WO2023024388A1 - 一种信息处理方法及通信装置 - Google Patents

一种信息处理方法及通信装置 Download PDF

Info

Publication number
WO2023024388A1
WO2023024388A1 PCT/CN2021/143409 CN2021143409W WO2023024388A1 WO 2023024388 A1 WO2023024388 A1 WO 2023024388A1 CN 2021143409 W CN2021143409 W CN 2021143409W WO 2023024388 A1 WO2023024388 A1 WO 2023024388A1
Authority
WO
WIPO (PCT)
Prior art keywords
time point
time
time interval
pdcch
module
Prior art date
Application number
PCT/CN2021/143409
Other languages
English (en)
French (fr)
Inventor
周化雨
雷珍珠
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023024388A1 publication Critical patent/WO2023024388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the communication field, in particular to an information processing method and a communication device.
  • the overall receiver (that is, the receiver shared by the idle state/inactive state/connected state) is used to process the synchronization signal block burst and monitor the Physical Downlink Control Channel (PDCCH), so the terminal device starts from deep sleep
  • PDCCH Physical Downlink Control Channel
  • the switching power consumption (energy) of waking up is relatively large, and the power consumption of detecting a paging early indication (PEI) is also relatively large.
  • the integrated receiver can also be called a conventional receiver, and has a complete radio frequency and baseband processing architecture.
  • the overall receiver may include a synchronization signal block receiving module and a data/control receiving module.
  • a low-power receiver independent of the overall receiver can be used to detect a wake-up signal. After the low-power receiver detects a wake-up signal, it notifies the overall receiver, and the overall receiver will turn on, and perform measurement and data sending and receiving (for example, receiving a paging message). There is a certain time interval between the low-power receiver receiving the wake-up signal and the overall receiver being able to send and receive data. This time interval will affect the data transmission delay of the terminal device. Therefore, how to reduce the delay of data transmission is an urgent problem to be solved.
  • the present application provides an information processing method and a communication device, which are beneficial to reducing the time delay of data transmission.
  • the present application provides an information processing method, which includes: detecting a wake-up signal; and monitoring a PDCCH after a first time point.
  • the terminal device detects the wake-up signal, and monitors the PDCCH after the first time point. Based on this method, it is beneficial to reduce the time delay of data transmission and improve the efficiency of data transmission.
  • monitoring the PDCCH after the first time point includes: monitoring the PDCCH within N time slots within the first duration after the first time point, where N is a positive integer; Or, monitor the PDCCH in the first time slot after the first time point.
  • monitoring the PDCCH after the first time point includes: monitoring the PDCCH within W time slots within the first X duration after the first time point or within the first X time slots PDCCH, the X and W are positive integers; or, monitor the PDCCH in the first K time slots after the first time point, the K is a positive integer.
  • monitoring the PDCCH after the first time point includes: monitoring the PDCCH within a time window after the first time point.
  • the first time point is the second time point plus the first time interval. Based on this method, the time interval during which the whole receiver is turned on is guaranteed.
  • the first time interval includes the second time interval plus a time interval related to a synchronization signal block period or a synchronization signal burst period. Based on this method, after being turned on, the overall receiver can process one or more synchronization signal blocks or synchronization signal bursts to achieve the purpose of time-frequency synchronization and/or measurement.
  • the first time interval includes the second time interval plus Y synchronization signal block periods, where Y is a positive integer; or, the first time interval includes the second time interval plus R Synchronization signal block burst period, where R is a positive integer.
  • the first time interval includes the interval from the time slot where the M synchronization signal blocks or synchronization signal bursts closest to the third time point are located to the third time point, and the third time point is A second time interval is added to the second time point, and M is a positive integer. Based on this method, it can be guaranteed that there is a reference time point after the whole receiver is turned on.
  • the first time interval includes the second time interval plus C synchronization signal block periods and D tracking reference signal periods, where C and D are positive integers.
  • the network device can send the tracking reference signal after sending the wake-up signal, so as to facilitate time-frequency synchronization and/or measurement of the overall receiver.
  • the first time interval includes the interval from the time slot where the E synchronization signal blocks and the F tracking reference signals closest to the third time point are located to the third time point, and the third time point A second time interval is added to the second time point, and the E and F are positive integers. Based on this method, it can be guaranteed that there is a reference time point after the whole receiver is turned on.
  • the first time interval includes the second time interval plus a period of the preamble sequence.
  • the network device can send the preamble after sending the wake-up signal, so as to facilitate time-frequency synchronization and/or measurement of the overall receiver.
  • the first time interval includes the interval from the time slot where the preamble sequence closest to the third time point is located to the third time point, and the third time point is the second time point plus the second time point time interval. Based on this method, it can be guaranteed that there is a reference time point after the whole receiver is turned on.
  • the second time point is a position in the wake-up signal sequence. Based on this approach, it is possible to ensure that the terminal device and the network device have a reference time point.
  • the second time point is an end position of the wake-up signal sequence.
  • the second time interval is determined based on the capability of the terminal device.
  • the second time interval is zero.
  • the first time interval is configured by high-layer signaling. Based on this method, a time interval can be flexibly configured through high-layer signaling.
  • the high-layer signaling includes system information block SIB signaling or non-access stratum NAS signaling.
  • the present application provides an information processing method, the method includes: a terminal device receives a wake-up signal, and the wake-up signal includes information of a user equipment group.
  • the terminal device receives a wake-up signal, and the wake-up signal includes the information of the user equipment group. Based on this approach, it can be determined whether the user equipment group corresponding to the paging occasion is woken up by detecting the wakeup signal, thereby reducing unnecessary power consumption of the terminal equipment.
  • the information about the user equipment group includes an identifier of the user equipment group.
  • the identifier of the user equipment group is calculated based on the identifier of the user equipment, the first high-layer parameter, and the second high-layer parameter.
  • the identifier of the user equipment group includes a first identifier and a second identifier.
  • the first identifier is calculated based on the identifier of the user equipment and a first high-layer parameter; the second identifier is calculated based on the identifier of the user equipment and a second high-layer parameter. Based on this approach, it can be ensured that the user equipment group is equivalent to the user equipment group corresponding to the paging occasion.
  • the first identifier is a remainder obtained by dividing the identifier of the user equipment by the first high-layer parameter; the second identifier is a remainder obtained by dividing the identifier of the user equipment by the second high-layer parameter.
  • the identifier of the user equipment group is a remainder obtained by dividing the identifier of the user equipment by a target parameter, where the target parameter is a product of the first high-layer parameter and the second high-layer parameter.
  • the first high-level parameter is a high-level parameter related to user equipment groups used when calculating the paging frame PF.
  • the second high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging occasion PO.
  • the present application provides a communication device, and the communication device is used to implement the above-mentioned units of the method in the first aspect or the second aspect and any possible implementation manner thereof.
  • the present application provides a communication device, where the communication device includes a processor, and the processor is configured to execute the method in the first aspect or the second aspect and any possible implementation thereof.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to call the program code from the memory to execute the first A method in the aspect or the second aspect and any possible implementation thereof.
  • the present application provides a communication device, the communication device includes a processor and a transceiver, the transceiver is used to receive a signal or send a signal; the processor is used to implement the first aspect or the first The method in the second aspect and any possible implementation thereof.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, the transceiver is used to receive signals or send signals; the memory is used to store program codes; the The processor is configured to call the program code from the memory to execute the method in the first aspect or the second aspect and any possible implementation thereof.
  • the present application provides a chip, the chip is used to detect a wake-up signal; the chip is also used to monitor the first PDCCH after the first time point.
  • the present application provides a chip, where the chip is configured to receive a wake-up signal, where the wake-up signal includes information of a user equipment group.
  • the present application provides a module device, which includes a communication module, a power module, a storage module, and a chip module, wherein: the power module is used to provide power for the module device ; the storage module is used to store data and instructions; the communication module is used for internal communication of the module device, or for the module device to communicate with external devices; the chip module is used for: triggering the detection of the communication module A wake-up signal is received; the communication module is triggered to monitor the PDCCH after the first time point.
  • the present application provides a module device, which is characterized in that the module device includes a communication module, a power module, a storage module, and a chip module, wherein: the power module is used for the The module device provides power; the storage module is used to store data and instructions; the communication module is used for internal communication of the module device, or for the module device to communicate with external devices; the chip module is used for: The communication module is triggered to receive a wake-up signal, and the wake-up signal includes the information of the user equipment group.
  • the present application provides a computer-readable storage medium, the computer-readable instruction is stored in the computer-readable instruction, and when the computer-readable instruction is run on the communication device, the communication device executes the above-mentioned first A method in the aspect or the second aspect and any possible implementation thereof.
  • the present application provides a computer program or a computer program product, including codes or instructions, which, when the codes or instructions are run on a computer, cause the computer to execute the method of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of an information processing method provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of monitoring a PDCCH provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another monitoring PDCCH provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another monitoring PDCCH provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another monitoring PDCCH provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first time interval provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 10 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 17 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 19 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • Fig. 20 is a flow chart of another information processing method provided by the embodiment of the present application.
  • Fig. 21 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 22 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • Terminal equipment 1. Terminal equipment:
  • the terminal device in the embodiment of the present application is a device with a wireless communication function, and may be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) ), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • Terminal equipment can be fixed or mobile.
  • the terminal device may support at least one wireless communication technology, such as LTE, new radio (new radio, NR), and so on.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle terminal, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal device may also be a device having a sending and receiving function, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices, which is not limited in this embodiment of the present application.
  • the network device in this embodiment of the present application is a device that provides a wireless communication function for a terminal device, and may also be referred to as a radio access network (radio access network, RAN) device, or an access network element.
  • the network device may support at least one wireless communication technology, such as LTE, NR and so on.
  • the network equipment includes but is not limited to: a next-generation base station (generation nodeB, gNB), an evolved node B (evolved node B, eNB) in a fifth-generation mobile communication system (5th-generation, 5G), a wireless network control radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit, BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • generation nodeB generation nodeB, gNB
  • an evolved node B evolved node B
  • eNB evolved node B
  • 5th-generation 5G
  • 5G fifth-generation mobile communication system
  • RNC wireless network control radio network controller
  • node B node B
  • the network device can also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be Relay stations, access points, vehicle-mounted devices, terminal devices, wearable devices, and network devices in future mobile communications or network devices in future evolved PLMNs, etc.
  • the network device may also be an apparatus having a wireless communication function for the terminal device, such as a chip system.
  • the system-on-a-chip may include a chip, and may also include other discrete devices.
  • the network device can also communicate with an Internet Protocol (Internet Protocol, IP) network, such as the Internet (internet), a private IP network, or other data networks.
  • IP Internet Protocol
  • synchronization signals and broadcast channels are sent in the form of synchronization signal blocks, and the beam scanning function is introduced.
  • Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS) and Physical Broadcast Channel (PBCH) are in the synchronization signal block (SS/PBCH block, which can be abbreviated as SSB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SS/PBCH block synchronization signal block
  • Each synchronization signal block can be regarded as a beam (analog domain) resource in the beam sweeping process.
  • Multiple sync signal blocks form a sync signal burst (SS-burst).
  • a sync signal burst may also be referred to as a sync signal block burst (SSB burst).
  • the synchronization signal burst can be regarded as a relatively concentrated piece of resource including multiple beams.
  • the synchronization signal block is sent repeatedly on different beams, which is a beam scanning process. Through beam scanning training, the user equipment can perceive which beam receives the strongest signal.
  • the time domain positions of the L synchronization signal blocks within a 5 millisecond window are fixed. Indexes of the L synchronization signal blocks are arranged consecutively in the time domain, from 0 to L-1. Therefore, the transmission moment of a synchronization signal block within the 5 millisecond window is fixed, and the index is also fixed.
  • the embodiment of the present application can be applied to the schematic diagram of the network architecture shown in Figure 1.
  • the network architecture shown in Figure 1 is the network architecture of the wireless communication system. It does not constitute a limitation to the embodiment of the application.
  • the network device may be a base station (Base Station, BS), and the base station may provide communication services to multiple terminal devices, and multiple base stations may also provide communication services to the same terminal device.
  • BS Base Station
  • the overall receiver (that is, the receiver shared by the idle state/inactive state/connected state) is used to process the synchronization signal block burst and monitor the Physical Downlink Control Channel (PDCCH), so
  • the conversion power consumption (energy) of the terminal device upon waking up from sleep is relatively large, and the power consumption of detecting a paging-related PDCCH or a paging early indication (paging early indication, PEI) is also relatively large.
  • the integrated receiver can also be called a conventional receiver, and has a complete radio frequency and baseband processing architecture.
  • the overall receiver may include a synchronization signal block receiving module and a data/control receiving module.
  • a low-power receiver independent of the overall receiver can be used to detect the wake-up signal. After detecting the wake-up signal, the low-power receiver notifies the overall receiver, and the overall receiver will be turned on, and perform measurement and data sending and receiving (for example, receiving paging messages). There is a certain time interval between the low-power receiver receiving the wake-up signal and the overall receiver being able to send and receive data. This time interval will affect the data transmission delay of the terminal device. Therefore, how to reduce the delay of data transmission is an urgent problem to be solved.
  • an embodiment of the present application provides an information processing method.
  • the information processing method is described in detail below.
  • FIG. 2 is a flowchart of an information processing method provided by an embodiment of the present application, and the information processing method includes steps 201 to 202 .
  • the method shown in FIG. 2 may be executed by a terminal device (for example, refer to FIG. 1 ), or the subject may be a chip in the terminal device.
  • the execution subject of the method shown in FIG. 2 takes a terminal device as an example. in:
  • the terminal device detects a wake-up signal.
  • the terminal device may receive a wake-up signal sent by the network device, and the wake-up signal is used to wake up the terminal device to monitor the PDCCH.
  • the terminal device is configured with a low-power receiver and an integral receiver.
  • the low power consumption receiver is used for detecting the wake-up signal. After detecting a wake-up signal, the low-power receiver notifies the overall receiver, and the overall receiver will turn on and monitor the PDCCH.
  • the wake-up signal may include user equipment group information
  • the terminal device may determine whether it needs to be woken up by detecting the user equipment group information in the wake-up signal, thereby reducing power consumption of the terminal device.
  • the terminal device monitors the PDCCH after the first time point.
  • the PDCCH since the PDCCH is configured through a search space set (Search Space Set, SSS) and has periodicity, after the network device and the terminal device can agree on the first time point, the network device starts to send the PDCCH, and the terminal device starts to send the PDCCH. Monitor PDCCH.
  • the PDCCH may be a paging PDCCH or a paging indication PDCCH, etc., which is not limited here. Based on this method, it is beneficial to reduce the time delay of data transmission and improve the efficiency of data transmission.
  • Monitoring the PDCCH in the embodiment of the present application is equivalent to “monitoring the monitoring occasion of the PDCCH”.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH within N time slots within the first duration after the first time point, where N is positive integer. In this way, the terminal device may need to monitor the PDCCH in multiple time slots within the first duration after the first time point, which increases the reliability of PDCCH monitoring.
  • FIG. 3 is a schematic diagram of monitoring a PDCCH provided by an embodiment of the present application.
  • N is 4, the first time point is the start moment of time slot 1, and the duration is four time slots, then the first time duration includes time slot 1 to time slot 4, and the terminal device listens at the first time The PDCCH in the first duration after the point, that is, the PDCCH in time slot 1 to time slot 4 is monitored.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH in the first time slot after the first time point. In this way, the terminal equipment only needs to monitor the PDCCH in the first time slot after the first time point, thus reducing the PDCCH monitoring of the terminal equipment.
  • the terminal device monitoring the PDCCH after the first time point includes: when the duration is not configured, monitoring the PDCCH in the first time slot after the first time point. In this way, when the duration is not configured, the terminal device only needs to monitor the PDCCH in the first time slot after the first time point, so that the base station can control the terminal device to reduce the PDCCH monitoring of the terminal device.
  • FIG. 4 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • the first time point is the start moment of time slot 1, and the duration is not configured, and the terminal device monitors the PDCCH in the first time slot after the first time point, that is, monitors the PDCCH in time slot 1.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH of the first T time slots within the first duration after the first time point, where T is the duration The number of time slots corresponding to the time, where T is a positive integer. At this time, T is less than or equal to the number of time slots in the duration. In this way, the terminal equipment may need to monitor the PDCCH in the first T time slots within the first duration after the first time point, which increases the reliability of PDCCH monitoring and increases the flexibility of base station control (T value can be set ).
  • FIG. 3 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • the first time point is the start moment of time slot 1
  • the duration is four time slots
  • T is 2
  • the terminal device monitors the PDCCH of the first two time slots after the first time point, that is, the listening time slot 1 and PDCCH in slot 2.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH of the first K time slots after the first time point, where K is a positive integer.
  • the terminal equipment may need to monitor the PDCCH in the first K time slots after the first time point, which increases the reliability of PDCCH monitoring and the flexibility of base station control (K value can be set).
  • the terminal device monitors the PDCCH after the first time point, including: when the duration is not configured, monitors the PDCCH of the first H time slots after the first time point, where H is positive integer.
  • the terminal equipment may need to monitor the PDCCH in the first H time slots after the first time point, which increases the reliability of PDCCH monitoring and increases the flexibility of base station control (the H value can be set ).
  • FIG. 4 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • H is 2
  • the first time point is the start time of slot 1, and the duration is not configured.
  • the terminal device monitors the PDCCH of the first two PDCCH in slot 2.
  • the duration represents the duration (duration) of the PDCCH, or the duration (duration) of the listening opportunity of the PDCCH, or the duration of the search space set of the PDCCH, or the slot level (slot level) of the search space set of the PDCCH duration.
  • One duration includes one or more time slots, and the PDCCH in one time slot occupies one or more symbols.
  • the network device may configure the terminal device with a duration corresponding to the search space set of the terminal device through a high-level parameter (duration) in the search space set, that is, the duration may be a parameter of the search space set.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH within the first X durations after the first time point, where X is a positive integer. In this way, the terminal device may need to monitor the PDCCH within the first X duration after the first time point (the number of time slots is the number of time slots in a duration multiplied by X), which increases the reliability of PDCCH monitoring.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH within the first X PDCCH periods after the first time point, where X is a positive integer. In this way, the terminal device may need to monitor the PDCCH within the first X PDCCH cycles after the first time point (the number of time slots is the number of time slots in a duration multiplied by X), which increases the reliability of PDCCH monitoring.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH in W time slots within the first X durations after the first time point, where the X and W are positive integers. W is less than or equal to the number of slots in a duration multiplied by X. In this way, the terminal device may need to monitor the PDCCH in multiple time slots within the first X durations after the first time point, which increases the reliability of PDCCH monitoring.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH in W time slots in the first X PDCCH periods after the first time point, where the X and W are positive integers. W is less than or equal to the number of slots in a duration multiplied by X. In this way, the terminal device may need to monitor the PDCCH in multiple time slots within the first X PDCCH periods after the first time point, which increases the reliability of PDCCH monitoring.
  • FIG. 5 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • the period of PDCCH is 3 time slots
  • the first time point is the start moment of time slot 1
  • the duration is two time slots
  • the first time point One duration includes time slot 1 and time slot 2
  • the second time duration includes time slot 4 and time slot 5
  • the terminal device monitors the PDCCH in the first and second time duration after the first time point, That is, the PDCCHs in slot 1, slot 2, slot 4 and slot 5.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH within the first P PDCCH periods after the first time point, where P is a positive integer.
  • the terminal equipment may need to monitor the PDCCH within the first F PDCCH periods after the first time point, which increases the reliability of PDCCH monitoring and the flexibility of base station control (P value can be set).
  • the terminal device monitoring the PDCCH after the first time point includes: when the duration is not configured, monitoring the PDCCH within the first F PDCCH periods after the first time point, where the F is a positive integer. In this way, the terminal device may need to monitor the PDCCH in the first F PDCCH periods after the first time point, which increases the reliability of PDCCH monitoring and the flexibility of base station control (F value can be set).
  • FIG. 6 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • F is 2
  • the period of PDCCH is 3 time slots
  • the first time point is the start moment of time slot 1
  • the duration is not configured
  • the terminal device monitors within the first 2 PDCCH periods after the first time point
  • the PDCCH in slot 1 and slot 4 is the PDCCH.
  • the terminal device monitoring the PDCCH after the first time point includes: monitoring the PDCCH within a time window after the first time point.
  • the time window is a fixed time range configured by the terminal device.
  • FIG. 7 is a schematic diagram of another monitoring PDCCH provided by an embodiment of the present application.
  • the first time point is the start moment of time slot 1
  • the window length of the time window is two time slots. PDCCH in slot 1 and slot 2.
  • the first time point is a preset time point (for example, may be referred to as a second time point) plus a first time interval.
  • the time interval between the first time point and the preset time point is the first time interval. Since the low-power receiver detects the wake-up signal at the preset time point, it triggers to turn on the overall receiver, and it takes a time interval to turn on the overall receiver, so the first time point is the preset time point plus the first time The interval ensures that the time interval for the overall receiver to be turned on is long enough, and the overall receiver has enough time to turn on.
  • FIG. 8 is a schematic diagram of a first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the first time interval includes two time slots
  • the duration includes two time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the terminal device monitors the PDCCH within the first duration after the first time point, that is, listens to time slot 3 and PDCCH in slot 4.
  • the first time interval includes a second time interval.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm. Since the low-power receiver detects the wake-up signal at a preset time point, it triggers to turn on the whole receiver, and it takes a time interval to turn on the whole receiver, and the time of this process is included in the second time interval. The terminal device needs to have the ability to turn on the overall receiver during the second time interval. This capability may be mutually agreed upon by the network device and the terminal device.
  • FIG. 9 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes two time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point).
  • the first time interval may be a second time interval, and the terminal device monitors the PDCCH within the first duration after the first time point, that is, monitors the PDCCH in time slot 3 and time slot 4.
  • the first time interval includes a time interval related to a synchronization signal block period or a synchronization signal burst period.
  • the synchronization signal block period or the synchronization signal burst period may refer to the period of a half frame (half frame, with a length of 5 milliseconds) for sending the synchronization signal block or the synchronization signal burst.
  • the overall receiver can process one or more synchronization signal blocks or synchronization signal bursts after it is turned on, so as to achieve the purpose of time-frequency synchronization and/or measurement.
  • FIG. 10 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes five time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the first time interval includes time intervals related to the synchronization signal block period or the synchronization signal burst period (example is five time slot)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors the PDCCH in time slot 6 and time slot 7.
  • the first time interval includes Z synchronization signal block periods or synchronization signal block burst periods, where Z is a positive integer.
  • FIG. 10 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes five time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point), where Z is 1, that is, the first time interval includes a synchronization signal block period or a synchronization signal burst period (example five time slots)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors the PDCCH in time slot 6 and time slot 7.
  • the first time interval includes the second time interval plus a time interval related to a synchronization signal block period or a synchronization signal burst period.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm.
  • FIG. 11 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes six time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the first time interval includes the second time interval (an example is a time slot) plus the synchronization signal block period or synchronization
  • the time interval related to the signal burst cycle (example is five time slots)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors time slot 7 and time slot PDCCH in slot 8.
  • the first time interval includes the second time interval plus Y synchronization signal block periods, where Y is a positive integer; or, the first time interval includes the second time interval plus R Synchronization signal block burst period, where R is a positive integer.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm. Based on this method, the overall receiver can process one or more synchronization signal blocks or synchronization signal burst cycles after being turned on, so as to achieve the purpose of time-frequency synchronization and/or measurement.
  • FIG. 11 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • the preset time point is the start moment of time slot 1, and the duration includes two time slots
  • the first time interval includes six time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time between the preset time point and the first time point interval)
  • Y is 1, that is, the first time interval includes the second time interval (one time slot in an example) plus one synchronization signal block period or a synchronization signal burst period (five time slots in an example)
  • the terminal monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors the PDCCH in time slot 7 and time slot 8 .
  • the first time interval includes the time slots where the M synchronization signal blocks or synchronization signal bursts are closest to the reference time point (example, may be referred to as the third time point).
  • the preset interval of time points where M is a positive integer.
  • the reference time point is the preset time point plus a second time interval.
  • the M synchronization signal blocks or synchronization signal bursts closest to the reference time point may be the first M synchronization signal blocks or synchronization signal bursts after the reference time point.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm. Based on this method, it can be guaranteed that there is a reference time point after the whole receiver is turned on.
  • First time point reference time point + first time interval
  • FIG. 12 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • the preset time point is the start moment of time slot 1, and the duration includes two time slots
  • the first time interval includes four time slots
  • the first time point is the reference time point plus the first time interval (the first time interval is the time interval between the reference time point and the first time point)
  • the reference time point is the preset time point plus a second time interval (the second time interval is the time interval between the reference time point and the preset time point (an example is a time slot))
  • M is 1, that is, the first time interval includes the interval from the time slot where a synchronization signal block or synchronization signal burst is located closest to the reference time point to the reference time point (for example, three time slots, that is, the distance from the reference time point
  • the time slot where the latest synchronization signal block or synchronization signal burst is located is time slot 5
  • the terminal device monitors the PDCCH within the first duration after
  • the time slots where the M synchronization signal blocks or synchronization signal bursts closest to the reference time point are located indicate: the time slots where the end positions of the M synchronization signal blocks or synchronization signal bursts closest to the reference time point are located, or The time slot where the transmission end positions of the M nearest synchronization signal blocks or synchronization signal bursts at the reference time point are located, or the end position of the half frame where the M synchronization signal blocks or synchronization signal bursts are located closest to the reference time point slots, or the time slots where the end positions of M half-frames used for synchronous signal block or synchronous signal burst transmission closest to the reference time point are located.
  • the first time interval includes A synchronization signal block cycle time and B tracking reference signal time, where A and B are positive integers.
  • the network device can send the tracking reference signal after sending the wake-up signal, so as to facilitate time-frequency synchronization and/or measurement of the overall receiver.
  • FIG. 13 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • A is 1
  • B is 1
  • the preset time point is time slot 1
  • the duration includes two time slots
  • the first time interval includes seven time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the preset time point and time interval between first time points) comprising a second time interval (exemplarily one slot) plus 1 sync signal block period (example five slots) and 1 tracking reference signal period (two time slots in an example)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors the PDCCH in time slot 8 and time slot 9.
  • the first time interval includes the second time interval plus C synchronization signal block periods and D tracking reference signal periods, where C and D are positive integers.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm.
  • FIG. 14 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • C is 2
  • D is 1
  • the preset time point is time slot 1
  • the duration includes two time slots
  • the first time interval includes 13 time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the preset time point and The time interval between the first time points)
  • the first time interval includes the second time interval (example is one time slot) plus 2 sync signal block periods (example is one sync signal block period includes five time slots) and 1 tracking reference signal period (two time slots in the example)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors time slot 14 and time slot PDCCH within 15.
  • FIG. 15 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • C is 1
  • D is 1
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes eight time slots
  • the first time point is the preset The time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the first time interval includes the second time interval (an example is a time slot) plus Last 1 synchronization signal block period (example is five time slots) and 1 tracking reference signal period (example is two time slots)
  • the terminal device monitors the first PDCCH in time slots, that is, monitor PDCCH in time slot 9 and time slot 10.
  • the first time interval includes the interval from the E synchronization signal blocks closest to the reference time point and the time slot where the F tracking reference signals are located to the preset time point, where E and F are A positive integer, the reference time point is the preset time point plus a second time interval.
  • the E synchronization signal blocks and F tracking reference signals closest to the reference time point may be the first E synchronization signal blocks and F tracking reference signals after the reference time point.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm. Based on this method, using the reference time point can ensure that there is a reference time point after the whole receiver is turned on.
  • First time point reference time point + first time interval
  • FIG. 16 is a schematic diagram of another first time interval provided by the embodiment of the present application.
  • the preset time point is the start moment of time slot 1, and the duration includes two time slots
  • the first time interval includes seven time slots
  • the first time point is the reference time point plus the first time interval (the first time interval is the time interval between the reference time point and the first time point)
  • the reference time point is the preset time point plus a second time interval (the second time interval is the time interval between the reference time point and the preset time point (an example is a time slot))
  • E 1, F is 1, that is, the first time interval includes a synchronization signal block closest to the reference time point and a distance from the time slot where the reference signal is located to the reference time point (example is seven time slots, that is, the distance from The time slot where the latest synchronization signal block and a tracking reference signal are located at the reference time point is time slot 8)
  • the terminal device monitors the PDCCH within the first duration after
  • the interval from the time slot where the E synchronization signal blocks and F tracking reference signals closest to the reference time point to the reference time point indicates: the E synchronization signal blocks and F tracking reference signals closest to the reference time point
  • the time slot where the end position of the reference signal is located, or the time slot where the transmission end position of the E synchronization signal blocks and F tracking reference signals closest to the reference time point is located, or the E synchronization signal blocks and F synchronization signal blocks closest to the reference time point The time slot where the end position of the half-frame where the tracking reference signal is located, or the time slot where the end position of the half-frame for transmission of E synchronization signal blocks and F tracking reference signals closest to the reference time point is located.
  • a synchronization signal block is equivalent to a synchronization signal burst.
  • the end positions of the E synchronization signal blocks and the F tracking reference signals may be the end positions of a whole composed of the E synchronization signal blocks and the F tracking reference signals.
  • the transmission end position of the E synchronization signal blocks and the F tracking reference signals may be the overall transmission end position composed of the E synchronization signal blocks and the F tracking reference signals.
  • the end position of the field where the E synchronization signal blocks and the F tracking reference signals are located may be the end position of the field where the entire E synchronization signal block and F tracking reference signals are located.
  • the end position of the half-frame for the transmission of the E synchronization signal blocks and the F tracking reference signals may be the end position of the half-frame for the transmission of the whole composed of the E synchronization signal blocks and the F tracking reference signals.
  • the first time interval includes a period of the preamble sequence.
  • the network device can send the preamble after sending the wake-up signal, so as to facilitate time-frequency synchronization and/or measurement of the overall receiver.
  • FIG. 17 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes two time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the first time interval includes the period of the preamble sequence (the example is two time slots)
  • the terminal device monitors at the first time
  • the PDCCH in the first time slot within the first duration after the point, that is, the PDCCH in time slot 3 and time slot 4 is monitored.
  • the first time interval includes the second time interval plus a period of the preamble sequence.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm.
  • the preamble sequence is a special signal in the frame structure, which has the characteristics of short time, which can make the overall receiver perform time-frequency synchronization and/or measurement quickly.
  • FIG. 18 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes three time slots
  • the first time point is the preset time point plus the first time interval (the first time interval is the time interval between the preset time point and the first time point)
  • the first time interval includes the second time interval (an example is a time slot) plus the period of the preamble sequence (an example is Two time slots)
  • the terminal device monitors the PDCCH in the first time slot within the first duration after the first time point, that is, monitors the PDCCH in time slot 4 and time slot 5.
  • the first time interval includes the interval from the time slot where the preamble sequence closest to the reference time point is located to a preset time point, and the reference time point is the preset time point plus Second time interval.
  • the second time interval may be predefined by a protocol, may also be configured by a network device, or may be determined by a terminal device based on a certain policy or algorithm. Based on this method, using the reference time point can ensure that there is a reference time point after the whole receiver is turned on.
  • First time point reference time point + first time interval
  • FIG. 19 is a schematic diagram of another first time interval provided by an embodiment of the present application.
  • the preset time point is the start moment of time slot 1
  • the duration includes two time slots
  • the first time interval includes three time slots
  • the first time point is the reference time point plus the first time interval
  • the reference time point is the preset time point plus the second time interval
  • the second time interval is the reference time point and the preset
  • the time interval between the set time points an example is a time slot
  • the first time interval includes the interval from the time slot where the preamble sequence closest to the reference time point to the reference time point (the example is three time slots , that is, the time slot of the preamble sequence closest to the reference time point is time slot 4)
  • the terminal device monitors the PDCCH within the first duration after the first time point, that is, monitors the PDCCH in time slot 5 and time slot 6 PDCCH.
  • the time slot of the preamble sequence closest to the reference time point indicates: the time slot where the end position of the preamble sequence closest to the reference time point is located, or the time slot where the transmission end position of the preamble sequence closest to the reference time point is located, Either the time slot where the end position of the half-frame where the preamble sequence closest to the reference time point is located is located, or the time slot where the end position of the half-frame transmission of the preamble sequence closest to the reference time point is located.
  • the second time interval is zero. That is to say, in the foregoing possible manner, the second time interval included in the first time interval may not exist.
  • the preset time point is a position in a sequence of wake-up signals.
  • the preset time point is the end position of the wake-up signal sequence. Based on this approach, it is possible to ensure that the terminal device and the network device have a reference time point.
  • the second time interval is determined based on the capability of the terminal device. Since the low-power receiver triggers and the overall receiver is turned on, the time of this process is related to the capability of the terminal device, so the second time interval can be determined based on the capability of the terminal device.
  • the first time interval is configured by high-layer signaling.
  • the high-level signaling includes system information block (System Information Block, SIB) signaling or non-access stratum (Non Access Stratum, NAS) signaling.
  • SIB System Information Block
  • NAS Non Access Stratum
  • a time interval can be flexibly configured through high-layer signaling, where the time interval includes (greater than or equal to) a predefined time interval.
  • the network device may configure the first time interval through SIB signaling (broadcast mode), or the network device may configure the first time interval through NAS signaling (unicast mode or dedicated frequency guide mode).
  • the terminal device detects the wake-up signal, and monitors the PDCCH after the first time point. Therefore, based on the method described in FIG. 2 , it is beneficial to reduce the time delay of data transmission and improve the efficiency of data transmission.
  • FIG. 20 is a flowchart of another information processing method provided by an embodiment of the present application.
  • the information processing method includes step 2001 and step 2002 .
  • the method shown in FIG. 20 may be executed by a terminal device (for example, refer to FIG. 1 ), or the subject may be a chip in the terminal device.
  • the execution subject of the method shown in FIG. 20 takes a terminal device as an example. in:
  • a terminal device receives a wake-up signal, where the wake-up signal includes information of a user equipment group.
  • the terminal device judges whether it is woken up.
  • the wake-up signal includes the information of the user equipment group, that is, the sequence of the wake-up signal includes the information of the user equipment group. Therefore, the terminal device can determine whether the user equipment group (UE group) corresponding to the paging occasion is woken up by detecting the wake-up signal, thereby reducing unnecessary power consumption of the terminal device.
  • the information of user equipment groups can also be included in the wake-up signal sequence generator (generator).
  • the terminal device receives a wake-up signal sent by the network device, wherein the network device may determine the information of the user equipment group based on the high-level parameters of the paging occasion.
  • the information about the user equipment group includes an identifier of the user equipment group.
  • the identification of the user equipment group is implicit in the paging occasion, and the paging occasion can be defined as a position in a certain paging frame (Paging Frame, PF), and the system frame number of the paging frame is related to the first high-level parameter, and the paging
  • the position (index) of the paging opportunity in the paging frame is related to the second layer parameters. Therefore, the user equipment can determine the system frame number of the paging frame where the paging occasion is located and the position (index) of the paging occasion in the paging frame according to the first high-layer parameter and the second high-layer parameter.
  • the network device and the terminal device can agree on the time when the network device sends the paging message and the terminal device receives the paging message (ie, the paging timing) , the paging message sent by the network device at the paging occasion is aimed at the user equipment group corresponding to the paging occasion. Therefore, the information of the user equipment group may be an identifier of the user equipment group. Moreover, similar to the manner of the above-mentioned paging occasion, the identity of the user equipment group is obtained through the identity of the user equipment and high-layer parameters.
  • the identifier of the user equipment group is calculated based on the identifier of the user equipment, the first high-layer parameter, and the second high-layer parameter.
  • the identifier of the user equipment group includes a first identifier and a second identifier. Further optionally, the first identifier is calculated based on the identifier of the user equipment and the first high-layer parameter; the second identifier is calculated based on the identifier of the user equipment and the second high-layer parameter. Based on this approach, it can be ensured that the user equipment group is equivalent to the user equipment group corresponding to the paging occasion.
  • the first identifier is a remainder obtained by dividing the identifier of the user equipment by the first high-layer parameter; the second identifier is a remainder obtained by dividing the identifier of the user equipment by the second high-layer parameter.
  • the identifier of the user equipment group is a remainder obtained by dividing the identifier of the user equipment by a target parameter, where the target parameter is a product of the first high-layer parameter and the second high-layer parameter.
  • the first high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging frame.
  • the second high-level parameter is a high-level parameter related to user equipment grouping used when calculating a paging occasion (Paging Occasion, PO).
  • the terminal device receives a wake-up signal, and the wake-up signal includes information of user equipment groups. Therefore, based on the method described in FIG. 20 , it can be determined whether the user equipment group corresponding to the paging occasion is awakened by detecting the wake-up signal, thereby reducing unnecessary power consumption of the terminal equipment.
  • FIG. 21 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device 210 shown in FIG. 21 may include a processing unit 2101 and a communication unit 2102 .
  • the processing unit 2101 is configured to perform data processing.
  • the communication unit 2102 is integrated with a receiving unit and a sending unit.
  • the communication unit 2102 may also be called a transceiver unit. Alternatively, the communication unit 2102 may also be split into a receiving unit and a sending unit.
  • the processing unit 2101 and the communication unit 2102 below are the same, and will not be described in detail below. in:
  • the communication unit 2102 is configured to detect a wake-up signal.
  • the communication unit 2102 is configured to monitor the PDCCH after the first time point.
  • the communication unit 2102 when the communication unit 2102 monitors the PDCCH after the first time point, it is specifically configured to: monitor the PDCCH within N time slots within the first duration after the first time point or the first time slot The PDCCH in the slot, where N is a positive integer; or, monitor the PDCCH in the first time slot after the first time point.
  • the communication unit 2102 when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH after the first time point, including: monitor the PDCCH within the first X duration after the first time point The PDCCH in W time slots or the PDCCH in the first X time slots, where X and W are positive integers; or, monitoring the PDCCH in the first K time slots after the first time point, where K is a positive integer.
  • the communication unit 2102 when the communication unit 2102 monitors the PDCCH after the first time point, it is specifically configured to: monitor the PDCCH within the time window after the first time point.
  • the first time point is the second time point plus the first time interval.
  • the first time interval includes the second time interval plus a time interval related to a synchronization signal block period or a synchronization signal burst period.
  • the first time interval includes the second time interval plus Y synchronization signal block periods, where Y is a positive integer; or, the first time interval includes the second time interval plus R synchronization signal block bursts period, the R is a positive integer.
  • the first time interval includes the interval from the time slots where the M synchronization signal blocks or synchronization signal bursts closest to the third time point are located to the third time point, and the third time point is the second time point plus
  • the M is a positive integer.
  • the first time interval includes the second time interval plus C synchronization signal block periods and D tracking reference signal periods, where C and D are positive integers.
  • the first time interval includes the interval from the time slot where the E synchronization signal blocks and the F tracking reference signals closest to the third time point are located to the third time point, and the third time point is the second time point Adding the second time interval, the E and F are positive integers.
  • the first time interval includes the second time interval plus a period of the preamble sequence.
  • the first time interval includes the interval from the time slot where the preamble sequence closest to the third time point is located to the third time point, and the third time point is the second time point plus the second time interval.
  • the second time point is a position in the wake-up signal sequence.
  • the second time point is the end position of the wake-up signal sequence.
  • the second time interval is determined based on the capability of the terminal device.
  • the second time interval is zero.
  • the first time interval is configured by high-layer signaling.
  • the high-level signaling includes system information block SIB signaling or non-access stratum NAS signaling.
  • the aforementioned communication device may be, for example, a chip or a chip module.
  • each module included in the product may be a software module or a hardware module, or may be partly a software module and partly a hardware module.
  • each module contained therein may be realized by hardware such as a circuit, or at least some modules may be realized by a software program, and the software program runs inside the chip.
  • the remaining (if any) modules can be realized by means of hardware such as circuits; for each device or product applied to or integrated in a chip module, each module contained in it can be realized by means of hardware such as circuits , different modules can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules can be implemented in the form of software programs that run on the integrated processing of the chip module device, the remaining (if any) modules can be realized by means of hardware such as circuits; for each device or product applied to or integrated in the terminal, each module contained in it can be realized by means of hardware such as circuits, and different modules can be Located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least some of the modules can be implemented in the form of a software program, which runs on the processor integrated in the terminal, and the rest (if any) Some modules can be realized by hardware such as circuits.
  • FIG. 21 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device 210 shown in FIG. 21 may include a processing unit 2101 and a communication unit 2102 .
  • the processing unit 2101 is configured to perform data processing.
  • the communication unit 2102 is integrated with a receiving unit and a sending unit.
  • the communication unit 2102 may also be called a transceiver unit. Alternatively, the communication unit 2102 may also be split into a receiving unit and a sending unit.
  • the processing unit 2101 and the communication unit 2102 below are the same, and will not be described in detail below. in:
  • the communication unit 2102 is configured to receive a wake-up signal, where the wake-up signal includes information of a user equipment group.
  • the information about the user equipment group includes an identifier of the user equipment group.
  • the identifier of the user equipment group is calculated based on the identifier of the user equipment, the first high-layer parameter, and the second high-layer parameter.
  • the identifier of the user equipment group includes a first identifier and a second identifier.
  • the first identifier is calculated based on the identifier of the user equipment and a first high-layer parameter; the second identifier is calculated based on the identifier of the user equipment and a second high-layer parameter.
  • the first identifier is a remainder obtained by dividing the identifier of the user equipment by the first high-layer parameter; the second identifier is a remainder obtained by dividing the identifier of the user equipment by the second high-layer parameter.
  • the identifier of the user equipment group is a remainder obtained by dividing the identifier of the user equipment by a target parameter, where the target parameter is a product of the first high-layer parameter and the second high-layer parameter.
  • the first high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging frame PF.
  • the second high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging occasion PO.
  • the aforementioned communication device may be, for example, a chip or a chip module.
  • each module included in the product may be a software module or a hardware module, or may be partly a software module and partly a hardware module.
  • each module contained therein may be realized by hardware such as a circuit, or at least some modules may be realized by a software program, and the software program runs inside the chip.
  • the remaining (if any) modules can be realized by means of hardware such as circuits; for each device or product applied to or integrated in a chip module, each module contained in it can be realized by means of hardware such as circuits , different modules can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules can be implemented in the form of software programs that run on the integrated processing of the chip module device, the remaining (if any) modules can be realized by means of hardware such as circuits; for each device or product applied to or integrated in the terminal, each module contained in it can be realized by means of hardware such as circuits, and different modules can be Located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least some of the modules can be implemented in the form of a software program, which runs on the processor integrated in the terminal, and the rest (if any) Some modules can be realized by hardware such as circuits.
  • another communication device 220 provided in the embodiment of the present application is used to realize the functions of the terminal device in FIG. 2 and FIG. 20 above.
  • the device may be a terminal device or a device for a terminal device.
  • the apparatus for a terminal device may be a chip system or a chip in the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the communication device 220 includes at least one processor 2220, configured to implement the data processing function of the terminal device in the method provided in the embodiment of the present application.
  • the communication device 220 may also include a communication interface 2210, configured to implement the transceiving operation of the terminal device in the method provided by the embodiment of the present application.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces for communicating with other devices through a transmission medium.
  • the communication interface 2210 is used for devices in the communication device 220 to communicate with other devices.
  • the processor 2220 uses the communication interface 2210 to send and receive data, and is used to implement the method described in FIG. 2 of the above method embodiment.
  • the communication device 220 may also include at least one memory 2230 for storing program instructions and/or data.
  • the memory 2230 is coupled to the processor 2220 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 2220 may cooperate with memory 2230 .
  • Processor 2220 may execute program instructions stored in memory 2230 . At least one of the at least one memory may be included in the processor.
  • the processor 2220 can read the software program in the memory 2230, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 2220 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit (not shown in the figure), and the radio frequency circuit performs radio frequency processing on the baseband signal, and passes the radio frequency signal through the antenna in the form of electromagnetic waves Send out.
  • the radio frequency circuit When data is sent to the communication device 220, the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 2220, and the processor 2220 converts the baseband signal into data and converts the data to process.
  • the radio frequency circuit and antenna can be set independently from the processor 2220 for baseband processing. layout.
  • the specific connection medium among the communication interface 2210, the processor 2220, and the memory 2230 is not limited.
  • the memory 2230, the processor 2220, and the communication interface 2210 are connected through the bus 2240.
  • the bus is represented by a thick line in FIG. 22, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 22 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, operations and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The operations of the method disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the communication device can execute the relevant steps of the terminal device or the access network device in the foregoing method embodiments, and for details, refer to the implementation manners provided by the foregoing steps, and details are not repeated here.
  • each module contained therein may be realized by hardware such as a circuit, and different modules may be located in the same component (such as a chip, a circuit module, etc.) or different components in the terminal.
  • at least part of the modules may be implemented in the form of a software program, the software program runs on a processor integrated in the terminal, and the remaining (if any) modules may be implemented in hardware such as circuits.
  • the embodiment of the present application also provides a chip, including a processor and a communication interface, where the processor is configured to perform the following operations: detecting a wake-up signal; and monitoring the PDCCH after the first time point.
  • the chip when the chip monitors the PDCCH after the first time point, it is specifically used to: monitor the PDCCH within N time slots within the first duration after the first time point or the first time slot The PDCCH in the slot, where N is a positive integer; or, monitor the PDCCH in the first time slot after the first time point.
  • the chip when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH within W time slots within the first X duration after the first time point or the first X time slots For the PDCCH in the slot, the X and W are positive integers; or, to monitor the PDCCH in the first K time slots after the first time point, the K is a positive integer.
  • the chip when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH within a time window after the first time point.
  • the first time point is the second time point plus the first time interval.
  • the first time interval includes the second time interval plus a time interval related to a synchronization signal block period or a synchronization signal burst period.
  • the first time interval includes the second time interval plus Y synchronization signal block periods, where Y is a positive integer; or, the first time interval includes the second time interval plus R synchronization signal block bursts period, the R is a positive integer.
  • the first time interval includes the interval from the time slots where the M synchronization signal blocks or synchronization signal bursts closest to the third time point are located to the third time point, and the third time point is the second time point plus
  • the M is a positive integer.
  • the first time interval includes the second time interval plus C synchronization signal block periods and D tracking reference signal periods, where C and D are positive integers.
  • the first time interval includes the interval from the time slot where the E synchronization signal blocks and the F tracking reference signals closest to the third time point are located to the third time point, and the third time point is the second time point Adding the second time interval, the E and F are positive integers.
  • the first time interval includes the second time interval plus a period of the preamble sequence.
  • the first time interval includes an interval from the time slot where the preamble sequence closest to the third time point is located to the third time point, and the third time point is the second time point plus the second time interval.
  • the second time point is a position in the wake-up signal sequence.
  • the second time point is the end position of the wake-up signal sequence.
  • the second time interval is determined based on the capability of the terminal device.
  • the second time interval is zero.
  • the first time interval is configured by high-layer signaling.
  • the high-level signaling includes system information block SIB signaling or non-access stratum NAS signaling.
  • the above-mentioned chip includes at least one processor, at least one first memory, and at least one second memory; wherein, the aforementioned at least one first memory and the aforementioned at least one processor are interconnected Instructions are stored in the memory; the aforementioned at least one second memory and the aforementioned at least one processor are interconnected through lines, and the aforementioned second memory stores data that needs to be stored in the aforementioned method embodiments.
  • each module contained therein may be implemented by means of hardware such as circuits, or at least some of the modules may be implemented by means of software programs, which run on the internal integrated components of the chip.
  • the processor and the remaining (if any) modules can be realized by hardware such as circuits.
  • the embodiment of the present application also provides a chip, including a processor and a communication interface, where the processor is configured to perform the following operations: receiving a wake-up signal, where the wake-up signal includes information of a user equipment group.
  • the information about the user equipment group includes an identifier of the user equipment group.
  • the identifier of the user equipment group is calculated based on the identifier of the user equipment, the first high-layer parameter, and the second high-layer parameter.
  • the identifier of the user equipment group includes a first identifier and a second identifier.
  • the first identifier is calculated based on the identifier of the user equipment and a first high-layer parameter; the second identifier is calculated based on the identifier of the user equipment and a second high-layer parameter.
  • the first identifier is a remainder obtained by dividing the identifier of the user equipment by the first high-layer parameter; the second identifier is a remainder obtained by dividing the identifier of the user equipment by the second high-layer parameter.
  • the identifier of the user equipment group is a remainder obtained by dividing the identifier of the user equipment by a target parameter, where the target parameter is a product of the first high-layer parameter and the second high-layer parameter.
  • the first high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging frame PF.
  • the second high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging occasion PO.
  • the aforementioned chip includes at least one processor, at least one first memory, and at least one second memory; wherein, the aforementioned at least one first memory and the aforementioned at least one processor are interconnected through a wire, and the aforementioned Instructions are stored in the memory; the aforementioned at least one second memory and the aforementioned at least one processor are interconnected through lines, and the aforementioned second memory stores data that needs to be stored in the aforementioned method embodiments.
  • each module contained therein may be implemented by means of hardware such as circuits, or at least some of the modules may be implemented by means of software programs, which run on the internal integrated components of the chip.
  • the processor and the remaining (if any) modules can be realized by hardware such as circuits.
  • FIG. 23 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • the module device 230 can execute the relevant steps of the terminal device in the foregoing method embodiments, and the module device 230 includes: a communication module 2301 , a power module 2302 , a storage module 2303 and a chip module 2304 .
  • the power supply module 2302 is used to provide electric energy for the module equipment; the storage module 2303 is used to store data and instructions; the communication module 2301 is used for internal communication of the module equipment, or for The module device communicates with external devices; the chip module 2304 is used to: trigger the communication module to detect a wake-up signal; trigger the communication module to monitor the PDCCH after the first time point.
  • the chip module 2304 when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH within N time slots within the first duration after the first time point or the first The PDCCH in the first time slot, where N is a positive integer; or, monitor the PDCCH in the first time slot after the first time point.
  • the chip module 2304 when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH within W time slots within the first X duration after the first time point or the first X For the PDCCH in the first K time slots, the X and W are positive integers; or, to monitor the PDCCH in the first K time slots after the first time point, the K is a positive integer.
  • the chip module 2304 when monitoring the PDCCH after the first time point, is specifically configured to: monitor the PDCCH within the time window after the first time point.
  • the first time point is the second time point plus the first time interval.
  • the first time interval includes the second time interval plus a time interval related to a synchronization signal block period or a synchronization signal burst period.
  • the first time interval includes the second time interval plus Y synchronization signal block periods, where Y is a positive integer; or, the first time interval includes the second time interval plus R synchronization signal block bursts period, the R is a positive integer.
  • the first time interval includes the interval from the time slots where the M synchronization signal blocks or synchronization signal bursts closest to the third time point are located to the third time point, and the third time point is the second time point plus
  • the M is a positive integer.
  • the first time interval includes the second time interval plus C synchronization signal block periods and D tracking reference signal periods, where C and D are positive integers.
  • the first time interval includes the interval from the time slot where the E synchronization signal blocks and the F tracking reference signals closest to the third time point are located to the third time point, and the third time point is the second time point Adding the second time interval, the E and F are positive integers.
  • the first time interval includes the second time interval plus a period of the preamble sequence.
  • the first time interval includes an interval from the time slot where the preamble sequence closest to the third time point is located to the third time point, and the third time point is the second time point plus the second time interval.
  • the second time point is a position in the wake-up signal sequence.
  • the second time point is the end position of the wake-up signal sequence.
  • the second time interval is determined based on the capability of the terminal device.
  • the second time interval is zero.
  • the first time interval is configured by high-layer signaling.
  • the high-level signaling includes system information block SIB signaling or non-access stratum NAS signaling.
  • each module contained therein may be realized by hardware such as a circuit, and different modules may be located in the same component of the chip module (such as a chip, a circuit module, etc.) or Among the different components, or at least some of the modules can be realized by means of a software program, the software program runs on the processor integrated in the chip module, and the remaining (if any) parts of the modules can be realized by means of hardware such as circuits.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is implemented.
  • FIG. 23 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • the module device 230 can execute the relevant steps of the terminal device in the foregoing method embodiments, and the module device 230 includes: a communication module 2301 , a power module 2302 , a storage module 2303 and a chip module 2304 .
  • the power supply module 2302 is used to provide electric energy for the module equipment;
  • the storage module 2303 is used to store data and instructions;
  • the communication module 2301 is used for internal communication of the module equipment, or for The module device communicates with external devices;
  • the chip module 2304 is used to: trigger the communication module to receive a wake-up signal, and the wake-up signal includes the information of the user equipment group.
  • the information about the user equipment group includes an identifier of the user equipment group.
  • the identifier of the user equipment group is calculated based on the identifier of the user equipment, the first high-layer parameter, and the second high-layer parameter.
  • the identifier of the user equipment group includes a first identifier and a second identifier.
  • the first identifier is calculated based on the identifier of the user equipment and a first high-layer parameter; the second identifier is calculated based on the identifier of the user equipment and a second high-layer parameter.
  • the first identifier is a remainder obtained by dividing the identifier of the user equipment by the first high-layer parameter; the second identifier is a remainder obtained by dividing the identifier of the user equipment by the second high-layer parameter.
  • the identifier of the user equipment group is a remainder obtained by dividing the identifier of the user equipment by a target parameter, where the target parameter is a product of the first high-layer parameter and the second high-layer parameter.
  • the first high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging frame PF.
  • the second high-level parameter is a high-level parameter related to user equipment grouping used when calculating the paging occasion PO.
  • each module contained therein may be realized by hardware such as a circuit, and different modules may be located in the same component of the chip module (such as a chip, a circuit module, etc.) or Among the different components, or at least some of the modules can be realized by means of a software program, the software program runs on the processor integrated in the chip module, and the remaining (if any) parts of the modules can be realized by means of hardware such as circuits.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is implemented.
  • each module contained therein may be realized by hardware such as a circuit, and different modules may be located in the same component of the chip module (such as a chip, a circuit module, etc.) or Among the different components, or at least some of the modules can be realized by means of a software program, the software program runs on the processor integrated in the chip module, and the remaining (if any) parts of the modules can be realized by means of hardware such as circuits.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is realized.
  • the embodiment of the present application further provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息处理方法及通信装置,该方法包括:检测到唤醒信号;监听在第一时间点后的物理下行控制信道PDCCH。采用本申请所提出的方法,有利于降低数据传输的时延。

Description

一种信息处理方法及通信装置 技术领域
本发明涉及通信领域,尤其涉及一种信息处理方法及通信装置。
背景技术
目前,处理同步信号块突发、监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)都使用整体接收机(即空闲态/非激活态/连接态共用的接收机),因此终端设备从深度睡眠醒来的转换功耗(能量)较大,检测寻呼提前指示(paging early indication,PEI)的功耗也较大。该整体接收机又可以称为常规接收机,具有完整的射频和基带处理架构。该整体接收机从功能模块上分可以包括同步信号块接收模块、数据/控制接收模块。
为了降低终端设备从深度睡眠醒来的转换功耗和检测信号的功耗,可以采用一个独立于整体接收机的低功耗接收机来检测一个唤醒信号。低功耗接收机检测一个唤醒信号后通知整体接收机,整体接收机将打开,并进行测量和数据收发(例如接收寻呼消息)。低功耗接收机接收到唤醒信号到整体接收机可以进行数据收发之间有一定的时间间隔,这个时间间隔会影响终端设备数据传输的时延。因此,如何降低数据传输的时延是一个亟待解决的问题。
发明内容
本申请提供一种信息处理方法及通信装置,有利于降低数据传输的时延。
第一方面,本申请提供一种信息处理方法,该方法包括:检测到唤醒信号;监听在第一时间点后的PDCCH。
基于第一方面描述的方法,终端设备检测到唤醒信号,监听在第一时间点后的PDCCH。基于该方式,有利于降低数据传输的时延,提高数据传输效率。
在一种可能的实现方式中,监听在第一时间点后的PDCCH,包括:监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH,该N为正整数;或者,监听在第一时间点后的第一个时隙内的PDCCH。
在一种可能的实现方式中,监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH或者前X个时隙内的PDCCH,该X和W为正整数;或者,监听在第一时间点后的前K个时隙内的PDCCH,该K为正整数。
在一种可能的实现方式中,监听在第一时间点后的PDCCH,包括:监听在第一时间点后的时间窗内的PDCCH。
在一种可能的实现方式中,该第一时间点为第二时间点加上第一时间间隔。基于该方式,保证了整体接收机打开的时间间隔。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。基于该方式,整体接收机打开后可以处理一个或多个同步信号块或同步信号突发达到时频同步和/或测量的目的。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上Y个同步信号块周期,该Y为正整数;或者,该第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,该R为正整数。
在一种可能的实现方式中,该第一时间间隔包括离第三时间点最近的M个同步信号块或同步信号突发所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该M为正整数。基于该方式,可以保证整体接收机打开后有一个基准时间点。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,该C和D为正整数。基于该方式,网络设备可以在发送完唤醒信号后,再发送跟踪参考信号,以方便整体接收机进行时频同步和/或测量。
在一种可能的实现方式中,该第一时间间隔包括离第三时间点最近的E个同步信号块和F个跟踪参考信号所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该E和F为正整数。基于该方式,可以保证整体接收机打开后有一个基准时间点。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上前导序列的周期。基于该方式,网络设备可以在发送完唤醒信号后,再发送前导,以方便整体接收机进行时频同步和/或测量。
在一种可能的实现方式中,该第一时间间隔包括离第三时间点最近的前导序列所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔。基于该方式, 可以保证整体接收机打开后有一个基准时间点。
在一种可能的实现方式中,该第二时间点为该唤醒信号的序列中的一个位置。基于该方式,能够保证终端设备和网络设备有一个基准时间点。
在一种可能的实现方式中,该第二时间点为该唤醒信号的序列的结束位置。
在一种可能的实现方式中,该第二时间间隔基于终端设备的能力确定。
在一种可能的实现方式中,该第二时间间隔为零。
在一种可能的实现方式中,该第一时间间隔由高层信令配置。基于该方式,可以灵活地通过高层信令配置一个时间间隔。
在一种可能的实现方式中,该高层信令包括系统消息块SIB信令或非接入层NAS信令。
第二方面,本申请提供一种信息处理方法,该方法包括:终端设备接收唤醒信号,该唤醒信号中包括用户设备组的信息。
基于第二方面描述的方法,终端设备接收唤醒信号,该唤醒信号中包括用户设备组的信息。基于该方式,能够通过检测到唤醒信号来判断寻呼时机对应的用户设备组是否被唤醒,从而降低终端设备不必要的功耗。
在一种可能的实现方式中,该用户设备组的信息包括用户设备组的标识。
在一种可能的实现方式中,该用户设备组的标识基于该用户设备的标识、第一高层参数和第二高层参数计算得到。
在一种可能的实现方式中,该用户设备组的标识包括第一标识和第二标识。
在一种可能的实现方式中,该第一标识基于该用户设备的标识和第一高层参数计算得到;该第二标识基于该用户设备的标识和第二高层参数计算得到。基于该方式,能够保证用户设备组与寻呼时机对应的用户设备组具有等同性。
在一种可能的实现方式中,该第一标识为用户设备的标识除以第一高层参数得到的余数;该第二标识为用户设备的标识除以第二高层参数得到的余数。
在一种可能的实现方式中,该用户设备组的标识为用户设备的标识除以目标参数得到的余数,该目标参数为第一高层参数和第二高层参数的乘积。
在一种可能的实现方式中,该第一高层参数为计算寻呼帧PF时用到的、与用户设备分组相关的高层参数。
在一种可能的实现方式中,该第二高层参数为计算寻呼时机PO时用到的、与用户设备分组相关的高层参数。
第三方面,本申请提供了一种通信装置,该通信装置用于实现上述第一方面或第二方面及其任一种可能的实现方式中的方法的单元。
第四方面,本申请提供了一种通信装置,所述通信装置包括处理器,所述处理器用于执行第一方面或第二方面及其任一种可能的实现方式中的方法。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于从所述存储器调用所述程序代码执行第一方面或第二方面及其任一种可能的实现方式中的方法。
第六方面,本申请提供了一种通信装置,所述通信装置包括处理器和收发器,所述收发器,用于接收信号或者发送信号;所述处理器,用于执行第一方面或第二方面及其任一种可能的实现方式中的方法。
第七方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面或第二方面及其任一种可能的实现方式中的方法。
第八方面,本申请提供了一种芯片,该芯片,用于检测唤醒信号;该芯片,还用于在第一时间点后监听第一PDCCH。
第九方面,本申请提供了一种芯片,该芯片,用于接收唤醒信号,该唤醒信号中包括用户设备组的信息。
第十方面,本申请提供了一种模组设备,该模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:该电源模组用于为该模组设备提供电能;该存储模组用于存储数据和指令;该通信模组用于进行模组设备内部通信,或者用于该模组设备与外部设备进行通信;该芯片模组用于:触发通信模组检测到唤醒信号;触发该通信模组监听在第一时间点后的PDCCH。
第十一方面,本申请提供了一种模组设备,其特征在于,该模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:该电源模组用于为该模组设备提供电能;该存 储模组用于存储数据和指令;该通信模组用于进行模组设备内部通信,或者用于该模组设备与外部设备进行通信;该芯片模组用于:触发通信模组接收唤醒信号,该唤醒信号中包括用户设备组的信息。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机存储介质中存储有计算机可读指令,当该计算机可读指令在通信装置上运行时,使得该通信装置执行上述第一方面或第二方面及其任一种可能的实现方式中的方法。
第十三方面,本申请提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面或第二方面的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种网络架构的示意图;
图2是本申请实施例提供的一种信息处理方法的流程图;
图3是本申请实施例提供的一种监听PDCCH的示意图;
图4是本申请实施例提供的另一种监听PDCCH的示意图;
图5是本申请实施例提供的另一种监听PDCCH的示意图;
图6是本申请实施例提供的另一种监听PDCCH的示意图;
图7是本申请实施例提供的另一种监听PDCCH的示意图;
图8是本申请实施例提供的一种第一时间间隔的示意图;
图9是本申请实施例提供的另一种第一时间间隔的示意图;
图10是本申请实施例提供的另一种第一时间间隔的示意图;
图11是本申请实施例提供的另一种第一时间间隔的示意图;
图12是本申请实施例提供的另一种第一时间间隔的示意图;
图13是本申请实施例提供的另一种第一时间间隔的示意图;
图14是本申请实施例提供的另一种第一时间间隔的示意图;
图15是本申请实施例提供的另一种第一时间间隔的示意图;
图16是本申请实施例提供的另一种第一时间间隔的示意图;
图17是本申请实施例提供的另一种第一时间间隔的示意图;
图18是本申请实施例提供的另一种第一时间间隔的示意图;
图19是本申请实施例提供的另一种第一时间间隔的示意图;
图20是本申请实施例提供的另一种信息处理方法的流程图;
图21是本申请实施例提供的一种通信装置的结构示意图;
图22是本申请实施例提供的另一种通信装置的结构示意图;
图23是本申请实施例提供的一种模组设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
需要说明的是,本申请的说明书和权利要求书中及上述附图中的属于“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先,对本申请实施例涉及的部分名词进行解释,以便于本领域技术人员的理解。
1、终端设备:
本申请实施例的终端设备是一种具有无线通信功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、新空口(new radio,NR)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件,本申请实施例对此并不限定。
2、网络设备:
本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为无线接入网(radio access network,RAN)设备、或接入网网元等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、 收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线网络络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。在一些实施例中,网络设备还可以与互联网协议(Internet Protocol,IP)网络进行通信,例如因特网(internet),私有的IP网,或其他数据网等。
3、同步信号块:
在新空口Rel-15标准中同步信号、广播信道是以同步信号块的方式发送的,并且引入了扫波束的功能。主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast Channel,PBCH)在同步信号块(SS/PBCH block,可简写为SSB)中。每个同步信号块可以看作是扫波束(beam sweeping)过程中的一个波束(模拟域)的资源。多个同步信号块组成一个同步信号突发(SS-burst)。同步信号突发也可以称为同步信号块突发(SSB burst)。同步信号突发可以看作是包含了多个波束的相对集中的一块资源。同步信号块在不同波束上重复发送,是一个扫波束的过程,通过扫波束的训练,用户设备可以感知在哪个波束上收到的信号最强。其中,L个同步信号块在一个5毫秒窗口内的时域位置是固定的。L个同步信号块的索引在时域位置上是连续排列的,从0到L-1。因此一个同步信号块在这个5毫秒窗口内的发射时刻是固定的,索引也是固定的。
本申请实施例可以应用于如图1所示的网络架构示意图,图1中所示的网络架构为无线通信系统的网络架构,该网络架构通常包括终端设备和网络设备,各个设备数量以及形态并不构成对本申请实施例的限定。其中,网络设备可以是基站(Base Station,BS),基站可以向多个终端设备提供通信服务,多个基站也可以向同一个终端设备提供通信服务。
需要说明的是,目前,处理同步信号块突发、监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)都使用整体接收机(即空闲态/非激活态/连接态共用的接收机),因此终端设备从睡眠醒来的转换功耗(能量)较大,检测寻呼相关的PDCCH或寻呼提前指 示(paging early indication,PEI)的功耗也较大。该整体接收机又可以称为常规接收机,具有完整的射频和基带处理架构。该整体接收机从功能模块上分可以包括同步信号块接收模块、数据/控制接收模块。
为了降低终端设备从深度睡眠醒来的转换功耗和检测信号的功耗,可以采用一个独立于整体接收机的低功耗接收机来检测唤醒信号。低功耗接收机检测唤醒信号后通知整体接收机,整体接收机将打开,并进行测量和数据收发(例如接收寻呼消息)。低功耗接收机接收到唤醒信号到整体接收机可以进行数据收发之间有一定的时间间隔,这个时间间隔会影响终端设备数据传输的时延。因此,如何降低数据传输的时延是一个亟待解决的问题。
为了能够降低数据传输的时延,提高数据传输效率,本申请实施例提供了一种信息处理方法。为了更好地理解本申请实施例提供的信息处理方法,下面对该信息处理方法进行详细描述。
请参阅图2,图2是本申请实施例提供的一种信息处理方法的流程图,该信息处理方法包括步骤201~步骤202。图2所示的方法执行主体可以为终端设备(示例性的,可参照图1所示),或主体可以为终端设备中的芯片。图2所示的方法执行主体以终端设备为例。其中:
201、终端设备检测到唤醒信号。
本申请实施例中,终端设备可以接收网络设备发送的唤醒信号,该唤醒信号用于唤醒终端设备对PDCCH进行监听。
可选的,该终端设备中配置有低功耗接收机和整体接收机。其中,低功耗接收机用于对唤醒信号进行检测。低功耗接收机检测一个唤醒信号后通知整体接收机,整体接收机将打开,并对PDCCH进行监听。
可选的,该唤醒信号可以包括用户设备组的信息,终端设备可以通过检测唤醒信号中的用户设备组信息判断是否需要被唤醒,从而降低终端设备的功耗。
202、终端设备监听在第一时间点后的PDCCH。
本申请实施例中,由于PDCCH是通过搜索空间集(Search Space Set,SSS)配置,具有周期性,因此网络设备和终端设备可以约定好第一时间点后,网络设备开始发送PDCCH,终端设备开始监听PDCCH。其中,该PDCCH可以是寻呼PDCCH或寻呼指示PDCCH等,在 此不作限定。基于该方式,有利于降低数据传输的时延,提高数据传输效率。
本申请实施例中的“监听PDCCH”等价于“监听PDCCH的监听时机(monitoring occasion)”。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH,该N为正整数。这样,终端设备可能需要监听在第一时间点后的第一个持续时间内的多个时隙内的PDCCH,增加了PDCCH监听的可靠性。
示例性的,如图3所示,图3是本申请实施例提供的一种监听PDCCH的示意图。该示例中,N为4,第一时间点为时隙1的开始时刻,持续时间为四个时隙,则第一个持续时间包括时隙1~时隙4,终端设备监听在第一时间点后的第一个持续时间内的PDCCH,即监听时隙1~时隙4内的PDCCH。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的第一个时隙内的PDCCH。这样,终端设备只需要监听在第一时间点后的第一个时隙内的PDCCH,这样减少终端设备的PDCCH监听。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:当持续时间未配置时,监听在第一时间点后的第一个时隙内的PDCCH。这样,当持续时间未配置时,终端设备只需要监听在第一时间点后的第一个时隙内的PDCCH,这样基站可以控制终端设备来减少终端设备的PDCCH监听。
示例性的,如图4所示,图4是本申请实施例提供的另一种监听PDCCH的示意图。该示例中,第一时间点为时隙1的开始时刻,持续时间未配置,终端设备监听在第一时间点后的第一个时隙内的PDCCH,即监听时隙1内的PDCCH。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的第一个持续时间内的前T个时隙的PDCCH,其中T为持续时间对应的时隙数,该T为正整数。此时,T小于等于持续时间内的时隙数。这样,终端设备可能需要监听在第一时间点后的第一个持续时间内的前T个时隙内的PDCCH,增加了PDCCH监听的可靠性,增加了基站控制的灵活性(可设置T值)。
示例性的,如图3所示,图3是本申请实施例提供的另一种监听PDCCH的示意图。该示 例中,第一时间点为时隙1的开始时刻,持续时间为四个时隙,T为2,终端设备监听在第一时间点后的前2个时隙的PDCCH,即监听时隙1和时隙2内的PDCCH。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前K个时隙的PDCCH,该K为正整数。这样,终端设备可能需要监听在第一时间点后的前K个时隙内的PDCCH,增加了PDCCH监听的可靠性,增加了基站控制的灵活性(可设置K值)。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:当持续时间未配置时,监听在第一时间点后的前H个时隙的PDCCH,该H为正整数。这样,当持续时间未配置时,终端设备可能需要监听在第一时间点后的前H个时隙内的PDCCH,增加了PDCCH监听的可靠性,增加了基站控制的灵活性(可设置H值)。
示例性的,如图4所示,图4是本申请实施例提供的另一种监听PDCCH的示意图。该示例中,H为2,第一时间点为时隙1的开始时刻,持续时间未配置,终端设备监听在第一时间点后的前2个时隙的PDCCH,即监听时隙1和时隙2内的PDCCH。
其中,持续时间表示PDCCH的持续时间(duration),或PDCCH的监听时机的持续时间(duration),或PDCCH的搜索空间集的持续时间,或PDCCH的搜索空间集的时隙级(slot level)的持续时间。一个持续时间内包括一个或多个时隙,一个时隙内的PDCCH占用一个或多个符号。网络设备可以通过搜索空间集内的高层参数(duration)给终端设备配置终端设备的该搜索空间集所对应的持续时间,也就是说,持续时间可以是该搜索空间集的一个参数。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个持续时间内的PDCCH,其中,该X为正整数。这样,终端设备可能需要监听在第一时间点后的前X个持续时间内的PDCCH(时隙数为一个持续时间内的时隙数乘以X),增加了PDCCH监听的可靠性。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个PDCCH周期内的PDCCH,其中,该X为正整数。这样,终端设备可能需要监听在第一时间点后的前X个PDCCH周期内的PDCCH(时隙数为一个持续时间内的时隙数乘以X),增加了PDCCH监听的可靠性。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH,其中,该X和W为正整数。W小于等于一个持续时间内的时隙数乘以X。这样,终端设备可能需要监听在第一时间点后的前X个持续时间内的多个时隙内的PDCCH,增加了PDCCH监听的可靠性。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个PDCCH周期内的W个时隙内的PDCCH,其中,该X和W为正整数。W小于等于一个持续时间内的时隙数乘以X。这样,终端设备可能需要监听在第一时间点后的前X个PDCCH周期内的多个时隙内的PDCCH,增加了PDCCH监听的可靠性。
示例性的,如图5所示,图5是本申请实施例提供的另一种监听PDCCH的示意图。该示例中,PDCCH的周期为3个时隙,第一时间点为时隙1的开始时刻,持续时间为两个时隙,则当X为2(W为2*2=4)时,第一个持续时间包括时隙1和时隙2,第二个持续时间包括时隙4和时隙5,终端设备监听在第一时间点后的第一个和第二个持续时间内的PDCCH,即时隙1、时隙2、时隙4和时隙5内的PDCCH。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前P个PDCCH周期内的PDCCH,其中,该P为正整数。这样,终端设备可能需要监听在第一时间点后的前F个PDCCH周期内的PDCCH,增加了PDCCH监听的可靠性,增加了基站控制的灵活性(可设置P值)。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:当持续时间未配置时,监听在第一时间点后的前F个PDCCH周期内的PDCCH,其中,该F为正整数。这样,终端设备可能需要监听在第一时间点后的前F个PDCCH周期内的PDCCH,增加了PDCCH监听的可靠性,增加了基站控制的灵活性(可设置F值)。
示例性的,如图6所示,图6是本申请实施例提供的另一种监听PDCCH的示意图。该示例中,F为2,PDCCH的周期为3个时隙,第一时间点为时隙1的开始时刻,持续时间未配置,终端设备监听在第一时间点后的前2个PDCCH周期内的PDCCH,即时隙1和时隙4内的PDCCH。
在一种可能的实现方式中,终端设备监听在第一时间点后的PDCCH,包括:监听在第一时间点后的时间窗内的PDCCH。其中,时间窗是终端设备配置的一个固定的时间范围。
示例性的,如图7所示,图7是本申请实施例提供的另一种监听PDCCH的示意图。该示例中,第一时间点为时隙1的开始时刻,时间窗的窗长为两个时隙,终端设备监听在第一时间点后的时间窗内的PDCCH,即监听时间窗内的时隙1和时隙2的PDCCH。
在一种可能的实现方式中,该第一时间点为预设的时间点(示例性的,可以称之为第二时间点)加上第一时间间隔。即:
第一时间点=预设的时间点+第一时间间隔
换言之,第一时间点和预设的时间点之间的时间间隔为第一时间间隔。由于低功耗接收机在预设的时间点检测到唤醒信号后,触发打开整体接收机,打开整体接收机需要一个时间间隔,因此该第一时间点为预设的时间点加上第一时间间隔,保证了整体接收机打开的时间间隔足够长,整体接收机有足够时间打开。
示例性的,如图8所示,图8是本申请实施例提供的一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,第一时间间隔包括两个时隙,持续时间包括两个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),终端设备监听在第一时间点后的第一个持续时间内的PDCCH,即监听时隙3和时隙4内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。由于低功耗接收机在预设的时间点检测到唤醒信号后,触发打开整体接收机,打开整体接收机需要一个时间间隔,这个过程的时间被包括在第二时间间隔内。终端设备需要具备在第二时间间隔内打开整体接收机的能力。该能力可以是网络设备和终端设备共同约定好的。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+第二时间间隔
示例性的,如图9所示,图9是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括两个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔)。该第一时间间隔可以是第二时间间隔,终端设备监听在第一 时间点后的第一个持续时间内的PDCCH,即监听时隙3和时隙4内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括与同步信号块周期或同步信号突发周期相关的时间间隔。同步信号块周期或同步信号突发周期可以指用于发送同步信号块或同步信号突发的半帧(half frame,长度为5毫秒)的周期。基于该方式,整体接收机打开后可以处理一个或多个同步信号块或同步信号突发,达到时频同步和/或测量的目的。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+与同步信号块周期或同步信号突发周期相关的时间间隔
示例性的,如图10所示,图10是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括五个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括与同步信号块周期或同步信号突发周期相关的时间间隔(示例为五个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙6和时隙7内的PDCCH。
可选的,该第一时间间隔包括Z个同步信号块周期或同步信号块突发周期,该Z为正整数。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+Z个同步信号块周期或同步信号突发周期
示例性的,如图10所示,图10是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括五个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),其中,Z为1,即该第一时间间隔包括一个同步信号块周期或同步信号突发周期(示例为五个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙6和时隙7内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+(第二时间间隔+与同步信号块周期或同步信号突发周期相关的时间间隔)
示例性的,如图11所示,图11是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括六个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括第二时间间隔(示例为一个时隙)加上与同步信号块周期或同步信号突发周期相关的时间间隔(示例为五个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙7和时隙8内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上Y个同步信号块周期,该Y为正整数;或者,该第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,该R为正整数。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。基于该方式,整体接收机打开后可以处理一个或多个同步信号块或同步信号突发周期,达到时频同步和/或测量的目的。
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+(第二时间间隔+Y个同步信号块周期或R个同步信号突发周期)
示例性的,如图11所示,图11是本申请实施例提供的另一种第一时间间隔的示意图,该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括六个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),其中,Y为1,即该第一时间间隔包括第二时间间隔(示例为一个时隙)加上一个同步信号块周期或同步信号突发周期(示例为五个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙7和时隙8内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括离参考的时间点(示例性的,可以称之为第三时间点)最近的M个同步信号块或同步信号突发所在时隙到预设的时间点的间隔, 该M为正整数。该参考的时间点为该预设的时间点加上第二时间间隔。离参考的时间点最近的M个同步信号块或同步信号突发可以是参考的时间点后的前M个同步信号块或者同步信号突发。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。基于该方式,可以保证整体接收机打开后有一个基准的时间点。
第一时间点=参考的时间点+第一时间间隔
=参考的时间点+离参考的时间点最近的M个同步信号块或同步信号突发所在时隙到参考的时间点的间隔
示例性的,如图12所示,图12是本申请实施例提供的另一种第一时间间隔的示意图,该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括四个时隙,第一时间点为参考的时间点加上第一时间间隔(第一时间间隔为参考的时间点和第一时间点之间的时间间隔),参考的时间点为预设的时间点加上第二时间间隔(第二时间间隔为参考的时间点和预设的时间点之间的时间间隔(示例为一个时隙)),其中,M为1,即该第一时间间隔包括离参考的时间点最近的一个同步信号块或同步信号突发所在时隙到参考的时间点的间隔(示例为三个时隙,即离参考的时间点最近的一个同步信号块或同步信号突发所在时隙为时隙5),终端设备监听在第一时间点后的第一个持续时间内的PDCCH,即监听时隙6和时隙7内的PDCCH。这里,离参考的时间点最近的M个同步信号块或同步信号突发所在时隙表示:离参考的时间点最近的M个同步信号块或同步信号突发的结束位置所在时隙,或者离参考的时间点最近的M个同步信号块或同步信号突发的传输结束位置所在时隙,或者离参考的时间点最近的M个同步信号块或同步信号突发所在半帧的结束位置所在时隙,或者离参考的时间点最近的M个用于同步信号块或同步信号突发传输的半帧的结束位置所在时隙。
在一种可能的实现方式中,该第一时间间隔包括A个同步信号块周期时间和B个跟踪参考信号的时间,该A和B为正整数。基于该方式,网络设备可以在发送完唤醒信号后,再发送跟踪参考信号,以方便整体接收机进行时频同步和/或测量。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+A个同步信号块周期+B个跟踪参考信号周期)
示例性的,如图13所示,图13是本申请实施例提供的另一种第一时间间隔的示意图,该示例中,A为1,B为1,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括七个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括第二时间间隔(示例为一个时隙)加上1个同步信号块周期(示例为五个时隙)和1个跟踪参考信号周期(示例为两个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙8和时隙9内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,该C和D为正整数。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+(第二时间间隔+C个同步信号块周期+D个跟踪参考信号周期)
示例性的,如图14所示,图14是本申请实施例提供的另一种第一时间间隔的示意图,该示例中,C为2,D为1,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括13个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括第二时间间隔(示例为一个时隙)加上2个同步信号块周期(示例为一个同步信号块周期包括五个时隙)和1个跟踪参考信号周期(示例为两个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙14和时隙15内的PDCCH。
又示例性的,如图15所示,图15是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,C为1,D为1,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括八个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括第二时间间隔(示例为一个时隙)加上1个同步信号块周期(示例为五个时隙)和1个跟踪参考信号周期(示例为两个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙9和时隙10内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括离参考的时间点最近的E个同步信号块和F个跟踪参考信号所在时隙到预设的时间点的间隔,该E和F为正整数,该参考的时间点为该预设的时间点加上第二时间间隔。离参考的时间点最近的E个同步信号块和F个跟踪参考信号可以是参考的时间点后的前E个同步信号块和F个跟踪参考信号。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。基于该方式,利用参考的时间点可以保证整体接收机打开后有一个基准时间点。即:
第一时间点=参考的时间点+第一时间间隔
=参考的时间点+(离参考的时间点最近的E个同步信号块和F个跟踪参考信号所在时隙到参考的时间点的间隔)
示例性的,如图16所示,图16是本申请实施例提供的另一种第一时间间隔的示意图,该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括七个时隙,第一时间点为参考的时间点加上第一时间间隔(第一时间间隔为参考的时间点和第一时间点之间的时间间隔),参考的时间点为预设的时间点加上第二时间间隔(第二时间间隔为参考的时间点和预设的时间点之间的时间间隔(示例为一个时隙)),其中,E为1,F为1,即该第一时间间隔包括离参考的时间点最近的一个同步信号块和一个跟踪参考信号所在时隙到参考的时间点的间隔(示例为七个时隙,即离参考的时间点最近的一个同步信号块和一个跟踪参考信号所在时隙为时隙8),终端设备监听在第一时间点后的第一个持续时间内的PDCCH,即监听时隙9和时隙10内的PDCCH。这里,离参考的时间点最近的E个同步信号块和F个跟踪参考信号所在时隙到参考的时间点的间隔表示:离参考的时间点最近的E个同步信号块和F个跟踪参考信号的结束位置所在时隙,或者离参考的时间点最近的E个同步信号块和F个跟踪参考信号的传输结束位置所在时隙,或者离参考的时间点最近的E个同步信号块和F个跟踪参考信号所在半帧的结束位置所在时隙,或者离参考的时间点最近的用于E个同步信号块和F个跟踪参考信号传输的半帧的结束位置所在时隙。本实现方式中,同步信号块等价于同步信号突发。E个同步信号块和F个跟踪参考信号的结束位置可以为E个同步信号块和F个跟踪参考信号组成的整体的结束位置。E个同步信号块和F个跟踪参考信号的传输结束位置可以为E个同步信号块和F个跟踪参考信号组成的整体的传输结束位 置。E个同步信号块和F个跟踪参考信号所在半帧的结束位置可以为E个同步信号块和F个跟踪参考信号组成的整体所在半帧的结束位置。用于E个同步信号块和F个跟踪参考信号传输的半帧的结束位置可以为用于E个同步信号块和F个跟踪参考信号组成的整体的传输的半帧的结束位置。
在一种可能的实现方式中,该第一时间间隔包括前导序列的周期。基于该方式,网络设备可以在发送完唤醒信号后,再发送前导,以方便整体接收机进行时频同步和/或测量。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+前导序列的周期
示例性的,如图17所示,图17是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括两个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括前导序列的周期(示例为两个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙3和时隙4内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括第二时间间隔加上前导序列的周期。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。前导序列是帧结构里的一个特殊信号,具有时间短的特性,可以令整体接收机快速进行时频同步和/或测量。即:
第一时间点=预设的时间点+第一时间间隔
=预设的时间点+(第二时间间隔+前导序列的周期)
示例性的,如图18所示,图18是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括三个时隙,第一时间点为预设的时间点加上第一时间间隔(第一时间间隔为预设的时间点和第一时间点之间的时间间隔),该第一时间间隔包括第二时间间隔(示例为一个时隙)加上前导序列的周期(示例为两个时隙),终端设备监听在第一时间点后的第一个持续时间内的第一个时隙内的PDCCH,即监听时隙4和时隙5内的PDCCH。
在一种可能的实现方式中,该第一时间间隔包括离参考的时间点最近的前导序列所在时隙到预设的时间点的间隔,该参考的时间点为该预设的时间点加上第二时间间隔。其中,第二时间间隔可以是通过协议预定义的,也可以是由网络设备配置的,还可以是由终端设备基于某一策略或算法确定。基于该方式,利用参考的时间点可以保证整体接收机打开后有一个基准时间点。即:
第一时间点=参考的时间点+第一时间间隔
=参考的时间点+(离参考的时间点最近的前导序列所在时隙到参考的时间点的间隔)
示例性的,如图19所示,图19是本申请实施例提供的另一种第一时间间隔的示意图。该示例中,预设的时间点为时隙1的开始时刻,持续时间包括两个时隙,第一时间间隔包括三个时隙,第一时间点为参考的时间点加上第一时间间隔(第一时间间隔为参考的时间点和第一时间点之间的时间间隔),参考的时间点为预设的时间点加上第二时间间隔(第二时间间隔为参考的时间点和预设的时间点之间的时间间隔(示例为一个时隙)),该第一时间间隔包括离参考的时间点最近的前导序列所在时隙到参考的时间点的间隔(示例为三个时隙,即离参考的时间点最近的前导序列所在时隙为时隙4),终端设备监听在第一时间点后的第一个持续时间内的PDCCH,即监听时隙5和时隙6内的PDCCH。这里,离参考的时间点最近的前导序列所在时隙表示:离参考的时间点最近的前导序列的结束位置所在时隙,或者离参考的时间点最近的前导序列的传输结束位置所在时隙,或者离参考的时间点最近的前导序列所在半帧的结束位置所在时隙,或者离参考的时间点最近的前导序列传输的半帧的结束位置所在时隙。
在一种可能的实现方式中,该第二时间间隔为零。也就是说,上述可能的方式中,该第一时间间隔包括的第二时间间隔可以不存在。
在一种可能的实现方式中,该预设的时间点为唤醒信号的序列中的一个位置。可选的,该预设的时间点为该唤醒信号的序列的结束位置。基于该方式,能够保证终端设备和网络设备有一个基准时间点。
在一种可能的实现方式中,该第二时间间隔基于终端设备的能力确定。由于低功耗接收机触发,整体接收机打开,这个过程的时间是跟终端设备的能力有关的,因此该第二时 间间隔可以基于终端设备的能力确定。
在一种可能的实现方式中,该第一时间间隔由高层信令配置。可选的,该高层信令包括系统消息块(System Information Block,SIB)信令或非接入层(Non Access Stratum,NAS)信令。基于该方式,可以灵活地通过高层信令配置一个时间间隔,其中,该时间间隔包含(大于或等于)一个预定义的时间间隔。需要说明的是,网络设备可以通过SIB信令(广播方式)配置该第一时间间隔,或者网络设备可以通过NAS信令(单播方式或专用频导方式)配置该第一时间间隔。
在图2所描述的方法中,终端设备检测到唤醒信号,监听在第一时间点后的PDCCH。因此,基于图2所描述的方法,有利于降低数据传输的时延,提高数据传输效率。
请参阅图20,图20是本申请实施例提供的另一种信息处理方法的流程图,该信息处理方法包括步骤2001和步骤2002。图20所示的方法执行主体可以为终端设备(示例性的,可参照图1所示),或主体可以为终端设备中的芯片。图20所示的方法执行主体以终端设备为例。其中:
2001、终端设备接收唤醒信号,该唤醒信号中包括用户设备组的信息。
2002、终端设备基于该唤醒信号判断是否被唤醒。
本申请实施例中,该唤醒信号包括用户设备组的信息,也就是说,唤醒信号的序列包含用户设备组的信息。因此,终端设备能够通过检测到唤醒信号来判断寻呼时机对应的用户设备组(UE group)是否被唤醒,从而降低终端设备不必要的功耗。另外,由于区分不同随机信号的序列可以通过随机信号的序列的生成器来区分,因此用户设备组的信息也可以包含在唤醒信号的序列的生成器(generator)中。可选的,终端设备接收网络设备发送的唤醒信号,其中,网络设备可以基于寻呼时机的高层参数确定用户设备组的信息。
在一种可能的实现方式中,该用户设备组的信息包括用户设备组的标识。用户设备组的标识隐含在寻呼时机中,寻呼时机可以定义为某个寻呼帧(Paging Frame,PF)内的位置,该寻呼帧的系统帧号跟第一高层参数有关,寻呼时机在该寻呼帧内的位置(索引)跟第二高层参数有关。因此,用户设备可以根据第一高层参数和第二高层参数,确定寻呼时机所在的寻呼帧的系统帧号和寻呼时机在该寻呼帧内的位置(索引)。换句话说,通过用户设备 组的标识、第一高层参数和第二高层参数,网络设备和终端设备可以约定好网络设备发送寻呼消息和终端设备接收寻呼消息的时间(即寻呼时机),网络设备在寻呼时机发送的寻呼消息就是针对该寻呼时机对应的用户设备组。因此,用户设备组的信息可以为用户设备组的标识。并且,类似上述寻呼时机的方式,用户设备组的标识通过用户设备的标识和高层参数来获得。
在一种可能的实现方式中,该用户设备组的标识基于用户设备的标识、第一高层参数和第二高层参数计算得到。
在一种可能的实现方式中,该用户设备组的标识包括第一标识和第二标识。进一步可选的,该第一标识基于用户设备的标识和第一高层参数计算得到;该第二标识基于用户设备的标识和第二高层参数计算得到。基于该方式,能够保证用户设备组与寻呼时机对应的用户设备组具有等同性。
可选的,该第一标识为用户设备的标识除以第一高层参数得到的余数;该第二标识为用户设备的标识除以第二高层参数得到的余数。
可选的,该用户设备组的标识为用户设备的标识除以目标参数得到的余数,该目标参数为第一高层参数和第二高层参数的乘积。
可选的,该第一高层参数为计算寻呼帧时用到的、与用户设备分组相关的高层参数。该第二高层参数为计算寻呼时机(Paging Occasion,PO)时用到的、与用户设备分组相关的高层参数。
在图20所描述的方法中,终端设备接收唤醒信号,该唤醒信号中包括用户设备组的信息。因此,基于图20所描述的方法,能够通过检测到唤醒信号来判断寻呼时机对应的用户设备组是否被唤醒,从而降低终端设备不必要的功耗。
请参见图21,图21示出了本申请实施例的一种通信装置的结构示意图。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。图21所示的通信装置210可以包括处理单元2101和通信单元2102。其中,处理单元2101,用于进行数据处理。通信单元2102集成有接收单元和发送单元。通信单元2102也可以称为收发单元。或者,也可将通信单元2102拆分为接收单元和发送单元。下文的处理单元2101和通信单元 2102同理,下文不再赘述。其中:
通信单元2102,用于检测到唤醒信号。
通信单元2102,用于监听在第一时间点后的PDCCH。
可选的,通信单元2102,监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH或者第一个时隙内的PDCCH,该N为正整数;或者,监听在第一时间点后的第一个时隙内的PDCCH。
可选的,通信单元2102,监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的PDCCH,包括:监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH或者前X个时隙内的PDCCH,该X和W为正整数;或者,监听在第一时间点后的前K个时隙内的PDCCH,该K为正整数。
可选的,通信单元2102,监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的时间窗内的PDCCH。
可选的,该第一时间点为第二时间点加上第一时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上Y个同步信号块周期,该Y为正整数;或者,该第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,该R为正整数。
可选的,该第一时间间隔包括离第三时间点最近的M个同步信号块或同步信号突发所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该M为正整数。
可选的,该第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,该C和D为正整数。
可选的,该第一时间间隔包括离第三时间点最近的E个同步信号块和F个跟踪参考信号所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该E和F为正整数。
可选的,该第一时间间隔包括第二时间间隔加上前导序列的周期。
可选的,该第一时间间隔包括离第三时间点最近的前导序列所在的时隙到第三时间点 的间隔,该第三时间点为第二时间点加上第二时间间隔。
可选的,该第二时间点为该唤醒信号的序列中的一个位置。
可选的,该第二时间点为该唤醒信号的序列的结束位置。
可选的,该第二时间间隔基于终端设备的能力确定。
可选的,该第二时间间隔为零。
可选的,该第一时间间隔由高层信令配置。
可选的,该高层信令包括系统消息块SIB信令或非接入层NAS信令。
上述通信装置例如可以是:芯片、或者芯片模组。关于上述实施例中描述的各个装置、产品包含的各个模块,其可以是软件模块,也可以是硬件模块,或者也可以部分是软件模块,部分是硬件模块。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
请参见图21,图21示出了本申请实施例的一种通信装置的结构示意图。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。图21所示的通信装置210可以包括处理单元2101和通信单元2102。其中,处理单元2101,用于进行数据处理。通信单元2102集成有接收单元和发送单元。通信单元2102也可以称为收发单元。或者,也可将通信单元2102拆分为接收单元和发送单元。下文的处理单元2101和通信单元2102同理,下文不再赘述。其中:
通信单元2102,用于接收唤醒信号,所述唤醒信号中包括用户设备组的信息。
可选的,该用户设备组的信息包括用户设备组的标识。
可选的,该用户设备组的标识基于该用户设备的标识、第一高层参数和第二高层参数计算得到。
可选的,该用户设备组的标识包括第一标识和第二标识。
可选的,该第一标识基于该用户设备的标识和第一高层参数计算得到;该第二标识基于该用户设备的标识和第二高层参数计算得到。
可选的,该第一标识为用户设备的标识除以第一高层参数得到的余数;该第二标识为用户设备的标识除以第二高层参数得到的余数。
可选的,该用户设备组的标识为用户设备的标识除以目标参数得到的余数,该目标参数为第一高层参数和第二高层参数的乘积。
可选的,该第一高层参数为计算寻呼帧PF时用到的、与用户设备分组相关的高层参数。
可选的,该第二高层参数为计算寻呼时机PO时用到的、与用户设备分组相关的高层参数。
上述通信装置例如可以是:芯片、或者芯片模组。关于上述实施例中描述的各个装置、产品包含的各个模块,其可以是软件模块,也可以是硬件模块,或者也可以部分是软件模块,部分是硬件模块。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
如图22所示为本申请实施例提供的另一种通信装置220,用于实现上述图2和图20中终端设备的功能。该装置可以是终端设备或用于终端设备的装置。用于终端设备的装置可以为终端设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置220包括至少一个处理器2220,用于实现本申请实施例提供的方法中终端设备的数据处理功能。通信装置220还可以包括通信接口2210,用于实现本申请实施例提供的方法中终端设备的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口2210用于通信装置220中的装置可以和其它设备进行通信。处理器2220利用通信接口2210收发数据,并用于实现上述方法实施例图2所述的方法。
通信装置220还可以包括至少一个存储器2230,用于存储程序指令和/或数据。存储器2230和处理器2220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2220可能和存储器2230协同操作。处理器2220可能执行存储器2230中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
当通信装置220开机后,处理器2220可以读取存储器2230中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器2220对待发送的数据进行基带处理后,输出基带信号至射频电路(图未示意),射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置220时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器2220,处理器2220将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器2220而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
本申请实施例中不限定上述通信接口2210、处理器2220以及存储器2230之间的具体连接介质。本申请实施例在图22中以存储器2230、处理器2220以及通信接口2210之间通过总线2240连接,总线在图22中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明, 并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图22中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置220具体是用于终端设备时,例如通信装置220具体是芯片或者芯片系统时,通信接口2210所输出或接收的可以是基带信号。通信装置220具体是终端设备时,通信接口2210所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、操作及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的操作可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
需要说明的是,该通信装置可以执行前述方法实施例中终端设备或接入网设备的相关步骤,具体可参见上述各个步骤所提供的实现方式,在此不再赘述。
对于应用于或集成于通信装置的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供了一种芯片,包括处理器和通信接口,该处理器被配置用于执行如下操作:检测到唤醒信号;监听在第一时间点后的PDCCH。
可选的,该芯片,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH或者第一个时隙内的PDCCH,该N为正整数;或者,监听在第一时间点后的第一个时隙内的PDCCH。
可选的,该芯片,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH或者前X个时隙内的PDCCH,该X和W为正整数;或者,监听在第一时间点后的前K个时隙内的PDCCH,该K为正整数。
可选的,该芯片,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的时间窗内的PDCCH。
可选的,该第一时间点为第二时间点加上第一时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上Y个同步信号块周期,该Y为正整数;或者,该第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,该R为正整数。
可选的,该第一时间间隔包括离第三时间点最近的M个同步信号块或同步信号突发所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该M为正整数。
可选的,该第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,该C和D为正整数。
可选的,该第一时间间隔包括离第三时间点最近的E个同步信号块和F个跟踪参考信号所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该E和F为正整数。
可选的,该第一时间间隔包括第二时间间隔加上前导序列的周期。
可选的,该第一时间间隔包括离第三时间点最近的前导序列所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔。
可选的,该第二时间点为该唤醒信号的序列中的一个位置。
可选的,该第二时间点为该唤醒信号的序列的结束位置。
可选的,该第二时间间隔基于终端设备的能力确定。
可选的,该第二时间间隔为零。
可选的,该第一时间间隔由高层信令配置。
可选的,该高层信令包括系统消息块SIB信令或非接入层NAS信令。
在一种可能的实现方式中,上述芯片包括至少一个处理器、至少一个第一存储器和至少一个第二存储器;其中,前述至少一个第一存储器和前述至少一个处理器通过线路互联,前述第一存储器中存储有指令;前述至少一个第二存储器和前述至少一个处理器通过线路互联,前述第二存储器中存储前述方法实施例中需要存储的数据。
对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬 件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供了一种芯片,包括处理器和通信接口,该处理器被配置用于执行如下操作:接收唤醒信号,所述唤醒信号中包括用户设备组的信息。
可选的,该用户设备组的信息包括用户设备组的标识。
可选的,该用户设备组的标识基于该用户设备的标识、第一高层参数和第二高层参数计算得到。
可选的,该用户设备组的标识包括第一标识和第二标识。
可选的,该第一标识基于该用户设备的标识和第一高层参数计算得到;该第二标识基于该用户设备的标识和第二高层参数计算得到。
可选的,该第一标识为用户设备的标识除以第一高层参数得到的余数;该第二标识为用户设备的标识除以第二高层参数得到的余数。
可选的,该用户设备组的标识为用户设备的标识除以目标参数得到的余数,该目标参数为第一高层参数和第二高层参数的乘积。
可选的,该第一高层参数为计算寻呼帧PF时用到的、与用户设备分组相关的高层参数。
可选的,该第二高层参数为计算寻呼时机PO时用到的、与用户设备分组相关的高层参数。
在一种可能的实现方式中,上述芯片包括至少一个处理器、至少一个第一存储器和至少一个第二存储器;其中,前述至少一个第一存储器和前述至少一个处理器通过线路互联,前述第一存储器中存储有指令;前述至少一个第二存储器和前述至少一个处理器通过线路互联,前述第二存储器中存储前述方法实施例中需要存储的数据。
对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
如图23所示,图23是本申请实施例提供的一种模组设备的结构示意图。该模组设备230 可以执行前述方法实施例中终端设备的相关步骤,该模组设备230包括:通信模组2301、电源模组2302、存储模组2303以及芯片模组2304。
其中,所述电源模组2302用于为所述模组设备提供电能;所述存储模组2303用于存储数据和指令;所述通信模组2301用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;所述芯片模组2304用于:触发通信模组检测到唤醒信号;触发该通信模组监听在第一时间点后的PDCCH。
可选的,芯片模组2304,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH或者第一个时隙内的PDCCH,该N为正整数;或者,监听在第一时间点后的第一个时隙内的PDCCH。
可选的,芯片模组2304,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH或者前X个时隙内的PDCCH,该X和W为正整数;或者,监听在第一时间点后的前K个时隙内的PDCCH,该K为正整数。
可选的,芯片模组2304,在监听在第一时间点后的PDCCH时,具体用于:监听在第一时间点后的时间窗内的PDCCH。
可选的,该第一时间点为第二时间点加上第一时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。
可选的,该第一时间间隔包括第二时间间隔加上Y个同步信号块周期,该Y为正整数;或者,该第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,该R为正整数。
可选的,该第一时间间隔包括离第三时间点最近的M个同步信号块或同步信号突发所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该M为正整数。
可选的,该第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,该C和D为正整数。
可选的,该第一时间间隔包括离第三时间点最近的E个同步信号块和F个跟踪参考信号所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔,该E和F为正整数。
可选的,该第一时间间隔包括第二时间间隔加上前导序列的周期。
可选的,该第一时间间隔包括离第三时间点最近的前导序列所在的时隙到第三时间点的间隔,该第三时间点为第二时间点加上第二时间间隔。
可选的,该第二时间点为该唤醒信号的序列中的一个位置。
可选的,该第二时间点为该唤醒信号的序列的结束位置。
可选的,该第二时间间隔基于终端设备的能力确定。
可选的,该第二时间间隔为零。
可选的,该第一时间间隔由高层信令配置。
可选的,该高层信令包括系统消息块SIB信令或非接入层NAS信令。对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
如图23所示,图23是本申请实施例提供的一种模组设备的结构示意图。该模组设备230可以执行前述方法实施例中终端设备的相关步骤,该模组设备230包括:通信模组2301、电源模组2302、存储模组2303以及芯片模组2304。
其中,所述电源模组2302用于为所述模组设备提供电能;所述存储模组2303用于存储数据和指令;所述通信模组2301用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;所述芯片模组2304用于:触发该通信模组接收唤醒信号,该唤醒信号中包括用户设备组的信息。
可选的,该用户设备组的信息包括用户设备组的标识。
可选的,该用户设备组的标识基于该用户设备的标识、第一高层参数和第二高层参数计算得到。
可选的,该用户设备组的标识包括第一标识和第二标识。
可选的,该第一标识基于该用户设备的标识和第一高层参数计算得到;该第二标识基于该用户设备的标识和第二高层参数计算得到。
可选的,该第一标识为用户设备的标识除以第一高层参数得到的余数;该第二标识为用户设备的标识除以第二高层参数得到的余数。
可选的,该用户设备组的标识为用户设备的标识除以目标参数得到的余数,该目标参数为第一高层参数和第二高层参数的乘积。
可选的,该第一高层参数为计算寻呼帧PF时用到的、与用户设备分组相关的高层参数。
可选的,该第二高层参数为计算寻呼时机PO时用到的、与用户设备分组相关的高层参数。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些操作可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知 悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的操作可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (35)

  1. 一种信息处理方法,其特征在于,所述方法包括:
    检测到唤醒信号;
    监听在第一时间点后的物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述监听在第一时间点后的PDCCH,包括:
    监听在第一时间点后的第一个持续时间内的N个时隙内的PDCCH,所述N为正整数;或者,监听在第一时间点后的第一个时隙内的PDCCH。
  3. 根据权利要求1所述的方法,其特征在于,所述监听在第一时间点后的PDCCH,包括:
    监听在第一时间点后的前X个持续时间内的W个时隙内的PDCCH,所述X和W为正整数;或者,监听在第一时间点后的前K个时隙内的PDCCH,所述K为正整数。
  4. 根据权利要求1所述的方法,其特征在于,所述监听在第一时间点后的PDCCH,包括:
    监听在第一时间点后的时间窗内的PDCCH。
  5. 根据权利要求1所述的方法,其特征在于,所述第一时间点为第二时间点加上第一时间间隔。
  6. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括第二时间间隔加上与同步信号块周期或同步信号突发周期相关的时间间隔。
  7. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括第二时间间隔加上Y个同步信号块周期,所述Y为正整数;或者,所述第一时间间隔包括第二时间间隔加上R个同步信号块突发周期,所述R为正整数。
  8. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括离第三时间点最近的M个同步信号块或同步信号突发所在的时隙到第三时间点的间隔,所述第三时间点为第二时间点加上第二时间间隔,所述M为正整数。
  9. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括第二时间间隔加上C个同步信号块周期和D个跟踪参考信号周期,所述C和D为正整数。
  10. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括离第三时间点最近的E个同步信号块和F个跟踪参考信号所在的时隙到第三时间点的间隔,所述第三时间点为第二时间点加上第二时间间隔,所述E和F为正整数。
  11. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括第二时间间隔加上前导序列的周期。
  12. 根据权利要求5所述的方法,其特征在于,所述第一时间间隔包括离第三时间点最近的前导序列所在的时隙到第三时间点的间隔,所述第三时间点为第二时间点加上第二时间间隔。
  13. 根据权利要求5或8或10或12所述的方法,其特征在于,所述第二时间点为所述唤醒信号的序列中的一个位置。
  14. 根据权利要求5或8或10或12所述的方法,其特征在于,所述第二时间点为所述唤醒信号的序列的结束位置。
  15. 根据权利要求6~12中任意一项所述的方法,其特征在于,所述第二时间间隔基于终端设备的能力确定。
  16. 根据权利要求6~12中任意一项所述的方法,其特征在于,所述第二时间间隔为零。
  17. 根据权利要求5~12中任意一项所述的方法,其特征在于,所述第一时间间隔由高层信令配置。
  18. 根据权利要求17所述的方法,其特征在于,所述高层信令包括系统消息块SIB信令或非接入层NAS信令。
  19. 一种信息处理方法,其特征在于,所述方法包括:
    接收唤醒信号,所述唤醒信号中包括用户设备组的信息。
  20. 根据权利要求19所述的方法,其特征在于,所述用户设备组的信息包括用户设备组的标识。
  21. 根据权利要求20所述的方法,其特征在于,所述用户设备组的标识基于所述用户设备的标识、第一高层参数和第二高层参数计算得到。
  22. 根据权利要求20所述的方法,其特征在于,所述用户设备组的标识包括第一标识和第二标识。
  23. 根据权利要求22所述的方法,其特征在于,所述第一标识基于所述用户设备的标识和第一高层参数计算得到;
    所述第二标识基于所述用户设备的标识和第二高层参数计算得到。
  24. 根据权利要求22所述的方法,其特征在于,所述第一标识为所述用户设备的标识除以第一高层参数得到的余数;
    所述第二标识为所述用户设备的标识除以第二高层参数得到的余数。
  25. 根据权利要求20所述的方法,其特征在于,所述用户设备组的标识为所述用户设备的标识除以目标参数得到的余数,所述目标参数为第一高层参数和第二高层参数的乘积。
  26. 根据权利要求22~25中任意一项所述的方法,其特征在于,所述第一高层参数为计算寻呼帧PF时用到的、与用户设备分组相关的高层参数。
  27. 根据权利要求22~25中任意一项所述的方法,其特征在于,所述第二高层参数为计算寻呼时机PO时用到的、与用户设备分组相关的高层参数。
  28. 一种通信装置,其特征在于,包括用于实现权利要求1~27中任意一项所述方法的单元。
  29. 一种通信装置,其特征在于,包括处理器和收发器;
    所述收发器,用于接收或发送信号;
    所述处理器,用于执行如权利要求1~27中任一项所述的方法。
  30. 根据权利要求29所述的通信装置,其特征在于,所述通信装置还包括存储器:
    所述存储器,用于存储计算机程序;
    所述处理器,用于从所述存储器中调用所述计算机程序,使得所述通信装置执行如权利要求1~27中任一项所述的方法。
  31. 一种芯片,其特征在于,
    所述芯片,用于检测到唤醒信号;
    所述芯片,还用于监听在第一时间点后的物理下行控制信道PDCCH。
  32. 一种芯片,其特征在于,
    所述芯片,用于接收唤醒信号,所述唤醒信号中包括用户设备组的信息。
  33. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以 及芯片模组,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;
    所述芯片模组用于:
    触发所述通信模组检测到唤醒信号;
    触发所述通信模组监听在第一时间点后的物理下行控制信道PDCCH。
  34. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以及芯片模组,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;
    所述芯片模组用于:
    触发所述通信模组接收唤醒信号,所述唤醒信号中包括用户设备组的信息。
  35. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~27中任一项所述的方法。
PCT/CN2021/143409 2021-08-24 2021-12-30 一种信息处理方法及通信装置 WO2023024388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110977697.8 2021-08-24
CN202110977697.8A CN115942438A (zh) 2021-08-24 2021-08-24 一种信息处理方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023024388A1 true WO2023024388A1 (zh) 2023-03-02

Family

ID=85321495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143409 WO2023024388A1 (zh) 2021-08-24 2021-12-30 一种信息处理方法及通信装置

Country Status (2)

Country Link
CN (1) CN115942438A (zh)
WO (1) WO2023024388A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200870A (zh) * 2020-01-07 2020-05-26 展讯通信(上海)有限公司 通信方法及装置
CN111294902A (zh) * 2019-07-05 2020-06-16 展讯通信(上海)有限公司 唤醒方法及装置、存储介质、终端
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
CN111385826A (zh) * 2020-01-09 2020-07-07 展讯通信(上海)有限公司 参考信号确定方法、装置、电子设备及存储介质
US20200351786A1 (en) * 2019-05-02 2020-11-05 Nokia Technologies Oy Determining PDCCH Monitoring During On-Duration When In Power Saving Mode
WO2021056469A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 一种定时器控制的方法和装置
TW202116093A (zh) * 2019-08-16 2021-04-16 美商高通公司 用於功率節省的甦醒行為指示

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
US20200351786A1 (en) * 2019-05-02 2020-11-05 Nokia Technologies Oy Determining PDCCH Monitoring During On-Duration When In Power Saving Mode
CN111294902A (zh) * 2019-07-05 2020-06-16 展讯通信(上海)有限公司 唤醒方法及装置、存储介质、终端
TW202116093A (zh) * 2019-08-16 2021-04-16 美商高通公司 用於功率節省的甦醒行為指示
WO2021056469A1 (zh) * 2019-09-27 2021-04-01 华为技术有限公司 一种定时器控制的方法和装置
CN111200870A (zh) * 2020-01-07 2020-05-26 展讯通信(上海)有限公司 通信方法及装置
CN111385826A (zh) * 2020-01-09 2020-07-07 展讯通信(上海)有限公司 参考信号确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115942438A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2019157758A1 (zh) 一种信息处理方法和装置
JP2016530837A (ja) OFDMAのPS−Poll送信のためのシステムおよび方法
TWI770418B (zh) 資訊傳輸方法、網路設備及終端
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
TW201944750A (zh) 節能信號的傳輸方法和設備
US12010651B2 (en) Wireless communication method, terminal, and network device
WO2023098845A1 (zh) 资源确定方法与装置、终端
CN116438889A (zh) 寻呼监听方法、装置、设备及存储介质
CN113677002A (zh) 一种通信方法及装置
WO2023020482A1 (zh) 通信方法与装置、终端和网络设备
CN114731580A (zh) 检测物理下行控制信道pdcch的方法以及装置
CN109104756B (zh) 唤醒方法、接入点和站点
WO2018177266A1 (zh) 数据传输的方法和装置
WO2023024388A1 (zh) 一种信息处理方法及通信装置
US20240357499A1 (en) Method for information processing and communication apparatus
CN115412860B (zh) 组呼配置、接收方法及装置、计算机可读存储介质
WO2023116692A1 (zh) 一种通信方法及相关装置
WO2024169986A1 (zh) 信号处理方法、装置以及设备
WO2023208098A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2022067828A1 (zh) 寻呼信息发送、监听方法及通信装置、系统
WO2023066152A1 (zh) 信息传输的方法和装置
US20230379828A1 (en) Wireless communication method, terminal device and network device
US12035278B2 (en) Wireless communication method and apparatus
CN113966636B (zh) 通信方法、设备及系统
WO2022027677A1 (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18686719

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954902

Country of ref document: EP

Kind code of ref document: A1