WO2021056315A1 - 伽马校正方法、伽马校正装置及伽马校正系统 - Google Patents

伽马校正方法、伽马校正装置及伽马校正系统 Download PDF

Info

Publication number
WO2021056315A1
WO2021056315A1 PCT/CN2019/108082 CN2019108082W WO2021056315A1 WO 2021056315 A1 WO2021056315 A1 WO 2021056315A1 CN 2019108082 W CN2019108082 W CN 2019108082W WO 2021056315 A1 WO2021056315 A1 WO 2021056315A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness adjustment
node
transition
adjustment value
nodes
Prior art date
Application number
PCT/CN2019/108082
Other languages
English (en)
French (fr)
Inventor
喻勇
张昌
丁仁杰
兰传艳
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980001823.7A priority Critical patent/CN112955825B/zh
Priority to PCT/CN2019/108082 priority patent/WO2021056315A1/zh
Priority to US16/976,698 priority patent/US11244591B2/en
Publication of WO2021056315A1 publication Critical patent/WO2021056315A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • OLED Organic Light-Emitting Diode
  • a gamma correction method which is applied to a display screen to be debugged, including: setting a plurality of reference nodes for a color of the display screen to be debugged, and each reference node in the plurality of reference nodes represents a reference The mapping relationship between the brightness adjustment value and the reference gamma segment, and the multiple reference nodes are sorted according to the order of the reference brightness adjustment value from small to large or from large to small. At least one transition node is set between two adjacent reference nodes, and each transition node in the at least one transition node represents a mapping relationship between a transition brightness adjustment value and a transition gamma segment.
  • a brightness adjustment curve that represents the corresponding relationship between the brightness adjustment value and the gamma segment is obtained; wherein, each gamma segment represents the brightness corresponding to the gamma segment Under the adjusted value, the set of register values corresponding to each gray level of the color.
  • the step of setting at least one transition node between two adjacent reference nodes includes: selecting at least one brightness adjustment value in a range between reference brightness adjustment values corresponding to two adjacent reference nodes As at least one transition brightness adjustment value corresponding to at least one transition node to be set.
  • the debugging parameter group corresponding to each of the multiple reference nodes, and the at least one transition node includes: According to the descending order of the transition brightness adjustment value, the transition gamma segment corresponding to each transition brightness adjustment value in the at least one transition brightness adjustment value is sequentially calculated; wherein, for each transition brightness adjustment value, Value and determine the node corresponding to the brightness adjustment value that is adjacent to the transition brightness value and whose brightness adjustment value is less than the transition brightness value.
  • the transition gamma segment corresponding to the transition brightness adjustment value is calculated to obtain the transition node corresponding to the transition brightness adjustment value.
  • the debugging parameter group corresponding to each of the multiple reference nodes, and the at least one transition node includes: According to the descending order of the transition brightness adjustment value, the transition gamma segment corresponding to each transition brightness adjustment value in the at least one transition brightness adjustment value is sequentially calculated; wherein, for each transition brightness adjustment value, Value, and determine the node corresponding to the brightness adjustment value that is adjacent to the transition brightness value and whose brightness adjustment value is greater than the transition brightness value.
  • the transition gamma segment corresponding to the transition brightness adjustment value is calculated to obtain the transition node corresponding to the transition brightness adjustment value.
  • the debugging parameter group corresponding to the determined node includes a debugging parameter of a register value corresponding to each gray scale of the color, and the debugging parameter includes a magnification a and a gain of the register value corresponding to the debugging parameter.
  • the step of calculating the transition gamma segment corresponding to the transition brightness adjustment value according to the gamma segment corresponding to the determined node and the debugging parameter group corresponding to the determined node includes: determining the gamma segment corresponding to the determined node In the paragraph, find the register value X i corresponding to the i-th gray scale.
  • X′ i a i ⁇ X i +b i
  • the register value X′ i corresponding to the i-th gray scale under the transitional brightness adjustment value is calculated.
  • the method further includes the step of obtaining the debugging parameter group corresponding to each of the multiple reference nodes and the debugging parameter group corresponding to each of the at least one transition node, This step includes: selecting a sample display screen. With reference to the multiple reference nodes to be set in the display screen to be debugged, multiple first nodes are set in the sample display screen, and multiple brightness adjustment values corresponding to the multiple first nodes are related to the multiple reference nodes The corresponding reference brightness adjustment values are equal in one-to-one correspondence, and the gamma segment corresponding to each first node in the first node is that, under the brightness adjustment value corresponding to the gamma segment, each of the sample display screens is The register value corresponding to the gray scale is a collection of register values obtained by gamma correction.
  • a plurality of second nodes are set in the sample display screen, and the plurality of brightness adjustment values corresponding to the plurality of second nodes and the at least one transition node
  • the corresponding transitional brightness adjustment values are in one-to-one correspondence and equal, and the gamma segment corresponding to each second node in the second node is, under the brightness adjustment value corresponding to the gamma segment, each of the sample display screens is
  • the register value corresponding to the gray scale is a collection of register values obtained by gamma correction.
  • the brightness adjustment values corresponding to at least one specific node of the plurality of first nodes and the plurality of second nodes are sequentially calculated.
  • the debugging parameter of the register value corresponds to the debugging parameter of the register value.
  • the debugging parameter group corresponding to each specific node is obtained.
  • the debugging parameter group corresponding to each specific node the debugging parameter group corresponding to each reference node of the plurality of reference nodes to be set in the display screen to be debugged is obtained, and the debugging parameter group is to be set in the display screen to be debugged. Debug the debugging parameter group corresponding to each of the at least one transition node set in the display screen.
  • the at least one specific node is a node adjacent to each of the second nodes and located before the corresponding second node according to the setting order of the brightness adjustment value
  • the setting order of the brightness adjustment value is the The order of the brightness adjustment value from small to large, or the order of the brightness adjustment value from large to small.
  • the step of adjusting the parameter of the register value corresponding to each gray scale includes: for each second node, determining that it is adjacent to the second node, and is located in the order of setting the brightness adjustment value.
  • X′ 0i represents the register value corresponding to the i-th gray level of the second node
  • X 0i represents the register value corresponding to the i-th gray level of the specific node
  • a i represents the magnification corresponding to the i-th gray level of the specific node
  • B i represents the gain corresponding to the i-th gray scale of the specific node.
  • the gamma correction method further includes: combining the obtained debugging parameter group corresponding to each of the multiple reference nodes and each of the at least one transition node.
  • the corresponding debugging parameter group is stored in the display screen to be debugged in advance.
  • the selected sample display screen and the display screen to be debugged belong to the same production batch of display screens.
  • the reference brightness adjustment value corresponding to the two adjacent reference nodes and the transition brightness adjustment value corresponding to the at least one transition node form an arithmetic sequence.
  • the number of transition nodes set between two adjacent reference nodes is at least two.
  • the step of setting at least one transition node between two adjacent reference nodes includes: setting at least one transition node between every two adjacent reference nodes.
  • the smallest reference brightness adjustment value and the largest reference brightness adjustment value determine a brightness value adjustment range.
  • the brightness value adjustment range includes a first section and a second section, and the upper limit of the brightness adjustment of the first section is not greater than the lower limit of the brightness adjustment of the second section.
  • the number of transition nodes corresponding to the first section is greater than the number of transition nodes corresponding to the second section.
  • the number of transition nodes set between every two adjacent reference nodes of the first section is greater than the number of transition nodes set between every two adjacent reference nodes of the second section Quantity.
  • the step of setting multiple reference nodes includes: selecting multiple brightness adjustment values as multiple reference brightness adjustment values corresponding to the multiple reference nodes to be set. Under each selected reference brightness adjustment value, gamma correction is performed on the register value of each gray scale of the display screen to be adjusted to obtain a reference gamma segment corresponding to the corresponding reference brightness adjustment value.
  • the display screen to be debugged can display at least two colors, and for the establishment of the brightness adjustment curve of each color, the above-mentioned gamma correction method is performed respectively.
  • a gamma correction device including a memory and a processor, the memory stores computer instructions, and the processor is configured to read and execute the computer instructions, so as to implement any of the computer instructions as in the first aspect.
  • One or more steps in the gamma correction method are provided, including a memory and a processor, the memory stores computer instructions, and the processor is configured to read and execute the computer instructions, so as to implement any of the computer instructions as in the first aspect.
  • a gamma correction system including the gamma correction device as described in the second aspect, a driving device, and an optical testing device.
  • the driving device is configured to drive the display screen to be debugged to work.
  • the optical testing device is configured to sample the optical parameters of the display screen to be debugged under the control of the gamma correction device, and upload the sampled optical parameters to the gamma correction device.
  • a computer-readable storage medium stores computer instructions that can be run on a processor. When the computer instructions are executed by the processor, each of the instructions in the first aspect is implemented. One or more steps in the gamma correction method described in the embodiment.
  • a computer program product which when the computer program product runs on a computer, causes the computer to execute one or more steps in the gamma correction method described in the embodiments of the first aspect .
  • Fig. 1 is a schematic diagram of a gamma curve according to the related technology
  • Fig. 2 is a schematic diagram of a brightness adjustment curve according to the related technology
  • FIG. 3 is a schematic diagram of gamma curves under different brightness adjustment values according to related technologies
  • FIG. 4a is a schematic diagram of a timing sequence for adjusting the grayscale brightness value according to the related technology
  • FIG. 4b is another timing diagram for adjusting the grayscale brightness value according to the related technology
  • FIG. 5 is a schematic diagram of a color coordinate change curve within a brightness adjustment value range of 0 nit to 300 nit according to the related art
  • FIG. 6 is another schematic diagram of a color coordinate change curve within a brightness adjustment value range of 0 nits to 300 nits according to the related art
  • FIG. 7 is a schematic diagram of a gamma register of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a brightness adjustment curve obtained by a gamma correction method according to some embodiments of the present disclosure.
  • Fig. 10 is another flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 11 is still another flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 13 is still another flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • Fig. 14a is a schematic diagram of the correspondence between register values of the gamma correction method according to some embodiments of the present disclosure
  • FIG. 14b is another schematic diagram of the correspondence between register values of the gamma correction method according to some embodiments of the present disclosure.
  • FIG. 15 is still another flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 16 is a schematic diagram of a node obtained by performing gamma correction in a sample display screen according to a gamma correction method according to some embodiments of the present disclosure
  • FIG. 17 is still another flowchart of a gamma correction method according to some embodiments of the present disclosure.
  • FIG. 18 is another schematic diagram of a color coordinate change curve within a brightness adjustment value range of 0 nits to 300 nits according to some embodiments of the present disclosure
  • FIG. 19 is a schematic diagram of a gamma correction device according to some embodiments of the present disclosure.
  • FIG. 20 is a schematic diagram of a gamma correction system according to some embodiments of the present disclosure.
  • FIG. 1 shows a gamma curve, in which the abscissa represents the pixel grayscale value input to the pixel (hereinafter referred to as the grayscale), and the ordinate represents the grayscale brightness value output by the pixel.
  • the relationship between the input gray scale and the corresponding output gray scale brightness value needs to be set as that the gray scale brightness value is proportional to the ⁇ power of the gray scale,
  • the relationship between the brightness value of the gray scale and the gray scale is called the gamma curve of the display device.
  • the value of ⁇ is set to 2.2 ⁇ 0.2, so that the displayed picture is close to the picture actually seen by the human eye.
  • gamma correction is to adjust the ratio of the grayscale brightness value to the grayscale to the power of ⁇ to the target value, for example, 2.2 ⁇ 0.2. In order to improve the display effect of the display device.
  • the display panel of the OLED display device has a brightness adjustment range, and the display brightness of the display device can be changed within the brightness adjustment range.
  • the gamma value of the gamma curve corresponding to each display brightness within the brightness adjustment range meets the target value, such as 2.2 ⁇ 0.2, so that at each display brightness, the display effect presented by the display device All are in line with human visual perception.
  • the user adjusts the display brightness of the display device (for example, by dragging the brightness slider on the display screen of an electronic terminal device such as a mobile phone to adjust the display brightness of the display screen of the electronic terminal device), or
  • the display device automatically adjusts its own display brightness display device in response to changes in the brightness of the surrounding environment, which is actually equivalent to switching gamma curves corresponding to different display brightness.
  • each gamma curve corresponding to each display brightness in the entire brightness range is required
  • Gamma correction is carried out, which will undoubtedly cause a huge workload and time-consuming.
  • the brightness adjustment curve is obtained by setting a number of reference nodes, for example, the number of reference nodes is 4 to 5.
  • Figure 2 shows a brightness adjustment curve, where the abscissa represents the brightness adjustment value, that is, the display brightness of the display device, and the ordinate represents the gamma band corresponding to the brightness adjustment value, that is, the brightness.
  • the set of register values (which can be understood as the brightness value of the gray scale) corresponding to each gray scale in the gamma curve corresponding to the adjustment value.
  • the brightness adjustment curve includes 5 reference nodes, and the brightness adjustment values corresponding to the 5 reference nodes are 0 nit, 100 nit, 200 nit, 300 nit, and 400 nit, respectively.
  • the brightness adjustment values correspond to different gamma segments, and each gamma segment corresponds to the gamma curve under the corresponding brightness adjustment value.
  • Figure 3 shows the gamma curves of the display device at 0 nits, 100 nits, 200 nits, 300 nits, and 400 nits. These 5 gamma curves are obtained by gamma correction. , The gamma values all meet the target value (for example, 2.2 ⁇ 0.2).
  • the display In the process of adjusting the display brightness of the display device under the brightness adjustment curve shown in FIG. 2, when the target brightness adjustment value (that is, the display brightness that needs to be adjusted) is the brightness adjustment value corresponding to the reference node, the display is directly displayed
  • the gamma curve of the device can be switched to the gamma curve determined by the gamma segment corresponding to the corresponding brightness adjustment value.
  • the target brightness adjustment value is not the brightness adjustment value corresponding to the reference node, for example, the target brightness adjustment value is between the brightness adjustment values corresponding to two adjacent reference nodes.
  • the gamma segments corresponding to each reference node are linearly differenced to obtain the gamma segment corresponding to the target brightness adjustment value, and then the corresponding gamma curve is determined.
  • the target brightness adjustment value is a lower brightness adjustment value, for example, the target brightness adjustment value is lower than 10 nits, if the target brightness adjustment value is corresponding to two adjacent reference nodes Between the brightness adjustment values, the display screen will appear red or green and other display defects.
  • PWM Pulse Width Modulation, pulse width modulation dimming mechanism and/or driving signal dimming mechanism.
  • the PWM dimming mechanism is as shown in Figure 4a, which shows a timing diagram of a frame of image signals, where the RESET signal is a reset signal, the Gate signal is a scanning signal, and the working level of the light-emitting signal EM1 is low. Take the level as an example.
  • the light-emitting signal EM1 includes multiple pulses. The high-level time corresponding to each pulse (ie non-working level time) corresponds to the inactive area t2, and the remaining low-level time corresponds to the light-emitting area t1. .
  • the duty cycle of the light-emitting area t1 is controlled (that is, the ratio of the time of the light-emitting area t1 to the total duration of the light-emitting period t-em), so as to achieve the actual light-emitting time of the entire light-emitting period t-em. Adjust, and then realize the adjustment of the grayscale brightness value of the pixel.
  • the driving signal dimming mechanism is, as shown in Figure 4b, which shows a timing diagram of a frame of image signals, where the RESET signal is the reset signal, the Gate signal is the scanning signal, and the working level of the light-emitting signal EM2 is low.
  • the potential of the light-emitting signal EM2 continues to be a low level (that is, continues to be a working level), that is, the pixel is in a light-emitting state throughout the light-emitting period t-em.
  • the adjustment of the grayscale brightness value of the pixel is realized.
  • the method of linear difference between the gamma segments corresponding to the two adjacent reference nodes in the related technology is adopted to obtain The gamma segment corresponding to the target brightness adjustment value is then determined, and the corresponding gamma curve is determined.
  • the PWM dimming mechanism and/or the driving signal dimming mechanism are used to control the duty of the light-emitting area t1 Ratio and/or adjust the size of the drive signal to realize the adjustment of the grayscale brightness value of the pixel.
  • the inventors of the present disclosure found that the above method does not conform to the characteristic change of the luminescent material of the OLED display device when the target brightness adjustment value is between two adjacent reference brightness adjustment values.
  • the specific performance is:
  • Figure 5 shows the color coordinate change curve within the brightness adjustment value range of 0 nits to 300 nits, where X represents the horizontal in the color coordinates.
  • Axis Y represents the vertical axis in the color coordinate.
  • the color coordinate chromaticity coordinate
  • the horizontal axis is X
  • the vertical axis is Y
  • (X, Y) is used to represent one Color.
  • NTSC National Television Systems Committee
  • the standard red color coordinate is (0.67, 0.33)
  • the standard green color coordinate is (0.21, 0.71)
  • the standard blue color coordinate is (0.14, 0.08)
  • the pure white color coordinate is ( 0.33, 0.33).
  • the color displayed in the color coordinate chart is white, and the value on the horizontal axis X is greater than 0.3 and greater than
  • the abbreviation X is greater than Y
  • the color displayed in the color coordinate chart is mostly red.
  • the value of the vertical axis Y is greater than 0.3 and greater than the value of the horizontal axis X, the abbreviation X is less than Y , The color displayed in the color coordinate chart is mostly green). It can be seen that under the PWM dimming mechanism, in the lower brightness adjustment value range, the value of the horizontal axis X is greater than the value of the vertical axis Y, and the color displayed in the color coordinate chart is mostly red, that is to say, the attenuation of green pixels The speed is greater than the attenuation speed of the red pixels, so the displayed picture will appear red.
  • Figure 6 shows the color coordinate change curve within the brightness adjustment value range of 0 nits to 300 nits , Where X represents the horizontal axis in the color coordinate, and Y represents the vertical axis in the color coordinate. It can be seen that the combination of driving signal dimming mechanism and PWM dimming mechanism is adopted. In the lower brightness adjustment value range, the value of the horizontal axis X is less than the value of the vertical axis Y, and the color displayed in the color coordinate chart is mostly green. , Which means that the attenuation speed of the green pixels is less than the attenuation speed of the red pixels, so the displayed picture will appear blue.
  • the gamma correction algorithm in the related technology is used to obtain the gamma segment corresponding to the brightness adjustment value other than the reference brightness adjustment value by linear interpolation between the reference brightness adjustment value, because this method does not conform to the OLED display
  • the characteristics of the luminescent material of the device cause display failures such as red and green in the display screen at a brightness adjustment value between the reference brightness adjustment values at a lower brightness adjustment value.
  • the gray scale brightness value corresponding to each gray scale is stored through the register.
  • the red register value is expressed as The green register value is expressed as The blue register value is expressed as
  • the gamma correction method includes: for a color of the display screen to be debugged (hereinafter referred to as The color is red for description. It should be noted that the color here can also be other colors, such as blue, green, etc., depending on the color that can be displayed on the display screen to be debugged. Red here is only one Example).
  • each of the multiple reference nodes represents the mapping relationship between the reference brightness adjustment value and the reference gamma segment, in the order of the reference brightness adjustment value from small to large or from large to small
  • the multiple reference nodes are sorted.
  • each reference node represents the corresponding relationship between the reference brightness adjustment value and the reference gamma segment.
  • the reference brightness adjustment value is the brightness adjustment value of multiple specific positions within the brightness adjustment value range corresponding to the red sub-pixel.
  • Each reference gamma segment represents the set of red register values corresponding to each gray level under the reference brightness adjustment value corresponding to the reference gamma segment
  • setting multiple reference nodes in S1 includes the following process:
  • gamma correction is performed on the register value of each gray scale of the display screen to be adjusted to obtain the reference gamma segment corresponding to the corresponding reference brightness adjustment value, which is to make the gamma under each reference brightness adjustment value
  • the gamma values of the horse curve all meet the target value (for example, 2.2 ⁇ 0.2).
  • the number of reference nodes is 4 to 5, and exemplary, the number of reference nodes is 5.
  • the brightness adjustment values corresponding to the five reference nodes are the first reference brightness adjustment value (0 nits) and the second reference brightness adjustment value (100 nits). Nits), the third reference brightness adjustment value (200 nits), the fourth reference brightness adjustment value (300 nits), and the fifth reference brightness adjustment value (400 nits).
  • the multiple reference nodes are sorted according to the order of the brightness adjustment value from small to large, and the above five reference nodes are reference node A, reference node B, and reference node from left to right.
  • the set of red register values corresponding to each gray level reference gamma segment representation corresponding to node B, under 100 nits, the set of red register values corresponding to each gray level Refer to the above description for other reference nodes.
  • At least one transition node is set between two adjacent reference nodes, and each transition node in the at least one transition node represents a mapping relationship between a transition brightness adjustment value and a transition gamma segment.
  • transition nodes are set between the reference node A and the reference node B.
  • the transition node B and the reference node C, the reference node C and the reference node D, and the reference node D Two transition nodes are respectively set between the reference node E and the reference node E, and each transition node represents the corresponding relationship between the transition brightness adjustment value and the transition gamma segment.
  • the transition brightness adjustment value is a brightness adjustment value selected between the reference brightness adjustment values of the red sub-pixels corresponding to two adjacent reference nodes.
  • the transition gamma segment representation corresponding to the transition node p, at 130 nits the value of the red register corresponding to each gray level is set
  • the transition node has the same function as the reference node, and both are feature points that characterize the mapping relationship between the brightness adjustment value and the gamma segment.
  • the set of register values corresponding to each gray scale is the corresponding gamma segment, and the gamma value of the gamma curve under each transition brightness adjustment value is close to or in line with the target value (2.2 ⁇ 0.2) .
  • the displayed display screen conforms to the visual experience of human eyes.
  • the characteristic brightness is obtained.
  • the brightness adjustment curve of the corresponding relationship between the adjustment value and the gamma segment according to the brightness adjustment curve, the gamma segment corresponding to each brightness adjustment value in the entire brightness adjustment range can be obtained, and the display brightness of the display device is adjusted under the brightness adjustment curve shown in FIG. 9
  • the gamma curve of the display device can be directly switched to the gamma curve determined by the gamma segment corresponding to the corresponding brightness adjustment value.
  • the gamma correction method provided by the present disclosure obtains the mapping relationship between the reference brightness adjustment value and the reference gamma segment by setting a plurality of reference nodes, and obtains the transition brightness adjustment value and the transition gamma segment by setting at least one transition node Since the above-mentioned gamma correction method is to set multiple reference nodes first, and then set a transition node between two adjacent reference nodes, the transition node is obtained according to the reference node, and there is no need to adjust the value of the transition brightness It is obtained through gamma correction, so the correction time will not increase.
  • the current gamma is directly changed.
  • the curve can be switched to the gamma curve determined by the gamma segment corresponding to the target brightness adjustment value.
  • the target brightness adjustment value is not the brightness modulation corresponding to the reference node or transition node
  • the target brightness adjustment value is in two adjacent nodes (that is, two adjacent reference nodes, or two adjacent transition nodes, or adjacent Between the brightness adjustment value corresponding to a reference node and a transition node), the gamma segment corresponding to two adjacent nodes can be linearly interpolated to obtain the gamma segment corresponding to the target brightness adjustment value, and the current gamma curve can be switched to linear The gamma curve determined by the interpolated gamma segment.
  • the gamma correction method provided in the present disclosure does not increase the number of gamma segments.
  • the workload of the correction for example, only perform gamma correction under 5 reference brightness adjustment values to obtain 5 reference nodes, and set at least one transition node between two adjacent reference nodes.
  • the transition node does not perform gamma correction. Obtained, but obtained according to the reference node, so that the number of nodes that characterize the correspondence between the brightness adjustment value and the gamma segment increases.
  • the obtained brightness adjustment that characterizes the correspondence between the brightness adjustment value and the gamma segment The curve is more accurate and conforms to the characteristics of the luminescent material of the OLED display device, thereby improving poor display such as redness and green in the display screen under the brightness adjustment value between the reference brightness adjustment value under the lower brightness adjustment value This phenomenon improves the display effect of the display device.
  • the gamma correction method provided by the embodiments of the present disclosure is not only applicable to OLED display devices, but also applicable to other active light-emitting display devices that cause display quality problems due to the aforementioned reasons, such as QLED (Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes) display devices, Micro LED (Micro Light Emitting Diodes) display devices, etc.
  • QLED Quantum Dot Light Emitting Diodes
  • Quantum Dot Light Emitting Diodes Quantum Dot Light Emitting Diodes
  • Micro LED Micro Light Emitting Diodes
  • two reference brightness adjustment values corresponding to the second reference brightness adjustment value (100 nits) and the third reference brightness adjustment value (200 nits) corresponding to the reference node B and the reference node C Select two brightness adjustment values, such as 130 nits and 170 nits, as the two transition brightness adjustment values corresponding to the two transition nodes to be set.
  • the transition nodes to be set are transition node p and transition node q, and their corresponding transition brightness adjustment values are the first transition brightness adjustment value (130 nits) and the second transition brightness adjustment value (170 nits).
  • the debugging parameter group corresponding to each of the multiple reference nodes, and the parameter corresponding to each of the at least one transition node Debug the parameter group, and sequentially calculate the transition gamma segment corresponding to each transition brightness adjustment value in the at least one transition brightness adjustment value to obtain the at least one transition node.
  • the transition gamma segment corresponding to the first transition brightness adjustment value (130 nits) is calculated to obtain the transition node p, and then according to the transition node p, And the debugging parameter group corresponding to the transition node p, calculate the transition gamma segment corresponding to the second transition brightness adjustment value (170 nits), and obtain the transition node q
  • each debugging parameter group represents a set of debugging parameters of register values corresponding to each gray level of the color under the brightness adjustment value corresponding to the node corresponding to the debugging parameter group.
  • each gray level corresponds to Red register value A collection of debugging parameters.
  • the manner of setting at least one transition node between two adjacent reference nodes is based on at least one of the two adjacent reference nodes and the location of each reference node in the plurality of reference nodes.
  • the debugging parameter group and the debugging parameter group corresponding to each of the at least one transition node sequentially calculating the transition gamma segment corresponding to each transition brightness adjustment value in the at least one transition brightness adjustment value . That is to say, the transition node is obtained based on the reference node, the debugging parameter group corresponding to each reference node, and the debugging parameter group corresponding to each transition node.
  • the gamma correction time will not be increased, and the brightness adjustment curve obtained according to multiple reference nodes and multiple transition nodes is more accurate.
  • S22 includes the following processes:
  • the transition gamma segment corresponding to each transition brightness adjustment value of the at least one transition brightness adjustment value is sequentially calculated.
  • S221 Determine a node adjacent to the transition brightness value and corresponding to a brightness adjustment value whose brightness adjustment value is less than the transition brightness value.
  • the brightness adjustment value that is adjacent to the transitional brightness adjustment value and whose brightness adjustment value is less than the transitional brightness value is the second reference brightness adjustment Value (100 nits)
  • the node corresponding to the second reference brightness adjustment value (100 nits) is the reference node B.
  • the brightness adjustment value adjacent to the transition brightness adjustment value and the brightness adjustment value is smaller than the transition brightness value is the first transition brightness adjustment value (130 nits), and the first transition brightness adjustment value is 130 nits.
  • the node corresponding to the brightness adjustment value (130 nits) is the transition node p to be set.
  • the first transitional brightness adjustment value (130 nits) is calculated according to the reference gamma segment corresponding to the reference node B and the debugging parameter group corresponding to the reference node B Corresponding to the transition gamma segment, the transition node p corresponding to the first transition brightness adjustment value (130 nits) is obtained.
  • the second transition brightness adjustment value (170 nits) is calculated according to the transition gamma segment corresponding to the transition node p and the debugging parameter group corresponding to the transition node p Nits) corresponding to the transition gamma segment to obtain the transition node q corresponding to the second transition brightness adjustment value (170 nits).
  • S22 includes the following processes:
  • the transition gamma segment corresponding to each transition brightness adjustment value of the at least one transition brightness adjustment value is sequentially calculated.
  • transition node between the reference node B and the reference node C according to the order of the brightness adjustment value, first calculate the corresponding value of the second transition brightness adjustment value (170 nits) Transition gamma segment, and then calculate the transition gamma segment corresponding to the first transition brightness adjustment value (130 nits).
  • the brightness adjustment value that is adjacent to the transitional brightness adjustment value and whose brightness adjustment value is greater than the transitional brightness value is the third reference brightness adjustment Value (200 nits)
  • the node corresponding to the third reference brightness adjustment value (200 nits) is the reference node C.
  • the brightness adjustment value adjacent to the transition brightness adjustment value and the brightness adjustment value is greater than the transition brightness value is the second transition brightness adjustment value (170 nits), and the second transition brightness adjustment value is 170 nits.
  • the node corresponding to the brightness adjustment value (170 nits) is the transition node q to be set.
  • the second transitional brightness adjustment value (170 nits) is calculated according to the reference gamma segment corresponding to the reference node C and the debugging parameter group corresponding to the reference node C Corresponding to the transition gamma segment, the transition node q corresponding to the second transition brightness adjustment value (170 nits) is obtained.
  • the first transition brightness adjustment value (130 nits) is calculated according to the transition gamma segment corresponding to the transition node q and the debugging parameter group corresponding to the transition node q. Nits) corresponding to the transition gamma segment, and the transition node p corresponding to the first transition brightness adjustment value (130 nits) is obtained.
  • the debugging parameter group corresponding to the determined node includes a debugging parameter of a register value corresponding to each gray scale of the color, and the debugging parameter includes a magnification a and a gain b of the register value corresponding to the debugging parameter.
  • the calculation of S222 or S222' of the transition gamma segment corresponding to the transition brightness adjustment value according to the gamma segment corresponding to the determined node and the debugging parameter group corresponding to the determined node includes the following process:
  • Tuning parameters from the identified group find the i-th register values corresponding to gray scales tuning parameters (a i, b i) X i of.
  • the determined node is the reference node B.
  • the red register value corresponding to the gray scale of 0 ⁇ 255 is
  • the first transitional brightness adjustment value (130 nits) corresponds to the transition node p to be set. Under the first transitional brightness adjustment value (130 nits), the red register values corresponding to the gray scales from 0 to 255 are required.
  • the debugging parameter C B (a 1 , b 1 ) of the red register value corresponding to the 0 gray level in node B.
  • the debugging parameter includes the value of the red register value corresponding to the 0 gray level Magnification a 1 and gain b 1 .
  • the value of the red register corresponding to the gray scale with There is a corresponding relationship between the corresponding relationship, which is called the debugging parameter C B (a 2 , b 2 ) of the red register value corresponding to 1 gray level in node B, and the debugging parameter includes the value of the red register value corresponding to the 1 gray level Magnification a 2 and gain b 2 . And so on, the set of tuning parameters for each of the red register values corresponding to gray scales to the reference node corresponding to the debug parameter set B C B (a i, b i ), i 1 ⁇ n.
  • the transition gamma segment corresponding to the first transition brightness adjustment value (130 nits) is calculated.
  • the specific steps are:
  • the determined node is the transition node p.
  • the second transition brightness adjustment value (170 nits) corresponds to the transition node q to be set. Under the second transition brightness adjustment value (170 nits), the red register value corresponding to the gray scale from 0 to 255 needs to be requested.
  • the transition gamma segment corresponding to the transition node p and the debugging parameter group G p (a i , b i ) corresponding to the transition node p is calculated.
  • the steps are:
  • the first transition brightness adjustment value (130 nits) and the second transition brightness between the two reference brightness adjustment values corresponding to the reference node B and the reference node C are sequentially obtained Adjust the gamma segment corresponding to the adjustment value (170 nits) to obtain the transition node p and the transition node q.
  • the manner of setting the transition node between the other two adjacent reference nodes can be referred to the above setting.
  • the determined node is the reference node C.
  • the second transition brightness adjustment value (170 nits) corresponds to the transition node q to be set. Under the second transition brightness adjustment value (170 nits), the red register value corresponding to the gray scale from 0 to 255 needs to be requested.
  • the debugging parameter C'C (a 1 , b 1 ) of the register value corresponding to the 0 gray scale in the reference node C
  • the debugging parameter includes the magnification of the register value corresponding to the 0 gray scale a 1 and gain b 1 .
  • the gamma reference period corresponding to the node C, and node C corresponding to the reference set of tuning parameters C 'C (a i, b i), is calculated to obtain a second transition luminance adjustment value (170 nits) corresponding to a gamma transition section,
  • the specific steps are:
  • the determined node is the transition node q.
  • the first transition brightness adjustment value corresponds to the transition node p to be set. Under the first transition brightness adjustment value (130 nits), the red register value corresponding to the gray scale from 0 to 255 needs to be requested
  • the transition gamma segment corresponding to the transition node q and the debugging parameter group G q (a i , b i ) corresponding to the transition node q is calculated.
  • the steps are:
  • the second transition brightness adjustment value (170 nits) and the first transition brightness between the two reference brightness adjustment values corresponding to the reference node B and the reference node C are obtained in turn. Adjust the gamma segment corresponding to the adjustment value (130 nits) to obtain the transition node p and the transition node q.
  • the manner of setting the transition node between the other two adjacent reference nodes can be referred to the above setting.
  • the gamma correction method further includes obtaining a debugging parameter group corresponding to each of the multiple reference nodes, and a debugging parameter corresponding to each of the at least one transition node
  • the steps of the group, as shown in Figure 15, include:
  • the multiple brightness adjustment values corresponding to the multiple first nodes are equal to the reference brightness adjustment values corresponding to the multiple reference nodes in a one-to-one correspondence.
  • the gamma segment corresponding to each first node in the first node is each register obtained by performing gamma correction on the register value corresponding to each gray level of the sample display screen under the brightness adjustment value corresponding to the gamma segment A collection of numeric values.
  • the reference brightness adjustment values corresponding to the multiple reference nodes mentioned above are 0 nits, 100 nits, 200 nits, 300 nits, and 400 nits, respectively.
  • the brightness adjustment values corresponding to the multiple first nodes set in the sample display are 0 nits, 100 nits, 200 nits, 300 nits, and 400 nits.
  • the multiple first nodes are the first node A0. , The first node B0, the first node C0, the first node D0, and the first node E0.
  • the gamma segment corresponding to the first node A0 with a brightness adjustment value of 0 nits is: Gamma correction is performed on the register values corresponding to each gray scale of the sample display screen at a brightness adjustment value of 0 nits, so that the brightness adjustment The gamma value of the gamma curve under the value conforms to 2.2 ⁇ 0.2, and the set of values of each register is obtained.
  • the gamma segments corresponding to the other first nodes can be referred to the above description, and will not be repeated here.
  • the sample display screen after gamma correction, the gamma segment corresponding to each first node in the multiple first nodes is known and stored in the sample display screen, that is, the sample The display screen stores a set of register values corresponding to each gray level under the brightness adjustment value corresponding to each of the plurality of first nodes.
  • the above-mentioned setting of at least one transition node is that a transition node p and a transition node q are set between the reference node B and the reference node C, and the two transition nodes correspond to The two transitional brightness adjustment values are 130 nits and 170 nits, respectively. Then, in this step, the set multiple brightness adjustment values of the second node are 130 nits and 170 nits, respectively, and correspondingly, the two second nodes are the second node p0 and the second node q0.
  • the gamma segment corresponding to the second node p0 with a brightness adjustment value of 130 nits is to perform gamma correction on the register values corresponding to each gray scale of the sample display screen at a brightness adjustment value of 130 nits, so that the brightness adjustment
  • the gamma segment corresponding to the second node q0 with the brightness adjustment value of 170 nits can be referred to the above description, and will not be repeated here.
  • the sample display screen after gamma correction, the gamma segment corresponding to each second node in the multiple second nodes is known and stored in the sample display screen, that is, the sample The display screen stores a set of register values corresponding to each gray level under the brightness adjustment value corresponding to each of the plurality of second nodes.
  • the at least one specific node is a node adjacent to each second node and located before the corresponding second node according to the setting order of the brightness adjustment value; the setting order of the brightness adjustment value is that the brightness adjustment value is determined by The order of small to large, or the order of brightness adjustment value from large to small.
  • the setting order of the brightness adjustment values is from small to large according to the brightness adjustment value
  • the second node p0 it is adjacent to the second node p0 and in the descending order.
  • the node before the second node p0 is the first node B0
  • the first node B0 is a specific node relative to the second node p0.
  • the second node p0 the node adjacent to the second node q0 and before the second node q0 in ascending order is the second node p0, then the second node p0 is a specific node relative to the second node q0, Calculate the debugging parameters of the register values corresponding to each gray scale under the brightness adjustment value of 130 nits corresponding to the second node p0, and obtain the debugging parameter group corresponding to the second node p0.
  • the setting order of the brightness adjustment value is in descending order of the brightness adjustment value
  • the second node q0 it is adjacent to the second node q0 and is located in the descending order of the second node q0.
  • the node before the second node q0 is the first node C0
  • the first node C0 is a specific node relative to the second node q0
  • the second node q0 is a specific node relative to the second node p0
  • the debugging parameters of the register values corresponding to each gray scale under the brightness adjustment value of 170 nits corresponding to the second node q0 and obtain the debugging parameter group corresponding to the second node q0.
  • the first node B0 is specific to the second node p0.
  • the specific node corresponds to the reference node B in the display screen to be debugged, so the debugging parameter group corresponding to the first node B0 is the debugging parameter corresponding to the reference node B in the display screen to be debugged group.
  • the second node p0 is a specific node relative to the second node q0, and the specific node (the second node p0) corresponds to the transition node p in the display screen to be debugged, so the obtained second node p0 corresponds to
  • the debugging parameter group is the debugging parameter group corresponding to the transition node p in the display screen to be debugged.
  • the first node C0 is a specific node relative to the second node q0, and the The specific node (the first node C0) corresponds to the reference node C in the display screen to be debugged, so the obtained debugging parameter group corresponding to the first node C0 is the debugging parameter group corresponding to the reference node C in the display screen to be debugged.
  • the second node q0 is a specific node relative to the second node p0, and the specific node (the second node q0) corresponds to the transition node q in the display screen to be debugged, so the obtained second node q0 corresponds to
  • the debugging parameter group of is the debugging parameter group corresponding to the transition node q in the display screen to be debugged.
  • each specific node in the sample display screen corresponds to the reference node or transition node to be set in the display screen to be debugged, so the debugging parameter group corresponding to each specific node also corresponds to the specific node.
  • the debugging parameter group of the reference node or transition node to be set in the corresponding display screen to be debugged corresponds to the specific node.
  • At least one of the plurality of first nodes and the plurality of second nodes is calculated in sequence according to the plurality of first nodes and the plurality of second nodes Under the brightness adjustment value corresponding to a specific node, the steps of adjusting the parameter of the register value corresponding to each gray scale include:
  • the setting order of the illuminance adjustment value is in the descending order of the luminance adjustment value
  • the second node p0 it is adjacent to the second node p0 and is located in the descending order of the second node p0.
  • the node before the second node p0 is the first node B0
  • the first node B0 is a specific node relative to the second node p0.
  • the second node p0 is a specific node relative to the second node q0 .
  • X′ 0i represents the register value corresponding to the i-th gray level of the second node
  • X 0i represents the register value corresponding to the i-th gray level of the specific node
  • a i represents the magnification corresponding to the i-th gray level of the specific node
  • B i represents the gain corresponding to the i-th gray scale of the specific node.
  • the setting order of the brightness adjustment value is the order from small to large according to the brightness adjustment value, and the color is red as an example, according to the second node p0, and relative to the specific node ( The first node B0), specifically introduce S42':
  • the set of red register values corresponding to each gray level under the brightness adjustment value (100 nits) corresponding to the first node B0 And the red register value corresponding to each gray level under the brightness adjustment value (130 nits) corresponding to the second node p0 The set of are all known and stored in the sample display.
  • the process of calculating the debugging parameters corresponding to each gray level of the first node B0 is to establish the corresponding relationship between the register values of the first node B0 and the second node p0 at the same gray level the process of.
  • the debugging parameter group C B0 (a i ,b i ) corresponding to the first node B0 established in the sample display screen is the debugging parameter group C B (a i ,b i )
  • the second node p0 is a specific node relative to the second node q0.
  • the corresponding relationship between the second node p0 and the second node q0 is established, and the corresponding gray levels of the second node p0 can be obtained.
  • each tuning parameters, the second set of points p0 corresponding to each gray level debug parameter register values corresponding to the second node debug parameters p0 G p0 (a i, b i ), i 1 ⁇ n.
  • the debugging parameter group G p0 (a i ,b i ) corresponding to the second node p0 established in the sample display screen is the debugging parameter group G p (a i ,b i )
  • the gamma correction method further includes: pre-storing the established corresponding relationship between the node and the debugging parameter in the display screen to be adjusted.
  • the corresponding relationship between the node established by the selected sample display screen and the debugging parameter is stored in the display screen to be adjusted in advance, so that the display screen to be adjusted can perform the gamma correction method provided by the embodiment of the present disclosure
  • the corresponding relationship is called when the relevant steps in (for example, S221 ⁇ S222 or S221' ⁇ S222').
  • the obtained debugging parameter group corresponding to each of the multiple reference nodes and the debugging parameter group corresponding to each of the at least one transition node are stored in advance To the display screen to be debugged.
  • the reference brightness adjustment value corresponding to the two adjacent reference nodes and the transition brightness adjustment value corresponding to the at least one transition node form an arithmetic sequence.
  • the transitional brightness adjustment value divides the brightness adjustment range between the brightness adjustment values corresponding to two adjacent reference nodes into equal parts, and the brightness adjustment value corresponding to the boundary point is selected as the transitional brightness adjustment value. YES, between the reference brightness adjustment value of 100 nits corresponding to the second reference node B and the reference brightness adjustment value of 200 nits corresponding to the reference node C, three brightness adjustment values are selected as the transition brightness adjustment values, respectively 125 Nits, 150 nits and 175 nits.
  • the at least one transition node set between two adjacent reference nodes is evenly distributed, when the brightness adjustment curve that characterizes the corresponding relationship between the brightness adjustment value and the gamma segment is obtained according to the multiple reference nodes and the multiple transition nodes ,
  • the obtained brightness adjustment curve is more in line with the characteristics of the light-emitting material of the OLED display device, so that the display effect of the OLED display device when the brightness is adjusted is better.
  • the number of transition nodes set between two adjacent reference nodes is at least two.
  • the multiple reference nodes and the Multiple transition nodes can make the obtained brightness adjustment curve more in line with the characteristic changes of the luminescent material of the display screen and improve the display effect of the display screen.
  • the step of setting at least one transition node between two adjacent reference nodes includes: setting at least one transition node between every two adjacent reference nodes.
  • At least one transition node is set between reference node A and reference node B, reference node B and reference node C, reference node C and reference node D, reference node D and reference node, which can improve gamma correction
  • the accuracy of the algorithm ensures that in the entire brightness adjustment value range, when the brightness adjustment of the display screen is performed according to the obtained brightness adjustment curve, it can effectively improve the redness and greenness that occur under the brightness adjustment value between the reference brightness adjustment values. phenomenon.
  • FIG. 18 shows the color coordinate change curve within the brightness adjustment value range of 0 nit to 300 nit.
  • X represents the horizontal axis in the color coordinate
  • Y represents the vertical axis in the color coordinate.
  • the value of the horizontal axis X is basically the same as the value of the vertical axis Y, and both are about 0.3.
  • the color displayed in the color coordinate diagram is white, indicating that the attenuation speed of green pixels is compared with that of red pixels. The attenuation speed is basically the same, so the displayed picture will not appear red and blue, thereby improving the display effect of the display device.
  • a brightness value adjustment range is determined according to the smallest reference brightness adjustment value and the largest reference brightness adjustment value.
  • the brightness value adjustment range includes a first zone and a second zone, and the upper limit of the brightness adjustment of the first zone is not greater than the lower limit of the brightness adjustment of the second zone.
  • the number of transition nodes corresponding to the first section is greater than the number of transition nodes corresponding to the second section.
  • the smallest reference brightness adjustment value of 0 nits and the largest reference brightness adjustment value of 400 nits determine a brightness value adjustment range of 0 nits to 400 nits.
  • the brightness value adjustment range is 0 nits to 400 nits, including 0 nits to 200 nits in the first section and 200 nits to 400 nits in the second section.
  • the upper limit of brightness adjustment in the first section is 200 nits equal to
  • the lower limit of the brightness adjustment of the second zone is 200 nits.
  • the number of transition nodes corresponding to 0 nits to 200 nits in the first section is greater than the number of transition nodes corresponding to 200 nits to 400 nits in the second section.
  • three transition nodes are set between every two adjacent reference nodes in the first section, and one transition node is set between every two adjacent transition nodes in the second section.
  • the brightness adjustment value between the reference brightness adjustment values is lower at a lower brightness adjustment value.
  • the lower display screen will show poor display such as red and green. Therefore, the number of transition nodes set in the lower brightness adjustment value range is more than the number of transition nodes set in the higher brightness adjustment value range. Effectively improve the poor display phenomenon under the lower brightness adjustment value, and while ensuring that the display effect under the higher brightness adjustment value is not affected, it can reduce the setting of multiple transition nodes in the display screen to be debugged, and the sample Set up multiple second nodes in the display screen and calculate the workload of the debugging parameter group, thereby saving time and improving efficiency.
  • the number of transition nodes provided between every two adjacent reference nodes of the first section is greater than the number of transition nodes provided between every two adjacent reference nodes of the second section.
  • the above-mentioned gamma correction method is performed separately, so that the above-mentioned gamma correction method can be used.
  • the obtained brightness adjustment curve conforms to the characteristics of the luminescent material, so that under each brightness adjustment value, the display effect of the picture displayed on the display screen is better, and the phenomenon of redness and greenness will not occur.
  • the implementation described here can be implemented by using application-specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gate arrays ( It is implemented by at least one of an FPGA), a processor, a controller, a microcontroller, a microprocessor, and an electronic unit designed to perform the functions described herein. In some cases, such an implementation may be implemented in a processor unit.
  • ASIC application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gate arrays
  • some embodiments of the present disclosure also provide a gamma correction device 100, including a memory 1 and a processor 2, wherein the memory 1 stores computer instructions, and the processor 2 is configured to read and execute The computer instructions are used to implement one or more steps in the gamma correction method according to the embodiments of the present disclosure.
  • the above-mentioned gamma correction device 100 is used to perform gamma correction on the display screen to be debugged.
  • the gamma correction device Through the gamma correction device, the brightness adjustment of the display screen to be debugged between the reference brightness adjustment values at a lower brightness adjustment value is improved.
  • the display screen under the value of red and green appears to be poorly displayed, which improves the display effect of the display.
  • the memory 1 mentioned in the embodiment of the present disclosure may include a read-only memory and a random access memory.
  • the processor 2 mentioned in the embodiments of the present disclosure may be a central processing unit (Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 1 and the processor 2 in the embodiment of the present disclosure may interact through the communication bus 3.
  • the communication bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as communication buses in the figure.
  • some embodiments of the present disclosure also provide a gamma correction system 200, which includes the gamma correction device 100, the driving device 101, and the optical testing device 102 as described above.
  • the driving device 101 is configured to drive the display screen to be debugged to work.
  • the optical testing device 102 is configured to sample the optical parameters of the display screen to be debugged under the control of the gamma correction device, and upload the sampled optical parameters to the gamma correction device.
  • the gamma correction device 100 performs gamma correction on the display screen to be debugged according to the optical parameters.
  • the driving device 101 may be a signal generator, providing a driving signal driving product, implemented based on ARM (Advanced RISC Machine, Advanced Reduced Instruction Set Computer Processor) or based on FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) combination PC (Personal Computer, personal computer) and other implementations.
  • ARM Advanced RISC Machine, Advanced Reduced Instruction Set Computer Processor
  • FPGA Field-Programmable Gate Array, Field Programmable Gate Array
  • PC Personal Computer
  • the optical testing device 102 may be a display image detector or the like.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores computer instructions that can be run on a processor, and when the computer instructions are executed by the processor, the above-mentioned brightness adjustment method is implemented One or more steps in.
  • the computer-readable storage medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), read-only memory (ROM, Read-Only Memory), and random access Access memory (RAM, Random Access Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read-Only Memory) and other media that can store program codes.
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • ROM read-only memory
  • RAM Random Access Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Some embodiments of the present disclosure also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute one or more steps in the brightness adjustment method described above.
  • the computer storage media or computer program products provided by the embodiments of the present disclosure are both used to execute the gamma correction method provided above. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the corresponding method provided above. , I won’t repeat it here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

一种伽马校正方法,应用于待调试显示屏,包括:对于待调试显示屏的一个颜色,设置多个参考节点,所述多个参考节点中的每个参考节点表示参考亮度调节值和参考伽马段的映射关系,按照参考亮度调节值由小到大或由大到小的次序对所述多个参考节点进行排序。在相邻两个参考节点之间设置至少一个过渡节点,所述至少一个过渡节点中的每个过渡节点表示过渡亮度调节值和过渡伽马段的映射关系。根据所述多个参考节点和所述至少一个过渡节点,得到表征亮度调节值与伽马段的对应关系的亮度调节曲线;其中,所述每个伽马段表征在该伽马段对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的集合。

Description

伽马校正方法、伽马校正装置及伽马校正系统 技术领域
本公开涉及显示技术领域,尤其涉及一种伽马校正方法、伽马校正装置、伽马校正系统、计算机可读存储介质及计算机程序产品。
背景技术
在显示技术领域,OLED(Organic Light-Emitting Diode,有机电致发光二极管)显示装置具有自发光、视角宽、响应快等特点,受到广泛应用。为了使OLED显示装置的显示效果符合人眼视觉感受,需要对OLED显示装置进行伽玛校正(gamma tuning)。
发明内容
第一方面,提供一种伽马校正方法,应用于待调试显示屏,包括:对于待调试显示屏的一个颜色,设置多个参考节点,所述多个参考节点中的每个参考节点表示参考亮度调节值和参考伽马段的映射关系,按照所述参考亮度调节值由小到大或由大到小的次序对所述多个参考节点进行排序。在相邻两个参考节点之间设置至少一个过渡节点,所述至少一个过渡节点中的每个过渡节点表示过渡亮度调节值和过渡伽马段的映射关系。根据所述多个参考节点和所述至少一个过渡节点,得到表征亮度调节值与伽马段的对应关系的亮度调节曲线;其中,所述每个伽马段表征在该伽马段对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的集合。
在一些实施例中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤,包括:在相邻两个参考节点对应的参考亮度调节值之间的范围选取至少一个亮度调节值作为拟设置的至少一个过渡节点对应的至少一个过渡亮度调节值。根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点;其中,每个所述调试参数组表征,在该调试参数组所对应的节点对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的调试参数的集合。
在一些实施例中,所述根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点的步骤,包括:按照所述过渡亮度调节值由小到大的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段;其中,对于所述每个过渡亮度调节值,确定与该过渡亮度值相邻且亮度调节值小于该过渡亮度值的亮度调节值对应的节点。根据所述节点与调试参数之间的对应关系,及所确定的节点对应的对应的调试参数组。根据所确定的节点对应的伽马段、及所找出的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
在一些实施例中,所述根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点的步骤,包括:按照所述过渡亮度调节值由大到小的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段;其中,对于所述每个过渡亮度调节值,确定与该过渡亮度值相邻且亮度调节值大于该过渡亮度值的亮度调节值对应的节点。根据所述节点与调试参数之间的对应关系,找出与所确定的节点对应的调试参数组。根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
在一些实施例中,所述所确定的节点对应的调试参数组包括所述颜色的各灰阶对应的寄存器数值的调试参数,所述调试参数包括该调试参数对应的寄存器数值的倍率a和增益b。所述根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段的步骤,包括:从所确定的节点对应的伽马段中,找出第i个灰阶对应的寄存器数值X i。从所确定的节点对应的调试参数组中,找出第i个灰阶对应的寄存器数值X i的调试参数(a i,b i)。根据公式X′ i=a i×X i+b i,计算该过渡亮度调节值下第i个灰阶对应的寄存器数值X′ i。令i=1~n,重复执 行上述步骤,依次计算该过渡亮度调节值下n个灰阶对应的寄存器数值X′ 1~X′ n,得到该过渡亮度调节值对应的过渡伽马段;其中,n表示所述颜色的灰阶个数。
在一些实施例中,还包括得到所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组的步骤,该步骤包括:选取样品显示屏。参照拟在待调试显示屏中设置的多个参考节点,在所述样品显示屏中设置多个第一节点,所述多个第一节点对应的多个亮度调节值与所述多个参考节点对应的参考亮度调节值一一对应相等,所述第一节点中的每个第一节点对应的伽马段为,在该伽马段对应的亮度调节值下,对所述样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合。参照拟在待调试显示屏中设置的至少一个过渡节点,在所述样品显示屏中设置多个第二节点,所述多个第二节点对应的多个亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值一一对应相等,所述第二节点中的每个第二节点对应的伽马段为,在该伽马段对应的亮度调节值下,对所述样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合。根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数,得到每个特定节点对应的调试参数组。根据所述每个特定节点对应的调试参数组,得到拟在所述待调试显示屏中设置的所述多个参考节点中的每个参考节点所对应的调试参数组,及拟在所述待调试显示屏中设置的所述至少一个过渡节点中的每个过渡节点所对应的调试参数组。其中,所述至少一个特定节点为与所述每个第二节点相邻,且按照亮度调节值的设定次序位于相应第二节点之前的节点,所述亮度调节值的设定次序为所述亮度调节值由小到大的次序,或者所述亮度调节值由大到小的次序。
在一些实施例中,所述根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数的步骤,包括:对于所述每个第二节点,确定与该第二节点相邻,且按照所述亮度调节值的设定次序位于该第二节点之前的节点为一个特定节点。根据公式X′ 0i=a i×X 0i+b i,分别计算该特定节点各灰阶对应的各调试参数。其中,X′ 0i表 示该第二节点第i个灰阶对应的寄存器数值;X 0i表示该特定节点第i个灰阶对应的寄存器数值;a i表示该特定节点第i个灰阶对应的倍率,b i表示该特定节点第i个灰阶对应的增益。
在一些实施例中,伽马校正方法还包括:将所得到的所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组预先存储至所述待调试显示屏中。
在一些实施例中,所选取的样品显示屏与所述待调试显示屏属于同一生产批次的显示屏。
在一些实施例中,所述相邻两个参考节点对应的参考亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值成等差数列。
在一些实施例中,所述相邻两个参考节点之间所设置的过渡节点的数量为至少两个。
在一些实施例中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤包括:在每相邻两个所述参考节点之间设置至少一个过渡节点。
在一些实施例中,所述多个参考节点对应的多个参考亮度调节值中,最小的参考亮度调节值和最大的参考亮度调节值确定一亮度值调节范围。所述亮度值调节范围包括第一区段和第二区段,所述第一区段的亮度调节上限值不大于所述第二区段的亮度调节下限值。所述第一区段对应的过渡节点的数量大于所述第二区段对应的过渡节点的数量。
在一些实施例中,在所述第一区段的每相邻两个参考节点之间设置的过渡节点数量大于在所述第二区段的每相邻两个参考节点之间设置的过渡节点数量。
在一些实施例中,所述设置多个参考节点的步骤,包括:选取多个亮度调节值作为拟设置的多个参考节点对应的多个参考亮度调节值。在所选取的每个参考亮度调节值下,对待调节显示屏的各灰阶的寄存器数值进行伽马校正,得到相应参考亮度调节值对应的参考伽马段。
在一些实施例中,待调试显示屏能够显示至少两种颜色,对于每种颜色的亮度调节曲线的建立,分别执行如上所述的伽马校正方法。
第二方面,提供一种伽马校正装置,包括存储器和处理器,所述存储器存储有计算机指令,所述处理器被配置为读取并执行所述计算机指令,以实现如第一方面中任一项所述伽马校正方法中的一个或多个步骤。
第三方面,提供一种伽马校正系统,包括如第二方面所述的伽马校正 装置,驱动装置和光学测试装置。驱动装置被配置为驱动待调试显示屏工作。光学测试装置被配置为在所述伽马校正装置的控制下,采样所述待调试显示屏的光学参数,并将采样得到的光学参数上传至所述伽马校正装置。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有可在处理器上运行的计算机指令,所述计算机指令被所述处理器执行时实现如第一方面的各实施例所述的伽马校正方法中的一个或多个步骤。
第五方面,提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面的各实施例所述的伽马校正方法中的一个或多个步骤。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据相关技术的一种伽马曲线的示意图;
图2为根据相关技术的亮度调节曲线的示意图;
图3为根据相关技术的不同亮度调节值下的伽马曲线的示意图;
图4a为根据相关技术的对灰阶亮度值进行调节的一种时序示意图;
图4b为根据相关技术的对灰阶亮度值进行调节的另一种时序示意图;
图5为根据相关技术的在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线的一种示意图;
图6为根据相关技术的在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线的另一种示意图;
图7根据本公开的一些实施例的伽马校正方法的伽马寄存器的示意图;
图8根据本公开的一些实施例的伽马校正方法的一种流程图;
图9根据本公开的一些实施例的伽马校正方法得到的亮度调节曲线的示意图;
图10根据本公开的一些实施例的伽马校正方法的另一种流程图;
图11根据本公开的一些实施例的伽马校正方法的又一种流程图;
图12根据本公开的一些实施例的伽马校正方法的再一种流程图;
图13根据本公开的一些实施例的伽马校正方法的再一种流程图;
图14a根据本公开的一些实施例的伽马校正方法的寄存器数值的对应关系的一种示意图;
图14b根据本公开的一些实施例的伽马校正方法的寄存器数值的对应关系的另一种示意图;
图15根据本公开的一些实施例的伽马校正方法的再一种流程图;
图16根据本公开的一些实施例的伽马校正方法的在样品显示屏中进行伽马校正得到的节点的示意图;
图17根据本公开的一些实施例的伽马校正方法的再一种流程图;
图18为根据本公开的一些实施例的在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线的又一种示意图;
图19根据本公开的一些实施例的伽马校正装置的示意图;
图20根据本公开的一些实施例的伽马校正系统的示意图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
由于人眼对较黑暗环境下的亮度的敏感程度,要比对较光亮环境下的亮度的敏感程度高许多,因此人眼感觉与亮度之间的关系并不是线性关系,而是呈现一定的规律。如图1所示,图1示出了一种伽马曲线,其中横坐标代表向像素输入的像素灰阶值(以下简称灰阶),纵坐标代表像素对应输出的灰阶亮度值。为了使OLED显示装置的显示效果符合人眼视觉感受,需要使所输入的灰阶与对应输出的灰阶亮度值之间的关系设定为,灰阶亮度值正比于灰阶的γ次方,这种灰阶亮度值与灰阶之间的关系称为显示装置的伽马曲线。示例性的,将γ的值设定为2.2±0.2,以使所显示的画面与人眼实际所看到的画面接近。
在OLED显示装置出厂前,需要对OLED显示装置进行伽玛校正(gamma tuning),伽玛校正的目的是将灰阶亮度值与灰阶的比值γ次方调整为目标值,例如2.2±0.2,以提高显示装置的显示效果。
通常,OLED显示装置的显示面板具有一亮度调节范围,显示装置的显示亮度能够在该亮度调节范围内变化。理想情况下,该亮度调节范围内 的每一个显示亮度所对应的伽马曲线的伽马值均符合目标值,例如2.2±0.2,这样,在每个显示亮度下,显示装置所呈现的显示效果均符合人眼视觉感受。
在显示装置的实际使用过程中,用户调节显示装置的显示亮度(例如,通过拖动手机等电子终端设备的显示屏上的亮度滑条,来调节电子终端设备的显示屏的显示亮度),或者显示装置响应于周围环境亮度的变化自动调整自身显示亮度显示装置,实际上相当于在切换不同显示亮度对应的伽马曲线。
如要保证显示装置的整个显示亮度范围内的每条伽马曲线的伽马值均符合目标值(例如2.2±0.2),就需要对整个亮度范围内的各个显示亮度对应的各条伽马曲线均进行伽马校正,这样无疑会造成工作量巨大,耗时过长。
在相关技术中,为了节省伽马校正的工作量,通过设置若干个参考节点得到亮度调节曲线,例如参考节点的数量为4~5个。如图2所示,图2示出了一种亮度调节曲线,其中横坐标代表亮度调节值,即显示装置的显示亮度,纵坐标代表亮度调节值对应的伽马段(gamma band),即亮度调节值对应的伽马曲线中各灰阶对应的寄存器数值(可理解为灰阶亮度值)的集合。示例性的,该亮度调节曲线包括5个参考节点,这5个参考节点对应的亮度调节值分别为0尼特(nit)、100尼特、200尼特、300尼特、400尼特,各亮度调节值分别对应不同的伽马段,每个伽马段对应相应亮度调节值下的伽马曲线。请参见图3,图3示出了显示装置分别在0尼特、100尼特、200尼特、300尼特、400尼特下的伽马曲线,这5条伽马曲线经伽马校正得到,伽马值均符合目标值(例如2.2±0.2)。
在图2所示出的亮度调节曲线下对显示装置的显示亮度进行调节的过程中,对于目标亮度调节值(即需要调节的显示亮度)为参考节点对应的亮度调节值的情况,直接将显示装置的伽马曲线切换为相应的亮度调节值对应的伽马段所确定的伽马曲线即可。然而,对于目标亮度调节值不是参考节点对应的亮度调节值的情况,例如目标亮度调节值介于相邻两个参考节点对应的亮度调节值之间,相关技术中通常是通过对该相邻两个参考节点对应的伽马段进行线性差值,得到目标亮度调节值对应的伽马段,进而确定相应的伽马曲线。
然而,采用上述方法,在目标亮度调节值为较低亮度调节值的情况下 下,示例性的,目标亮度调节值低于10尼特,若目标亮度调节值在相邻两个参考节点对应的亮度调节值之间,显示画面会出现发红发绿等显示不良现象。
本公开的发明人经研究发现,出现上述显示不良现象的原因之一在于:
目前对像素的灰阶亮度值进行调节的方法包括:PWM(Pulse Width Modulation,脉冲宽度调制)调光机制和/或驱动信号调光机制。
其中,PWM调光机制为,如图4a所示,图4a示出了一帧图像信号的时序图,其中RESET信号为复位信号,Gate信号为扫描信号,以发光信号EM1的工作电平为低电平为例,发光阶段t-em,发光信号EM1包括多个脉冲,每个脉冲对应的高电平时间(即非工作电平时间)对应无效区t2,其余低电平时间对应发光区t1。通过调节每个脉冲的宽度,控制发光区t1的占空比(即发光区t1的时间与发光阶段t-em的总时长的比值),从而实现对整个发光阶段t-em中实际发光时长的调节,进而实现对像素的灰阶亮度值的调节。
驱动信号调光机制为,如图4b所示,图4b示出了一帧图像信号的时序图,其中RESET信号为复位信号,Gate信号为扫描信号,以发光信号EM2的工作电平为低电平为例,在发光阶段t-em,发光信号EM2的电位持续为低电平(即持续为工作电平),即像素在整个发光阶段t-em均处于发光状态。通过调节显示装置的驱动IC(Integrated Circuit,集成电路)向像素所输出的驱动信号的大小,即控制流经像素对应的发光器件的驱动电流的大小,实现对像素的灰阶亮度值的调节。
在目标亮度调节值介于相邻两个参考节点对应的亮度调节值之间的情况下,采用相关技术中通过对该相邻两个参考节点对应的伽马段进行线性差值的方法,得到目标亮度调节值对应的伽马段,进而确定相应的伽马曲线,从而根据所确定的伽马曲线,采用上述PWM调光机制和/或驱动信号调光机制,通过控制发光区t1的占空比和/或调节驱动信号的大小,实现对像素的灰阶亮度值的调节。
本公开的发明人发现,在目标亮度调节值处于相邻两个参考亮度调节值之间的情况下,上述方法不符合OLED显示装置的发光材料的特性变化。具体表现为:
在采用PWM调光机制进行亮度调节时,如图5所示,图5示出了在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线,其中X表示色坐 标中的横轴,Y表示色坐标中的纵轴。(需要说明的是,色坐标(chromaticity coordinate),就是颜色的坐标,也叫表色系,现在常用的颜色坐标,横轴为X,纵轴为Y,用(X,Y)来表示一种颜色。NTSC(National TelevisionSystems Committee)规定,标准红色色坐标为(0.67,0.33),标准绿色色坐标为(0.21,0.71),标准蓝色色坐标为(0.14,0.08),纯正的白光色坐标为(0.33,0.33)。在色坐标图中,当横轴X的值和纵轴Y的值均在0.3左右时,色坐标图中所显示的颜色为白色,在横轴X的值大于0.3且大于纵轴Y的值的情况下,简称X大于Y,色坐标图中所显示的颜色大多数为红色,在纵轴Y的值大于0.3且大于横轴X的值的情况下,简称X小于Y,色坐标图中所显示的颜色大多数为绿色)。可见,在PWM调光机制下,在较低亮度调节值范围内,横轴X的值大于纵轴Y的值,色坐标图中所显示的颜色大多数为红色,也就是说绿色像素的衰减速度大于红色像素的衰减速度,因此所显示的画面会出现发红现象。
在采用驱动信号调光机制和PWM调光机制结合的方式进行亮度调节时,如图6所示,图6示出了在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线,其中X表示色坐标中的横轴,Y表示色坐标中的纵轴。可见,采用驱动信号调光机制和PWM调光机制综合的方式,在较低亮度调节值范围内,横轴X的值小于纵轴Y的值,色坐标图中所显示的颜色大多数为绿色,也就是说绿色像素的衰减速度小于红色像素的衰减速度,因此所显示的画面会出现发青现象。
可见,采用相关技术中的伽马校正算法,通过在参考亮度调节值之间进行线性插值的得到除参考亮度调节值之外的其他亮度调节值对应的伽马段,由于该方法不符合OLED显示装置的发光材料的特性,造成在较低亮度调节值下,在参考亮度调节值之间的亮度调节值下的显示画面会出现发红发绿等显示不良现象。
在显示装置中,对于某一亮度调节值下的伽马曲线,各灰阶对应的灰阶亮度值通过寄存器来进行存储。如图7所示,伽马寄存器的结构为:R[x]表示红色寄存器地址,G[x]表示绿色寄存器地址,B[x]表示蓝色寄存器地址,其中,x=0~n-1,n为显示装置能够显示的最大灰阶个数,例如n为256,以下将存储于寄存器地址中的灰阶亮度值统称为寄存器数值X i,i=0~n-1。示例性地,红色寄存器数值表示为
Figure PCTCN2019108082-appb-000001
绿色寄存器数值表示为
Figure PCTCN2019108082-appb-000002
蓝色寄存器数值表示为
Figure PCTCN2019108082-appb-000003
本公开的一些实施例提供一种伽马校正方法,该伽马校正方法应用于待调试显示屏,如图8所示,该伽马校正方法包括:对于待调试显示屏的一个颜色(以下以该颜色为红色进行说明,需要说明的是,此处的颜色还可以为其他颜色,例如蓝色,绿色等,依据待调试显示屏所能够显示的颜色而定,此处的红色仅是一种示例)。
S1、设置多个参考节,所述多个参考节点中的每个参考节点表示参考亮度调节值和参考伽马段的映射关系,按照参考亮度调节值由小到大或由大到小的次序对所述多个参考节点进行排序。
在上述步骤中,如图9所示,在亮度调节值与伽马段的对应关系图中,横坐标代表亮度调节值,纵坐标代表伽马段,实心圆点代表所设置的多个参考节点,每个参考节点表示参考亮度调节值与参考伽马段的对应关系。示例性地,以红色为例,参考亮度调节值为红色子像素对应的亮度调节值范围内的多个特定位置的亮度调节值。每个参考伽马段表征,在该参考伽马段对应的参考亮度调节值下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000004
在一些实施例中,如图10所示,S1中设置多个参考节点包括如下过程:
S11、选取多个亮度调节值作为拟设置的多个参考节点对应的多个参考亮度调节值。
S12、在所选取的每个参考亮度调节值下,对待调节显示屏的各灰阶的寄存器数值进行伽马校正,得到相应参考亮度调节值对应的参考伽马段。
在每个参考亮度调节值下,对待调节显示屏的各灰阶的寄存器数值进行伽马校正,得到相应参考亮度调节值对应的参考伽马段,也就是使得每个参考亮度调节值下的伽马曲线的伽马值均符合目标值(例如2.2±0.2)。在显示装置的亮度调节值处于参考亮度调节值的情况下,显示装置所显示的画面符合人眼视觉感受。
在一些实施例中,如图9所示,参考节点的个数为4~5个,示例性的,参考节点的个数为5个。在整个亮度调节范围为0尼特~400尼特的情况下,该5个参考节点所对应的亮度调节值分别为第一参考亮度调节值(0尼特)、第二参考亮度调节值(100尼特)、第三参考亮度调节值(200尼特)、第四参考亮度调节值(300尼特)、第五参考亮度调节值(400尼特)。
示例性的,请再次参见图9,按照亮度调节值由小到大的次序对所述 多个参考节点进行排序,上述5个参考节点从左至右分别为参考节点A、参考节点B、参考节点C、参考节点D和参考节点E。示例性地,参考节点A对应的参考伽马段表征,0尼特下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000005
参考节点B对应的参考伽马段表征,100尼特下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000006
Figure PCTCN2019108082-appb-000007
其他参考节点参见上述说明。
S2、在相邻两个参考节点之间设置至少一个过渡节点,所述至少一个过渡节点中的每个过渡节点表示过渡亮度调节值和过渡伽马段的映射关系。
在上述步骤中,请参见图9,示例性的,在参考节点A和参考节点B之间设置有三个过渡节点,在参考节点B和参考节点C、参考节点C和参考节点D、参考节点D和参考节点E之间分别设置有两个过渡节点,每个过渡节点表示过渡亮度调节值和过渡伽马段的对应关系。示例性地,以红色为例,过渡亮度调节值为在相邻两个参考节点所对应的红色子像素的参考亮度调节值之间所选取的亮度调节值。每个过渡伽马段表征,在该过渡伽马段对应过渡亮度调节值下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000008
示例性的,对于设置于参考节点B和参考节点C之间的过渡节点p和过渡节点q,过渡节点p对应的过渡伽马段表征,130尼特下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000009
过渡节点q对应的参考伽马段表征,170尼特下,各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000010
过渡节点与参考节点的作用相同,均为表征亮度调节值与伽马段之间的映射关系的特征点。在每个过渡亮度调节值下,各灰阶所对应的寄存器数值的集合为对应的伽马段,每个过渡亮度调节值下伽马曲线的伽马值接近或者符合目标值(2.2±0.2)。在显示装置的亮度调节值处于过渡亮度调节值的情况下,所呈现的显示画面符合人眼视觉感受。
S3、根据所述多个参考节点和所述至少一个过渡节点,得到表征亮度调节值与伽马段的对应关系的亮度调节曲线。其中,所述每个伽马段表征在该伽马段对应的亮度调节值下,所述颜色(以红色为例)的各灰阶对应的红色寄存器数值的集合。
在上述步骤中,示例性地,如图9所示,根据5个参考节点(参考节 点A、参考节点B、参考节点C、参考节点D和参考节点E)和九个过渡节点,得到表征亮度调节值与伽马段的对应关系的亮度调节曲线。图9中,根据亮度调节曲线,可以得到整个亮度调节范围内的每个亮度调节值下所对应的伽马段,在图9所示出的亮度调节曲线下对显示装置的显示亮度进行调节的过程中,直接将显示装置的伽马曲线切换为相应的亮度调节值对应的伽马段所确定的伽马曲线即可。
本公开提供的伽马校正方法,通过设置多个参考节点,得到参考亮度调节值与参考伽马段之间的映射关系,通过设置至少一个过渡节点,得到过渡亮度调节值与过渡伽马段之间的映射关系,由于上述伽马校正方法是先设置多个参考节点,接着在相邻两个参考节点之间设置过渡节点,过渡节点是根据参考节点得到的,并不需要在过渡亮度调节值下经过伽马校正得到,因此不会增加校正时间。
在一些实施例中,在根据上述方法得到的亮度调节曲线对显示装置的亮度进行调节的过程中,对于目标亮度调节值为参考节点或过渡节点对应的亮度调节值的情况,直接将当前伽马曲线切换为目标亮度调节值对应的伽马段所确定的伽马曲线即可。对于目标亮度调节值不是参考节点或过渡节点对应的亮度调制的情况,例如目标亮度调节值在相邻两个节点(即相邻两个参考节点,或者相邻两个过渡节点,或者相邻的一个参考节点和一个过渡节点)对应的亮度调节值之间,可以对相邻两个节点对应的伽马段进行线性插值得到目标亮度调节值对应的伽马段,将当前伽马曲线切换为线性插值得到的伽马段所确定的伽马曲线。
这样,相比现有技术中在相邻两个参考节点之间直接用线性插值的方式得到目标亮度调节值对应的伽马段的方式,本公开提供的伽马校正方法在不增加进行伽马校正的工作量的前提下,例如仅在5个参考亮度调节值下进行伽马校正得到5个参考节点,在相邻两个参考节点之间设置至少一个过渡节点,过渡节点并非进行伽马校正得到,而是根据参考节点得到,使得表征亮度调节值与伽马段之间的对应关系的节点个数增多,根据这些节点,所得到的表征亮度调节值与伽马段的对应关系的亮度调节曲线更加准确,符合OLED显示装置的发光材料特性,从而改善了在较低亮度调节值下,在参考亮度调节值之间的亮度调节值下的显示画面所出现的发红发绿等显示不良的现象,提高了显示装置的显示效果。
需要说明的是,本公开实施例所提供的伽马校正方法不仅适用于 OLED显示装置,还可以适用于其他的由前面所介绍的原因引起显示质量问题的主动发光显示装置,例如QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示装置、Micro LED(微型发光二极管)显示装置等,本公开对此并不设限。
在一些实施例中,如图10所示,在S2中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤,包括:
S21、在相邻两个参考节点对应的参考亮度调节值之间的范围选取至少一个亮度调节值作为拟设置的至少一个过渡节点对应的至少一个过渡亮度调节值。
示例性地,如图9所示,在参考节点B和参考节点C对应的第二参考亮度调节值(100尼特)和第三参考亮度调节值(200尼特)的两个参考亮度调节值之间,选取两个亮度调节值,例如130尼特和170尼特,作为拟设置的两个过渡节点对应的两个过渡亮度调节值,按过渡亮度调节值从小到大的次序,称这两个拟设置的过渡节点为过渡节点p和过渡节点q,其对应的过渡亮度调节值为第一过渡亮度调节值(130尼特)和第二过渡亮度调节值(170尼特)。
S22、根据相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点。
示例性地,根据参考节点B,及参考节点B所对应的调试参数组,计算第一过渡亮度调节值(130尼特)对应的过渡伽马段,得到过渡节点p,接着根据过渡节点p,及过渡节点p所对应的调试参数组,计算第二过渡亮度调节值(170尼特)对应的过渡伽马段,得到过渡节点q
其中,每个调试参数组表征,在该调试参数组所对应的节点对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的调试参数的集合。
示例性的,以红色为例,参考节点B的调试参数组表征,在100尼特下,红色的各灰阶对应的寄存器数值的调试参数的集合,即在100尼特下,各灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000011
的调试参数的集合。
上述实施例中,在相邻两个参考节点之间设置至少一个过渡节点的方式为,根据相邻两个参考节点中的至少一个参考节点、所述多个参考节点 中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段。也就是说,过渡节点为根据参考节点、每个参考节点所对应的调试参数组、每个过渡节点所对应的调试参数组得到的,不需要对过渡亮度调节值下的伽马曲线进行伽马校正,因此不会增加伽马校正时间,且根据多个参考节点和多个过渡节点得到的亮度调节曲线更加准确。
在一些实施例中,S22包括如下过程:
按照过渡亮度调节值由小到大的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段。
示例性的,请参见图9,对于参考节点B和参考节点C之间的过渡节点,按照过渡亮度调节值由小到大的次序,首先计算第一过渡亮度调节值(130尼特)所对应的过渡伽马段,再计算第二过渡亮度调节值(170尼特)所对应的过渡伽马段。
如图11所示,对于每个过渡亮度调节值:
S221、确定与该过渡亮度值相邻且亮度调节值小于该过渡亮度值的亮度调节值对应的节点。
示例性地,如图9所示,对于第一过渡亮度调节值(130尼特),与该过渡亮度调节值相邻且亮度调节值小于该过渡亮度值的亮度调节值为第二参考亮度调节值(100尼特),第二参考亮度调节值(100尼特)对应的节点为参考节点B。
对于第二过渡亮度调节值(170尼特),与该过渡亮度调节值相邻且亮度调节值小于该过渡亮度值的亮度调节值为第一过渡亮度调节值(130尼特),第一过渡亮度调节值(130尼特)所对应的节点为拟设置的过渡节点p。
S222、根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
示例性的,对于第一过渡亮度调节值(130尼特),根据参考节点B对应的参考伽马段,及参考节点B对应的调试参数组,计算第一过渡亮度调节值(130尼特)对应的过渡伽马段,得到第一过渡亮度调节值(130尼特)对应的过渡节点p。
在得到过渡节点p之后,对于第二过渡亮度调节值(170尼特),根据过渡节点p对应的过渡伽马段,及过渡节点p对应的调试参数组,计算第二过渡亮度调节值(170尼特)对应的过渡伽马段,得到第二过渡亮度调节值(170尼特)对应的过渡节点q。
在另一些实施例中,S22包括如下过程:
按照过渡亮度调节值由大到小的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段。
示例性的,请参见图9,对于参考节点B和参考节点C之间的过渡节点,按照亮度调节值由大到小的次序,首先计算第二过渡亮度调节值(170尼特)所对应的过渡伽马段,再计算第一过渡亮度调节值(130尼特)所对应的过渡伽马段。
如图12所示,对于每个过渡亮度调节值:
S221’、确定与该过渡亮度值相邻且亮度调节值大于该过渡亮度值的亮度调节值对应的节点。
示例性的,如图9所示,对于第二过渡亮度调节值(170尼特),与该过渡亮度调节值相邻且亮度调节值大于该过渡亮度值的亮度调节值为第三参考亮度调节值(200尼特),第三参考亮度调节值(200尼特)对应的节点为参考节点C。
对于第一过渡亮度调节值(130尼特),与该过渡亮度调节值相邻且亮度调节值大于该过渡亮度值的亮度调节值为第二过渡亮度调节值(170尼特),第二过渡亮度调节值(170尼特)所对应的节点为拟设置的过渡节点q。
S222’、根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
示例性的,对于第二过渡亮度调节值(170尼特),根据参考节点C对应的参考伽马段,及参考节点C对应的调试参数组,计算第二过渡亮度调节值(170尼特)对应的过渡伽马段,得到第二过渡亮度调节值(170尼特)对应的过渡节点q。
在得到过渡节点q之后,对于第一过渡亮度调节值(130尼特),根据过渡节点q对应的过渡伽马段,及过渡节点q对应的调试参数组,计算第一过渡亮度调节值(130尼特)对应的过渡伽马段,得到第一过渡亮度 调节值(130尼特)对应的过渡节点p。
在一些实施例中,所确定的节点对应的调试参数组包括所述颜色的各灰阶对应的寄存器数值的调试参数,所述调试参数包括该调试参数对应的寄存器数值的倍率a和增益b。
如图13所示,所述根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段的S222或S222’,包括如下过程:
从所确定的节点对应的伽马段中,找出第i个灰阶对应的寄存器数值X i
从所找出的调试参数组中,找出第i个灰阶对应的寄存器数值X i的调试参数(a i,b i)。
根据公式X′ i=a i×X i+b i,计算该过渡亮度调节值下第i个灰阶对应的寄存器数值X′ i
令i=1~n,重复执行上述步骤,依次根据计算得到的该过渡亮度调节值下n个灰阶对应的寄存器数值X′ 1~X′ n,得到该过渡亮度调节值对应的过渡伽马段;其中,n表示待调试显示屏的一个颜色的灰阶个数。
请参考图14a,以红色为例,在待调试显示屏的灰阶个数为256的情况下,对S222的具体步骤进行示例性的说明:
在按照过渡亮度调节值由小到大的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段的情况下:
在S222中,对于第一过渡亮度调节值(130尼特),所确定的节点为参考节点B。
在参考节点B所对应的第二参考亮度调节值(100尼特)下,其所对应的伽马曲线中,0~255灰阶分别对应的红色寄存器数值为
Figure PCTCN2019108082-appb-000012
Figure PCTCN2019108082-appb-000013
第一过渡亮度调节值(130尼特)对应拟设置的过渡节点p,在第一过渡亮度调节值(130尼特)下,需要求出从0~255灰阶分别对应的红色寄存器数值
Figure PCTCN2019108082-appb-000014
对于参考节点B和拟设置的过渡节点p,同一灰阶的红色寄存器数值之间存在对应关系。例如0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000015
Figure PCTCN2019108082-appb-000016
之间存在对应关系,称该对应关系为参考节点B中0灰阶对应的红色寄存器数值的调试参数C B(a 1,b 1),该调试参数包括该0灰阶对应的红色寄存器数值 的倍率a 1和增益b 1。1灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000017
Figure PCTCN2019108082-appb-000018
之间存在对应关系,称该对应关系为参考节点B中1灰阶对应的红色寄存器数值的调试参数C B(a 2,b 2),该调试参数包括该1灰阶对应的红色寄存器数值的倍率a 2和增益b 2。依次类推,各灰阶对应的红色寄存器数值的调试参数的集合为参考节点B对应的调试参数组C B(a i,b i),i=1~n。
根据参考节点B对应的伽马段,以及参考节点B对应的调试参数组,计算得到第一过渡亮度调节值(130尼特)对应的过渡伽马段,具体步骤为:
令i=1,从参考节点B对应的伽马段中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000019
从所找出的调试参数组中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000020
的调试参数C B(a 1,b 1)。
根据公式X′ i=a i×X i+b i,计算第一过渡亮度调节值下第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000021
令i=2,从参考节点B对应的伽马段中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000022
从所找出的调试参数组中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000023
的调试参数C B(a 2,b 2)。
根据公式X′ i=a i×X i+b i,计算第一过渡亮度调节值下第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000024
令i=i+1,重复执行上述步骤,直到i>256,依次计算第一过渡亮度调节值(130尼特)下256个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000025
Figure PCTCN2019108082-appb-000026
得到第一过渡亮度调节值(130尼特)对应的过渡伽马段。
在得到第一过渡亮度调节值(130尼特)对应的过渡伽马段之后,接着计算第二过渡亮度调节值(170尼特)对应的过渡伽马段。
在S222中,对于第二过渡亮度调节值(170尼特),所确定的节点为过渡节点p。
在过渡节点p所对应的第一过渡亮度调节值(130尼特)下,其所对应的伽马曲线中,0~255灰阶分别对应的红色寄存器数值为
Figure PCTCN2019108082-appb-000027
Figure PCTCN2019108082-appb-000028
第二过渡亮度调节值(170尼特)对应拟设置的过渡节点q,在第二过 渡亮度调节值(170尼特)下,需要求出从0~255灰阶分别对应的红色寄存器数值
Figure PCTCN2019108082-appb-000029
对于过渡节点p和拟设置的拟设置的过渡节点q,同一灰阶的红色寄存器数值之间存在对应关系,各灰阶对应的红色寄存器数值的调试参数的集合为过渡节点p对应的调试参数组G p(a i,b i),i=1~n。
根据过渡节点p对应的伽马段,以及过渡节点p对应的调试参数组G p(a i,b i),计算得到过渡第二亮度调节值(170尼特)对应的过渡伽马段,具体步骤为:
令i=1,从过渡节点p对应的伽马段中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000030
从所找出的调试参数组中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000031
的调试参数G p(a 1,b 1)。
根据公式X′ i=a i×X i+b i,计算第二过渡亮度调节值(170尼特)下第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000032
令i=2,从过渡节点p对应的伽马段中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000033
从所找出的调试参数组中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000034
的调试参数G p(a 2,b 2)。
根据公式X′ i=a i×X i+b i,计算第二过渡亮度调节值(170尼特)下第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000035
令i=i+1,重复执行上述步骤,直到i>256,依次计算第二过渡亮度调节值(170尼特)下256个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000036
Figure PCTCN2019108082-appb-000037
得到第二过渡亮度调节值(170尼特)对应的过渡伽马段。
这样,按照亮度调节值由小到大的次序,依次得到了参考节点B和参考节点C对应的两个参考亮度调节值之间的第一过渡亮度调节值(130尼特)和第二过渡亮度调节值(170尼特)所对应的伽马段,从而得到了过渡节p和过渡节点q。在其他相邻两个参考节点之间所设置的过渡节点的方式可参见如上设置。
请参考图14b,以红色为例,在待调试显示屏的灰阶个数为256的情况下,对S222’的具体步骤进行示例性的说明:
在按照过渡亮度调节值由大到小的次序,依次计算所述至少一个过渡 亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段的情况下:
在S222’中,对于第二过渡亮度调节值(170尼特),所确定的节点为参考节点C。
在参考节点C所对应的第三参考亮度调节值(200尼特)下,其所对应的伽马曲线中,0~255灰阶分别对应的红色寄存器数值为
Figure PCTCN2019108082-appb-000038
Figure PCTCN2019108082-appb-000039
第二过渡亮度调节值(170尼特)对应拟设置的过渡节点q,在第二过渡亮度调节值(170尼特)下,需要求出从0~255灰阶分别对应的红色寄存器数值
Figure PCTCN2019108082-appb-000040
对于参考节点C和拟设置的过渡节点q,同一灰阶的寄存器数值之间存在对应关系,例如0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000041
Figure PCTCN2019108082-appb-000042
之间存在对应关系,称该对应关系为参考节点C中0灰阶对应的寄存器数值的调试参数C' C(a 1,b 1),该调试参数包括该0灰阶对应的寄存器数值的倍率a 1和增益b 1。1灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000043
Figure PCTCN2019108082-appb-000044
之间存在对应关系,称该对应关系为参考节点C中1灰阶对应的寄存器数值的调试参数C' C(a 2,b 2),该调试参数包括该1灰阶对应的寄存器数值的倍率a 2和增益b 2。依次类推,各灰阶对应的红色寄存器数值的调试参数的集合为参考节点C对应的调试参数组C' C(a i,b i),i=1~n。
根据参考节点C对应的伽马段,以及参考节点C对应的调试参数组C' C(a i,b i),计算得到第二过渡亮度调节值(170尼特)对应的过渡伽马段,具体步骤为:
令i=1,从参考节点C对应的伽马段中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000045
从所找出的调试参数组中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000046
的调试参数C' C(a 1,b 1)。
根据公式X′ i=a i×X i+b i,计算第二过渡亮度调节值(170尼特)下第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000047
令i=2,从参考节点C对应的伽马段中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000048
从所找出的调试参数组中,找出第2个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000049
的调试参数C' C(a 2,b 2)。
根据公式X′ i=a i×X i+b i,计算第二过渡亮度调节值(170尼特)下第2 个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000050
令i=i+1,重复执行上述步骤,直到i>256,依次计算第二过渡亮度调节值(170尼特)下256个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000051
Figure PCTCN2019108082-appb-000052
得到第二过渡亮度调节值(170尼特)对应的过渡伽马段。
在得到第一过渡亮度调节值(130尼特)对应的过渡伽马段之后,接着计算第二过渡亮度调节值(170尼特)对应的过渡伽马段。
在S222中,对于第一过渡亮度调节值(130尼特),所确定的节点为过渡节点q。
在过渡节点q所对应的第二过渡亮度调节值(170尼特)下,其所对应的伽马曲线中,0~255灰阶分别对应的红色寄存器数值为
Figure PCTCN2019108082-appb-000053
Figure PCTCN2019108082-appb-000054
第一过渡亮度调节值对应拟设置的过渡节点p,在第一过渡亮度调节值(130尼特)下,需要求出从0~255灰阶分别对应的红色寄存器数值
Figure PCTCN2019108082-appb-000055
对于过渡节点q和拟设置的拟设置的过渡节点p,同一灰阶的红色寄存器数值之间存在对应关系,各灰阶对应的红色寄存器数值的调试参数的集合为过渡节点q对应的调试参数组G' q(a i,b i),i=1~n。
根据过渡节点q对应的伽马段,以及过渡节点q对应的调试参数组G q(a i,b i),计算得到第一过渡亮度调节值对应(130尼特)的过渡伽马段,具体步骤为:
令i=1,从过渡节点q对应的伽马段中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000056
从所找出的调试参数组中,找出第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000057
的调试参数G' q(a 1,b 1)。
根据公式X′ i=a i×X i+b i,计算第一过渡亮度调节值(130尼特)下第1个灰阶(0灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000058
令i=2,从过渡节点q对应的伽马段中,找出第2个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000059
从所找出的调试参数组中,找出第2个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000060
的调试参数G' q(a 2,b 2)。G' q(a 256,b 256)
根据公式X′ i=a i×X i+b i,计算第一过渡亮度调节值(130尼特)下第2 个灰阶(1灰阶)对应的红色寄存器数值
Figure PCTCN2019108082-appb-000061
令i=i+1,重复执行上述步骤,直到i>256,依次计算第一过渡亮度调节值下256个灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000062
Figure PCTCN2019108082-appb-000063
得到第一过渡亮度调节值(130尼特)对应的过渡伽马段。
这样,按照亮度调节值由大到小的次序,依次得到了参考节点B和参考节点C对应的两个参考亮度调节值之间的第二过渡亮度调节值(170尼特)和第一过渡亮度调节值(130尼特)所对应的伽马段,从而得到了过渡节p和过渡节点q。在其他相邻两个参考节点之间所设置的过渡节点的方式可参见如上设置。
在一些实施例中,伽马校正方法还包括得到所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组的步骤,如图15所示,该步骤包括:
S1’、选取样品显示屏。
S2’、参照拟在待调试显示屏中设置的所述多个参考节点,在样品显示屏中设置多个第一节点。所述多个第一节点对应的多个亮度调节值与所述多个参考节点对应的参考亮度调节值一一对应相等。所述第一节点中的每个第一节点对应的伽马段为,该伽马段对应的亮度调节值下,对样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合。
请参见图9和图16,示例性的,上面提到多个参考节点所对应的参考亮度调节值分别为0尼特、100尼特、200尼特、300尼特、400尼特,因此在样品显示屏中设置的多个第一节点所对应的亮度调节值分别为0尼特、100尼特、200尼特、300尼特、400尼特,多个第一节点分别为第一节点A0、第一节点B0、第一节点C0、第一节点D0、第一节点E0、。
亮度调节值为0尼特的第一节点A0所对应的伽马段为:在0尼特的亮度调节值下对样品显示屏的各灰阶对应的寄存器数值进行伽马校正,使得该亮度调节值下的伽马曲线的伽马值符合2.2±0.2,得到的各寄存器数值的集合。其他第一节点所对应的伽马段可参见上述描述,此处不再赘述。
需要说明的是,在样品显示屏中,经过伽马校正之后,多个第一节点中的每个第一节点所对应的伽马段均为已知且存储于样品显示屏中,也就是样品显示屏中存储有多个第一节点中的每个第一节点所对应的亮度调节值下,各灰阶对应的寄存器数值的集合。
S3’、参照拟在待调试显示屏中设置的所述至少一个过渡节点,在所述样品显示屏中设置多个第二节点,所述多个第二节点对应的多个亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值一一对应相等。所述第二节点中的每个第二节点对应的伽马段为,在该伽马段对应的亮度调节值下,对样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合。
请参见图9和图16,示例性的,上面提到至少一个过渡节点的设置方式为,在参考节点B和参考节点C之间设置有过渡节点p和过渡节点q,该两个过渡节点对应的两个过渡亮度调节值分别为130尼特和170尼特。则在该步骤中,所设置的第二节点的多个亮度调节值分别为130尼特和170尼特,相应的,这两个第二节点为第二节点p0和第二节点q0。
亮度调节值为130尼特的第二节点p0所对应的伽马段为,在130尼特的亮度调节值下对样品显示屏的各灰阶对应的寄存器数值进行伽马校正,使得该亮度调节值下的伽马曲线的伽马值符合2.2±0.2,得到的各寄存器数值的集合。亮度调节值为170尼特的第二节点q0所对应的伽马段可参见上述描述,此处不再赘述。
需要说明的是,在样品显示屏中,经过伽马校正之后,多个第二节点中的每个第二节点所对应的伽马段均为已知且存储于样品显示屏中,也就是样品显示屏中存储有多个第二节点中的每个第二节点所对应的亮度调节值下,的各灰阶对应的寄存器数值的集合。
S4’、根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数,得到每个特定节点对应的调试参数组。其中,所述至少一个特定节点为与所述每个第二节点相邻,且按照亮度调节值的设定次序位于相应第二节点之前的节点;亮度调节值的设定次序为亮度调节值由小到大的次序,或者亮度调节值由大到小的次序。
在上述步骤中,示例性的,在亮度调节值的设定次序为按照亮度调节值从小到大的次序的情况下,对于第二节点p0,与第二节点p0相邻且按照从小到大的次序位于第二节点p0之前的节点为第一节点B0,则第一节点B0为相对于第二节点p0的特定节点,计算第一节点B0对应的亮度调节值100尼特下,各灰阶对应的寄存器数值的调试参数,得到第一节点B0对应的调试参数组。
对于第二节点q0,与第二节点q0相邻且按照从小到大的次序位于第二节点q0之前的节点为第二节点p0,则第二节点p0为相对于第二节点q0的特定节点,计算第二节点p0对应的亮度调节值130尼特下,各灰阶对应的寄存器数值的调试参数,得到第二节点p0对应的调试参数组。
示例性的,在亮度调节值的设定次序为按照亮度调节值从大到小的次序的情况下,对于第二节点q0,与第二节点q0相邻且按照从大到小的次序位于第二节点q0之前的节点为第一节点C0,则第一节点C0为相对于第二节点q0的特定节点,计算第一节点C0对应的亮度调节值100尼特下,各灰阶对应的寄存器数值的调试参数,得到第一节点C0对应的调试参数组。
对于第二节点p0,与第二节点p0相邻且按照从大到小的次序位于第二节点p0之前的节点为第二节点q0,则第二节点q0为相对于第二节点p0的特定节点,计算第二节点q0对应的亮度调节值170尼特下,各灰阶对应的寄存器数值的调试参数,得到第二节点q0对应的调试参数组。
S5’、根据每个特定节点对应的调试参数组,得到拟在待调试显示屏中设置的所述多个参考节点中的每个参考节点所对应的调试参数组,及拟在待调试显示屏中设置的所述至少一个过渡节点中的每个过渡节点所对应的调试参数组。
在上述步骤中,示例性的,在亮度调节值的设定次序为按照亮度调节值从小到大的次序的情况下,对于第二节点p0,第一节点B0为相对于第二节点p0的特定节点,而该特定节点(第一节点B0)对应待调试显示屏中的参考节点B,因此所得到第一节点B0对应的调试参数组即为待调试显示屏中的参考节点B对应的调试参数组。
对于第二节点q0,第二节点p0为相对于第二节点q0的特定节点,而该特定节点(第二节点p0)对应待调试显示屏中的过渡节点p,因此所得到第二节点p0对应的调试参数组即为待调试显示屏中的过渡节点p对应的调试参数组。
示例性的,在亮度调节值的设定次序为按照亮度调节值从大到小的次序的情况下,对于第二节点q0,第一节点C0为相对于第二节点q0的特定节点,而该特定节点(第一节点C0)对应待调试显示屏中的参考节点C,因此所得到第一节点C0对应的调试参数组即为待调试显示屏中的参考节点C对应的调试参数组。
对于第二节点p0,第二节点q0为相对于第二节点p0的特定节点,而该特定节点(第二节点q0)对应待调试显示屏中的过渡节点q,因此所得到第二节点q0对应的调试参数组即为待调试显示屏中的过渡节点q对应的调试参数组。
也就是说,在样品显示屏中的每个特定节点均对应待调试显示屏中拟设置的参考节点或者过渡节点,因此每个特定节点对应的调试参数组也一一对应的为该特定节点所对应的待调试显示屏中拟设置的参考节点或过渡节点的调试参数组。
在一些实施例中,如图17所示,根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数的步骤,包括:
对于所述每个第二节点,
S41’、确定与该第二节点相邻,且按照亮度调节值的设定次序位于该第二节点之前的节点为一个特定节点。
示例性的,在照亮度调节值的设定次序为按照亮度调节值从小到大的次序的情况下,对于第二节点p0,与第二节点p0相邻且按照从小到大的次序位于第二节点p0之前的节点为第一节点B0,则第一节点B0为相对于对于第二节点p0的特定节点。
对于第二节点q0,与第二节点q0相邻且按照从小到大的次序位于第二节点q0之前的节点为第二节点p0,则第二节点p0为相对于对于第二节点q0的特定节点。
S42’、根据公式X′ 0i=a i×X 0i+b i,分别计算该特定节点各灰阶对应的各调试参数。
其中,X′ 0i表示该第二节点第i个灰阶对应的寄存器数值;X 0i表示该特定节点第i个灰阶对应的寄存器数值;a i表示该特定节点第i个灰阶对应的倍率,b i表示该特定节点第i个灰阶对应的增益。
示例性的,以下以照亮度调节值的设定次序为按照亮度调节值从小到大的次序,颜色为红色为例,根据第二节点p0,以及相对于对于第二节点p0的特定节点(第一节点B0),对S42’进行具体介绍:
需要说明的是,第一节点B0对应的亮度调节值(100尼特)下各灰阶对应的红色寄存器数值的集合
Figure PCTCN2019108082-appb-000064
以及 第二节点p0对应的亮度调节值(130尼特)下各灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000065
的集合均为已知且存储于样品显示屏中,计算第一节点B0各灰阶对应的各调试参数的过程即为建立第一节点B0与第二节点p0的同一灰阶的寄存器数值对应关系的过程。建立对应关系的过程即为根据公式X′ 0i=a i×X 0i+b i,分别计算第一节点B0各灰阶对应的各调试参数。
其中,X′ 0i表示该第二节点p0第i个灰阶对应的寄存器数值;X 0i表示该第一节点B0第i个灰阶对应的寄存器数值;a i表示第一节点B0第i个灰阶对应的倍率,b i表示第一节点B0第i个灰阶对应的增益。
示例性的,建立0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000066
Figure PCTCN2019108082-appb-000067
之间的对应关系的方式为,根据第一节点B0中0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000068
以及第二节点p0中0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000069
首先设定倍率a 1,接着根据公式X′ 0i=a i×X 0i+b i,也就是
Figure PCTCN2019108082-appb-000070
其中
Figure PCTCN2019108082-appb-000071
a 1均为已知量,计算得到增益b 1,从而得到第一节点B0中0灰阶对应的红色寄存器数值的调试参数C B0(a 1,b 1)。
建立1灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000072
Figure PCTCN2019108082-appb-000073
之间的对应关系的方式为,根据第一节点B0中0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000074
以及第二节点p0中0灰阶对应的红色寄存器数值
Figure PCTCN2019108082-appb-000075
首先设定倍率a 2,接着根据公式X′ 0i=a i×X 0i+b i,也就是
Figure PCTCN2019108082-appb-000076
其中
Figure PCTCN2019108082-appb-000077
Figure PCTCN2019108082-appb-000078
a 2均为已知量,计算得到增益b 2,从而得到第一节点B0中0灰阶对应的红色寄存器数值的调试参数C B0(a 2,b 2)。
对于第一节点B0的其他灰阶对应的寄存器数值的调试参数的建立,可参考上述描述,此处不再赘述。
这样,通过上述方式,计算得到第一节点B0各灰阶对应的红色寄存器数值的各调试参数,第一节点B0各灰阶对应的红色寄存器数值的调试参数的集合为第一节点B0对应的调试参数组C B0(a i,b i),i=1~n。需要说明的是,在样本显示屏中所建立的第一节点B0对应的调试参数组C B0(a i,b i)即为待调试显示屏中参考节点B对应的调试参数组C B(a i,b i)
同样的,第二节点p0为相对于对于第二节点q0的特定节点,通过上述步骤,建立第二节点p0与第二节点q0之间的对应关系,可以得到第二节点p0各灰阶对应的各调试参数,第二节点p0各灰阶对应的寄存器数值的调试参数的集合为第二节点p0对应的调试参数组G p0(a i,b i),i=1~n。需要 说明的是,在样本显示屏中所建立的第二节点p0对应的调试参数组G p0(a i,b i)即为待调试显示屏中过渡节点p对应的调试参数组G p(a i,b i)
在亮度调节值的设定次序为按照亮度调节值从大到小的次序的情况下,S42’中根据公式X′ 0i=a i×X 0i+b i,分别计算该特定节点各灰阶对应的各调试参数的步骤可参考上述在亮度调节值的设定次序为按照亮度调节值从小到大的次序的情况下的步骤示例。
在一些实施例中,伽马校正方法还包括:将所建立的节点与调试参数之间的对应关系预先存储至所述待调节的显示屏中。
将利用所选取的样品显示屏所建立的节点与调试参数之间的对应关系预先存储至所述待调节的显示屏中,以便对待调节的显示屏进行本公开实施例所提供的伽马校正方法中的相关步骤(例如S221~S222或者S221’~S222’)时调用该对应关系。
在一些实施例中,将所得到的所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组预先存储至所述待调试显示屏中。
需要说明的是,同一生产批次的显示屏的材料、结构和集成电路(Integrated Circuit,IC)等均相同,因此同一生产批次的显示屏的显示参数也基本相同。这样,根据选取的样品显示屏建立的每个第一节点所对应的调试参数组和每个第二节点所对应的调试参数组,可以对应于待调试显示屏中的每个参考节点所对应的调试参数组和每个过渡节点所对应的调试参数组,,保证伽马校正算法的准确性。
在一些实施例中,所述相邻两个参考节点对应的参考亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值成等差数列。
在上述实施例中,过渡亮度调节值为将相邻两个参考节点对应的亮度调节值之间的亮度调节范围进行等分,选取分界点处对应的亮度调节值为过渡亮度调节值,示例性的,在第二参考节点B所对应的参考亮度调节值100尼特和参考节点C所对应的参考亮度调节值200尼特之间,选取三个亮度调节值作为过渡亮度调节值,分别为125尼特、150尼特和175尼特。这样,在相邻两个参考节点之间设置的所述至少一个过渡节点分布均匀,在根据多个参考节点和多个过渡节点得到表征亮度调节值与伽马段的对应关系的亮度调节曲线时,所得到的亮度调节曲线更加符合OLED显示装置的发光材料的特性,从而使得对OLED显示装置进行亮度调节时所显示的 画面效果更好。
在一些实施例中,所述相邻两个参考节点之间所设置的过渡节点的数量为至少两个。
在相邻两个参考节点之间所设置的过渡节点的个数越多,表征亮度调节值与伽马段的对应关系的特征点越多,在得到亮度调节曲线时,根据多个参考节点与多个过渡节点,可以使所得到的亮度调节曲线更加符合显示屏的发光材料的特性变化,改善显示屏的显示效果。
在一些实施例中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤包括:在每相邻两个参考节点之间设置至少一个过渡节点。
示例性的,在参考节点A和参考节点B、参考节点B和参考节点C、参考节点C和参考节点D、参考节点D和参考节点之间均设置至少一个过渡节点,这样可以提高伽马校正算法的准确性,保证在整个亮度调节值范围内,根据所得到的亮度调节曲线对显示屏进行亮度调节时,有效改善在参考亮度调节值之间亮度调节值下出现的发红发绿等不良现象。
在每相邻两个所述参考节点之间设置一个过渡节点的情况下,如图18所示,图18示出了在0尼特~300尼特的亮度调节值范围内的色坐标变化曲线,其中X表示色坐标中的横轴,Y表示色坐标中的纵轴。可见,整个亮度调节值范围内,横轴X的值与纵轴Y的值基本一致,且均在0.3左右,色坐标图中所显示的颜色为白色,说明绿色像素的衰减速度与红色像素的衰减速度基本一致,因此所显示的画面不会出现发红发青现象,从而改善了显示装置的显示效果。
在一些实施例中,在所述多个参考节点对应的多个参考亮度调节值中,根据最小的参考亮度调节值和最大的参考亮度调节值确定一亮度值调节范围。亮度值调节范围包括第一区段和第二区段,第一区段的亮度调节上限值不大于第二区段的亮度调节下限值。第一区段对应的过渡节点的数量大于第二区段对应的过渡节点的数量。
示例性地,所述多个参考节点对应的多个参考亮度调节值中,最小的参考亮度调节值0尼特和最大的参考亮度调节值400尼特确定一亮度值调节范围0尼特~400尼特。亮度值调节范围0尼特~400尼特包括第一区段0尼特~200尼特和第二区段200尼特~400尼特,第一区段的亮度调节上限值200尼特等于第二区段的亮度调节下限值200尼特。
第一区段对应0尼特~200尼特的过渡节点的数量大于第二区段200尼 特~400尼特对应的过渡节点的数量。示例性地,在第一区段的每相邻两个参考节点之间设置3个过渡节点,在第二区段的每相邻两个过渡节点之间设置1个过渡节点。
由于采用相关技术中在相邻两个过渡节点之间通过线性插值得到多个亮度调节值对应的伽马段的方法,在较低亮度调节值下,在参考亮度调节值之间的亮度调节值下的显示画面会出现发红发绿等显示不良现象,因此在较低亮度调节值范围内所设置的过渡节点个数多于在较高亮度调节值范围内所设置的过渡节点个数,可以有效改善在较低亮度调节值下出现的显示不良现象,且在保证不影响较高亮度调节值下的显示效果的同时,可以减少在对待调试的显示屏中设置多个过渡节点,以及在样本显示屏中设置多个第二节点并计算调试参数组的工作量,从而节省耗时,提高效率。
在一些实施例中,在第一区段的每相邻两个参考节点之间设置的过渡节点数量大于在第二区段的每相邻两个参考节点之间设置的过渡节点数量。
示例性地,在第一区段0尼特~200尼特的每相邻两个参考节点之间设置的过渡节点数量为3个,在第二区段200尼特~400尼特的每相邻两个参考节点之间设置的过渡节点数量为2个,这样,既能有效改善在较低亮度调节值下所出现的显示画面发红发绿等不良现象,又能节省工作量,提高伽马校正的效率。
在一些实施例中,待调试显示屏能够显示至少两种颜色,对于每种颜色的亮度调节曲线的建立,分别执行如上所述的伽马校正方法。例如,在待调试的显示屏显示三种颜色的情况下,例如红色、蓝色和绿色,对于红色的亮度调节曲线的建立、蓝色的亮度调节曲线的建立、以及绿色的亮度调节曲线的建立,分别执行上述伽马校正方法。
由于每种颜色的发光材料均具有各自的特性,例如衰减速度等特性,因此对于每种颜色的亮度调节曲线的建立,分别执行如上所述的伽马校正方法,可以使利用上述伽马校正方法得到的亮度调节曲线符合发光材料的特性,从而使得在每个亮度调节值下,显示屏所显示的画面的显示效果较好,不会出现发红发绿等现象。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读存储介质来实施。
对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路 (ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。在一些情况下,这样的实施方式可以在处理器单元中实施。
对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以有任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由处理器单元执行。
如图19所示,本公开的一些实施例还提供了一种伽马校正装置100,包括存储器1和处理器2,其中存储器1中存储有计算机指令,处理器2被配置为读取并执行该计算机指令,以实现如本公开各实施例所述伽马校正方法中的一个或多个步骤。
上述伽马校正装置100用于对待调试的显示屏进行伽马校正,通过该伽马校正装置,改善了待调试的显示屏在较低亮度调节值下,在参考亮度调节值之间的亮度调节值下的显示画面所出现的发红发绿等显示不良的现象,提高了显示屏的显示效果。
例如,本公开实施例中提到的存储器1可以包括只读存储器和随机存取存储器。
例如,本公开实施例中提到的处理器2可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
应当理解的是,本公开实施例中的存储器1和处理器2之间可以通过通信总线3进行交互。通信总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为通信总线。
如图20所示,本公开的一些实施例还提供了一种伽马校正系统200,包括如上所述的伽马校正装置100、驱动装置101和光学测试装置102。
其中,驱动装置101被配置为驱动待调试显示屏工作。光学测试装置102被配置为在伽马校正装置的控制下,采样待调试显示屏的光学参数,并将采样得到的光学参数上传至所述伽马校正装置。伽马校正装置100根 据光学参数对待调试的显示屏进行伽马校正。
例如,驱动装置101可以为信号发生器,提供驱动信号驱动产品,基于ARM(Advanced RISC Machine,高级精简指令集计算机处理器)实现或基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)结合PC(PersonalComputer,个人计算机)等实现。
例如,光学测试装置102可以为显示图像检测器等。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有可在处理器上运行的计算机指令,所述计算机指令被处理器执行时实现如上所述的亮度调节方法中的一个或多个步骤。
需要说明的是,本公开实施例提供的计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),只读存储器(ROM,Read-Only Memory),随机存取存储器(RAM,Random Access Memory),可擦写可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)等各种可以存储程序代码的介质。
本公开的一些实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如上所述的亮度调节方法中的一个或多个步骤。
本公开实施例提供的计算机存储介质或者计算机程序产品均用于执行上文所提供的伽马校正方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种伽马校正方法,应用于待调试显示屏,包括:对于所述待调试显示屏的一个颜色,
    设置多个参考节点,所述多个参考节点中的每个参考节点表示参考亮度调节值和参考伽马段的映射关系,按照所述参考亮度调节值由小到大或由大到小的次序对所述多个参考节点进行排序;
    在相邻两个参考节点之间设置至少一个过渡节点,所述至少一个过渡节点中的每个过渡节点表示过渡亮度调节值和过渡伽马段的映射关系;
    根据所述多个参考节点和所述至少一个过渡节点,得到表征亮度调节值与伽马段的对应关系的亮度调节曲线;
    其中,所述每个伽马段表征在该伽马段对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的集合。
  2. 根据权利要求1所述的伽马校正方法,其中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤,包括:
    在相邻两个参考节点对应的参考亮度调节值之间的范围选取至少一个亮度调节值作为拟设置的所述至少一个过渡节点对应的至少一个过渡亮度调节值;
    根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点;
    其中,每个所述调试参数组表征,在该调试参数组所对应的节点对应的亮度调节值下,所述颜色的各灰阶对应的寄存器数值的调试参数的集合。
  3. 根据权利要求2所述的伽马校正方法,其中,所述根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点的步骤,包括:
    按照所述过渡亮度调节值由小到大的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段;其中,
    对于所述每个过渡亮度调节值,
    确定与该过渡亮度调节值相邻且亮度调节值小于该过渡亮度值的亮度调节值对应的节点;
    根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
  4. 根据权利要求2所述的伽马校正方法,其中,所述根据所述相邻两个参考节点中的至少一个参考节点、所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值对应的过渡伽马段,得到所述至少一个过渡节点的步骤,包括:
    按照所述过渡亮度调节值由大到小的次序,依次计算所述至少一个过渡亮度调节值中的每个过渡亮度调节值所对应的过渡伽马段;其中,
    对于所述每个过渡亮度调节值,
    确定与该过渡亮度值相邻且亮度调节值大于该过渡亮度值的亮度调节值对应的节点;
    根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段,得到该过渡亮度调节值对应的过渡节点。
  5. 根据权利要求3或4所述的伽马校正方法,其中,所述所确定的节点对应的调试参数组包括所述颜色的各灰阶对应的寄存器数值的调试参数,所述调试参数包括该调试参数对应的寄存器数值的倍率a和增益b;
    所述根据所确定的节点对应的伽马段、及所确定的节点对应的调试参数组,计算该过渡亮度调节值对应的过渡伽马段的步骤,包括:
    从所述所确定的节点对应的伽马段中,找出第i个灰阶对应的寄存器数值X i
    从所述所确定的节点对应的调试参数组中,找出第i个灰阶对应的寄存器数值X i的调试参数(a i,b i);
    根据公式X′ i=a i×X i+b i,计算该过渡亮度调节值下第i个灰阶对应的寄存器数值X′ i
    令i=1~n,重复执行上述步骤,依次计算该过渡亮度调节值下n个灰阶对应的寄存器数值X′ 1~X′ n,得到该过渡亮度调节值对应的过渡伽马段;其中,n表示所述颜色的灰阶个数。
  6. 根据权利要求5所述的伽马校正方法,还包括得到所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组的步骤,该步骤包括:
    选取样品显示屏;
    参照拟在所述待调试显示屏中设置的所述多个参考节点,在所述样品显示屏中设置多个第一节点,所述多个第一节点对应的多个亮度调节值与所述多个参考节点对应的参考亮度调节值一一对应相等;
    所述多个第一节点中的每个第一节点对应的伽马段为,在该伽马段对应的亮度调节值下,对所述样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合;
    参照拟在所述待调试显示屏中设置的所述至少一个过渡节点,在所述样品显示屏中设置多个第二节点,所述多个第二节点对应的多个亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值一一对应相等;
    所述多个第二节点中的每个第二节点对应的伽马段为,在该伽马段对应的亮度调节值下,对所述样品显示屏的各灰阶对应的寄存器数值进行伽马校正得到的各寄存器数值的集合;
    根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数,得到每个特定节点对应的调试参数组;
    根据所述每个特定节点对应的调试参数组,得到拟在所述待调试显示屏中设置的所述多个参考节点中的每个参考节点所对应的调试参数组,及拟在所述待调试显示屏中设置的所述至少一个过渡节点中的每个过渡节点所对应的调试参数组;
    其中,所述特定节点为与所述每个第二节点相邻,且按照亮度调节值的设定次序位于相应第二节点之前的节点;所述亮度调节值的设定次序为所述亮度调节值由小到大的次序,或者所述亮度调节值由大到小的次序。
  7. 根据权利要求6所述的伽马校正方法,所述根据所述多个第一节点和所述多个第二节点,依次计算所述多个第一节点和所述多个第二节点中的至少一个特定节点对应的亮度调节值下,各灰阶对应的寄存器数值的调试参数的步骤,包括:
    对于所述每个第二节点,
    确定与该第二节点相邻,且按照所述亮度调节值的设定次序位于该第 二节点之前的节点为一个特定节点;
    根据公式X′ 0i=a i×X 0i+b i,分别计算该特定节点各灰阶对应的各调试参数;
    其中,X′ 0i表示该第二节点第i个灰阶对应的寄存器数值;X 0i表示该特定节点第i个灰阶对应的寄存器数值;a i表示该特定节点第i个灰阶对应的倍率,b i表示该特定节点第i个灰阶对应的增益。
  8. 根据权利要求6所述的伽马校正方法,还包括:将所得到的所述多个参考节点中的每个参考节点所对应的调试参数组、及所述至少一个过渡节点中的每个过渡节点所对应的调试参数组预先存储至所述待调试显示屏中。
  9. 根据权利要求6所述的伽马校正方法,其中,所述样品显示屏与所述待调试显示屏属于同一生产批次的显示屏。
  10. 根据权利要求1~9中任一项所述的伽马校正方法,所述相邻两个参考节点对应的参考亮度调节值与所述至少一个过渡节点对应的过渡亮度调节值成等差数列。
  11. 根据权利要求1~9中任一项所述的伽马校正方法,其中,所述在相邻两个参考节点之间设置至少一个过渡节点的步骤包括:在每相邻两个所述参考节点之间设置至少一个过渡节点。
  12. 根据权利要求1~9中任一项所述的伽马校正方法,其中,所述多个参考节点对应的多个参考亮度调节值中,最小的参考亮度调节值和最大的参考亮度调节值确定一亮度值调节范围;
    所述亮度值调节范围包括第一区段和第二区段,所述第一区段的亮度调节上限值不大于所述第二区段的亮度调节下限值;
    所述第一区段对应的过渡节点的数量大于所述第二区段对应的过渡节点的数量。
  13. 根据权利要求12所述的伽马校正方法,其中,在所述第一区段的每相邻两个参考节点之间设置的过渡节点数量大于在所述第二区段的每相邻两个参考节点之间设置的过渡节点数量。
  14. 根据权利要求1~9中任一项所述的伽马校正方法,其中,所述设置多个参考节点的步骤,包括:
    选取多个亮度调节值作为拟设置的多个参考节点对应的多个参考亮度调节值;
    在所选取的每个参考亮度调节值下,对所述待调节显示屏的各灰阶的寄存器数值进行伽马校正,得到相应参考亮度调节值对应的参考伽马段。
  15. 根据权利要求1所述的伽马校正方法,其中,所述待调试显示屏能够显示至少两种颜色,对于每种颜色的亮度调节曲线的建立,分别执行如权利要求1~14中任一项所述的伽马校正方法。
  16. 一种伽马校正装置,包括存储器和处理器,所述存储器存储有计算机指令,所述处理器被配置为读取并执行所述计算机指令,以实现如权利要求1~15中任一项所述的伽马校正方法中的一个或多个步骤。
  17. 一种伽马校正系统,包括:
    如权利要求16所述的伽马校正装置;
    驱动装置,被配置为驱动待调试显示屏工作;
    光学测试装置,被配置为在所述伽马校正装置的控制下,采样所述待调试显示屏的光学参数,并将采样得到的光学参数上传至所述伽马校正装置。
  18. 一种计算机可读存储介质,所述计算机可读存储介质存储有可在处理器上运行的计算机指令,所述计算机指令被所述处理器执行时实现如权利要求1~15中任一项所述的伽马校正方法中的一个或多个步骤。
  19. 一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1~15中任一项所述的伽马校正方法中的一个或多个步骤。
PCT/CN2019/108082 2019-09-26 2019-09-26 伽马校正方法、伽马校正装置及伽马校正系统 WO2021056315A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980001823.7A CN112955825B (zh) 2019-09-26 2019-09-26 伽马校正方法、伽马校正装置及伽马校正系统
PCT/CN2019/108082 WO2021056315A1 (zh) 2019-09-26 2019-09-26 伽马校正方法、伽马校正装置及伽马校正系统
US16/976,698 US11244591B2 (en) 2019-09-26 2019-09-26 Gamma correction method, gamma correction device and gamma correction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108082 WO2021056315A1 (zh) 2019-09-26 2019-09-26 伽马校正方法、伽马校正装置及伽马校正系统

Publications (1)

Publication Number Publication Date
WO2021056315A1 true WO2021056315A1 (zh) 2021-04-01

Family

ID=75162162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108082 WO2021056315A1 (zh) 2019-09-26 2019-09-26 伽马校正方法、伽马校正装置及伽马校正系统

Country Status (3)

Country Link
US (1) US11244591B2 (zh)
CN (1) CN112955825B (zh)
WO (1) WO2021056315A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450713B (zh) * 2020-03-25 2022-08-12 北京小米移动软件有限公司 屏幕显示方法及装置、灰阶映射信息生成方法及装置
US11935480B2 (en) * 2020-06-01 2024-03-19 Kopin Corporation Apparatuses, systems, and methods for dimming displays
WO2022193280A1 (zh) * 2021-03-19 2022-09-22 重庆康佳光电技术研究院有限公司 Gamma调试方法及设备
CN113393804B (zh) * 2021-06-21 2022-08-05 深圳市华星光电半导体显示技术有限公司 高亮显示装置及其亮度调节方法
CN113436567B (zh) * 2021-06-25 2023-08-18 京东方科技集团股份有限公司 显示面板及其伽马调节方法、显示装置
CN114038399B (zh) * 2021-09-10 2022-09-16 重庆康佳光电技术研究院有限公司 伽马校正方法及装置、显示装置、存储介质
CN114333670B (zh) * 2021-12-10 2023-06-30 北京镁伽科技有限公司 伽马校正方法和装置、电子设备及存储介质
CN114244969B (zh) * 2021-12-21 2024-03-15 上海集成电路装备材料产业创新中心有限公司 一种图像亮度校正方法和硬件系统
CN114333724B (zh) * 2021-12-28 2023-05-12 北京德为智慧科技有限公司 显示器亮度与色彩校正方法、装置、电子设备和存储介质
CN114220377B (zh) * 2021-12-30 2023-06-27 合肥维信诺科技有限公司 显示模组的伽马调试方法、装置及电子设备
WO2024000549A1 (zh) * 2022-06-30 2024-01-04 京东方科技集团股份有限公司 控制系统、车载显示装置及调光方法
CN116741098B (zh) * 2023-06-01 2024-05-10 上海傲显科技有限公司 一种亮度调节方法和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227468A2 (en) * 2001-01-30 2002-07-31 Eastman Kodak Company Method of integrating digital control and display devices on a common substrate
CN109036233A (zh) * 2018-09-07 2018-12-18 四川长虹电器股份有限公司 生产线多点自动Gamma曲线调试方法及系统
CN109637475A (zh) * 2018-12-21 2019-04-16 惠科股份有限公司 显示面板的伽马调试方法
CN109979389A (zh) * 2019-04-08 2019-07-05 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN109979390A (zh) * 2019-04-09 2019-07-05 京东方科技集团股份有限公司 一种Gamma校正方法、设备及系统、介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122745A (ja) * 2006-11-14 2008-05-29 Epson Imaging Devices Corp ガンマ補正用テーブルの作成方法、表示装置用駆動回路、及び電気光学装置
KR100886099B1 (ko) * 2007-06-26 2009-03-04 주식회사 코아로직 감마 보정 곡선의 자동 산출 장치 및 방법
TWI364224B (en) * 2007-12-21 2012-05-11 Etron Technology Inc Gamma image correction method and device
TWI413977B (zh) * 2009-03-06 2013-11-01 Realtek Semiconductor Corp 階調特性檢查表產生方法及顯示裝置
WO2016031006A1 (ja) * 2014-08-28 2016-03-03 Necディスプレイソリューションズ株式会社 表示装置、階調補正マップ生成装置、階調補正マップ生成方法及びプログラム
CN105741775B (zh) * 2016-05-05 2019-01-22 京东方科技集团股份有限公司 调整伽马曲线的方法及装置
CN110473502A (zh) * 2018-05-09 2019-11-19 华为技术有限公司 屏幕亮度的控制方法、装置及终端设备
CN108550345B (zh) * 2018-07-12 2020-04-21 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN109166559B (zh) * 2018-11-09 2020-08-28 重庆先进光电显示技术研究院 显示面板的伽马值调试方法及装置
CN109493801B (zh) * 2019-01-11 2020-07-21 京东方科技集团股份有限公司 伽马校正方法、伽马校正装置及具有显示功能的电子设备
CN110197642B (zh) * 2019-05-30 2020-12-18 京东方科技集团股份有限公司 三基色亮度校正关系的获取方法、显示器的校正方法及校正装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227468A2 (en) * 2001-01-30 2002-07-31 Eastman Kodak Company Method of integrating digital control and display devices on a common substrate
CN109036233A (zh) * 2018-09-07 2018-12-18 四川长虹电器股份有限公司 生产线多点自动Gamma曲线调试方法及系统
CN109637475A (zh) * 2018-12-21 2019-04-16 惠科股份有限公司 显示面板的伽马调试方法
CN109979389A (zh) * 2019-04-08 2019-07-05 成都京东方光电科技有限公司 伽马校正方法及装置、显示装置、计算机存储介质
CN109979390A (zh) * 2019-04-09 2019-07-05 京东方科技集团股份有限公司 一种Gamma校正方法、设备及系统、介质

Also Published As

Publication number Publication date
CN112955825B (zh) 2022-12-30
CN112955825A (zh) 2021-06-11
US20210097920A1 (en) 2021-04-01
US11244591B2 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2021056315A1 (zh) 伽马校正方法、伽马校正装置及伽马校正系统
WO2019214449A1 (zh) 屏幕亮度的控制方法、装置及终端设备
JP6309777B2 (ja) 表示装置、表示パネルドライバ、及び、表示パネルの駆動方法
WO2018214188A1 (zh) 图像处理方法、图像处理装置及显示装置
TWI664613B (zh) 顯示螢幕調光方法、裝置、存儲介質及電子設備
WO2020093499A1 (zh) 一种显示面板的驱动方法、驱动装置及显示装置
CN110428777B (zh) 一种显示模组的显示校正方法和装置
WO2020232588A1 (zh) 控制屏幕亮度的装置及方法
CN109410839B (zh) 显示屏的校正优化方法、装置、电子设备及存储介质
WO2019061849A1 (zh) 显示面板的亮度调节方法及亮度调节装置
US9779514B2 (en) Display device, display panel driver and driving method of display panel
US11735147B1 (en) Foveated display burn-in statistics and burn-in compensation systems and methods
WO2020191698A1 (zh) 显示面板及其控制方法、控制装置
EP3955238A1 (en) Led drive pulse modulation method and apparatus
JP2017538148A (ja) 液晶パネル及びその画素単位の設定方法
JP6727047B2 (ja) 表示装置
CN113920917A (zh) 显示面板补偿方法及补偿装置
US10777152B2 (en) Driving method and driving device for display panel, and display device
US11955054B1 (en) Foveated display burn-in statistics and burn-in compensation systems and methods
CN108962155A (zh) 亮度调整方法以及显示器
US20200234450A1 (en) Region of interest histogram processing for improved picture enhancement
KR20170088461A (ko) 표시 장치 및 이의 구동 방법
KR20170039783A (ko) 표시 장치의 구동 방법
TWI804245B (zh) 控制器電路與影像處理方法
TWI764394B (zh) 用於顯示驅動之電流衰減方法、平面顯示器、及資訊處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947081

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947081

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19947081

Country of ref document: EP

Kind code of ref document: A1