方式相连接,且连接位置为圆弧光滑过渡结构。
所述降温导波件包括导波板及小径管,导波板的一端固定于待测管道上,另一端固定于小径管上,第一超声波换能器及第二超声波换能器位于小径管上,第一超声波换能器发出的超声波经小径管一侧的表面、导波板一侧的表面、导波板与待测管道相连接位置一侧的表面、待测管道的一周表面、导波板与待测管道相连接位置另一侧的表面、导波板另一侧的表面及小径管另一侧的表面进入到第二超声波换能器中。
导波板与待测管道以及小径管之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
所述降温导波件包括导波板及带有降温节的降温部件,导波板的一端固定于待测管道上,另一端固定在降温部件上,第一超声波换能器发出的超声波经降温部件一侧的表面、导波板一侧的表面、导波板与待测管道相连接位置一侧的表面、待测管道的一周表面、导波板与待测管道相连接位置另一侧的表面、导波板另一侧的表面及降温部件另一侧的表面进入到第二超声波换能器中。
导波板与待测管道以及降温节之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
第一超声波换能器及第二超声波换能器均通过屏蔽线缆与超声模块相连接。
超声模块通过无线或者有线的方式与上位机相连接。上位机控制超声模块发射和接收脉冲信号,并能够实时采集、存储、显示和分析处理回波数据。
本发明所述的高温管道周长在线监测方法包括以下步骤:上位机控制超声模块产生脉冲信号,并将所述脉冲信号发送至第一超声波换能器中,第一超声波换能器将所述脉冲信号转换为超声波信号,所述超声波信号经降温导波件一侧的表面、降温导波件与待测管道相连接位置一侧的表面、待测管道的一周表面、降温导波件与待测管道相连接位置另一侧的表面及降温导波件另一侧的表面进入到第二超声波换能器中,并通过第二超声波换能器转换为电信号后发送至超声模块,上位机根据超声模块发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件的结构尺寸及超声波在其表面的传播时间,计算待测管道的周长。
本发明具有以下有益效果:
本发明所述的高温管道周长在线监测系统及方法具体操作时,将高温管道与第一超声波换能器及第二超声波换能器通过降温导波件隔离,避免温度对监测的影响,在监测时,第一超声波换能器发出的超声波信号经降温导波件一侧的表面、降温导波件与待测管道相连接位置一侧的表面、待测管道的一周表面、降温导波件与待测管道相连接位置另一侧的表面及降温导波件另一侧的表面进入到第二超声波换能器中,根据超声波信号传播的时间计算超声波信号传播的距离,并以此计算待测管道的周长,操作简单、方便,准确性较高。在停运状态下,可根据测得的 周长数据计算蠕变变形量。在实际应用中,可以根据监测到的待测管道的周长对高温管道的健康状况进行评估,实用性极强。
附图说明
图1为实施例一的结构示意图;
图2为实施例二的结构示意图;
图3为实施例三的结构示意图。
其中,1为待测管道、2为降温导波件、21为导波板、22为小径管、23为降温节、24为降温部件、3为第一超声波换能器、4为第二超声波换能器、5为超声模块、6为上位机。
具体实施方式
下面结合附图对本发明做进一步详细描述,值得说明的是,实施例仅示出了与本发明相关的部分,本领域技术人员可以理解,图中示出的结构并不构成对系统的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
实施例一
参考图1,本发明所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连 接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。
其中,所述降温导波件2为平板结构;待测管道1与降温导波件2之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。
在实际应用时,可以根据当前测量得到的高温管道的周长与高温管道的原始周长和运行参数等计算高温管道的周向蠕变量,然后根据高温管道的周向蠕变量判断高温管道的健康状态,即当高温管道的周向蠕变量大于等于预设值时,则发生报警,避免事故的发生。
实施例二
参考图2,本所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置的一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。
其中,所述降温导波件2包括导波板21及小径管22,导波板21的 一端固定于待测管道1上,另一端固定于小径管22上,第一超声波换能器3及第二超声波换能器4位于小径管22上,第一超声波换能器3发出的超声波经小径管22一侧的表面、导波板21一侧的表面、导波板21与待测管道1相连接位置一侧的表面、待测管道1的一周表面、导波板21与待测管道1相连接位置另一侧的表面、导波板21另一侧的表面及小径管22另一侧的表面进入到第二超声波换能器4中。
导波板21与待测管道1以及小径管22之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
本实施例中,上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。
实施例三
参考图3,本发明所述的高温管道周长在线监测系统包括上位机6、超声模块5、第一超声波换能器3、第二超声波换能器4及降温导波件2;上位机6与超声模块5相连接,超声模块5的输出端与第一超声波换能器3相连接,第二超声波换能器4与超声模块5的输入端相连接,降温导波件2的端部固定于待测管道1上,第一超声波换能器3发出的超声波经降温导波件2一侧的表面、降温导波件2与待测管道1相连接位置一侧的表面、待测管道1的一周表面、降温导波件2与待测管道1相连接位置另一侧的表面及降温导波件2另一侧的表面进入到第二超声波换能器4中。
其中,降温导波件2包括导波板21及带有降温节23的降温部件24, 导波板21的一端固定于待测管道1上,另一端固定于降温部件24,第一超声波换能器3发出的超声波经降温部件24一侧的表面、导波板21一侧的表面、导波板21与待测管道1相连接位置一侧的表面、待测管道1的一周表面、导波板21与待测管道1相连接位置另一侧的表面、导波板21另一侧的表面及降温部件24另一侧的表面进入到第二超声波换能器4中。
导波板21与待测管道1以及降温部件24之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
本实施例中,上位机6根据超声模块5发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件2的结构尺寸及超声波在其表面的传播时间,计算待测管道1的周长。
需要说明的是,各实施例中,第一超声波换能器3及第二超声波换能器4均通过屏蔽线缆与超声模块5相连接;超声模块5通过无线或者有线的方式与上位机6相连接。上位机6控制超声模块5发射和接收脉冲信号,并能够实时采集、存储、显示和分析处理回波数据。

Claims (9)

  1. 一种高温管道周长在线监测系统,其特征在于,包括上位机(6)、超声模块(5)、第一超声波换能器(3)、第二超声波换能器(4)及降温导波件(2);
    上位机(6)与超声模块(5)相连接,超声模块(5)的输出端与第一超声波换能器(3)相连接,第二超声波换能器(4)与超声模块(5)的输入端相连接,降温导波件(2)的端部固定于待测管道(1)上,第一超声波换能器(3)发出的超声波经降温导波件(2)一侧的表面、降温导波件(2)与待测管道(1)相连接位置的一侧、待测管道(1)的一周表面、降温导波件(2)与待测管道(1)相连接位置的另一侧及降温导波件(2)另一侧的表面进入到第二超声波换能器(4)中。
  2. 根据权利要求1所述的高温管道周长在线监测系统,其特征在于,所述降温导波件(2)为平板结构。
  3. 根据权利要求2所述的高温管道周长在线监测系统,其特征在于,待测管道(1)与降温导波件(2)之间通过熔焊的方式相连接,连接位置为圆弧光滑过渡结构。
  4. 根据权利要求1所述的高温管道周长在线监测系统,其特征在于,所述降温导波件(2)包括导波板(21)及小径管(22),导波板(21)的一端固定于待测管道(1)上,另一端固定于小径管(22)上,第一超声波换能器(3)及第二超声波换能器(4)位于小径管(22)上,第一超声波换能器(3)发出的超声波经小径管(22)一侧的表面、导波板(21)一侧的表面、导波板(21)与待测管道(1)相连接位置一侧的表面、待测管道(1)的一周表面、导波板(21)与待测管道(1)相连接位置另一侧的表面、导波板(21)另一侧的表面及小径管(22)另一侧的表面进入 到第二超声波换能器(4)中。
  5. 根据权利要求4所述的高温管道周长在线监测系统,其特征在于,导波板(21)与待测管道(1)以及小径管(22)之间通过熔焊的方式相连接,且连接位置为圆弧光滑过渡结构。
  6. 根据权利要求1所述的高温管道周长在线监测系统,其特征在于,降温导波件(2)包括导波板(21)及带有降温节(23)的降温部件(24),导波板(21)的一端固定于待测管道(1)上,另一端与降温部件(24)连接,第一超声波换能器(3)发出的超声波经降温部件(24)一侧的表面、导波板(21)一侧的表面、导波板(21)与待测管道(1)相连接位置一侧的表面、待测管道(1)的一周表面、导波板(21)与待测管道(1)相连接位置另一侧的表面、导波板(21)另一侧的表面及降温部件(24)另一侧的表面进入到第二超声波换能器(4)中。
  7. 根据权利要求6所述的高温管道周长在线监测系统,其特征在于,导波板(21)与待测管道(1)以及降温部件(24)之间通过熔焊的方式相连接,且连接位置为圆弧光滑过渡结构。
  8. 根据权利要求1至7任一项所述的高温管道周长在线监测系统,其特征在于,第一超声波换能器(3)及第二超声波换能器(4)均通过屏蔽线缆与超声模块(5)相连接;
    超声模块(5)通过无线或者有线的方式与上位机(6)相连接,上位机(6)控制超声模块(5)发射和接收脉冲信号,并能够实时采集、存储、显示和分析处理回波数据。
  9. 一种高温管道周长在线监测方法,其特征在于,包括以下步骤:上位机(6)控制超声模块(5)产生脉冲信号,并将所述脉冲信号发送至 第一超声波换能器(3)中,第一超声波换能器(3)将所述脉冲信号转换为超声波信号,所述超声波信号经降温导波件(2)一侧的表面、降温导波件(2)与待测管道(1)相连接位置一侧的表面、待测管道(1)的一周表面、降温导波件(2)与待测管道(1)相连接位置另一侧的表面及降温导波件(2)另一侧的表面进入到第二超声波换能器(4)中,并通过第二超声波换能器(4)转换为电信号后发送至超声模块(5),上位机(6)根据超声模块(5)发出脉冲信号与接收到脉冲信号之间的时间间隔,即总的超声波的传播时间,结合降温导波件(2)的结构尺寸及超声波在其表面的传播时间,计算待测管道(1)的周长。
PCT/CN2020/108098 2019-09-26 2020-08-10 一种高温管道周长在线监测系统及方法 WO2021057287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910920149.4 2019-09-26
CN201910920149.4A CN110455230A (zh) 2019-09-26 2019-09-26 一种高温管道周长在线监测系统及方法

Publications (1)

Publication Number Publication Date
WO2021057287A1 true WO2021057287A1 (zh) 2021-04-01

Family

ID=68492663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108098 WO2021057287A1 (zh) 2019-09-26 2020-08-10 一种高温管道周长在线监测系统及方法

Country Status (2)

Country Link
CN (1) CN110455230A (zh)
WO (1) WO2021057287A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455230A (zh) * 2019-09-26 2019-11-15 西安热工研究院有限公司 一种高温管道周长在线监测系统及方法
CN113108729A (zh) * 2021-05-28 2021-07-13 西安热工研究院有限公司 一种基于超声波测量管道周长的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206576922U (zh) * 2016-12-08 2017-10-24 重庆医科大学附属永川医院 一种设置有降温结构的超声手术刀
WO2018162340A1 (en) * 2017-03-07 2018-09-13 Abb Schweiz Ag Apparatus and method for measuring the flow velocity of a fluid in a pipe
CA2750588C (en) * 2010-08-31 2018-09-25 Babcock & Wilcox Technical Services Group, Inc. Low profile encircling ultrasonic probe for the inspection of in-situ piping in immersion mode
CN109612414A (zh) * 2018-12-05 2019-04-12 北京大学 一种基于超声波导的高温管道壁厚在线监测装置及其方法
CN110243949A (zh) * 2019-05-06 2019-09-17 吉林工程技术师范学院 一种便于高温在线检测的超声波测量探头
CN110455230A (zh) * 2019-09-26 2019-11-15 西安热工研究院有限公司 一种高温管道周长在线监测系统及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1397487A1 (ru) * 1986-12-23 1988-05-23 Днепропетровский Металлургический Институт Им.Л.И.Брежнева Способ измерени толщины футеровки доменной печи
FR2654508B1 (fr) * 1989-11-14 1992-02-21 Aerospatiale Ste Nat Indle Dispositif et sonde pour mesurer la variation de distance separant les deux faces d'une couche de matiere au moyen d'ultrasons.
JPH08285938A (ja) * 1995-04-12 1996-11-01 Hitachi Ltd 導波棒を用いた超音波距離計測装置
CA2187957C (en) * 1996-10-16 2003-06-03 Cheng-Kuei Jen Ultrasonic sensors for on-line monitoring of castings and molding processes at elevated temperatures
JP2000105116A (ja) * 1998-09-29 2000-04-11 Mitsubishi Heavy Ind Ltd 耐火煉瓦の焼損測定システム
US7021145B2 (en) * 2003-07-21 2006-04-04 Horiba Instruments, Inc Acoustic transducer
JP4425690B2 (ja) * 2004-04-28 2010-03-03 新日本製鐵株式会社 スパイラル鋼管の外周長測定方法及びその装置並びにスパイラル鋼管の製造方法及びその設備
KR20140091099A (ko) * 2012-12-26 2014-07-21 한국원자력연구원 코팅된 유도초음파 웨이브가이드에 의한 고온 초음파 두께 측정/감육 감시 장치 및 그 방법
KR20150078502A (ko) * 2013-12-30 2015-07-08 한국원자력연구원 수평횡파 웨이브가이드에 의한 고온배관의 실시간 감육감시장치
CN105021143B (zh) * 2015-06-25 2018-07-06 沈阳中科韦尔腐蚀控制技术有限公司 一种抗高温管道壁厚在线监测探头
CN205246023U (zh) * 2015-09-28 2016-05-18 沈阳中科韦尔腐蚀控制技术有限公司 一种适用于超声波测厚领域的弧面聚声波导装置
CN208689016U (zh) * 2018-04-09 2019-04-02 河北珠峰仪器仪表设备有限公司 一种适合高温下在线检测的超声波测量探头
CN109931896B (zh) * 2019-03-21 2021-08-03 浙江未来技术研究院(嘉兴) 一种高温或低温被测管道壁厚检测方法、设备及系统
CN210268563U (zh) * 2019-09-26 2020-04-07 西安热工研究院有限公司 一种高温管道周长在线监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2750588C (en) * 2010-08-31 2018-09-25 Babcock & Wilcox Technical Services Group, Inc. Low profile encircling ultrasonic probe for the inspection of in-situ piping in immersion mode
CN206576922U (zh) * 2016-12-08 2017-10-24 重庆医科大学附属永川医院 一种设置有降温结构的超声手术刀
WO2018162340A1 (en) * 2017-03-07 2018-09-13 Abb Schweiz Ag Apparatus and method for measuring the flow velocity of a fluid in a pipe
CN109612414A (zh) * 2018-12-05 2019-04-12 北京大学 一种基于超声波导的高温管道壁厚在线监测装置及其方法
CN110243949A (zh) * 2019-05-06 2019-09-17 吉林工程技术师范学院 一种便于高温在线检测的超声波测量探头
CN110455230A (zh) * 2019-09-26 2019-11-15 西安热工研究院有限公司 一种高温管道周长在线监测系统及方法

Also Published As

Publication number Publication date
CN110455230A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
WO2021057287A1 (zh) 一种高温管道周长在线监测系统及方法
JP5624271B2 (ja) 配管の厚み測定方法および装置
CN109307568B (zh) 焊接残余应力的无损检测方法及采用该方法的探头
CN103913714A (zh) 一种局部放电超声波检测仪的校验系统
MXPA00011029A (es) Metodo y aparato para monitorear grietas.
CN111693190A (zh) 一种基于超声波的螺栓轴向应力测量装置及方法
CN110487227A (zh) 一种利用超声波检测管道周向应变的在线监测系统及方法
CN210268563U (zh) 一种高温管道周长在线监测系统
WO2021057288A1 (zh) 一种管道蠕变测量系统及方法
CN111239251B (zh) 一种调峰机组穿墙管焊接处缺陷的超声波检测方法
CN104329568A (zh) 一种高温高压管道振动及蠕变的在线监测装置
CN103063171A (zh) 一种工件壁厚的测量方法
JP5143111B2 (ja) ガイド波を用いた非破壊検査装置及び非破壊検査方法
CN204241023U (zh) 一种高温高压管道振动及蠕变的在线监测装置
WO2022247036A1 (zh) 一种基于超声波测量管道周长的系统及方法
KR20040033698A (ko) 유도초음파 탐지를 통한 배관 파이프의 진단방법 및 장치
Song et al. A new on-line ultrasonic thickness monitoring system for high temperature pipes
CN212179841U (zh) 一种检测排烟管积碳层厚度的仪器装置
CN212645940U (zh) 一种基于超声波的螺栓轴向应力测量装置
CN202794114U (zh) 一种用于高温高压水环境下的波导装置
KR20120031674A (ko) 비선형 평가 시스템 및 장치
Urata et al. Non-destructive inspection technology for thermal power plants
Dhutti et al. High temperature performance of ultrasonic guided wave system for structural health monitoring of pipeline
Stepinski Structural health monitoring of piping in nuclear power plants-A review of efficiency of existing methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867335

Country of ref document: EP

Kind code of ref document: A1