WO2021056407A1 - 一种高刷新率的波形映射方法及数字示波器 - Google Patents

一种高刷新率的波形映射方法及数字示波器 Download PDF

Info

Publication number
WO2021056407A1
WO2021056407A1 PCT/CN2019/108493 CN2019108493W WO2021056407A1 WO 2021056407 A1 WO2021056407 A1 WO 2021056407A1 CN 2019108493 W CN2019108493 W CN 2019108493W WO 2021056407 A1 WO2021056407 A1 WO 2021056407A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
column
display
data
code
Prior art date
Application number
PCT/CN2019/108493
Other languages
English (en)
French (fr)
Inventor
李振军
郑文明
吴乾科
Original Assignee
深圳市鼎阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鼎阳科技有限公司 filed Critical 深圳市鼎阳科技有限公司
Priority to PCT/CN2019/108493 priority Critical patent/WO2021056407A1/zh
Priority to CN201980006311.XA priority patent/CN111527412B/zh
Publication of WO2021056407A1 publication Critical patent/WO2021056407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0209Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form in numerical form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/029Software therefor

Definitions

  • the invention relates to the technical field of digital signal processing, in particular to a high refresh rate waveform mapping method and a digital oscilloscope.
  • the waveform refresh rate is used to indicate the maximum number of times the oscilloscope can capture a waveform per second, and is one of the important indicators for judging the performance of a digital oscilloscope.
  • the waveform refresh rate is a main direction for the development of contemporary digital oscilloscopes.
  • the ping-pong mechanism is often used for data acquisition processing in the prior art solutions, that is, the acquisition of one frame of data is performed at the same time as the acquisition of the previous frame.
  • the waveform mapping architecture is often composed of functional modules such as buffering, conversion, column histogram statistics, column peak detection, waveform mapping, and waveform display of the collected data.
  • the FPGA first stores the acquired data after the interpolation or trigger position synchronization is in the acquisition data buffer module, and then the acquisition data conversion module calculates the displayed value of each column according to the combination of the current time base, sampling rate, interpolation multiple, and number of columns in the waveform display area.
  • the number of points is N, and the collected data is converted, so that the data output by the conversion module for each clock belongs to the same column; the data output by the collected data conversion module is sent to the column histogram statistics module to count the vertical of the current frame and the current processing column The number of occurrences of each codeword in the direction; at the same time, the data output by the collected data conversion module is also sent to the column peak detection module to detect the maximum codeword C max and the minimum codeword C min on the current frame and the current column.
  • the waveform mapping storage module reads the statistical values of each codeword in C max and C min calculated by the column histogram statistics module one by one according to the detected C max and C min , taking time as the X axis (unit For column), take the code word as the Y axis (the unit is the row), and use the statistical result as the intensity value, so as to perform waveform mapping until the data in all columns are processed before starting a new frame of waveform processing.
  • the waveform display storage module moves the data to the waveform display storage module during the blanking time of the screen according to the characteristics of the liquid crystal display, and reads out the data in the module during the display time, converts it to RGB, and sends it to the display To display.
  • the waveform mapping mechanism used in the prior art can only process the waveform column by column, so that when N is less than L, the waveform cannot be processed in parallel with multiple columns.
  • the refresh rate is reduced; when mapping the waveform column by code word, the processing time of each column is not only related to the number of points displayed in each column N (ceil(N/L)), but also to the signal amplitude C max- C min is related, but as the signal amplitude becomes larger, the processing time of each frame will also become larger, which will cause the waveform refresh rate to decrease.
  • the main technical problem solved by the present invention is how to improve the waveform refresh rate of the digital oscilloscope.
  • this application provides a high refresh rate waveform mapping method and a digital oscilloscope.
  • an embodiment provides a waveform mapping method with a high refresh rate, including: successively acquiring multiple frames of acquired data of a signal, and each data point in the acquired data of each frame is sequentially numbered according to the output order Code each data point into the corresponding display column according to the number of each data point in the collected data of each frame, and use the code value of each data point and the serial number of the display column to form the coordinate code of the data point; Count the number of times each data point appears at the corresponding coordinate code in each frame of the collected data to obtain the column histogram statistical result, and count the maximum code value and minimum code value appearing in each display column to obtain the column Peak statistic result; according to the column histogram statistic result and the column peak statistic result, control the waveform mapping of the signal, and refresh the display brightness of each pixel in the area of the waveform mapping.
  • each data point in the collected data of each frame is compiled into a corresponding display column, and the code value of each data point and the serial number of the display column are used to form the coordinate code of the data point , Including: for each frame of the collected data, if the number and code value of each data point in the collected data of the frame are defined as S x and D j respectively , and every N data points are defined to form a display column, Then program the data points with the number S x in the range of 0 ⁇ N-1 into the first said display column, and program the data points with the number S x in the range of N ⁇ 2N-1 into the second said display column, in turn
  • each data point in the collected data until the frame is compiled into the corresponding display column, and I x represents the serial number of each display column; where the subscript x represents the collection of each frame The serial number of the data, the subscript j represents the serial number of each data point in the multiple frames of the collected data; for each data point in
  • the controlling the waveform mapping of the signal according to the statistical result of the column histogram and the statistical result of the column peak value, and refreshing the display brightness of each pixel in the area of the waveform mapping includes: from the waveform mapping mode of the signal Select one of the modes for waveform mapping, the waveform mapping modes include point display mode and line display mode; in the point display mode, read the statistics corresponding to each of the coordinate codes in the column histogram statistical results Value, and read the first maximum value and the second maximum value corresponding to each display column in the column peak statistical result; within the blanking time of the waveform mapping, the first maximum value in each display column
  • the display value of the pixel corresponding to each code value between the value and the second maximum value is set separately, and set to the statistical value corresponding to the coordinate encoding of I x and D j; within the display time of the waveform map, Perform waveform mapping on the signal according to the display value of each pixel, and change the display brightness of each pixel by the display value of each pixel; in the line display mode, read
  • an embodiment provides a digital oscilloscope, including: a buffer module for continuously acquiring multiple frames of acquisition data of a signal, and buffering each frame of the acquisition data, each frame of the acquisition Each data point in the data is sequentially numbered according to the output order; the encoding module is connected to the buffer module, and is used to program each data point into the corresponding display column according to the number of each data point in the collected data of each frame , The code value of each data point and the serial number of the display column are used to form the coordinate code of the data point; the statistics module is connected to the code module and is used to count the corresponding data points in the collected data of each frame.
  • the waveform display module is connected to the statistical module , For controlling the waveform mapping of the signal according to the column histogram statistical result and the column peak statistical result, and refreshing the display brightness of each pixel in the area of the waveform mapping.
  • the encoding module includes a first processing unit and a second processing unit; the first processing unit is used to encode each data point in the collected data of each frame into a corresponding display column; For the collected data, if the serial number and code value of each data point in the collected data of the frame are defined as S x and D j , and every N data points are defined to form a display column, the first processing unit will The data points with the number S x in the range of 0 ⁇ N-1 are compiled into the first said display column, the data points with the number S x in the range of N ⁇ 2N-1 are compiled into the second said display column, and so on, Until this frame, each data point in the collected data is compiled into the corresponding display column, and I x represents the serial number of each display column; where the subscript x represents the number of the collected data in each frame The serial number, subscript j represents the serial number of each data point in the multiple frames of the collected data; the second processing unit is used to compose the coordinate code of each data point; for each data
  • the statistical module includes a first statistical unit and a second statistical unit; the first statistical unit is used to encode a preset statistical value for each of the coordinates, if any data point in the collected data is in any frame
  • the coordinate code is formed with the same horizontal coordinate value and vertical coordinate value, then the statistical value corresponding to the coordinate code is accumulated by a numerical value; after the first statistical unit traverses a plurality of the collected data, according to the accumulated statistics The value determines the number of occurrences of the coordinate code corresponding to each data point to form a column histogram statistical result; the second statistical unit presets the first maximum value and the second maximum value for each display column, if It is detected that the maximum code value of each data point in the display column in any frame of the collected data is greater than the first maximum value, and/or the minimum code value is less than the second maximum value, then the corresponding said The first maximum value and/or the second maximum value; after the second statistical unit traverses a plurality of the collected data, each is determined according to the updated first maximum value
  • the first statistical unit After performing the waveform mapping of the signal once, the first statistical unit resets the statistical value corresponding to each of the coordinate codes, and the second statistical unit resets the first maximum value corresponding to each of the display columns And the second best value.
  • an embodiment provides a computer-readable storage medium including a program that can be executed by a processor to implement the waveform mapping method described in the above-mentioned first aspect.
  • the waveform mapping method includes: successively acquiring multiple frames of acquisition data of a signal, and each data point in each frame of acquisition data is sequentially numbered according to the output order; According to the number of each data point in each frame of collected data, each data point is compiled into the corresponding display column, and the code value of each data point and the serial number of the display column are used to form the coordinate code of the data point; statistics of each frame Collect the number of times that each data point appears at the corresponding coordinate code in the collected data, obtain the column histogram statistical result, and count the maximum code value and minimum code value appearing in each display column to obtain the column peak statistical result; according to the column histogram
  • the graph statistics result and the column peak statistics result control the waveform mapping of the signal, and refresh the display brightness of each pixel in the area of the waveform mapping.
  • the first aspect is that the new mechanism is adopted to compile each data point in each frame of collected data into the corresponding display column, so that the code value of each data point and the serial number of the display column can be used to form the coordinates of the data point.
  • Encoding so that the coordinate encoding can form a new storage structure to store the intensity value of each pixel (row/column intersection);
  • the column histogram statistical results record each data point in the corresponding coordinate encoding
  • the number of occurrences, the column peak statistical result records the maximum code value and the minimum code value appearing in each display column, then according to the column histogram statistical results and column peak statistical results control the signal waveform mapping, you can avoid the collection
  • the influence of the number of parallel points during data encoding output is helpful to realize the waveform mapping effect of parallel processing of multiple columns and improve the refresh rate of the waveform;
  • the third aspect when the statistical results of column histograms are obtained, even the number of display points in each display column When N is less than the number of parallel points L of the
  • this application uses the waveform display module in the digital oscilloscope to control the waveform mapping of the signal according to the column histogram statistical result and the column peak statistical result, and In the process of realizing the display brightness of each pixel in the area of the refresh waveform mapping, the line display operation can be completed at one time, which effectively reduces the impact of signal amplitude changes on the refresh rate.
  • FIG. 1 is a flowchart of the waveform mapping method in this application.
  • Figure 2 is a flow chart of the coordinate coding of data points
  • Figure 3 is a flow chart of statistically obtaining column histogram statistical results and column peak statistical results
  • Figure 4 is a flow chart of controlling the waveform mapping of signals
  • FIG. 5 is a schematic diagram of the structure of the waveform mapping device in this application.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • the waveform mapping method includes steps S100-S400, which will be described below.
  • step S100 multiple frames of collected data of the signal are continuously acquired, and each data point in the collected data is sequentially numbered according to the output order.
  • each data point in the collected data has a position serial number in the valid data stream, and the data points are sequentially output according to the position serial number.
  • the data serial number of the first clock is ⁇ L-1, L-2, ..1, 0 ⁇
  • the data sequence number of the second clock is ⁇ 2L-1, 2L-2, ..L+1, L ⁇
  • the data sequence number of the third clock is ⁇ 3L-1, 3L-2, ..2L+1, 2L ⁇ , and so on, you can mark each data point.
  • the data points in each frame of collected data are sequentially numbered according to the output order of the data, that is, for n*L data points contained in any frame of collected data . You can sequentially number each data point in the order from 0 to n*L, where n represents the total number of clocks occupied by each frame of data acquisition.
  • step S200 each data point is compiled into a corresponding display column according to the number of each data point in each frame of collected data, and the code value of each data point and the serial number of the display column are used to form the coordinate code of the data point.
  • this step S200 may include steps S210-S220, which are described as follows.
  • step S210 for each frame of collected data, the serial number and code value of each data point in the frame of collected data can be defined as S x and D j respectively , and every N data points can be defined to form a display column. Then, you can program the data points with the number S x in the range of 0 ⁇ N-1 into the first display column, and program the data points with the number S x in the range of N ⁇ 2N-1 into the second display column, and so on, All data points in the collected data until this frame are compiled into the corresponding display column.
  • I x can be used to represent the serial number of each display column; among them, the subscript x represents the serial number of the collected data of each frame, and the subscript j represents that each data point is in the multi-frame collected data.
  • the serial number is used to represent the serial number of each display column; among them, the subscript x represents the serial number of the collected data of each frame, and the subscript j represents that each data point is in the multi-frame collected data. The serial number.
  • any frame of collected data contains n*L data points
  • the number S x can be distributed in the order of 0 to n*L. If the multi-frame data acquisition (e.g., data frame grabber h) the valid data streams constituted with m * L data points (m >> n), D j in the subscript j 0 L may be distributed according to the order of m * , S x can be in the order of the subscript x is 0 to h distribution. If each frame of collected data can form k display columns, then I x can be distributed in the order of 0 to k.
  • the multi-frame data acquisition e.g., data frame grabber h
  • D j in the subscript j 0 L may be distributed according to the order of m *
  • S x can be in the order of the subscript x is 0 to h distribution. If each frame of collected data can form k display columns, then I x can be distributed in the order of 0 to k.
  • each data point not only has the serial number in the multi-frame acquisition data, but also the corresponding amplitude.
  • the code word (digital code form of the signal, often referred to as the binary code form) is usually used when the computer processes the acquired data.
  • the code value D j is used instead of the code word to express the amplitude, and the code value D j is the decimal or hexadecimal representation of the amplitude, compared to the code word Has a more intuitive display effect.
  • the display column here can be a data set or an array for storing multiple values corresponding to any column of pixels in the display area where the signal waveform on the display screen is located.
  • step S220 for each data point in the collected data of each frame, the code value D of the data point is used as the longitudinal coordinate value, and the serial number I x of the display column where the data point is located is used as the horizontal coordinate value to obtain the data.
  • the coordinate code of the point the coordinate code can be expressed as ⁇ I x , D j ⁇ .
  • the coordinates encoded ⁇ I x, D j ⁇ D j represents the specific useful data stream j-th code data point values (amplitude refers), I x accurate representation of the j-th data points are compiled The serial number of the display column in the xth frame of the incoming data.
  • the coordinate code ⁇ I x , D j ⁇ is used to represent the coordinates of each data point, the display column where the data point is located and the code value it has can be accurately displayed.
  • Step S300 Count the number of occurrences of each data point in the corresponding coordinate code in the collected data of each frame, obtain the column histogram statistical result, and count the maximum code value and minimum code value appearing in each display column to obtain the column peak value statistical results.
  • this step S300 may include steps S310-S340, which are respectively described as follows.
  • step S310 a statistical value is preset for each coordinate code. If any data point in any frame of collected data has the same horizontal coordinate value and vertical coordinate value at the coordinate code, then the statistics corresponding to the coordinate code The value accumulates a numerical value.
  • a statistical value can be set on the storage address, and the initial value of the statistical value is guaranteed to be 0. If there is a data point in the collected data of the xth frame, the code value of the data point can be made equal to D j , and the data point can also be coded into the display column with the serial number I x , then the coordinates are coded ⁇ I x , Add 1 to the corresponding statistical value of D j ⁇ .
  • step S320 after traversing a plurality of collected data, the number of occurrences of the coordinate code corresponding to each data point is determined according to the accumulated statistical value, and a column histogram statistical result is formed.
  • Step S330 preset the first maximum value and the second maximum value for each display column, if it is detected that the maximum code value of each data point in the display column in any frame of collected data is greater than the first maximum value, and/ Or the minimum code value is less than the second maximum value, then the corresponding first maximum value and/or second maximum value are updated.
  • the first maximum value of the display column is D max_o
  • the second maximum value is D min_o
  • the initial values of the first maximum value and the second maximum value are both 0. If each data point in the collected data of the x-th frame is compiled into the corresponding display column, it will be rearranged in each display column to form the current maximum code value D max and minimum code value D min . At this time, the following judgments can be made Operation: If D max is greater than D max_o , update D max_o to D max ; if D min is less than D min_o , update D min_o to D min .
  • Step S340 After traversing the multiple collected data, the maximum code value and the minimum code value appearing in each display column are respectively determined according to the updated first maximum value and the second maximum value to form a column peak statistical result.
  • step S330 are processed in the method of data collection for each frame, respectively, may be such that most of displaying a first value I x (or the second most value) of all frames within a column is collected in the display data comparison column
  • the maximum code value (or minimum code value) formed, the first maximum value and the second maximum value corresponding to each display column can be collected to form the column peak statistical result.
  • Step S400 controlling the waveform mapping of the signal according to the column histogram statistical result and the column peak statistical result, and refreshing the display brightness of each pixel in the area of the waveform mapping.
  • this step S400 may include steps S410-S440, which are respectively described as follows.
  • Step S410 selecting a mode from the waveform mapping modes of the signal to perform the waveform mapping, where the waveform mapping mode includes a dot display mode and a line display mode. If the point mapping mode is selected, step S420 is entered, and if the line mapping mode is selected, step S430 is entered.
  • Step S420 in the point display mode, read the statistical value corresponding to each coordinate code in the column histogram statistical result, and read the first maximum value and the second maximum value corresponding to each displayed column in the column peak statistical result.
  • the blanking time of the waveform mapping (it can also be considered as the blanking time of the display screen), display the pixel points corresponding to each code value between the first maximum value and the second maximum value in each display column
  • the values are set separately, and set to the statistical values corresponding to the coordinate coding of I x and D j ; in the display time of the waveform map (also can be considered as the display time of the display screen), the signal is adjusted according to the display value of each pixel Perform waveform mapping, and change the display brightness of each pixel by the display value of the pixel to ensure that the larger the display value, the higher the display brightness of the pixel.
  • Step S430 in the online display mode, read the statistical value corresponding to each coordinate code in the column histogram statistical result, and read the first maximum value and the second maximum value corresponding to each display column in the column peak statistical result;
  • the blanking time of the waveform mapping (also can be considered as the blanking time of the display screen), the display value of the pixel corresponding to each code value between the first maximum value and the second maximum value in each display column Set separately, set to the statistical value corresponding to the coordinate codes of I x and D j ; if the statistical value corresponding to any one of the coordinate codes is zero, set the display value of the corresponding pixel to the first value (such as 1) ;
  • waveform mapping is performed on the signal according to the display value of each pixel, and the display brightness of the pixel is changed by the display value of each pixel .
  • the display value of each pixel corresponding to each display column will be set. Even if the statistical value is equal to 0, the display value of the corresponding pixel must be set to 1 to ensure that each The pixels all have a certain display brightness. It is easy for a technician to understand that the display position and display brightness of each pixel can help the technician to accurately understand the time-domain characteristics of the signal waveform, so that the purpose of observing and analyzing the signal can be achieved more intuitively.
  • Step S440 enter this step after step S420 or step S430 is completed.
  • the statistical value corresponding to each coordinate code needs to be reset, and the corresponding statistical value of each display column needs to be reset.
  • the first maximum value and the second maximum value For example, restore the statistical value corresponding to the coordinate code ⁇ I x , D j ⁇ to the initial value 0, and restore the first maximum value and the second maximum value corresponding to the display column with the serial number I x to the initial value 0.
  • each data point in each frame of collected data is compiled into a corresponding display column
  • the code value of each data point and the serial number of the display column can be used to form the coordinate code of the data point, so that the coordinate code can form a new storage structure to store the data of each pixel (row/column intersection) Intensity value
  • the column histogram statistics records the number of times each data point appears at the corresponding coordinate code
  • the column peak statistics records the maximum code value and minimum code value appearing in each display column
  • This application essentially uses self-generated coordinate codes to perform column histogram statistics and column peak statistics, thereby realizing a statistical value mapping mechanism, replacing the existing technology
  • the separate mapping mechanism for each frame is adopted in this way to avoid the situation that each frame of collected data needs to be mapped separately, reduce the overhead time caused by the mapping, and improve the refresh rate; (5)
  • the statistical result controls the waveform mapping of the signal, and in the process of refreshing the display brightness of each pixel in the area of the waveform mapping, the line display operation can be completed at one time, effectively reducing the impact of signal amplitude changes on the refresh rate.
  • the present application also discloses a digital oscilloscope 1 correspondingly, which includes a buffer module 11, an encoding module 12, a statistics module 13 and a waveform display module 14.
  • the buffer module 11 is used to continuously acquire multiple frames of collected data of the signal, and buffer each frame of collected data, and each data point in each frame of collected data is sequentially numbered according to the output order.
  • the buffer module 11 can be connected with a signal sampling component (such as an ADC conversion module) in a digital oscilloscope to buffer the digital data after sampling, interpolation or trigger position synchronization.
  • a signal sampling component such as an ADC conversion module
  • the statistics module 13 is connected with the encoding module 12, and is used to count the number of times each data point appears at the corresponding coordinate encoding in the collected data of each frame, obtain the column histogram statistics result, and count the maximum code value appearing in each display column And the minimum code value to get the column peak statistical result.
  • the waveform display module 14 is connected to the statistics module 13 and is used for controlling the waveform mapping of the signal according to the column histogram statistical result and the column peak statistical result, and refreshing the display brightness of each pixel in the region of the waveform mapping.
  • the encoding module 12 includes a first processing unit 121 and a second processing unit 122.
  • the first processing unit 121 is used for compiling each data point in each frame of collected data into a corresponding display column. For example, for each frame of collected data, if you define the number and code value of each data point in the frame of collected data as S x and D j , and define that every N data points form a display column, the first processing unit Program the data points with the number S x in the range of 0 ⁇ N-1 into the first display column, program the data points with the number S x in the range of N ⁇ 2N-1 into the second display column, and so on until the frame Each data point in the collected data is compiled into the corresponding display column, and I x represents the serial number of each display column.
  • subscript x represents the serial number of the collected data in each frame
  • subscript j represents the serial number of each data point in the multi-frame collected data.
  • the second processing unit 122 is used to compose the coordinate coding of each data point. For example, for each data point in each frame of collected data, the second processing unit 122 may use the code value D of the data point as the longitudinal coordinate value, and the serial number I x of the display column where the data point is located as the horizontal coordinate value. Then the coordinate code of the data point is formed, and the coordinate code is expressed as ⁇ I x , D j ⁇ .
  • the second processing unit 122 For the specific functions of the second processing unit 122, reference may be made to step S220 in the first embodiment, which will not be repeated here.
  • the statistical module 13 includes a first statistical unit 131 and a second statistical unit 132. Both the first statistical unit 131 and the second statistical unit 132 receive the coordinate codes output from the encoding module 12, and send their respective statistical results to the waveform. Display module 14.
  • the first statistical unit 131 mainly plays a role of statistical storage of column histograms, and is specifically used to encode a preset statistical value for each coordinate. If any data point in any frame of collected data is formed at the coordinate encoding. If the horizontal coordinate value and the vertical coordinate value are the same, the statistical value corresponding to the coordinate code is accumulated by a numerical value; after the first statistical unit 131 traverses multiple collected data, the coordinate corresponding to each data point is determined according to the accumulated statistical value The number of occurrences at the code position forms a column histogram statistical result.
  • steps S310-S320 in the first embodiment, which will not be repeated here.
  • the second statistical unit 132 mainly plays a role of statistical storage of column peaks, and is specifically used to preset the first maximum value and the second maximum value for each display column. If any frame of collected data is detected in the display column If the maximum code value of each data point is greater than the first maximum value, and/or the minimum code value is less than the second maximum value, then the corresponding first maximum value and/or the second maximum value are updated; in the second statistics After traversing the multiple collected data, the unit 132 respectively determines the maximum code value and the minimum code value appearing in each display column according to the updated first maximum value and the second maximum value, and forms a column peak statistical result. For the specific functions of the second statistical unit 132, reference may be made to steps S330-S340 in the first embodiment, which will not be repeated here.
  • the digital oscilloscope 1 may also include a display screen 15, which is connected to the waveform display module 14, and is used to receive the mapping data output from the waveform display module 14, so as to compare the signal according to the mapping data. To display the waveform.
  • the waveform display module 14 mainly plays a role of controlling the signal to perform the waveform mapping display, and is specifically used to select a mode from the waveform mapping modes of the signal to perform the waveform mapping.
  • the waveform mapping mode here includes a dot display mode.
  • the selection process can be manual selection or the default selection mode of the system. There is no restriction here.
  • the waveform display module 14 can read the statistical value corresponding to each coordinate code in the column histogram statistical result, and read the first maximum value and the second maximum value corresponding to each display column in the column peak statistical result. Value, and the read statistical value, the first maximum value, and the second maximum value are moved to the waveform display module 14 for temporary storage.
  • the waveform display module 14 respectively sets the display values of the pixels corresponding to the respective code values between the first maximum value and the second maximum value in each display column, and sets them to be the same.
  • the coordinates of I x and D j encode the corresponding statistical values; within the display time of the display 15, the waveform display module 14 performs waveform mapping on the signal according to the display value of each pixel, and outputs the mapping data, and passes through each pixel’s
  • the display value changes the display brightness of the pixel to ensure that the larger the display value, the higher the display brightness of the pixel. It should be noted that, for the specific functions of the waveform display module 14, reference may be made to steps S410 to S430 in the first embodiment, which will not be repeated here.
  • the waveform display module 14 after the waveform display module 14 performs a waveform mapping on the signal, it can trigger the first statistical unit 131 to reset the statistical value corresponding to each coordinate code, and trigger the second statistical unit 132 to reset the corresponding display column.
  • the first maximum value and the second maximum value For example, the first statistical unit 131 restores the statistical value corresponding to the coordinate code ⁇ I x , D j ⁇ to the initial value 0, and the second statistical unit 132 restores the first maximum value and the second maximum value corresponding to the display column with the serial number I x To the initial value 0.
  • T processing ceil(M*N/L), where the function ceil() represents rounding up operation, M is the number of display columns in the area of the waveform mapping, and N is the number of data points in each display column Number, L is the number of parallel points (coordinate encoding) output by the encoding module.
  • the time to collect data requires 100 clock cycles.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: read-only memory, random access memory, magnetic disk, optical disk, hard disk, etc.
  • the computer executes the program to realize the above-mentioned functions.
  • the program is stored in the memory of the device, and when the program in the memory is executed by the processor, all or part of the above functions can be realized.
  • the program can also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • the program in the memory is executed by the processor, all or part of the functions in the foregoing embodiments can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种高刷新率的波形映射方法及数字示波器,包括:连续获取信号的多帧采集数据(S100);将每一帧采集数据中每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成数据点的坐标编码(S200);统计各帧采集数据中每个数据点在对应的坐标编码处出现的次数得到列直方图统计结果,且统计每个显示列内出现的最大码值和最小码值得到列峰值统计结果(S300);根据统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度(S400)。波形映射方法能够利用统计值映射机制代替现有技术中采用的每帧单独映射机制,可以避免每一帧采集数据都需要进行单独映射的情形发生,减少波形映射所带来的开销时间,提高刷新率。

Description

一种高刷新率的波形映射方法及数字示波器 技术领域
本发明涉及数字信号处理技术领域,具体涉及一种高刷新率的波形映射方法及数字示波器。
背景技术
在进行现代电子设计时,工程师需要特别的关注电子信号中那种瞬间出现的异常信号,如抖动、矮脉冲、低频干扰和瞬时误差等,往往需要用示波器捕获此类异常信号并进行分析和显示。波形刷新率用于表示示波器每秒钟能够捕获波形的最大次数,是评判数字示波器性能优劣的重要指标之一。通常,波形刷新率越高,代表示波器的死区时间越短,捕获异常信号的能力越强,因此,设计更高的波形刷新率是当代数字示波器发展的一个主要方向。
为了达到较高的刷新率,尤其是采样点数较少时达到高波形刷新率,现有技术方案中往往采用乒乓机制进行数据的采集处理,即在采集一帧数据的同时对采集的前一帧数据进行处理,使得采集处理一帧数据的周期由原来的T=(T 采集+T )变为现在的T=MAX(T 采集,T 处理),如此可以有效地提高刷新率,但采用的方法在波形显示时需要消耗大量的时间。
在现有技术方案中,往往通过采集数据的缓存、转换、列直方图统计、列峰值检测、波形映射和波形显示等功能模块来组成波形映射架构。FPGA首先将插值或触发位置同步后的采集数据存储到采集数据缓存模块中,而后采集数据转换模块根据当前时基、采样率、插值倍数、波形显示区域列数等组合情况计算出来每列显示的点数N,并且对采集数据进行转换,使得每个时钟该转换模块输出的数据都是属于同一列;采集数据转换模块输出的数据发送给列直方图统计模块,统计当前帧、当前处理列的垂直方向上各个码字出现的次数;同时,采集数据转换模块输出的数据也发送给列峰值检测模块,检测当前帧、当前列上的最大码字C max与最小码字C min。此后,波形映射存储模块根据检测到的C max与C min,逐个地将列直方图统计模块统计得到的C max与C min中各个码字的统计值读取 出来,以时间为X轴(单位为列),以码字为Y轴(单位为行),以统计结果为强度值,从而进行波形映射,直至所有列的数据都完成处理后再启动新的一帧的波形处理。最后,波形显示存储模块根据液晶显示屏的特性,在屏幕的消隐时间里将数据搬移到波形显示存储模块,并在显示时间里将该模块中的数据读取出来转换成RGB送给显示屏进行显示。
依据现有技术所采用波形映射机制可知,一帧数据的处理时间为T 处理=M*(ceil(N/L)+C max-C min),其中,ceil()为向上取整函数,M为液晶显示屏波形区域的列数,L为采集数据转换模块输出的并行点数的个数。由此可见,随着波形的幅度变大,C max-C min也将变大,且导致一帧波形的处理时间变长。假设波形区域列数M为1000,每列点数N为1,则使用线显模式下时,一帧数据的处理时间为T1=1000*(1+C max-C min),此时就算C max-C min值很小,处理完一帧数据的时间也需要1000个时钟周期,假设FPGA的处理时钟周期为8ns,则T1=1000*1*8ns=8us,意味着刷新率为F=1s/T1=12.5万。
综上所述,无论每列需要显示的点数N是多少,现有技术采用的波形映射机制都只能逐列地对波形进行处理,使得N小于L时,无法对波形进行多列并行处理,降低了刷新率;对波形进行列映射时需要逐码字进行映射,使得每列的处理时间除了跟每列显示的点数N有关系(ceil(N/L)),还跟信号幅度C max-C min有关系,然而随着信号幅度变大,每帧的处理时间也要变大,将导致波形刷新率降低。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明主要解决的技术问题是如何提高数字示波器的波形刷新速率。为解决上述技术问题,本申请提供了一种高刷新率的波形映射方法及数字示波器。
根据第一方面,一种实施例中提供一种高刷新率的波形映射方法,包括:连续获取信号的多帧采集数据,每一帧所述采集数据中的各个数据点按照输出次序进行顺序编号;根据每一帧所述采集数据中各个数据点的编号将每个数据点编入 相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码;统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果;根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。
所述根据每一帧所述采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码,包括:对于每一帧所述采集数据,若定义该帧所述采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列,则将编号S x处于0~N-1范围的数据点编入第一个所述显示列,将编号S x处于N~2N-1范围的数据点编入第二个所述显示列,依次类推,直至该帧所述采集数据中各个数据点均编入相应的所述显示列中,且以I x表示每个所述显示列的序号;其中,下标x表示每一帧所述采集数据的序号,下标j表示每个数据点在多帧所述采集数据中的序号;对于每一帧所述采集数据中的每个数据点,将该数据点的码值D j作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,所述坐标编码表示为{I x,D j}。
所述统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果,包括:为每个所述坐标编码预设统计值,若任意一帧所述采集数据中的任意一个数据点在该坐标编码处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值;在遍历多个所述采集数据之后,根据累加得到的统计值确定每个数据点对应的所述坐标编码处出现的次数,形成列直方图统计结果;为每个所述显示列预设第一最值和第二最值,若检测得到任意一帧所述采集数据中在该显示列内各个数据点的最大码值大于所述第一最值,和/或最小码值小于所述第二最值,则更新对应的所述第一最值和/或所述第二最值;在遍历多个所述采集数据之后,根据更新得到的所述 第一最值、所述第二最值分别确定每个所述显示列内出现的最大码值和最小码值,形成列峰值统计结果。
所述根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度,包括:从所述信号的波形映射模式中选择一种模式进行波形映射,所述波形映射模式包括点显示模式和线显示模式;在所述点显示模式下,读取所述列直方图统计结果中每个所述坐标编码对应的统计值,以及读取所述列峰值统计结果中每个所述显示列对应的第一最值和第二最值;在波形映射的消隐时间内,对每个所述显示列内第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的所述坐标编码对应的统计值;在波形映射的显示时间内,根据各个所述像素点的显示值对所述信号进行波形映射,且通过每个像素点的显示值改变该像素点的显示亮度;在所述线显示模式下,读取所述列直方图统计结果中每个所述坐标编码对应的统计值,以及读取所述列峰值统计结果中每个所述显示列对应的第一最值和第二最值;在波形映射的消隐时间内,对每个所述显示列内所述第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的所述坐标编码对应的统计值;若任意一个所述坐标编码对应的统计值为零,则将对应的像素点的显示值设置为第一值;在波形映射的显示时间内,根据各个所述像素点的显示值对所述信号进行波形映射,且通过每个所述像素点的显示值改变该像素点的显示亮度。
在对所述信号进行一次的波形映射之后,复位每个所述坐标编码对应的统计值,以及复位每个所述显示列对应的第一最值和第二最值。
根据第二方面,一种实施例中提供一种数字示波器,包括:缓存模块,用于连续获取信号的多帧采集数据,且对每一帧所述采集数据进行缓存,每一帧所述采集数据中的各个数据点按照输出次序进行顺序编号;编码模块,与所述缓存模块连接,用于根据每一帧所述采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码;统计模块,与所述编码模块连接,用于统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统 计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果;波形显示模块,与所述统计模块连接,用于根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。
所述编码模块包括第一处理单元和第二处理单元;所述第一处理单元用于将每一帧所述采集数据中的每个数据点编入相应的显示列中;对于每一帧所述采集数据,若定义该帧所述采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列,则所述第一处理单元将编号S x处于0~N-1范围的数据点编入第一个所述显示列,将编号S x处于N~2N-1范围的数据点编入第二个所述显示列,依次类推,直至该帧所述采集数据中各个数据点均编入相应的所述显示列中,且以I x表示每个所述显示列的序号;其中,下标x表示每一帧所述采集数据的序号,下标j表示每个数据点在多帧所述采集数据中的序号;第二处理单元,用于组成每个数据点的坐标编码;对于每一帧所述采集数据中的每个数据点,所述第二处理单元将该数据点的码值D作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,所述坐标编码表示为{I x,D j}。
所述统计模块包括第一统计单元和第二统计单元;所述第一统计单元用于为每个所述坐标编码预设统计值,若任意一帧所述采集数据中的任意一个数据点在该坐标编码处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值;在所述第一统计单元遍历多个所述采集数据之后,根据累加得到的统计值确定每个数据点对应的所述坐标编码处出现的次数,形成列直方图统计结果;所述第二统计单元为每个所述显示列预设第一最值和第二最值,若检测得到任意一帧所述采集数据中在该显示列内各个数据点的最大码值大于所述第一最值,和/或最小码值小于所述第二最值,则更新对应的所述第一最值和/或所述第二最值;在所述第二统计单元遍历多个所述采集数据之后,根据更新得到的所述第一最值、所述第二最值分别确定每个所述显示列内出现的最大码值和最小码值,形成列峰值统计结果。
在对所述信号进行一次的波形映射之后,所述第一统计单元复位每个所述坐标 编码对应的统计值,以及所述第二统计单元复位每个所述显示列对应的第一最值和第二最值。
根据第三方面,一种实施例中提供一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现上述第一方面中所述的波形映射方法。
发明的有益效果
有益效果
依据上述实施例的一种高刷新率的波形映射方法及数字示波器,该波形映射方法包括:连续获取信号的多帧采集数据,每一帧采集数据中的各个数据点按照输出次序进行顺序编号;根据每一帧采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码;统计各帧采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个显示列内出现的最大码值和最小码值,得到列峰值统计结果;根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。第一方面,由于采用新的机制将每一帧采集数据中的各个数据点编入相应的显示列中,从而可以利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码,使得该坐标编码能够形成新的存储结构来存储每个像素点(行/列交叉点)的强度值;第二方面,由于列直方图统计结果记录了每个数据点在对应的坐标编码处出现的次数,列峰值统计结果记录了每个显示列内出现的最大码值和最小码值,那么根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射时,可以避免受到采集数据在编码输出时并行点数的影响,利于实现多列并行处理的波形映射效果,提高波形的刷新率;第三方面,在统计得到列直方图统计结果时,即使在每个显示列的显示点数N小于采集数据在编码输出时的并行点数L的情况下,也可以以并行的方式对多列进行统计,如此能够减少直方图处理时间,有效地提高刷新率;第四方面,本申请实质上是利用自主生成的坐标编码来进行列直方图统计和列峰值统计,从而实现统计值映射机制,代替现有技术中采用的每帧单独映射机制,如此可以避免每一帧采集数据都需要单独映射的情形发生,减少波形映射带来的开销时间,提高刷新率;第五方面,本申请借 助数字示波器中的波形显示模块根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度的实现过程中,可以一次性完成线显示的操作,有效减少信号幅度变化对刷新率造成的影响。
对附图的简要说明
附图说明
图1为本申请中波形映射方法的流程图;
图2为组成数据点的坐标编码的流程图;
图3为统计得到列直方图统计结果和列峰值统计结果的流程图;
图4为控制对信号进行波形映射的流程图;
图5为本申请中波形映射装置的结构示意图。
发明实施例
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明 ,均包括直接和间接连接(联接)。
实施例一、
请参考图1,本申请公开一种高刷新率的波形映射方法,该波形映射方法包括步骤S100-S400,下面分别说明。
步骤S100,连续获取信号的多帧采集数据,这里的采集数据中的各个数据点按照输出次序进行顺序编号。
需要说明的是,采集数据中的每个数据点都在有效数据流具有一个位置序号,按照该位置序号对该数据点进行顺序输出,例如在有效数据流中,第一个时钟的数据序号为{L-1,L-2,..1,0},第二个时钟的数据序号为{2L-1,2L-2,..L+1,L},第三个时钟的数据序号为{3L-1,3L-2,..2L+1,2L},依次类推则可以对每个数据点进行标记。然而在本实施例中,是在每一帧采集数据中对其内的各个数据点按照数据的输出次序进行顺序编号,也就是说,对于任意一帧采集数据中包含的n*L个数据点,可以按照0至n*L的次序对每个数据点进行顺序编号,这里的n表示每一帧采集数据所占用的时钟总数。
步骤S200,根据每一帧采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码。在一个具体实施例中,见图2,该步骤S200可以包括步骤S210-S220,分别说明如下。
步骤S210,对于每一帧采集数据,可以定义该帧采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列。那么,可以将编号S x处于0~N-1范围的数据点编入第一个显示列,将编号S x处于N~2N-1范围的数据点编入第二个显示列,依次类推,直至该帧采集数据中各个数据点均编入相应的显示列中。为便于区分形成的各个显示列,则可以以I x表示每个显示列的序号;其中,下标x表示每一帧采集数据的序号,下标j表示每个数据点在多帧采集数据中的序号。
需要说明的是,若任意一帧采集数据包含有n*L个数据点,那么编号S x可以按照0至n*L的次序进行分布。若多帧采集数据(如h帧采集数据)构成的有效数据流包含有m*L个数据点(m>>n),则D j中下标j可以按照0至m*L的次序进行分 布,S x中的下标x可以0至h的次序进行分布。若每帧采集数据可以形成k个显示列,那么I x可以按照0至k的次序进行分布。
需要说明的是,每个数据点不仅具有在多帧采集数据中的序号,还有对应的幅值,在计算机处理采集数据时通常用码字(信号的数字代码形式,常指二进制代码形式)来表示幅值,为便于说明,这里用码值D j代替码字来对幅值进行表示,而码值D j就是幅值的十进制或者十六进制的表示形式,相比码字来说具有更直观的表示效果。
需要说明的是,这里的显示列可以是一个数据集合或者数组,用于存储显示屏幕上信号波形所在显示区域内任意一列像素所对应的多个数值。
步骤S220,对于每一帧采集数据中的每个数据点,将该数据点的码值D作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,坐标编码可以表示为{I x,D j}。
需要说明的是,坐标编码{I x,D j}中的D j具体表示有效数据流中第j个数据点的码值(即指幅值),I x准确表示第j个数据点被编入的第x帧采集数据内所在显示列的序号。本实施例中采用坐标编码{I x,D j}来表示每个数据点的坐标时,能够对该数据点所在的显示列以及所具有的码值进行准确的展示。
步骤S300,统计各帧采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个显示列内出现的最大码值和最小码值,得到列峰值统计结果。在一个具体实施例中,见图3,该步骤S300可以包括步骤S310-S340,分别说明如下。
步骤S310,为每个坐标编码预设统计值,若任意一帧采集数据中的任意一个数据点在该坐标编码处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值。
例如,对于坐标编码{I x,D j},将其视为一个存储地址,则可以在该存储地址上设置一个统计值,且保证该统计值的初始化数值为0。若第x帧采集数据中存在一个数据点,能够使得该数据点的码值等于D j,且该数据点也能够被编入序号为I x的显示列中,则将坐标编码{I x,D j}对应的统计值加1。
步骤S320,在遍历多个采集数据之后,根据累加得到的统计值确定每个数据点 对应的坐标编码处出现的次数,形成列直方图统计结果。
需要说明的是,在信号波形的一次刷新过程中,会获取多帧采集数据,采用步骤S310的方法对各帧采集数据进行统计之后,就可以得到每个坐标编码对应的统计值,从而集合该些统计值就可形成列直方图统计结果。列直方图统计结果能够反映出具有相同坐标值的数据点的出现次数。
步骤S330,为每个显示列预设第一最值和第二最值,若检测得到任意一帧采集数据中在该显示列内各个数据点的最大码值大于该第一最值,和/或最小码值小于该第二最值,则更新对应的第一最值和/或第二最值。
例如,对于序号为I x的显示列,可以定义该显示列的第一最值为D max_o,第二最值为D min_o,且设置第一值最值和第二最值的初始数值均为0。若将第x帧采集数据中的各个数据点编入相应的显示列之后,会在每一个显示列中重新排列形成当前的最大码值D max和最小码值D min,此时可以进行以下判断操作:如果D max大于D max_o,则将D max_o更新为D max;如果D min小于D min_o,则将D min_o更新为D min
步骤S340,在遍历多个采集数据之后,根据更新得到的第一最值、第二最值分别确定每个显示列内出现的最大码值和最小码值,形成列峰值统计结果。
需要说明的是,按照步骤S330的方法对各帧采集数据分别进行处理之后,可以使得第I x显示列内的第一最值(或第二最值)是所有帧采集数据在该显示列比较形成的最大码值(或最小码值),集合各个显示列对应的第一最值和第二最值就可以形成列峰值统计结果。
步骤S400,根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。在一个具体实施例中,见图4,该步骤S400可以包括步骤S410-S440,分别说明如下。
步骤S410,从信号的波形映射模式中选择一种模式进行波形映射,这里的波形映射模式包括点显示模式和线显示模式。若选择点映射模式则进入步骤S420,若选择线映射模式则进入步骤S430。
步骤S420,在点显示模式下,读取列直方图统计结果中每个坐标编码对应的统计值,以及读取列峰值统计结果中每个显示列对应的第一最值和第二最值。在 波形映射的消隐时间内(也可认为是显示屏幕的消隐时间内),对每个显示列内第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的坐标编码对应的统计值;在波形映射的显示时间内(也可认为是显示屏幕的显示时间内),根据各个像素点的显示值对信号进行波形映射,且通过每个像素点的显示值改变该像素点的显示亮度,保证显示值越大则像素点的显示亮度越高。
需要说明的是,在点显示模式下,仅仅对每个显示列所对应的各个像素点,且统计值大于1所对应的像素点进行显示数值设置,保证此类像素点可以具有一定的显示亮度。技术人员容易理解,通过各个像素点的显示位置和显示亮度可以帮助技术人员准确地了解到信号波形的时域特性,如此可以达到更加直观地观察信号和分析信号的目的。
步骤S430,在线显示模式下,读取列直方图统计结果中每个坐标编码对应的统计值,以及读取列峰值统计结果中每个显示列对应的第一最值和第二最值;在波形映射的消隐时间内(也可认为是显示屏幕的消隐时间内),对每个显示列内第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的坐标编码对应的统计值;若任意一个坐标编码对应的统计值为零,则将对应的像素点的显示值设置为第一值(如1);在波形映射的显示时间内(也可认为是显示屏幕的显示时间内),根据各个像素点的显示值对信号进行波形映射,且通过每个像素点的显示值改变该像素点的显示亮度。
需要说明的是,在线显示模式下,会对每个显示列所对应的各个像素点均进行显示数值设置,即使统计值等于0也要将所对应的像素点的显示值设置为1,保证各个像素点均具有一定的显示亮度。技术人员容易理解,通过各个像素点的显示位置和显示亮度可以帮助技术人员准确地了解到信号波形的时域特性,如此可以达到更加直观地观察信号和分析信号的目的。
步骤S440,在步骤S420或者步骤S430完成之后进入此步骤,在此步骤中,在对信号进行一次的波形映射之后,需要复位每个坐标编码对应的统计值,以及需要复位每个显示列对应的第一最值和第二最值。例如,恢复坐标编码{I x,D j}对应的统计值至初始数值0,恢复序号为I x的显示列对应的第一最值和第二最值至 初始数值0。
本领域的技术人员可以理解,本实施例中公开的波形映射方法可以带来以下的技术优势:(1)由于采用新的机制将每一帧采集数据中的各个数据点编入相应的显示列中,从而可以利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码,使得该坐标编码能够形成新的存储结构来存储每个像素点(行/列交叉点)的强度值;(2)由于列直方图统计结果记录了每个数据点在对应的坐标编码处出现的次数,列峰值统计结果记录了每个显示列内出现的最大码值和最小码值,那么根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射时,可以避免受到采集数据在编码输出时并行点数的影响,利于实现多列并行处理的波形映射效果,提高波形的刷新率;(3)在统计得到列直方图统计结果时,即使在每个显示列的显示点数N小于采集数据在编码输出时的并行点数L的情况下,也可以以并行的方式对多列进行统计,如此能够减少直方图处理时间,有效地提高刷新率;(4)本申请实质上是利用自主生成的坐标编码来进行列直方图统计和列峰值统计,从而实现统计值映射机制,代替现有技术中采用的每帧单独映射机制,如此可以避免每一帧采集数据都需要单独映射的情形发生,减少映射带来的开销时间,提高刷新率;(5)在根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度的实现过程中,可以一次性完成线显示的操作,有效减少信号幅度变化对刷新率造成的影响。
实施例二、
请参考图6,在实施例一中公开的波形映射方法的基础上,本申请还相应地公开一种数字示波器1,其包括缓存模块11、编码模块12、统计模块13和波形显示模块14。
缓存模块11用于连续获取信号的多帧采集数据,且对每一帧采集数据进行缓存,每一帧采集数据中的各个数据点按照输出次序进行顺序编号。缓存模块11可以与数字示波器中的信号采样部件(如ADC转换模块)进行连接,缓存采样、插值或者触发位置同步后的数字化数据。
编码模块12与缓存模块11连接,用于根据每一帧采集数据中各个数据点的编号 将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码。
统计模块13与编码模块12连接,用于统计各帧采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个显示列内出现的最大码值和最小码值,得到列峰值统计结果。
波形显示模块14与统计模块13连接,用于根据列直方图统计结果和列峰值统计结果控制对信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。
进一步地,见图5,编码模块12包括第一处理单元121和第二处理单元122。
其中,第一处理单元121用于将每一帧采集数据中的每个数据点编入相应的显示列中。例如,对于每一帧采集数据,若定义该帧采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列,则第一处理单元将编号S x处于0~N-1范围的数据点编入第一个显示列,将编号S x处于N~2N-1范围的数据点编入第二个显示列,依次类推,直至该帧采集数据中各个数据点均编入相应的显示列中,且以I x表示每个显示列的序号。需要说明的是,下标x表示每一帧采集数据的序号,下标j表示每个数据点在多帧采集数据中的序号。关于第一处理单元121的具体功能可以参考实施例一中的步骤S210,这里不再进行赘述。
其中,第二处理单元122用于组成每个数据点的坐标编码。例如,对于每一帧采集数据中的每个数据点,第二处理单元122可以将该数据点的码值D作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,所述坐标编码表示为{I x,D j}。关于第二处理单元122的具体功能可以参考实施例一中的步骤S220,这里不再进行赘述。
进一步地,统计模块13包括第一统计单元131和第二统计单元132,第一统计单元131和第二统计单元132均接收来自编码模块12输出的坐标编码,且将各自的统计结果发送至波形显示模块14。
其中,第一统计单元131主要起到列直方图的统计存储作用,具体用于为每个坐标编码预设统计值,若任意一帧采集数据中的任意一个数据点在该坐标编码 处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值;在第一统计单元131遍历多个采集数据之后,根据累加得到的统计值确定每个数据点对应的坐标编码处出现的次数,形成列直方图统计结果。关于第一统计单元131的具体功能可以参考实施例一中的步骤S310-S320,这里不再进行赘述。
其中,第二统计单元132主要起到列峰值的统计存储作用,具体用于为每个显示列预设第一最值和第二最值,若检测得到任意一帧采集数据中在该显示列内各个数据点的最大码值大于第一最值,和/或最小码值小于第二最值,则更新对应的所述第一最值和/或所述第二最值;在第二统计单元132遍历多个采集数据之后,根据更新得到的第一最值、第二最值分别确定每个显示列内出现的最大码值和最小码值,形成列峰值统计结果。关于第二统计单元132的具体功能可以参考实施例一中的步骤S330-S340,这里不再进行赘述。
在本实施例中,见图5,数字示波器1还可以包括显示屏15,该显示屏15与波形显示模块14连接,用于接收来自波形显示模块14输出的映射数据,以根据映射数据对信号的波形进行显示。
在一具体实施例中,波形显示模块14主要起到控制信号进行波形映射显示的作用,具体用于从信号的波形映射模式中选择一种模式进行波形映射,这里的波形映射模式包括点显示模式和线显示模式,此外,选择过程可以是人为选择,也可以是系统的默认选择模式,这里不做限制。在点显示模式下,波形显示模块14能够读取列直方图统计结果中每个坐标编码对应的统计值,以及读取列峰值统计结果中每个显示列对应的第一最值和第二最值,且将读取的统计值、第一最值、第二最值搬移至波形显示模块14上进行暂存。在显示屏15的消隐时间内,波形显示模块14对每个显示列内第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的坐标编码对应的统计值;在显示屏15的显示时间内,波形显示模块14根据各个像素点的显示值对信号进行波形映射,输出映射数据,且通过每个像素点的显示值改变该像素点的显示亮度,保证显示值越大则像素点的显示亮度越高。需要说明的是,关于第波形显示模块14的具体功能可以参考实施例一中的步骤S410-S430,这里不再进行 赘述。
在本实施例中,波形显示模块14在对信号进行一次的波形映射之后,可以触发第一统计单元131复位每个坐标编码对应的统计值,以及触发第二统计单元132复位每个显示列对应的第一最值和第二最值。例如,第一统计单元131恢复坐标编码{I x,D j}对应的统计值至初始数值0,第二统计单元132恢复序号为I x的显示列对应的第一最值和第二最值至初始数值0。
本领域的技术人员可以理解,本申请公开的数字示波器可以实现一种新的波形映射机制,采用该波形映射机制可以替换现有技术中的每帧映射机制,由此可以使得每一帧采样数据的处理时间为T处理=ceil(M*N/L),这里的函数ceil()表示向上取整运算,M为波形映射的区域内显示列的数目,N为每个显示列中数据点的数目,L为编码模块输出的并行点数(坐标编码)的个数。假设在M=1000,N=1,L=10,且选择线显示模式的情况下,一帧采集数据的处理时间为T1=1000*1/10=100,也就是说此时处理完一帧采集数据的时间需要100个时钟周期,假设处理器的处理时钟周期为8ns,则T1=100*8ns=800ns,意味着波形的刷新率为F=1s/T1=125万,这样的刷新率将远远大于现有技术中达到的12.5万,如此可以有效地、大幅度地提高信号波形的刷新速率。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以 限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (10)

  1. 一种高刷新率的波形映射方法,其特征在于,包括:
    连续获取信号的多帧采集数据,每一帧所述采集数据中的各个数据点按照输出次序进行顺序编号;
    根据每一帧所述采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码;
    统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果;
    根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。
  2. 如权利要求1所述的波形映射方法,其特征在于,所述根据每一帧所述采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码,包括:
    对于每一帧所述采集数据,若定义该帧所述采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列,则将编号S x处于0~N-1范围的数据点编入第一个所述显示列,将编号S x处于N~2N-1范围的数据点编入第二个所述显示列,依次类推,直至该帧所述采集数据中各个数据点均编入相应的所述显示列中,且以I x表示每个所述显示列的序号;其中,下标x表示每一帧所述采集数据的序号,下标j表示每个数据点在多帧所述采集数据中的序号;
    对于每一帧所述采集数据中的每个数据点,将该数据点的码值D j作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,所述坐标编码表示为{I x, D j}。
  3. 如权利要求2所述的波形映射方法,其特征在于,所述统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果,包括:
    为每个所述坐标编码预设统计值,若任意一帧所述采集数据中的任意一个数据点在该坐标编码处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值;在遍历多个所述采集数据之后,根据累加得到的统计值确定每个数据点对应的所述坐标编码处出现的次数,形成列直方图统计结果;
    为每个所述显示列预设第一最值和第二最值,若检测得到任意一帧所述采集数据中在该显示列内各个数据点的最大码值大于所述第一最值,和/或最小码值小于所述第二最值,则更新对应的所述第一最值和/或所述第二最值;在遍历多个所述采集数据之后,根据更新得到的所述第一最值、所述第二最值分别确定每个所述显示列内出现的最大码值和最小码值,形成列峰值统计结果。
  4. 如权利要求3所述的波形映射方法,其特征在于,所述根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度,包括:
    从所述信号的波形映射模式中选择一种模式进行波形映射,所述波形映射模式包括点显示模式和线显示模式;
    在所述点显示模式下,读取所述列直方图统计结果中每个所述坐标编码对应的统计值,以及读取所述列峰值统计结果中每个所述显示列对应的第一最值和第二最值;在波形映射的消隐时间内,对每个所述显示列内第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的所述坐标编码对应的统计值;在波形映射的显示时间内,根据各个所述像素点的显示值对所述信号进行波形映射,且通过每个像素点的显示 值改变该像素点的显示亮度;
    在所述线显示模式下,读取所述列直方图统计结果中每个所述坐标编码对应的统计值,以及读取所述列峰值统计结果中每个所述显示列对应的第一最值和第二最值;在波形映射的消隐时间内,对每个所述显示列内所述第一最值和第二最值之间的各个码值所对应的像素点的显示值分别进行设置,设置为同I x、D j的所述坐标编码对应的统计值;若任意一个所述坐标编码对应的统计值为零,则将对应的像素点的显示值设置为第一值;在波形映射的显示时间内,根据各个所述像素点的显示值对所述信号进行波形映射,且通过每个所述像素点的显示值改变该像素点的显示亮度。
  5. 如权利要求4所述的波形映射方法,其特征在于,在对所述信号进行一次的波形映射之后,复位每个所述坐标编码对应的统计值,以及复位每个所述显示列对应的第一最值和第二最值。
  6. 一种数字示波器,其特征在于,包括:
    缓存模块,用于连续获取信号的多帧采集数据,且对每一帧所述采集数据进行缓存,每一帧所述采集数据中的各个数据点按照输出次序进行顺序编号;
    编码模块,与所述缓存模块连接,用于根据每一帧所述采集数据中各个数据点的编号将每个数据点编入相应的显示列中,利用每个数据点的码值和所在显示列的序号组成该数据点的坐标编码;
    统计模块,与所述编码模块连接,用于统计各帧所述采集数据中每个数据点在对应的坐标编码处出现的次数,得到列直方图统计结果,以及统计每个所述显示列内出现的最大码值和最小码值,得到列峰值统计结果;
    波形显示模块,与所述统计模块连接,用于根据所述列直方图统计结果和所述列峰值统计结果控制对所述信号进行波形映射,且刷新波形映射的区域内各个像素点的显示亮度。
  7. 如权利要求6所述的数字示波器,其特征在于,所述编码模块包括 第一处理单元和第二处理单元;
    所述第一处理单元用于将每一帧所述采集数据中的每个数据点编入相应的显示列中;对于每一帧所述采集数据,若定义该帧所述采集数据中每个数据点的编号、码值分别为S x、D j,以及定义每N个数据点形成一个显示列,则所述第一处理单元将编号S x处于0~N-1范围的数据点编入第一个所述显示列,将编号S x处于N~2N-1范围的数据点编入第二个所述显示列,依次类推,直至该帧所述采集数据中各个数据点均编入相应的所述显示列中,且以I x表示每个所述显示列的序号;其中,下标x表示每一帧所述采集数据的序号,下标j表示每个数据点在多帧所述采集数据中的序号;
    第二处理单元,用于组成每个数据点的坐标编码;对于每一帧所述采集数据中的每个数据点,所述第二处理单元将该数据点的码值D j作为纵向坐标值,将该数据点所在显示列的序号I x作为横向坐标值,则组成得到该数据点的坐标编码,所述坐标编码表示为{I x,D j}。
  8. 如权利要求7所述的数字示波器,其特征在于,所述统计模块包括第一统计单元和第二统计单元;
    所述第一统计单元用于为每个所述坐标编码预设统计值,若任意一帧所述采集数据中的任意一个数据点在该坐标编码处形成有相同的横向坐标值和纵向坐标值,则对该坐标编码对应的统计值累加一个数值;在所述第一统计单元遍历多个所述采集数据之后,根据累加得到的统计值确定每个数据点对应的所述坐标编码处出现的次数,形成列直方图统计结果;
    所述第二统计单元为每个所述显示列预设第一最值和第二最值,若检测得到任意一帧所述采集数据中在该显示列内各个数据点的最大码值大于所述第一最值,和/或最小码值小于所述第二最值,则更新对应的所述第一最值和/或所述第二最值;在所述第二统计 单元遍历多个所述采集数据之后,根据更新得到的所述第一最值、所述第二最值分别确定每个所述显示列内出现的最大码值和最小码值,形成列峰值统计结果。
  9. 如权利要求8所述的数字示波器,其特征在于,在对所述信号进行一次的波形映射之后,所述第一统计单元复位每个所述坐标编码对应的统计值,以及所述第二统计单元复位每个所述显示列对应的第一最值和第二最值。
  10. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1-5中任一项所述的波形映射方法。
PCT/CN2019/108493 2019-09-27 2019-09-27 一种高刷新率的波形映射方法及数字示波器 WO2021056407A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/108493 WO2021056407A1 (zh) 2019-09-27 2019-09-27 一种高刷新率的波形映射方法及数字示波器
CN201980006311.XA CN111527412B (zh) 2019-09-27 2019-09-27 一种高刷新率的波形映射方法及数字示波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108493 WO2021056407A1 (zh) 2019-09-27 2019-09-27 一种高刷新率的波形映射方法及数字示波器

Publications (1)

Publication Number Publication Date
WO2021056407A1 true WO2021056407A1 (zh) 2021-04-01

Family

ID=71900673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108493 WO2021056407A1 (zh) 2019-09-27 2019-09-27 一种高刷新率的波形映射方法及数字示波器

Country Status (2)

Country Link
CN (1) CN111527412B (zh)
WO (1) WO2021056407A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616266B (zh) * 2022-10-11 2023-08-18 广州致远仪器有限公司 一种波形幅度值测量方法、装置、终端设备以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128371A (ja) * 1993-11-01 1995-05-19 Yokogawa Electric Corp デジタルオシロスコープ
US20030231187A1 (en) * 2002-06-06 2003-12-18 Dobyns Kenneth P. Architecture for improved display performance in a signal acquisition and display device
CN101413968A (zh) * 2008-09-30 2009-04-22 中国电子科技集团公司第四十一研究所 一种数字示波器及其操纵显示波形的方法
CN102435808A (zh) * 2011-10-12 2012-05-02 电子科技大学 一种数字三维示波器的波形显示方法
CN102998500A (zh) * 2012-12-24 2013-03-27 电子科技大学 一种数字三维示波器的波形数据处理方法
CN105954557A (zh) * 2016-04-29 2016-09-21 深圳市鼎阳科技有限公司 一种提高波形捕获率的示波器和方法
CN105974171A (zh) * 2016-04-29 2016-09-28 深圳市鼎阳科技有限公司 一种快速实现线显示的示波器和方法
CN109001514A (zh) * 2018-06-21 2018-12-14 电子科技大学 一种基于三维波形映射图像的参数测量与标记方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598509A (en) * 1992-08-28 1997-01-28 Hitachi, Ltd. Method of configuring a neural network and a diagnosis/recognition system using the same
CN202770889U (zh) * 2012-05-08 2013-03-06 张兴杰 具有显示三维波形信息的高刷新率数字示波器
CN102680755A (zh) * 2012-05-08 2012-09-19 张兴杰 具有显示三维波形信息的高刷新率数字示波器
CN105043302B (zh) * 2015-07-30 2017-07-14 中国科学院长春光学精密机械与物理研究所 一种单幅载波干涉条纹成像质量实时监测调整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128371A (ja) * 1993-11-01 1995-05-19 Yokogawa Electric Corp デジタルオシロスコープ
US20030231187A1 (en) * 2002-06-06 2003-12-18 Dobyns Kenneth P. Architecture for improved display performance in a signal acquisition and display device
CN101413968A (zh) * 2008-09-30 2009-04-22 中国电子科技集团公司第四十一研究所 一种数字示波器及其操纵显示波形的方法
CN102435808A (zh) * 2011-10-12 2012-05-02 电子科技大学 一种数字三维示波器的波形显示方法
CN102998500A (zh) * 2012-12-24 2013-03-27 电子科技大学 一种数字三维示波器的波形数据处理方法
CN105954557A (zh) * 2016-04-29 2016-09-21 深圳市鼎阳科技有限公司 一种提高波形捕获率的示波器和方法
CN105974171A (zh) * 2016-04-29 2016-09-28 深圳市鼎阳科技有限公司 一种快速实现线显示的示波器和方法
CN109001514A (zh) * 2018-06-21 2018-12-14 电子科技大学 一种基于三维波形映射图像的参数测量与标记方法

Also Published As

Publication number Publication date
CN111527412A (zh) 2020-08-11
CN111527412B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US7543173B2 (en) Timestamp generator
JP2001352350A (ja) 連続ビットストリームの統計的アイダイアグラムによる測定装置及び方法
CN110672899B (zh) 一种用于数字示波器的眼图重构方法及存储介质
CN112199010B (zh) 一种全存储深度测量方法及数字示波器、存储介质
CN109725185A (zh) 一种实现波形快速捕获的示波器及其运行方法
WO2021056407A1 (zh) 一种高刷新率的波形映射方法及数字示波器
TW201301124A (zh) 對於由一資料串流中所重新產生之時脈訊號之調整
US6621443B1 (en) System and method for an acquisition of data in a particular manner
CN103558434B (zh) 一种快速定位数字示波器触发点系统
CN106324312B (zh) 一种示波器垂直方向上快速精准读取数据的方法及示波器
CN110749763A (zh) 一种基于i2s信号的触发方法及示波器
CN110887984A (zh) 一种支持眼图重构的数字示波器
US11683605B2 (en) Image sensor chip and sensing method thereof
CN101573962A (zh) 电影节奏检测
CN112285406B (zh) 一种高精度时域测量方法及装置、存储介质
JP2018501700A (ja) コンポジット映像ブロードキャスト信号の品質の測定方法、装置及び記憶媒体
CN103869123A (zh) 一种具有脉宽测量功能的示波器
US5581309A (en) Motion vector detecting circuit
TWI388202B (zh) 影像灰階分佈之統計裝置及其方法
US9541579B2 (en) Methods and systems for generating displays of waveforms
US3720875A (en) Differential encoding with lookahead feature
CN105204799A (zh) 一种多通道深存储逻辑分析仪显示刷新率的提高方法
CN205920142U (zh) 一种示波器
RU210463U1 (ru) Телевизионное устройство для измерения координат изображения объекта
CN113341190B (zh) 一种数字示波器的通道选中方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946425

Country of ref document: EP

Kind code of ref document: A1