WO2021056469A1 - 一种定时器控制的方法和装置 - Google Patents

一种定时器控制的方法和装置 Download PDF

Info

Publication number
WO2021056469A1
WO2021056469A1 PCT/CN2019/108728 CN2019108728W WO2021056469A1 WO 2021056469 A1 WO2021056469 A1 WO 2021056469A1 CN 2019108728 W CN2019108728 W CN 2019108728W WO 2021056469 A1 WO2021056469 A1 WO 2021056469A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
information
wake
scell
operation processing
Prior art date
Application number
PCT/CN2019/108728
Other languages
English (en)
French (fr)
Inventor
谢曦
常俊仁
张向东
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980096047.3A priority Critical patent/CN113767674B/zh
Priority to PCT/CN2019/108728 priority patent/WO2021056469A1/zh
Publication of WO2021056469A1 publication Critical patent/WO2021056469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for timer control.
  • terminal wake-up signaling/signal Wake Up Signaling/Signal, WUS
  • secondary cell Secondary Cell
  • SCell Secondary Cell
  • sCell Deactivation Timer Cell Deactivation Timer
  • partial bandwidth Bandwidth Part, BWP
  • the operation of the inactivity timer is independent of each other, that is, the SCell deactivation timer and the BWP inactivity timer will not be affected by WUS, regardless of whether the terminal monitors WUS or whether the terminal needs to wake up according to WUS instructions.
  • the SCell deactivation timer and the BWP inactivity timer perform operations such as start, restart, and stop according to the original rules, and have nothing to do with WUS.
  • WUS-related operations and SCell deactivation timers and BWP inactivity timers are independent of each other, which may cause when WUS instructs the terminal to subsequently wake up and monitor the physical downlink control channel (Physical Downlink Control Channel).
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • the SCell deactivation timer and/or the BWP inactivity timer expires, that is, the network has not had time to schedule the terminal.
  • the activated SCell will be deactivated due to the timeout of the SCell deactivation timer, or the current active BWP of large bandwidth will be switched to the initial/default BWP of small bandwidth due to the timeout of the BWP inactivity timer, which will affect the subsequent scheduling of the terminal by the network .
  • Specific scenarios such as:
  • the SCell deactivation timer expires, the number of activated SCells available to the terminal is reduced, and the subsequent data transmission rate will be limited.
  • the network thinks that the terminal’s service transmission needs cannot be met, the network needs to reactivate the SCell. As a result, the delay of service transmission increases, which affects the service transmission of the terminal.
  • the BWP bandwidth used by the terminal becomes smaller, and the subsequent data transmission rate will be limited.
  • the network thinks that the terminal’s service transmission needs cannot be met the network needs to switch the terminal’s current BWP again It is another BWP with a large bandwidth, which leads to an increase in the complexity of service transmission.
  • the existing SCell deactivation timer and/or BWP inactivity timer control method may in some cases deactivate the SCell that needs to be used in advance, or deactivate the large size that originally meets the service transmission requirements.
  • the bandwidth BWP is switched to a small bandwidth BWP in advance, which will adversely affect network scheduling, limit the transmission rate, and increase the service transmission delay.
  • the embodiments of the present application provide a timer control method and device to solve the technical problems of SCell deactivation timer and/or BWP static timer control methods in the prior art that limit the transmission rate and increase the service transmission delay .
  • an embodiment of the present application provides a timer control method, including:
  • the wake-up information In response to the wake-up information, perform operation processing on a first timer; wherein, the first timer includes an SCell deactivation timer or a partial bandwidth BWP inactivity timer.
  • the method provided in the embodiments of this application is based on the wake-up information mechanism and the SCell deactivation timer and the BWP static timer.
  • the wake-up information indicates that the terminal needs to monitor the physical downlink control channel PDCCH, it determines whether to deactivate the SCell based on related information.
  • the timer and/or BWP static timer is used for operation processing, so as to ensure that the SCell that needs to be used will not be deactivated in advance, or that the large bandwidth BWP that needs to be used will not be switched to a small bandwidth BWP in advance, so as to ensure the service transmission requirements of the UE. the goal of.
  • the possible operation processing includes any one of operations such as starting, restarting, stopping, pausing, and extending the timer.
  • the first timer is directly processed, which prevents the UE from deactivating the SCell that needs to be used in advance due to the timeout of the relevant timer when the WUS instructs to wake up, or prematurely deactivating the large number that needs to be used.
  • the bandwidth BWP is switched to the small bandwidth BWP, thereby ensuring the normal scheduling of the subsequent network.
  • Manner 2 Perform operation processing on the first timer according to the remaining time length of the first timer
  • the terminal when it receives the wake-up information indicating that it needs to wake up and monitor the PDCCH, it judges the remaining time of the SCell deactivation timer and/or the BWP inactivity timer, and further determines the SCell deactivation timing based on the result of the judgment.
  • the processing operation of the timer and/or the BWP inactivity timer enables the terminal to select the processing operation (start, restart, stop, pause, and extend the timer) that best suits the usage scenario to process the first timer.
  • Manner 3 After receiving the instruction information instructing to perform operation processing on the first timer, perform operation processing on the first timer.
  • the terminal receives additional indication information while receiving the wake-up information, and the terminal can determine whether it is necessary to process the SCell deactivation timer and/or the BWP inactivity timer through the additional indication information.
  • the network side can selectively instruct the terminal to process the first timer according to specific parameters or scenarios.
  • performing operation processing on the first timer according to the remaining time length of the first timer includes:
  • the method further includes:
  • the time parameter value is the sum of offset 1 and offset 2; wherein, the offset 1 is the time difference between WUS occasion(s) and the start time of drx-onDurationTimer ;or
  • the time parameter value is the sum of offset 1 and M; wherein, the offset 1 is the time difference between the WUS occasion(s) and the start time of drx-onDurationTimer, and M is the length of time corresponding to N PDCCH monitoring occasions.
  • the method further includes:
  • the processing operation is to pause the timer or extend the timer, it is also necessary to determine the pause or extension time, and the corresponding method Also includes:
  • the length of the time period during which the pause timer is paused is determined according to the network configuration; the network configuration includes the length of the time period of pause and/or the time when the timer is resumed;
  • the length of the extended period of the timer is determined according to the network configuration.
  • the operating processing on the first timer includes:
  • the wake-up information includes SCell information
  • perform operation processing on the SCell deactivation timer associated with the SCell indicated in the SCell information and/or, perform operation processing on the current PCell/PSCell and in the SCell information
  • the BWP inactivity timer associated with the activated BWP on the indicated SCell performs operation processing.
  • the multiple terminals when the wake-up information indicates that multiple terminals need to perform PDCCH monitoring, the multiple terminals include the terminal that receives the wake-up information.
  • a timer control method including:
  • the network device sends wake-up information
  • the network device When the wake-up information indicates physical downlink control channel PDCCH monitoring, the network device sends instruction information; the instruction information is used to instruct the terminal to perform operation processing on the first timer; wherein, the first timer includes SCell deactivation Timer and/or BWP inactivity timer.
  • sending the instruction information by the network device includes:
  • the indication information is sent through downlink control information DCI, MAC control element MAC CE, and radio resource control RRC message.
  • the method further includes:
  • the network device when the wake-up information indicates to wake up and monitor the PDCCH, the network device also indicates whether the terminal needs to process the timer according to the service data of the terminal, and can determine whether to process the timer according to the actual service requirements, so as to avoid failure.
  • the necessary start, restart, stop, pause or extend the timer can also prevent the UE from deactivating the SCell that needs to be used due to the timer timeout or switching the large bandwidth BWP that needs to be used to the small bandwidth BWP in advance. So as to ensure the normal scheduling of the subsequent network.
  • a terminal device in a third aspect, includes a processor and a memory, the memory is used to store a program executable by the processor, and the processor is used to read the program in the memory and execute the following steps :
  • the wake-up information In response to the wake-up information, perform operation processing on a first timer; wherein, the first timer includes an SCell deactivation timer or a partial bandwidth BWP inactivity timer.
  • the operation processing includes any one of starting, restarting, stopping, suspending, and extending the timer.
  • the processor is specifically configured to perform operation processing on the first timer according to the remaining time length of the first timer; or receive If the instruction information instructs to perform operation processing on the first timer, then perform operation processing on the first timer.
  • the processor is specifically configured to: if the remaining time length of the first timer is less than or equal to the time parameter value configured by the network, The first timer performs operation processing.
  • the processor is further configured to receive a time parameter value configured by the network;
  • the time parameter value is the sum of offset 1 and offset 2; wherein, the offset 1 is the time difference between WUS occasion(s) and the start time of drx-onDurationTimer ;or
  • the time parameter value is the sum of offset 1 and M; wherein, the offset 1 is the time difference between the WUS occasion(s) and the start time of drx-onDurationTimer, and M is the length of time corresponding to N PDCCH monitoring occasions.
  • the processor is further configured to obtain the indication information from WUS; or from the received downlink control information DCI, MAC control element MAC CE, The indication information is obtained in a radio resource control RRC message.
  • the length of the time period during which the pause timer is paused is determined according to a network configuration; the network configuration includes a pause The length of the time period and/or the time when the timer is restored; when the operation processing is to extend the timer, the length of the time period extended by the extended timer is determined according to the network configuration.
  • the processor is specifically configured to: when the wake-up information includes SCell information, perform an operation on the SCell associated with the SCell indicated in the SCell information.
  • the activation timer performs operation processing; and/or, the operation processing is performed on the BWP inactivity timer associated with the active BWP on the current PCell/PSCell and the SCell indicated in the SCell information.
  • the multiple terminals include the terminal device.
  • a network device in a fourth aspect, includes a processor and a memory, the memory is used to store a program executable by the processor, and the processor is used to read the program in the memory and execute the following steps :
  • the wake-up information indicates physical downlink control channel PDCCH monitoring
  • indication information is sent; the indication information is used to instruct the terminal to operate the timer; wherein, the timer includes an SCell deactivation timer and/or BWP Inactivity timer.
  • the processor is specifically configured to send the indication information through the wake-up information; or through downlink control information DCI, MAC control element MAC CE, wireless
  • the resource control RRC message sends the indication information.
  • the processor is specifically configured to send the instruction information to the terminal if the amount of service data of the terminal is greater than a set threshold.
  • a timer control device including:
  • the receiving unit is configured to receive wake-up information, the wake-up information instructs the terminal to monitor the physical downlink control channel PDCCH; the processing unit, in response to the wake-up information, perform operation processing on the first timer; wherein, the first timing
  • the device includes SCell deactivation timer or partial bandwidth BWP inactivity timer.
  • the operation processing includes any one of starting, restarting, stopping, suspending, and extending the timer.
  • the processing unit is specifically configured to perform operation processing on the first timer according to the remaining time length of the first timer; or receive If the instruction information instructs to perform operation processing on the first timer, then perform operation processing on the first timer.
  • the processing unit is further configured to: if the remaining time length of the first timer is less than or equal to the time parameter value configured by the network, perform processing on the The first timer performs operation processing.
  • the receiving unit is further configured to receive a time parameter value configured by the network;
  • the time parameter value is the sum of offset 1 and offset 2; wherein, the offset 1 is the time difference between WUS occasion(s) and the start time of drx-onDurationTimer ;or
  • the time parameter value is the sum of offset 1 and M; wherein, the offset 1 is the time difference between the WUS occasion(s) and the start time of drx-onDurationTimer, and M is the length of time corresponding to N PDCCH monitoring occasions.
  • the processing unit is further configured to obtain the indication information from WUS; or from the received downlink control information DCI, MAC control element MAC CE, The indication information is obtained in a radio resource control RRC message.
  • the processing unit is further configured to: when the operation processing is a pause timer, the length of the time period during which the pause timer is paused is determined according to network configuration;
  • the network configuration includes the length of the paused time period and/or the time when the timer is resumed; when the operation process is to extend the timer, the length of the extended time period of the timer is determined according to the network configuration.
  • the processing unit is specifically configured to: when the wake-up information includes SCell information, perform processing on the SCell associated with the SCell indicated in the SCell information.
  • the activation timer performs operation processing; and/or, the operation processing is performed on the BWP inactivity timer associated with the activated BWP on the current PCell/PSCell and on the SCell indicated in the SCell information.
  • the multiple terminals when the wake-up information indicates that multiple terminals need to perform PDCCH monitoring, the multiple terminals include terminals that receive wake-up information.
  • a timer control device including:
  • the sending unit is used to send wake-up information; when the wake-up information indicates physical downlink control channel PDCCH monitoring, the network device sends indication information; the indication information is used to instruct the terminal to operate and process the first timer; wherein,
  • the first timer includes an SCell deactivation timer and/or a BWP inactivity timer;
  • the storage unit is used to store the wake-up information and the indication information.
  • the sending unit is specifically configured to send the indication information through the wake-up information; or through downlink control information DCI, MAC control element MAC CE, wireless
  • the resource control RRC message sends the indication information.
  • the sending unit is further configured to send the indication information to the terminal if the service data volume of the terminal is greater than a set threshold.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the first aspect, the second aspect, and any one of the first aspect and the second aspect are possible.
  • Figure 1 shows the timing relationship between WUS-related operations and SCell deactivation timers and BWP inactivity timers in the prior art
  • FIG. 2 is a schematic diagram of the architecture of an applicable scenario of an embodiment of the present invention.
  • FIG. 3 is a method flowchart of a timer control method provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the implementation of wake-up by WUS in the prior art
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • the control of the SCell deactivation timer and the BWP inactivity timer in the prior art does not combine the wake-up information with the SCell deactivation timer and the BWP inactivity timer, but at the SCell deactivation timing
  • the wake-up information indicates that the terminal needs to wake up and monitor the PDCCH in the process of using the device and the BWP inactivity timer
  • the SCell deactivation timer and/or the BWP inactivity timer are not processed in time, the SCell that needs to be used will be changed. Deactivate in advance, or switch the large-bandwidth BWP that originally meets the service transmission requirements to the small-bandwidth BWP in advance, which will adversely affect network scheduling, limit the transmission rate, and increase the service transmission delay.
  • the timer control method provided by the embodiments of this application is based on the existing wake-up information mechanism and the SCell deactivation timer and the BWP inactivity timer, and designs a method for combining the wake-up information with the SCell.
  • the wake-up information instructs the terminal to monitor the PDCCH; the terminal determines whether to process the SCell deactivation timer and/or the BWP inactivity timer to ensure that the SCell that needs to be used will not be removed in advance
  • the large-bandwidth BWP that is activated or needs to be used will not be switched to the small-bandwidth BWP in advance, so as to achieve the purpose of ensuring the service transmission requirements of the UE.
  • the technical solutions of the embodiments of the present invention can be applied to the Long Term Evolution (LTE) architecture, and can also be applied to the Universal Mobile Telecommunications System (UMTS) terrestrial radio access network (UMTS Terrestrial Radio Access).
  • Network, UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network, GERAN Global System for Mobile Communication
  • GSM EDGE Radio Access Network, GERAN Global System for Mobile Communication
  • GSM EDGE Radio Access Network, GERAN Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network, GERAN Global System for Mobile Communication
  • the function of the MME is completed by the Serving GPRS Support (SGSN) service general packet radio service (General Packet Radio Service, GPRS) support node (Serving GPRS
  • the device for implementing the method of the embodiment of the present invention may be a communication device, and the communication device may specifically be a terminal equipment (UE) or a circuit.
  • the terminal device may be a device that includes a wireless transceiver function and can cooperate with a network device to provide users with communication services.
  • terminal equipment may refer to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, User agent or user device.
  • UE User Equipment
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or networks after 5G, etc. are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a network device can be a device used to communicate with terminal devices.
  • it can be a base station (Base Transceiver Station, BTS) in a GSM system or CDMA, a base station (NodeB, NB) in a WCDMA system, or Evolutional Node B (eNB or eNodeB) in the LTE system
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • eNB or eNodeB Evolutional Node B
  • the network equipment can be a relay station, access point, in-vehicle equipment, wearable equipment, and network equipment or future network equipment in the future 5G network or networks after 5G Network equipment in the evolved PLMN network, etc.
  • the network equipment involved in the embodiments of the present invention may also be referred to as a radio access network (Radio Access Network, RAN) equipment.
  • the RAN device is connected to the terminal device, and is used to receive data from the terminal device and send it to the core network device.
  • RAN equipment corresponds to different equipment in different communication systems. For example, it corresponds to base station and base station controller in 2G system, corresponds to base station and radio network controller (RNC) in 3G system, and corresponds to evolution in 4G system.
  • Evolutional Node B (eNB) corresponds to a 5G system in a 5G system, such as the access network equipment (for example, gNB, CU, DU) in the New Radio Access Technology (NR).
  • FIG. 2 shows several main system components in the 5G NR system and the interaction between the components.
  • the base station gNB/ which is the serving cell of the terminal equipment (which can be the UE)
  • the ng-eNB is responsible for providing the user plane and control plane protocol functions of the 5G radio access network NR for the UE.
  • the prior art problem addressed by the embodiments of this application is that the prior art SCell deactivation timer and/or BWP static timer control method will deactivate the SCell that needs to be used in advance, or deactivate the SCell that originally meets the service transmission requirements.
  • the large-bandwidth BWP is switched to the small-bandwidth BWP in advance, which will adversely affect network scheduling, limit the transmission rate, and increase the service transmission delay.
  • timer control method provided in the embodiments of the present application.
  • the following uses a terminal device and a network device to interact with the application.
  • a timer control method provided by the embodiment is described (the embodiment covers the terminal device side method and the network device side method), and the method may include steps (as shown in Figure 3):
  • Step 301 The network device sends wake-up information, the wake-up information instructs the terminal to monitor the physical downlink control channel PDCCH;
  • a power saving signal is introduced in order to achieve the energy saving purpose of a communication device (in this embodiment of the application, it may be a UE).
  • the wake-up information involved in this embodiment may be one of the power-saving signals, for example, wake-up. Signal (Wake Up Signaling/Signal, WUS).
  • WUS wake Up Signaling/Signal
  • DCI Downlink Control Information
  • MAC CE MAC Control Element
  • RRC Radio Resource Control
  • WUS The function of WUS is to wake up the UE to monitor the PDCCH during the next DRX on duration or during the subsequent N DRX on durations.
  • the implementation of waking up the UE for PDCH monitoring is shown in Figure 4:
  • the UE needs to monitor the WUS in the WUS occasion (WUS occasion(s)) at the known offset before the start of the drx-onDurationTimer.
  • WUS occasion(s) WUS occasion(s)
  • the UE starts the drx-onDurationTimer at the time of the corresponding next DRX on duration or the subsequent N DRX on duration; otherwise, the UE does not start the drx-onDurationTimer.
  • WUS wakes up the UE to perform PDCCH monitoring during the next DRX on duration or subsequent N DRX on durations, for the specific correspondence between WUS and UE, that is, the UE situation that a WUS can indicate
  • the types of WUS can be divided into: a1 , For a specific UE (UE-specific); a2, for a group of UE (group-specific);
  • the UE can be All or part of the activated SCells monitor the PDCCH; specific situations can be divided into: b1, WUS does not contain SCell-related information; b2, WUS contains SCell-related information.
  • the specific implementation can be:
  • one WUS is only for one UE, that is, the network sends different WUSs to different UEs, and different UEs are independent.
  • a WUS is for a group of UEs (including multiple UEs), that is, the network can be configured to let a group of UEs listen to the same WUS occasion(s), and this group of UEs will receive For the same WUS, each UE needs to determine whether to wake up and monitor the PDCCH in the subsequent DRX cycle according to specific instructions in the WUS.
  • WUS does not contain SCell-related information, that is, WUS does not specifically instruct the UE on which SCell or SCells to wake up and monitor PDCCH during the next DRX on duration or subsequent N DRX on durations.
  • WUS does not specifically instruct the UE on which SCell or SCells to wake up and monitor PDCCH during the next DRX on duration or subsequent N DRX on durations.
  • the UE receives the WUS instruction to wake up and monitor the PDCCH, the UE will wake up and monitor the PDCCH on the current serving cell (including the activated SCell);
  • WUS contains SCell-related information, that is, the network can indicate in WUS which SCell or SCells to wake up and monitor PDCCH during the next DRX on duration or subsequent N DRX on durations.
  • WUS does not contain For information related to the SCell, the UE considers that it does not need to wake up on the SCell to monitor the PDCCH during the next DRX on duration or the subsequent N DRX on durations.
  • the UE is configured with several SCells, and each SCell has a corresponding identification SCell index. The network and the UE can distinguish different SCells through the SCell index.
  • the UE when one or more SCell indexes are included in the WUS, the UE Subsequently, it is necessary to wake up and monitor the PDCCH on the SCell corresponding to the SCell index. Otherwise, when the SCell index is not included in the WUS, the UE does not need to wake up and monitor the PDCCH on the SCell subsequently.
  • WUS may have two wake-up mechanisms:
  • a network device When a network device needs to wake up a UE to monitor the PDCCH, it sends WUS in the UE-related WUS occasion(s). When the UE receives WUS, the UE wakes up and monitors the PDCCH in the subsequent Discontinuous Reception (DRX) cycle ; Otherwise, when the network does not need to wake up the UE to monitor the PDCCH, the network will not send WUS. When the UE does not receive the WUS, the UE will not wake up to monitor the PDCCH in the subsequent DRX cycle.
  • DRX Discontinuous Reception
  • the network sends WUS in each WUS occasion(s) related to the UE.
  • the UE needs to determine whether to wake up and monitor the PDCCH in the subsequent DRX cycle according to the specific instructions in the WUS.
  • Step 302 The terminal receives the wake-up information, and in response to the wake-up information, performs operation processing on a first timer; wherein, the first timer includes an SCell deactivation timer or a BWP inactivity timer.
  • the SCell deactivation timer (sCellDeactivationTimer) is a timer used to deactivate the SCell.
  • the SCell deactivation timer is independently configured for each SCell, that is, different SCells have independent SCell deactivation timers. If an SCell is configured with an SCell deactivation timer, when the SCell is activated, the related SCell deactivation timer is started or restarted. When the UE transmits or receives data on the SCell, the timer is restarted. When the timer expires, the SCell associated with the timer is deactivated.
  • the BWP inactivity timer (bwp-InactivityTimer) is used to switch the BWP of the UE.
  • the network can configure the BWP quiet timer to be associated with the UE's active downlink BWP other than the initial/default BWP, that is, when the UE's active BWP is not the initial BWP or the default BWP, the timer may be configured to use this timer.
  • the UE receives scheduling information on the activated BWP associated with the BWP inactivity timer, it starts or restarts the timer.
  • the UE switches the current active BWP to the default BWP; if the network does not configure the UE with a default BWP, the UE switches the current active BWP to the initial BWP.
  • the processing operation in this embodiment may be any one of operations such as starting the timer, restarting the timer, stopping the timer, suspending the timer, and extending the timer. Because the pause timer and the extension timer need to determine the pause and extension time, in the embodiment, the terminal may also determine the pause or extension time according to the network configuration, and the corresponding method further includes:
  • the length of the time period during which the pause timer is paused is determined according to the network configuration; the network configuration includes the length of the time period of pause and/or the time when the timer is resumed; in this embodiment ,
  • the trigger time based on the timer operation processing is used as the start time of the pause timer, and the time to resume the timer is determined according to the aforementioned network configuration information. For example, if the network device is configured with a paused time period length, the time to resume the timer is the time at which the timer is paused plus the time period length.
  • the length of the extended period of the timer is determined according to the network configuration.
  • the method provided in the embodiments of this application is based on the wake-up information mechanism and the SCell deactivation timer and the BWP static timer.
  • the wake-up information indicates that the terminal needs to monitor the physical downlink control channel PDCCH, it determines whether to deactivate the SCell based on related information.
  • the timer and/or BWP static timer is used for operation processing, so as to ensure that the SCell that needs to be used will not be deactivated in advance, or that the large bandwidth BWP that needs to be used will not be switched to a small bandwidth BWP in advance, so as to ensure the service transmission requirements of the UE. the goal of.
  • the specific operation processing can select any one of starting, restarting, stopping, suspending, and extending the timer.
  • the first timer is directly processed, which prevents the UE from deactivating the SCell that needs to be used in advance due to the timeout of the relevant timer when the WUS instructs to wake up, or prematurely deactivating the large number that needs to be used.
  • the bandwidth BWP is switched to the small bandwidth BWP, thereby ensuring the normal scheduling of the subsequent network.
  • Manner 2 Perform operation processing on the first timer according to the remaining time length of the first timer
  • operating the first timer according to the remaining time length of the first timer includes:
  • the way to determine the time parameter value can be:
  • Method 1 Receive the time parameter value of the network configuration
  • Manner 2 Receive the time period parameter offset 2 configured by the network, and the time parameter value ( ⁇ T) is the sum of offset 1 and offset 2; wherein, the offset 1 is WUS occasion(s) and the starting time of drx-onDurationTimer The time difference between
  • the time parameter value ( ⁇ T) is the sum of offset 1 and M; wherein, the offset 1 is the difference between WUS occasion(s) and the start time of drx-onDurationTimer For the time difference, the M is the length of time corresponding to the N PDCCH monitoring occasions.
  • the terminal device determines a time parameter value ( ⁇ T) according to the information configured by the network device, and then the terminal device compares the remaining time length of the first timer with the time parameter value when the WUS is received; If the remaining time length of a timer is less than ⁇ T, the UE performs the operation processing on the first timer; otherwise, the UE does not perform operation processing on the first timer.
  • ⁇ T time parameter value
  • the terminal when it receives the wake-up information indicating that it needs to wake up and monitor the PDCCH, it judges the remaining time of the SCell deactivation timer and/or the BWP inactivity timer, and further determines the SCell deactivation timing based on the result of the judgment.
  • the processing operation of the timer and/or the BWP inactivity timer enables the terminal to select the processing operation (start, restart, stop, pause, and extend the timer) that best suits the usage scenario to process the first timer.
  • Manner 3 After receiving the instruction information instructing to perform operation processing on the first timer, perform operation processing on the first timer.
  • a WUS wakes up the UE to listen to the PDCCH, and the network device determines that it is necessary to ensure that the UE uses multiple SCells or uses a large-bandwidth activated BWP (for example, the network device determines that the amount of service data of the terminal is greater than a set threshold) ,
  • the network device sends the instruction information to the terminal, so that the terminal performs operation processing on the first timer according to the instruction.
  • the UE needs to receive the instruction information sent by the network device by default to process the first timer. Then, by default, if the WUS wakes up the UE to monitor the PDCCH for a certain time, the network device determines that the BWP bandwidth or the number of SCells used by the UE does not affect In the subsequent scheduling, the network device does not send the instruction information to the terminal device. If the corresponding terminal device does not receive the instruction information, it does not need to operate the first timer by default.
  • the network device will send instruction information to the terminal device, and then the terminal device will determine whether the first timer needs to be operated based on the different values of the instruction information. deal with. E.g:
  • the specific indication information may be in the form: when the indication information is set to "1", it means that the UE needs to operate the first timer; when the indication information is set to "0", it means that the UE does not need to operate the first timer deal with.
  • the value (1 or 0) of the indication information in this embodiment is a specific example, and it is not shown that the indication information can only be set to these two values. In a specific application scenario, the indication information can be set to any value. As long as it can respectively indicate that the UE needs or does not need to operate the first timer.
  • the indication information may be sent to the UE in the WUS, or may also be sent to the UE through other methods such as DCI, MAC CE, or RRC messages, which is not specifically limited in this embodiment.
  • the network equipment when the wake-up information indicates that the UE is awakened to monitor the PDCCH, the network equipment indicates whether the terminal needs to process the timer according to the service data of the terminal, and can determine whether to process the timer according to actual service requirements. Unnecessarily starting, restarting, stopping, suspending or extending the timer, it can also prevent the UE from deactivating the SCell that needs to be used due to the timer expiration or switching the large bandwidth BWP that needs to be used to the small bandwidth BWP in advance. , So as to ensure the normal scheduling of the subsequent network.
  • the specific implementation of the timer that determines the need for operation processing in the method provided in the embodiment of the present application can be :
  • Scenario 1 The type of WUS is "for specific UE"
  • the UE performs operation processing on the SCell deactivation timer associated with the SCell configured with the SCell deactivation timer;
  • the UE performs operation processing on the SCell deactivation timer associated with the SCell indicated by the SCell related information. If the WUS does not contain SCell related information, the UE does not perform operation processing on the SCell deactivation timer.
  • Scenario 2 The type of WUS is "for a group of UEs" (that is, WUS indicates that multiple terminals need to perform PDCCH monitoring);
  • the WUS indicates the UE (that is, the UE is included in the multiple terminals indicated by the WUS), then the UE deactivates the SCell associated with the SCell configured with the SCell deactivation timer Operation processing;
  • the WUS contains SCell-related information and the WUS indicates that the UE (that is, the UE is included in the multiple terminals indicated by the WUS), it needs to monitor the PDCCH.
  • the SCell deactivation timer associated with the SCell performs operation processing; if the WUS does not contain SCell related information, the UE does not perform operation processing on the SCell deactivation timer.
  • Scenario 1 The type of WUS is "for specific UE"
  • the UE performs operation processing on the BWP static timer associated with the activated BWP on the current serving cell (including the activated SCell).
  • the UE operates the BWP inactivity timer associated with the active BWP on the current PCell/PSCell and the SCell indicated by the SCell related information; if The WUS does not contain SCell related information, and the UE does not perform operation processing on the BWP inactivity timer on the activated SCell.
  • Scenario 2 The type of WUS is "for a group of UEs"
  • the WUS indicates the UE (that is, the UE is included in the multiple terminals indicated by the WUS), and the UE activates the BWP associated with the BWP on the current serving cell (including the activated SCell)
  • the inactivity timer performs operation processing
  • the WUS contains SCell-related information and the WUS indicates that the UE (that is, the UE is included in the multiple terminals indicated by the WUS), it needs to monitor the PDCCH, the UE will monitor the PDCCH
  • the BWP inactivity timer associated with the activated BWP on the SCell and the indicated SCell performs operation processing; if the WUS does not contain SCell related information, the UE does not perform operation processing on the BWP inactivity timer on the activated SCell.
  • an embodiment of the present application further provides a terminal device 500, which includes a processor 501 and a memory 502, where the memory 502 is used to store a program executable by the processor 501,
  • the processor 501 is configured to read the program in the memory 502 and execute the following steps:
  • the network device sends wake-up information
  • the network device When the wake-up information indicates physical downlink control channel PDCCH monitoring, the network device sends instruction information; the instruction information is used to instruct the terminal to perform operation processing on the first timer; wherein, the first timer includes SCell deactivation Timer and/or BWP inactivity timer.
  • the operation processing includes any one of starting, restarting, stopping, suspending, and extending the timer.
  • the processor 501 triggers the operation and processing of the first timer based on the wake-up information
  • the processor 501 is further specifically configured to perform operation processing on the first timer according to the remaining amount of the first timer.
  • the length of time performs operation processing on the first timer; or when receiving instruction information instructing to perform operation processing on the first timer, perform operation processing on the first timer.
  • the processor 501 determines whether to trigger the operation of the first timer based on the remaining time length of the first timer, specifically:
  • the processor 501 is further specifically configured to perform operation processing on the first timer if the remaining time length of the first timer is less than or equal to the time parameter value configured by the network.
  • the processor 501 is further configured to receive a time parameter value configured by the network;
  • the time parameter value is the sum of offset 1 and offset 2; wherein, the offset 1 is the time difference between WUS occasion(s) and the start time of drx-onDurationTimer ;or
  • the time parameter value is the sum of offset 1 and M; wherein, the offset 1 is the time difference between the WUS occasion(s) and the start time of drx-onDurationTimer, and M is the length of time corresponding to N PDCCH monitoring occasions.
  • the processor 501 if the processor 501 operates the first processor based on the instruction information sent by the network device, the processor 501 is also configured to obtain the instruction information from WUS; or The indication information is obtained from the downlink control information DCI, the MAC control element MAC CE, and the radio resource control RRC message.
  • the length of the pause timer period is determined according to the network configuration; the network configuration includes the length of the pause period and/or the time when the timer is resumed ;
  • the length of the extended period of the timer is determined according to the network configuration.
  • specific information can also be included in the wake-up information (which can be WUS).
  • the specific implementation can be Yes:
  • the processor 501 is specifically configured to, when the wake-up information includes SCell information, perform operation processing on the SCell deactivation timer associated with the SCell indicated in the SCell information; and/or, perform operation processing on the current PCell/PSCell And the BWP static timer associated with the activated BWP on the SCell indicated in the SCell information performs operation processing.
  • the multiple terminals include the terminal device.
  • an embodiment of the present application further provides a network device 600, which includes a processor 601 and a memory 602, where the memory 602 is used to store a program executable by the processor 601, The processor 601 is configured to read the program in the memory 602 and execute the following steps:
  • the wake-up information indicates physical downlink control channel PDCCH monitoring
  • indication information is sent; the indication information is used to instruct the terminal to operate the timer; wherein, the timer includes an SCell deactivation timer and/or BWP Inactivity timer.
  • the processor 601 is specifically configured to send the indication information through the wake-up information; or send the indication information through downlink control information DCI, MAC control element MAC CE, and radio resource control RRC messages .
  • the processor 601 is specifically configured to send the instruction information to the terminal if the amount of service data of the terminal is greater than a set threshold.
  • an embodiment of the present application also provides a timer control device, including:
  • the receiving unit is configured to receive wake-up information, where the wake-up information instructs the terminal to monitor the physical downlink control channel PDCCH;
  • the processing unit is configured to perform operation processing on the first timer in response to the wake-up information; wherein, the first timer includes an SCell deactivation timer or a partial bandwidth BWP inactivity timer.
  • the operation processing includes any one of starting, restarting, stopping, suspending, and extending the timer.
  • the processing unit is specifically configured to perform operation processing on the first timer according to the remaining time length of the first timer; or perform operation processing on the first timer upon receiving an instruction
  • the operation processing instruction information is to perform operation processing on the first timer.
  • the processing unit is further configured to perform operation processing on the first timer if the remaining time length of the first timer is less than or equal to a time parameter value configured by the network.
  • the receiving unit is further configured to receive a time parameter value configured by the network;
  • the time parameter value is the sum of offset 1 and offset 2; wherein, the offset 1 is the time difference between WUS occasion(s) and the start time of drx-onDurationTimer ;or
  • the time parameter value is the sum of offset 1 and M; wherein, the offset 1 is the time difference between the WUS occasion(s) and the start time of drx-onDurationTimer, and M is the length of time corresponding to N PDCCH monitoring occasions.
  • the processing unit is further configured to obtain the indication information from WUS; or obtain the indication information from received downlink control information DCI, MAC control element MAC CE, and radio resource control RRC message Instructions.
  • the processing unit is further configured to: when the operation processing is a pause timer, the length of the time period during which the pause timer is paused is determined according to the network configuration; the network configuration includes the pause time period The length and/or the time at which the timer is restored; when the operation processing is to extend the timer, the length of the extended period of the timer is determined according to the network configuration.
  • the processing unit is specifically configured to perform operation processing on the SCell deactivation timer associated with the SCell indicated in the SCell information when the wake-up information includes SCell information; and/ Or, perform operation processing on the BWP static timer associated with the active BWP on the current PCell/PSCell and the SCell indicated in the SCell information.
  • the multiple terminals include terminals that receive the wake-up information.
  • an embodiment of the present application also provides another timer control device, including:
  • the sending unit is used to send wake-up information; when the wake-up information indicates physical downlink control channel PDCCH monitoring, send indication information; the indication information is used to instruct the terminal to perform operation processing on the timer; wherein, the timer includes SCell deactivation timer and/or BWP inactivity timer;
  • the storage unit is used to store the wake-up information and the indication information.
  • the sending unit is specifically configured to send the indication information through the wake-up information; or send the indication information through downlink control information DCI, MAC control element MAC CE, and radio resource control RRC message .
  • the sending unit is further configured to send the indication information to the terminal if the amount of service data of the terminal is greater than a set threshold.
  • an embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the timer control as described in any one of the embodiments in FIG. 3 is realized. method.
  • the embodiment of the present application also provides a communication device that implements the method in the foregoing embodiment.
  • the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 of the embodiment of the present application shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 710 and a processing unit 720.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 710 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 710 can be regarded as the sending unit, that is, the transceiving unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 710 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 720 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 710 is used to perform the receiving operation on the terminal device side in step 302 in FIG. 3, and/or the transceiving unit 710 is also used to perform other transceiving operations on the terminal device side in the embodiment of the present application.
  • step. The processing unit 720 is configured to execute step 302 in FIG. 3, and/or the processing unit 720 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • the device 800 includes one or more radio frequency units, such as a remote radio unit (RRU) 810 and one or more basebands.
  • a unit (baseband unit, BBU) also referred to as a digital unit, DU) 820.
  • BBU baseband unit
  • the RRU 810 may be called a transceiver module.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 811 and a radio frequency unit 812.
  • the RRU 810 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU820 part is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 810 and the BBU 820 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 820 is the control center of the base station, and may also be called a processing module, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 820 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) with a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 820 further includes a memory 821 and a processor 822.
  • the memory 821 is used to store necessary instructions and data.
  • the processor 822 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation process of the network device in FIG. 3 in the foregoing method embodiment.
  • the memory 821 and the processor 822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种定时器控制的方法和装置,方法包括:发送唤醒信息(301);响应于唤醒信息,对第一定时器进行操作处理(302)。其中,唤醒信息指示终端监听物理下行控制信道PDCCH,第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。解决了现有技术中的SCell去激活定时器和/或BWP静止定时器的控制方式限制传输速率以及增大业务传输时延的技术问题。

Description

一种定时器控制的方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种定时器控制的方法和装置。
背景技术
在现有技术中,终端的唤醒信令/信号(Wake Up Signaling/Signal,WUS)相关的操作和辅小区(Secondary Cell,SCell)去激活定时器(sCellDeactivationTimer)及部分带宽(Bandwidth Part,BWP)静止定时器(bwp-InactivityTimer)的操作是相互独立的,即SCell去激活定时器和BWP静止定时器不会受到WUS的影响,不管终端是否监听WUS,或者不管终端根据WUS的指示后续是需要唤醒还是保持睡眠,SCell去激活定时器和BWP静止定时器都是按照原有的规则执行启动、重启、停止等操作,与WUS无关。
如图1所示,在现有技术中,WUS相关的操作和SCell去激活定时器及BWP静止定时器是相互独立的,从而可能会导致当WUS指示终端后续需要唤醒监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)时,在终端后续唤醒之前或者在终端唤醒后但网络还未调度终端之前,SCell去激活定时器和/或BWP静止定时器就超时了,即网络还来不及调度终端,终端就会因SCell去激活定时器超时而将激活的SCell进行去激活,或者因BWP静止定时器超时而将当前大带宽的激活BWP切换为小带宽的初始/默认BWP,影响网络后续对终端的调度,具体情景例如:
对于SCell去激活定时器超时的情况,终端可用的激活的SCell个数减少了,后续的数据传输速率就会受到限制,当网络认为不能满足终端的业务传输需求时,网络则需要重新激活SCell,从而使得业务传输的时延增大,影响终端的业务传输。
对于BWP静止定时器超时的情况,终端使用的BWP带宽变小了,后续的数据传输速率就会受到限制,当网络认为不能满足终端的业务传输需求时,网络就需要重新将终端当前的BWP切换为另一个大带宽的BWP,从而导致业务传输的复杂度增加。
通过上述现有技术方案可知,现有的SCell去激活定时器和/或BWP静止定时器控制方式,可能在一些情况下会将需要使用的SCell提前去激活,或者将原本符合业务传输需求的大带宽BWP提前切换为了小带宽BWP,从而对网络的调度带来不利影响,并限制传输速率,增大业务传输时延。
发明内容
本申请实施例提供一种定时器控制的方法和装置,用以解决现有技术中的SCell去激活定时器和/或BWP静止定时器控制方式限制传输速率以及增大业务传输时延的技术问题。
第一方面,本申请实施例提供一种定时器控制方法,包括:
接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
本申请实施例所提供的方法,基于唤醒信息机制和SCell去激活定时器及BWP静止定时器,在唤醒信息指示终端需要监听物理下行控制信道PDCCH时,则基于相关的信息确定是否对SCell去激活定时器和/或BWP静止定时器进行操作处理,从而保证需要使用的 SCell不会被提前去激活,或者需要使用的大带宽BWP不会被提前切换为小带宽BWP,达到保证UE的业务传输需求的目的。
结合第一方面,在第一方面的一种可能的实现方式中,可能出现的操作处理包括启动、重启、停止、暂停、延长所述定时器等操作中的任意一种。
在本申请实施例中,终端接收到唤醒信息后,可以触发终端对第一处理器进行操作处理的条件包括多种,其中可以是:
方式一,终端接收到唤醒信息后,如果所述唤醒信息指示所述终端监听物理下行控制信道PDCCH;则直接触发终端对第一定时器进行操作处理;
通过该方式,接收到唤醒信息则直接对第一定时器进行操作处理,避免了在WUS指示唤醒时UE却因相关定时器超时而提前将需要使用的SCell进行去激活或者提前将需要使用的大带宽BWP切换为小带宽BWP,从而保证了后续网络的正常调度。
方式二,根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;
该方式中,在终端接收到唤醒信息指示需要唤醒监听PDCCH时,判断SCell去激活定时器和/或BWP静止定时器的剩余时间长度的情况,并通过判断的结果进一步地决定对SCell去激活定时器和/或BWP静止定时器的处理操作,使得终端能够选择最符合使用场景的处理操作(启动、重启、停止、暂停、延长定时器)对第一定时器进行处理。
方式三,接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
该方式中,终端在接收唤醒信息的同时,还接收额外的指示信息,终端能够通过额外的指示信息判断是否需要对SCell去激活定时器和/或BWP静止定时器进行处理。使得网络侧能够根据特定的参数或者是场景有选择性的指示终端对第一定时器进行处理。
结合第一方面,在第一方面的一种可能的实现方式中,在上述方式二中根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理包括:
若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:
接收网络配置的时间参数值;或者
接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
结合第一方面,在第一方面的一种可能的实现方式中,结合上述方式三,该方法还包括:
从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
结合第一方面,在第一方面的一种可能的实现方式中,结合上述各种方式,如果处理操作为暂停定时器或延长定时器,则还需要确定暂停或延长的时间,对应的该方法还包括:
所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定; 所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;
所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
结合第一方面,在第一方面的一种可能的实现方式中,结合上述各种方式,在定时器进行处理操作时候,还可以有选择性的对特定的某一个或者某一些SCell去激活定时器和/或BWP静止定时器进行操作处理,则所述对第一定时器进行操作处理包括:
当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上的以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
结合第一方面,在第一方面的一种可能的实现方式中,唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括接收到所述唤醒信息的终端。
第二方面,提供一种定时器控制方法,包括:
网络设备发送唤醒信息;
当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,网络设备发送指示信息;所述指示信息用于指示终端对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器和/或BWP静止定时器。
结合第二方面,在第二方面的一种可能的实现方式中,网络设备发送指示信息包括:
通过所述唤醒信息发送所述指示信息;或者
通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
结合第二方面,在第二方面的一种可能的实现方式中,该方法还包括:
若所述终端的业务数据量大于设定阈值,则发送所述指示信息到所述终端。
本申请实施例中,在唤醒信息指示唤醒监听PDCCH时,同时网络设备根据终端的业务数据情况来指示终端是否需要对定时器进行处理,能够结合实际的业务需求来决定是否处理定时器,避免不必要的启动、重启、停止、暂停或延长定时器,同时也能够避免UE因定时器超时而提前将需要使用的SCell进行去激活或者提前将需要使用的大带宽BWP切换为小带宽BWP的同时,从而保证了后续网络的正常调度。
第三方面,提供一种终端设备,该设备包括处理器和存储器,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:
接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
结合第三方面,在第三方面的一种可能的实现方式中,所述操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
结合第三方面,在第三方面的一种可能的实现方式中,所述处理器具体用于根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
结合第三方面,在第三方面的一种可能的实现方式中,所述处理器具体用于若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
结合第三方面,在第三方面的一种可能的实现方式中,所述处理器还用于接收网络配 置的时间参数值;或者
接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
结合第三方面,在第三方面的一种可能的实现方式中,所述处理器还用于从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
结合第三方面,在第三方面的一种可能的实现方式中,所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
结合第三方面,在第三方面的一种可能的实现方式中,所述处理器具体用于当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上的以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
结合第三方面,在第三方面的一种可能的实现方式中,唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括所述终端设备。
第四方面,提供一种网络设备,该设备包括处理器和存储器,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:
发送唤醒信息;
当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,发送指示信息;所述指示信息用于指示终端对定时器进行操作处理;其中,所述定时器包括SCell去激活定时器和/或BWP静止定时器。
结合第四方面,在第四方面的一种可能的实现方式中,所述处理器具体用于通过所述唤醒信息发送所述指示信息;或者通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
结合第四方面,在第四方面的一种可能的实现方式中,所述处理器具体用于若所述终端的业务数据量大于设定阈值,则发送所述指示信息到所述终端。
第五方面,提供一种定时器控制的装置,包括:
接收单元,用于接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;处理单元,用于响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
结合第五方面,在第五方面的一种可能的实现方式中,所述操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
结合第五方面,在第五方面的一种可能的实现方式中,所述处理单元具体用于根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
结合第五方面,在第五方面的一种可能的实现方式中,所述处理单元还用于若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
结合第五方面,在第五方面的一种可能的实现方式中,所述接收单元还用于接收网络配置的时间参数值;或者
接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
结合第五方面,在第五方面的一种可能的实现方式中,所述处理单元还用于从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
结合第五方面,在第五方面的一种可能的实现方式中,所述处理单元还用于所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
结合第五方面,在第五方面的一种可能的实现方式中,所述处理单元具体用于当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
结合第五方面,在第五方面的一种可能的实现方式中,所述唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括接收唤醒信息的终端。
第六方面,提供一种定时器控制的装置,包括:
发送单元,用于发送唤醒信息;当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,网络设备发送指示信息;所述指示信息用于指示终端对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器和/或BWP静止定时器;
存储单元,用于存储所述唤醒信息和所述指示信息。
结合第六方面,在第六方面的一种可能的实现方式中,所述发送单元具体用于通过所述唤醒信息发送所述指示信息;或者通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
结合第六方面,在第六方面的一种可能的实现方式中,所述发送单元还用于若所述终端的业务数据量大于设定阈值,则发送所述指示信息到所述终端。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现第一方面、第二方面以及在第一方面和第二方面的任一种可能的实现方式中所述的定时器控制方法。
附图说明
图1为现有技术中WUS相关的操作和SCell去激活定时器及BWP静止定时器的时序关 系;
图2为本发明实施例可适用场景的架构示意图;
图3为本发明实施例提供的一种定时器控制方法的方法流程图;
图4现有技术中WUS进行唤醒的实现操作示意图;
图5为本发明实施例提供的一种终端设备的结构示意图;
图6为本发明实施例提供的一种网络设备的结构示意图;
图7为本发明实施例提供的一种简化的终端设备结构示意图;
图8为本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
基于现有技术问题分析可以确定,现有技术中SCell去激活定时器和BWP静止定时器的控制,没有将唤醒信息与SCell去激活定时器及BWP静止定时器进行结合,但是在SCell去激活定时器及BWP静止定时器的使用过程中,在唤醒信息指示终端后续需要唤醒监听PDCCH时,没有及时地对SCell去激活定时器和/或BWP静止定时器进行相关处理,则会将需要使用的SCell提前去激活,或者将原本符合业务传输需求的大带宽BWP提前切换为了小带宽BWP,从而对网络的调度带来不利影响,并限制传输速率,增大业务传输时延。
根据上述现有技术问题分析,本申请实施例提供的一种定时器控制方法,基于现有的唤醒信息机制和SCell去激活定时器及BWP静止定时器,设计了一种将唤醒信息与SCell去激活定时器及BWP静止定时器结合考虑的方案,在唤醒信息指示终端监听PDCCH;终端则确定是否处理SCell去激活定时器和/或BWP静止定时器,以保证需要使用的SCell不会被提前去激活,或者需要使用的大带宽BWP不会被提前切换为小带宽BWP,达到保证UE的业务传输需求的目的。
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本发明实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或/GERAN架构中,MME的功能由服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本发明实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统或5G之后的通信系统等,本发明实施例对此不作限定。
实现本发明实施例方法的装置可以是一种通信装置,该通信装置具体可以是终端设备(UE)也可以是电路。该通信装置为终端设备(或称为终端)时,该终端设备可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol, SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等,本发明实施例对此不作限定。
本发明实施例还涉及网络设备。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络设备或未来演进的PLMN网络中的网络设备等。
本发明实施例中涉及的网络设备也可称为无线接入网(Radio Access Network,RAN)设备。RAN设备与终端设备连接,用于接收终端设备的数据并发送给核心网设备。RAN设备在不同通信系统中对应不同的设备,例如,在2G系统中对应基站与基站控制器,在3G系统中对应基站与无线网络控制器(Radio Network Controller,RNC),在4G系统中对应演进型基站(Evolutional Node B,eNB),在5G系统中对应5G系统,如新无线接入系统(New Radio Access Technology,NR)中的接入网设备(例如gNB,CU,DU)。
结合当下的网络系统构架,本申请实施例所提供的方法可以适用于图2所示的系统架构。如图2示出的是5G NR系统中几个主要的系统组成装置以及各组成装置之间的交互情况,在5G NR系统的场景下,终端设备(可以是UE)的服务小区的基站gNB/ng-eNB负责为UE提供5G无线接入网NR的用户平面与控制平面协议功能。
本申请实施例所针对现有技术问题是,现有技术中的SCell去激活定时器和/或BWP静止定时器控制方式,会将需要使用的SCell提前去激活,或者将原本符合业务传输需求的大带宽BWP提前切换为了小带宽BWP,从而对网络的调度带来不利影响,并限制传输速率,增大业务传输时延。
鉴于上述本申请实施例方法所适用的场景,以下对本申请实施例所提供的一种定时器控制方法进行详细的说明,为了减少重复描述的出现,以下使用终端设备和网络设备交互的方式对本申请实施例所提供的一种定时器控制方法进行说明(该实施例涵盖了终端设备侧方法与网络设备侧方法),该方法可以包括步骤(如图3所示):
步骤301,网络设备发送唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
现有技术中为了达到通信装置(本申请实施例中可以是UE)节能目的引入节能信号(power saving signal),本实施例中所涉及的唤醒信息可以是节能信号中的一种,例如是唤醒信号(Wake Up Signaling/Signal,WUS)。WUS的信号类型可以有多种,包括基于PDCCH的下行控制信息(Downlink Control Information,DCI),物理层信号,MAC控制元(MAC Control Element,MAC CE),无线资源控制(Radio Resource Control,RRC)信令等。
WUS的作用是唤醒UE在下一个DRX on duration期间或后续N个DRX on duration期间进行PDCCH监听。唤醒UE进行PDCH监听的实现操作如图4所示:
UE需要在drx-onDurationTimer启动前的已知offset处的WUS时机(WUS occasion(s))内监听WUS。当WUS指示UE唤醒监听PDCCH时,UE在相应的下一个DRX on duration或后续N个DRX on duration期间时机启动drx-onDurationTimer;否则,UE不启动drx-onDurationTimer。
因为WUS是唤醒UE在下一个DRX on duration或后续N个DRX on duration期间进行PDCCH监听,所以针对具体的WUS与UE的对应关系,即一个WUS可以指示的UE情况,WUS的类型可以分为:a1,针对特定UE(UE-specific);a2,针对一组UE(group-specific);
另外,对于载波聚合(Carrier Aggregation,CA)/多无线双连接(Multi-Radio Dual Connectivity,MR-DC)的场景,即UE被配置了若干个SCell的这种场景,UE可以对服务小区所包括的所有或者一部分激活的SCell进行监听PDCCH;具体情况可以分为:b1,WUS中不包含SCell相关的信息;b2,WUS中包含SCell相关的信息。具体实现可以是:
a1、对于“针对特定UE”的这种类型,一个WUS只针对一个UE,即网络给不同的UE发送不同的WUS,不同UE之间独立。
a2、对于“针对一组UE”的这种类型,一个WUS针对一组UE(包括多个UE),即网络可配置让一组UE监听相同的WUS occasion(s),这组UE会接收到相同的WUS,各个UE需要根据WUS中的具体指示来判断在后续DRX周期内是否唤醒监听PDCCH。
b1,WUS中不包含SCell相关的信息,即WUS不会特别地指示UE在下一个DRX on duration或后续N个DRX on duration期间需要在哪个或哪些SCell上唤醒监听PDCCH。当UE接收到WUS指示唤醒监听PDCCH时,UE会在当前的服务小区上(包括激活的SCell)唤醒监听PDCCH;
b2,WUS中包含SCell相关的信息,即网络可以在WUS中指示UE在下一个DRX on duration或后续N个DRX on duration期间具体要在哪个或哪些SCell上唤醒监听PDCCH,反之,如果WUS中没有包含SCell相关的信息,则UE认为在下一个DRX on duration或后续N个DRX on duration期间不需要在SCell上唤醒监听PDCCH。一个简单的示例:UE配置有若干个SCell,每个SCell相应地有一个标识SCell index,网络和UE可通过SCell index区分不同的SCell,那么当WUS中包含了一个或多个SCell index时,UE后续就需要在这些SCell index相应的SCell上唤醒监听PDCCH,否则当WUS中没有包含SCell index时,UE后续就不需要在SCell上唤醒监听PDCCH。
针对上述a1、a2、b1和b2所述的不同类型WUS以及不同的场景,WUS可能有两种唤醒机制:
网络设备在需要唤醒某个UE监听PDCCH时,在该UE相关的WUS occasion(s)中发送WUS,当UE接收到WUS,则UE在后续非连续接收(Discontinuous Reception,DRX)周期内唤醒监听PDCCH;否则当网络不需要唤醒该UE监听PDCCH时,网络不会发送WUS,当UE没有接收到WUS,则UE在后续DRX周期内不会唤醒监听PDCCH。
网络在UE相关的每个WUS occasion(s)中都会发送WUS,当UE接收到WUS,UE需要根据WUS中的具体指示来判断在后续DRX周期内是否唤醒监听PDCCH。
步骤302,终端接收唤醒信息,响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或BWP静止定时器。
SCell去激活定时器(sCellDeactivationTimer)是用于去激活SCell的定时器。SCell去激活定时器是针对每个SCell独立配置的,即不同的SCell有独立的SCell去激活定时器。如果某个SCell被配置了SCell去激活定时器,则在激活该SCell的时候,启动或重启相关的SCell去激活定时器。当UE在该SCell上传输或接收到数据时,重启该定时器。当该定时器超时,去激活该定时器关联的SCell。
BWP静止定时器(bwp-InactivityTimer)用于切换UE的BWP。网络可配置BWP静 止定时器与UE的除初始/默认BWP之外的激活下行BWP相关联,即当UE的激活BWP不是初始BWP或默认BWP时,才可能配置使用该定时器。当UE在BWP静止定时器相关联的激活BWP上接收到调度信息时,启动或重启该定时器。当该定时器超时,如果网络给UE配置了默认BWP,则UE将当前的激活BWP切换为默认BWP,如果网络没有给UE配置默认BWP,则UE将当前的激活BWP切换为初始BWP。
该实施例中的处理操作可以是:启动定时器、重启定时器、停止定时器、暂停定时器、延长定时器等操作中的任意一种。因为暂停定时器和延长定时器需要确定暂停和延长的时间,所以实施例中,终端还可以根据网络配置确定暂停或延长的时间,对应的该方法还包括:
1、当操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;在该实施例中,基于定时器操作处理的触发时刻作为暂停定时器的起始时刻,恢复定时器的时刻则根据前述的网络配置信息来确定。例如,网络设备配置的是暂停的时间段长度,则恢复定时器的时刻为触发定时器暂停的时刻加上时间段长度。
2、所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
本申请实施例所提供的方法,基于唤醒信息机制和SCell去激活定时器及BWP静止定时器,在唤醒信息指示终端需要监听物理下行控制信道PDCCH时,则基于相关的信息确定是否对SCell去激活定时器和/或BWP静止定时器进行操作处理,从而保证需要使用的SCell不会被提前去激活,或者需要使用的大带宽BWP不会被提前切换为小带宽BWP,达到保证UE的业务传输需求的目的。
在本申请实施例中,终端接收到唤醒信息后,可以触发终端判断是否对第一定时器进行操作处理的条件包括多种,其中可以包括:
方式一,终端接收到唤醒信息后,如果所述唤醒信息指示终端监听物理下行控制信道PDCCH;则直接触发终端对第一定时器进行操作处理;
具体操作处理可以选择启动、重启、停止、暂停、延长所述定时器中的任意一种。
通过该方式,接收到唤醒信息则直接对第一定时器进行操作处理,避免了在WUS指示唤醒时UE却因相关定时器超时而提前将需要使用的SCell进行去激活或者提前将需要使用的大带宽BWP切换为小带宽BWP,从而保证了后续网络的正常调度。
方式二,根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;
在该实施例中,根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理包括:
若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。其中时间参数值的确定方式可以是:
方式一,接收网络配置的时间参数值;
方式二,接收网络配置的时间段参数offset 2,所述时间参数值(ΔT)为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;
方式三,接收网络配置的时间段系数N,所述时间参数值(ΔT)为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差 值,所述M为N个PDCCH监听时机对应的时间长度。
该实施例中,终端设备根据网络设备配置的信息确定一个时间参数值(ΔT),然后终端设备则将接收到WUS时,第一定时器的剩余时间长度与该时间参数值进行比较;如果第一定时器的剩余时间长度<ΔT,则UE对第一定时器记性操作处理;否则UE不对第一定时器进行操作处理。
该方式中,在终端接收到唤醒信息指示需要唤醒监听PDCCH时,判断SCell去激活定时器和/或BWP静止定时器的剩余时间长度的情况,并通过判断的结果进一步地决定对SCell去激活定时器和/或BWP静止定时器的处理操作,使得终端能够选择最符合使用场景的处理操作(启动、重启、停止、暂停、延长定时器)对第一定时器进行处理。
方式三,接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
在该实施例中,如果某次WUS唤醒UE监听PDCCH,且网络设备确定需要保证UE使用多个SCell或使用大带宽的激活BWP时(例如,网络设备确定终端的业务数据量大于设定阈值),网络设备则发送所述指示信息到终端,从而使得终端根据该指示对第一定时器进行操作处理。
当然,在UE默认需要接收到网络设备发送的指示信息才对第一定时器进行处理,那么则默认如果某次WUS唤醒UE监听PDCCH时,网络设备确定UE使用的BWP带宽或SCell个数不影响后续调度,则网络设备不发送指示信息给终端设备,对应的终端设备没有接收到指示信息则默认不需要对第一定时器进行操作处理。
另外一种方式是,不管需要还是不需要对第一定时器进行操作处理,网络设备都会发送指示信息给终端设备,然后终端设备通过指示信息的不同值来确定是否需要对第一定时器进行操作处理。例如:
例如具体指示信息的形式可以是:指示信息设置为“1”时,表示UE需要对第一定时器进行操作处理;指示信息设置为“0”时,表示UE不需要对第一定时器进行操作处理。当然该实施例中指示信息的值(1或0)是一个具体的举例,并不显示指示信息只能设置为这两个值,在具体的应用场景中该指示信息可以设置为任一值,只要能够分别指示UE需要或不需要对第一定时器进行操作处理即可。
该指示信息可以是在WUS中发送给UE,或者也可以通过别的DCI、MAC CE或RRC消息等方式发送给UE,该实施例并不做具体的限定。
本申请实施例中,在唤醒信息指示唤醒UE监听PDCCH时,同时网络设备根据终端的业务数据情况来指示终端是否需要对定时器进行处理,能够结合实际的业务需求来决定是否处理定时器,避免不必要的启动、重启、停止、暂停或延长定时器,同时也能够避免UE因定时器超时而提前将需要使用的SCell进行去激活或者提前将需要使用的大带宽BWP切换为小带宽BWP的同时,从而保证了后续网络的正常调度。
针对上述实施例所提供的所有实现方式,如果唤醒信息为WUS,基于步骤301中所描述的WUS的特性,本申请实施例所提供的方法中确定需要进行操作处理的定时器的具体实现可以是:
C1,对于SCell去激活定时器;
场景1:WUS的类型为“针对特定UE”
对于上述步骤301中b1所述的情况:UE对配置有SCell去激活定时器的SCell相关 联的SCell去激活定时器进行操作处理;
对于上述步骤301中b2所述的情况:如果WUS中包含SCell相关信息,UE对SCell相关信息指示的SCell相关联的SCell去激活定时器进行操作处理。如果WUS中不包含SCell相关信息,UE则不对SCell去激活定时器进行操作处理。
场景2:WUS的类型为“针对一组UE”(即WUS指示多个终端需要进行PDCCH监听);
对于上述步骤301中b1所述的情况,该WUS指示了该UE(即WUS指示的多个终端中包括该UE),则UE对配置有SCell去激活定时器的SCell相关联的SCell去激活定时器进行操作处理;
对于上述步骤301中b2所述的情况:如果WUS中包含SCell相关信息,且该WUS指示了该UE(即WUS指示的多个终端中包括该UE)需要监听PDCCH,UE对SCell相关信息指示的SCell相关联的SCell去激活定时器进行操作处理;如果WUS中不包含SCell相关信息,UE则不对SCell去激活定时器进行操作处理。
C2,对于BWP静止定时器:
场景1:WUS的类型为“针对特定UE”
对于上述步骤301中b1所述的情况:UE对当前服务小区上(包括激活的SCell上)的激活BWP相关联的BWP静止定时器进行操作处理。
对于上述步骤301中b2所述的情况:如果WUS中包含SCell相关信息,UE对当前PCell/PSCell上的以及SCell相关信息指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理;如果WUS中不包含SCell相关信息,UE则不对激活的SCell上的BWP静止定时器进行操作处理。
场景2:WUS的类型为“针对一组UE”
对于上述步骤301中b1所述的情况:该WUS指示了该UE(即WUS指示的多个终端中包括该UE),UE对当前服务小区上(包括激活的SCell上)激活BWP相关联的BWP静止定时器进行操作处理;
对于上述步骤301中b2所述的情况:如果WUS中包含SCell相关信息,且该WUS指示了该UE(即WUS指示的多个终端中包括该UE)需要监听PDCCH,UE对当前PCell/PSCell上的以及被指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理;如果WUS中不包含SCell相关信息,UE则不对激活的SCell上的BWP静止定时器进行操作处理。
上述对各种场景下SCell去激活定时器和/或BWP静止定时器的操作处理,是对上述各实施例中对第一定时器进行操作处理的示例性说明,并不限定本申请实施例提供的方式只能通过上述方案实现。
如图5所示,基于同一发明构思,本申请实施例还提供一种终端设备500,该设备包括处理器501和存储器502,所述存储器502用于存储所述处理器501可执行的程序,所述处理器501用于读取所述存储器502中的程序并执行如下步骤:
网络设备发送唤醒信息;
当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,网络设备发送指示信息;所述指示信息用于指示终端对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器和/或BWP静止定时器。
在一种可能的实现方式中,该操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
在一种可能的实现方式中,因为处理器501基于唤醒信息触发对第一定时器进行操作处理的方式包括多种,则所述处理器501还具体用于根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
在一种可能的实现方式中,如果处理器501基于第一定时器的剩余时间长度来确定是否触发对第一定时器进行操作处理,则具体的:
该处理器501还具体用于若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
基于第一定时器的剩余时间长度的方式,所述处理器501还用于接收网络配置的时间参数值;或者
接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
在一种可能的实现方式中,如果处理器501基于网络设备发送的指示信息对第一处理器进行操作处理,则该处理器501还用于从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
基于上述所有可能的方式,如果所述操作处理为暂停定时器,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;
所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
在一种可能的实现方式中,如果需要控制终端对特定的SCell去激活定时器和/或BWP静止定时器进行操作处理,还可以在唤醒信息(可以是WUS)中包含特定信息,具体实现可以是:
所述处理器501具体用于当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
在一种可能的方式中,唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括所述终端设备。
如图6所示,基于同一发明构思,本申请实施例还提供一种网络设备600,该设备包括处理器601和存储器602,所述存储器602用于存储所述处理器601可执行的程序,所述处理器601用于读取所述存储器602中的程序并执行如下步骤:
发送唤醒信息;
当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,发送指示信息;所述指 示信息用于指示终端对定时器进行操作处理;其中,所述定时器包括SCell去激活定时器和/或BWP静止定时器。
在一种可能的方式中,所述处理器601具体用于通过所述唤醒信息发送所述指示信息;或者通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
在一种可能的方式中,所述处理器601具体用于若所述终端的业务数据量大于设定阈值,则发送所述指示信息到终端。
基于同一发明构思,本申请实施例还提供一种定时器控制的装置,包括:
接收单元,用于接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
处理单元,用于响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
在一种可选的实施方式中,所述操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
可选地,作为一个实施例,所述处理单元具体用于根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
可选地,作为一个实施例,所述处理单元还用于若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
可选地,作为一个实施例,所述接收单元还用于接收网络配置的时间参数值;或者
接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
可选地,作为一个实施例,所述处理单元还用于从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
可选地,作为一个实施例,所述处理单元还用于所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
可选地,作为一个实施例,所述处理单元具体用于当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
可选地,作为一个实施例,所述唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括接收唤醒信息的终端。
基于同一发明构思,本申请实施例还提供另外一种定时器控制的装置,包括:
发送单元,用于发送唤醒信息;当所述唤醒信息指示进行物理下行控制信道PDCCH 监听时,发送指示信息;所述指示信息用于指示终端对定时器进行操作处理;其中,所述定时器包括SCell去激活定时器和/或BWP静止定时器;
存储单元,用于存储所述唤醒信息和所述指示信息。
可选地,作为一个实施例,所述发送单元具体用于通过所述唤醒信息发送所述指示信息;或者通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
可选地,作为一个实施例,所述发送单元还用于若所述终端的业务数据量大于设定阈值,则发送所述指示信息到所述终端。
基于同一发明构思,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如图3中任一项实施方式所述的定时器控制方法。
本申请实施例还提供一种实现上述实施例方法的通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,本申请实施例图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括收发单元710和处理单元720。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元710用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元720用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元710用于执行图3中的步骤302中终端设备侧的接收操作,和/或收发单元710还用于执行本申请实施例中终端设备侧的其他收发步骤。处理 单元720,用于执行图3中的步骤302,和/或处理单元720还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的装置为网络设备时,该网络设备可以如图8所示,装置800包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)810和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)820。所述RRU 810可以称为收发模块,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线811和射频单元812。所述RRU 810部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU820部分主要用于进行基带处理,对基站进行控制等。所述RRU 810与BBU 820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 820为基站的控制中心,也可以称为处理模块,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 820还包括存储器821和处理器822。所述存储器821用以存储必要的指令和数据。所述处理器822用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中图3关于网络设备的操作流程。所述存储器821和处理器822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在该方案中,终端设备和网络设备实现信息传输的方式与第一方面所提出的各种可能的实现方式一致,此处不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种定时器控制方法,其特征在于,包括:
    接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
    响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
  2. 如权利要求1所述的方法,其特征在于,所述操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
  3. 如权利要求1所述的方法,其特征在于,所述对第一定时器进行操作处理包括:
    根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者
    接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
  4. 如权利要求3所述的方法,其特征在于,根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理包括:
    若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
  5. 如权利要求4所述的方法,其特征在于,该方法还包括:
    接收网络配置的时间参数值;或者
    接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
    接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
  6. 如权利要求3所述的方法,其特征在于,还包括:
    从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
  7. 如权利要求1~6任一所述的方法,其特征在于,包括:
    所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;
    所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
  8. 如权利要求1~6任一所述的方法,其特征在于,所述对第一定时器进行操作处理包括:
    当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上以及被所述SCell信息中指示的SCell上的激活BWP相关联的BWP静止定时器进行操作处理。
  9. 如权利要求1~8任一所述的方法,其特征在于,所述唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括接收唤醒信息的终端。
  10. 一种定时器控制方法,其特征在于,包括:
    网络设备发送唤醒信息;
    当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,网络设备发送指示信息;所述指示信息用于指示终端对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器和/或BWP静止定时器。
  11. 如权利要求10所述的方法,其特征在于,网络设备发送指示信息包括:
    通过所述唤醒信息发送所述指示信息;或者
    通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    若所述终端的业务数据量大于设定阈值,则发送所述指示信息到所述终端。
  13. 一种终端设备,其特征在于,该设备包括处理器和存储器,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:
    接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;
    响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
  14. 如权利要求13所述的终端设备,其特征在于,所述操作处理包括启动、重启、停止、暂停、延长所述定时器中的任意一种。
  15. 如权利要求13所述的终端设备,其特征在于,所述处理器具体用于根据所述第一定时器的剩余时间长度对所述第一定时器进行操作处理;或者接收到指示对所述第一定时器进行操作处理的指示信息,则对所述第一定时器进行操作处理。
  16. 如权利要求15所述的终端设备,其特征在于,所述处理器具体用于若所述第一定时器的剩余时间长度小于或等于网络配置的时间参数值,则对所述第一定时器进行操作处理。
  17. 如权利要求16所述的终端设备,其特征在于,所述处理器还用于接收网络配置的时间参数值;或者
    接收网络配置的时间段参数offset 2,所述时间参数值为offset 1与offset 2的之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值;或者
    接收网络配置的时间段系数N,所述时间参数值为offset 1与M之和;其中,所述offset 1是WUS occasion(s)与drx-onDurationTimer起始时刻之间的时间差值,所述M为N个PDCCH监听时机对应的时间长度。
  18. 如权利要求15所述的终端设备,其特征在于,所述处理器还用于从WUS中得到所述指示信息;或者从接收到的下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息中获得所述指示信息。
  19. 如权利要求13~18任一所述的终端设备,其特征在于,所述操作处理为暂停定时器时,所述暂停定时器暂停的时间段长度根据网络配置确定;所述网络配置包括暂停的时间段长度和/或恢复定时器的时刻;所述操作处理为延长定时器时,所述延长定时器延长的时间段长度根据网络配置确定。
  20. 如权利要求13~18任一所述的终端设备,其特征在于,所述处理器具体用于当所述唤醒信息中包含SCell信息时,对所述SCell信息中指示的SCell相关联的SCell去激活定时器进行操作处理;和/或,对当前PCell/PSCell上以及被所述SCell信息中指示的SCell 上的激活BWP相关联的BWP静止定时器进行操作处理。
  21. 如权利要求13~20任一所述的终端设备,其特征在于,所述唤醒信息指示多个终端需要进行PDCCH监听时,所述多个终端包括所述终端设备。
  22. 一种网络设备,其特征在于,该设备包括处理器和存储器,所述存储器用于存储所述处理器可执行的程序,所述处理器用于读取所述存储器中的程序并执行如下步骤:
    发送唤醒信息;
    当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,发送指示信息;所述指示信息用于指示终端对定时器进行操作处理;其中,所述定时器包括SCell去激活定时器和/或BWP静止定时器。
  23. 如权利要求22所述的网络设备,其特征在于,所述处理器具体用于通过所述唤醒信息发送所述指示信息;或者通过下行控制信息DCI、MAC控制元MAC CE、无线资源控制RRC消息发送所述指示信息。
  24. 如权利要求22所述的网络设备,其特征在于,所述处理器具体用于若所述终端的业务数据量大于设定阈值,则发送所述指示信息到接收所述唤醒信息的终端。
  25. 一种定时器控制的装置,其特征在于,包括:
    接收单元,用于接收唤醒信息,所述唤醒信息指示终端监听物理下行控制信道PDCCH;处理单元,用于响应于所述唤醒信息,对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器或部分带宽BWP静止定时器。
  26. 一种定时器控制的装置,其特征在于,包括:
    发送单元,用于发送唤醒信息;当所述唤醒信息指示进行物理下行控制信道PDCCH监听时,网络设备发送指示信息;所述指示信息用于指示终端对第一定时器进行操作处理;其中,所述第一定时器包括SCell去激活定时器和/或BWP静止定时器;
    存储单元,用于存储所述唤醒信息和所述指示信息。
  27. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1至12中任一项所述的定时器控制方法。
PCT/CN2019/108728 2019-09-27 2019-09-27 一种定时器控制的方法和装置 WO2021056469A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980096047.3A CN113767674B (zh) 2019-09-27 2019-09-27 一种定时器控制的方法和装置
PCT/CN2019/108728 WO2021056469A1 (zh) 2019-09-27 2019-09-27 一种定时器控制的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108728 WO2021056469A1 (zh) 2019-09-27 2019-09-27 一种定时器控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2021056469A1 true WO2021056469A1 (zh) 2021-04-01

Family

ID=75165387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108728 WO2021056469A1 (zh) 2019-09-27 2019-09-27 一种定时器控制的方法和装置

Country Status (2)

Country Link
CN (1) CN113767674B (zh)
WO (1) WO2021056469A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024388A1 (zh) * 2021-08-24 2023-03-02 展讯通信(上海)有限公司 一种信息处理方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018045A1 (en) * 2013-08-08 2015-02-12 Qualcomm Incorporated Drx solution in eimta systems
CN107197508A (zh) * 2017-05-17 2017-09-22 电子科技大学 一种基于csm机制drx的设备休眠方法
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置
CN109547155A (zh) * 2017-09-22 2019-03-29 维沃移动通信有限公司 链路自适应的方法和设备
CN110268755A (zh) * 2019-05-06 2019-09-20 北京小米移动软件有限公司 非激活定时器超时处理方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995293B1 (ko) * 2011-02-21 2019-07-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 시분할 무선통신시스템에서 부차반송파의 활성화 또는 비활성화 방법 및 장치
WO2016114581A1 (en) * 2015-01-13 2016-07-21 Lg Electronics Inc. Method for configuring an activated scell with pucch resource in a carrier aggregation system and a device therefor
US9961718B2 (en) * 2015-03-27 2018-05-01 Qualcomm Incorporated Discontinuous reception in LTE/LTE-A networks including contention-based frequency spectrum
CN108924913A (zh) * 2017-03-31 2018-11-30 电信科学技术研究院 一种信息发送、信道监听处理方法及装置
CN109429258B (zh) * 2017-07-17 2021-10-29 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109511133B (zh) * 2017-09-14 2021-09-07 西安中兴新软件有限责任公司 一种唤醒处理的方法及装置
US10594468B2 (en) * 2017-09-29 2020-03-17 Mediatek Inc. Efficient bandwidth adaptation for a wideband carrier
US10887073B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
CN110022571B (zh) * 2018-01-08 2021-01-22 电信科学技术研究院 一种进行部分带宽维护的方法和设备
US11297674B2 (en) * 2018-02-14 2022-04-05 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
CN109219116B (zh) * 2018-08-09 2022-05-31 华为技术有限公司 一种终端设备的休眠方法及装置
CN116233987A (zh) * 2018-10-17 2023-06-06 北京小米移动软件有限公司 带宽部分切换方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018045A1 (en) * 2013-08-08 2015-02-12 Qualcomm Incorporated Drx solution in eimta systems
CN107197508A (zh) * 2017-05-17 2017-09-22 电子科技大学 一种基于csm机制drx的设备休眠方法
CN109547155A (zh) * 2017-09-22 2019-03-29 维沃移动通信有限公司 链路自适应的方法和设备
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置
CN110268755A (zh) * 2019-05-06 2019-09-20 北京小米移动软件有限公司 非激活定时器超时处理方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024388A1 (zh) * 2021-08-24 2023-03-02 展讯通信(上海)有限公司 一种信息处理方法及通信装置

Also Published As

Publication number Publication date
CN113767674B (zh) 2023-10-20
CN113767674A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
US9961638B2 (en) Wireless device, a radio network node and methods for discontinuous reception in device to device communications
US20240129852A1 (en) Method for monitoring physical downlink control channel and communications apparatus
EP3412086B1 (en) Methods of reliable paging transmission under ue edrx
JP5579253B2 (ja) 通信システムにおける方法及び装置
EP2468050B1 (en) Discontinuous reception for multi-component carrier system
US20220022281A1 (en) Method and apparatus for controlling terminal to receive information, and terminal
CN110881208B (zh) 一种通信方法及设备
JP2016507184A (ja) 接続不連続受信モードでの半固定的スケジューリング
CN114223293A (zh) 针对双连接模式中的ue功率效率的基于流量速率的分支去激活
WO2014049198A1 (en) Power preference indicator timer
US10455506B2 (en) Method and apparatus for discontinuous reception
CN114271021A (zh) 用于确定非连续接收持续定时器的启动状态的方法及设备
US20220053596A1 (en) Discontinuous reception control method, device and storage medium
TW201824902A (zh) 通信方法、終端設備和網絡設備
CN111294899B (zh) 用于drx的不活动定时器控制方法及装置、存储介质、终端、基站
US20210211982A1 (en) Communication method and device
WO2021056469A1 (zh) 一种定时器控制的方法和装置
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
US20230422342A1 (en) Sidelink Discontinuous Reception Configuration Method, Device, and Non-transitory Computer-Readable Storage Medium
KR20190017295A (ko) 단말의 동작 방법, 기지국의 동작 방법 및 연결모드 불연속 수신 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947101

Country of ref document: EP

Kind code of ref document: A1