WO2021056322A1 - 一种高温高压硬岩真三轴多功能剪切试验装置及方法 - Google Patents

一种高温高压硬岩真三轴多功能剪切试验装置及方法 Download PDF

Info

Publication number
WO2021056322A1
WO2021056322A1 PCT/CN2019/108106 CN2019108106W WO2021056322A1 WO 2021056322 A1 WO2021056322 A1 WO 2021056322A1 CN 2019108106 W CN2019108106 W CN 2019108106W WO 2021056322 A1 WO2021056322 A1 WO 2021056322A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading cylinder
cylinder
normal
loading
lateral
Prior art date
Application number
PCT/CN2019/108106
Other languages
English (en)
French (fr)
Inventor
冯夏庭
赵骏
田军
杨成祥
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to JP2020542326A priority Critical patent/JP7098188B2/ja
Priority to EP19925559.7A priority patent/EP3822611B1/en
Priority to US16/965,521 priority patent/US11326995B2/en
Publication of WO2021056322A1 publication Critical patent/WO2021056322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen

Definitions

  • the invention relates to the technical field of rock indoor loading test, in particular to a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device and method.
  • the rock sample is divided into upper and lower parts along the centerline of the shear direction. During the test, only half of the cross-section of the rock sample is subjected to force in the shear direction, and the other half of the cross-section is in the air.
  • the current shear test includes steady normal stress under quasi-static condition, steady normal stiffness test and steady normal stress shear test under long-term load retention.
  • the aging shear test under steady normal stiffness has not been realized by the test equipment so far. This is mainly due to the fact that the steady normal stiffness test needs to use the cooperative working mode of the hydraulic oil pump and the electro-hydraulic servo valve to control the normal piston at a high frequency.
  • this method is likely to increase the temperature of the oil source, which is easy to cause during long-term operation. The life of the oil source system is reduced.
  • temperature also plays a major role in the destruction of rocks. It is generally believed that the temperature of the rock mass will increase by 3°C every time the depth increases by 100 meters, and the temperature will reach about 180°C at a position of about 5000 meters underground. The temperature is one of the most important factors affecting the deformation and failure of deep hard rock.
  • the current conventional shear testing machines mostly use column and tie rod frames.
  • This frame has low rigidity. During the test, the frame can easily accumulate sufficient elastic strain energy, and the elastic strain energy is released after the peak, making the shear test process The curve is distorted after the peak.
  • the existing hydraulic cylinders of true three-axis equipment can only provide a constant force in each direction, and cannot perform full-coverage loading of the rock section during the shearing process.
  • the present invention provides a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device and method, which can apply high stress up to 1200MPa, and the maximum temperature can reach 250°C, realizing high-temperature and high-pressure hardening for the first time.
  • the quasi-static and time-effect shear test under Iwashen triaxial steady normal stress ⁇ stiffness While ensuring the rigidity of the equipment, the load is applied to the full section of the rock sample, and the method of heating in a high temperature box and cooling the front end of the actuator is adopted. The process of hard rock shear failure under real high temperature and high three-dimensional stress conditions is reproduced indoors.
  • a high-temperature and high-pressure hard rock true three-axis multifunctional shear test device including a hydraulic system, a left-end combined tangential loading cylinder, a right-end combined tangential loading cylinder, a front-end combined side loading cylinder, a back-end combined side loading cylinder, upper Normal loading cylinder, down normal loading cylinder, ring frame, lateral auxiliary push-pull frame, ring frame support platform, horizontal support platform, test box; the upper surface of the ring frame support platform is fixed with a ring frame and ring frame The back end of the support platform is provided with a horizontal support platform, and both the horizontal support platform and the ring frame support platform are fixedly installed on the ground.
  • the horizontal support platform is provided with a lateral auxiliary push-pull frame through the guide rail and the sliding block, and the left end of the ring frame has a through hole
  • the left end combined tangential loading cylinder is installed inside
  • the right end combined tangential loading cylinder is installed in the right end through hole of the ring frame
  • the upper normal loading cylinder and the lower method are respectively provided in the upper end through hole and the lower end through hole of the ring frame
  • a front-end combined lateral loading cylinder is installed in the front-end through hole of the lateral auxiliary push-pull frame
  • a rear-end combined lateral loading cylinder is provided in the rear-end through hole of the lateral auxiliary push-pull frame.
  • the rear end of the tangential loading cylinder, the right end combined tangential loading cylinder, the front combined side loading cylinder, the rear combined side loading cylinder, and the upper normal loading cylinder are provided with a displacement sensor at the rear end, the left end is combined with the tangential loading cylinder, and the right end
  • the combined tangential loading cylinder, the front combined lateral loading cylinder, the rear combined lateral loading cylinder, the upper normal loading cylinder and the lower normal loading cylinder are all connected to the hydraulic system and are installed in the rectangular through holes of the lateral auxiliary push-pull frame There is a test box, a shear box is placed in the test box, and a rock sample is placed in the shear box.
  • the left-end combined tangential loading cylinder includes a left-cut up loading cylinder, a left-cut down loading cylinder, and the left-cut-up loading cylinder is coaxially sleeved with a left-cut down loading cylinder;
  • the right-end combined tangential loading cylinder includes a right cut-up loading cylinder.
  • the upward loading cylinder, the right cutting downward loading cylinder, the right cutting downward loading cylinder is equipped with a right cutting upward loading cylinder on the coaxial line;
  • the left tangential upward loading cylinder and the right cutting downward loading cylinder have the same structure and are both sealed by the first seal
  • the cover, the first piston, the first connecting plate, the first load cell and the first force transmission plate are formed.
  • the inner cavity of the first cover is provided with a first piston, and the first piston is connected with one end of the first connecting plate.
  • the other end of a connecting plate is connected to one end of the first load cell, and the other end of the first load cell is connected to the first force transmission plate; the left tangential downward loading cylinder and the right tangential upward loading cylinder have the same structure, and both have the same structure.
  • the cover, the second reaction cylinder, the second piston, the second sealing flange, the second load cell and the second force transmission plate are composed, and the second cover is coaxially sleeved on the outer circular surface of the first piston , And the boss at one end of the second cover extends into the inner cavity of the first cover and is connected to the first cover in a sealed manner.
  • the other end of the second cover is coaxially sleeved with a second piston and a second reaction cylinder, and the second reaction
  • the force cylinder barrel is coaxially sleeved on the outer circular surface of the second piston
  • the second reaction cylinder barrel is fixedly installed with the second cover by bolts
  • the second piston extension end is connected with one end of the second sealing flange
  • the second sealing method The other end of the flange is connected with one end of the second load cell
  • the other end of the second load cell is connected with the second force transfer plate
  • the first force transfer plate is arranged through the second force transfer plate.
  • the front-end combined side loading cylinder includes a front-side up loading cylinder and a front-side down loading cylinder.
  • the front-side up-loading cylinder is coaxially sleeved with a front-side down-loading cylinder
  • the rear-end combined side loading cylinder includes The rear side upward loading cylinder and the rear side downward loading cylinder, the rear side upward loading cylinder inner cavity is coaxially sleeved with the rear side downward loading cylinder;
  • the front side up loading cylinder and the rear side up loading cylinder have the same structure from the upper side To cover, upper side reaction cylinder, upper side piston, upper side sealing flange, upper side load cell and upper side force transmission plate, the first boss of the upper side sealing plate is the same
  • the shaft is sleeved with an upper side piston
  • the upper side sealing plate second boss is coaxially sleeved with an upper side reaction cylinder tube
  • the inner surface of the upper side reaction cylinder tube is attached to the outer surface of the upper side
  • the lateral piston is connected to one end of the upper lateral sealing flange, the other end of the upper lateral sealing flange is connected to one end of the upper lateral load cell, and the other end of the upper lateral load sensor is connected to the upper lateral force transmission plate;
  • the side-down loading cylinder and the rear-side down loading cylinder have the same structure and are composed of a lower lateral cover, a lower lateral piston, a lower lateral connecting plate, a lower lateral load cell, and a lower lateral force transmission plate.
  • One end of the lower lateral cover extends to the inner cavity of the upper lateral cover, and the flange end of the lower lateral cover is fixedly installed with the upper lateral cover by bolts, and the lower lateral piston is installed in the inner cavity of the upper lateral cover, and The lower side piston is located in the sealed cavity formed by the upper side cover and the lower side cover.
  • the lower side piston extends out of the upper side sealing flange and the inner boss part of the upper side sealing flange is connected to one end of the lower side connecting plate.
  • the other end of the connecting plate is connected with one end of the lower lateral force sensor, the other end of the lower lateral force sensor is connected with the lower lateral force transmission plate, and the lower lateral force transmission plate is arranged through the upper lateral force transmission plate.
  • the upper normal loading cylinder is composed of an upper normal cover, an upper normal cylinder, an upper normal piston, an upper normal connecting plate, an upper normal force sensor and an upper normal force transmission plate.
  • the flange end of the cover is connected with the flange end of the upper normal cylinder.
  • the inner wall of the upper normal cylinder is provided with an upper normal piston.
  • the upper normal piston extends out of the upper normal cylinder and is connected to one end of the upper normal connecting plate.
  • the other end of the normal connecting plate is connected with one end of the upper normal load cell, and the other end of the upper normal load sensor is connected with the upper normal load transfer plate.
  • the lower normal loading cylinder is composed of a lower normal sealing plate, a lower normal piston, a lower normal sealing flange, a lower normal connecting plate, a lower normal force sensor and a lower normal force transmission plate.
  • the inner cavity of the normal sealing plate is provided with a lower normal piston, the flange end of the lower normal sealing plate is connected with the lower normal sealing flange, and the lower normal piston extends out of the lower normal sealing flange part and one end of the lower normal connecting plate Connected, the other end of the lower normal connecting plate is connected with one end of the lower normal load cell, and the other end of the lower normal load sensor is connected with the lower normal force transfer plate.
  • the front ends of the upper normal force transfer plate of the loading cylinder and the lower normal force transfer plate of the lower normal loading cylinder are both provided with two through cooling water through holes, and the cooling water through holes are connected to the cooling water device through a rubber tube.
  • the hydraulic system includes a first hydraulic station, a second hydraulic station, a third hydraulic station, a first accumulator, a second accumulator, a third accumulator, and a number of servo valves.
  • the high-pressure oil pipe is connected to the first accumulator, and the first accumulator is connected to the left tangential upward loading cylinder, the left tangential downward loading cylinder, and the upper normal loading cylinder through the high pressure resistant oil pipe and the servo valve;
  • the high-pressure oil pipe is connected to the second accumulator.
  • the second accumulator is connected to the right tangential upward loading cylinder, the right tangential downward loading cylinder and the downward normal loading cylinder through the high pressure resistant oil pipe and the servo valve;
  • the high-pressure oil pipe is connected to the third accumulator.
  • the third accumulator is connected to the front-end side loading cylinder and the rear-end side loading cylinder through the high-pressure resistant oil pipe and the servo valve.
  • the first hydraulic station, the second hydraulic station and The third hydraulic station has the same structure, including a hydraulic pump and an oil tank.
  • the oil inlet of the hydraulic pump is connected to the oil outlet of the oil tank through a high-pressure oil pipe.
  • the test box is a constant temperature box, which uses ceramic radiation heating to heat the rock sample in the shear box.
  • a method for a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device adopts a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device, including the following steps:
  • Step 1 Put the rock sample into the shear box, and install the deformation sensor between the rock sample and the shear box;
  • Step 2 Put the shear box containing the rock sample into the center of the test box;
  • Step 3 Push the lateral auxiliary push-pull frame away from the ring frame, and place the test box at the center of the lateral auxiliary push-pull frame;
  • Step 4 Push the lateral auxiliary push-pull frame into the ring frame, and place the rock sample at the geometric center of the ring frame;
  • Step 5 Load the cylinder up through the left cut, load the cylinder down the left, load the cylinder up the right cut, load the cylinder right down, load the cylinder up the front, load the cylinder down the front, and load the cylinder up the back.
  • the back side downward loading cylinder, the upper normal loading cylinder and the lower normal loading cylinder implement displacement control to complete the centering and clamping of the rock sample;
  • Step 6 Start the cooling water device, make the cooling water in the left tangent upward load cylinder, left tangent downward load cylinder, right tangent upward load cylinder, right tangent downward load cylinder, upper normal load cylinder and lower normal load cylinder Circulation in the transfer plate;
  • Step 7 Start the test box and preset the target temperature so that the temperature in the test box reaches the preset target temperature
  • Step 8 Start the first hydraulic station, the second hydraulic station, and the third hydraulic station.
  • the left tangent up load cylinder, the left cut down load cylinder, the right cut up load cylinder, the right cut down load cylinder, front The side-up loading cylinder, the front side-down loading cylinder, the rear side up-loading cylinder, the rear side-down loading cylinder, the upper normal loading cylinder and the lower normal loading cylinder implement force control at a constant loading rate to make the rock sample six
  • Step 9 Servo control the upper normal loading cylinder and the lower normal loading cylinder to ensure that the normal stress remains unchanged; then, through the force control, the left tangential up loading cylinder, the left cut down loading cylinder, the right tangential up loading cylinder, and the right Cut-down loading cylinder, front-side up-loading cylinder, front-side down-loading cylinder, rear-side up-loading cylinder, rear-side down-loading cylinder, implements force control at a constant loading rate to make shear and lateral surface stress Increase to the target value of lateral stress ⁇ p 1;
  • Step 10 Servo control front side up loading cylinder, front side down loading cylinder, rear side up loading cylinder, rear side down loading cylinder, upper normal loading cylinder and down normal loading cylinder to ensure lateral stress and normal direction The stress remains unchanged; then, through force control, the left tangential upward loading cylinder, the left tangential downward loading cylinder, the right tangential upward loading cylinder, and the right tangential downward loading cylinder are force controlled at a constant loading rate to make the shear surface stress Increase to the original rock stress ⁇ 0 ;
  • Step 11 Servo control front side up loading cylinder, front side down loading cylinder, rear side up loading cylinder, rear side down loading cylinder, upper normal loading cylinder and down normal loading cylinder to ensure lateral stress and normal direction The stress remains unchanged; at the same time, the left tangential downward loading cylinder and the right tangential upward loading cylinder are servo controlled to ensure the force process of the rock sample in the shear direction. The lower left section and the upper right section maintain the original rock stress ⁇ 0 , and then the displacement is controlled Increase the shear force at a constant loading rate to the left tangential upward loading cylinder and the right tangential downward loading cylinder until the residual strength is reached;
  • Step 12 Record the displacement and force data and the macroscopic failure mode of the rock sample through the computer.
  • the invention realizes the hard rock shear test test under true triaxial conditions for the first time.
  • the present invention designs a loading frame and oil cylinder with a new structure, which not only improves the overall rigidity of the equipment, but also ensures the full section of the rock sample during the true triaxial shear process.
  • the loading method of stress coverage By improving the cooling method of the front end of the cylinder, it is ensured that the temperature of up to 300°C will not increase the temperature of the hydraulic oil in the cylinder and affect the normal movement of the actuator.
  • Figure 1 is a three-dimensional schematic diagram of the structure of a true triaxial multifunctional shear test device for high temperature and high pressure hard rock of the present invention
  • Figure 2 is a front cross-sectional view of a true triaxial multi-function shear test device for high temperature and high pressure hard rock according to the present invention
  • Figure 3 is a side sectional view of a true triaxial multi-functional shear test device for high temperature and high pressure hard rock according to the present invention
  • FIG. 4 is a schematic diagram of the structure of the combined tangential loading cylinder at the left end of the high-temperature and high-pressure hard rock true three-axis multifunctional shear test device of the present invention
  • Fig. 5 is a structural schematic diagram of the front-end combined lateral loading cylinder of the high-temperature and high-pressure hard rock true three-axis multifunctional shear test device of the present invention
  • FIG. 6 is a three-dimensional schematic diagram of the combined tangential loading cylinder structure at the left end of the high-temperature and high-pressure hard rock true triaxial multifunctional shear test device of the present invention
  • Fig. 7 is a front view hydraulic principle diagram of the high-temperature and high-pressure hard rock true three-axis multifunctional shear test device of the present invention.
  • Fig. 8 is a schematic diagram of lateral hydraulic pressure of the high-temperature and high-pressure hard rock true triaxial multifunctional shear test device of the present invention.
  • a high-temperature and high-pressure hard rock true three-axis multifunctional shear test device includes a hydraulic system, a combined tangential loading cylinder at the left, a combined tangential loading cylinder at the right, a combined lateral loading cylinder at the front, and a rear End combination lateral loading cylinder, upper normal loading, down normal loading cylinder 6, ring frame 11, lateral auxiliary push-pull frame 12, ring frame support platform 13, horizontal support platform 14, test box 16; the ring frame support The upper surface of the platform 13 is fixedly installed with a ring frame 11 through bolts.
  • the rear end of the ring frame support platform 13 is provided with a horizontal support platform 14, and both the horizontal support platform 14 and the ring frame support platform 13 are fixedly installed on the ground.
  • the horizontal support platform 14 A lateral auxiliary push-pull frame 12 is provided through the guide rail 15 and the sliding block, and the integral forged circular structure frame is adopted to greatly increase the rigidity of the equipment.
  • the left end combined tangential loading is installed in the through hole at the left end of the ring frame 11
  • the oil cylinder is equipped with a right-end combined tangential loading cylinder in the right end through hole of the ring frame 11, and an upper normal loading cylinder 3 and a lower normal loading cylinder 6 are respectively provided in the upper end through hole and the lower end through hole of the ring frame 11,
  • a front-end combined lateral loading cylinder is installed in the front-end through hole of the lateral auxiliary push-pull frame 12, and a rear-end combined lateral loading cylinder is installed in the rear-end through hole of the lateral auxiliary push-pull frame 12.
  • the left end is combined tangentially.
  • the loading cylinder, the right end combined tangential loading cylinder, the front combined lateral loading cylinder, the rear combined lateral loading cylinder, and the upper normal loading cylinder 3 are provided with a displacement sensor 19 at the rear end.
  • the displacement sensor 19 is connected to the computer.
  • the left end Combination tangential loading cylinder, right end combined tangential loading cylinder, front combined side loading cylinder, rear combined side loading cylinder, upper normal loading cylinder 3 and lower normal loading cylinder 6 are all connected to the hydraulic system, in the lateral direction
  • a test box 16 is installed in the rectangular through hole of the auxiliary push-pull frame 12, a shear box 17 is placed in the test box 16, and a rock sample 18 is placed in the shear box 17.
  • the left-end combined tangential loading cylinder includes a left tangential upward loading cylinder 1, a left tangential downward loading cylinder 2, and the left tangential upward loading cylinder 1 is coaxially sleeved with a left tangential downward loading cylinder 2; the right end combined tangential loading cylinder
  • the cylinder includes a right-cut up loading cylinder 5, a right-cut down loading cylinder 4, and a right-cut down loading cylinder 4 is coaxially fitted with a right cut-up loading cylinder 5; the left cut-up loading cylinder 1 and right cut-down loading cylinder 1
  • the oil cylinder 4 has the same structure, and is composed of a first cover 1-1, a first piston 1-2, a first connecting plate 1-3, a first load cell 1-4 and a first force transmission plate 1-5.
  • the inner cavity of the first cover 1-1 is provided with a first piston 1-2, the first piston 1-2 is connected to one end of the first connecting plate 1-3, and the other end of the first connecting plate 1-3 is connected to the first measuring force.
  • One end of the sensor 1-4 is connected, and the other end of the first load cell 1-4 is connected to the first force transmission plate 1-5; the left tangential downward loading cylinder 2 and the right tangential upward loading cylinder 5 have the same structure, and both have the same structure.
  • Second cover 2-1, second reaction cylinder 2-2, second piston 2-3, second sealing flange 2-4, second load cell 2-5 and second force transmission plate 2-6 Composition, the second cover 2-1 is coaxially sleeved on the outer circular surface of the first piston 1-2, and the boss at one end of the second cover 2-1 extends into the inner cavity of the first cover 1-1 and the first The cover 1-1 is connected in a sealed manner, and the other end of the second cover 2-1 is coaxially sleeved with a second piston 2-3 and a second reaction cylinder 2-2, and the second reaction cylinder 2-2 is the same
  • the shaft is sleeved on the outer surface of the second piston 2-3, the second reaction cylinder 2-2 is fixedly installed with the second cover 2-1 by bolts, and the extension end of the second piston 2-3 is connected to the second sealing method
  • One end of the flange 2-4 is connected
  • the other end of the second sealing flange 2-4 is connected to one end of the second load cell 2-5, and the other end
  • the front-end combined lateral loading cylinder includes a front-side up loading cylinder 8 and a front-side down loading cylinder 7.
  • the front-side up-loading cylinder 8 is coaxially sleeved with a front-side down-loading cylinder 7, and the rear-end combined side
  • the loading cylinder includes a back loading cylinder 10 and a back loading cylinder 9.
  • the back loading cylinder 10 is coaxially sleeved with a back loading cylinder 9; the front loading cylinder 8 and the back
  • the upward loading cylinder 10 has the same structure, all from the upper side cover 8-1, the upper side reaction cylinder 8-2, the upper side piston 8-3, the upper side sealing flange 8-4, and the upper side measurement.
  • the force sensor 8-5 and the upper lateral force transmission plate 8-6 are composed.
  • the upper lateral piston 8-3 is coaxially sleeved at the first boss of the upper lateral sealing plate, and the second boss of the upper lateral sealing plate is the same
  • the shaft is sleeved with an upper side reaction cylinder tube 8-2, the inner surface of the upper side reaction cylinder tube 8-2 is attached to the outer surface of the upper side piston 8-3, and the upper side piston 8-3 is connected to the upper side
  • One end of the sealing flange 8-4 is connected, and the other end of the upper side sealing flange 8-4 is connected to one end of the upper side load cell 8-5, and the other end of the upper side load cell 8-5 is connected to the upper side force transmission plate.
  • the front side downward loading cylinder 7 and the rear side downward loading cylinder 9 have the same structure.
  • the lower lateral load cell 7-4 and the lower lateral force transmission plate 7-5 are composed.
  • One end of the lower lateral cover 7-1 extends to the inner cavity of the upper lateral cover 8-1, and the lower lateral direction
  • the flange end of the cover 7-1 is fixed and installed with the upper side cover 8-1 by bolts.
  • the inner cavity of the upper side cover 8-1 is equipped with a lower side piston 7-2 and a lower side piston 7-2.
  • the lower side piston 7-2 extends out of the upper side sealing flange 8-4 and the inner boss part of the upper side sealing flange 8-4 is connected to the lower side
  • One end of the connecting plate 7-3 is connected
  • the other end of the lower connecting plate 7-3 is connected to one end of the lower load cell 7-4
  • the other end of the lower load cell 7-4 is connected to the lower force transfer plate 7- 5 is connected
  • the lower lateral force transmission plate 7-5 is set through the upper lateral force transmission plate 8-6
  • the upper lateral force sensor 8-5 and the lower lateral force sensor 7-4 are both connected to the computer.
  • the upper normal loading cylinder 3 is covered by the upper normal 3-1, the upper normal cylinder 3-2, the upper normal piston 3-3, the upper normal connecting plate 3-4, and the upper normal load cell 3-5 and upper normal force transmission plate 3-6, the flange end of the upper normal cover 3-1 is connected with the flange end of the upper normal cylinder 3-2, and the inner wall of the upper normal cylinder 3-2 is set There is an upper normal piston 3-3, and the upper normal piston 3-3 extends out of the upper normal cylinder 3-2 and is connected to one end of the upper normal connecting plate 3-4, and the other end of the upper normal connecting plate 3-4 is connected to the other end of the upper normal connecting plate 3-4.
  • One end of the upper normal force sensor 3-5 is connected, the other end of the upper normal force sensor 3-5 is connected with the upper normal force transmission plate 3-6, and the upper normal force sensor 3-5 is connected with the computer.
  • the lower normal loading cylinder 6 includes a lower normal sealing plate 6-1, a lower normal piston 6-2, a lower normal sealing flange 6-3, a lower normal connecting plate 6-4, and a lower normal force measurement
  • the sensor 6-5 and the lower normal force transmission plate 6-6 are composed of a lower normal piston 6-2 in the inner cavity of the lower normal sealing plate 6-1, and the flange end of the lower normal sealing plate 6-1 is connected to the inner cavity of the lower normal sealing plate 6-1.
  • the lower normal sealing flange 6-3 is connected, the lower normal piston 6-2 extends out, and the lower normal sealing flange 6-3 is connected to one end of the lower normal connecting plate, and the other end of the lower normal connecting plate 6-4 is connected to One end of the lower normal force sensor 6-5 is connected, the other end of the lower normal force sensor 6-5 is connected with the lower normal force transmission plate 6-6, and the lower normal force sensor 6-5 is connected with the computer.
  • the left end combined tangential loading cylinder and the first right end combined tangential loading cylinder of the first force transmission plate 1-5, the front combined lateral loading cylinder and the rear end combined lateral loading cylinder of the lateral force transmission plate, the The front ends of the upper normal force transfer plate 3-6 of the upper normal load cylinder 3 and the lower normal force transfer plate 6-6 of the lower normal load cylinder 6 are provided with two through-holes for cooling water through which the cooling water passes.
  • the hole is connected to the cooling water device through a rubber tube 20, and the model of the cooling water device is CF311HC.
  • the hydraulic system includes a first hydraulic station 22, a second hydraulic station 23, a third hydraulic station 24, a first accumulator 25, a second accumulator 26, a third accumulator 27 and a number of servo valves 21.
  • the first hydraulic station 22 is connected to the first accumulator 25 through the high-pressure resistant oil pipe.
  • the first accumulator 25 is connected to the left tangential upward loading cylinder 1, the left tangential downward loading cylinder 2 and the left tangential downward loading cylinder through the high pressure resistant oil pipe and the servo valve 21, respectively.
  • the upper normal loading cylinder 3 is connected; the second hydraulic station 23 is connected to the second accumulator 26 through the high pressure resistant oil pipe, and the second accumulator 26 is connected to the right tangential upward loading cylinder 5 and right through the high pressure resistant oil pipe and the servo valve 21 respectively.
  • the cut-down loading cylinder 4 and the down-normal loading cylinder 6 are connected; the third hydraulic station 24 is connected to the third accumulator 27 through the high-pressure oil pipe, and the third accumulator 27 is connected to the front end through the high-pressure oil pipe and the servo valve 21, respectively
  • the side loading oil cylinder is connected with the rear side loading oil cylinder.
  • the first hydraulic station 22, the second hydraulic station 23 and the third hydraulic station 24 have the same structure. They all include a hydraulic pump and an oil tank.
  • the oil inlet of the hydraulic pump is high-pressure resistant.
  • the oil pipe is connected with the oil outlet of the oil tank.
  • the test box 16 is a constant temperature box, and the rock sample 18 in the shear box 17 is heated by ceramic radiation heating.
  • a method for a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device adopts a high-temperature and high-pressure hard rock true triaxial multifunctional shear test device, including the following steps:
  • Step 1 Put the rock sample 18 into the shear box 17, and install the deformation sensor between the rock sample 18 and the shear box 17;
  • Step 2 Put the shear box 17 containing the rock sample 18 into the center of the test box 16;
  • Step 3 Push the lateral auxiliary push-pull frame 12 away from the ring frame 11, and place the test box 16 at the center of the lateral auxiliary push-pull frame 12;
  • Step 4 Push the lateral auxiliary push-pull frame 12 into the ring frame 11, and place the rock sample 18 at the geometric center of the ring frame 11, and the center line of the upper through hole and the lower through hole of the ring frame 11 is perpendicular to the horizontal plane;
  • the line connecting the center of the through hole at the left end and the through hole at the right end of the frame 11 is parallel to the horizontal plane, and the intersection of the two center lines is the geometric center point of the ring frame 11;
  • Step 5 Start the first hydraulic station 22, the second hydraulic station 23, and the third hydraulic station 24, and load the cylinder 1, the left cut-down load cylinder 2, the right cut-up load cylinder 5, and the right cut-down load cylinder.
  • Loading cylinder 4, front up loading cylinder 8, front down loading cylinder 7, rear up loading cylinder 10, rear down loading cylinder 9, upper normal loading cylinder 3 and lower normal loading cylinder 6 implement displacement control ,Complete the centering and clamping of the rock sample 18;
  • Step 6 Start the cooling water device, make the cooling water in the left tangent up load cylinder 1, left cut down load cylinder 2, right cut up load cylinder 5, right cut down load cylinder 4, upper normal load cylinder 3 and down Circulate in the force transfer plate of the normal loading cylinder 6;
  • Step 7 Start the test chamber 16 and preset the target temperature so that the temperature in the test chamber 16 reaches the preset target temperature;
  • Step 8 Use force control to load cylinder 1, left-cut downward, load cylinder 2, right-cut upward load cylinder, 5, right-cut downward load cylinder 4, front-side up-load cylinder 8, front-side down-load cylinder 7.
  • the rear side upward loading cylinder 10, the rear side downward loading cylinder 9, the upper normal loading cylinder 3 and the lower normal loading cylinder 6 implement force control at a constant loading rate, so that the six boundary surfaces of the rock sample 18 are in still water
  • Step 9 Servo control the upper normal loading cylinder 3 and the lower normal loading cylinder 6 to ensure that the normal stress remains unchanged; then, through force control, the left tangential upward loading cylinder 1, the left cutting downward loading cylinder 2, the right cutting upward Loading cylinder 5, right cut-down loading cylinder 4, front-side up-loading cylinder 8, front-side down-loading cylinder 7, rear-side up-loading cylinder 10, rear-side down-loading cylinder 9 to implement force control at a constant loading rate, Increase the stress on the shear surface and the lateral surface to the target value of lateral stress ⁇ p 1;
  • Step 10 Servo control the front side up loading cylinder 8, the front side down loading cylinder 7, the rear side up loading cylinder 10, the rear side down loading cylinder 9, the upper normal loading cylinder 3 and the lower normal loading cylinder 6, to ensure The lateral stress and the normal stress remain unchanged; then, the left tangential upward loading cylinder 1, the left tangential downward loading cylinder 2, the right tangential upward loading cylinder 5, and the right tangential downward loading cylinder 4 are loaded at a constant loading rate through force control Implement force control to increase the shear surface stress to the original rock stress ⁇ 0 ;
  • Step 11 Servo control the front side up loading cylinder 8, the front side down loading cylinder 7, the rear side up loading cylinder 10, the rear side down loading cylinder 9, the upper normal loading cylinder 3 and the lower normal loading cylinder 6, to ensure The lateral stress and the normal stress remain unchanged; at the same time, the left tangential downward loading cylinder 2 and the right tangential upward loading cylinder 5 are servo controlled to ensure the force process of the rock sample 18 in the shear direction.
  • the lower left section and the upper right section maintain the original rock Stress ⁇ 0 , then, through displacement control, increase the shear force on the left tangential upward loading cylinder 1 and the right tangential downward loading cylinder 4 at a constant loading rate until the residual strength is reached;
  • Step 12 The computer interface is respectively connected to the load cell and the displacement sensor 19, the real-time signal is fed back to the computer through the load cell and the displacement sensor 19, and the displacement and force value data and the macroscopic failure mode of the rock sample are recorded by the computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种高温高压硬岩真三轴多功能剪切试验装置及方法,属于岩石室内加载试验技术领域,包括液压系统,左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸(3)、下法向加载油缸(6)、环形框架(11)、侧向辅助推拉框架(12)、环形框架支撑平台(13)、水平支撑平台(14)、试验箱(16);实现了真三轴条件下的硬岩剪切试验试验。具有全新结构的加载框架及油缸,在提高设备整体刚度的同时确保了真三向剪切过程岩石试样全截面应力覆盖的加载方式。通过改进油缸前端降温方式,确保高达300℃高温不会使油缸内液压油温度升高而影响作动器正常运动。

Description

一种高温高压硬岩真三轴多功能剪切试验装置及方法 技术领域
本发明涉及岩石室内加载试验技术领域,具体是一种高温高压硬岩真三轴多功能剪切试验装置及方法。
背景技术
岩石作为地下采矿、深埋隧道及核废料处置库等的天然载体,其承载能力直接影响着工程是否可以正常运行及人员安全的重要保障。地下岩体并非完整的,都不同程度存在着承载能力较低的结构面及断层等。含结构面岩体在高剪切应力作用下,容易形成地震、塌方、深层开裂及时滞型岩爆等工程灾害。因此,研究含结构面硬岩的破坏机理对理解及预防工程灾害的发生具有重要意义。
众所周知,地下岩体受真三向应力(τ>σ p>σ n)影响,一般情况下,结构面垂直于最小主应力方向时岩体更容易发现破坏。目前关于硬岩剪切试验主要通过常规直接剪切(τ>σn,σp=0)方法,所用岩样一般为长方体。常规直剪试验时,将岩石试样沿着剪切方向中心线分为上下两部分。试验过程中,岩石试样在剪切方向只有一半截面受力,另一半截面处于临空状态。而且,侧向应力σ p=0,被假设为最小主应力。这些与含结构面的地下岩体发生破坏时所处的三维应力状态并不符合。另外,远离隧道临空面的结构面受周围岩体限制,常处于定常法向刚度条件下。目前剪切试验包括准静态下的定常法向应力、定常法向刚度试验和长期保载下的定常法向应力剪切试验。而定常法向刚度下的时效剪切试验至今未试验设备实现。这主要是由于定常法向刚度试验需要用液压油泵和电液伺服阀的协同工作模式,使法向活塞高频率调控,然而这种方式容易使油源温度升高,在长时间运行使容易造成油源系统寿命降低。
除此之外,随着地下岩体工程越来越深,温度对岩石的破坏也起到主要作用。一般认为,深度每增100米,岩体温度会增加3℃,在地下5000米左右位置温度达到180℃左右。而温度是影响深部硬岩变形和破坏的最重要因素之一。
目前的常规剪切试验机,大多采用立柱式及拉杆式框架,这种框架刚度低,在 进行试验时,框架很容易积聚足够的弹性应变能,峰后弹性应变能释放,使剪切试验过程峰后曲线失真。而且现有的真三轴设备液压缸每个方向只能提供一个恒定的力,不能进行剪切过程岩石截面全覆盖加载。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术存在的问题,本发明提供一种高温高压硬岩真三轴多功能剪切试验装置及方法,可以施加高达1200MPa的高应力,最高温度可达到250℃,首次实现了高温高压硬岩真三轴定常法向应力\刚度下准静态及时效剪切试验,在确保设备刚度的同时,对岩石试样全截面施加荷载,而且采用高温箱内加热,作动器前端降温的方法,在室内重现真实高温高三维应力条件下硬岩剪切破坏过程。
为了实现上述目的,本发明采用如下技术方案:
一种高温高压硬岩真三轴多功能剪切试验装置,包括液压系统,左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸、下法向加载油缸、环形框架、侧向辅助推拉框架、环形框架支撑平台、水平支撑平台、试验箱;所述环形框架支撑平台上表面通过螺栓固定安装有环形框架,环形框架支撑平台后端设置有水平支撑平台,且水平支撑平台和环形框架支撑平台均固定安装于地面上,水平支撑平台上通过导轨及滑块设置有侧向辅助推拉框架,在环形框架的左端通孔内安装有左端组合切向加载油缸,在环形框架的右端通孔内安装有右端组合切向加载油缸,在环形框架的上端通孔和下端通孔内分别设置有上法向加载油缸和下法向加载油缸,在侧向辅助推拉框架的前端通孔内安装有前端组合侧向加载油缸,在侧向辅助推拉框架的后端通孔内设置有后端组合侧向加载油缸,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸的后端设置有位移传感器,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸 、上法向加载油缸及下法向加载油缸均与液压系统相连,在侧向辅助推拉框架的矩形通孔内安装有试验箱,在试验箱内放置有剪切盒,在剪切盒内放置有岩石试样。
所述左端组合切向加载油缸包括左切向上加载油缸、左切向下加载油缸,左切向上加载油缸上同轴套装有左切向下加载油缸;所述右端组合切向加载油缸包括右切向上加载油缸、右切向下加载油缸,右切向下加载油缸上同轴套装有右切向上加载油缸;所述左切向上加载油缸和右切向下加载油缸结构相同,均由第一封盖、第一活塞、第一连接板、第一测力传感器及第一传力板组成,所述第一封盖内腔设置有第一活塞,第一活塞与第一连接板一端相连,第一连接板另一端与第一测力传感器一端相连,第一测力传感器另一端与第一传力板相连;所述左切向下加载油缸和右切向上加载油缸结构相同,均由第二封盖、第二反力缸筒、第二活塞、第二密封法兰、第二测力传感器及第二传力板组成,所述第二封盖同轴套装于第一活塞外圆面上,且第二封盖一端凸台伸入第一封盖内腔与第一封盖密封连接,第二封盖另一端同轴套装有第二活塞和第二反力缸筒,且第二反力缸筒同轴套装于第二活塞外圆面上,第二反力缸筒通过螺栓与第二封盖固定安装,第二活塞伸出端与第二密封法兰一端相连,第二密封法兰另一端与第二测力传感器一端相连,第二测力传感器另一端与第二传力板相连,且第一传力板贯穿第二传力板设置。
所述前端组合侧向加载油缸包括前侧向上加载油缸和前侧向下加载油缸,前侧向上加载油缸内腔同轴套装有前侧向下加载油缸,所述后端组合侧向加载油缸包括后侧向上加载油缸和后侧向下加载油缸,后侧向上加载油缸内腔同轴套装有后侧向下加载油缸;所述前侧向上加载油缸和后侧向上加载油缸结构相同均由上侧向封盖、上侧向反力缸筒、上侧向活塞、上侧向密封法兰、上侧向测力传感器及上侧向传力板组成,上侧向封板第一凸台处同轴套装有上侧向活塞,上侧向封板第二凸台处同轴套装有上侧向反力缸筒,上侧向反力缸筒内表面与上侧向活塞外表面贴合,上侧向活塞与上侧向密封法兰一端相连,上侧向密封法兰另一端上侧向测力传感器一端相连,上侧向测力传感器另一端与上侧向传力板相连;所述前侧向下加载油缸和后侧向下加载油缸结构相同均由下侧向封 盖、下侧向活塞、下侧向连接板、下侧向测力传感器、下侧向传力板组成,所述下侧向封盖一端延伸至上侧向封盖内腔,且下侧向封盖法兰端通过螺栓与上侧向封盖固定安装,上侧向封盖内腔安装有下侧向活塞,且下侧向活塞位于上侧向封盖与下侧向封盖形成的密封腔内,下侧向活塞伸出上侧向密封法兰内部凸台部分与下侧向连接板一端相连,下侧向连接板另一端下侧向测力传感器一端相连,下侧向测力传感器另一端与下侧向传力板相连,下侧向传力板贯穿上侧向传力板设置。
所述上法向加载油缸由上法向封盖、上法向缸筒、上法向活塞、上法向连接板、上法向测力传感器及上法向传力板组成,上法向封盖法兰端与上法向缸筒法兰端相连,上法向缸筒内壁设置有上法向活塞,上法向活塞伸出上法向缸筒部分与上法向连接板一端相连,上法向连接板另一端与上法向测力传感器一端相连,上法向测力传感器另一端与上法向传力板相连。
所述下法向加载油缸由下法向封板、下法向活塞、下法向密封法兰、下法向连接板、下法向测力传感器及下法向传力板组成,所述下法向封板内腔设置有下法向活塞,下法向封板法兰端与下法向密封法兰相连,下法向活塞伸出下法向密封法兰部分与下法向连接板一端相连,下法向连接板另一端与下法向测力传感器一端相连,下法向测力传感器另一端与下法向传力板相连。
所述左端组合切向加载油缸和右端组合切向加载油缸的第一传力板、所述前端组合侧向加载油缸和后端组合侧向加载油缸的侧向传力板、所述上法向加载油缸的上法向传力板及下法向加载油缸的下法向传力板的前端均开设有两个贯穿的冷却水贯通孔,冷却水贯通孔通过橡皮管与冷却水装置连接。
所述液压系统包括第一液压站、第二液压站、第三液压站、第一蓄能器、第二蓄能器、第三蓄能器及若干伺服阀,所述第一液压站通过耐高压油管与第一蓄能器相连,第一蓄能器通过耐高压油管、伺服阀分别与左切向上加载油缸、左切向下加载油缸及上法向加载油缸相连;第二液压站通过耐高压油管与第二蓄能器相连,第二蓄能器通过耐高压油管、伺服阀分别与右切向上加载油缸、右切向下加载油缸及下法向加载油缸相连;第三液压站通过耐高压油管与第三蓄能器相连,第三蓄能器通过耐高压油管、伺服阀分别与前端侧向加载油缸和后 端侧向加载油缸相连,所述第一液压站、第二液压站及第三液压站结构相同,均包括液压泵及油箱,液压泵进油口通过耐高压油管与油箱出油口相连。
通过采用液压泵与伺服阀协同作用,保证油缸高频率运动,确保定常法向刚度试验的完成;而且液压泵通过与伺服驱动器和冷却水串联,首先在油缸内压力降低时,伺服驱动器实时将油缸内压力反馈回液压泵,使液压泵工作并补足油缸内压力,否则液压泵停止工作,而且当油缸内压力降低时,蓄能器持续为油缸内压力补压,通过这种方式,既减少了液压泵由于工作造成的温度持续升高,而且保证长期定常法向刚度试验的完成。
所述试验箱为恒温箱,采用陶瓷辐射加热的方式对剪切盒内的岩石试样加热。
一种高温高压硬岩真三轴多功能剪切试验装置的方法,采用一种高温高压硬岩真三轴多功能剪切试验装置,包括如下步骤:
步骤1:将岩石试样装入剪切盒内,并将变形传感器安装于岩石试样及剪切盒之间;
步骤2:将装有岩石试样的剪切盒放入试验箱的中心位置处;
步骤3:将侧向辅助推拉框架推至远离环形框架,将试验箱放置于侧向辅助推拉框架中心位置;
步骤4:将侧向辅助推拉框架推入环形框架内,并使岩石试样处于环形框架几何中心位置;
步骤5:通过对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸实施位移控制,完成岩石试样的对中夹紧;
步骤6:启动冷却水装置,使冷却水在左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、上法向加载油缸和下法向加载油缸的传力板中循环;
步骤7:启动试验箱,并预设目标温度,使试验箱内温度达到预设的目标温度;
步骤8:启动第一液压站、第二液压站、第三液压站,通过力控制对左切向上 加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸以恒定的加载速率实施力控制,使岩石试样六个边界面在静水压力状态τ=σ p=σ n增加至法向应力σ n1的目标值,其中τ为剪切应力,σp为侧向应力,σn为法向应力;
步骤9:伺服控制上法向加载油缸和下法向加载油缸,保证法向应力不变;然后,通过力控制对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸以恒定的加载速率实施力控制,使剪切面及侧向面的应力增加至侧向应力σp 1的目标值;
步骤10:伺服控制前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸,保证侧向应力和法向应力不变;然后,通过力控制对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸以恒定的加载速率实施力控制,使剪切面的应力增加至原岩应力τ 0
步骤11:伺服控制前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸,保证侧向应力和法向应力不变;同时,伺服控制左切向下加载油缸和右切向上加载油缸保证岩石试样在剪切方向的受力过程,左下截面和右上截面维持原岩应力τ 0,然后,通过位移控制对左切向上加载油缸和右切向下加载油缸以恒定的加载速率增加剪切力,直至达到残余强度;
步骤12:通过计算机记录位移及力值数据和岩样宏观破坏模式。
发明的有益效果
有益效果
本发明与现有技术相比,首次实现了真三轴条件下的硬岩剪切试验试验。为了满足在真三轴条件下进行岩石的真三轴试验,本发明设计了具有全新结构的加载框架及油缸,在提高设备整体刚度的同时,确保了真三向剪切过程岩石试样全截面应力覆盖的加载方式。通过改进油缸前端降温方式,确保高达300℃高温 不会使油缸内液压油温度升高而影响作动器正常运动。
对附图的简要说明
附图说明
图1为本发明高温高压硬岩真三轴多功能剪切试验装置的结构三维示意图;
图2为本发明高温高压硬岩真三轴多功能剪切试验装置的正向剖视图;
图3为本发明高温高压硬岩真三轴多功能剪切试验装置的侧向剖视图;
图4为本发明高温高压硬岩真三轴多功能剪切试验装置的左端组合切向加载油缸结构示意图;
图5为本发明高温高压硬岩真三轴多功能剪切试验装置的前端组合侧向加载油缸结构示意图;
图6为本发明高温高压硬岩真三轴多功能剪切试验装置的左端组合切向加载油缸结构三维示意图;
图7为本发明的高温高压硬岩真三轴多功能剪切试验装置的正视液压原理图;
图8为本发明的高温高压硬岩真三轴多功能剪切试验装置的侧向液压原理图;
1-左切向上加载油缸,1-1-第一封盖,1-2-第一活塞,1-3-第一连接板,1-4-第一测力传感器,1-5-第一传力板,2-左切向下加载油缸,2-1-第二封盖,2-2-第二反力缸筒,2-3-第二活塞,2-4-第二密封法兰,2-5-第二测力传感器,2-6-第二传力板,3-上法向加载油缸,3-1-上法向封盖,3-2-上法向缸筒,3-3-上法向活塞,3-4-上法向连接板,3-5-上法向测力传感器,3-6-上法向传力板,4-右切向下加载油缸,5-右切向上加载油缸,6-下法向加载油缸,6-1-下法向封板,6-2-下法向活塞,6-3-下法向密封法兰,6-4-下法向连接板,6-5-下法向测力传感器,6-6-下法向传力板,7-前侧向下加载油缸,7-1-下侧向封盖,7-2-下侧向活塞,7-3-下侧向连接板,7-4-下侧向测力传感器,7-5-下侧向传力板,8-前侧向上加载油缸,8-1-上侧向封盖,8-2-上侧向反力缸筒,8-3-上侧向活塞,8-4-上侧向密封法兰,8-5-上侧向测力传感器,8-6-上侧向传力板,9-后侧向下加载油缸,10-后侧向上加载油缸,11-环形框架,12-侧向辅助推拉框架,13-环形框架支撑平台,14-水平支撑平台,15-导轨,16-试验箱,17-剪切盒,18-岩石试样,19-位移传感器,20-橡皮管,21-伺服阀,22-第一液压站,23-第二液压站,24-第三液压站,25- 第一蓄能器,26-第二蓄能器,27-第三蓄能器。
发明实施例
本发明的实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
如图1~8所示,一种高温高压硬岩真三轴多功能剪切试验装置,包括液压系统,左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载、下法向加载油缸6、环形框架11、侧向辅助推拉框架12、环形框架支撑平台13、水平支撑平台14、试验箱16;所述环形框架支撑平台13上表面通过螺栓固定安装有环形框架11,环形框架支撑平台13后端设置有水平支撑平台14,且水平支撑平台14和环形框架支撑平台13均固定安装于地面上,水平支撑平台14上通过导轨15及滑块设置有侧向辅助推拉框架12,通过采用整体锻造的圆环形结构框架,极大的增加了设备刚度,在环形框架11的左端通孔内安装有左端组合切向加载油缸,在环形框架11的右端通孔内安装有右端组合切向加载油缸,在环形框架11的上端通孔和下端通孔内分别设置有上法向加载油缸3和下法向加载油缸6,在侧向辅助推拉框架12的前端通孔内安装有前端组合侧向加载油缸,在侧向辅助推拉框架12的后端通孔内设置有后端组合侧向加载油缸,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸3的后端设置有位移传感器19,位移传感器19与计算机相连,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸3及下法向加载油缸6均与液压系统相连,在侧向辅助推拉框架12的矩形通孔内安装有试验箱16,在试验箱16内放置有剪切盒17,在剪切盒17内放置有岩石试样18。
所述左端组合切向加载油缸包括左切向上加载油缸1、左切向下加载油缸2,左切向上加载油缸1上同轴套装有左切向下加载油缸2;所述右端组合切向加载油缸包括右切向上加载油缸5、右切向下加载油缸4,右切向下加载油缸4上同轴套装有右切向上加载油缸5;所述左切向上加载油缸1和右切向下加载油缸4结构相同,均由第一封盖1-1、第一活塞1-2、第一连接板1-3、第一测力传感器1-4及第 一传力板1-5组成,所述第一封盖1-1内腔设置有第一活塞1-2,第一活塞1-2与第一连接板1-3一端相连,第一连接板1-3另一端与第一测力传感器1-4一端相连,第一测力传感器1-4另一端与第一传力板1-5相连;所述左切向下加载油缸2和右切向上加载油缸5结构相同,均由第二封盖2-1、第二反力缸筒2-2、第二活塞2-3、第二密封法兰2-4、第二测力传感器2-5及第二传力板2-6组成,所述第二封盖2-1同轴套装于第一活塞1-2外圆面上,且第二封盖2-1一端凸台伸入第一封盖1-1内腔与第一封盖1-1密封连接,第二封盖2-1另一端同轴套装有第二活塞2-3和第二反力缸筒2-2,且第二反力缸筒2-2同轴套装于第二活塞2-3外圆面上,第二反力缸筒2-2通过螺栓与第二封盖2-1固定安装,第二活塞2-3伸出端与第二密封法兰2-4一端相连,第二密封法兰2-4另一端与第二测力传感器2-5一端相连,第二测力传感器2-5另一端与第二传力板2-6相连,且第一传力板1-5贯穿第二传力板2-6设置,第一测力传感器1-4和第二测力传感器2-5均与计算机相连。
所述前端组合侧向加载油缸包括前侧向上加载油缸8和前侧向下加载油缸7,前侧向上加载油缸8内腔同轴套装有前侧向下加载油缸7,所述后端组合侧向加载油缸包括后侧向上加载油缸10和后侧向下加载油缸9,后侧向上加载油缸10内腔同轴套装有后侧向下加载油缸9;所述前侧向上加载油缸8和后侧向上加载油缸10结构相同均由上侧向封盖8-1、上侧向反力缸筒8-2、上侧向活塞8-3、上侧向密封法兰8-4、上侧向测力传感器8-5及上侧向传力板8-6组成,上侧向封板第一凸台处同轴套装有上侧向活塞8-3,上侧向封板第二凸台处同轴套装有上侧向反力缸筒8-2,上侧向反力缸筒8-2内表面与上侧向活塞8-3外表面贴合,上侧向活塞8-3与上侧向密封法兰8-4一端相连,上侧向密封法兰8-4另一端上侧向测力传感器8-5一端相连,上侧向测力传感器8-5另一端与上侧向传力板8-6相连;所述前侧向下加载油缸7和后侧向下加载油缸9结构相同均由下侧向封盖7-1、下侧向活塞7-2、下侧向连接板7-3、下侧向测力传感器7-4、下侧向传力板7-5组成,所述下侧向封盖7-1一端延伸至上侧向封盖8-1内腔,且下侧向封盖7-1法兰端通过螺栓与上侧向封盖8-1固定安装,上侧向封盖8-1内腔安装有下侧向活塞7-2,且下侧向活塞7-2位于上侧向封盖8-1与下侧向封盖7-1形成的密封腔内,下侧向活塞7-2伸出上侧向密封法兰8-4内部凸台部分与下侧向连接板7-3一端相连,下侧向连接板 7-3另一端下侧向测力传感器7-4一端相连,下侧向测力传感器7-4另一端与下侧向传力板7-5相连,下侧向传力板7-5贯穿上侧向传力板8-6设置,上侧向测力传感器8-5和下侧向测力传感器7-4均与计算机相连。
所述上法向加载油缸3由上法向封盖3-1、上法向缸筒3-2、上法向活塞3-3、上法向连接板3-4、上法向测力传感器3-5及上法向传力板3-6组成,上法向封盖3-1法兰端与上法向缸筒3-2法兰端相连,上法向缸筒3-2内壁设置有上法向活塞3-3,上法向活塞3-3伸出上法向缸筒3-2部分与上法向连接板3-4一端相连,上法向连接板3-4另一端与上法向测力传感器3-5一端相连,上法向测力传感器3-5另一端与上法向传力板3-6相连,上法向测力传感器3-5与计算机相连。
所述下法向加载油缸6由下法向封板6-1、下法向活塞6-2、下法向密封法兰6-3、下法向连接板6-4、下法向测力传感器6-5及下法向传力板6-6组成,所述下法向封板6-1内腔设置有下法向活塞6-2,下法向封板6-1法兰端与下法向密封法兰6-3相连,下法向活塞6-2伸出下法向密封法兰6-3部分与下法向连接板一端相连,下法向连接板6-4另一端与下法向测力传感器6-5一端相连,下法向测力传感器6-5另一端与下法向传力板6-6相连,下法向测力传感器6-5与计算机相连。
所述左端组合切向加载油缸和右端组合切向加载油缸的第一传力板1-5、所述前端组合侧向加载油缸和后端组合侧向加载油缸的侧向传力板、所述上法向加载油缸3的上法向传力板3-6及下法向加载油缸6的下法向传力板6-6的前端均开设有两个贯穿的冷却水贯通孔,冷却水贯通孔通过橡皮管20与冷却水装置连接,冷却水装置的型号为CF311HC。
所述液压系统包括第一液压站22、第二液压站23、第三液压站24、第一蓄能器25、第二蓄能器26、第三蓄能器27及若干伺服阀21,所述第一液压站22通过耐高压油管与第一蓄能器25相连,第一蓄能器25通过耐高压油管、伺服阀21分别与左切向上加载油缸1、左切向下加载油缸2及上法向加载油缸3相连;第二液压站23通过耐高压油管与第二蓄能器26相连,第二蓄能器26通过耐高压油管、伺服阀21分别与右切向上加载油缸5、右切向下加载油缸4及下法向加载油缸6相连;第三液压站24通过耐高压油管与第三蓄能器27相连,第三蓄能器27通过耐高压油管、伺服阀21分别与前端侧向加载油缸和后端侧向加载油缸相连,所述第 一液压站22、第二液压站23及第三液压站24结构相同,均包括液压泵及油箱,液压泵进油口通过耐高压油管与油箱出油口相连。通过采用液压泵与伺服阀21协同作用,保证作动器高频率运动,确保定常法向刚度试验的完成;而且液压泵通过与伺服驱动器和冷却水串联,首先在油缸内压力降低时,伺服驱动器实时将油缸内压力反馈回液压泵,使液压泵工作并补足油缸内压力,否则液压泵停止工作,而且当油缸内压力降低时,蓄能器持续为油缸内压力补压,通过这种方式,既减少了液压泵由于工作造成的温度持续升高,而且保证长期定常法向刚度试验的完成。
所述试验箱16为恒温箱,采用陶瓷辐射加热的方式对剪切盒17内的岩石试样18加热。
一种高温高压硬岩真三轴多功能剪切试验装置的方法,采用一种高温高压硬岩真三轴多功能剪切试验装置,包括如下步骤:
步骤1:将岩石试样18装入剪切盒17内,并将变形传感器安装于岩石试样18及剪切盒17之间;
步骤2:将装有岩石试样18的剪切盒17放入试验箱16的中心位置处;
步骤3:将侧向辅助推拉框架12推至远离环形框架11,将试验箱16放置于侧向辅助推拉框架12中心位置;
步骤4:将侧向辅助推拉框架12推入环形框架11内,并使岩石试样18处于环形框架11几何中心位置,环形框架11的上端通孔与下端通孔中心连线垂直于水平面;环形框架11左端通孔与右端通孔中心连线平行于水平面,且两条中心线的交点为环形框架11几何中心点;
步骤5:启动第一液压站22、第二液压站23、第三液压站24,通过对左切向上加载油缸1、左切向下加载油缸2、右切向上加载油缸5、右切向下加载油缸4、前侧向上加载油缸8、前侧向下加载油缸7、后侧向上加载油缸10、后侧向下加载油缸9、上法向加载油缸3和下法向加载油缸6实施位移控制,完成岩石试样18的对中夹紧;
步骤6:启动冷却水装置,使冷却水在左切向上加载油缸1、左切向下加载油缸2、右切向上加载油缸5、右切向下加载油缸4、上法向加载油缸3和下法向加载 油缸6的传力板中循环;
步骤7:启动试验箱16,并预设目标温度,使试验箱16内温度达到预设的目标温度;
步骤8:通过力控制对左切向上加载油缸1、左切向下加载油缸2、右切向上加载油缸5、右切向下加载油缸4、前侧向上加载油缸8、前侧向下加载油缸7、后侧向上加载油缸10、后侧向下加载油缸9、上法向加载油缸3和下法向加载油缸6以恒定的加载速率实施力控制,使岩石试样18六个边界面在静水压力状态τ=σ p=σ n增加至法向应力σ n1的目标值,其中τ为剪切应力,σp为侧向应力,σn为法向应力;
步骤9:伺服控制上法向加载油缸3和下法向加载油缸6,保证法向应力不变;然后,通过力控制对左切向上加载油缸1、左切向下加载油缸2、右切向上加载油缸5、右切向下加载油缸4、前侧向上加载油缸8、前侧向下加载油缸7、后侧向上加载油缸10、后侧向下加载油缸9以恒定的加载速率实施力控制,使剪切面及侧向面的应力增加至侧向应力σp 1的目标值;
步骤10:伺服控制前侧向上加载油缸8、前侧向下加载油缸7、后侧向上加载油缸10、后侧向下加载油缸9、上法向加载油缸3和下法向加载油缸6,保证侧向应力和法向应力不变;然后,通过力控制对左切向上加载油缸1、左切向下加载油缸2、右切向上加载油缸5、右切向下加载油缸4以恒定的加载速率实施力控制,使剪切面的应力增加至原岩应力τ 0
步骤11:伺服控制前侧向上加载油缸8、前侧向下加载油缸7、后侧向上加载油缸10、后侧向下加载油缸9、上法向加载油缸3和下法向加载油缸6,保证侧向应力和法向应力不变;同时,伺服控制左切向下加载油缸2和右切向上加载油缸5保证岩石试样18在剪切方向的受力过程,左下截面和右上截面维持原岩应力τ 0,然后,通过位移控制对左切向上加载油缸1和右切向下加载油缸4以恒定的加载速率增加剪切力,直至达到残余强度;
步骤12:计算机的接口分别与测力传感器和位移传感器19相连,通过测力传感器和位移传感器19将实时信号反馈给计算机,并通过计算机记录位移及力值数据和岩样宏观破坏模式。

Claims (9)

  1. 一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于,包括液压系统,左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸、下法向加载油缸、环形框架、侧向辅助推拉框架、环形框架支撑平台、水平支撑平台、试验箱;所述环形框架支撑平台上表面通过螺栓固定安装有环形框架,环形框架支撑平台后端设置有水平支撑平台,且水平支撑平台和环形框架支撑平台均固定安装于地面上,水平支撑平台上通过导轨及滑块设置有侧向辅助推拉框架,在环形框架的左端通孔内安装有左端组合切向加载油缸,在环形框架的右端通孔内安装有右端组合切向加载油缸,在环形框架的上端通孔和下端通孔内分别设置有上法向加载油缸和下法向加载油缸,在侧向辅助推拉框架的前端通孔内安装有前端组合侧向加载油缸,在侧向辅助推拉框架的后端通孔内设置有后端组合侧向加载油缸,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸的后端设置有位移传感器,所述左端组合切向加载油缸,右端组合切向加载油缸、前端组合侧向加载油缸、后端组合侧向加载油缸、上法向加载油缸及下法向加载油缸均与液压系统相连,在侧向辅助推拉框架的矩形通孔内安装有试验箱,在试验箱内放置有剪切盒,在剪切盒内放置有岩石试样。
  2. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述左端组合切向加载油缸包括左切向上加载油缸、左切向下加载油缸,左切向上加载油缸上同轴套装有左切向下加载油缸;所述右端组合切向加载油缸包括右切向上加载油缸、右切向下加载油缸,右切向下加载油缸上同轴套装有右切向上加载油缸;所述左切向上加载油缸和右切向下加载油缸结构相同,均由第一封盖、第一活塞、第一连接板、第一测力传感器及 第一传力板组成,所述第一封盖内腔设置有第一活塞,第一活塞与第一连接板一端相连,第一连接板另一端与第一测力传感器一端相连,第一测力传感器另一端与第一传力板相连;所述左切向下加载油缸和右切向上加载油缸结构相同,均由第二封盖、第二反力缸筒、第二活塞、第二密封法兰、第二测力传感器及第二传力板组成,所述第二封盖同轴套装于第一活塞外圆面上,且第二封盖一端凸台伸入第一封盖内腔与第一封盖密封连接,第二封盖另一端同轴套装有第二活塞和第二反力缸筒,且第二反力缸筒同轴套装于第二活塞外圆面上,第二反力缸筒通过螺栓与第二封盖固定安装,第二活塞伸出端与第二密封法兰一端相连,第二密封法兰另一端与第二测力传感器一端相连,第二测力传感器另一端与第二传力板相连,且第一传力板贯穿第二传力板设置。
  3. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述前端组合侧向加载油缸包括前侧向上加载油缸和前侧向下加载油缸,前侧向上加载油缸内腔同轴套装有前侧向下加载油缸,所述后端组合侧向加载油缸包括后侧向上加载油缸和后侧向下加载油缸,后侧向上加载油缸内腔同轴套装有后侧向下加载油缸;所述前侧向上加载油缸和后侧向上加载油缸结构相同均由上侧向封盖、上侧向反力缸筒、上侧向活塞、上侧向密封法兰、上侧向测力传感器及上侧向传力板组成,上侧向封板第一凸台处同轴套装有上侧向活塞,上侧向封板第二凸台处同轴套装有上侧向反力缸筒,上侧向反力缸筒内表面与上侧向活塞外表面贴合,上侧向活塞与上侧向密封法兰一端相连,上侧向密封法兰另一端上侧向测力传感器一端相连,上侧向测力传感器另一端与上侧向传力板相连;所述前侧向下加载油缸和后侧向下加载油缸结构相同均由下侧向封盖、下侧向活塞、下侧向连接板、下侧向测力传感器、下侧向传力板组成,所述下侧向封盖一端延伸至上侧向封盖内腔,且下侧向封盖法兰端通过螺栓与上侧向封盖 固定安装,上侧向封盖内腔安装有下侧向活塞,且下侧向活塞位于上侧向封盖与下侧向封盖形成的密封腔内,下侧向活塞伸出上侧向密封法兰内部凸台部分与下侧向连接板一端相连,下侧向连接板另一端下侧向测力传感器一端相连,下侧向测力传感器另一端与下侧向传力板相连,下侧向传力板贯穿上侧向传力板设置。
  4. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述上法向加载油缸由上法向封盖、上法向缸筒、上法向活塞、上法向连接板、上法向测力传感器及上法向传力板组成,上法向封盖法兰端与上法向缸筒法兰端相连,上法向缸筒内壁设置有上法向活塞,上法向活塞伸出上法向缸筒部分与上法向连接板一端相连,上法向连接板另一端与上法向测力传感器一端相连,上法向测力传感器另一端与上法向传力板相连。
  5. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述下法向加载油缸由下法向封板、下法向活塞、下法向密封法兰、下法向连接板、下法向测力传感器及下法向传力板组成,所述下法向封板内腔设置有下法向活塞,下法向封板法兰端与下法向密封法兰相连,下法向活塞伸出下法向密封法兰部分与下法向连接板一端相连,下法向连接板另一端与下法向测力传感器一端相连,下法向测力传感器另一端与下法向传力板相连。
  6. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述左端组合切向加载油缸和右端组合切向加载油缸的第一传力板、所述前端组合侧向加载油缸和后端组合侧向加载油缸的侧向传力板、所述上法向加载油缸的上法向传力板及下法向加载油缸的下法向传力板的前端均开设有两个贯穿的冷却水贯通孔,冷却水贯通孔通过橡皮管与冷却水装置连接。
  7. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述液压系统包括第一液压站、第二液压站、 第三液压站、第一蓄能器、第二蓄能器、第三蓄能器及若干伺服阀,所述第一液压站通过耐高压油管与第一蓄能器相连,第一蓄能器通过耐高压油管、伺服阀分别与左切向上加载油缸、左切向下加载油缸及上法向加载油缸相连;第二液压站通过耐高压油管与第二蓄能器相连,第二蓄能器通过耐高压油管、伺服阀分别与右切向上加载油缸、右切向下加载油缸及下法向加载油缸相连;第三液压站通过耐高压油管与第三蓄能器相连,第三蓄能器通过耐高压油管、伺服阀分别与前端侧向加载油缸和后端侧向加载油缸相连,所述第一液压站、第二液压站及第三液压站结构相同,均包括液压泵及油箱,液压泵进油口通过耐高压油管与油箱出油口相连。
  8. 根据权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于:所述试验箱为恒温箱,采用陶瓷辐射加热的方式对剪切盒内的岩石试样加热。
  9. 一种高温高压硬岩真三轴多功能剪切试验装置的方法,采用权利要求1所述的一种高温高压硬岩真三轴多功能剪切试验装置,其特征在于,包括如下步骤:
    步骤1:将岩石试样装入剪切盒内,并将变形传感器安装于岩石试样及剪切盒之间;
    步骤2:将装有岩石试样的剪切盒放入试验箱的中心位置处;
    步骤3:将侧向辅助推拉框架推至远离环形框架,将试验箱放置于侧向辅助推拉框架中心位置;
    步骤4:将侧向辅助推拉框架推入环形框架内,并使岩石试样处于环形框架几何中心位置;
    步骤5:通过对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸实施位移控制,完成岩石试样的对中夹紧;
    步骤6:启动冷却水装置,使冷却水在左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、上法向加载油缸和下法向加载油缸的传力板中循环;
    步骤7:启动试验箱,并预设目标温度,使试验箱内温度达到预设的目标温度;
    步骤8:启动第一液压站、第二液压站、第三液压站,通过力控制对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸以恒定的加载速率实施力控制,使岩石试样六个边界面在静水压力状态τ=σ p=σ n增加至法向应力σ n1的目标值,其中τ为剪切应力,σp为侧向应力,σn为法向应力;
    步骤9:伺服控制上法向加载油缸和下法向加载油缸,保证法向应力不变;然后,通过力控制对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸、前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸以恒定的加载速率实施力控制,使剪切面及侧向面的应力增加至侧向应力σp 1的目标值;
    步骤10:伺服控制前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸,保证侧向应力和法向应力不变;然后,通过力控制对左切向上加载油缸、左切向下加载油缸、右切向上加载油缸、右切向下加载油缸以恒定的加载速率实施力控制,使剪切面的应力增加至原岩应力τ 0
    步骤11:伺服控制前侧向上加载油缸、前侧向下加载油缸、后侧向上加载油缸、后侧向下加载油缸、上法向加载油缸和下法向加载油缸,保证侧向应力和法向应力不变;同时,伺服控制左切向下加载油缸和右切向上加载油缸保证岩石试样在剪切方向的受力 过程,左下截面和右上截面维持原岩应力τ 0,然后,通过位移控制对左切向上加载油缸和右切向下加载油缸以恒定的加载速率增加剪切力,直至达到残余强度;
    步骤12:通过计算机记录位移及力值数据和岩样宏观破坏模式。
PCT/CN2019/108106 2019-09-24 2019-09-26 一种高温高压硬岩真三轴多功能剪切试验装置及方法 WO2021056322A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020542326A JP7098188B2 (ja) 2019-09-24 2019-09-26 高温高圧での硬岩の真三軸多機能せん断試験装置及び方法
EP19925559.7A EP3822611B1 (en) 2019-09-24 2019-09-26 High-temperature and high-pressure hard rock true triaxial multifunctional shear test device and method
US16/965,521 US11326995B2 (en) 2019-09-24 2019-09-26 Multi-functional true triaxial shear test device and method for hard rocks with high temperature and high pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910904135.3 2019-09-24
CN201910904135.3A CN110658085B (zh) 2019-09-24 2019-09-24 一种高温高压硬岩真三轴多功能剪切试验装置及方法

Publications (1)

Publication Number Publication Date
WO2021056322A1 true WO2021056322A1 (zh) 2021-04-01

Family

ID=69038766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108106 WO2021056322A1 (zh) 2019-09-24 2019-09-26 一种高温高压硬岩真三轴多功能剪切试验装置及方法

Country Status (5)

Country Link
US (1) US11326995B2 (zh)
EP (1) EP3822611B1 (zh)
JP (1) JP7098188B2 (zh)
CN (1) CN110658085B (zh)
WO (1) WO2021056322A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829894B (zh) * 2020-06-24 2022-02-08 山东大学 一种岩土多场测量试验系统及方法
CN112284928A (zh) * 2020-09-30 2021-01-29 中国科学院武汉岩土力学研究所 具备声学测试的多方向岩石剪切-渗流耦合试验系统
CN112345383A (zh) * 2020-09-30 2021-02-09 华能澜沧江水电股份有限公司 可实现声发射测试的多方向岩石剪切试验系统
CN112284932A (zh) * 2020-09-30 2021-01-29 中国科学院武汉岩土力学研究所 多功能多方向岩石剪切-渗流-温度多场耦合试验系统
CN112595606A (zh) * 2020-09-30 2021-04-02 华能澜沧江水电股份有限公司 可实现超声波测试的多方向岩石剪切试验系统
CN112378778B (zh) * 2020-11-11 2021-08-10 常州达姆斯检测技术有限公司 一种复合材料高低温液压大载荷压缩测试系统
CN112432845B (zh) * 2020-12-02 2022-11-22 青岛理工大学 一种高温高压条件下岩石节理面的剪切试验系统及方法
CN112903462A (zh) * 2021-02-04 2021-06-04 太原理工大学 双轴加载下水平采空区单排群柱承载力的测试装置与方法
CN114486565B (zh) * 2022-02-15 2023-03-24 中国矿业大学 恒定法向刚度条件下岩石结构面动态双向剪切实验系统
CN114720263A (zh) * 2022-04-07 2022-07-08 东北石油大学 深部高温高压环境岩石断裂可视化试验装置和试验方法
CN116067803B (zh) * 2023-02-16 2023-10-13 广西大学 高温高渗化学耦合下真三向动静组合剪切实验设备和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852748U (zh) * 2010-11-24 2011-06-01 大连民族学院 一种混凝土比例加载三轴压的加载测试装置
CN103969107A (zh) * 2014-05-06 2014-08-06 广西大学 高压伺服动真三轴试验机
JP2015090355A (ja) * 2013-11-07 2015-05-11 株式会社Ihi 剪断試験装置及び剪断試験方法
CN106769542A (zh) * 2017-03-28 2017-05-31 中国科学院武汉岩土力学研究所 一种岩石剪切加载系统
CN206420735U (zh) * 2016-09-29 2017-08-18 中国科学院武汉岩土力学研究所 一种适于高渗透压的岩体真三轴剪切渗流试验装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206306A (ja) * 1997-01-23 1998-08-07 Fujita Corp 地盤材料のせん断試験装置及び方法
JP4098218B2 (ja) * 2003-11-11 2008-06-11 財団法人電力中央研究所 岩盤せん断試験法および岩盤せん断試験装置
FR2933495B1 (fr) * 2008-07-07 2013-01-18 Univ Lille Sciences Tech Cellule triaxiale de geomateriaux sous pression et cisaillement
CN102353592A (zh) * 2011-05-27 2012-02-15 长江水利委员会长江科学院 现场伺服控制岩体真三轴试验装置
CN103822831B (zh) * 2014-02-18 2016-01-20 东北大学 一种刚性随动加载框架结构
CN204613077U (zh) * 2015-03-06 2015-09-02 西南石油大学 真三轴岩石参数测试系统
CN105300807B (zh) * 2015-10-14 2018-02-16 太原理工大学 一种高温真三轴岩石实验机
CN105547849B (zh) * 2016-03-01 2018-12-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
CN105675409B (zh) * 2016-03-31 2019-02-01 中国电建集团华东勘测设计研究院有限公司 一体式岩体结构面直剪仪及直剪试验方法
CN106596281B (zh) * 2016-12-20 2018-03-13 东北大学 一种高压真三轴硬岩恒温时效破裂试验装置及方法
CN107014690B (zh) * 2017-03-24 2021-05-28 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
CN108519293B (zh) * 2018-03-19 2021-04-06 太原理工大学 一种真三轴岩石剪切渗流实验装置
CN110062488B (zh) * 2019-04-28 2021-04-06 湖北工业大学 一种微波加热三轴试验装置及加热方法
CN110243701B (zh) * 2019-07-05 2022-02-01 山东科技大学 一种锚固岩体扭转剪切试验装置及方法
CN110658084B (zh) * 2019-09-24 2020-09-01 东北大学 一种高刚度多轴高应力加载框架装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852748U (zh) * 2010-11-24 2011-06-01 大连民族学院 一种混凝土比例加载三轴压的加载测试装置
JP2015090355A (ja) * 2013-11-07 2015-05-11 株式会社Ihi 剪断試験装置及び剪断試験方法
CN103969107A (zh) * 2014-05-06 2014-08-06 广西大学 高压伺服动真三轴试验机
CN206420735U (zh) * 2016-09-29 2017-08-18 中国科学院武汉岩土力学研究所 一种适于高渗透压的岩体真三轴剪切渗流试验装置
CN106769542A (zh) * 2017-03-28 2017-05-31 中国科学院武汉岩土力学研究所 一种岩石剪切加载系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822611A4 *

Also Published As

Publication number Publication date
EP3822611A4 (en) 2021-07-21
US11326995B2 (en) 2022-05-10
EP3822611A1 (en) 2021-05-19
US20210247283A1 (en) 2021-08-12
JP2022503306A (ja) 2022-01-12
CN110658085A (zh) 2020-01-07
EP3822611B1 (en) 2024-06-19
CN110658085B (zh) 2021-05-11
JP7098188B2 (ja) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2021056322A1 (zh) 一种高温高压硬岩真三轴多功能剪切试验装置及方法
CN112557203B (zh) 针对含裂缝岩石的热水力耦合三轴试验方法
CN104155188B (zh) 一种天然气水合物沉积物力学特性可视化试验装置
CN102944665B (zh) 适用于岩石节理剪切渗流耦合试验的剪切盒及试验方法
CN109386270B (zh) 煤岩层瓦斯动力增透渗流与驱替模拟试验系统与试验方法
CN110987638A (zh) 一种可视化真三轴水力劈裂试验装置及方法
CN111208015B (zh) 复杂条件下大埋深隧洞围岩稳定与支护模型试验系统
CN104833775B (zh) 模拟突水突泥地质灾害的三维模型试验装置
CN109298162A (zh) 不同相态二氧化碳致裂页岩装置及实验方法
CN110823612B (zh) 隧道围岩衬砌复合结构受力防水试验系统与方法
CN104833582A (zh) 一种天然气水合物沉积物三轴试验装置
CN105372134B (zh) 一种增压系统集成式钢管水压试验机充水装置
CN103499487A (zh) 一种复杂荷载试验机
WO2022134187A1 (zh) 深部复杂构造条件下岩石真三轴动态压剪试验装置及方法
CN103760028B (zh) 实验室用岩石强度测试的围压加载装置
CN109632519A (zh) 温度场-渗流场耦合渗透试验方法
CN203287254U (zh) 一种岩石热-固耦合实验系统
US11982664B1 (en) True three-dimensional dynamic and static combination shear device under high- temperature, high pore pressure and chemical coupling and method therefor
CN201983993U (zh) 一种蠕变试验停电保载液压装置
CN109632520A (zh) 温度场-应力场-渗流场耦合固结试验方法
CN106840996B (zh) 一种受采动影响煤体渗透率测定装置及其使用方法
CN108590768B (zh) 一种非均布覆压下注水煤层流固耦合应力监测系统
CN114509350B (zh) 模拟内腔水压作用的管片接缝双道防水试验装置及方法
CN114660266B (zh) 模拟地下有机质岩原位热解提油气的试验系统及工作方法
CN102345591A (zh) 一种保压检修密封实验台

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542326

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019925559

Country of ref document: EP

Effective date: 20201028

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE