WO2021057284A1 - 信号干扰位置的识别方法、装置、电子设备及存储介质 - Google Patents

信号干扰位置的识别方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2021057284A1
WO2021057284A1 PCT/CN2020/107892 CN2020107892W WO2021057284A1 WO 2021057284 A1 WO2021057284 A1 WO 2021057284A1 CN 2020107892 W CN2020107892 W CN 2020107892W WO 2021057284 A1 WO2021057284 A1 WO 2021057284A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional subspace
signal interference
energy
dimensional
preset threshold
Prior art date
Application number
PCT/CN2020/107892
Other languages
English (en)
French (fr)
Inventor
郭伟丽
刘国超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20869458.8A priority Critical patent/EP4024733A4/en
Priority to JP2022518843A priority patent/JP7238209B2/ja
Publication of WO2021057284A1 publication Critical patent/WO2021057284A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and particularly relate to the identification technology of signal interference locations.
  • the base station system can be divided into base station system internal interference and inter-system interference according to the source of signal interference.
  • the base station contains a transmitting system and a receiving system.
  • the transmitting and receiving signals are limited to the working frequency configured by the base station. Such an ideal filter does not exist. Therefore, there will be leakage of the transmitted signal to other working frequencies.
  • the base station receiving system is specified The signal power received from other frequencies on the working frequency of this station will affect the normal business of the base station and cause inter-system interference.
  • Inter-system interference can cause network problems such as mobile phone user access failures, dropped calls, or handover failures during movement. Once such problems occur, base station operation and maintenance personnel need to troubleshoot and solve them.
  • the common method used by base station operation and maintenance personnel to eliminate interference is to first confirm whether there is intra-system interference. If intra-system interference is excluded, it is inter-system interference.
  • the inventor of this application found that for inter-system interference, the first thing to do is to find out where the interference comes from, and to find possible sources of interference from many stations.
  • the common method is to carry a scanner and Yagi antenna to the station to find the interference. source.
  • the source of interference is not in the target station list. The source of signal interference has been identified.
  • the purpose of the embodiments of the present application is to provide a method, device, electronic device, and storage medium for identifying the location of signal interference.
  • the embodiment of the present application provides a method for identifying the location of signal interference, including: obtaining the energy detected by the resource block in each three-dimensional subspace; wherein the three-dimensional subspace is obtained by dividing the three-dimensional space in advance; Among the multiple energies obtained, it is detected whether there is energy greater than a preset threshold; if there is energy greater than the preset threshold, the three-dimensional subspace corresponding to the energy greater than the preset threshold is acquired; according to the acquired three-dimensional Subspace, determine the location of signal interference.
  • the embodiment of the present application also provides an apparatus for identifying the location of signal interference, including: an energy acquisition module for acquiring the energy detected by the resource block in each three-dimensional subspace; wherein the three-dimensional subspace is pre-aligned The three-dimensional space is divided and obtained; the detection module is used to detect whether there is an energy greater than a preset threshold among the acquired multiple energies; the three-dimensional subspace acquisition module is used to detect the existence of greater than a preset threshold in the detection module When the energy is larger than the preset threshold, the three-dimensional subspace corresponding to the energy greater than the preset threshold is obtained; the position determining module is configured to determine the signal interference location according to the obtained three-dimensional subspace.
  • the embodiment of the present application also provides an electronic device, including: at least one processor; and, a memory communicatively connected with the at least one processor; wherein the memory stores the memory that can be executed by the at least one processor; The instructions are executed by the at least one processor, so that the at least one processor can execute the above-mentioned method for identifying the location of signal interference.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program, and the computer program is executed by a processor to realize the above-mentioned method for identifying the location of signal interference.
  • Fig. 1 is a flowchart of a method for identifying a location of signal interference according to a first embodiment of the present application
  • FIG. 2 is a schematic diagram of the division of the scanning space in the first embodiment of the present application.
  • Fig. 3 is a schematic diagram of the wave path difference and steering vector in the first embodiment of the present application.
  • Fig. 4 is a schematic diagram of a dual-polarized antenna according to the first embodiment of the present application.
  • FIG. 5 is a flowchart of a method for identifying a location of signal interference according to a second embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a signal interference location identification device according to a third embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electronic device according to a third embodiment of the present application.
  • the first embodiment of the present application relates to a method for identifying the location of signal interference.
  • This embodiment is applied to a base station.
  • the energy detected by the resource block in each three-dimensional subspace is obtained; wherein, the The three-dimensional subspace is obtained by dividing the three-dimensional space in advance; among the multiple energies obtained, it is detected whether there is energy greater than the preset threshold; if there is energy greater than the preset threshold, the corresponding energy greater than the preset threshold is obtained
  • the signal interference location is determined.
  • step 101 the energy detected by the resource block in each three-dimensional subspace is obtained.
  • the coverage range is -30° to 30°, which can be equally divided into 4 sectors.
  • the respective energy of the resource block in the Z subspaces is obtained.
  • the three-dimensional coordinate system is constructed with the center of the base station antenna panel as the center of the three-dimensional coordinates, and the base station antenna coordinates P(m, n) are assumed to be constructed:
  • dH is the sub-spacing of horizontal elements
  • dV is the sub-spacing of vertical elements
  • n is the number of columns of the antenna array
  • m is the number of rows of the antenna array
  • P(m,n) is the antenna position on m rows and n columns.
  • the wave path difference indicates that the distance of the beam in a specific direction to reach different antenna elements is different, which determines the phase difference.
  • the wave path difference of the beam in a specific direction to the antenna are all fixed to 0, but for the two-element antenna array on the right in Figure 3, the beams in a specific direction reach antenna 1 and antenna 2 with different path lengths, so the phase difference is also different.
  • the steering vector in each three-dimensional subspace is obtained, so that the embodiments of the present application can be flexibly applied without being restricted by application scenarios.
  • the power detected by the resource block in each three-dimensional subspace can be calculated according to the following formula:
  • rbIdx represents the resource block index
  • represents the vertical angle index
  • NI represents the noise sequence of the resource block
  • antidx represents the antenna index
  • antNum represents the total number of antennas
  • a represents the steering vector of the three-dimensional subspace.
  • the energy of the resource block in each three-dimensional subspace can be accurately obtained.
  • step 102 it is detected whether there is an energy greater than a preset threshold among the multiple acquired energies. If there is energy greater than the preset threshold, it indicates that there is an interference source, and the direction of the interference source is the three-dimensional subspace corresponding to the energy greater than the preset threshold, go to step 103; if there is no energy greater than the preset threshold, then it indicates If there is no interference source, this process ends.
  • the preset threshold can be set according to empirical values, and no specific examples are given here. If in practical applications, if there are multiple energies that are greater than the preset threshold, the direction with the largest energy can also be the direction of arrival of the interference source, that is
  • step 103 the three-dimensional subspace corresponding to the energy greater than the preset threshold is obtained. Due to beams in a specific direction, the wave path difference to different antennas is different, resulting in different phase differences, which in turn leads to different energy generated by the interference source in different three-dimensional subspaces. Therefore, in this step, the channel can be correlated with the steering vector according to the pre-stored steering vector of each three-dimensional subspace to obtain the energy received in each three-dimensional subspace; Match the energy greater than the preset threshold; take the three-dimensional subspace corresponding to the energy greater than the preset threshold as the three-dimensional subspace corresponding to the energy greater than the preset threshold, and obtain the three-dimensional subspace corresponding to the energy greater than the preset threshold. The ⁇ sum of the three-dimensional subspace corresponding to the energy of the threshold value.
  • step 104 the signal interference position is determined according to the horizontal angle and the vertical angle of the acquired three-dimensional subspace.
  • step 101 Since in step 101, the energy of the resource block in each three-dimensional subspace has been obtained, it is determined whether there is interference in step 102, and the energy of the three-dimensional subspace affected by the interference is obtained, that is, the energy greater than the preset threshold. And through step 103, using the pre-stored steering vectors of each three-dimensional subspace, combined with the actually detected energy greater than the preset threshold, inversely deduce the ⁇ and the three-dimensional subspace of the energy greater than the preset threshold Value, you can quickly determine the direction of the interference location, and further improve the detection efficiency of the interference location.
  • the following uses a specific example to illustrate this embodiment:
  • the horizontal array element spacing is dH
  • the vertical array element sub-spacing is dV
  • the rectangles are placed regularly, assuming that the number of antennas is 64.
  • the three-dimensional steering vector The dimension is that the number of horizontal angles is X, the number of vertical angles is Y, and the number of antennas is 64, that is, X*Y*64 complex number tables, and ⁇ represents the vertical angle index. Represents the horizontal angle index, and ak Rx represents the antenna index.
  • the fixed-point value of the steering vector taking the calibration Q(16,13) as an example, is stored in the steering vector table.
  • the entire file size is X*Y*64.
  • the real part and the imaginary part are stored separately.
  • the high 13 bits are the real part, and the low 13 bits are the imaginary part, and the storage index order is the horizontal angle index first, the vertical angle index second, and the antenna index last.
  • NI is the noise sequence of resource block (RB), and the dimensions are the number of RBs and the number of antennas, that is, 273*64.
  • rbIdx is the RB index, The index for the horizontal angle is, ⁇ is the vertical angle.
  • the dimension is horizontal angle * vertical angle * number of RB, and the total size is X*Y*273 energy.
  • the location of the signal interference source is replaced by an algorithm, and there is no need to manually go to the station to check the interference source one by one, which saves the time of the base station operation and maintenance personnel to find the location of the interference source, and improves the efficiency of solving inter-system interference.
  • the energy generated by the interference source in different three-dimensional subspaces is not the same.
  • each three-dimensional subspace corresponds to a horizontal angle and a vertical angle, and the signal interference position can be easily and effectively located according to the horizontal angle and the vertical angle.
  • the second embodiment of the present application relates to a method for identifying the location of signal interference.
  • the second embodiment is further improved on the basis of the first embodiment, and the main improvement lies in that, in the second embodiment of the present application, the abnormal signal source is further scanned and located by moving.
  • the recorded best signal interference position is taken as the signal interference position.
  • the number of adjustments of the moving direction is accumulated; each time the moving direction is determined to be correct, the accumulated number of adjustments are cleared; when the accumulated number of adjustments reaches the preset adjustment threshold, the most recent record is recorded.
  • the best signal interference position is regarded as the signal interference position.
  • step 501 the energy detected by the resource block in each three-dimensional subspace is obtained. This step is similar to step 101, and will not be repeated here.
  • step 502 it is detected whether there is an energy greater than a preset threshold among the multiple acquired energies. If there is energy greater than the preset threshold, it means there is an interference source, and the direction of the interference source is the three-dimensional subspace corresponding to the energy greater than the preset threshold, go to step 503; if there is no energy greater than the preset threshold, it means If there is no interference source, this process ends. This step is similar to step 102, and will not be repeated here.
  • step 503 the three-dimensional subspace corresponding to the energy greater than the preset threshold is obtained, that is, the ⁇ and the three-dimensional subspace corresponding to the energy greater than the preset threshold are obtained. value.
  • the specific obtaining method is similar to step 103, and will not be repeated here.
  • step 504 according to the horizontal angle and vertical angle information obtained in step 503 Determine the direction of movement.
  • step 505 move a certain distance along the moving direction, for example, move 10 meters.
  • step 506 it is judged whether the energy of the interference signal is increased, that is, it is judged whether the energy of the resource block in the three-dimensional subspace increases after the movement. If the energy of the interference signal is increased, it means that the moving direction is correct, and step 507 is entered; if the energy of the interference signal is weakened, it means that the moving direction is wrong, and then step 509 is entered.
  • step 507 continue to move the preset distance in the correct direction of movement, for example, continue to move 10 meters in the horizontal direction or 10 meters in the vertical direction, clear the number of adjustments of the movement direction, and proceed to step 508.
  • step 508 the current position is recorded as the best signal interference position, for example, the horizontal and vertical coordinates of the current position are recorded as the best signal interference position, and then step 508 is returned to step 506.
  • step 506 If it is determined in step 506 that the energy of the interference signal is not enhanced, it means that the moving direction is wrong, and step 509 is entered to determine whether the number of adjustments reaches a preset adjustment threshold.
  • the adjustment threshold can be set according to an empirical value, such as 10. If the preset adjustment threshold is not reached, go to step 510; if the preset adjustment threshold is reached, go to step 512.
  • step 510 the number of adjustments of the movement direction is accumulated, for example, the number of adjustments of the movement direction is increased by 1, and step 511 is entered.
  • step 511 the moving direction is adjusted, the preset distance is moved in the adjusted direction, and the step 506 is returned after the movement.
  • step 512 is entered: the most recently recorded signal interference position is taken as the signal interference position.
  • the ⁇ and ⁇ of the three-dimensional subspace corresponding to the energy greater than the preset threshold The value is used as a reference for the moving direction. Every time it moves a certain distance, it is judged whether the energy of the interference signal is enhanced. If it is increased, it means that the moving direction is correct, continue to move forward, and at the same time, set the number of adjustment directions to zero, and record the current position (horizontal coordinate, vertical coordinate) as the best position close to the interference source; if it weakens, it means the movement is not towards the interference
  • the source is close and the direction needs to be adjusted. It can be set to allow up to n attempts to adjust the direction. Before each adjustment, determine whether the upper limit of the number of attempts to adjust the direction has been reached. If it has not been reached, adjust the direction once. If it has been reached, take the recorded best position and record it as interference Source location.
  • a three-dimensional subspace with energy greater than a preset threshold is used as a moving direction reference, and the position of the interference source is gradually approached by moving the received signal source, so that the position of the interference source can be further accurately located.
  • the number of adjustments is cleared when the moving direction is correct, and the number of adjustments is accumulated when the moving direction is wrong, so that the accurate interference position can be quickly approached after a limited number of adjustments.
  • the third embodiment of the present application relates to a device for identifying the location of signal interference, as shown in FIG. 6, including:
  • the energy acquisition module 601 is configured to acquire the energy respectively detected by the resource block in each three-dimensional subspace; wherein the three-dimensional subspace is obtained by dividing the three-dimensional space in advance.
  • the detection module 602 is configured to detect whether there is an energy greater than a preset threshold among the multiple energies obtained.
  • the three-dimensional subspace acquiring module 603 is configured to acquire the three-dimensional subspace corresponding to the energy greater than the preset threshold when the detection module detects that there is energy greater than the preset threshold.
  • the position determining module 604 is configured to determine the signal interference position according to the acquired three-dimensional subspace.
  • the energy acquisition module 601 specifically calculates the power detected by the resource block in each three-dimensional subspace according to the following formula:
  • rbIdx represents the resource block index
  • represents the vertical angle index
  • NI represents the noise sequence of the resource block
  • antidx represents the antenna index
  • antNum represents the total number of antennas
  • a represents the steering vector of the three-dimensional subspace.
  • the steering vector of the three-dimensional subspace is constructed in the following way:
  • the ⁇ is Wavelength
  • dH is the sub-spacing of horizontal elements
  • dV is the sub-spacing of vertical elements
  • n is the number of columns in the antenna array
  • m is the number of rows in the antenna array.
  • the position determining module 604 is specifically configured to determine the signal interference position according to the acquired horizontal angle and vertical angle of the three-dimensional subspace.
  • the position determining module 604 is specifically configured to move a preset distance along the direction of the acquired three-dimensional subspace; determine whether the energy of the resource block in the three-dimensional subspace increases after the movement Whether the moving direction is correct; if the moving direction is correct, record the current position as the best signal interference position, and continue to move the preset distance along the moving direction, and repeat the execution according to the movement of the resource block in the three-dimensional sub Whether the energy in the space increases, determine whether the moving direction is correct; if the moving direction is not correct, adjust the moving direction to move, and repeat the operation according to whether the energy of the resource block in the three-dimensional subspace increases after the move. If large, it is judged whether the moving direction is correct; the best signal interference position recorded is used as the signal interference position.
  • the number of adjustments of the movement direction is accumulated; each time the movement direction is determined to be correct, the accumulated adjustment times are cleared; and the accumulated adjustment times reach the preset value.
  • the best signal interference position recorded last time is taken as the signal interference position.
  • the three-dimensional subspace obtaining module 603 is specifically configured to correlate the channel with the steering vector according to the pre-stored steering vector of each three-dimensional subspace to obtain the energy received in each three-dimensional subspace;
  • the energy received in each three-dimensional subspace is matched with the energy greater than the preset threshold;
  • the three-dimensional subspace corresponding to the energy matching the energy greater than the preset threshold is regarded as the energy greater than the preset threshold corresponding The three-dimensional subspace.
  • this embodiment is an example of a device corresponding to the first or second embodiment, and this embodiment can be implemented in cooperation with the first or second embodiment.
  • the related technical details mentioned in the first or second embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the related technical details mentioned in this embodiment can also be applied in the first or second embodiment.
  • modules involved in this embodiment are all logical modules.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units. The combination of units is realized.
  • this embodiment does not introduce units that are not too closely related to solving the technical problems proposed by this application, but this does not mean that there are no other units in this embodiment.
  • the fourth embodiment of the present application relates to an electronic device, as shown in FIG. 7, including at least one processor; and a memory communicatively connected with the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor , The instructions are executed by at least one processor, so that the at least one processor can execute the method for identifying the location of signal interference as described above.
  • the memory and the processor are connected in a bus manner, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus can also connect various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides an interface between the bus and the transceiver.
  • the transceiver may be one element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on the transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory can be used to store data used by the processor when performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the above method embodiment is realized.
  • the program is stored in a storage medium and includes several instructions to enable a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) that executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信领域,公开了一种信号干扰位置的识别方法、装置、电子设备及存储介质。本申请中,获取资源块在各三维子空间上分别检测到的能量;其中,三维子空间通过预先对三维空间划分得到;在获取的多个能量中,检测是否存在大于预设门限的能量;若存在大于预设门限的能量,则获取大于预设门限的能量所对应的三维子空间;根据获取的三维子空间,确定信号干扰位置。

Description

信号干扰位置的识别方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为201910904197.4、申请日为2019年9月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信领域,特别涉及信号干扰位置的识别技术。
背景技术
基站系统根据信号干扰来源,可分为基站系统内干扰和系统间干扰。基站包含发射系统和接收系统,将发射信号和接收信号限制在基站配置的工作频率内,这样的理想滤波器是不存在的,因此会存在泄露的发射信号到其他工作频率,基站接收系统在指定的工作频率上接收到来自其他频率的信号功率,会影响本基站的正常业务,系统间干扰产生。
系统间干扰会导致手机用户接入失败、掉话、或移动过程中出现切换失败等网络问题,一旦出现此类问题,基站运维人员需要排查解决。基站运维人员排除干扰的常用手段是:先确认是否系统内干扰,若排除系统内干扰,则为系统间干扰。
然而,本申请的发明人发现,对于系统间干扰,首先要查出干扰来自何方,从众多站中找到可能的干扰源,常用的手段是运维人员携带扫频仪和八木天线上站查找干扰源。商用站点众多,方向和范围不明确,逐个上站排查必然费时费力,而且有时存在伪基站干扰情况,干扰源本不在目标站点列表范围内,逐个上站排查也是竹篮打水一场空,导致无法正确识别到信号干扰源。
发明内容
本申请实施方式的目的在于提供一种信号干扰位置的识别方法、装置、电子设备及存储介质。
本申请的实施方式提供了一种信号干扰位置的识别方法,包括:获取资源块在各三维子 空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到;在所述获取的多个能量中,检测是否存在大于预设门限的能量;若存在大于预设门限的能量,则获取所述大于预设门限的能量所对应的三维子空间;根据所述获取的三维子空间,确定信号干扰位置。
本申请的实施方式还提供了一种信号干扰位置的识别装置,包括:能量获取模块,用于获取资源块在各三维子空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到;检测模块,用于在所述获取的多个能量中,检测是否存在大于预设门限的能量;三维子空间获取模块,用于在所述检测模块检测到存在大于预设门限的能量时,获取所述大于预设门限的能量所对应的三维子空间;位置确定模块,用于根据所述获取的三维子空间,确定信号干扰位置。
本申请的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的信号干扰位置的识别方法。
本申请的实施方式还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的信号干扰位置的识别方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是根据本申请第一实施方式的信号干扰位置的识别方法流程图;
图2是根据本申请第一实施方式中扫描空间的划分示意图;
图3是根据本申请第一实施方式中的波程差和导向矢量示意图;
图4是根据本申请第一实施方式中的双极化天线示意图;
图5是根据本申请第二实施方式的信号干扰位置的识别方法流程图;
图6是根据本申请第三实施方式的信号干扰位置的识别装置结构示意图;
图7是根据本申请第三实施方式的电子设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实 施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的第一实施方式涉及一种信号干扰位置的识别方法,本实施方式应用于基站中,在本实施方式中,获取资源块在各三维子空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到;在获取的多个能量中,检测是否存在大于预设门限的能量;若存在大于预设门限的能量,则获取所述大于预设门限的能量所对应的三维子空间;根据所述获取的三维子空间,确定信号干扰位置。通过预先对三维空间进行划分,在不同的空间以不同方向的波束接收信号,计算每个子空间的能量值,来判断是否有干扰及干扰源空间位置,使得信号干扰源的位置可以被准确定位到,而且无需人工上站逐个排查干扰源,节省了人力,提高了信号干扰位置的检测效率。下面对本实施方式的信号干扰位置的识别方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,具体流程如图1所示。
在步骤101中,获取资源块在各三维子空间上分别检测到的能量。
具体地说,为了自动识别到基站信号干扰源的空间位置,在本实施方式中预先对三维空间进行划分,得到各三维子空间,即将DOA(Direction Of Arrival,波达方向)扫描空间分为水平X个,垂直方向Y个,则共可以划分出X*Y=Z个子空间。以垂直方向上为例,覆盖范围是-30°到30°,可均分为4个扇区,四个扫描波束如图2中的虚线箭头所示,指向扇区的正中央,所以扫描角度为θ=-22.5°:15°:22.5°。在本步骤中,获取资源块在Z个子空间上各自的能量。
在一个具体的例子中,以基站天线面板的中心为三维坐标的中心构造三维坐标系,设构造基站天线坐标P(m,n):
Figure PCTCN2020107892-appb-000001
其中,dH为水平阵元子间距,dV为垂直阵元子间距,n是天线阵列的列数,m是天线阵列的行数,P(m,n)是m行n列上的天线位置。
根据基站天线坐标计算各三维子空间上的相位差V m,n
Figure PCTCN2020107892-appb-000002
Figure PCTCN2020107892-appb-000003
其中,
Figure PCTCN2020107892-appb-000004
为波程差,所述j为虚数单位(例z=a+b*j的数称为复数,其中a称为实部,b称为虚部,j称为虚数单位);所述λ为波长,θ表示垂直角度索引,
Figure PCTCN2020107892-appb-000005
表示水平角度索引。波程差表示特定方向的波束到达不同天线阵元的路程不一样,从而决定了相位差也不一样,如图3所示,对于单天线而言,特定方向的波束到达该天线的波程差都是固定为0,但是对于图3中右侧二阵元天线阵而言,特定方向的波束,到达天线1和天线2的波程差是不一样的,所以相位差也不一样,由相位差构成的矢量称为导向矢量,如图3所示,A点的波程差Δd=0;A点的相位差
Figure PCTCN2020107892-appb-000006
B点的波程差Δd=a*cosθ;B点的相位差
Figure PCTCN2020107892-appb-000007
Figure PCTCN2020107892-appb-000008
因此,根据各三维子空间上的相位差V m,n,可得到各三维子空间上的导向矢量:
Figure PCTCN2020107892-appb-000009
通过对基站天线坐标的构造,并基于波程差计算得到相位差,进而得到各三维子空间上的导向矢量,使得本申请的实施方式可以灵活应用,而不受应用场景的限制。
在本实施方式中,可根据以下公式,计算资源块在各三维子空间上分别检测到的功率:
Figure PCTCN2020107892-appb-000010
其中,rbIdx表示资源块索引,θ表示垂直角度索引,
Figure PCTCN2020107892-appb-000011
表示水平角度索引,NI表示资源块的噪声序列,antidx表示天线索引,antNum表示天线总数,a表示三维子空间的导向矢量。
通过以上公式,可以准确的获取到资源块在各三维子空间上的能量。
在步骤102中,检测在获取的多个能量中,是否存在大于预设门限的能量。如果存在大于预设门限的能量,则说明存在干扰源,且干扰源的方向为大于预设门限的能量所对应的三维子空间,进入步骤103;如果不存在大于预设门限的能量,则说明不存在干扰源,结束本流程。预设门限可根据经验值设定,在此不做具体举例。如果在实际应用中,若存在多个能量均大于预设门限,还可令能量最大的方向为干扰源的来波方向,即
Figure PCTCN2020107892-appb-000012
在步骤103中,获取大于预设门限的能量所对应的三维子空间。由于特定方向的波束,到达不同天线的波程差是不一样的,导致相位差也不一样,进而导致干扰源在不同三维子空间上产生的能量不相同的。因此,在本步骤中,可以根据预先存储的各三维子空间的导向矢量,将信道与导向矢量相关,获得各三维子空间上接收到的能量;将获得的所述各三维子空 间上接收到的能量,与大于预设门限的能量进行匹配;将与大于预设门限的能量匹配的能量所对应的三维子空间,作为大于预设门限的能量所对应的三维子空间,即得到大于预设门限的能量所对应的三维子空间的θ和
Figure PCTCN2020107892-appb-000013
值。
接着,在步骤104中,根据获取的三维子空间的水平角度和垂直角度,确定信号干扰位置。
由于在步骤101中,已经获取得到资源块在各三维子空间上的能量,通过步骤102判断是否存在干扰,得到受干扰影响的三维子空间的能量,即大于预设门限的能量。并通过步骤103,利用预先存储的各三维子空间的导向矢量,结合实际检测到的大于预设门限的能量,反推出大于预设门限的能量的三维子空间的θ和
Figure PCTCN2020107892-appb-000014
值,可以快速地确定出干扰位置所在的方向,进一步提高了干扰位置的检测效率。下面以一具体实例,对本实施方式进行说明:
以图4所示的5G基站的4*8的双极化天线为例,水平阵元字间距为dH,垂直阵元子间距为dV,矩形规则摆放,假设天线数目为64。在对信号干扰位置进行识别之前,预先完成导向矢量表的构造,三维的导向矢量
Figure PCTCN2020107892-appb-000015
维度为水平角度个数为X,垂直角度个数为Y,天线数目为64,即X*Y*64个复数表格,θ表示垂直角度索引,
Figure PCTCN2020107892-appb-000016
表示水平角度索引,ak Rx表示天线索引。导向矢量定点化值,以定标Q(16,13)为例,存储在导向矢量表中,整个文件大小为X*Y*64,实部虚部分开存储,高13比特为实部,低13比特为虚部,存储索引顺序为先水平角度索引,后垂直角度索引,最后天线索引。下面对信号干扰位置的识别进行说明:
以100M带宽为例,NI为资源块(RB)的噪声序列,维度是RB数目、天线数,即273*64。rbIdx为RB索引,
Figure PCTCN2020107892-appb-000017
为水平角度索引为,θ垂直角度索。
相关能量伪代码如下:
Figure PCTCN2020107892-appb-000018
具体地,计算a *·NI,导向矢量
Figure PCTCN2020107892-appb-000019
的定标为Q(16,13),NI(rbIdx,ak Rx)的 定标为Q(16,15),复数相乘增加位宽增加2位,相乘的结果定标为Q(32,30),64个数累计,进位6比特,所以中间采用40bit的累加器,然后将累加完的结果右移6+13位,用Q(16,11)表示:
Figure PCTCN2020107892-appb-000020
Figure PCTCN2020107892-appb-000021
维度是水平角度*垂直角度*RB个数,总大小为X*Y*273个能量。
在获取得到资源块在各三维子空间上的能量后,计算
Figure PCTCN2020107892-appb-000022
CorVal的定标为Q(16,11),复数平方,进2位,定标Q(32,24)
Figure PCTCN2020107892-appb-000023
从而求得大于预设的干扰门限的
Figure PCTCN2020107892-appb-000024
的θ和
Figure PCTCN2020107892-appb-000025
值。通过设置干扰门限Th,超过干扰门限Th的能量判为存在干扰情况。根据水平角度和垂直角度信息
Figure PCTCN2020107892-appb-000026
计算得到干扰来源位置信息,得到干扰检测结果并输出。
在本实施方式中,通过预先对三维空间进行划分,在不同的空间以不同方向的波束接收信号,计算每个子空间的能量值,来判断是否有干扰及干扰源空间位置,可以自动的定位到信号干扰源的位置,以算法代替了人力,无需人工上站逐个排查干扰源,节省了基站运维人员寻找干扰源位置的时间,提高了解决系统间干扰的效率。
而且,由于特定方向的波束,到达不同天线的波程差是不一样的,导致相位差也不一样,因此干扰源在不同三维子空间上产生的能量是不相同的。利用预先存储的各三维子空间的导向矢量,与信道相关,获得所有子空间的能量,结合实际检测到的大于预设门限的能量,找出能量高于预设门限能量的子空间,这些子空间是干扰来源方向,由此可以快速地确定出干扰位置所在,进一步提高了干扰位置的检测效率。
由于三维子空间是通过对三维空间进行划分而得到的,因此每个三维子空间都对应有水平角度和垂直角度,根据水平角度和垂直角度即可简单有效的定位到信号干扰位置。
本申请的第二实施方式涉及一种信号干扰位置的识别方法。第二实施方式在第一实施方式的基础上做了进一步改进,主要改进之处在于,在本申请第二实施方式中,通过移动的方式进一步扫描定位异常信号源。具体地,沿大于预设门限的能量所对应的三维子空间的方向移动预设距离,根据移动后资源块在三维子空间上的能量是否增大,判断移动方向是否正确;若移动方向正确,则将当前位置记录为最佳信号干扰位置,并沿移动方向继续移动预设距离,重复执行根据移动后资源块在三维子空间上的能量是否增大,判断移动方向是否正确;若移 动方向不正确,则调整移动方向进行移动,并重复执行根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确。将记录的最佳信号干扰位置作为所述信号干扰位置。其中,在每次调整移动方向后,累计移动方向的调整次数;在每次判定移动方向正确后,将累计的调整次数清零;在累计的调整次数达到预设调整阈值时,将最近一次记录的最佳信号干扰位置作为信号干扰位置。
具体流程如图5所示,在步骤501中,获取资源块在各三维子空间上分别检测到的能量,本步骤与步骤101类似,在此不再赘述。
在步骤502中,检测在获取的多个能量中,是否存在大于预设门限的能量。如果存在大于预设门限的能量,则说明存在干扰源,且干扰源的方向为大于预设门限的能量所对应的三维子空间,进入步骤503;如果不存在大于预设门限的能量,则说明不存在干扰源,结束本流程。本步骤与步骤102类似,在此不再赘述。
在步骤503中,获取大于预设门限的能量所对应的三维子空间,即得到大于预设门限的能量所对应的三维子空间的θ和
Figure PCTCN2020107892-appb-000027
值。具体的获取方式与步骤103类似,在此不再赘述。
在步骤504中,根据步骤503中获取的水平角度和垂直角度信息
Figure PCTCN2020107892-appb-000028
确定移动方向。
在步骤505中,沿移动方向移动一段距离,例如移动10米。
在步骤506中,判断干扰信号能量是否增强,即判断移动后资源块在该三维子空间上的能量是否增大。如果干扰信号能量增强,则说明移动方向正确,进入步骤507;若干扰信号能量减弱,则说明移动方向错误,进入步骤509。
在步骤507中,沿正确的移动方向继续移动预设距离,例如继续沿水平方向移动10米,或沿垂直方向移动10米,并将移动方向的调整次数清零,并进入步骤508。
在步骤508中,将当前位置记录为最佳信号干扰位置,如将当前位置的水平坐标、垂直坐标,记为最佳信号干扰位置,在步骤508后回到步骤506。
若在步骤506中,判定干扰信号能量没有增强,则说明移动方向错误,进入步骤509,判断调整次数是否达到预设的调整阈值,调整阈值可根据经验值设定,如设为10。若未达到预设调整阈值,则进入步骤510;若达到预设调整阈值,则进入步骤512。
在步骤510中,累计移动方向的调整次数,如将移动方向的调整次数加1,进入步骤511。
在步骤511中,调整移动方向,沿调整后的方向移动预设距离,并在移动后回到步骤506。
若在步骤509中,判定调整次数达到预设调整阈值,则进入步骤512:将最近一次记录的最佳信号干扰位置作为信号干扰位置。
也就是说,在本实施方式中,以大于预设门限的能量所对应的三维子空间的θ和
Figure PCTCN2020107892-appb-000029
值,作 为移动方向参考。每移动一段距离,则判断干扰信号能量是否增强。如增强,则表示移动方向正确,继续前进方向,同时将调整方向次数置零,将当前位置(水平坐标、垂直坐标)记为靠近干扰源的最好位置;如减弱,则表示移动不是朝干扰源靠近,需要调整方向。可设置最多允许尝试调整方向n次,在每次调整前,判断是否已经到尝试调整方向次数的上限,如未达到,则调整一次方向,如已达到,则取记录的最好位置记为干扰源位置。
在本实施方式中,利用大于预设门限的能量的三维子空间作为移动方向参考,通过移动接收信号源的方式,逐步逼近干扰源的位置,可以进一步准确定位到干扰源位置。而且,通过为调整次数设置一最大值,在移动方向正确时将调整次数清零,在移动方向错误时累计调整次数,可在有限次的调整后迅速逼近准确的干扰位置。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第三实施方式涉及一种信号干扰位置的识别装置,如图6所示,包括:
能量获取模块601,用于获取资源块在各三维子空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到。
检测模块602,用于在所述获取的多个能量中,检测是否存在大于预设门限的能量。
三维子空间获取模块603,用于在所述检测模块检测到存在大于预设门限的能量时,获取所述大于预设门限的能量所对应的三维子空间。
位置确定模块604,用于根据所述获取的三维子空间,确定信号干扰位置。
在一个具体的例子中,能量获取模块601具体根据以下公式,计算资源块在各三维子空间上分别检测到的功率:
Figure PCTCN2020107892-appb-000030
其中,rbIdx表示资源块索引,θ表示垂直角度索引,
Figure PCTCN2020107892-appb-000031
表示水平角度索引,NI表示资源块的噪声序列,antidx表示天线索引,antNum表示天线总数,a表示三维子空间的导向矢量。
在一个具体的例子中,三维子空间的导向矢量通过以下方式构造得到:
以基站天线面板的中心为三维坐标的中心构造三维坐标系,构造基站天线坐标;
根据所述基站天线坐标计算所述各三维子空间上的相位差V m,n,得到所述各三维子空间上的导向矢量:
Figure PCTCN2020107892-appb-000032
其中,所述相位差的计算公式如下:
Figure PCTCN2020107892-appb-000033
所述
Figure PCTCN2020107892-appb-000034
为波程差,所述j为虚数单位(例z=a+b*j的数称为复数,其中a称为实部,b称为虚部,j称为虚数单位);所述λ为波长,dH为水平阵元子间距,dV为垂直阵元子间距,n是天线阵列中的列数,m是天线阵列中的行数。
在一个具体的例子中,位置确定模块604具体用于根据获取的三维子空间的水平角度和垂直角度,确定信号干扰位置。
在一个具体的例子中,位置确定模块604具体用于沿所述获取的三维子空间的方向移动预设距离;根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;若移动方向正确,则将当前位置记录为最佳信号干扰位置,并沿所述移动方向继续移动预设距离,重复执行所述根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;若移动方向不正确,则调整移动方向进行移动,并重复执行所述根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;将记录的最佳信号干扰位置作为所述信号干扰位置。
在一个具体的例子中,在每次调整移动方向后,累计移动方向的调整次数;在每次判定移动方向正确后,将累计的所述调整次数清零;在累计的所述调整次数达到预设调整阈值时,将最近一次记录的最佳信号干扰位置作为信号干扰位置。
在一个具体的例子中,三维子空间获取模块603具体用于根据预先存储的各三维子空间的导向矢量,将信道与导向矢量相关,获得各三维子空间上接收到的能量;将获得的所述各三维子空间上接收到的能量,与所述大于预设门限的能量进行匹配;将与大于预设门限的能量匹配的能量所对应的三维子空间,作为大于预设门限的能量所对应的三维子空间。
不难发现,本实施方式为与第一或第二实施方式相对应的装置实施例,本实施方式可与第一或第二实施方式互相配合实施。第一或第二实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一或第二实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的 技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请第四实施方式涉及一种电子设备,如图7所示,包括至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上述的信号干扰位置的识别方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第五实施方式涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种信号干扰位置的识别方法,包括:
    获取资源块在各三维子空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到;
    在所述获取的多个能量中,检测是否存在大于预设门限的能量;
    若存在大于预设门限的能量,则获取所述大于预设门限的能量所对应的三维子空间;
    根据所述获取的三维子空间,确定信号干扰位置。
  2. 根据权利要求1所述的信号干扰位置的识别方法,其中,所述获取资源块在各三维子空间上分别检测到的能量,包括:根据以下公式,计算资源块在各三维子空间上分别检测到的功率:
    Figure PCTCN2020107892-appb-100001
    其中,rbIdx表示资源块索引,θ表示垂直角度索引,
    Figure PCTCN2020107892-appb-100002
    表示水平角度索引,NI表示资源块的噪声序列,antidx表示天线索引,antNum表示天线总数,a表示三维子空间的导向矢量。
  3. 根据权利要求2所述的信号干扰位置的识别方法,其中,所述三维子空间的导向矢量通过以下方式构造得到:
    以基站天线面板的中心为三维坐标的中心构造三维坐标系,构造基站天线坐标;
    根据所述基站天线坐标计算所述各三维子空间上的相位差V m,n,得到所述各三维子空间上的导向矢量:
    Figure PCTCN2020107892-appb-100003
    其中,所述相位差的计算公式如下:
    Figure PCTCN2020107892-appb-100004
    所述
    Figure PCTCN2020107892-appb-100005
    为波程差,所述j为虚数单位;所述λ为波长,dH为水平阵元子间距,dV为垂直阵元子间距,n是天线阵列中的列数,m是天线阵列中的行数。
  4. 根据权利要求1所述的信号干扰位置的识别方法,其中,所述根据所述获取的三维子空间,确定信号干扰位置,包括:
    根据所述获取的三维子空间的水平角度和垂直角度,确定信号干扰位置。
  5. 根据权利要求1所述的信号干扰位置的识别方法,其中,所述根据所述获取的三维子空间,确定信号干扰位置,包括:
    沿所述获取的三维子空间的方向移动预设距离;
    根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;
    若移动方向正确,则将当前位置记录为最佳信号干扰位置,并沿所述移动方向继续移动预设距离,重复执行所述根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;
    若移动方向不正确,则调整移动方向进行移动,并重复执行所述根据移动后所述资源块在所述三维子空间上的能量是否增大,判断移动方向是否正确;
    将记录的最佳信号干扰位置作为所述信号干扰位置。
  6. 根据权利要求5所述的信号干扰位置的识别方法,其中,还包括:
    在每次所述调整移动方向后,累计移动方向的调整次数;
    在每次判定移动方向正确后,将累计的所述调整次数清零;
    所述将记录的最佳信号干扰位置作为所述信号干扰位置,包括:
    在累计的所述调整次数达到预设调整阈值时,将最近一次记录的最佳信号干扰位置作为所述信号干扰位置。
  7. 根据权利要求1所述的信号干扰位置的识别方法,其中,所述获取所述大于预设门限的能量所对应的三维子空间,包括:
    根据预先存储的各三维子空间的导向矢量,将信道与导向矢量相关,获得各三维子空间上接收到的能量;
    将获得的所述各三维子空间上接收到的能量,与所述大于预设门限的能量进行匹配;
    将与所述大于预设门限的能量匹配的能量所对应的三维子空间,作为所述大于预设门限的能量所对应的三维子空间。
  8. 一种信号干扰位置的识别装置,包括:
    能量获取模块,用于获取资源块在各三维子空间上分别检测到的能量;其中,所述三维子空间通过预先对三维空间划分得到;
    检测模块,用于在所述获取的多个能量中,检测是否存在大于预设门限的能量;
    三维子空间获取模块,用于在所述检测模块检测到存在大于预设门限的能量时,获取所述大于预设门限的能量所对应的三维子空间;
    位置确定模块,用于根据所述获取的三维子空间,确定信号干扰位置。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的信号干扰位置的识别方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的信号干扰位置的识别方法。
PCT/CN2020/107892 2019-09-24 2020-08-07 信号干扰位置的识别方法、装置、电子设备及存储介质 WO2021057284A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869458.8A EP4024733A4 (en) 2019-09-24 2020-08-07 METHOD AND DEVICE FOR IDENTIFYING AN INTERFERING LOCATION, ELECTRONIC DEVICE AND STORAGE MEDIA
JP2022518843A JP7238209B2 (ja) 2019-09-24 2020-08-07 信号干渉の位置を認識する方法、装置、電子機器及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910904197.4 2019-09-24
CN201910904197.4A CN112636849B (zh) 2019-09-24 2019-09-24 信号干扰位置的识别方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021057284A1 true WO2021057284A1 (zh) 2021-04-01

Family

ID=75166392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107892 WO2021057284A1 (zh) 2019-09-24 2020-08-07 信号干扰位置的识别方法、装置、电子设备及存储介质

Country Status (4)

Country Link
EP (1) EP4024733A4 (zh)
JP (1) JP7238209B2 (zh)
CN (1) CN112636849B (zh)
WO (1) WO2021057284A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052700A (zh) * 2014-05-27 2014-09-17 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置
CN105407063A (zh) * 2014-09-10 2016-03-16 三星电子株式会社 用于减轻无线通信系统中的干扰的装置和方法
JP6032469B2 (ja) * 2012-07-10 2016-11-30 国立大学法人東京工業大学 発信源推定方法およびそれを利用した発信源推定装置
CN107229044A (zh) * 2016-03-25 2017-10-03 中国科学院声学研究所 一种基于特征子空间方位稳定性的强弱目标检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141845A (ja) 2000-11-01 2002-05-17 Toshiba Tec Corp 指向性アンテナ装置
JP2008216084A (ja) 2007-03-05 2008-09-18 Kddi Corp 信号源位置推定方法および伝搬路状況推定方法
MX2010005772A (es) 2007-11-27 2010-07-01 Qualcomm Inc Administracion de interferencia en un sistema de comunicacionn inalambrica utilizando orientacion de haz y nula.
CA2742355C (en) 2008-10-30 2014-12-09 Mitsubishi Electric Corporation Communication apparatus and communication system
US9148244B2 (en) * 2012-08-06 2015-09-29 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for adaptive cancellation of external interference
US9819441B2 (en) 2013-01-21 2017-11-14 Spectrum Effect, Inc. Method for uplink jammer detection and avoidance in long-term evolution (LTE) networks
US10555316B2 (en) * 2016-09-26 2020-02-04 Motorola Solutions, Inc. System and method for assigning frequency resource allocation to communication devices
CN108990078B (zh) * 2017-05-31 2021-11-30 中国移动通信集团设计院有限公司 Lte网络下行干扰的优化方法、系统、设备及存储介质
WO2019079959A1 (zh) * 2017-10-24 2019-05-02 深圳市大疆创新科技有限公司 基站的干扰源定位方法、无人机和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032469B2 (ja) * 2012-07-10 2016-11-30 国立大学法人東京工業大学 発信源推定方法およびそれを利用した発信源推定装置
CN104052700A (zh) * 2014-05-27 2014-09-17 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置
CN105407063A (zh) * 2014-09-10 2016-03-16 三星电子株式会社 用于减轻无线通信系统中的干扰的装置和方法
CN107229044A (zh) * 2016-03-25 2017-10-03 中国科学院声学研究所 一种基于特征子空间方位稳定性的强弱目标检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024733A4 *

Also Published As

Publication number Publication date
CN112636849A (zh) 2021-04-09
EP4024733A4 (en) 2022-11-02
JP2022549458A (ja) 2022-11-25
JP7238209B2 (ja) 2023-03-13
CN112636849B (zh) 2023-06-30
EP4024733A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
CN108243451B (zh) 一种基于mr数据在td-lte栅格中定位的方法和系统
EP2375260A1 (en) Locating a source of wireless transmissions from a licensed user of a licensed spectral resource
US20050014511A1 (en) Location estimation of wireless terminals through pattern matching of deduced signal strengths
CN110703192B (zh) 一种定位的方法及装置、设备、存储介质
CN104811964A (zh) 一种智能天线性能的评估方法及系统
EP4033786A1 (en) Interference positioning method, apparatus and system for wireless communication system
CN107171981B (zh) 通道校正方法及装置
US11910443B2 (en) PRACH detection method and apparatus
KR101317846B1 (ko) 이동 통신 간섭원 확정 방법 및 장치
WO2021057284A1 (zh) 信号干扰位置的识别方法、装置、电子设备及存储介质
KR101170722B1 (ko) 위상차 페어 변경을 이용한 어레이 반경 확장 장치 및 방법
CN106575825A (zh) 用于使用模态天线寻找信号方向的方法
CN110392387B (zh) 无线信号的角度测量方法和设备
RU2786181C1 (ru) Способ, устройство позиционирования, электронное устройство и носитель данных для определения положения помех сигнала
WO2020078570A1 (en) Positioning with multiple access points
CN106550447A (zh) 一种终端定位方法、装置及系统
CN110876161A (zh) 一种小区发现方法、装置及计算机可读存储介质
Zhou et al. Physical distance vs. signal distance: An analysis towards better location fingerprinting
CN115314130A (zh) 一种基线校准方法、装置、网络侧设备及存储介质
EP4214529A1 (en) Position determination of a wireless device
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
EP3556133B1 (en) Method and apparatus for antenna performance evaluation as well as base station
Kanaan et al. Algorithm for TOA-based indoor geolocation
Kaddoura et al. Swapped sectors detection based on mobility statistics
CN113382436A (zh) 小区间干扰检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869458

Country of ref document: EP

Effective date: 20220329